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Abstract

Epistasis, commonly defined as the interaction between genetic loci, is known to play an important

role in the phenotypic variation of complex traits. As a result, many statistical methods have been

developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches

carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that

jointly modeling multiple phenotypes can often dramatically increase statistical power for association

mapping. In this study, we present the “multivariate MArginal ePIstasis Test” (mvMAPIT) — a

multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect

marginal epistasis or the combined pairwise interaction effects between a given variant and all other

variants. By searching for marginal epistatic effects, one can identify genetic variants that are in-

volved in epistasis without the need to identify the exact partners with which the variants interact —

thus, potentially alleviating much of the statistical and computational burden associated with conven-

tional explicit search-based methods. Our proposed mvMAPIT builds upon this strategy by taking

advantage of correlation structure between traits to improve the identification of variants involved in

epistasis. We formulate mvMAPIT as a multivariate linear mixed model and develop a multi-trait

variance component estimation algorithm for efficient parameter inference and P -value computation.

Together with reasonable model approximations, our proposed approach is scalable to moderately

sized GWA studies. With simulations, we illustrate the benefits of mvMAPIT over univariate (or
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single-trait) epistatic mapping strategies. We also apply mvMAPIT framework to protein sequence

data from two broadly neutralizing anti-influenza antibodies and approximately 2,000 heterogenous

stock of mice from the Wellcome Trust Centre for Human Genetics. The mvMAPIT R package can

be downloaded at https://github.com/lcrawlab/mvMAPIT.

Introduction

Genome-wide association (GWA) studies have contributed substantially in the discovery of genetic mark-1

ers associated with the architecture of disease phenotypes1–6. Epistasis, commonly defined as the inter-2

action between genetic loci, has long been thought to play a key role in defining the genetic architecture3

underlying many complex traits and common diseases7–11. Indeed, previous studies have detected perva-4

sive epistasis in many model organisms12–35. Substantial contributions of epistasis to phenotypic variance5

have been revealed for many complex traits36,37 and have been suggested to constitute an important com-6

ponent of evolution38. Furthermore, modeling epistasis in addition to additive and dominant effects has7

been shown to increase phenotypic prediction accuracy in model organisms39–41 and facilitate genomic8

selection in breeding programs42–44. Despite a longstanding and currently ongoing debate about the9

contribution of non-additive effects on the architecture of human complex traits22,45–52, recent genetic10

mapping studies have also identified evidence of epistatic interactions that significantly contribute to11

quantitative traits and diseases53–56, and some have recently shown that gene-by-gene interactions can12

drive heterogeneity of causal variant effect sizes across diverse human populations57. Importantly, epis-13

tasis is often proposed as a key contributor to missing heritability — the proportion of heritability not14

explained by the top associated variants in GWA studies7,58–61.15

Many statistical methods have been developed to facilitate the identification of epistasis in complex16

traits and diseases. Generally, these existing tools can be classified into two frameworks. In the first17

framework, explicit searches are performed to detect significant pairwise or higher-order interactions.18

More specifically, they use various strategies including exhaustive search62–64, probabilistic search65,19

or prioritization based on a predefined set of biological annotations of signaling pathways or genomic20

regulatory units66,67. Different statistical paradigms have been implemented for these explicit search-21

based approaches including various frequentist tests62,68,69, Bayesian inference70–73, and, most recently,22

detecting epistasis using machine learning74,75. Indeed, the explosion of large-scale genomic datasets23

has provided the unique opportunity to integrate many of these techniques as standard statistical tools24
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within GWA analyses. Many modern GWA applications have datasets that can include hundreds of25

thousands of individuals genotyped at millions of markers and phenotyped for thousands of traits76,77.26

Due to the potentially large space of genetic interactions (e.g., J(J −1)/2 possible pairwise combinations27

for J variants in a study), explicit search-based methods often suffer from heavy computational burden.28

Even with various efficient computational improvements65,68,78–80, exploring over a large combinatorial29

domain remains a daunting task for many epistatic mapping studies. More importantly, because of a30

lack of a priori knowledge about epistatic loci, exploring all possible combinations of genetic variants can31

result in low statistical power after correcting for multiple hypothesis tests.32

As a departure from the explicit search strategy, the second category of epistatic mapping methods33

attempts to address the previously mentioned challenges by detecting marginal epistasis. Specifically,34

instead of directly identifying individual pairwise or higher-order interactions, these approaches focus35

on identifying variants that have a non-zero interaction effect with any other variant in the dataset.36

For example, the “MArginal ePIstasis Test” (MAPIT)81 assesses each variant (in turn) and identifies37

candidate markers that are involved in epistasis without the need to identify the exact partners with which38

the variants interact — thus, alleviating much of the statistical power concerns and heavy computational39

burdens associated with explicit search-based methods. As a framework, the marginal epistatic strategy40

has been implemented in both linear mixed models and machine learning and has been used for case-41

control studies82, pathway enrichment applications83, heritability estimation12, and even extended to42

explore different sources of non-additive genetic variation (e.g., gene-by-environment interactions)84,85.43

However, despite its wide adoption, this approach can still be underpowered for traits with low heritability44

or “polygenic” traits which are generated by many mutations of small effect81.45

To date, both the explicit search and marginal epistasis detection methodologies have only focused on46

analyzing one phenotype at a time. However, many previous genetic association studies have exten-47

sively shown that jointly modeling multiple phenotypes can often dramatically increase power for variant48

detection86. In this work, we present the “multivariate MArginal ePIstasis Test” (mvMAPIT) — a49

multi-outcome generalization of the MAPIT model which aims to take advantage of the relationship be-50

tween traits to improve the identification of variants involved in epistasis. We formulate mvMAPIT as a51

multivariate linear mixed model (mvLMM) and extend a previously developed variance component esti-52

mation algorithm for efficient parameter inference and P -value computation in the multi-trait setting87.53

Together with reasonable model approximations, our proposed approach is scalable to moderately sized54
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GWA studies. With detailed simulations, we illustrate the benefits of mvMAPIT in terms of providing55

effective type I error control and compare its power to the univariate (or single-trait) mapping strategy56

used in the original MAPIT model. Here, part of our main contribution is the demonstration that the57

power in our proposed multivariate approach is driven by the correlations between the effects of pairwise58

interactions on multiple traits. To close, we also apply the mvMAPIT framework to protein sequence data59

from a nearly combinatorially complete library of two broadly neutralizing anti-influenza antibodies88
60

and to 15 quantitative hematology traits assayed in a heterogenous stock of mice from Wellcome Trust61

Centre for Human Genetics89–91.62

Results

Overview of the multivariate marginal epistasis test

The “multivariate MArginal ePIstasis Test” (mvMAPIT) is a multi-outcome extension of the statistical63

framework MAPIT which aims to identify variants that are involved in epistatic interactions by leveraging64

the covariance structure of non-additive genetic variation that is shared between multiple traits. The key65

idea behind the concept of marginal epistasis is to identify variants that are involved in epistasis while66

avoiding the need to explicitly conduct an exhaustive search over all possible interactions between pairs67

of variants. As an overview of mvMAPIT and its corresponding software implementation, we will assume68

that we have access to a GWA study on N individuals denoted as D = {X,Y} where X is an N × J69

matrix of genotypes with J denoting the number of SNPs (each of which is encoded as {0, 1, 2} copies70

of a reference allele at each locus j) and Y denoting a D ×N matrix holding D different traits that are71

measured for each of the N individuals. We will let yd represent the N -dimensional phenotypic vector for72

the d-th trait. For convenience, we will assume that the genotype matrix and the traits of interest have73

been mean-centered and standardized. Unlike standard exhaustive search tests for epistasis, mvMAPIT74

works by examining one variant at a time. For the j-th variant, we consider the following mvLMM75

formulation76

Y = U + βjx
ᵀ
j + Mj + Zj + E, E ∼ MN (0,Vε, τ

2I) (1)77

where U is a D×N dimensional matrix which contains population-level intercepts that are the same for78

all individuals within each trait; xj is an N -dimensional vector for the j-th genotype that is the focus of79

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.11.30.518547doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518547
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

the model; βj is a D-dimensional vector of additive effects for the j-th genotype; Mj =
∑

l 6=j βlx
ᵀ
l is the80

combined additive effects from all other l 6= j variants across theD traits with effect sizes βl and effectively81

represents the polygenic background of all variants except for the j-th; and Zj =
∑

l 6=j αl(xj ◦ xl)
ᵀ is the82

summation of all pairwise interaction effects xj ◦ xl (i.e., element-wise multiplication) between the j-th83

variant and all other l 6= j variants with regression coefficients αl across the D traits; and E denotes an84

D×N matrix of residual errors that is assumed to follow a matrix-variate normal distribution with mean85

0, within column covariance Vε among the D traits, and independent within row covariance (scaled by86

τ2) among the N individuals in the study. The term Zj is the main focus of the model and represents87

the collection of marginal epistatic effects of the j-th variant — formally defined as the summation of88

its epistatic interaction effects with all other variants. In this study, we will demonstrate mvMAPIT89

while analyzing D = 2 traits at a time, but note that the framework can easily be applied to more90

phenotypes (see Materials and Methods). Similarly, while we focus on pairwise statistical epistasis in91

the above formulation, extension of the mvMAPIT framework to detect higher order interactions is92

straightforward81.93

The model specified in Eq. (1) becomes an underdetermined linear system for many modern GWA94

applications (i.e., in biobanks where genotyped markers J > N individuals). As a result, we need95

to make additional modeling assumptions on the regression coefficients to make the generative model96

identifiable. Here, we follow standard linear modeling approaches81,92–95 by first letting B = [βl]l 6=j97

and A = [αl]l 6=j denote matrices of coefficients. Then we assume that these matrices follow matrix-98

variate normal distributions where B ∼ MN (0,Vβ , ω
2/(J − 1)I) and A ∼ MN (0,Vα, σ

2/(J − 1)I),99

respectively. With the probabilistic assumption of normally distributed effect sizes, the model defined100

in Eq. (1) is equivalent to a multivariate variance component model where Mj ∼ MN (0,Vβ , ω
2Kj)101

with Kj = X−jXᵀ
−j/(J − 1) being an additive genetic relatedness matrix that is computed using all102

genotypes other than the j-th SNP; and Zj ∼ MN (0,Vα, σ
2Gj) with Gj = DjKjDj being a non-103

additive relatedness matrix computed based on all pairwise interaction terms involving the j-th SNP.104

Here, we let Dj = diag(xj) denote an N ×N diagonal matrix with the j-th genotype as its only nonzero105

elements. It is also important to note that both Kj and Gj change with every new j-th marker that106

is tested. The key takeaway from this variance component model formulation is that σ2 represents a107

measure on the marginal epistatic effect for each variant in the data.108

The goal of mvMAPIT is to identify variants that have non-zero interaction effects with any other variant109
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in the data across multiple traits. To accomplish this, we examine each SNP in turn and assess the null110

hypothesis H0 : σ2 = 0. In practice, we use a computationally efficient method of moments algorithm111

called MQS87 to estimate model parameters and to carry out calibrated statistical tests within mvMAPIT.112

More specifically, to estimate variance components, we first (right) multiply Eq. (1) by a variant-specific113

projection (or hat) matrix Pj = I − bj(bᵀ
j bj)

−1bᵀ
j with b = [1; xj ] and 1 being an N -dimensional vector114

of ones. This procedure projects the model onto a column space that is orthogonal to the intercept and115

the genotypic vector of interest xj which allows us to rewrite Eq. (1) as the following116

Y∗
j = M∗

j + Z∗
j + E∗

j , E∗
j ∼ MN (0,Vε,Pj). (2)117

Here, in addition to previous notation, Y∗
j = YjPj ; M∗

j ∼ MN (0,Vβ , ω
2K∗

j ) with K∗
j = PjKjPj ; and118

Z∗
j ∼ MN (0,Vα, σ

2G∗
j ) with G∗

j = PjGjPj . The joint analysis of multiple traits requires a generalization119

of the MQS algorithm to also include method of moments estimators for covariance components between120

outcomes. Without loss of generality, let y∗
c and y∗

d be the c-th and d-th rows of the measured phenotypic121

matrix Y∗
j . Our multivariate extension of MQS implements an approach which first fits univariate models122

(i.e., the setting where c = d) and then combines the resulting P -values with those stemming from a123

“covariance statistic” which looks for shared marginal epistatic effects between all pairwise combinations124

of the D traits. The MQS estimate for the marginal epistatic component takes on the quadratic form125

σ̂2
j,(cd) = y∗ᵀ

c Hjy∗
d, (3)126

where Hj = (S−1
j )21K∗

j + (S−1
j )22G∗

j + (S−1
j )23Pj with elements (Sj)rs = tr(ΣjrΣjs) for matrices sub-127

scripted as [Σj1;Σj2;Σj3] = [K∗
j ;G∗

j ;Pj ], and tr(•) is used to denote the matrix trace function. The128

corresponding standard error for the test statistic in Eq. (3) can be approximated as the following87,96
129

V[σ̂2
j,(cd)] ≈ y∗ᵀ

c Hᵀ
j Vj,(cd)Hjy∗

d + y∗ᵀ
c Hᵀ

j Vj,(dd)Hjy∗
c (4)130

with Vj,(cd) = ω̂2
j,(cd)K∗

j + σ̂2
j,(cd)G∗

j + τ̂2j,(cd)Pj , being the covariance between any two traits of interest.131

Note the indices c and d range over all D traits and that a different σ̂2
j,(cd) is computed for all pairwise132

combinations of the c-th and d-th traits in the data.133

We implement a combinatorial strategy to carry out hypothesis testing and derive P -values using the134

test statistics computed in Eq. (3). This is done in three key steps. In the first step, we fit the univariate135
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models for all D traits of interests. This case mirrors the original MAPIT model. In mvMAPIT, this136

means that the variance component point estimate is computed using only one trait row in Y (i.e, c = d).137

