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Abstract

Epistasis, commonly defined as the interaction between genetic loci, is known to play an important
role in the phenotypic variation of complex traits. As a result, many statistical methods have been
developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches
carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that
jointly modeling multiple phenotypes can often dramatically increase statistical power for association
mapping. In this study, we present the “multivariate MArginal ePIstasis Test” (mvMAPIT) — a
multi-outcome generalization of a recently proposed epistatic detection method which seeks to detect
marginal epistasis or the combined pairwise interaction effects between a given variant and all other
variants. By searching for marginal epistatic effects, one can identify genetic variants that are in-
volved in epistasis without the need to identify the exact partners with which the variants interact —
thus, potentially alleviating much of the statistical and computational burden associated with conven-
tional explicit search-based methods. Our proposed mvMAPIT builds upon this strategy by taking
advantage of correlation structure between traits to improve the identification of variants involved in
epistasis. We formulate mvMAPIT as a multivariate linear mixed model and develop a multi-trait
variance component estimation algorithm for efficient parameter inference and P-value computation.
Together with reasonable model approximations, our proposed approach is scalable to moderately

sized GWA studies. With simulations, we illustrate the benefits of mvMAPIT over univariate (or
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single-trait) epistatic mapping strategies. We also apply mvMAPIT framework to protein sequence
data from two broadly neutralizing anti-influenza antibodies and approximately 2,000 heterogenous
stock of mice from the Wellcome Trust Centre for Human Genetics. The mvMAPIT R package can

be downloaded at https://github.com/lcrawlab/mvMAPIT.

Introduction

1 Genome-wide association (GWA) studies have contributed substantially in the discovery of genetic mark-
2 ers associated with the architecture of disease phenotypes' ®. Epistasis, commonly defined as the inter-

3 action between genetic loci, has long been thought to play a key role in defining the genetic architecture

7-11

+ underlying many complex traits and common diseases . Indeed, previous studies have detected perva-

s sive epistasis in many model organisms 2 3?. Substantial contributions of epistasis to phenotypic variance

s have been revealed for many complex traits3¢37 and have been suggested to constitute an important com-

: ponent of evolution®. Furthermore, modeling epistasis in addition to additive and dominant effects has

39-41

s been shown to increase phenotypic prediction accuracy in model organisms and facilitate genomic

42-44

o selection in breeding programs Despite a longstanding and currently ongoing debate about the

22,45-52

10 contribution of non-additive effects on the architecture of human complex traits , recent genetic

un  mapping studies have also identified evidence of epistatic interactions that significantly contribute to

53-56

12 quantitative traits and diseases , and some have recently shown that gene-by-gene interactions can

13 drive heterogeneity of causal variant effect sizes across diverse human populations®”. Importantly, epis-

1 tasis is often proposed as a key contributor to missing heritability — the proportion of heritability not
15 explained by the top associated variants in GWA studies->5761,

1 Many statistical methods have been developed to facilitate the identification of epistasis in complex
17 traits and diseases. Generally, these existing tools can be classified into two frameworks. In the first

18 framework, explicit searches are performed to detect significant pairwise or higher-order interactions.

v More specifically, they use various strategies including exhaustive search?%*, probabilistic search®,

2 or prioritization based on a predefined set of biological annotations of signaling pathways or genomic

66,67

a1 regulatory units Different statistical paradigms have been implemented for these explicit search-

70-73

» based approaches including various frequentist tests268:69 Bayesian inference , and, most recently,

74,75

3 detecting epistasis using machine learning Indeed, the explosion of large-scale genomic datasets

2 has provided the unique opportunity to integrate many of these techniques as standard statistical tools
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»s  within GWA analyses. Many modern GWA applications have datasets that can include hundreds of
» thousands of individuals genotyped at millions of markers and phenotyped for thousands of traits”%77.
2 Due to the potentially large space of genetic interactions (e.g., J(J —1)/2 possible pairwise combinations
s for J variants in a study), explicit search-based methods often suffer from heavy computational burden.

65,68,78-80 " exploring over a large combinatorial

2 Even with various efficient computational improvements
3 domain remains a daunting task for many epistatic mapping studies. More importantly, because of a
a1 lack of a priori knowledge about epistatic loci, exploring all possible combinations of genetic variants can

» result in low statistical power after correcting for multiple hypothesis tests.

3 As a departure from the explicit search strategy, the second category of epistatic mapping methods
u attempts to address the previously mentioned challenges by detecting marginal epistasis. Specifically,
s instead of directly identifying individual pairwise or higher-order interactions, these approaches focus
3 on identifying variants that have a non-zero interaction effect with any other variant in the dataset.
»»  For example, the “MArginal ePlstasis Test” (MAPIT)®! assesses each variant (in turn) and identifies
s candidate markers that are involved in epistasis without the need to identify the exact partners with which
3 the variants interact — thus, alleviating much of the statistical power concerns and heavy computational
w0 burdens associated with explicit search-based methods. As a framework, the marginal epistatic strategy
o has been implemented in both linear mixed models and machine learning and has been used for case-
2 control studies®?, pathway enrichment applications®3, heritability estimation!?, and even extended to
s explore different sources of non-additive genetic variation (e.g., gene-by-environment interactions)®&485.

« However, despite its wide adoption, this approach can still be underpowered for traits with low heritability

s or “polygenic” traits which are generated by many mutations of small effect8'.

% To date, both the explicit search and marginal epistasis detection methodologies have only focused on
s analyzing one phenotype at a time. However, many previous genetic association studies have exten-
s sively shown that jointly modeling multiple phenotypes can often dramatically increase power for variant
w detection®0. In this work, we present the “multivariate MArginal ePlstasis Test” (mvMAPIT) — a
so multi-outcome generalization of the MAPIT model which aims to take advantage of the relationship be-
51 tween traits to improve the identification of variants involved in epistasis. We formulate mvMAPIT as a
2 multivariate linear mixed model (mvLMM) and extend a previously developed variance component esti-

s mation algorithm for efficient parameter inference and P-value computation in the multi-trait setting®7.

s« Together with reasonable model approximations, our proposed approach is scalable to moderately sized
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s GWA studies. With detailed simulations, we illustrate the benefits of mvMAPIT in terms of providing
s effective type I error control and compare its power to the univariate (or single-trait) mapping strategy
sz used in the original MAPIT model. Here, part of our main contribution is the demonstration that the
ss  power in our proposed multivariate approach is driven by the correlations between the effects of pairwise
so interactions on multiple traits. To close, we also apply the mvMAPIT framework to protein sequence data
o from a nearly combinatorially complete library of two broadly neutralizing anti-influenza antibodies®®
e and to 15 quantitative hematology traits assayed in a heterogenous stock of mice from Wellcome Trust

& Centre for Human Genetics3991.

Results

Overview of the multivariate marginal epistasis test

63 The “multivariate MArginal ePlstasis Test” (mvMAPIT) is a multi-outcome extension of the statistical
e framework MAPIT which aims to identify variants that are involved in epistatic interactions by leveraging
e the covariance structure of non-additive genetic variation that is shared between multiple traits. The key
6 idea behind the concept of marginal epistasis is to identify variants that are involved in epistasis while
ez avoiding the need to explicitly conduct an exhaustive search over all possible interactions between pairs
e of variants. As an overview of mvMAPIT and its corresponding software implementation, we will assume
s that we have access to a GWA study on N individuals denoted as D = {X,Y} where X is an N x .J
7 matrix of genotypes with J denoting the number of SNPs (each of which is encoded as {0, 1,2} copies
n of a reference allele at each locus j) and Y denoting a D x N matrix holding D different traits that are
7 measured for each of the IV individuals. We will let y, represent the N-dimensional phenotypic vector for
7 the d-th trait. For convenience, we will assume that the genotype matrix and the traits of interest have
7u  been mean-centered and standardized. Unlike standard exhaustive search tests for epistasis, mvMAPIT
s works by examining one variant at a time. For the j-th variant, we consider the following mvLMM

» formulation
7 Y =U+ 8;x] + M, + Z; +E, E ~ MN(0,V_,71) (1)

s where Uis a D x N dimensional matrix which contains population-level intercepts that are the same for

7o all individuals within each trait; x; is an N-dimensional vector for the j-th genotype that is the focus of
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s the model; 8; is a D-dimensional vector of additive effects for the j-th genotype; M; =}, £ B;x] is the
s combined additive effects from all other | # j variants across the D traits with effect sizes 8; and effectively
22 represents the polygenic background of all variants except for the j-th; and Z; =), oy a;(x;0x;)T is the
s summation of all pairwise interaction effects x; o x; (i.e., element-wise multiplication) between the j-th
s variant and all other [ # j variants with regression coefficients «; across the D traits; and E denotes an
s D x N matrix of residual errors that is assumed to follow a matrix-variate normal distribution with mean
s 0, within column covariance V. among the D traits, and independent within row covariance (scaled by
e 72) among the N individuals in the study. The term Z; is the main focus of the model and represents
s the collection of marginal epistatic effects of the j-th variant — formally defined as the summation of
s its epistatic interaction effects with all other variants. In this study, we will demonstrate mvMAPIT
o while analyzing D = 2 traits at a time, but note that the framework can easily be applied to more
o phenotypes (see Materials and Methods). Similarly, while we focus on pairwise statistical epistasis in
oo the above formulation, extension of the mvMAPIT framework to detect higher order interactions is

s straightforward3!.

o The model specified in Eq. (1) becomes an underdetermined linear system for many modern GWA
s applications (i.e., in biobanks where genotyped markers J > N individuals). As a result, we need
o6 to make additional modeling assumptions on the regression coefficients to make the generative model
o identifiable. Here, we follow standard linear modeling approaches®!:929° by first letting B = [3;];;
e and A = [oy];£; denote matrices of coefficients. Then we assume that these matrices follow matrix-
% variate normal distributions where B ~ MN(0,Vg,w?/(J — 1)I) and A ~ MN(0,V,,0?/(J — 1)I),
w0 respectively. With the probabilistic assumption of normally distributed effect sizes, the model defined
w in Eq. (1) is equivalent to a multivariate variance component model where M; ~ MAN(0, Vs, w?K;)
w with K; = X_;XT j /(J — 1) being an additive genetic relatedness matrix that is computed using all
w3 genotypes other than the j-th SNP; and Z; ~ MN(0,V,,0?G;) with G; = D,;K,;D; being a non-
14 additive relatedness matrix computed based on all pairwise interaction terms involving the j-th SNP.
s Here, we let D; = diag(x;) denote an N x N diagonal matrix with the j-th genotype as its only nonzero
s elements. It is also important to note that both K; and G; change with every new j-th marker that
w7 is tested. The key takeaway from this variance component model formulation is that o2 represents a

108 measure on the marginal epistatic effect for each variant in the data.

w9 The goal of mvMAPIT is to identify variants that have non-zero interaction effects with any other variant
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1o in the data across multiple traits. To accomplish this, we examine each SNP in turn and assess the null
m  hypothesis Hy : 02 = 0. In practice, we use a computationally efficient method of moments algorithm
12 called MQS® to estimate model parameters and to carry out calibrated statistical tests within mvMAPIT.
1z More specifically, to estimate variance components, we first (right) multiply Eq. (1) by a variant-specific
m projection (or hat) matrix P; =T —b;(bTb;)~"b] with b = [1;x;] and 1 being an N-dimensional vector
us of ones. This procedure projects the model onto a column space that is orthogonal to the intercept and

us the genotypic vector of interest x; which allows us to rewrite Eq. (1) as the following
17 Y; =M; +Z; + Ej, E; ~ MN(0,V_,P;). (2)

us  Here, in addition to previous notation, Y; = Y;P;; M} ~ MN(O,VB,szj) with K} = P;K;P;; and
no  Z3 ~ MN(0,V,, O'QG;) with G} = P;G;P;. The joint analysis of multiple traits requires a generalization
120 of the MQS algorithm to also include method of moments estimators for covariance components between
11 outcomes. Without loss of generality, let y; and y}; be the c-th and d-th rows of the measured phenotypic
12 matrix Y;. Our multivariate extension of MQS implements an approach which first fits univariate models
23 (i.e., the setting where ¢ = d) and then combines the resulting P-values with those stemming from a
124 “covariance statistic” which looks for shared marginal epistatic effects between all pairwise combinations

125 of the D traits. The MQS estimate for the marginal epistatic component takes on the quadratic form
~2 * *
126 Oj(cd) = Yo H;y3, (3)

w7 where H; = (S;l)glK;f + (S;l)QQG; + (S;l)gng with elements (S;),s = tr(3;,%;,) for matrices sub-
v scripted as [Xj1; 305 23] = [K};G}; Py, and tr(e) is used to denote the matrix trace function. The

o corresponding standard error for the test statistic in Eq. (3) can be approximated as the following®":%6

130 VTS o)) = yeTHIV; (cayHyyi + viTHI V; (aayHj v (4)

m with Vj gy = A?’(Cd)K; + 3?,(600 G; + ?J%(Cd)Pj, being the covariance between any two traits of interest.
122 Note the indices ¢ and d range over all D traits and that a different 832 (cd) is computed for all pairwise

113 combinations of the c-th and d-th traits in the data.