Here, we use a hybrid approach where we first implement a normal test for each variant by default, and138

then we apply an exact method for the variants that have P -values from the normal test that fall below139

the nominal significance threshold of 0.05 to correct for possible inflation81. To implement the normal140

test, we simply compute a z-score by dividing the test statistic in Eq. (3) by its standard deviation in141

Eq. (4) with Vj,(cd) = Vj,(dd). For the SNPs needing the exact test, we utilize the fact that the MQS142

variance component estimate follows a mixture of chi-square distributions under the null hypothesis. This143

is derived from both the standard normality assumption on each trait y∗ and the quadratic form of the144

statistic in Eq. (3). More specifically, we say that σ̂2
j ∼

∑N
i=1 λiχ

2
1,i where χ2

1 are chi-square random145

variables with one degree of freedom and (λ1, . . . , λN ) are the eigenvalues of146

(
ω̂2
0K∗

j + τ̂20 Pj

)1/2 Hj

(
ω̂2
0K∗

j + τ̂20 Pj

)1/2 (5)147

with (ω̂2
0 , τ̂

2
0 ) being the MQS estimates of (ω̂2, τ̂2) under the null hypothesis. Several approaches have148

been suggested to obtain P -values under a mixture of chi-square distributions. In this work, we use the149

Davies97 method (see Data and Software Availability).150

In the second step of the hypothesis testing procedure, we derive P -values for the hypothesis that a given151

variant is interacting with others in determining traits c and d (where c 6= d). This amounts to deriving152

covariance components for all pairwise combinations of traits where Eq. (3) takes on a bilinear form.153

In this setting, we again use a normal test this time by dividing each covariance test statistic with its154

standard deviation in Eq. (4). As we will show below, the P -values derived for the covariance components155

with the asymptotic normal approximation tend to have generally conservative behavior with respect to156

type I error control under the null hypothesis. Indeed, deriving an exact test to guard against deflation157

and potentially exhibit better power under the alternative could be done; however, we do not explore158

this line of work here.159

In the third and final step of the hypothesis testing, we combine all P -values from the first two steps into160

an overall marginal epistatic P -value. Each individual P -value corresponds to the effect one variant has161

on the variance of one trait or covariance between a pair of traits. The combined P -value corresponds to162

the marginal epistatic effect that one variant has on a set of traits. Without loss of generality, assume163

that we are studying D = 2 traits. In this case, we would have T = 3 sets of P -values (two marginal sets164
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from y1 and y2 individually and one covariance set from analyzing {y1, y2} together). We combine P -165

values using two different strategies. The first assumes that each of the t = 1, . . . , T tests are (effectively)166

independent and implements Fisher’s method98 which combines P -values into a single chi-square test167

statistic using the formula χ2
2T ∼ −2

∑T
t=1 log(pt) where pt denotes the P -value from the t-th test. The168

second approach assumes an unknown dependency structure between each of the T tests and computes169

a harmonic mean99 P -value where p̊ =
∑

t wt/
∑

t wt/pt. The term
∑

t wt = 1 represents a sum weights170

which we uniformly set to be wt = 1/T for all P -values. There are many complex traits for which epistatic171

effects are assumed to make small contributions to their overall broad-sense heritability50–52. Intuitively,172

this combinatorial approach is meant to aggregate over the signal identified in one trait and leverage173

the genetic correlation between traits to improve power. A full theoretical derivation of mvMAPIT and174

details about its corresponding software implementation can be found in Materials and Methods.175

Note on settings where mvMAPIT is designed to be most powered. The formulation of the176

general estimates in Eq. (3) and (4) highlight an important takeaway in that the mvMAPIT covariance177

statistic models epistatic pairs that together affect the architecture of multiple traits. It is not meant to178

identify individual SNPs that are involved in epistasis for multiple traits while being a member of different179

interacting pairs. To clarify this, consider two simple scenarios in Figure 1 where we have two phenotypes180

(y1 and y2) that are generated by a combination of four SNPs (x1, x2, x3, x4). In the first scenario, we181

say that (in expectation) E[y1] = x1β1 + (x2 ◦ x3)α1 and E[y2] = (x2 ◦ x3)α2 (Figure 1A); while, in the182

second scenario, E[y1] = x1β1 + (x2 ◦ x3)α1 and E[y2] = (x3 ◦ x4)α2 (Figure 1B). The key to power in183

the mvMAPIT framework is that, in the first scenario, the interaction between x2 and x3 appears in184

both traits with nonzero correlation between the effect sizes α1 and α2. This is in contrast to the second185

scenario where there is a common variant involved in epistasis but it is a member of two different sets of186

interactions that affect each trait. The mvMAPIT covariance statistic captures the situation illustrated187

in the first scenario (Figure 1A) but not in the second (Figure 1B).188

mvMAPIT produces calibrated P -values and conservative type I error rates

In this section, we make use of a previously described simulation scheme12,81 in order to investigate189

whether mvMAPIT and its combinatorial inference approach preserves the desired type I error rate and190

produces well-calibrated P -values under the null hypothesis. Here, we generate synthetic phenotypes191

using real genotypes from the 22nd chromosome of the control samples in the Wellcome Trust Case192
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y₁ y₂

x₁ x₂ x₃ x₄

B

α1 α2β1

y₁ y₂

x₁ x₂ x₃ x₄

A

α1 α2β1

Figure 1. Schematic of the types of shared interactions modeled by the multivariate
marginal epistasis test. Consider two simple, proof-of-concept simulation scenarios where two traits
(y1, y2) are generated by a combination of four SNPs (x1, x2, x3, x4). Panel (A) shows the first scenario
where (in expectation) E[y1] = x1β1 + (x2 ◦ x3)α1 and E[y2] = (x2 ◦ x3)α2. Panel (B) shows the second
scenario where E[y1] = x1β1 + (x2 ◦ x3)α1 and E[y2] = (x3 ◦ x4)α2. In both panels, variant x1 only has
an additive effect β1 on trait y1. The mvMAPIT approach models correlations between the effects of a
given interaction on multiple traits. Therefore, mvMAPIT is designed to identify SNPs involved in the
first scenario where the interaction between variants x2 and x3 is shared between traits with nonzero
correlated effect sizes α1 and α2. This is in contrast to the second case, where variant x3 is important to
both traits but through distinct interactions with variants x2 and x4, respectively.

Control Consortium (WTCCC) 1 study100. Altogether, these data consist of N = 2,938 individuals and193

J = 5,747 SNPs. Since the goal of mvMAPIT is to search for variants involved in epistatic interactions,194

we consider the null model to be satisfied when the phenotypic variation of the synthetic traits are solely195

driven by additive effects. Here, we first subsample the genotypes for N = 1,000, 1,750, and 2,500196

observations. Next, we randomly select 1,000 causal SNPs and simulate continuous phenotypes by using197

the linear model Y = BXᵀ +E. The additive effect sizes for each causal SNP are drawn as β ∼ N (0,Vβ)198

across traits, and then we scale all terms to ensure a narrow-sense heritability of 60%. In these simulations,199

we vary the correlation of the additive genetic effects such that we have traits with independent additive200

effects (vβ,12 = 0), traits with highly correlated additive effects (vβ,12 = 0.8), and traits with perfectly201

correlated additive effects (vβ,12 = 1). We assess the calibration of the P -values that are produced by202

mvMAPIT during each of the three key steps in its combinatorial hypothesis testing procedure. That203

is, we evaluate (1) the P -values resulting from the univariate test on each trait, (2) the P -values derived204

from the covariance test, and (3) the final overall P -value that is computed by combining the first two205

sets of P -values via Fisher’s method or the harmonic mean. Note that we expect the P -values from the206

first univariate test to be well-calibrated since it is equivalent to the MAPIT model. Figures 2 and S1-S2207

show the quantile-quantile (QQ) plots based on P -values combined using Fisher’s method while Figures208

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.11.30.518547doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518547
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

S3-S5 depicts results while using the harmonic mean. Similarly, Tables 1 and S1-S5 show the empirical209

type I error rates estimated for mvMAPIT at significance levels P = 0.05, 0.01, and 0.001, respectively.210

Overall, mvMAPIT conservatively controls type 1 error rate, both in the presence of nonzero correlation211

between additive effects on the two traits and even with small sample sizes in the data. This result212

holds regardless of how P -values are combined in the model. The QQ-plots of the P -values for all three213

components in mvMAPIT follow the expected uniform distribution for the univariate and combined214

analysis. Notably, because of the approximations used to compute the standard error of the test statistic215

in Eq. (18), the multivariate extension of the MQS-based testing procedure in mvMAPIT can result in216

conservative P -values for the covariance components under the null.217

Add. Effect Corr. P = 0.05 P = 0.01 P = 0.001

Univariate
vβ = 0.0 0.030 (1× 10−2) 0.009 (2× 10−3) 0.0010 (9× 10−4)
vβ = 0.8 0.030 (1× 10−2) 0.009 (2× 10−3) 0.0010 (7× 10−4)
vβ = 1.0 0.030 (1× 10−2) 0.009 (3× 10−3) 0.0009 (7× 10−4)

Covariance
vβ = 0.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0003 (3× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.007 (2× 10−3) 0.0004 (5× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0003 (4× 10−4)

Combined
vβ = 0.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0003 (3× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.007 (2× 10−3) 0.0004 (5× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0003 (4× 10−4)

Table 1. The mvMAPIT framework using Fisher’s method preserves type I error rates un-
der the null model when traits are generated by only additive effects (sample size N = 2,500
individuals). In these simulations, quantitative traits are simulated to have narrow-sense heritability
h2 = 0.6 with an architecture made up of only additive genetic variation. Each row corresponds to a
setting where the additive genetic effects for a causal SNP have different correlation structures across
traits. In these simulations, we consider scenarios where we have traits with independent additive effects
(vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly correlated
additive effects (vβ = 1). We assess the calibration of the P -values that are produced by mvMAPIT
during each of the three key steps in its combinatorial hypothesis testing procedure (see Materials and
Methods). We show type I error rates resulting from P -values taken from the “univariate” test on each
trait independently, the “covariance” P -values which corresponds to assessing the pairwise interactions
affecting both traits, and the final “combined” P -value. Results are summarized over 100 simulated
replicates. Values in the parentheses are the standard deviations across replicates.

Improved detection of epistatic variants using mvMAPIT in simulations

We test the power of mvMAPIT across different genetic trait architectures via an extensive simulation218

study (Materials and Methods). Once again, we generate synthetic phenotypes using real genotypes from219
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Figure 2. The mvMAPIT framework using Fisher’s method produces well-calibrated P -
values when traits are generated by only additive effects (sample size N = 2,500 individu-
als). In these simulations, quantitative traits are simulated to have narrow-sense heritability h2 = 0.6
with an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have independent traits
(vβ = 0), highly correlated traits (vβ = 0.8), and perfectly correlated traits (vβ = 1). The first two
columns show P -values resulting from the univariate MAPIT test on “trait #1” and “trait #2”, respec-
tively. The third column depicts the “covariance” P -values which corresponds to assessing the pairwise
interactions affecting both traits is. Lastly, the fourth column shows the final “combined” P -value which
combines the P -values from the first three columns using Fisher’s method. The 95% confidence interval
for the null hypothesis of no marginal epistatic effects is shown in grey. Each plot combines results from
100 simulated replicates.
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the 22nd chromosome of the control samples in the WTCCC 1 study100. As a reminder, these data220

consist of N = 2,938 individuals and J = 5,747 SNPs. In these simulations, we randomly choose 1,000221

causal variants to directly affect the genetic architecture of D = 2 phenotypes. All causal SNPs are222

assumed to have a non-zero additive effect on both traits. Next, we randomly select a set of epistatic223

variants from the 1,000 causal SNPs and divide them into two interacting groups (again see Materials224

and Methods). We will denote these groups #1 and #2 as C1 and C2, respectively, with |C| denoting225

the cardinality of the group. One may interpret the epistatic SNPs in C1 as being the “hub nodes” in226

an interaction network where each of these variants interact with all of the SNPs assigned to C2. We227

generate synthetic traits by using the multivariate linear model Y = BXᵀ+AWᵀ+E where, in addition to228

previous notation, W is matrix of interactions between the SNPs assigned to the groups C1 and C2. The229

additive and interaction coefficients for causal SNP effects across traits are drawn as β ∼ N (0,Vβ) and230

α ∼ N (0,Vα), respectively. As a final step, we scale all terms to ensure that all genetic effects explain231

a fixed proportion of the total phenotypic variation. We assume a wide-range of simulation scenarios by232

varying the following parameters:233

• broad-sense heritability: H2 = 0.3 and 0.6;234

• proportion of phenotypic variation that is explained by additive effects: ρ = 0.5 and 0.8;235

• number of causal SNPs assigned to the interaction groups: {|C1|, |C2|} = {10,10} and {10, 20};236

• correlation between epistatic effects: vα,12 = 0 and 0.8.237

All results presented in this section are based on 100 different simulated phenotypes for each parameter238

combination.239

The main point of these simulations is to highlight the potential power gained from taking a multivariate240

approach to epistatic detection. To that end, in each of the simulation scenarios, we assess (i) the power241

of running the univariate MAPIT model on each trait individually, (ii) the marginal epistatic effects242

detected by the covariance test, and (iii) the power from the overall association identified by mvMAPIT.243

Figures 3 and S6-S8 show the empirical power of the univariate MAPIT model, the covariance test,244

and mvMAPIT while using Fisher’s method at various multiple hypothesis testing correction thresholds.245

Figures S9-S12 depict the same information but with mvMAPIT using the harmonic mean to combine246

P -values. We also compare each method’s ability to rank true positives over false positives via receiver247

operating characteristic (ROC) and precision-recall curves (Figures 4 and S13-S15). There are several key248
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takeaways from these simulation results. Overall, the ability of the univariate MAPIT framework to detect249

group #1 and #2 causal variants depends on the proportion of non-additive phenotypic variation that250

they explain. This has been shown in previous demonstrations of the method81. For example, when there251

are |C2| = 10 causal SNPs in group #2, each variant in the set is expected to explain (1 − ρ)H2/10%252

of the genetic variance. As we increase that number of causal SNPs in group #2 to |C2| = 20, this253

proportion of variance explained by SNPs in group #2 will decrease which will make it more difficult to254

prioritize markers involved in interactions. Importantly, it is worth noting that the single-phenotypic test255

in MAPIT depends on the total interaction effects, rather than individual pairwise effects or the number256

of interacting pairs. An example of this can be seen by comparing Figure 3A to Figure S2A where the257

ability to group #1 variants is independent of the number of variants in group #2.258

There are two situations where mvMAPIT shows significant gains over the univariate MAPIT modeling259

approach. Intuitively, the first case is when there is nonzero correlation between the effects of the260

epistatic interactions shared between traits (e.g., when vα,12 = 0.8). The sensitivity of the covariance261

hypothesis test depends on the strength of this correlation which can help increase power when combining262

over P -values in the final step of mvMAPIT. This becomes increasingly relevant in the low heritability263

cases. Figures 4 and S13-S15 demonstrate that the sensitivity of the covariance statistic is comparable264

to the univariate statistic for highly correlated epistatic effects (vα = 0.8) despite genetic variance being265

predominantly explained by additivity (ρ = 0.8). Secondly, using mvMAPIT to jointly analyze traits with266

shared genetic architecture but different levels of heritability provides a viable approach for studying non-267

additive variation in traits with low heritability. In Figures 4, S7, S8, and S11-S15, we simulated synthetic268

traits such that one has a moderate broad-sense heritability H2 = 0.6 and the other has heritability269

H2 = 0.3. In these scenarios, detecting variants involved in interactions increased for the trait with low270

heritability. In particular, the covariance component analysis is shown to play an important role in this271

improved detection (e.g., see Figure 4B).272

Synergistic epistasis in binding affinity landscapes for neutralizing antibodies

We apply the mvMAPIT framework to protein sequence data from Phillips et al. 88 who generated a273

nearly combinatorially complete library for two broadly neutralizing anti-influenza antibodies (bnAbs),274

CR6261 and CR9114. This dataset includes almost all combinations of one-off mutations that distinguish275

between germline and somatic sequences which total to J = 11 heavy-chain mutations for CR6261 and276

J =16 heavy-chain mutations for CR9114. Theoretically, a combinatorially complete dataset for 11 and277
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Figure 3. Empirical power of mvMAPIT with Fisher’s method to detect group #1 (10)
and group #2 (10) epistatic variants across complex traits with moderate broad-sense
heritability. In these simulations, both quantitative traits are simulated to have broad-sense heritability
H2 = 0.6 with architectures made up of both additive and epistatic effects. The parameter ρ = {0.5, 0.8}
is used to determine the portion of broad-sense heritability contributed by additive effects. Each column
corresponds to a setting where the epistatic effects for interactive pairs have different correlation structures
across traits. In these simulations, we consider scenarios where we have traits with independent epistatic
effects (vα = 0) and traits with highly correlated epistatic effects (vα = 0.8). This plot shows the empirical
power of mvMAPIT at significance levels (A) P = 5× 10−2, (B) P = 5× 10−4, and (C) P = 1× 10−5,
respectively. Group #1 and #2 causal markers are colored in green and orange, respectively. For
comparison, the “trait #1” and “trait #2” bars correspond to the univariate MAPIT model, the “cov”
bars corresponds to power contributed by the covariance test, and “comb” details power from the overall
association identified by mvMAPIT in the combination approach. Results are based on 100 simulations
per parameter combination and the horizontal bars represent standard errors.
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Figure 4. Receiver operating characteristic (ROC) curves comparing the ability of
mvMAPIT with Fisher’s method to the univariate MAPIT model in detecting group #1
(10) and group #2 (10) epistatic variants across complex traits. In panel (A) both traits have
broad-sense heritability H2 = 0.6; while in panel (B) one of traits has broad-sense heritability H2 = 0.6
and the other has heritability H2 = 0.3. Across the rows, the parameter ρ = {0.5, 0.8} is used to deter-
mine the portion of broad-sense heritability contributed by additive effects. Each column corresponds to
settings where the epistatic effects across traits are independent (vα = 0) or highly correlated (vα = 0.8).
For comparison, the “trait #1” and “trait #2” dotted lines correspond to the univariate MAPIT model,
the “covariance” solid purple line corresponds to power contributed by the covariance test, and the “com-
bined” pink line shows power from the overall association identified by mvMAPIT in the multivariate
approach. Note that the upper limit of the x-axis (i.e., false positive rate) has been truncated at 0.05.
All results are based on 100 simulated replicates.
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16 mutations will have 2,048 and 65,536 samples, respectively. In this particular study, we have have278

access to N = 1,812 complete observations for CR6261 and N = 65,091 complete measurements for279

CR9114. For our analysis with mvMAPIT, residue sequence information was encoded as a binary matrix280

with the germline sequence residues marked by zeros and the somatic mutations represented as ones.281

As quantitative traits, Phillips et al. 88 measure the binding affinity of the two antibodies to different282

influenza strains. Here, we assess the contribution of epistatic effects when binding to H1 and H9 for283

CR6261, and H1 and H3 for CR9114.284

Once again, we report results after running mvMAPIT with Fisher’s method and the harmonic mean285

(Table S6). Figures 5A and S16A show Manhattan plots for P -values corresponding to the trait-specific286

marginal epistatic tests (i.e., the univariate MAPIT model), the covariance test, and the mvMAPIT287

approach. Here, green colored dots are positions that have significant marginal epistatic effects beyond288

a Bonferroni corrected threshold for multiple testing (P = 0.05/11 = 4.55 × 10−3 for CR6261 and289

P = 0.05/16 = 3.13 × 10−3 for CR9114, respectively). Interestingly, while the univariate MAPIT290

approach was able to identify significant marginal epistatic effects for CR6261, it lacked the power to291

identify significant positions driving non-additive variation in binding affinity for CR9114. Overall, the292

combined trait approach in mvMAPIT revealed marginal epistatic effects for positions 29, 35, 82, 83, and293

84 in CR6261, and positions 30, 36, 57, 64, 65, 66, 82, and 83 for CR9114. Most notably, these same294

positions were also identified as contributing to pairwise epistasis by Phillips et al. 88 . In the original295

study, the authors first ran an exhaustive-search to statistically detect significant interactions and then296

conducted downstream analyses to find that these positions are likely responsible for the antibodies297

binding to the influenza surface protein hemagglutinin. The regression coefficients from the exhaustive298

search, as reported by Phillips et al. 88 , are illustrated in panels B and C of Figures 5 and S16. Panel B299

illustrates interaction coefficients when assessing binding of CR6261with H1 (upper right triangle) and300

H9 (lower left triangle). Panel C shows the same information when assessing binding of CR9114 with301

H1 (upper right triangle) and H9 (lower left triangle). Our results show that mvMAPIT identifies all302

required mutations in these systems as well as most positions involved in at least one epistatic pair.303

Joint modeling of hematology traits yields epistatic signal in stock of mice

In this section, we apply mvMAPIT to individual-level genotypes and 15 hematology traits in a hetero-304

geneous stock of mice dataset from the Wellcome Trust Centre for Human Genetics89–91. This collection305

of data contains approximately N = 2,000 individuals depending on the phenotype (see Materials and306
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Figure 5. Applying mvMAPIT with Fisher’s method to broadly neutralizing antibodies
recovers heavy-chain mutations known to be involved in epistatic interactions that affect
binding against two influenza strains. These results are based on protein sequence data from
Phillips et al. 88 who generated a nearly combinatorially complete library for two broadly neutralizing
anti-influenza antibodies (bnAbs), CR6261 and CR9114. For each antibody, we assess binding affinity
to different influenza strains. For CR6261, traits #1 and #2 are binding measurements to the antigens
H1 and H9; while, for CR9114, we assess the same measurement for H1 and H3. Panel (A) shows
Manhattan plots for the different sets of P -values computed during the mvMAPIT analysis. The red
horizontal lines indicate a chain-wide Bonferroni corrected significance threshold (P = 4.55 × 10−3 for
CR6261 and P = 3.13× 10−3 for CR9114, respectively). The green colored dots are positions that have
significant marginal epistatic effects after multiple correction. Panels (B) and (C) reproduce exhaustive
search results originally reported by Phillips et al. 88 . The green dots next to the mutation labels on the
axes are the residues that are significant in the multivariate MAPIT analysis and correspond to panel
(A). The shaded regions in panel (B) are the regression coefficients for pairwise interactions between
positions when assessing binding of CR6261with H1 (upper right triangle) and H9 (lower left triangle).
Similarly, panel (C) shows the same information when assessing binding of CR9114 with H1 (upper right
triangle) and H3 (lower left triangle). Required mutations (indicated by R) are plotted in gray and left
out of the analysis88.
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Methods), and each mouse has been genotyped at J = 10,346 SNPs. As noted by previous studies, these307

data represent a realistic mixture of the simulation scenarios we detailed in the previous sections (i.e.,308

varying different values of the parameter ρ). Specifically, this stock of mice is known to be genetically309

related with population structure and the genetic architectures of these particular traits have been shown310

to have different levels of broad-sense heritability with varying contributions from non-additive genetic311

effects.312

For each pairwise trait analysis, we provide a summary table which lists the combined P -values after313

running mvMAPIT with Fisher’s method and the harmonic mean (Table S7). We also include results314

corresponding to the univariate MAPIT model and the covariance test for comparison. Overall, the315

single-trait marginal epistatic test only identifies significant variants for the large immature cells (LIC)316

after Bonferroni correction (P = 4.83× 10−6). A complete picture of this can be seen in Figures S17 and317

S18 which depict Manhattan plots of our genome-wide interaction study for all combinations of trait pairs.318

Here, we can see that most of the signal in the combined P -values from mvMAPIT likely stems from the319

covariance component portion of the model. This hypothesis holds true for the joint pairwise analysis of320

(i) hematocrit (HCT) and hemoglobin (HGB) and (ii) mean corpuscular hemoglobin (MCH) and mean321

corpuscular volume (MCV) (e.g., see the third and fourth rows of Figures 6 and S19). One explanation322

for observing more signal in the covariance components over the univariate test could be derived from323

the traits having low heritability but high correlation between epistatic interaction effects. Recall that324

our simulation studies showed that the sensitivity of the covariance statistic increased for these cases.325

Notably, the non-additive signal identified by the covariance test is not totally dependent on the empirical326

correlation between traits (see Figure S20). Instead, as previously shown in our simulation study, the327

power of mvMAPIT over the univariate approach occurs when there is correlation between the effects of328

epistatic interactions shared between two traits. Importantly, many of the candidate SNPs selected by329

the mvMAPIT framework have been previously discovered by past publications as having some functional330

nonlinear relationship with the traits of interest. For example, the multivariate analysis with traits MCH331

and MCV show a significant SNP rs4173870 (P = 4.89× 10−10) in the gene hematopoietic cell-specific332

Lyn substrate 1 (Hcls1) on chromosome 16 which has been shown to play a role in differentiation of333

erythrocytes101. Similarly, the joint analysis of HGB and HCT shows hits in multiple coding regions.334

One example here are the SNPs rs3692165 (P = 1.82× 10−6) and rs13482117 (P = 8.94× 10−7) in the335

gene calcium voltage-gated channel auxiliary subunit alpha2delta 3 (Cacna2d3) on chromosome 14, which336

has been associated with decreased circulating glucose levels102, and SNP rs3724260 (P = 4.58× 10−6)337
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in the gene Dicer1 on chromosome 12 which has been annotated for anemia both in humans and mice103.338

Table 2 lists a select subset of SNPs in coding regions of genes that have been associated with phenotypes339

related to the hematopoietic system, immune system, or homeostasis and metabolism. Each of these340

are significant (after correction for multiple hypothesis testing) in the mvMAPIT analysis of related341

hematology traits. Some of these phenotypes have been reported as having large broad-sense heritability,342

which improves the ability of mvMAPIT to detect the signal. For example, the genes Arf2 and Cacna2d3343

are associated with phenotypes related to glucose homeostasis, which has been reported to have a large344

heritable component (estimated H2 = 0.3 for insulin sensitivity104). Similarly, the genes App and Pex1345

are associated with thrombosis where (an estimated) more than half of phenotypic variation has been346

attributed to genetic effects (estimated H2 ≥ 0.6 for susceptibility to common thrombosis105).347