1 We implement a combinatorial strategy to carry out hypothesis testing and derive P-values using the

135 test statistics computed in Eq. (3). This is done in three key steps. In the first step, we fit the univariate
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13 models for all D traits of interests. This case mirrors the original MAPIT model. In mvMAPIT, this
17 means that the variance component point estimate is computed using only one trait row in Y (i.e, ¢ = d).
138 Here, we use a hybrid approach where we first implement a normal test for each variant by default, and
139 then we apply an exact method for the variants that have P-values from the normal test that fall below

1o the nominal significance threshold of 0.05 to correct for possible inflation®!

. To implement the normal
w test, we simply compute a z-score by dividing the test statistic in Eq. (3) by its standard deviation in
w  Eq. (4) with Vj cqy = Vj (4q). For the SNPs needing the exact test, we utilize the fact that the MQS
13 variance component estimate follows a mixture of chi-square distributions under the null hypothesis. This
s 18 derived from both the standard normality assumption on each trait y* and the quadratic form of the

us  statistic in Eq. (3). More specifically, we say that 3]2- ~ Efil )‘iXii where x? are chi-square random

s variables with one degree of freedom and (Aq,...,Ay) are the eigenvalues of

1/2 1/2

w (G0K; +70P;) " H; (&K] + 7P;) (5)
us  with (@2,7¢8) being the MQS estimates of (©2,72) under the null hypothesis. Several approaches have
1 been suggested to obtain P-values under a mixture of chi-square distributions. In this work, we use the

150 Davies?” method (see Data and Software Availability).

151 In the second step of the hypothesis testing procedure, we derive P-values for the hypothesis that a given
152 variant is interacting with others in determining traits ¢ and d (where ¢ # d). This amounts to deriving
153 covariance components for all pairwise combinations of traits where Eq. (3) takes on a bilinear form.
12 In this setting, we again use a normal test this time by dividing each covariance test statistic with its
155 standard deviation in Eq. (4). As we will show below, the P-values derived for the covariance components
16 with the asymptotic normal approximation tend to have generally conservative behavior with respect to
17 type I error control under the null hypothesis. Indeed, deriving an exact test to guard against deflation
158 and potentially exhibit better power under the alternative could be done; however, we do not explore

10 this line of work here.

1o In the third and final step of the hypothesis testing, we combine all P-values from the first two steps into
1 an overall marginal epistatic P-value. Each individual P-value corresponds to the effect one variant has
12 on the variance of one trait or covariance between a pair of traits. The combined P-value corresponds to
13 the marginal epistatic effect that one variant has on a set of traits. Without loss of generality, assume

e that we are studying D = 2 traits. In this case, we would have T' = 3 sets of P-values (two marginal sets
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165 from y; and yo individually and one covariance set from analyzing {y1,y2} together). We combine P-
166 values using two different strategies. The first assumes that each of the t = 1,...,T tests are (effectively)
17 independent and implements Fisher’s method“® which combines P-values into a single chi-square test
s statistic using the formula y3, ~ —2 23:1 log(p:) where p; denotes the P-value from the ¢-th test. The
1o second approach assumes an unknown dependency structure between each of the T tests and computes
o a harmonic mean® P-value where p =Y, w;/ >, wy/pi. The term >, wy = 1 represents a sum weights
wm  which we uniformly set to be w; = 1/T for all P-values. There are many complex traits for which epistatic
w2 effects are assumed to make small contributions to their overall broad-sense heritability °°°2. Intuitively,
173 this combinatorial approach is meant to aggregate over the signal identified in one trait and leverage
s the genetic correlation between traits to improve power. A full theoretical derivation of mvMAPIT and

s details about its corresponding software implementation can be found in Materials and Methods.

s Note on settings where mvMAPIT is designed to be most powered. The formulation of the
v general estimates in Eq. (3) and (4) highlight an important takeaway in that the mvMAPIT covariance
s statistic models epistatic pairs that together affect the architecture of multiple traits. It is not meant to
179 identify individual SNPs that are involved in epistasis for multiple traits while being a member of different
1o interacting pairs. To clarify this, consider two simple scenarios in Figure 1 where we have two phenotypes
w1 (y1 and yo) that are generated by a combination of four SNPs (x1, X2, X3,%X4). In the first scenario, we
12 say that (in expectation) E[y1] = x1/81 + (%2 0 x3)a; and E[y2] = (%2 0 x3)as (Figure 1A); while, in the
13 second scenario, Ely1] = x181 + (x2 0 x3)ay and E[yz] = (x3 0 x4)ay (Figure 1B). The key to power in
1s the mvMAPIT framework is that, in the first scenario, the interaction between x5 and x3 appears in
s both traits with nonzero correlation between the effect sizes oy and ao. This is in contrast to the second
186 scenario where there is a common variant involved in epistasis but it is a member of two different sets of
17 interactions that affect each trait. The mvMAPIT covariance statistic captures the situation illustrated

s in the first scenario (Figure 1A) but not in the second (Figure 1B).

mvMAPIT produces calibrated P-values and conservative type I error rates

12,81 in order to investigate

19 In this section, we make use of a previously described simulation scheme
10 whether mvMAPIT and its combinatorial inference approach preserves the desired type I error rate and
11 produces well-calibrated P-values under the null hypothesis. Here, we generate synthetic phenotypes

192 using real genotypes from the 22nd chromosome of the control samples in the Wellcome Trust Case
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Figure 1. Schematic of the types of shared interactions modeled by the multivariate
marginal epistasis test. Consider two simple, proof-of-concept simulation scenarios where two traits
(y1,y2) are generated by a combination of four SNPs (x1, X2, x3,%x4). Panel (A) shows the first scenario
where (in expectation) Ely1] = x1 81 + (x2 0 x3)a1 and E[ys] = (x2 0 x3)ae. Panel (B) shows the second
scenario where Ely;] = x151 + (x2 0 x3)a1 and E[ys] = (x5 0 x4)as. In both panels, variant x; only has
an additive effect 57 on trait y;. The mvMAPIT approach models correlations between the effects of a
given interaction on multiple traits. Therefore, mvMAPIT is designed to identify SNPs involved in the
first scenario where the interaction between variants xo and x3 is shared between traits with nonzero
correlated effect sizes avy and aip. This is in contrast to the second case, where variant x3 is important to
both traits but through distinct interactions with variants x5 and x4, respectively.

163 Control Consortium (WTCCC) 1 study!%’. Altogether, these data consist of N = 2,938 individuals and
14 J = 5,747 SNPs. Since the goal of mvMAPIT is to search for variants involved in epistatic interactions,
15 we consider the null model to be satisfied when the phenotypic variation of the synthetic traits are solely
s driven by additive effects. Here, we first subsample the genotypes for N = 1,000, 1,750, and 2,500
17 observations. Next, we randomly select 1,000 causal SNPs and simulate continuous phenotypes by using
e the linear model Y = BXT + E. The additive effect sizes for each causal SNP are drawn as 8 ~ N (0, Vg)
100 across traits, and then we scale all terms to ensure a narrow-sense heritability of 60%. In these simulations,
20 we vary the correlation of the additive genetic effects such that we have traits with independent additive
w1 effects (vg12 = 0), traits with highly correlated additive effects (vg 12 = 0.8), and traits with perfectly
22 correlated additive effects (vg12 = 1). We assess the calibration of the P-values that are produced by
203 mvMAPIT during each of the three key steps in its combinatorial hypothesis testing procedure. That
24 is, we evaluate (1) the P-values resulting from the univariate test on each trait, (2) the P-values derived
205 from the covariance test, and (3) the final overall P-value that is computed by combining the first two
206 sets of P-values via Fisher’s method or the harmonic mean. Note that we expect the P-values from the
207 first univariate test to be well-calibrated since it is equivalent to the MAPIT model. Figures 2 and S1-S2

208 show the quantile-quantile (QQ) plots based on P-values combined using Fisher’s method while Figures
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10

200 S3-S5 depicts results while using the harmonic mean. Similarly, Tables 1 and S1-S5 show the empirical

a0 type I error rates estimated for mvMAPIT at significance levels P = 0.05, 0.01, and 0.001, respectively.

a1 Overall, mvMAPIT conservatively controls type 1 error rate, both in the presence of nonzero correlation
212 between additive effects on the two traits and even with small sample sizes in the data. This result
213 holds regardless of how P-values are combined in the model. The QQ-plots of the P-values for all three
s components in mvMAPIT follow the expected uniform distribution for the univariate and combined
a5 analysis. Notably, because of the approximations used to compute the standard error of the test statistic
26 in Eq. (18), the multivariate extension of the MQS-based testing procedure in mvMAPIT can result in

a7 conservative P-values for the covariance components under the null.

Add. Effect Corr. P =0.05 P =0.01 P =10.001
vg = 0.0 0.030 (1 x 1072) | 0.009 (2 x 1073) | 0.0010 (9 x 10~%)
Univariate vg = 0.8 0.030 (1 x 1072) | 0.009 (2 x 1073) | 0.0010 (7 x 10~%)
vg = 1.0 0.030 (1 x 1072) | 0.009 (3 x 1073) | 0.0009 (7 x 10~%)
vg = 0.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0003 (3 x 10~%)
Covariance vg = 0.8 0.040 (1 x 1072) | 0.007 (2 x 1073) | 0.0004 (5 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0003 (4 x 10~%)
vg = 0.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0003 (3 x 10~%)
Combined vg = 0.8 0.040 (1 x 1072) | 0.007 (2 x 1073) | 0.0004 (5 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0003 (4 x 10~%)

Table 1. The mvMAPIT framework using Fisher’s method preserves type I error rates un-
der the null model when traits are generated by only additive effects (sample size N = 2,500
individuals). In these simulations, quantitative traits are simulated to have narrow-sense heritability
h? = 0.6 with an architecture made up of only additive genetic variation. Each row corresponds to a
setting where the additive genetic effects for a causal SNP have different correlation structures across
traits. In these simulations, we consider scenarios where we have traits with independent additive effects
(vg = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly correlated
additive effects (vg = 1). We assess the calibration of the P-values that are produced by mvMAPIT
during each of the three key steps in its combinatorial hypothesis testing procedure (see Materials and
Methods). We show type I error rates resulting from P-values taken from the “univariate” test on each
trait independently, the “covariance” P-values which corresponds to assessing the pairwise interactions
affecting both traits, and the final “combined” P-value. Results are summarized over 100 simulated
replicates. Values in the parentheses are the standard deviations across replicates.