Discussion

The marginal epistatic testing strategy offers an alternative to traditional epistatic mapping methods348

by seeking to identify variants that exhibit non-zero interaction effects with any other variant in the349

data81–83. This framework has been shown to drastically reduce the number of statistical tests needed to350

uncover evidence of significant non-additive variation in complex traits and, as a result, alleviates much351

of the empirical power concerns and heavy computational burden associated with explicit search-based352

methods. Still, models testing for marginal epistasis can be underpowered when applied to traits with low353

heritability or to “polygenic” traits where the interactions between mutations have small effect sizes81. In354

this work, we present the “multivariate MArginal ePIstasis Test” (mvMAPIT), a multi-outcome extension355

of the univariate marginal epistatic framework. Theoretically, we formulate mvMAPIT as a multivariate356

linear mixed model (mvLMM) where its ability to jointly analyze any number of traits relies on a gener-357

alized “variance-covariance” component estimation algorithm87. Through extensive simulations, we show358

that mvMAPIT preserves type I error rates and produces well-calibrated P -values under the null model359

when traits are generated only by additive effects (Figures 2 and S1-S5, and Tables 1 and S1-S5). In these360

simulation studies, we also show that mvMAPIT improves upon the identification of epistatic variants361

over the univariate test when there is correlation between the effects of genetic interactions shared be-362

tween multiple traits (Figures 1, 3, and 4, and S6-S15). By analyzing two real datasets, we demonstrated363

the ability of mvMAPIT to recover heavy-chain mutations known to be involved in epistatic interactions364

that affect binding against two influenza strains88 (Figures 5 and S16, and Table S6) as well as to identify365
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Figure 6. Manhattan plot of genome-wide interaction study for two pairs of hematology
traits in the heterogenous stock of mice dataset from the Wellcome Trust Centre for Hu-
man89–91 using mvMAPIT with Fisher’s method. The trait pairs in this figure include hematocrit
(HCT) and hemoglobin (HGB) in the left column and mean corpuscular hemoglobin (MCH) and mean
corpuscular volume (MCV) in the right column. Here, we depict the P -values computed during each
step of the mvMAPIT modeling pipeline. The red horizontal lines indicate a genome-wide Bonferroni
corrected significance threshold (P = 4.83×10−6). The green colored dots are SNPs that have significant
marginal epistatic effects after multiple test correction. Significant SNPs were mapped to the closest
neighboring genes using the Mouse Genome Informatics database (http://www.informatics.jax.org)
106,107.
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hematology trait relevant epistatic SNPs in heterogenous stock of mice89–91 that have also been detected366

in previous publications and functional validation studies (Figures 6 and S17-S20, and Tables 2 and S7).367

Lastly, we have made mvMAPIT an open-source R software package with documentation to facilitate its368

use by the greater scientific community.369

The current implementation of the mvMAPIT framework offers many directions for future development370

and applications. First, like other marginal epistatic mapping methods, mvMAPIT is unable to directly371

identify detailed interaction pairs despite being able to identify SNPs that are involved in epistasis. As372

shown through our simulations and real data analyses, being able to identify SNPs involved in epistasis373

allows us to come up with an initial (likely) set of variants that are worth further exploration, and thus374

represents an important first step towards identifying and understanding detailed epistatic associations.375

In previous studies66,81,108,109, two-step ad hoc procedures have been suggested where, in our case, we376

would first run mvMAPIT and then focus on significant SNPs from the first step to further test all of377

the pairwise interactions among them in order to identify specific epistatic interaction pairs. While this378

approach has been shown to be effective in univariate (single-trait) analyses, this two-step procedure379

is still ad hoc in nature and could miss important epistatic associations. Exploring robust ways unify380

these two steps in a joint fashion would be an interesting area for future research. Second, in its current381

implementation, mvMAPIT can be computationally expensive for datasets with large sample sizes (e.g.,382

hundreds of thousands of individuals in a biobank scale study). In this study, we develop a “variance-383

component component” extension to the MQS algorithm to estimate parameters in the mvMAPIT model.384

Theoretically, MQS is based on the method of moments and produces estimates that are mathematically385

identical to the Haseman-Elston (HE) cross-product regression87,110,111. In practice, MQS is not only386

computationally more efficient than HE regression, but also provides a simple, analytic estimation form387

that allows for exact P -value computation — thus alleviating the need for jackknife re-sampling pro-388

cedures112 that both are computationally expensive and rely on assumptions of independence across389

individuals in the data113. Exploring different ways to reliably fit large-scale mvLMMs with multiple390

random effects is a consideration for future work. For example, as an alternative, recent studies have391

proposed randomized multi-component versions of HE regression for heritability estimation which scale392

up to datasets with millions of individuals and variants, respectively114–116. It would be interesting to393

develop a well-calibrated hypothesis test within the randomized HE regression setting so that it may be394

implemented within the mvMAPIT software for association mapping.395
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In the future, we plan to expand the mvMAPIT framework to also identify individual variants contribut-396

ing other sources of non-additive genetic variation such as gene-by-environment (G×E) or gene-by-sex397

(G×Sex) interactions. We can do this by manipulating the marginal epistatic covariance matrix in Eq. (1)398

to encode how loci interact with one or more environmental instruments84,85,116,117. Lastly, we have fo-399

cused here on applying mvMAPIT to simple quantitative traits. However, there are many important400

traits with significant non-additive genetic components in plants, animals, and humans that cannot be401

easily reduced to simple scalar values. Examples include longitudinal traits such as growth curves118,402

metabolic traits such as the relative concentrations of different families of metabolites119, and morpho-403

logical traits such as shape or color120. Indeed, each of these traits can be decomposed into vectors404

of interrelated components, but treating these components as independent phenotypes within existing405

univariate epistatic mapping tools would be inefficient because of their statistical dependence. As an alter-406

native, the mvMAPIT framework can be used to make joint inferences about epistasis across any number407

of correlated phenotypic components—which, in the case of longitudinal studies for example121–124, could408

be used to interrogate how non-additive variation of trait architecture changes or evolves over time.409

URLs

Multivariate marginal epistasis test (mvMAPIT) software, https://github.com/lcrawlab/mvMAPIT;410

univariate marginal epistasis test (MAPIT) software, https://github.com/lcrawlab/mvMAPIT; Well-411

come Trust Centre for Human Genetics, http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml;412

Mouse Genome Informatics database, http://www.informatics.jax.org.413
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SNP Location Trait #1 Trait #2 Trait #1 P -value Trait #2 P -value Cov. P -value Comb. P -value Gene Genomic Annotation Reference

rs3699393 2:5887012 MCV PLT 0.21 0.23 5.75× 10−7 4.9× 10−6 Upf2 anemia and abnormal bone marrow cell development 125

rs13478092 5:3601413 LIC PLT 0.034 0.58 1.67× 10−10 1.26× 10−9 Pex1 abnormal venous thrombosis 126

rs3694887 5:102770070 ALY LIC 1.26× 10−4 0.013 2.54× 10−6 1.55× 10−9 Aff1 abnormal B and T cell number and morphology 127

rs3694887 5:102770070 LIC PLT 0.013 0.28 5.47× 10−27 4.49× 10−26 Aff1 abnormal B and T cell number and morphology 127

rs13478923 6:99475169 ALY LIC 2.8× 10−4 0.12 1.79× 10−6 1.81× 10−8 Foxp1 abnormal B cell differentiation, physiology, count 128,129

rs13478924 6:99571626 ALY LIC 3.11× 10−4 0.12 2.70× 10−6 2.86× 10−8 Foxp1 abnormal B cell differentiation, physiology, count 128,129

rs13478985 6:115245823 MCV WBC 0.16 0.40 1.14× 10−81 1.34× 10−78 Atg7 decreased bone marrow cell count 130,131

rs3723163 11:103800737 HCT LYM 0.072 0.30 3.99× 10−107 2.66× 10−104 Arf2 decreased fasting circulating glucose level 102

rs3723163 11:103800737 HGB WBC 0.069 0.25 1.85× 10−7 6.76× 10−7 Arf2 decreased fasting circulating glucose level 102

rs3724260 12:100163212 HGB HCT 0.030 0.062 1.44× 10−5 4.58× 10−6 Dicer1 anemia 103

rs3692165 14:27756640 HCT HGB 0.026 0.037 9.9× 10−6 1.8× 10−6 Cacna2d3 decreased circulating glucose level 102

rs13482117 14:27614362 HCT HGB 0.023 0.03 5.9× 10−6 9.0× 10−7 Cacna2d3 decreased circulating glucose level 102

rs13482288 14:81840412 ALY BAS 0.036 0.65 1.78× 10−8 1.1× 10−7 Tdrd3 abnormal B cell differentiation and physiology 132

rs4173870 16:35764290 MCH MCV 0.14 0.71 1.20× 10−11 4.89× 10−10 Hcls1 differentiation of erythrocytes 101

rs4212102 16:84204704 PLT WBC 0.17 0.35 1.16× 10−10 2.44× 10−9 App increased susceptibility to induced thrombosis 105,133

rs4212186 16:84273330 PLT WBC 0.17 0.36 5.88× 10−11 1.31× 10−9 App increased susceptibility to induced thrombosis 105,133

rs3711994 19:45078018 ALY LYM 3.71× 10−4 0.10 1.04× 10−12 2.80× 10−14 Btrc abnormal lymphocyte morphology 134

Table 2. Notable SNPs with marginal epistatic effects after applying the mvMAPIT framework to 15 hematology traits
in the heterogenous stock of mice dataset from the Wellcome Trust Centre for Human Genetics89–91. In the first two
columns, we list SNPs and their genetic location according to the mouse assembly NCBI build 34 (accessed from Shifman et al. 135)
in the format Chromosome:Basepair. Next, we give the results stemming from univariate analyses on traits #1 and #2, respectively,
the covariance (cov) test, and the overall P -value derived by mvMAPIT using Fisher’s method. The last columns detail the closest
neighboring genes found using the Mouse Genome Informatics database (http://www.informatics.jax.org) 106,107, a short summary
of the suggested annotated function for those genes, and the reference to the source of the annotation. See Table S7 for the complete list
of SNP and SNP-set level results.
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Materials and Methods

The marginal epistasis test for single traits

The original motivation behind the original “MArginal ePIstasis Test” (MAPIT) was to identify variants425

that are involved in epistasis while avoiding the need to explicitly conduct an exhaustive search over all426

possible pairwise interactions81. In this section, we give a statistical overview of the univariate version427

of MAPIT where the objective is to search for marginal epistatic effects (i.e., the combined pairwise428

interaction effects between a given variant and all other variants) that drive the genetic architecture of429

single traits. To begin, consider a genome-wide association (GWA) study with N individuals who have430

been genotyped for J single nucleotide polymorphisms (SNPs) encoded as {0, 1, 2} copies of a reference431

allele at each locus. In the MAPIT framework, we examine one SNP at a time (indexed by j) and consider432

the following linear model433

y = µ+ xjβj +
∑
l 6=j

xlβl +
∑
l 6=j

(xj ◦ xl)αl + ε, ε ∼ N (0, τ2I) (6)434

where y is an N -dimensional vector of phenotypic states for a quantitative trait of interest measured in the435

N individuals; µ is an intercept term; X denotes an N×J matrix of genotypes with xj and xl representing436

N -dimensional vectors for the j-th and l-th SNPs; βj and βl are the respective additive effects; xj ◦437

xl denotes the Hadamard (element-wise) product between two genotypic vectors with corresponding438

interaction effect size αl; ε is a normally distributed error term with mean zero and scale variance term τ2;439

and I denotes an N ×N identity matrix. For convenience, we will assume that both the genotype matrix440

(column-wise) and trait of interest have been mean-centered and standardized. It is also worth noting441

that, while we limit the above to the task of identifying second order (i.e., pairwise) interactions between442

genetic variants, extensions of MAPIT to higher-order epistatic and gene-by-environmental effects have443

been shown to be straightforward to implement84,85,116,117.444

Variance component model formulation. Since many modern GWA applications present scenarios445

that would make Eq. (6) an underdetermined linear system (i.e., in biobanks where genotyped markers446

J > N individuals), the MAPIT framework follows other standard approaches81,92–95 to ensure model447

identifiability by assuming that the additive and interaction effect sizes follow univariate normal distri-448

butions where βl ∼ N (0, ω2/(J − 1)) and αl ∼ N (0, σ2/(J − 1)) for l 6= j, respectively. This key normal449

assumption on the regression coefficients allows for Eq. (6) to be equivalently represented as the following450
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variance component model451

y = µ+ xjβj + mj + zj + ε, ε ∼ N (0, τ2I) (7)452

where, in addition to previous notation, mj =
∑

l 6=j xlβl is the combined additive effects from all variants453

other than the j-th; and zj =
∑

l 6=j(xj ◦ xl)αl denote the summation of all pairwise interaction effects454

between the j-th variant and all other variants. Under the variance component formulation in Eq. (7), the455

two random effects can also be expressed probabilistically as mj ∼ N (0, ω2Kj) where Kj = X−jXᵀ
−j/(J−456

1) is an additive genetic relatedness matrix that is computed using all genotypes other than the j-th SNP,457

and zj ∼ N (0, σ2Gj) where Gj = DjKjDj is a non-additive relatedness matrix computed based on all458

pairwise interaction terms involving the j-th SNP. Here, we let Dj = diag(xj) denote an N ×N diagonal459

matrix with the j-th genotype as its only nonzero elements. It is also important to note that both Kj460

and Gj change with every new j-th marker that is tested.461

Univariate point estimates. Intuitively, the key takeaway from the variance component model for-462

mulation is that σ2 represents a measure on the marginal epistatic effect for each variant in the data.463