Improved detection of epistatic variants using mvMAPIT in simulations

as We test the power of mvMAPIT across different genetic trait architectures via an extensive simulation

a0 study (Materials and Methods). Once again, we generate synthetic phenotypes using real genotypes from
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Figure 2. The mvMAPIT framework using Fisher’s method produces well-calibrated P-
values when traits are generated by only additive effects (sample size N = 2,500 individu-
als). In these simulations, quantitative traits are simulated to have narrow-sense heritability h? = 0.6
with an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have independent traits
(vsg = 0), highly correlated traits (vg = 0.8), and perfectly correlated traits (vg = 1). The first two
columns show P-values resulting from the univariate MAPIT test on “trait #1” and “trait #2”, respec-
tively. The third column depicts the “covariance” P-values which corresponds to assessing the pairwise
interactions affecting both traits is. Lastly, the fourth column shows the final “combined” P-value which
combines the P-values from the first three columns using Fisher’s method. The 95% confidence interval
for the null hypothesis of no marginal epistatic effects is shown in grey. Each plot combines results from
100 simulated replicates.
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20 the 22nd chromosome of the control samples in the WTCCC 1 study'%’. As a reminder, these data
an consist of N = 2,938 individuals and J = 5,747 SNPs. In these simulations, we randomly choose 1,000
2 causal variants to directly affect the genetic architecture of D = 2 phenotypes. All causal SNPs are
23 assumed to have a non-zero additive effect on both traits. Next, we randomly select a set of epistatic
2¢ variants from the 1,000 causal SNPs and divide them into two interacting groups (again see Materials
»s  and Methods). We will denote these groups #1 and #2 as C; and Cs, respectively, with |C| denoting
26 the cardinality of the group. One may interpret the epistatic SNPs in C; as being the “hub nodes” in
27 an interaction network where each of these variants interact with all of the SNPs assigned to Co. We
s generate synthetic traits by using the multivariate linear model Y = BXT+AWT +E where, in addition to
29 previous notation, W is matrix of interactions between the SNPs assigned to the groups C; and Cs. The
z0  additive and interaction coefficients for causal SNP effects across traits are drawn as 8 ~ N (0, V) and
o~ N(0,V,), respectively. As a final step, we scale all terms to ensure that all genetic effects explain
2 a fixed proportion of the total phenotypic variation. We assume a wide-range of simulation scenarios by

23 varying the following parameters:

234 « broad-sense heritability: H? = 0.3 and 0.6;

235 e proportion of phenotypic variation that is explained by additive effects: p = 0.5 and 0.8;

236 o number of causal SNPs assigned to the interaction groups: {|C1],|C2|} = {10,10} and {10, 20};
237 o correlation between epistatic effects: v4 12 = 0 and 0.8.

28 All results presented in this section are based on 100 different simulated phenotypes for each parameter

239 combination.

20 The main point of these simulations is to highlight the potential power gained from taking a multivariate
21 approach to epistatic detection. To that end, in each of the simulation scenarios, we assess () the power
22 of running the univariate MAPIT model on each trait individually, (i7) the marginal epistatic effects
23 detected by the covariance test, and (4#) the power from the overall association identified by mvMAPIT.
s Figures 3 and S6-S8 show the empirical power of the univariate MAPIT model, the covariance test,
25 and mvMAPIT while using Fisher’s method at various multiple hypothesis testing correction thresholds.
us  Figures S9-S12 depict the same information but with mvMAPIT using the harmonic mean to combine
a7 P-values. We also compare each method’s ability to rank true positives over false positives via receiver

us  operating characteristic (ROC) and precision-recall curves (Figures 4 and S13-S15). There are several key
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29 takeaways from these simulation results. Overall, the ability of the univariate MAPIT framework to detect
0 group #1 and #2 causal variants depends on the proportion of non-additive phenotypic variation that
21 they explain. This has been shown in previous demonstrations of the method®!'. For example, when there
s are |[Co| = 10 causal SNPs in group #2, each variant in the set is expected to explain (1 — p)H?/10%
3 of the genetic variance. As we increase that number of causal SNPs in group #2 to |Ca| = 20, this
4 proportion of variance explained by SNPs in group #2 will decrease which will make it more difficult to
25 prioritize markers involved in interactions. Importantly, it is worth noting that the single-phenotypic test
6 in MAPIT depends on the total interaction effects, rather than individual pairwise effects or the number
7 of interacting pairs. An example of this can be seen by comparing Figure 3A to Figure S2A where the

»s  ability to group #1 variants is independent of the number of variants in group #2.

0 There are two situations where mvMAPIT shows significant gains over the univariate MAPIT modeling
%0 approach. Intuitively, the first case is when there is nonzero correlation between the effects of the
21 epistatic interactions shared between traits (e.g., when v, 12 = 0.8). The sensitivity of the covariance
x%2 hypothesis test depends on the strength of this correlation which can help increase power when combining
%3 over P-values in the final step of mvMAPIT. This becomes increasingly relevant in the low heritability
s cases. Figures 4 and S13-S15 demonstrate that the sensitivity of the covariance statistic is comparable
x5 to the univariate statistic for highly correlated epistatic effects (v, = 0.8) despite genetic variance being
26 predominantly explained by additivity (p = 0.8). Secondly, using mvMAPIT to jointly analyze traits with
s7  shared genetic architecture but different levels of heritability provides a viable approach for studying non-
%8 additive variation in traits with low heritability. In Figures 4, S7, S8, and S11-S15, we simulated synthetic
20 traits such that one has a moderate broad-sense heritability H? = 0.6 and the other has heritability
20 H? = 0.3. In these scenarios, detecting variants involved in interactions increased for the trait with low
on heritability. In particular, the covariance component analysis is shown to play an important role in this

22 improved detection (e.g., see Figure 4B).

Synergistic epistasis in binding affinity landscapes for neutralizing antibodies

2z We apply the mvMAPIT framework to protein sequence data from Phillips et al.®8

who generated a
o nearly combinatorially complete library for two broadly neutralizing anti-influenza antibodies (bnAbs),
a5 CR6261 and CR9114. This dataset includes almost all combinations of one-off mutations that distinguish

a6 between germline and somatic sequences which total to J = 11 heavy-chain mutations for CR6261 and

o J =16 heavy-chain mutations for CR9114. Theoretically, a combinatorially complete dataset for 11 and
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Figure 3. Empirical power of mvMAPIT with Fisher’s method to detect group #1 (10)
and group #2 (10) epistatic variants across complex traits with moderate broad-sense
heritability. In these simulations, both quantitative traits are simulated to have broad-sense heritability
H? = 0.6 with architectures made up of both additive and epistatic effects. The parameter p = {0.5,0.8}
is used to determine the portion of broad-sense heritability contributed by additive effects. Each column
corresponds to a setting where the epistatic effects for interactive pairs have different correlation structures
across traits. In these simulations, we consider scenarios where we have traits with independent epistatic
effects (v, = 0) and traits with highly correlated epistatic effects (v, = 0.8). This plot shows the empirical
power of mvMAPIT at significance levels (A) P =5x 1072, (B) P=5x 107%, and (C) P =1 x 1075,
respectively. Group #1 and #2 causal markers are colored in green and orange, respectively. For
comparison, the “trait #1” and “trait #2” bars correspond to the univariate MAPIT model, the “cov”
bars corresponds to power contributed by the covariance test, and “comb” details power from the overall
association identified by mvMAPIT in the combination approach. Results are based on 100 simulations
per parameter combination and the horizontal bars represent standard errors.
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Figure 4. Receiver operating characteristic (ROC) curves comparing the ability of
mvMAPIT with Fisher’s method to the univariate MAPIT model in detecting group #1
(10) and group #2 (10) epistatic variants across complex traits. In panel (A) both traits have
broad-sense heritability H? = 0.6; while in panel (B) one of traits has broad-sense heritability H? = 0.6
and the other has heritability H? = 0.3. Across the rows, the parameter p = {0.5,0.8} is used to deter-
mine the portion of broad-sense heritability contributed by additive effects. Each column corresponds to
settings where the epistatic effects across traits are independent (v, = 0) or highly correlated (v, = 0.8).
For comparison, the “trait #1” and “trait #2” dotted lines correspond to the univariate MAPIT model,
the “covariance” solid purple line corresponds to power contributed by the covariance test, and the “com-
bined” pink line shows power from the overall association identified by mvMAPIT in the multivariate
approach. Note that the upper limit of the x-axis (i.e., false positive rate) has been truncated at 0.05.
All results are based on 100 simulated replicates.


https://doi.org/10.1101/2022.11.30.518547
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518547; this version posted December 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

16

s 16 mutations will have 2,048 and 65,536 samples, respectively. In this particular study, we have have
a9 access to N = 1,812 complete observations for CR6261 and N = 65,091 complete measurements for
20 CR9114. For our analysis with mvMAPIT, residue sequence information was encoded as a binary matrix
s with the germline sequence residues marked by zeros and the somatic mutations represented as ones.
22 As quantitative traits, Phillips et al.®® measure the binding affinity of the two antibodies to different
83 influenza strains. Here, we assess the contribution of epistatic effects when binding to H; and Hg for

2 CR6261, and Hy and Hsz for CR9114.

25 Omnce again, we report results after running mvMAPIT with Fisher’s method and the harmonic mean
25 (Table S6). Figures 5A and S16A show Manhattan plots for P-values corresponding to the trait-specific
2 marginal epistatic tests (i.e., the univariate MAPIT model), the covariance test, and the mvMAPIT
s approach. Here, green colored dots are positions that have significant marginal epistatic effects beyond
%0 a Bonferroni corrected threshold for multiple testing (P = 0.05/11 = 4.55 x 1073 for CR6261 and
w0 P = 0.05/16 = 3.13 x 1073 for CR9114, respectively). Interestingly, while the univariate MAPIT
2 approach was able to identify significant marginal epistatic effects for CR6261, it lacked the power to
22 identify significant positions driving non-additive variation in binding affinity for CR9114. Overall, the
23 combined trait approach in mvMAPIT revealed marginal epistatic effects for positions 29, 35, 82, 83, and
2 84 in CR6261, and positions 30, 36, 57, 64, 65, 66, 82, and 83 for CR9114. Most notably, these same
205 positions were also identified as contributing to pairwise epistasis by Phillips et al.®®. In the original
26 study, the authors first ran an exhaustive-search to statistically detect significant interactions and then
207 conducted downstream analyses to find that these positions are likely responsible for the antibodies
2s binding to the influenza surface protein hemagglutinin. The regression coeflicients from the exhaustive
w0 search, as reported by Phillips et al. ®®, are illustrated in panels B and C of Figures 5 and S16. Panel B
w0 illustrates interaction coefficients when assessing binding of CR6261with H; (upper right triangle) and
su Hg (lower left triangle). Panel C shows the same information when assessing binding of CR9114 with
w2 Hp (upper right triangle) and Hg (lower left triangle). Our results show that mvMAPIT identifies all

33 required mutations in these systems as well as most positions involved in at least one epistatic pair.

Joint modeling of hematology traits yields epistatic signal in stock of mice

s In this section, we apply mvMAPIT to individual-level genotypes and 15 hematology traits in a hetero-

89-91

35 geneous stock of mice dataset from the Wellcome Trust Centre for Human Genetics . This collection

ws of data contains approximately N = 2,000 individuals depending on the phenotype (see Materials and
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Figure 5. Applying mvMAPIT with Fisher’s method to broadly neutralizing antibodies
recovers heavy-chain mutations known to be involved in epistatic interactions that affect
binding against two influenza strains. These results are based on protein sequence data from
Phillips et al.®® who generated a nearly combinatorially complete library for two broadly neutralizing
anti-influenza antibodies (bnAbs), CR6261 and CR9114. For each antibody, we assess binding affinity
to different influenza strains. For CR6261, traits #1 and #2 are binding measurements to the antigens
H, and Hy; while, for CR9114, we assess the same measurement for H; and Hsz. Panel (A) shows
Manhattan plots for the different sets of P-values computed during the mvMAPIT analysis. The red
horizontal lines indicate a chain-wide Bonferroni corrected significance threshold (P = 4.55 x 1073 for
CR6261 and P = 3.13 x 1072 for CR9114, respectively). The green colored dots are positions that have
significant marginal epistatic effects after multiple correction. Panels (B) and (C) reproduce exhaustive
search results originally reported by Phillips et al.®8. The green dots next to the mutation labels on the
axes are the residues that are significant in the multivariate MAPIT analysis and correspond to panel
(A). The shaded regions in panel (B) are the regression coefficients for pairwise interactions between
positions when assessing binding of CR6261with H; (upper right triangle) and Hg (lower left triangle).
Similarly, panel (C) shows the same information when assessing binding of CR9114 with H; (upper right
triangle) and Hj (lower left triangle). Required mutations (indicated by R) are plotted in gray and left
out of the analysis®®.
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sv - Methods), and each mouse has been genotyped at J = 10,346 SNPs. As noted by previous studies, these
ws data represent a realistic mixture of the simulation scenarios we detailed in the previous sections (i.e.,
s varying different values of the parameter p). Specifically, this stock of mice is known to be genetically
a0 related with population structure and the genetic architectures of these particular traits have been shown
su  to have different levels of broad-sense heritability with varying contributions from non-additive genetic

sz effects.