Therefore, in order to identify variants that have significant non-zero interaction effects, we must assess464

the null hypothesis H0 : σ2 = 0 for each variant in the dataset. The original MAPIT framework uses a465

computationally efficient method of moments algorithm called MQS87 to estimate model parameters and466

to carry out calibrated statistical tests. Briefly, MQS produces point estimates that are mathematically467

identical to the Haseman-Elston (HE) cross-product regression87,110,111. To implement this algorithm,468

we first specify a two-dimensional matrix bj = [1, xj ] with 1 being an N -dimensional vector of ones, and469

then we multiply both sides of Eq. (7) by a variant-specific projection Pj = I−bj(bᵀ
j bj)

−1bᵀ
j which maps470

the model onto a column space that is orthogonal to the intercept and the genotypic vector xj . This471

process simplifies the model specification of MAPIT to the following472

y∗
j = m∗

j + z∗j + ε∗j , m∗
j ∼ N (0, ω2K∗

j ), z∗j ∼ N (0, σ2,G∗
j ), ε∗j ∼ N (0, τ2Pj) (8)473

where we denote y∗
j = Pjy; m∗

j = Pjmj ; K∗
j = PjKjPj ; z∗j = P∗

jzj ; G∗
j = PjGjPj ; and ε∗j = Pjε,474

respectively. The method of moments estimator for the variance components in Eq. (8) is naturally475
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based on the second moment matching equations where, in expectation, we have476

E[y∗ᵀ
j Hyj ] =

3∑
k=1

tr(HΣjk)δk (9)477

where H is a symmetric and non-negative definite matrix used to create weighted second moments, tr(•)478

denotes the trace of a matrix, and we use shorthand to represent [Σj1;Σj2;Σj3] = [K∗
j ;G∗

j ;Pj ] and479

δ = (ω2, σ2, τ2), respectively. In practice, we replace the left hand side of Eq. (9) with the realized value480

y∗ᵀ
j Hyj . Note that many choices of H will yield unbiased estimates for (ω2, σ2, τ2), but different choices481

of H can affect statistical efficiency of the estimates. The set of moment matching equations in MQS482

is generated by using the covariance matrices corresponding to the variance components in place of the483

arbitrary H. This system of equations then can be rewritten as the following matrix multiplication484

δ = S−1q, qk = y∗ᵀ
j Σjkyj , Srs = tr(ΣjrΣjs) (10)485

where q is a 3-dimensional vector and S is a 3× 3 dimensional matrix with k, r, s ∈ {1, 2, 3} being indices486

to represent the different variance components. If we subset just to compute an estimate for the marginal487

epistatic variance component (i.e., for the second index), then Eq. (10) reduces to the following formula488

σ̂2
j = y∗ᵀ

j Hjy∗
j (11)489

where the variant-specific matrix Hj = (S−1)21K∗
j + (S−1)22G∗

j + (S−1)23Pj is now used in place of the490

arbitrary H.491

Univariate hypothesis testing. In general, there are two ways to compute P -values in the MAPIT492

framework81. The first option uses a two-sided z-score or normal test. This particular test only re-493

quires the variance component estimate σ̂2
j from Eq. (11) and its corresponding standard error, which is494

approximated in MQS approach by495

V[σ̂2
j ] ≈ 2y∗ᵀ

j Hᵀ
j VjHjy∗

j (12)496

where Vj = ω̂2
jK∗

j + σ̂2
jG∗

j + τ̂2j Pj . The second option for deriving P -values in the MAPIT framework uses497

an exact test which is based on the fact that the MQS variance component estimate follows a mixture of498

chi-square distributions under the null hypothesis. This is derived from both the normality assumption on499
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y∗ and the quadratic form of the statistic in Eq. (11). Namely, σ̂2
j ∼

∑N
i=1 λiχ

2
1,i where χ2

1 are chi-square500

random variables with one degree of freedom and (λ1, . . . , λN ) are the eigenvalues of the matrix501

(
ω̂2
0K∗

j + τ̂20 Pj

)1/2 Hj

(
ω̂2
0K∗

j + τ̂20 Pj

)1/2 (13)502

with (ω̂2
0 , τ̂

2
0 ) being the MQS estimates of (ω̂2, τ̂2) under the null hypothesis. Several approaches have been503

suggested to obtain P -values under a mixture of chi-square distributions, including the Davies method97
504

(see Data and Software Availability). In practice, while the Davies method is an exact test and is expected505

to produce calibrated P -values, it can become computationally intensive since it scales cubically in the506

number of individuals N . On the other hand, while the normal test only scales quadratically in N507

because of the variance approximation in Eq. (12), it has been shown to lead to mis-calibrated P -values508

for datasets with small sample sizes. As result, MAPIT uses a hybrid procedure which uses the normal509

test by default, and then applies the Davies method when the P -value from the normal test is below the510

threshold of 0.0581.511

Derivation of the multivariate marginal epistasis test

The “multivariate MArginal ePIstasis Test” (mvMAPIT) is a multi-outcome generalization of the MAPIT512

framework which aims to improve upon the identification of variants that are involved in genetic interac-513

tions by leveraging the correlation structure between multiple traits. Once again, consider a GWA study514

with N individuals this time who have been measured for D different phenotypes. We will denote these515

sets of outcomes via a D ×N dimensional matrix Y = [yᵀ
1 , . . . , y

ᵀ
D] with yd denoting an N -dimensional516

phenotypic vector for the d-th trait. Given the j-th variant of interest, we specify the mvMAPIT approach517

as the following multivariate linear mixed model (mvLMM)86
518

Y = U + βjx
ᵀ
j +

∑
l 6=j

βlx
ᵀ
l +

∑
l 6=j

αl(xj ◦ xl)
ᵀ + E E ∼ MN (0,Vε, τ

2I) (14)519

where, in addition to previous notation, U is a D×N dimensional matrix which contains population-level520

intercepts that are the same for all individuals within each trait; βj and βl are D-dimensional vectors of521

additive effects for the j-th and l-th genotypic vectors; αl is a D-dimensional vector of coefficients for the522

interaction effects between the j-th and l-th SNPs spanning all traits; and E denotes an D ×N matrix523

of residual errors that is assumed to follow a matrix-variate normal distribution with mean 0, within524
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column covariance Vε among the D traits, and independent within row covariance (scaled by τ2) among525

the N individuals in the study.526

Similar to the univariate setting, we need to make additional probabilistic assumptions to ensure model527

identifiability when Eq. (14) is an underdetermined linear system. To that end, let B = [βl]l 6=j and528

A = [αl]l 6=j denote the collection of coefficients not involving the j-th variant of interest. Here, we will529

assume that these D × (J − 1) effect size matrices also follow matrix-variate normal distributions where530

B ∼ MN (0,Vβ , ω
2/(J − 1)I) and A ∼ MN (0,Vα, σ

2/(J − 1)I), respectively. Note that this formu-531

lation is largely similar to the univariate case except with the additional property that the phenotypes532

being studied share some genetic covariance through Vβ and Vα. This assumption, coupled with the533

affine transformation property of matrix normal distributions, allows for us to equivalently represent the534

mvMAPIT model in Eq. (14) as the following multivariate variance component model535

Y + U + βjx
ᵀ
j + Mj + Zj + E E ∼ MN (0,Vε, τ

2I) (15)536

where Mj =
∑

l 6=j βlx
ᵀ
l with Mj ∼ MN (0,Vβ , ω

2Kj) represents the combined additive effects from all537

other variants across the D traits and Zj =
∑

l 6=j αl(xj ◦ xl)
ᵀ with Zj ∼ MN (0,Vα, σ

2Gj) encodes all538

pairwise interaction terms involving the j-th SNP across the D traits. Here, the term Zj becomes the539

main focus of model inference.540

In this study, we demonstrate the utility of mvMAPIT while analyzing D = 2 traits at a time, but541

note that the framework can easily be applied to more phenotypes. Additional traits require more542

resources both in terms of compute time and memory. For each point estimate, mvMAPIT performs543

matrix operations that scale quadratically with sample size. The software also needs to store covariance544

matrices corresponding to the number of random effects in the model. Both these added costs scale as545

D(D+1)/2 for D traits. When higher order interactions are included, the additional burden on resources546

come from requiring to store additional covariance matrices as well as projecting these covariance matrices547

onto the space orthogonal to the variant of interest and the population intercept. The time complexity548

of the projection scales as DN2 with again N being the number of samples in the data.549

Hypothesis testing in the mvMAPIT framework

The goal of identifying variants with marginal epistatic effects in the mvMAPIT framework still comes550

down to assessing the null hypothesis H0 : σ2 = 0. However, parameter estimation in mvLMMs can551
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present substantial computational challenges. For example, one common way in the literature to rewrite552

the model specified in Eq. (15) is to vectorize (or stack) the columns of each matrix in the regression such553

that y = vec(Y), µ = vec(U), mj = vec(Mj), zj = vec(Zj), and ε = vec(E). Under this reformulation,554

we could simply follow the procedures in Eqs. (8)-(13) to find significant variance components; but since555

V[mj ] = ω2Kj ⊗ Vβ and V[zj ] = σ2Kj ⊗ Vα are each ND ×ND dimensions (via the Kronecker product556

⊗), the per-iterative computation time for performing hypothesis testing on each j-th SNP would now557

increase both with the number of individuals (N) and with the number of phenotypes (D). This could558

make model fitting infeasible for large biobanks with only two traits. As an alternative, we present a559

combinatorial approach which first fits univariate MAPIT models and then combines the resulting P -560

values with those stemming from a “covariance statistic” which looks for shared marginal epistatic effects561

between all pairwise combinations of the D traits. Importantly, our combinatorial approach does not562

make assumptions about the covariance structure between traits, which would need to be known (or563

assumed) in the Kronecker formulation.564

To implement the multivariate marginal epistasis test, we follow a similar strategy used in the univari-565

ate MAPIT model and right multiply Eq. (15) by a variant-specific projection Pj = I − bj(bᵀ
j bj)

−1bᵀ
j566

which maps the model onto a column space that is orthogonal to the population-level intercepts and the567

genotypic vector xj . This results in a simplified mvLMM of the following form568

Y∗
j = M∗

j + Z∗
j + E∗

j , E∗
j ∼ MN (0,Vε,Pj). (16)569

where, in addition to previous notation, Y∗
j = YPj ; M∗

j = MjPj ; Z∗
j = ZjPj , and E∗

j = EjPj , respectively.570

Probabilistically, this transformation assumes M∗
j ∼ MN (0,Vβ , ω

2K∗
j ) with K∗

j = PjKjPj ; and Z∗
j ∼571

MN (0,Vα, σ
2G∗

j ) with G∗
j = PjGjPj . The joint analysis of multiple outcomes requires a generalization572

of the MQS algorithm to also include moment estimates for the covariance components between traits.573

Without loss of generality, we will let y∗
c and y∗

d be the c-th and d-th rows of the measured phenotypic574

matrix Y∗
j , respectively. The general MQS estimates for the marginal epistatic effect is a generalization575

of Eq. (11) which is given in the following quadratic form576

σ̂2
j,(cd) = y∗ᵀ

c Hjy∗
d, (17)577

where Hj is as previously defined in the univariate MAPIT case and the indices span between the578
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c, d ∈ 1, . . . , D phenotypes. Here, when c = d, the above is exactly equal to Eq. (11); however, when579

c 6= d, then Eq. (17) takes on a bilinear form where E[y∗ᵀ
c Hjy∗

d] = tr(HjVj,(cd)) with Vj,(cd) = V[y∗
c , y∗

d]580

being the covariance between any two traits of interest. The corresponding standard error of the bilinear581

covariance component can then be estimated via the following approximation96
582

V[σ̂2
j,(cd)] ≈ y∗ᵀ

c Hᵀ
j Vj,(cd)Hjy∗

d + y∗ᵀ
c Hᵀ

j Vj,(dd)Hjy∗
c . (18)583

Once again, notice that when c = d, the term Vj,(cd) = Vj,(dd) and the above approximation in Eq. (18)584

is equal to Eq. (12).585

The combinatorial hypothesis procedure that is used in mvMAPIT occurs in three key steps.586

1. In the first step, the model fits univariate models for all D traits of interests (i.e., using Eqs. (8)-(13)587

from the MAPIT model or equivalently Eqs. (17) and (18) with c = d). Here, we use the proposed588

hybrid testing approach where we first implement a normal test by default, and then apply the exact589

Davies method when the P -value from the normal test is below the nominal significance threshold590

of 0.0581.591

2. In the second step, we derive P -values for the covariance components (i.e., using Eqs. (17) and (18)592

when c 6= d) with a normal test. As we have shown in the main text, the P -values derived for593

the covariance components with the asymptotic normal approximation tend to be slightly deflated594

under the null hypothesis. While this leads to generally conservative behavior with respect to type595

I error control, the downside is that the test may result in reduced power under the alternative,596

especially after multiple correction for datasets with small sample sizes or for traits that have low597

genetical correlation. In these cases, deriving an exact test to obtain more calibrated P -values could598

be done; however, we do not explore this line of work here.599

3. In the third and final step, mvMAPIT combines the P -values from the first two steps into an overall600

marginal epistatic P -value. Assume that we only have D = 2 traits. In this case, we would have601

T = 3 sets of P -values (two marginal sets and one covariance set). The mvMAPIT software carries602

out the P -value combining procedure in two different ways. The first assumes that each of the603

t = 1, . . . , T tests are (effectively) independent and implements Fisher’s method98 which combines604