a3 For each pairwise trait analysis, we provide a summary table which lists the combined P-values after
s running mvMAPIT with Fisher’s method and the harmonic mean (Table S7). We also include results
a5 corresponding to the univariate MAPIT model and the covariance test for comparison. Overall, the
a6 single-trait marginal epistatic test only identifies significant variants for the large immature cells (LIC)
27 after Bonferroni correction (P = 4.83 x 107%). A complete picture of this can be seen in Figures S17 and
a8 S18 which depict Manhattan plots of our genome-wide interaction study for all combinations of trait pairs.
a9 Here, we can see that most of the signal in the combined P-values from mvMAPIT likely stems from the
a0 covariance component portion of the model. This hypothesis holds true for the joint pairwise analysis of
sz1 (4) hematocrit (HCT) and hemoglobin (HGB) and (#) mean corpuscular hemoglobin (MCH) and mean
s corpuscular volume (MCV) (e.g., see the third and fourth rows of Figures 6 and S19). One explanation
23 for observing more signal in the covariance components over the univariate test could be derived from
;24 the traits having low heritability but high correlation between epistatic interaction effects. Recall that
s our simulation studies showed that the sensitivity of the covariance statistic increased for these cases.
s Notably, the non-additive signal identified by the covariance test is not totally dependent on the empirical
27 correlation between traits (see Figure S20). Instead, as previously shown in our simulation study, the
38 power of mvMAPIT over the univariate approach occurs when there is correlation between the effects of
39 epistatic interactions shared between two traits. Importantly, many of the candidate SNPs selected by
0 the mvMAPIT framework have been previously discovered by past publications as having some functional
s nonlinear relationship with the traits of interest. For example, the multivariate analysis with traits MCH
s and MCV show a significant SNP 154173870 (P = 4.89 x 107 !°) in the gene hematopoietic cell-specific
s Lyn substrate 1 (Helsl) on chromosome 16 which has been shown to play a role in differentiation of

101 Similarly, the joint analysis of HGB and HCT shows hits in multiple coding regions.

34 erythrocytes
s One example here are the SNPs 153692165 (P = 1.82 x 1075) and rs13482117 (P = 8.94 x 1077) in the
a6 gene calcium voltage-gated channel auxiliary subunit alpha2delta 3 (Cacna2d3) on chromosome 14, which

57 has been associated with decreased circulating glucose levels %2, and SNP 183724260 (P = 4.58 x 1079)
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s in the gene Dicerl on chromosome 12 which has been annotated for anemia both in humans and mice 123,

a9 Table 2 lists a select subset of SNPs in coding regions of genes that have been associated with phenotypes
uo  related to the hematopoietic system, immune system, or homeostasis and metabolism. Each of these
s are significant (after correction for multiple hypothesis testing) in the mvMAPIT analysis of related
w  hematology traits. Some of these phenotypes have been reported as having large broad-sense heritability,
u3  which improves the ability of mvMAPIT to detect the signal. For example, the genes Arf2 and Cacna2d3
aus  are associated with phenotypes related to glucose homeostasis, which has been reported to have a large

1()4)

x5 heritable component (estimated H? = 0.3 for insulin sensitivity . Similarly, the genes App and Pexl

us are associated with thrombosis where (an estimated) more than half of phenotypic variation has been

w7 attributed to genetic effects (estimated H? > 0.6 for susceptibility to common thrombosis!%?).

Discussion

us The marginal epistatic testing strategy offers an alternative to traditional epistatic mapping methods
u by seeking to identify variants that exhibit non-zero interaction effects with any other variant in the
30 data81783. This framework has been shown to drastically reduce the number of statistical tests needed to
1 uncover evidence of significant non-additive variation in complex traits and, as a result, alleviates much
32 of the empirical power concerns and heavy computational burden associated with explicit search-based
33 methods. Still, models testing for marginal epistasis can be underpowered when applied to traits with low
s+ heritability or to “polygenic” traits where the interactions between mutations have small effect sizes®'. In
35 this work, we present the “multivariate MArginal ePIstasis Test” (mvMAPIT), a multi-outcome extension
36 of the univariate marginal epistatic framework. Theoretically, we formulate mvMAPIT as a multivariate
37 linear mixed model (mvLMM) where its ability to jointly analyze any number of traits relies on a gener-
sss  alized “variance-covariance” component estimation algorithm®”. Through extensive simulations, we show
30 that mvMAPIT preserves type I error rates and produces well-calibrated P-values under the null model
w0 when traits are generated only by additive effects (Figures 2 and S1-S5, and Tables 1 and S1-S5). In these
1 simulation studies, we also show that mvMAPIT improves upon the identification of epistatic variants
2 over the univariate test when there is correlation between the effects of genetic interactions shared be-
w3 tween multiple traits (Figures 1, 3, and 4, and S6-S15). By analyzing two real datasets, we demonstrated
s the ability of mvMAPIT to recover heavy-chain mutations known to be involved in epistatic interactions

s that affect binding against two influenza strains®® (Figures 5 and S16, and Table S6) as well as to identify
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Figure 6. Manhattan plot of genome-wide interaction study for two pairs of hematology
traits in the heterogenous stock of mice dataset from the Wellcome Trust Centre for Hu-
man 82! using mvMAPIT with Fisher’s method. The trait pairs in this figure include hematocrit
(HCT) and hemoglobin (HGB) in the left column and mean corpuscular hemoglobin (MCH) and mean
corpuscular volume (MCV) in the right column. Here, we depict the P-values computed during each
step of the mvMAPIT modeling pipeline. The red horizontal lines indicate a genome-wide Bonferroni
corrected significance threshold (P = 4.83 x 107%). The green colored dots are SNPs that have significant
marginal epistatic effects after multiple test correction. Significant SNPs were mapped to the closest

neighboring genes using the Mouse Genome Informatics database (http://www.informatics.jax.org)
106,107
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s hematology trait relevant epistatic SNPs in heterogenous stock of mice3 ! that have also been detected
w7 in previous publications and functional validation studies (Figures 6 and S17-S20, and Tables 2 and S7).
s Lastly, we have made mvMAPIT an open-source R software package with documentation to facilitate its

0 use by the greater scientific community.

s The current implementation of the mvMAPIT framework offers many directions for future development
sn  and applications. First, like other marginal epistatic mapping methods, mvMAPIT is unable to directly
sz identify detailed interaction pairs despite being able to identify SNPs that are involved in epistasis. As
sz shown through our simulations and real data analyses, being able to identify SNPs involved in epistasis
w2 allows us to come up with an initial (likely) set of variants that are worth further exploration, and thus
s represents an important first step towards identifying and understanding detailed epistatic associations.
w6 In previous studies6:81:198:109 two step ad hoc procedures have been suggested where, in our case, we
sz would first run mvMAPIT and then focus on significant SNPs from the first step to further test all of
s the pairwise interactions among them in order to identify specific epistatic interaction pairs. While this
s approach has been shown to be effective in univariate (single-trait) analyses, this two-step procedure
s 18 still ad hoc in nature and could miss important epistatic associations. Exploring robust ways unify
s these two steps in a joint fashion would be an interesting area for future research. Second, in its current
2 implementation, mvMAPIT can be computationally expensive for datasets with large sample sizes (e.g.,
33 hundreds of thousands of individuals in a biobank scale study). In this study, we develop a “variance-
s component component” extension to the MQS algorithm to estimate parameters in the mvMAPIT model.
s Theoretically, MQS is based on the method of moments and produces estimates that are mathematically

s identical to the Haseman-Elston (HE) cross-product regression 87110111,

In practice, MQS is not only
7 computationally more efficient than HE regression, but also provides a simple, analytic estimation form
s that allows for exact P-value computation — thus alleviating the need for jackknife re-sampling pro-
s cedures!'? that both are computationally expensive and rely on assumptions of independence across

w0 individuals in the datal13.

Exploring different ways to reliably fit large-scale mvLMMs with multiple
s random effects is a consideration for future work. For example, as an alternative, recent studies have
sz proposed randomized multi-component versions of HE regression for heritability estimation which scale
1 up to datasets with millions of individuals and variants, respectively 116 It would be interesting to

30 develop a well-calibrated hypothesis test within the randomized HE regression setting so that it may be

35 implemented within the mvMAPIT software for association mapping.
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36 In the future, we plan to expand the mvMAPIT framework to also identify individual variants contribut-
s7  ing other sources of non-additive genetic variation such as gene-by-environment (GXE) or gene-by-sex
w8 (GxSex) interactions. We can do this by manipulating the marginal epistatic covariance matrix in Eq. (1)
3 to encode how loci interact with one or more environmental instruments 3485116117 " Lastly, we have fo-
wo  cused here on applying mvMAPIT to simple quantitative traits. However, there are many important
w1 traits with significant non-additive genetic components in plants, animals, and humans that cannot be
w2 easily reduced to simple scalar values. Examples include longitudinal traits such as growth curves'!'®,
w3 metabolic traits such as the relative concentrations of different families of metabolites'!?, and morpho-

s logical traits such as shape or color 20,

Indeed, each of these traits can be decomposed into vectors
ws  of interrelated components, but treating these components as independent phenotypes within existing
w6 Univariate epistatic mapping tools would be inefficient because of their statistical dependence. As an alter-
w7 native, the mvMAPIT framework can be used to make joint inferences about epistasis across any number

121-124

ws  of correlated phenotypic components—which, in the case of longitudinal studies for example , could

w9 be used to interrogate how non-additive variation of trait architecture changes or evolves over time.

URLs

a0 Multivariate marginal epistasis test (mvMAPIT) software, https://github.com/lcrawlab/mvMAPIT;
a1 univariate marginal epistasis test (MAPIT) software, https://github.com/lcrawlab/mvMAPIT; Well-
sz come Trust Centre for Human Genetics, http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml;

a3 Mouse Genome Informatics database, http://www.informatics. jax.org.
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SNP Location Trait #1 Trait #2 Trait #1 P-value Trait #2 P-value Cov. P-value Comb. P-value Gene Genomic Annotation Reference
13699393 2:5887012 MCV PLT 0.21 0.23 5.75 x 1077 4.9 x 1076 Upf2 anemia and abnormal bone marrow cell development 125
1s13478092  5:3601413 LIC PLT 0.034 0.58 1.67 x 10710 1.26 x 1079 Pex1 abnormal venous thrombosis 126
rs3694887  5:102770070 ALY LIC 1.26 x 1074 0.013 2.54 x 1076 1.55 x 107 Aff1 abnormal B and T cell number and morphology 127
133694887 5:102770070 LIC PLT 0.013 0.28 5.47 x 10727 4.49 x 1026 Aff1 abnormal B and T cell number and morphology 127 2
1513478923 6:99475169 ALY LIC 2.8 x 1074 0.12 1.79 x 1076 1.81 x 1078 Foxpl1 abnormal B cell differentiation, physiology, count 128,129 ?—)'
rs13478924  6:99571626 ALY LIC 311 x 1074 0.12 2.70 x 1076 2.86 x 1078 Foxp1 abnormal B cell differentiation, physiology, count 128,120 &
1513478985 6:115245823 MCV WBC 0.16 0.40 1.14 x 1078 1.34 x 10778 Atg7 decreased bone marrow cell count 130,131 é_
133723163 11:103800737 HCT LYM 0.072 0.30 3.99 x 107107 2.66 x 107104 Arf2 decreased fasting circulating glucose level 102 @
rs3723163  11:103800737 HGB WBC 0.069 0.25 1.85 x 1077 6.76 x 1077 Arf2 decreased fasting circulating glucose level 102 98J
153724260 12:100163212  HGB HCT 0.030 0.062 1.44 % 10°° 4.58 x 107 Dicert anemia 03 &
1s3692165  14:27756640 HCT HGB 0.026 0.037 9.9 x 1076 1.8 x 1076 Cacna2d3 decreased circulating glucose level 102 ;
rs13482117  14:27614362 HCT HGB 0.023 0.03 5.9 x 1076 9.0 x 1077 Cacna?2d3 decreased circulating glucose level 102 ;
1513482288  14:81840412 ALY BAS 0.036 0.65 1.78 x 108 1.1 x 1077 Tdrd3 abnormal B cell differentiation and physiology 132 E
154173870 16:35764290 MCH MCV 0.14 0.71 1.20 x 10711 4.89 x 1010 Hels1 differentiation of erythrocytes Wi
rsd212102  16:84204704 PLT WBC 0.17 0.35 1.16 x 10710 2.44 x 107° App increased susceptibility to induced thrombosis 105,133 %
rs4212186  16:84273330 PLT WBC 0.17 0.36 5.88 x 1071 1.31 x 1079 App increased susceptibility to induced thrombosis 105,133 g
153711994 19:45078018 ALY LYM 3.71 x 1074 0.10 1.04 x 10712 2.80 x 10714 Btre abnormal lymphocyte morphology 134 g

E.
3

Table 2. Notable SNPs with marginal epistatic effects after applying the mvIMAPIT framework to 15 hematology traits
in the heterogenous stock of mice dataset from the Wellcome Trust Centre for Human Genetics3% 1. In the first two
columns, we list SNPs and their genetic location according to the mouse assembly NCBI build 34 (accessed from Shifman et al.13%)
in the format Chromosome:Basepair. Next, we give the results stemming from univariate analyses on traits #1 and #2, respectively,
the covariance (cov) test, and the overall P-value derived by mvMAPIT using Fisher’s method. The last columns detail the closest
neighboring genes found using the Mouse Genome Informatics database (http://www.informatics.jax.org) 19%107 a short summary
of the suggested annotated function for those genes, and the reference to the source of the annotation. See Table S7 for the complete list
of SNP and SNP-set level results.
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Materials and Methods

The marginal epistasis test for single traits

w5 The original motivation behind the original “MArginal ePIstasis Test” (MAPIT) was to identify variants
w6 that are involved in epistasis while avoiding the need to explicitly conduct an exhaustive search over all
w27 possible pairwise interactions®!'. In this section, we give a statistical overview of the univariate version
w28 of MAPIT where the objective is to search for marginal epistatic effects (i.e., the combined pairwise
#9 interaction effects between a given variant and all other variants) that drive the genetic architecture of
a0 single traits. To begin, consider a genome-wide association (GWA) study with N individuals who have
= been genotyped for J single nucleotide polymorphisms (SNPs) encoded as {0,1,2} copies of a reference
a2 allele at each locus. In the MAPIT framework, we examine one SNP at a time (indexed by j) and consider

a3 the following linear model

o y:,u—l—xjﬂj—l—leﬁl—i—Z(xj ox;)oy + €, e ~ N(0,7°1) (6)
I#j l#j
a5 where y is an N-dimensional vector of phenotypic states for a quantitative trait of interest measured in the
s N individuals; p is an intercept term; X denotes an [N x J matrix of genotypes with x; and x; representing
s N-dimensional vectors for the j-th and [-th SNPs; §; and 3, are the respective additive effects; x; o
s x; denotes the Hadamard (element-wise) product between two genotypic vectors with corresponding
s interaction effect size oy € is a normally distributed error term with mean zero and scale variance term 72;
w0 and I denotes an N x N identity matrix. For convenience, we will assume that both the genotype matrix
w1 (column-wise) and trait of interest have been mean-centered and standardized. It is also worth noting
w2 that, while we limit the above to the task of identifying second order (i.e., pairwise) interactions between

w3 genetic variants, extensions of MAPIT to higher-order epistatic and gene-by-environmental effects have

s been shown to be straightforward to implement 8485 116,117,

ws  Variance component model formulation. Since many modern GWA applications present scenarios
ws  that would make Eq. (6) an underdetermined linear system (i.e., in biobanks where genotyped markers
w7 J > N individuals), the MAPIT framework follows other standard approaches®:%279% to ensure model
ws  identifiability by assuming that the additive and interaction effect sizes follow univariate normal distri-
mo  butions where 3, ~ N (0,w?/(J — 1)) and oy ~ N(0,02/(J — 1)) for I # j, respectively. This key normal

0 assumption on the regression coefficients allows for Eq. (6) to be equivalently represented as the following
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w1 variance component model
452 yZM—FXij—ij—FZj-FE, ENN(O,TQI) (7)

i3 where, in addition to previous notation, m; = 3", 25 Xl [ is the combined additive effects from all variants
s other than the j-th; and z; = 37, . (x; o x;)a; denote the summation of all pairwise interaction effects
5 between the j-th variant and all other variants. Under the variance component formulation in Eq. (7), the
ss  two random effects can also be expressed probabilistically as m; ~ A(0,w?K;) where K; = X_;XT j /(J—
7 1) is an additive genetic relatedness matrix that is computed using all genotypes other than the j-th SNP,
ss and z; ~ N(0,0%G;) where G; = D;K;D; is a non-additive relatedness matrix computed based on all
w9 pairwise interaction terms involving the j-th SNP. Here, we let D; = diag(x;) denote an N x N diagonal
w0 matrix with the j-th genotype as its only nonzero elements. It is also important to note that both K;

s and G; change with every new j-th marker that is tested.

w2 Univariate point estimates. Intuitively, the key takeaway from the variance component model for-
s:  mulation is that o2 represents a measure on the marginal epistatic effect for each variant in the data.
ws  Therefore, in order to identify variants that have significant non-zero interaction effects, we must assess
sss  the null hypothesis Hy : 02 = 0 for each variant in the dataset. The original MAPIT framework uses a
ws computationally efficient method of moments algorithm called MQS®7 to estimate model parameters and
w7 to carry out calibrated statistical tests. Briefly, MQS produces point estimates that are mathematically

ws identical to the Haseman-Elston (HE) cross-product regression®7:110:111

. To implement this algorithm,
a0 we first specify a two-dimensional matrix b; = [1,x;] with 1 being an N-dimensional vector of ones, and
a0 then we multiply both sides of Eq. (7) by a variant-specific projection P; = I—b; (b}bj)_lbjT- which maps
s the model onto a column space that is orthogonal to the intercept and the genotypic vector x;. This

a2 process simplifies the model specification of MAPIT to the following
a3 y; =mj +z; +¢j, m; NN(O,wQK;), z; N./\/'(O,UQ,G}‘), £; ~ N(0,7°P;) (8)

s where we denote y; = P;y; m; = Pym;; K7 = P,;K;P;; z7 = Piz;; G} = P;G;P;; and €] = Pje,

a5 respectively. The method of moments estimator for the variance components in Eq. (8) is naturally
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as  based on the second moment matching equations where, in expectation, we have
3
477 E[y;THyj] = Z tI‘(szk)(sk (9)
k=1

«s  where H is a symmetric and non-negative definite matrix used to create weighted second moments, tr(e)
a0 denotes the trace of a matrix, and we use shorthand to represent [¥;1;%;2;3;3] = [K};G};P;] and
w 0 = (w? 02, 72), respectively. In practice, we replace the left hand side of Eq. (9) with the realized value
281 y;THyj. Note that many choices of H will yield unbiased estimates for (w?, o2, 72), but different choices
w2 of H can affect statistical efficiency of the estimates. The set of moment matching equations in MQS

w3 is generated by using the covariance matrices corresponding to the variance components in place of the

sa  arbitrary H. This system of equations then can be rewritten as the following matrix multiplication
485 0= Sil(l; ar = y;szkyﬁ Srs = tr(zjrzjs) (10)

w6 where q is a 3-dimensional vector and S is a 3 x 3 dimensional matrix with &k, r, s € {1,2, 3} being indices
w7 to represent the different variance components. If we subset just to compute an estimate for the marginal
w8 epistatic variance component (i.e., for the second index), then Eq. (10) reduces to the following formula

o7 =y;"H;y; (11)

w0 where the variant-specific matrix H; = (S7")21 K} 4 (S71)22G} + (S71)23P; is now used in place of the

w1 arbitrary H.

w2  Univariate hypothesis testing. In general, there are two ways to compute P-values in the MAPIT
s framework®'. The first option uses a two-sided z-score or normal test. This particular test only re-
a4 quires the variance component estimate 33» from Eq. (11) and its corresponding standard error, which is

w5 approximated in MQS approach by
406 V(o] ~ 2y;TH] V,;H,y; (12)

a7 where V; = Aij +3]2G;f + 7A'j2Pj. The second option for deriving P-values in the MAPIT framework uses
w8 an exact test which is based on the fact that the MQS variance component estimate follows a mixture of

a0 chi-square distributions under the null hypothesis. This is derived from both the normality assumption on
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w0 y* and the quadratic form of the statistic in Eq. (11). Namely, 57 ~ vazl Aix1,; where x7 are chi-square

sn random variables with one degree of freedom and (A1,...,A\x) are the eigenvalues of the matrix

(@3K; +75P,) " H; (G3K; +75P,) " (13)
sos with (03, 7¢) being the MQS estimates of (©2,72) under the null hypothesis. Several approaches have been
soo  suggested to obtain P-values under a mixture of chi-square distributions, including the Davies method %"
sos  (see Data and Software Availability). In practice, while the Davies method is an exact test and is expected
s to produce calibrated P-values, it can become computationally intensive since it scales cubically in the
sov number of individuals N. On the other hand, while the normal test only scales quadratically in N
ss  because of the variance approximation in Eq. (12), it has been shown to lead to mis-calibrated P-values
so0  for datasets with small sample sizes. As result, MAPIT uses a hybrid procedure which uses the normal

s test by default, and then applies the Davies method when the P-value from the normal test is below the
su  threshold of 0.058.

Derivation of the multivariate marginal epistasis test

sz The “multivariate MArginal ePIstasis Test” (mvMAPIT) is a multi-outcome generalization of the MAPIT
si3 framework which aims to improve upon the identification of variants that are involved in genetic interac-
su tions by leveraging the correlation structure between multiple traits. Once again, consider a GWA study
si5 with NV individuals this time who have been measured for D different phenotypes. We will denote these
s sets of outcomes via a D x N dimensional matrix Y = [y],...,y}] with yq denoting an N-dimensional
siv phenotypic vector for the d-th trait. Given the j-th variant of interest, we specify the mvMAPIT approach

si5 as the following multivariate linear mixed model (mvLMM)?3¢

Y=U+8xI+> Bx +> alx;jox)T+E  E~ MN(0,V.,7) (14)
1#] 1]

so0  where, in addition to previous notation, U is a D x N dimensional matrix which contains population-level

sz intercepts that are the same for all individuals within each trait; 3; and 3, are D-dimensional vectors of

s additive effects for the j-th and I-th genotypic vectors; «a; is a D-dimensional vector of coefficients for the

s3  interaction effects between the j-th and [-th SNPs spanning all traits; and E denotes an D x N matrix

s Of residual errors that is assumed to follow a matrix-variate normal distribution with mean 0, within
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s column covariance V. among the D traits, and independent within row covariance (scaled by 72) among

so the IV individuals in the study.

so7  Similar to the univariate setting, we need to make additional probabilistic assumptions to ensure model
s identifiability when Eq. (14) is an underdetermined linear system. To that end, let B = [3;];; and
s A = [0y];; denote the collection of coefficients not involving the j-th variant of interest. Here, we will
s assume that these D x (J — 1) effect size matrices also follow matrix-variate normal distributions where
s B~ MN(0,Vg,w?/(J — 1I) and A ~ MN(0,V,,0%/(J — 1)I), respectively. Note that this formu-
s lation is largely similar to the univariate case except with the additional property that the phenotypes
s;3 being studied share some genetic covariance through Vg and V. This assumption, coupled with the
su  affine transformation property of matrix normal distributions, allows for us to equivalently represent the

s5. MVMAPIT model in Eq. (14) as the following multivariate variance component model
536 Y+U+8x] +M;+Z;+E E~ MN(0,V,,7°I) (15)

s where M; = Zl# Bx] with M; ~ MN (0, Vg,w?K;) represents the combined additive effects from all
s other variants across the D traits and Z; =}, ,; au(x; o x;)T with Z; ~ MN(0,V,,%G;) encodes all
s pairwise interaction terms involving the j-th SNP across the D traits. Here, the term Z; becomes the

se0  main focus of model inference.

sa In this study, we demonstrate the utility of mvMAPIT while analyzing D = 2 traits at a time, but
s2 note that the framework can easily be applied to more phenotypes. Additional traits require more
s3 resources both in terms of compute time and memory. For each point estimate, mvMAPIT performs
s matrix operations that scale quadratically with sample size. The software also needs to store covariance
ss  matrices corresponding to the number of random effects in the model. Both these added costs scale as
s D(D4+1)/2 for D traits. When higher order interactions are included, the additional burden on resources
se7 - come from requiring to store additional covariance matrices as well as projecting these covariance matrices
sis onto the space orthogonal to the variant of interest and the population intercept. The time complexity

sso  of the projection scales as DN? with again N being the number of samples in the data.