P -values into a single chi-square test statistic using the formula χ2
2T ∼ −2

∑T
t=1 log(pt) where pt605

denotes the P -value from the t-th test. In Fisher’s method, the χ2 test statistic will be large when606
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P -values tend to be small (i.e., when the null hypothesis is not true for every test). The second607

approach assumes an unknown dependency structure between each of the T tests and computes608

a harmonic mean99 P -value where p̊ =
∑

t wt/
∑

t wt/pt. Here,
∑

t wt = 1 are weights which we609

uniformly set to be wt = 1/T for all P -values.610

In practice, epistatic effects are assumed to make small contributions to the overall broad-sense heritability611

of complex traits50–52. As a result, detecting associated variants that significantly contribute to non-612

additive variation can be difficult. Intuitively, this combinatorial approach is meant to aggregate over613

the signal identified in both the marginal and covariance tests to improve power. In the main text, we614

show that both of Fisher’s method and the harmonic mean approach are well calibrated under the null615

hypothesis (i.e., only additive effects for all traits analyzed) and increase the ability to detect marginal616

epistatic variants under the alternative.617

Simulation studies

To test the utility of the mvMAPIT framework, we modified a frequently used simulation scheme12,81
618

to generate collections of synthetic quantitative traits under multiple genetic architectures using real619

genotypes from chromosome 22 of the control samples in the Wellcome Trust Case Control Consortium620

(WTCCC) 1 study. After preprocessing, considering this particular group of individuals and SNPs621

resulted in a dataset consisting of N = 2,938 individuals and J = 5,747 markers. In these simulations,622

we randomly choose 1,000 causal SNPs to directly affect D = 2 phenotypes. We generate these synthetic623

traits via the following general multivariate linear model:624

Y =
∑
c∈C

βcxᵀ
c + AWᵀ + E, E ∼ MN (0, I, I) (19)625

where Y is an D × N matrix containing all the phenotypes; C represents the set of 1,000 causal SNPs;626

xc is the genotype for the c-th causal SNP encoded as 0, 1, or 2 copies of a reference allele; βc is a D-627

dimensional vector and represent the additive effect sizes for the c-th SNP in the D traits; W is an N×M628

matrix which holds pairwise interactions (i.e., Hadamard products) between some subset of causal SNPs;629

A = [α1, . . . ,αM ] is a D ×M matrix of interaction effect sizes with αm being D-dimensional epistatic630

coefficients for the m-th interaction in the d-th trait; and E is an D ×N matrix of normally distributed631

environmental noise.632
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In these studies, we assume that the total phenotypic variances for both traits in Y are set to be 1. The633

additive and interaction effect sizes for causal SNPs are randomly drawn from matrix normal distributions634

where we control the correlation of effects between traits. This simplifies to us drawing coefficients as635

βc ∼ N (0,Vβ), αm ∼ N (0,Vα) (20)636

where Vβ and Vα are D×D covariance matrices for additive effects and pairwise interactions between the637

phenotypes. Once these coefficients are sampled, we rescale them so that they explain a fixed proportion638

of the broad-sense heritability H2. Similarly, the environmental noise matrix is rescaled such that it639

explains 1−H2. When generating synthetic traits, we assume that the additive effects make up ρ% of the640

broad-sense heritability while the pairwise interactions make up the remaining (1 − ρ)%. Alternatively,641

we say that the proportion of the heritability explained by additivity is ρH2, while the proportion of642

phenotypic variance explained by pairwise interactions is (1 − ρ)H2. Setting ρ = 1 represents the null643

model where the variation of a trait is driven by solely additive effects. Here, we use the same simulation644

strategy used in previous studies12,81 where we divide the causal variants into three groups where:645

• C1 is a small number of SNPs with additive and epistatic effects;646

• C2 is a larger number of SNPs with additive and epistatic effects;647

• C3 is a large number of SNPs with only additive effects.648

Here, the epistatic causal SNPs interact between sets, so that SNPs in C1 with SNPs in the C2, but do649

not interact with variants in their own group (with the same rule applies to the second group). With this650

set up, one can think of the SNPs assigned to C1 as being the “hub nodes” in an interaction network.651

Note that we use this setup because it has been shown that the ability to detect two interacting variants652

depends on the proportion of phenotypic variance that they marginally explain. For example, in our653

case, this means that power is expected to depend on V[Wα]/|C1| and V[Wα]/|C2| for groups 1 and 2,654

respectively, where |C| denotes the cardinality of the set. Given different parameters for the generative655

model in Eq. (19), we simulate data mirroring a wide range of genetic architectures by varying the656

following parameters:657

• broad-sense heritability: H2 = 0.3 and 0.6;658

• proportion of phenotypic variation that is explained by additive effects: ρ = 0.5, 0.8, and 1;659
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• causal SNPs in each of the three groups: {|C1|, |C2|, |C3|} = {10, 10, 980} and {10, 20, 970};660

• correlation between additive effects: vβ,12 = 0, 0.8, and 1;661

• correlation between epistatic effects: vα,12 = 0 and 0.8.662

All figures and tables show the mean performances (and standard errors) for each parameter combination663

across 100 simulated replicates.664

Preprocessing of the heterogenous stock of mice dataset

As part of the analyses, this work makes use of GWA data from the Wellcome Trust Centre for Human665

Genetics89–91 (http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml). The genotypes from this666

study were downloaded directly using the BGLR-R package 136. This study contains N = 1,814 het-667

erogenous stock of mice from 85 families (all descending from eight inbred progenitor strains)89,90, and668

131 quantitative traits that are classified into 6 broad categories including behavior, diabetes, asthma,669

immunology, haematology, and biochemistry. Phenotypic measurements for these mice can be found670

freely available online to download (details can be found at http://mtweb.cs.ucl.ac.uk/mus/www/671

mouse/HS/index.shtml and https://github.com/lcrawlab/mvMAPIT). In the main text, we focused672

on 15 hematological phenotypes including: atypical lymphocytes (ALY; Haem.ALYabs), basophils (BAS;673

Haem.BASabs), hematocrit (HCT; Haem.HCT), hemoglobin (HGB; Haem.HGB), large immature cells (LIC;674

Haem.LICabs), lymphocytes (LYM; Haem.LYMabs), mean corpuscular hemoglobin (MCH; Haem.MCH),675

mean corpuscular volume (MCV; Haem.MCV), monocytes (MON; Haem.MONabs), mean platelet volume676

(MPV; Haem.MPV), neutrophils (NEU; Haem.NEUabs), plateletcrit (PCT; Haem.PCT), platelets (PLT;677

Haem.PLT), red blood cell count (RBC; Haem.RBC), red cell distribution width (RDW; Haem.RDW), and678

white blood cell count (WBC; Haem.WBC). All phenotypes were previously corrected for sex, age, body679

weight, season, year, and cage effects89,90. For individuals with missing genotypes, we imputed values680

by the mean genotype of that SNP in their corresponding family. Only polymorphic SNPs with minor681

allele frequency above 5% were kept for the analyses. This left a total of J = 10,227 autosomal SNPs682

that were available for all mice.683

Data and software availability

Source code, tutorials, and tutorials for implementing the “multivariate MArginal ePIstasis Test” are684

publicly available as an R package which is available online at https://github.com/lcrawlab/mvMAPIT.685
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We use the CompQuadForm R package137 to compute P -values from the Davies method. The Davies686

method can sometimes yield a P -value equal exactly to 0 when the true P -value is extremely small137.687

If this is of concern, one can compute the P -values for MAPIT using Kuonen’s saddlepoint method138 or688

Satterthwaite’s approximation equation139. In the current implementation of mvMAPIT, the saddlepoint689

approximation is performed if the Davies method returns with error. We wrote our own function to690

combine P -values using Fisher’s method which is largely inspired by functions in the metap R package140.691

We use the harmonicmeanp R package141,142 to combine P -values using the harmonic mean. Full package692

documentation can be found at https://lcrawlab.github.io/mvMAPIT/. Data to reproduce figures for693

the broadly neutralizing antibodies as well as the mice study can be found at https://doi.org/10.694

7910/DVN/WPFIGU143.695

Data about the binding affinity landscapes for neutralizing antibodies were downloaded directly from696

Phillips et al. 88 . Information about mice dataset from the Wellcome Trust Centre for Human Genet-697

ics89–91 can be found at http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml. The genotypes698

from this study were downloaded using the BGLR-R package 136. Details about the mice phenotypes can699

be found http://mtweb.cs.ucl.ac.uk/mus/www/mouse/HS/index.shtml and hematological traits can700

be downloaded from the mvMAPIT package. In the real data analyses, SNPs were mapped to the closest701

neighboring genes using the Mouse Genome Informatics database (http://www.informatics.jax.org)702

106.703
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Supplementary Figures
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Figure S1. The mvMAPIT framework using Fisher’s method produces well-calibrated P -
values when traits are generated by only additive effects (sample size N = 1,000 individuals).
In these simulations, quantitative traits are simulated to have narrow-sense heritability h2 = 0.6 with
an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly
correlated additive effects (vβ = 1). The first two columns show P -values resulting from the univariate
MAPIT test on “trait #1” and “trait #2”, respectively. The third column depicts the “covariance” P -
values which corresponds to assessing the pairwise interactions affecting both traits is. Lastly, the fourth
column shows the final “combined” P -value which combines the P -values from the first three columns
using Fisher’s method. The 95% confidence interval for the null hypothesis of no marginal epistatic effects
is shown in grey. Each plot combines results from 100 simulated replicates.
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Figure S2. The mvMAPIT framework using Fisher’s method produces well-calibrated P -
values when traits are generated by only additive effects (sample size N = 1,750 individuals).
In these simulations, quantitative traits are simulated to have narrow-sense heritability h2 = 0.6 with
an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly
correlated additive effects (vβ = 1). The first two columns show P -values resulting from the univariate
MAPIT test on “trait #1” and “trait #2”, respectively. The third column depicts the “covariance” P -
values which corresponds to assessing the pairwise interactions affecting both traits is. Lastly, the fourth
column shows the final “combined” P -value which combines the P -values from the first three columns
using Fisher’s method. The 95% confidence interval for the null hypothesis of no marginal epistatic effects
is shown in grey. Each plot combines results from 100 simulated replicates.
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Figure S3. The mvMAPIT framework using the harmonic mean produces well-calibrated P -
values when traits are generated by only additive effects (sample size N = 1,000 individuals).
In these simulations, quantitative traits are simulated to have narrow-sense heritability h2 = 0.6 with
an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly
correlated additive effects (vβ = 1). The first two columns show P -values resulting from the univariate
MAPIT test on “trait #1” and “trait #2”, respectively. The third column depicts the “covariance” P -
values which corresponds to assessing the pairwise interactions affecting both traits is. Lastly, the fourth
column shows the final “combined” P -value which combines the P -values from the first three columns
using Fisher’s method. The 95% confidence interval for the null hypothesis of no marginal epistatic effects
is shown in grey. Each plot combines results from 100 simulated replicates.
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Figure S4. The mvMAPIT framework using the harmonic mean produces well-calibrated P -
values when traits are generated by only additive effects (sample size N = 1,750 individuals).
In these simulations, quantitative traits are simulated to have narrow-sense heritability h2 = 0.6 with
an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly
correlated additive effects (vβ = 1). The first two columns show P -values resulting from the univariate
MAPIT test on “trait #1” and “trait #2”, respectively. The third column depicts the “covariance” P -
values which corresponds to assessing the pairwise interactions affecting both traits is. Lastly, the fourth
column shows the final “combined” P -value which combines the P -values from the first three columns
using Fisher’s method. The 95% confidence interval for the null hypothesis of no marginal epistatic effects
is shown in grey. Each plot combines results from 100 simulated replicates.
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Figure S5. The mvMAPIT framework using the harmonic mean produces well-calibrated P -
values when traits are generated by only additive effects (sample size N = 2,500 individuals).
In these simulations, quantitative traits are simulated to have narrow-sense heritability h2 = 0.6 with
an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly
correlated additive effects (vβ = 1). The first two columns show P -values resulting from the univariate
MAPIT test on “trait #1” and “trait #2”, respectively. The third column depicts the “covariance” P -
values which corresponds to assessing the pairwise interactions affecting both traits is. Lastly, the fourth
column shows the final “combined” P -value which combines the P -values from the first three columns
using Fisher’s method. The 95% confidence interval for the null hypothesis of no marginal epistatic effects
is shown in grey. Each plot combines results from 100 simulated replicates.
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Figure S6. Empirical power of mvMAPIT with Fisher’s method to detect group #1 (10)
and group #2 (20) epistatic variants across complex traits with moderate broad-sense
heritability. In these simulations, both quantitative traits are simulated to have broad-sense heritability
H2 = 0.6 with architectures made up of both additive and epistatic effects. The parameter ρ = {0.5, 0.8}
is used to determine the portion of broad-sense heritability contributed by additive effects. Each column
corresponds to a setting where the epistatic effects for interactive pairs have different correlation structures
across traits. In these simulations, we consider scenarios where we have traits with independent epistatic
effects (vα = 0) and traits with highly correlated epistatic effects (vα = 0.8). This plot shows the empirical
power of mvMAPIT at significance levels (A) P = 5× 10−2, (B) P = 5× 10−4, and (C) P = 1× 10−5,
respectively. Group #1 and #2 causal markers are colored in green and orange, respectively. For
comparison, the “trait #1” and “trait #2” bars correspond to the univariate MAPIT model, the “cov”
bars corresponds to power contributed by the covariance test, and “comb” details power from the overall
association identified by mvMAPIT in the combination approach. Results are based on 100 simulations
per parameter combination and the horizontal bars represent standard errors.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.11.30.518547doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518547
http://creativecommons.org/licenses/by-nc-nd/4.0/


70

1

2Po
w

er

group

A
Po

w
er

B

Po
w

er

C

Trait 1 Trait 2 Cov. Comb. Trait 1 Trait 2 Cov. Comb.