Hypothesis testing in the mvMAPIT framework

sso ' The goal of identifying variants with marginal epistatic effects in the mvMAPIT framework still comes

ss1 down to assessing the null hypothesis Hy : 02 = 0. However, parameter estimation in mvLMMs can
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ss2  present substantial computational challenges. For example, one common way in the literature to rewrite
ss5 the model specified in Eq. (15) is to vectorize (or stack) the columns of each matrix in the regression such
s that y = vec(Y), p = vec(U), m; = vec(M,), z; = vec(Z;), and € = vec(E). Under this reformulation,
5 we could simply follow the procedures in Egs. (8)-(13) to find significant variance components; but since
s V[m;] = w?K; @ Vg and V[z;] = 0K, ® V,, are each ND x ND dimensions (via the Kronecker product
ss7 ®), the per-iterative computation time for performing hypothesis testing on each j-th SNP would now
s increase both with the number of individuals (V) and with the number of phenotypes (D). This could
sso  make model fitting infeasible for large biobanks with only two traits. As an alternative, we present a
sso combinatorial approach which first fits univariate MAPIT models and then combines the resulting P-
se1  values with those stemming from a “covariance statistic” which looks for shared marginal epistatic effects
s between all pairwise combinations of the D traits. Importantly, our combinatorial approach does not
ss  make assumptions about the covariance structure between traits, which would need to be known (or

s assumed) in the Kronecker formulation.

ss Lo implement the multivariate marginal epistasis test, we follow a similar strategy used in the univari-
s ate MAPIT model and right multiply Eq. (15) by a variant-specific projection P; = I — b; (b;bj)*lb}
ss7  which maps the model onto a column space that is orthogonal to the population-level intercepts and the

ss  genotypic vector x;. This results in a simplified mvLMM of the following form
560 Y; =M; +Z; + Ej, E; ~ MN(0,V_,P;). (16)

so where, in addition to previous notation, Y; = YP;; M} = M,;P;; Z7 = Z;P;, and E} = E;P;, respectively.
sn  Probabilistically, this transformation assumes M7 ~ MN (O,VB,COQK;) with K¥ = P;K;P;; and Z7 ~
s MN(0,V,, JQG;T) with G} = P;G;P;. The joint analysis of multiple outcomes requires a generalization
s.3 - of the MQS algorithm to also include moment estimates for the covariance components between traits.
s Without loss of generality, we will let y’ and y}; be the c-th and d-th rows of the measured phenotypic
s matrix Y7, respectively. The general MQS estimates for the marginal epistatic effect is a generalization

s of Eq. (11) which is given in the following quadratic form

577 5—32',(cd) = yZTijZ, (17)

s where H; is as previously defined in the univariate MAPIT case and the indices span between the
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s ¢,d € 1,...,D phenotypes. Here, when ¢ = d, the above is exactly equal to Eq. (11); however, when
so ¢ # d, then Eq. (17) takes on a bilinear form where E[y;TH,y};] = tr(H;V; cq)) with V; .q) = V]y:, y7]
ss1  being the covariance between any two traits of interest. The corresponding standard error of the bilinear

sz covariance component can then be estimated via the following approximation 6
~2 ~ ok * * *
583 V(o5 o)) ® Yo TH] Vi (cayHyyy + ¥y THIV; (aay Hjy? (18)

s Once again, notice that when ¢ = d, the term V; .q) = V; (qq) and the above approximation in Eq. (18)

s is equal to Eq. (12).
sss 'The combinatorial hypothesis procedure that is used in mvMAPIT occurs in three key steps.

587 1. In the first step, the model fits univariate models for all D traits of interests (i.e., using Eqgs. (8)-(13)

588 from the MAPIT model or equivalently Eqgs. (17) and (18) with ¢ = d). Here, we use the proposed
589 hybrid testing approach where we first implement a normal test by default, and then apply the exact
590 Davies method when the P-value from the normal test is below the nominal significance threshold
so1 of 0.058%.

502 2. In the second step, we derive P-values for the covariance components (i.e., using Egs. (17) and (18)
503 when ¢ # d) with a normal test. As we have shown in the main text, the P-values derived for
504 the covariance components with the asymptotic normal approximation tend to be slightly deflated
595 under the null hypothesis. While this leads to generally conservative behavior with respect to type
596 I error control, the downside is that the test may result in reduced power under the alternative,
507 especially after multiple correction for datasets with small sample sizes or for traits that have low
508 genetical correlation. In these cases, deriving an exact test to obtain more calibrated P-values could
500 be done; however, we do not explore this line of work here.

600 3. In the third and final step, mvMAPIT combines the P-values from the first two steps into an overall

601 marginal epistatic P-value. Assume that we only have D = 2 traits. In this case, we would have
602 T = 3 sets of P-values (two marginal sets and one covariance set). The mvMAPIT software carries
603 out the P-value combining procedure in two different ways. The first assumes that each of the
604 t=1,...,T tests are (effectively) independent and implements Fisher’s method?® which combines
605 P-values into a single chi-square test statistic using the formula Y2, ~ —2 Zthl log(p:) where p;

606 denotes the P-value from the ¢-th test. In Fisher’s method, the x? test statistic will be large when
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607 P-values tend to be small (i.e., when the null hypothesis is not true for every test). The second
608 approach assumes an unknown dependency structure between each of the T tests and computes
600 a harmonic mean?? P-value where p = >, w;/ >, wi/p;. Here, >, wy = 1 are weights which we

610 uniformly set to be wy = 1/T for all P-values.

eun  In practice, epistatic effects are assumed to make small contributions to the overall broad-sense heritability

5052 As a result, detecting associated variants that significantly contribute to non-

ez of complex traits
ez additive variation can be difficult. Intuitively, this combinatorial approach is meant to aggregate over
s1a  the signal identified in both the marginal and covariance tests to improve power. In the main text, we
eis  show that both of Fisher’s method and the harmonic mean approach are well calibrated under the null

s hypothesis (i.e., only additive effects for all traits analyzed) and increase the ability to detect marginal

si7 epistatic variants under the alternative.

Simulation studies

sz To test the utility of the mvMAPIT framework, we modified a frequently used simulation scheme!?8!

s9  to generate collections of synthetic quantitative traits under multiple genetic architectures using real
o0 genotypes from chromosome 22 of the control samples in the Wellcome Trust Case Control Consortium
s (WTCCC) 1 study. After preprocessing, considering this particular group of individuals and SNPs
62 resulted in a dataset consisting of N = 2,938 individuals and J = 5,747 markers. In these simulations,
63 we randomly choose 1,000 causal SNPs to directly affect D = 2 phenotypes. We generate these synthetic

64 traits via the following general multivariate linear model:

Y=> BxI+AWT+E,  E~MN(0,LI) (19)
ceC
e where Y is an D x N matrix containing all the phenotypes; C represents the set of 1,000 causal SNPs;
e X is the genotype for the c-th causal SNP encoded as 0, 1, or 2 copies of a reference allele; 3, is a D-
es dimensional vector and represent the additive effect sizes for the c-th SNP in the D traits; W is an N x M
0 matrix which holds pairwise interactions (i.e., Hadamard products) between some subset of causal SNPs;
o0 A =[aq,...,ap]is a D x M matrix of interaction effect sizes with o, being D-dimensional epistatic
61 coefficients for the m-th interaction in the d-th trait; and E is an D x N matrix of normally distributed

s22 environmental noise.
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63 In these studies, we assume that the total phenotypic variances for both traits in Y are set to be 1. The
s additive and interaction effect sizes for causal SNPs are randomly drawn from matrix normal distributions

63 where we control the correlation of effects between traits. This simplifies to us drawing coefficients as

636 ,BC ~ N(O,Vﬁ), Ay ™~ N(O,VQ) (20)

ss7 - where Vg and V,, are D x D covariance matrices for additive effects and pairwise interactions between the
ss  phenotypes. Once these coefficients are sampled, we rescale them so that they explain a fixed proportion
s of the broad-sense heritability H2. Similarly, the environmental noise matrix is rescaled such that it
so explains 1 — H?. When generating synthetic traits, we assume that the additive effects make up p% of the
o1 broad-sense heritability while the pairwise interactions make up the remaining (1 — p)%. Alternatively,
s2 we say that the proportion of the heritability explained by additivity is pH?2, while the proportion of
3 phenotypic variance explained by pairwise interactions is (1 — p)H?2. Setting p = 1 represents the null
es  model where the variation of a trait is driven by solely additive effects. Here, we use the same simulation

12,81

es strategy used in previous studies where we divide the causal variants into three groups where:

646 e (1 is a small number of SNPs with additive and epistatic effects;
647 e (5 is a larger number of SNPs with additive and epistatic effects;
648 e (3 is a large number of SNPs with only additive effects.

a9 Here, the epistatic causal SNPs interact between sets, so that SNPs in C; with SNPs in the Cy, but do
s0 nOt interact with variants in their own group (with the same rule applies to the second group). With this
61 set up, one can think of the SNPs assigned to C; as being the “hub nodes” in an interaction network.
62  Note that we use this setup because it has been shown that the ability to detect two interacting variants
&3 depends on the proportion of phenotypic variance that they marginally explain. For example, in our
¢ case, this means that power is expected to depend on V[Wa]/|C1| and V[Wa]/|C2| for groups 1 and 2,
s respectively, where |C| denotes the cardinality of the set. Given different parameters for the generative
6 model in Eq. (19), we simulate data mirroring a wide range of genetic architectures by varying the

o7 following parameters:
658 o broad-sense heritability: H2 = 0.3 and 0.6;

650 e proportion of phenotypic variation that is explained by additive effects: p = 0.5, 0.8, and 1;
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660 o causal SNPs in each of the three groups: {|C1], |C2],|C3]} = {10, 10, 980} and {10, 20, 970};
661 o correlation between additive effects: vg12 = 0, 0.8, and 1;
662 o correlation between epistatic effects: v4,12 = 0 and 0.8.

o3 All figures and tables show the mean performances (and standard errors) for each parameter combination

e across 100 simulated replicates.

Preprocessing of the heterogenous stock of mice dataset

es As part of the analyses, this work makes use of GWA data from the Wellcome Trust Centre for Human

89-91 (

oo Genetics http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml). The genotypes from this

7 study were downloaded directly using the BGLR-R package '35, This study contains N = 1,814 het-

89,90 and

s erogenous stock of mice from 85 families (all descending from eight inbred progenitor strains)
e0 131 quantitative traits that are classified into 6 broad categories including behavior, diabetes, asthma,
e immunology, haematology, and biochemistry. Phenotypic measurements for these mice can be found
en freely available online to download (details can be found at http://mtweb.cs.ucl.ac.uk/mus/www/
s mouse/HS/index.shtml and https://github.com/lcrawlab/mvMAPIT). In the main text, we focused
e3 on 15 hematological phenotypes including: atypical lymphocytes (ALY; Haem.ALYabs), basophils (BAS;
o+ Haem.BASabs), hematocrit (HCT; Haem.HCT), hemoglobin (HGB; Haem.HGB), large immature cells (LIC;
o5 Haem.LICabs), lymphocytes (LYM; Haem.LYMabs), mean corpuscular hemoglobin (MCH; Haem.MCH),
e mean corpuscular volume (MCV; Haem.MCV), monocytes (MON; Haem.MONabs), mean platelet volume
s (MPV; Haem.MPV), neutrophils (NEU; Haem.NEUabs), plateletcrit (PCT; Haem.PCT), platelets (PLT;
os  Haem.PLT), red blood cell count (RBC; Haem.RBC), red cell distribution width (RDW; Haem.RDW), and
oo white blood cell count (WBC; Haem.WBC). All phenotypes were previously corrected for sex, age, body

s0  weight, season, year, and cage effects®999,

For individuals with missing genotypes, we imputed values
61 by the mean genotype of that SNP in their corresponding family. Only polymorphic SNPs with minor
e allele frequency above 5% were kept for the analyses. This left a total of J = 10,227 autosomal SNPs

es3 that were available for all mice.

Data and software availability

es Source code, tutorials, and tutorials for implementing the “multivariate MArginal ePlstasis Test” are

es publicly available as an R package which is available online at https://github.com/lcrawlab/mvMAPIT.
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s We use the CompQuadForm R package'3” to compute P-values from the Davies method. The Davies
e7  method can sometimes yield a P-value equal exactly to 0 when the true P-value is extremely small '37.
sz If this is of concern, one can compute the P-values for MAPIT using Kuonen’s saddlepoint method '3® or
s Satterthwaite’s approximation equation 3. In the current implementation of mvMAPIT, the saddlepoint
e0 approximation is performed if the Davies method returns with error. We wrote our own function to
1 combine P-values using Fisher’s method which is largely inspired by functions in the metap R package '4°.
2 We use the harmonicmeanp R package 41142 to combine P-values using the harmonic mean. Full package
ss documentation can be found at https://lcrawlab.github.io/mvMAPIT/. Data to reproduce figures for
ss the broadly neutralizing antibodies as well as the mice study can be found at https://doi.org/10.

ss 7910/DVN/WPFIGU 43,

s Data about the binding affinity landscapes for neutralizing antibodies were downloaded directly from
sor  Phillips et al.®®. Information about mice dataset from the Wellcome Trust Centre for Human Genet-

ics39791 can be found at http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml. The genotypes

698
s0 from this study were downloaded using the BGLR-R package '36. Details about the mice phenotypes can
0 be found http://mtweb.cs.ucl.ac.uk/mus/www/mouse/HS/index.shtml and hematological traits can
1 be downloaded from the mvMAPIT package. In the real data analyses, SNPs were mapped to the closest
72 neighboring genes using the Mouse Genome Informatics database (http://www.informatics. jax.org)

106
703 .
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Supplementary Figures
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Figure S1. The mvMAPIT framework using Fisher’s method produces well-calibrated P-
values when traits are generated by only additive effects (sample size N = 1,000 individuals).
In these simulations, quantitative traits are simulated to have narrow-sense heritability h? = 0.6 with
an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (v = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly
correlated additive effects (vg = 1). The first two columns show P-values resulting from the univariate
MAPIT test on “trait #1” and “trait #2”, respectively. The third column depicts the “covariance” P-
values which corresponds to assessing the pairwise interactions affecting both traits is. Lastly, the fourth
column shows the final “combined” P-value which combines the P-values from the first three columns
using Fisher’s method. The 95% confidence interval for the null hypothesis of no marginal epistatic effects
is shown in grey. Each plot combines results from 100 simulated replicates.
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Figure S2. The mvMAPIT framework using Fisher’s method produces well-calibrated P-
values when traits are generated by only additive effects (sample size N = 1,750 individuals).
In these simulations, quantitative traits are simulated to have narrow-sense heritability h? = 0.6 with
an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vg = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly
correlated additive effects (vs = 1). The first two columns show P-values resulting from the univariate
MAPIT test on “trait #1” and “trait #2”, respectively. The third column depicts the “covariance” P-
values which corresponds to assessing the pairwise interactions affecting both traits is. Lastly, the fourth
column shows the final “combined” P-value which combines the P-values from the first three columns
using Fisher’s method. The 95% confidence interval for the null hypothesis of no marginal epistatic effects
is shown in grey. Each plot combines results from 100 simulated replicates.


https://doi.org/10.1101/2022.11.30.518547
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518547; this version posted December 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

66

Trait #1 Trait #2 Covariance Combined
— 1=u
= o
= o
o
O
T
(/)]
k) o 4
t= I
© o
35 [}
C
Q2
@ ®l<
) I
—t
o

L
0 2 4 6

o -
N
H
o

Theoretical Quantiles -log. (p)

Figure S3. The mvMAPIT framework using the harmonic mean produces well-calibrated P-
values when traits are generated by only additive effects (sample size N = 1,000 individuals).
In these simulations, quantitative traits are simulated to have narrow-sense heritability h? = 0.6 with
an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vg = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly
correlated additive effects (vs = 1). The first two columns show P-values resulting from the univariate
MAPIT test on “trait #1” and “trait #2”, respectively. The third column depicts the “covariance” P-
values which corresponds to assessing the pairwise interactions affecting both traits is. Lastly, the fourth
column shows the final “combined” P-value which combines the P-values from the first three columns
using Fisher’s method. The 95% confidence interval for the null hypothesis of no marginal epistatic effects
is shown in grey. Each plot combines results from 100 simulated replicates.
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Figure S4. The mvMAPIT framework using the harmonic mean produces well-calibrated P-
values when traits are generated by only additive effects (sample size N = 1,750 individuals).
In these simulations, quantitative traits are simulated to have narrow-sense heritability h? = 0.6 with
an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vg = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly
correlated additive effects (vs = 1). The first two columns show P-values resulting from the univariate
MAPIT test on “trait #1” and “trait #2”, respectively. The third column depicts the “covariance” P-
values which corresponds to assessing the pairwise interactions affecting both traits is. Lastly, the fourth
column shows the final “combined” P-value which combines the P-values from the first three columns
using Fisher’s method. The 95% confidence interval for the null hypothesis of no marginal epistatic effects
is shown in grey. Each plot combines results from 100 simulated replicates.
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Figure S5. The mvMAPIT framework using the harmonic mean produces well-calibrated P-
values when traits are generated by only additive effects (sample size N = 2,500 individuals).
In these simulations, quantitative traits are simulated to have narrow-sense heritability h? = 0.6 with
an architecture made up of only additive genetic variation. Each row of quantile-quantile (QQ) plots
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vg = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly
correlated additive effects (vs = 1). The first two columns show P-values resulting from the univariate
MAPIT test on “trait #1” and “trait #2”, respectively. The third column depicts the “covariance” P-
values which corresponds to assessing the pairwise interactions affecting both traits is. Lastly, the fourth
column shows the final “combined” P-value which combines the P-values from the first three columns
using Fisher’s method. The 95% confidence interval for the null hypothesis of no marginal epistatic effects
is shown in grey. Each plot combines results from 100 simulated replicates.
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Figure S6. Empirical power of mvMAPIT with Fisher’s method to detect group #1 (10)
and group #2 (20) epistatic variants across complex traits with moderate broad-sense
heritability. In these simulations, both quantitative traits are simulated to have broad-sense heritability
H? = 0.6 with architectures made up of both additive and epistatic effects. The parameter p = {0.5,0.8}
is used to determine the portion of broad-sense heritability contributed by additive effects. Each column
corresponds to a setting where the epistatic effects for interactive pairs have different correlation structures
across traits. In these simulations, we consider scenarios where we have traits with independent epistatic
effects (v, = 0) and traits with highly correlated epistatic effects (v, = 0.8). This plot shows the empirical
power of mvMAPIT at significance levels (A) P =5x 1072, (B) P=5x 107%, and (C) P =1 x 1075,
respectively. Group #1 and #2 causal markers are colored in green and orange, respectively. For
comparison, the “trait #1” and “trait #2” bars correspond to the univariate MAPIT model, the “cov”
bars corresponds to power contributed by the covariance test, and “comb” details power from the overall
association identified by mvMAPIT in the combination approach. Results are based on 100 simulations
per parameter combination and the horizontal bars represent standard errors.
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Figure S7. Empirical power of mvMAPIT with Fisher’s method to detect group #1 (10) and
group #2 (10) epistatic variants across complex traits with different levels of broad-sense
heritability. In these simulations, one of the quantitative traits has a moderate broad-sense heritability
H? = 0.6, while the other has heritability H?> = 0.3. Both traits have architectures made up of both
additive and epistatic effects. The parameter p = {0.5,0.8} is used to determine the portion of broad-sense
heritability contributed by additive effects. Each column corresponds to a setting where the epistatic
effects for interactive pairs have different correlation structures across traits. In these simulations, we
consider scenarios where we have traits with independent epistatic effects (v, = 0) and traits with highly
correlated epistatic effects (v, = 0.8). This plot shows the empirical power of mvMAPIT at significance
levels (A) P =5x10"2, (B) P =5x 1074, and (C) P = 1 x 1075, respectively. Group #1 and #2
causal markers are colored in green and orange, respectively. For comparison, the “trait #1” and “trait
#2” bars correspond to the univariate MAPIT model, the “cov” bars corresponds to power contributed
by the covariance test, and “comb” details power from the overall association identified by mvMAPIT
in the combination approach. Results are based on 100 simulations per parameter combination and the
horizontal bars represent standard errors.
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Figure S8. Empirical power of mvMAPIT with Fisher’s method to detect group #1 (10) and
group #2 (20) epistatic variants across complex traits with different levels of broad-sense
heritability. In these simulations, one of the quantitative traits has a moderate broad-sense heritability
H? = 0.6, while the other has heritability H?> = 0.3. Both traits have architectures made up of both
additive and epistatic effects. The parameter p = {0.5,0.8} is used to determine the portion of broad-sense
heritability contributed by additive effects. Each column corresponds to a setting where the epistatic
effects for interactive pairs have different correlation structures across traits. In these simulations, we
consider scenarios where we have traits with independent epistatic effects (v, = 0) and traits with highly
correlated epistatic effects (v, = 0.8). This plot shows the empirical power of mvMAPIT at significance
levels (A) P =5x10"2, (B) P =5x 1074, and (C) P = 1 x 1075, respectively. Group #1 and #2
causal markers are colored in green and orange, respectively. For comparison, the “trait #1” and “trait
#2” bars correspond to the univariate MAPIT model, the “cov” bars corresponds to power contributed
by the covariance test, and “comb” details power from the overall association identified by mvMAPIT
in the combination approach. Results are based on 100 simulations per parameter combination and the
horizontal bars represent standard errors.
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Figure S9. Empirical power of mvMAPIT with the harmonic mean combination approach
to detect group #1 (10) and group #2 (10) epistatic variants across complex traits with
moderate broad-sense heritability. In these simulations, both quantitative traits are simulated to
have broad-sense heritability H? = 0.6 with architectures made up of both additive and epistatic effects.
The parameter p = {0.5,0.8} is used to determine the portion of broad-sense heritability contributed by
additive effects. Each column corresponds to a setting where the epistatic effects for interactive pairs
have different correlation structures across traits. In these simulations, we consider scenarios where we
have traits with independent epistatic effects (v, = 0) and traits with highly correlated epistatic effects
(ve = 0.8). This plot shows the empirical power of mvMAPIT at significance levels (A) P =5 x 1072,
(B) P=5x10"% and (C) P = 1 x 1075, respectively. Group #1 and #2 causal markers are colored
in green and orange, respectively. For comparison, the “trait #1” and “trait #2” bars correspond
to the univariate MAPIT model, the “cov” bars corresponds to power contributed by the covariance
test, and “comb” details power from the overall association identified by mvMAPIT in the combination
approach. Results are based on 100 simulations per parameter combination and the horizontal bars
represent standard errors.
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Figure S10. Empirical power of mvMAPIT with the harmonic mean combination approach
to detect group #1 (10) and group #2 (20) epistatic variants across complex traits with
moderate broad-sense heritability. In these simulations, both quantitative traits are simulated to
have broad-sense heritability H? = 0.6 with architectures made up of both additive and epistatic effects.
The parameter p = {0.5,0.8} is used to determine the portion of broad-sense heritability contributed by
additive effects. Each column corresponds to a setting where the epistatic effects for interactive pairs
have different correlation structures across traits. In these simulations, we consider scenarios where we
have traits with independent epistatic effects (v, = 0) and traits with highly correlated epistatic effects
(ve = 0.8). This plot shows the empirical power of mvMAPIT at significance levels (A) P =5 x 1072,
(B) P=5x10"% and (C) P =1 x 107>, respectively. Group #1 and #2 causal markers are colored
in green and orange, respectively. For comparison, the “trait #1” and “trait #2” bars correspond
to the univariate MAPIT model, the “cov” bars corresponds to power contributed by the covariance
test, and “comb” details power from the overall association identified by mvMAPIT in the combination
approach. Results are based on 100 simulations per parameter combination and the horizontal bars
represent standard errors.
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Figure S11. Empirical power of mvMAPIT with the harmonic mean combination approach
to detect group #1 (10) and group #2 (10) epistatic variants across complex traits with
different levels of broad-sense heritability. In these simulations, one of the quantitative traits
has a moderate broad-sense heritability H? = 0.6, while the other has heritability H?> = 0.3. Both
traits have architectures made up of both additive and epistatic effects. The parameter p = {0.5,0.8} is
used to determine the portion of broad-sense heritability contributed by additive effects. Each column
corresponds to a setting where the epistatic effects for interactive pairs have different correlation structures
across traits. In these simulations, we consider scenarios where we have traits with independent epistatic
effects (v, = 0) and traits with highly correlated epistatic effects (v, = 0.8). This plot shows the empirical
power of mvMAPIT at significance levels (A) P =5x 1072, (B) P =5x 107%, and (C) P =1 x 1075,
respectively. Group #1 and #2 causal markers are colored in green and orange, respectively. For
comparison, the “trait #1” and “trait #2” bars correspond to the univariate MAPIT model, the “cov”
bars corresponds to power contributed by the covariance test, and “comb” details power from the overall
association identified by mvMAPIT in the combination approach. Results are based on 100 simulations
per parameter combination and the horizontal bars represent standard errors.


https://doi.org/10.1101/2022.11.30.518547
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518547; this version posted December 1, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

75

A v.=0.0 v, =038
°
I
L LL w | grow
3
159
o L
5 B
- 0.6 1 ° . 2
1
0.3+ g
0.0 4 * S * * —I— * L
Trait1 Trait2 Cov. Comb. Trait1 Trait2 Cov. Comb.
B v, = 0.0 vV, = 0.8
0.6 - °
1
o
| - m®
q;, 0_0 - e | s W—
[o]
o
0.6 - °
1l
o
0.3 1 =
0'0 - _I_ T T T T T T T
Trait1 Trait2 Cov. Comb. Trait1 Trait2 Cov. Comb.
C v,=0.0 v,=0.8
0.6+ °
1
0.31 S
1SS
go_o_-____-_ 0 R - I
g
0.6+ '&I::
i o
0.3 S
0.0

Trait1 Trait2 Cov. Comb.  Trait1 Trait2 Cov. Comb.