0.0

0.3

0.6

0.0

0.3

0.6

0.0

0.3

0.6

0.0

0.3

0.6

Trait 1 Trait 2 Cov. Comb. Trait 1 Trait 2 Cov. Comb.

0.0

0.3

0.6

0.0

0.3

0.6

Trait 1 Trait 2 Cov. Comb. Trait 1 Trait 2 Cov. Comb.

ρ = 0.5
ρ = 0.8

ρ = 0.5
ρ = 0.8

ρ = 0.5
ρ = 0.8

vα = 0.0 vα = 0.8

vα = 0.0 vα = 0.8

vα = 0.0 vα = 0.8

Figure S7. Empirical power of mvMAPIT with Fisher’s method to detect group #1 (10) and
group #2 (10) epistatic variants across complex traits with different levels of broad-sense
heritability. In these simulations, one of the quantitative traits has a moderate broad-sense heritability
H2 = 0.6, while the other has heritability H2 = 0.3. Both traits have architectures made up of both
additive and epistatic effects. The parameter ρ = {0.5, 0.8} is used to determine the portion of broad-sense
heritability contributed by additive effects. Each column corresponds to a setting where the epistatic
effects for interactive pairs have different correlation structures across traits. In these simulations, we
consider scenarios where we have traits with independent epistatic effects (vα = 0) and traits with highly
correlated epistatic effects (vα = 0.8). This plot shows the empirical power of mvMAPIT at significance
levels (A) P = 5× 10−2, (B) P = 5× 10−4, and (C) P = 1× 10−5, respectively. Group #1 and #2
causal markers are colored in green and orange, respectively. For comparison, the “trait #1” and “trait
#2” bars correspond to the univariate MAPIT model, the “cov” bars corresponds to power contributed
by the covariance test, and “comb” details power from the overall association identified by mvMAPIT
in the combination approach. Results are based on 100 simulations per parameter combination and the
horizontal bars represent standard errors.
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Figure S8. Empirical power of mvMAPIT with Fisher’s method to detect group #1 (10) and
group #2 (20) epistatic variants across complex traits with different levels of broad-sense
heritability. In these simulations, one of the quantitative traits has a moderate broad-sense heritability
H2 = 0.6, while the other has heritability H2 = 0.3. Both traits have architectures made up of both
additive and epistatic effects. The parameter ρ = {0.5, 0.8} is used to determine the portion of broad-sense
heritability contributed by additive effects. Each column corresponds to a setting where the epistatic
effects for interactive pairs have different correlation structures across traits. In these simulations, we
consider scenarios where we have traits with independent epistatic effects (vα = 0) and traits with highly
correlated epistatic effects (vα = 0.8). This plot shows the empirical power of mvMAPIT at significance
levels (A) P = 5× 10−2, (B) P = 5× 10−4, and (C) P = 1× 10−5, respectively. Group #1 and #2
causal markers are colored in green and orange, respectively. For comparison, the “trait #1” and “trait
#2” bars correspond to the univariate MAPIT model, the “cov” bars corresponds to power contributed
by the covariance test, and “comb” details power from the overall association identified by mvMAPIT
in the combination approach. Results are based on 100 simulations per parameter combination and the
horizontal bars represent standard errors.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.11.30.518547doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518547
http://creativecommons.org/licenses/by-nc-nd/4.0/


72

Po
w

er

group
1

2

A
Po

w
er

B

Po
w

er

C

Trait 1 Trait 2 Cov. Comb. Trait 1 Trait 2 Cov. Comb.

vα = 0.0 vα = 0.8

ρ = 0.5
ρ = 0.8

ρ = 0.5
ρ = 0.8

0.0

0.3

0.6

0.0

0.3

0.6

0.0

0.3

0.6

0.0

0.3

0.6

vα = 0.0 vα = 0.8

0.4
vα = 0.0 vα = 0.8

ρ = 0.5
ρ = 0.8

0.0

0.3

0.6

0.0

0.3

0.6

Trait 1 Trait 2 Cov. Comb. Trait 1 Trait 2 Cov. Comb.

Trait 1 Trait 2 Cov. Comb. Trait 1 Trait 2 Cov. Comb.

Figure S9. Empirical power of mvMAPIT with the harmonic mean combination approach
to detect group #1 (10) and group #2 (10) epistatic variants across complex traits with
moderate broad-sense heritability. In these simulations, both quantitative traits are simulated to
have broad-sense heritability H2 = 0.6 with architectures made up of both additive and epistatic effects.
The parameter ρ = {0.5, 0.8} is used to determine the portion of broad-sense heritability contributed by
additive effects. Each column corresponds to a setting where the epistatic effects for interactive pairs
have different correlation structures across traits. In these simulations, we consider scenarios where we
have traits with independent epistatic effects (vα = 0) and traits with highly correlated epistatic effects
(vα = 0.8). This plot shows the empirical power of mvMAPIT at significance levels (A) P = 5× 10−2,
(B) P = 5× 10−4, and (C) P = 1× 10−5, respectively. Group #1 and #2 causal markers are colored
in green and orange, respectively. For comparison, the “trait #1” and “trait #2” bars correspond
to the univariate MAPIT model, the “cov” bars corresponds to power contributed by the covariance
test, and “comb” details power from the overall association identified by mvMAPIT in the combination
approach. Results are based on 100 simulations per parameter combination and the horizontal bars
represent standard errors.
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Figure S10. Empirical power of mvMAPIT with the harmonic mean combination approach
to detect group #1 (10) and group #2 (20) epistatic variants across complex traits with
moderate broad-sense heritability. In these simulations, both quantitative traits are simulated to
have broad-sense heritability H2 = 0.6 with architectures made up of both additive and epistatic effects.
The parameter ρ = {0.5, 0.8} is used to determine the portion of broad-sense heritability contributed by
additive effects. Each column corresponds to a setting where the epistatic effects for interactive pairs
have different correlation structures across traits. In these simulations, we consider scenarios where we
have traits with independent epistatic effects (vα = 0) and traits with highly correlated epistatic effects
(vα = 0.8). This plot shows the empirical power of mvMAPIT at significance levels (A) P = 5× 10−2,
(B) P = 5× 10−4, and (C) P = 1× 10−5, respectively. Group #1 and #2 causal markers are colored
in green and orange, respectively. For comparison, the “trait #1” and “trait #2” bars correspond
to the univariate MAPIT model, the “cov” bars corresponds to power contributed by the covariance
test, and “comb” details power from the overall association identified by mvMAPIT in the combination
approach. Results are based on 100 simulations per parameter combination and the horizontal bars
represent standard errors.
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Figure S11. Empirical power of mvMAPIT with the harmonic mean combination approach
to detect group #1 (10) and group #2 (10) epistatic variants across complex traits with
different levels of broad-sense heritability. In these simulations, one of the quantitative traits
has a moderate broad-sense heritability H2 = 0.6, while the other has heritability H2 = 0.3. Both
traits have architectures made up of both additive and epistatic effects. The parameter ρ = {0.5, 0.8} is
used to determine the portion of broad-sense heritability contributed by additive effects. Each column
corresponds to a setting where the epistatic effects for interactive pairs have different correlation structures
across traits. In these simulations, we consider scenarios where we have traits with independent epistatic
effects (vα = 0) and traits with highly correlated epistatic effects (vα = 0.8). This plot shows the empirical
power of mvMAPIT at significance levels (A) P = 5× 10−2, (B) P = 5× 10−4, and (C) P = 1× 10−5,
respectively. Group #1 and #2 causal markers are colored in green and orange, respectively. For
comparison, the “trait #1” and “trait #2” bars correspond to the univariate MAPIT model, the “cov”
bars corresponds to power contributed by the covariance test, and “comb” details power from the overall
association identified by mvMAPIT in the combination approach. Results are based on 100 simulations
per parameter combination and the horizontal bars represent standard errors.
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Figure S12. Empirical power of mvMAPIT with the harmonic mean combination approach
to detect group #1 (10) and group #2 (20) epistatic variants across complex traits with
different levels of broad-sense heritability. In these simulations, one of the quantitative traits
has a moderate broad-sense heritability H2 = 0.6, while the other has heritability H2 = 0.3. Both
traits have architectures made up of both additive and epistatic effects. The parameter ρ = {0.5, 0.8} is
used to determine the portion of broad-sense heritability contributed by additive effects. Each column
corresponds to a setting where the epistatic effects for interactive pairs have different correlation structures
across traits. In these simulations, we consider scenarios where we have traits with independent epistatic
effects (vα = 0) and traits with highly correlated epistatic effects (vα = 0.8). This plot shows the empirical
power of mvMAPIT at significance levels (A) P = 5× 10−2, (B) P = 5× 10−4, and (C) P = 1× 10−5,
respectively. Group #1 and #2 causal markers are colored in green and orange, respectively. For
comparison, the “trait #1” and “trait #2” bars correspond to the univariate MAPIT model, the “cov”
bars corresponds to power contributed by the covariance test, and “comb” details power from the overall
association identified by mvMAPIT in the combination approach. Results are based on 100 simulations
per parameter combination and the horizontal bars represent standard errors.
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Figure S13. Receiver operating characteristic (ROC) curves comparing the ability of
mvMAPIT using the harmonic mean to the univariate MAPIT model in detecting group
#1 (10) and group #2 (10) epistatic variants across complex traits. In panel (A) both traits
have broad-sense heritability H2 = 0.6; while in panel (B) one of traits has broad-sense heritability
H2 = 0.6 and the other has heritability H2 = 0.3. Across the rows, the parameter ρ = {0.5, 0.8} is used
to determine the portion of broad-sense heritability contributed by additive effects. Each column corre-
sponds to settings where the epistatic effects across traits are independent (vα = 0) or highly correlated
(vα = 0.8). For comparison, the “trait #1” and “trait #2” dotted lines correspond to the univariate
MAPIT model, the “covariance” solid purple line corresponds to power contributed by the covariance
test, and the “combined” pink line shows power from the overall association identified by mvMAPIT in
the multivariate approach. Note that the upper limit of the x-axis (i.e., false positive rate) has been
truncated at 0.05. All results are based on 100 simulated replicates.
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Figure S14. Receiver operating characteristic (ROC) curves comparing the ability of
mvMAPIT with Fisher’s method to the univariate MAPIT model in detecting group #1
(10) and group #2 (20) epistatic variants across complex traits. In panel (A) both traits have
broad-sense heritability H2 = 0.6; while in panel (B) one of traits has broad-sense heritability H2 = 0.6
and the other has heritability H2 = 0.3. Across the rows, the parameter ρ = {0.5, 0.8} is used to deter-
mine the portion of broad-sense heritability contributed by additive effects. Each column corresponds to
settings where the epistatic effects across traits are independent (vα = 0) or highly correlated (vα = 0.8).
For comparison, the “trait #1” and “trait #2” dotted lines correspond to the univariate MAPIT model,
the “covariance” solid purple line corresponds to power contributed by the covariance test, and the “com-
bined” pink line shows power from the overall association identified by mvMAPIT in the multivariate
approach. Note that the upper limit of the x-axis (i.e., false positive rate) has been truncated at 0.05.
All results are based on 100 simulated replicates.
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Figure S15. Receiver operating characteristic (ROC) curves comparing the ability of
mvMAPIT using the harmonic mean to the univariate MAPIT model in detecting group
#1 (10) and group #2 (20) epistatic variants across complex traits. In panel (A) both traits
have broad-sense heritability H2 = 0.6; while in panel (B) one of traits has broad-sense heritability
H2 = 0.6 and the other has heritability H2 = 0.3. Across the rows, the parameter ρ = {0.5, 0.8} is used
to determine the portion of broad-sense heritability contributed by additive effects. Each column corre-
sponds to settings where the epistatic effects across traits are independent (vα = 0) or highly correlated
(vα = 0.8). For comparison, the “trait #1” and “trait #2” dotted lines correspond to the univariate
MAPIT model, the “covariance” solid purple line corresponds to power contributed by the covariance
test, and the “combined” pink line shows power from the overall association identified by mvMAPIT in
the multivariate approach. Note that the upper limit of the x-axis (i.e., false positive rate) has been
truncated at 0.05. All results are based on 100 simulated replicates.
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Figure S16. Applying mvMAPIT with the harmonic mean to broadly neutralizing anti-
bodies recovers heavy-chain mutations known to be involved in epistatic interactions that
affect binding against two influenza strains. These results are based on protein sequence data from
Phillips et al. 88 who generated a nearly combinatorially complete library for two broadly neutralizing
anti-influenza antibodies (bnAbs), CR6261 and CR9114. For each antibody, we assess binding affinity
to different influenza strains. For CR6261, traits #1 and #2 are binding measurements to the antigens
H1 and H9; while, for CR9114, we assess the same measurement for H1 and H3. Panel (A) shows
Manhattan plots for the different sets of P -values computed during the mvMAPIT analysis. The red
horizontal lines indicate a chain-wide Bonferroni corrected significance threshold (P = 4.55 × 10−3 for
CR6261 and P = 3.13× 10−3 for CR9114, respectively). The green colored dots are positions that have
significant marginal epistatic effects after multiple correction. Panels (B) and (C) reproduce exhaustive
search results originally reported by Phillips et al. 88 . The green dots next to the mutation labels on the
axes are the residues that are significant in the multivariate MAPIT analysis and correspond to panel
(A). The shaded regions in panel (B) are the regression coefficients for pairwise interactions between
positions when assessing binding of CR6261with H1 (upper right triangle) and H9 (lower left triangle).
Similarly, panel (C) shows the same information when assessing binding of CR9114 with H1 (upper right
triangle) and H3 (lower left triangle). Required mutations (indicated by R) are plotted in gray and left
out of the analysis88.
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Figure S17. Manhattan plot of genome-wide interaction study for all trait pairs in the het-
erogenous stock of mice dataset from the Wellcome Trust Centre for Human Genetics89–91

using mvMAPIT with Fisher’s method. The columns correspond to trait #1 in the analysis while
the rows denote trait #2. Results on the diagonal correspond to results from running a univariate MAPIT
model. The results on the off-diagonals show the combined P -values from mvMAPIT. The red horizontal
lines indicate a genome-wide Bonferroni corrected significance threshold (P = 4.83 × 10−6). The green
colored dots are SNPs that have significant marginal epistatic effects after multiple correction. Full names
for the abbreviations of each trait can be found in the main text (Materials and Methods).
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Figure S18. Manhattan plot of genome-wide interaction study for all trait pairs in the het-
erogenous stock of mice dataset from the Wellcome Trust Centre for Human Genetics89–91

using mvMAPIT with the harmonic mean. The columns correspond to trait #1 in the analysis
while the rows denote trait #2. Results on the diagonal correspond to results from running a univariate
MAPIT model. The results on the off-diagonals show the combined P -values from mvMAPIT. The red
horizontal lines indicate a genome-wide Bonferroni corrected significance threshold (P = 4.83 × 10−6).
The green colored dots are SNPs that have significant marginal epistatic effects after multiple correction.
Full names for the abbreviations of each trait can be found in the main text (Materials and Methods).
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Figure S19. Manhattan plot of genome-wide interaction study for two pairs of hematology
traits in the heterogenous stock of mice dataset from the Wellcome Trust Centre for Human
Genetics89–91 using mvMAPIT with the harmonic mean. The trait pairs in this figure include
hematocrit (HCT) and hemoglobin (HGB) in the left column and mean corpuscular hemoglobin (MCH)
and mean corpuscular volume (MCV) in the right column. Here, we depict the P -values computed during
each step of the mvMAPIT modeling pipeline. The red horizontal lines indicate a genome-wide Bonferroni
corrected significance threshold (P = 4.83×10−6). The green colored dots are SNPs that have significant
marginal epistatic effects after multiple test correction. Significant SNPs were mapped to the closest
neighboring genes using the Mouse Genome Informatics database (http://www.informatics.jax.org)
106.
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Figure S20. Empirical correlations for all trait pairs in the heterogenous stock of mice
dataset from the Wellcome Trust Centre for Human Genetics89–91. Full names for the abbre-
viations of each trait can be found in the main text (Materials and Methods).
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Supplementary Tables

Add. Effect Corr. P = 0.05 P = 0.01 P = 0.001

Univariate
vβ = 0.0 0.030 (1× 10−2) 0.007 (3× 10−3) 0.0007 (6× 10−4)
vβ = 0.8 0.030 (1× 10−2) 0.007 (2× 10−3) 0.0007 (6× 10−4)
vβ = 1.0 0.030 (1× 10−2) 0.007 (2× 10−3) 0.0007 (6× 10−4)

Covariance
vβ = 0.0 0.040 (1× 10−2) 0.005 (2× 10−3) 0.0002 (4× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.005 (2× 10−3) 0.0002 (3× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.005 (2× 10−3) 0.0003 (3× 10−4)

Combined
vβ = 0.0 0.030 (1× 10−2) 0.006 (2× 10−3) 0.0005 (7× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0005 (4× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0006 (6× 10−4)

Table S1. The mvMAPIT framework using Fisher’s method preserves type I error rates
under the null model when traits are generated by only additive effects (sample size N =
1,000 individuals). In these simulations, quantitative traits are simulated to have narrow-sense heri-
tability h2 = 0.6 with an architecture made up of only additive genetic variation. Each row corresponds
to a setting where the additive genetic effects for a causal SNP have different correlation structures across
traits. In these simulations, we consider scenarios where we have traits with independent additive effects
(vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly correlated
additive effects (vβ = 1). We assess the calibration of the P -values that are produced by mvMAPIT
during each of the three key steps in its combinatorial hypothesis testing procedure (see Materials and
Methods). We show type I error rates resulting from P -values taken from the “univariate” test on each
trait independently, the “covariance” P -values which corresponds to assessing the pairwise interactions
affecting both traits, and the final “combined” P -value. Results are summarized over 100 simulated
replicates. Values in the parentheses are the standard deviations across replicates.
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Add. Effect Corr. P = 0.05 P = 0.01 P = 0.001

Univariate
vβ = 0.0 0.030 (1× 10−2) 0.008 (2× 10−3) 0.0007 (5× 10−4)
vβ = 0.8 0.030 (1× 10−2) 0.008 (2× 10−3) 0.0009 (7× 10−4)
vβ = 1.0 0.030 (1× 10−2) 0.008 (3× 10−3) 0.0009 (9× 10−4)

Covariance
vβ = 0.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0003 (4× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0002 (3× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0002 (3× 10−4)

Combined
vβ = 0.0 0.040 (1× 10−2) 0.007 (2× 10−3) 0.0006 (5× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.007 (2× 10−3) 0.0007 (8× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.007 (2× 10−3) 0.0006 (6× 10−4)

Table S2. The mvMAPIT framework using Fisher’s method preserves type I error rates
under the null model when traits are generated by only additive effects (sample size N =
1,750 individuals). In these simulations, quantitative traits are simulated to have narrow-sense heri-
tability h2 = 0.6 with an architecture made up of only additive genetic variation. Each row corresponds
to a setting where the additive genetic effects for a causal SNP have different correlation structures across
traits. In these simulations, we consider scenarios where we have traits with independent additive effects
(vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly correlated
additive effects (vβ = 1). We assess the calibration of the P -values that are produced by mvMAPIT
during each of the three key steps in its combinatorial hypothesis testing procedure (see Materials and
Methods). We show type I error rates resulting from P -values taken from the “univariate” test on each
trait independently, the “covariance” P -values which corresponds to assessing the pairwise interactions
affecting both traits, and the final “combined” P -value. Results are summarized over 100 simulated
replicates. Values in the parentheses are the standard deviations across replicates.
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Add. Effect Corr. P = 0.05 P = 0.01 P = 0.001

Univariate
vβ = 0.0 0.030 (1× 10−2) 0.007 (3× 10−3) 0.0007 (6× 10−4)
vβ = 0.8 0.030 (1× 10−2) 0.007 (2× 10−3) 0.0007 (6× 10−4)
vβ = 1.0 0.030 (1× 10−2) 0.007 (2× 10−3) 0.0007 (6× 10−4)

Covariance
vβ = 0.0 0.040 (1× 10−2) 0.005 (2× 10−3) 0.0002 (4× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.005 (2× 10−3) 0.0002 (3× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.005 (2× 10−3) 0.0003 (3× 10−4)

Combined
vβ = 0.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0005 (5× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0004 (4× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0005 (5× 10−4)

Table S3. The mvMAPIT framework using the harmonic mean preserves type I error
rates under the null model when traits are generated by only additive effects (sample
size N = 1,000 individuals). In these simulations, quantitative traits are simulated to have narrow-
sense heritability h2 = 0.6 with an architecture made up of only additive genetic variation. Each row
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly
correlated additive effects (vβ = 1). We assess the calibration of the P -values that are produced by
mvMAPIT during each of the three key steps in its combinatorial hypothesis testing procedure (see
Materials and Methods). We show type I error rates resulting from P -values taken from the “univariate”
test on each trait independently, the “covariance” P -values which corresponds to assessing the pairwise
interactions affecting both traits, and the final “combined” P -value. Results are summarized over 100
simulated replicates. Values in the parentheses are the standard deviations across replicates.
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Add. Effect Corr. P = 0.05 P = 0.01 P = 0.001

Univariate
vβ = 0.0 0.030 (1× 10−2) 0.008 (2× 10−3) 0.0007 (5× 10−4)
vβ = 0.8 0.030 (1× 10−2) 0.008 (2× 10−3) 0.0009 (7× 10−4)
vβ = 1.0 0.030 (1× 10−2) 0.008 (3× 10−3) 0.0009 (9× 10−4)

Covariance
vβ = 0.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0003 (4× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0002 (3× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0002 (3× 10−4)

Combined
vβ = 0.0 0.040 (1× 10−2) 0.008 (2× 10−3) 0.0006 (5× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.008 (2× 10−3) 0.0007 (8× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.007 (2× 10−3) 0.0005 (5× 10−4)

Table S4. The mvMAPIT framework using the harmonic mean preserves type I error
rates under the null model when traits are generated by only additive effects (sample
size N = 1,750 individuals). In these simulations, quantitative traits are simulated to have narrow-
sense heritability h2 = 0.6 with an architecture made up of only additive genetic variation. Each row
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly
correlated additive effects (vβ = 1). We assess the calibration of the P -values that are produced by
mvMAPIT during each of the three key steps in its combinatorial hypothesis testing procedure (see
Materials and Methods). We show type I error rates resulting from P -values taken from the “univariate”
test on each trait independently, the “covariance” P -values which corresponds to assessing the pairwise
interactions affecting both traits, and the final “combined” P -value. Results are summarized over 100
simulated replicates. Values in the parentheses are the standard deviations across replicates.
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Add. Effect Corr. P = 0.05 P = 0.01 P = 0.001

Univariate
vβ = 0.0 0.030 (1× 10−2) 0.009 (2× 10−3) 0.0010 (9× 10−4)
vβ = 0.8 0.030 (1× 10−2) 0.009 (2× 10−3) 0.0009 (7× 10−4)
vβ = 1.0 0.030 (1× 10−2) 0.009 (3× 10−3) 0.0009 (7× 10−4)

Covariance
vβ = 0.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0003 (4× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.007 (2× 10−3) 0.0004 (5× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.006 (2× 10−3) 0.0003 (4× 10−4)

Combined
vβ = 0.0 0.040 (1× 10−2) 0.008 (2× 10−3) 0.0007 (6× 10−4)
vβ = 0.8 0.040 (1× 10−2) 0.008 (2× 10−3) 0.0007 (6× 10−4)
vβ = 1.0 0.040 (1× 10−2) 0.008 (2× 10−3) 0.0005 (6× 10−4)

Table S5. The mvMAPIT framework using the harmonic mean preserves type I error
rates under the null model when traits are generated by only additive effects (sample
size N = 2,500 individuals). In these simulations, quantitative traits are simulated to have narrow-
sense heritability h2 = 0.6 with an architecture made up of only additive genetic variation. Each row
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vβ = 0), traits with highly correlated additive effects (vβ = 0.8), and traits with perfectly
correlated additive effects (vβ = 1). We assess the calibration of the P -values that are produced by
mvMAPIT during each of the three key steps in its combinatorial hypothesis testing procedure (see
Materials and Methods). We show type I error rates resulting from P -values taken from the “univariate”
test on each trait independently, the “covariance” P -values which corresponds to assessing the pairwise
interactions affecting both traits, and the final “combined” P -value. Results are summarized over 100
simulated replicates. Values in the parentheses are the standard deviations across replicates.

Table S6. Complete summary of the marginal epistatic results after applying the mvMAPIT
framework to protein sequence data from a nearly combinatorially complete library of two
broadly neutralizing anti-influenza antibodies. Here, data is from Phillips et al. 88 who generated
a nearly combinatorially complete library for two broadly neutralizing anti-influenza antibodies (bnAbs),
CR6261 and CR9114. In the first column, we list the antibody being analyzed. In the second column,
we give their corresponding residue. In the third and fourth columns, we list all the pairwise antigen
combinations done in the analysis. In the remaining columns, we give the results stemming from univariate
analyses on antigens #1 and #2, respectively, the covariance (cov) test, and the overall P -values derived
by mvMAPIT using both Fisher’s method and the harmonic mean. Tutorials for how to take these results
and recreate the Manhattan plots shown in Figures 5 and S16 can be found in the mvMAPIT GitHub
repository (see Materials and Methods). (XLSX)
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Table S7. Complete summary of the marginal epistatic results after applying the mvMAPIT
framework to 15 hematology traits in the heterogenous stock of mice dataset from the
Wellcome Trust Centre for Human Genetics89–91. In the first column, we list the ID of each SNP.
In the second and third columns, we give their corresponding chromosome and basepair according to the
mouse assembly NCBI build 34 (accessed from Shifman et al. 135). In the fourth and fifth columns, we
list all the pairwise trait combinations done in the analysis. In the remaining columns, we give the results
stemming from univariate analyses on traits #1 and #2, respectively, the covariance (cov) test, and the
overall P -values derived by mvMAPIT using both Fisher’s method and the harmonic mean. Tutorials for
how to take these results and recreate the Manhattan plots shown in Figures S17 and S18 can be found
in the mvMAPIT GitHub repository (see Materials and Methods). (XLSX)
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