Figure S12. Empirical power of mvMAPIT with the harmonic mean combination approach
to detect group #1 (10) and group #2 (20) epistatic variants across complex traits with
different levels of broad-sense heritability. In these simulations, one of the quantitative traits
has a moderate broad-sense heritability H? = 0.6, while the other has heritability H?> = 0.3. Both
traits have architectures made up of both additive and epistatic effects. The parameter p = {0.5,0.8} is
used to determine the portion of broad-sense heritability contributed by additive effects. Each column
corresponds to a setting where the epistatic effects for interactive pairs have different correlation structures
across traits. In these simulations, we consider scenarios where we have traits with independent epistatic
effects (v, = 0) and traits with highly correlated epistatic effects (v, = 0.8). This plot shows the empirical
power of mvMAPIT at significance levels (A) P =5x 1072, (B) P =5x 107%, and (C) P =1 x 1075,
respectively. Group #1 and #2 causal markers are colored in green and orange, respectively. For
comparison, the “trait #1” and “trait #2” bars correspond to the univariate MAPIT model, the “cov”
bars corresponds to power contributed by the covariance test, and “comb” details power from the overall
association identified by mvMAPIT in the combination approach. Results are based on 100 simulations
per parameter combination and the horizontal bars represent standard errors.
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Figure S13. Receiver operating characteristic (ROC) curves comparing the ability of
mvMAPIT using the harmonic mean to the univariate MAPIT model in detecting group
#1 (10) and group #2 (10) epistatic variants across complex traits. In panel (A) both traits
have broad-sense heritability H? = 0.6; while in panel (B) one of traits has broad-sense heritability
H? = 0.6 and the other has heritability H? = 0.3. Across the rows, the parameter p = {0.5,0.8} is used
to determine the portion of broad-sense heritability contributed by additive effects. Each column corre-
sponds to settings where the epistatic effects across traits are independent (v, = 0) or highly correlated
(v, = 0.8). For comparison, the “trait #1” and “trait #2” dotted lines correspond to the univariate
MAPIT model, the “covariance” solid purple line corresponds to power contributed by the covariance
test, and the “combined” pink line shows power from the overall association identified by mvMAPIT in
the multivariate approach. Note that the upper limit of the x-axis (i.e., false positive rate) has been
truncated at 0.05. All results are based on 100 simulated replicates.
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Figure S14. Receiver operating characteristic (ROC) curves comparing the ability of
mvMAPIT with Fisher’s method to the univariate MAPIT model in detecting group #1
(10) and group #2 (20) epistatic variants across complex traits. In panel (A) both traits have
broad-sense heritability H? = 0.6; while in panel (B) one of traits has broad-sense heritability H? = 0.6
and the other has heritability H? = 0.3. Across the rows, the parameter p = {0.5,0.8} is used to deter-
mine the portion of broad-sense heritability contributed by additive effects. Each column corresponds to
settings where the epistatic effects across traits are independent (v, = 0) or highly correlated (v, = 0.8).
For comparison, the “trait #1” and “trait #2” dotted lines correspond to the univariate MAPIT model,
the “covariance” solid purple line corresponds to power contributed by the covariance test, and the “com-
bined” pink line shows power from the overall association identified by mvMAPIT in the multivariate
approach. Note that the upper limit of the x-axis (i.e., false positive rate) has been truncated at 0.05.
All results are based on 100 simulated replicates.
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Figure S15. Receiver operating characteristic (ROC) curves comparing the ability of
mvMAPIT using the harmonic mean to the univariate MAPIT model in detecting group
#1 (10) and group #2 (20) epistatic variants across complex traits. In panel (A) both traits
have broad-sense heritability H? = 0.6; while in panel (B) one of traits has broad-sense heritability
H? = 0.6 and the other has heritability H? = 0.3. Across the rows, the parameter p = {0.5,0.8} is used
to determine the portion of broad-sense heritability contributed by additive effects. Each column corre-
sponds to settings where the epistatic effects across traits are independent (v, = 0) or highly correlated
(v, = 0.8). For comparison, the “trait #1” and “trait #2” dotted lines correspond to the univariate
MAPIT model, the “covariance” solid purple line corresponds to power contributed by the covariance
test, and the “combined” pink line shows power from the overall association identified by mvMAPIT in
the multivariate approach. Note that the upper limit of the x-axis (i.e., false positive rate) has been
truncated at 0.05. All results are based on 100 simulated replicates.
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Figure S16. Applying mvMAPIT with the harmonic mean to broadly neutralizing anti-
bodies recovers heavy-chain mutations known to be involved in epistatic interactions that
affect binding against two influenza strains. These results are based on protein sequence data from
Phillips et al.®® who generated a nearly combinatorially complete library for two broadly neutralizing
anti-influenza antibodies (bnAbs), CR6261 and CR9114. For each antibody, we assess binding affinity
to different influenza strains. For CR6261, traits #1 and #2 are binding measurements to the antigens
H, and Hy; while, for CR9114, we assess the same measurement for H; and Hsz. Panel (A) shows
Manhattan plots for the different sets of P-values computed during the mvMAPIT analysis. The red
horizontal lines indicate a chain-wide Bonferroni corrected significance threshold (P = 4.55 x 1073 for
CR6261 and P = 3.13 x 1072 for CR9114, respectively). The green colored dots are positions that have
significant marginal epistatic effects after multiple correction. Panels (B) and (C) reproduce exhaustive
search results originally reported by Phillips et al.®8. The green dots next to the mutation labels on the
axes are the residues that are significant in the multivariate MAPIT analysis and correspond to panel
(A). The shaded regions in panel (B) are the regression coefficients for pairwise interactions between
positions when assessing binding of CR6261with H; (upper right triangle) and Hg (lower left triangle).
Similarly, panel (C) shows the same information when assessing binding of CR9114 with H; (upper right
triangle) and Hj (lower left triangle). Required mutations (indicated by R) are plotted in gray and left
out of the analysis®®.
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Figure S17. Manhattan plot of genome-wide interaction study for all trait pairs in the het-
erogenous stock of mice dataset from the Wellcome Trust Centre for Human Genetics3991
using mvMAPIT with Fisher’s method. The columns correspond to trait #1 in the analysis while
the rows denote trait #2. Results on the diagonal correspond to results from running a univariate MAPIT
model. The results on the off-diagonals show the combined P-values from mvMAPIT. The red horizontal
lines indicate a genome-wide Bonferroni corrected significance threshold (P = 4.83 x 107%). The green
colored dots are SNPs that have significant marginal epistatic effects after multiple correction. Full names
for the abbreviations of each trait can be found in the main text (Materials and Methods).
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Figure S18. Manhattan plot of genome-wide interaction study for all trait pairs in the het-
erogenous stock of mice dataset from the Wellcome Trust Centre for Human Genetics3991
using mvMAPIT with the harmonic mean. The columns correspond to trait #1 in the analysis
while the rows denote trait #2. Results on the diagonal correspond to results from running a univariate
MAPIT model. The results on the off-diagonals show the combined P-values from mvMAPIT. The red
horizontal lines indicate a genome-wide Bonferroni corrected significance threshold (P = 4.83 x 107°).
The green colored dots are SNPs that have significant marginal epistatic effects after multiple correction.
Full names for the abbreviations of each trait can be found in the main text (Materials and Methods).
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Figure S19. Manhattan plot of genome-wide interaction study for two pairs of hematology
traits in the heterogenous stock of mice dataset from the Wellcome Trust Centre for Human
Genetics®2! using mvMAPIT with the harmonic mean. The trait pairs in this figure include
hematocrit (HCT) and hemoglobin (HGB) in the left column and mean corpuscular hemoglobin (MCH)
and mean corpuscular volume (MCV) in the right column. Here, we depict the P-values computed during
each step of the mvMAPIT modeling pipeline. The red horizontal lines indicate a genome-wide Bonferroni
corrected significance threshold (P = 4.83 x 107%). The green colored dots are SNPs that have significant
marginal epistatic effects after multiple test correction. Significant SNPs were mapped to the closest

neighboring genes using the Mouse Genome Informatics database (http://www.informatics.jax.org)
106
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Figure S20. Empirical correlations for all trait pairs in the heterogenous stock of mice
dataset from the Wellcome Trust Centre for Human Genetics®% 1. Full names for the abbre-
viations of each trait can be found in the main text (Materials and Methods).
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Add. Effect Corr. P =0.05 P =0.01 P =0.001
vg = 0.0 0.030 (1 x 1072) | 0.007 (3 x 1073) | 0.0007 (6 x 10~%)
Univariate vg = 0.8 0.030 (1 x 1072) | 0.007 (2 x 1073) | 0.0007 (6 x 10~%)
vg = 1.0 0.030 (1 x 1072) | 0.007 (2 x 1073) | 0.0007 (6 x 10~%)
vg = 0.0 0.040 (1 x 1072) | 0.005 (2 x 1073) | 0.0002 (4 x 10~%)
Covariance vg = 0.8 0.040 (1 x 1072) | 0.005 (2 x 1073) | 0.0002 (3 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.005 (2 x 1073) | 0.0003 (3 x 10~%)
vg = 0.0 0.030 (1 x 1072) | 0.006 (2 x 1073) | 0.0005 (7 x 10~%)
Combined vg = 0.8 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0005 (4 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0006 (6 x 10~%)

Table S1. The mvMAPIT framework using Fisher’s method preserves type I error rates
under the null model when traits are generated by only additive effects (sample size N =
1,000 individuals). In these simulations, quantitative traits are simulated to have narrow-sense heri-
tability 22 = 0.6 with an architecture made up of only additive genetic variation. Each row corresponds
to a setting where the additive genetic effects for a causal SNP have different correlation structures across
traits. In these simulations, we consider scenarios where we have traits with independent additive effects
(vg = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly correlated
additive effects (vg = 1). We assess the calibration of the P-values that are produced by mvMAPIT
during each of the three key steps in its combinatorial hypothesis testing procedure (see Materials and
Methods). We show type I error rates resulting from P-values taken from the “univariate” test on each
trait independently, the “covariance” P-values which corresponds to assessing the pairwise interactions
affecting both traits, and the final “combined” P-value. Results are summarized over 100 simulated
replicates. Values in the parentheses are the standard deviations across replicates.
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Add. Effect Corr. P =0.05 P =0.01 P =0.001
vg = 0.0 0.030 (1 x 1072) | 0.008 (2 x 1073) | 0.0007 (5 x 10~%)
Univariate vg = 0.8 0.030 (1 x 1072) | 0.008 (2 x 1073) | 0.0009 (7 x 10~%)
vg = 1.0 0.030 (1 x 1072) | 0.008 (3 x 1073) | 0.0009 (9 x 10~%)
vg = 0.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0003 (4 x 10~%)
Covariance vg = 0.8 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0002 (3 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0002 (3 x 10~%)
vg = 0.0 0.040 (1 x 1072) | 0.007 (2 x 1073) | 0.0006 (5 x 10~%)
Combined vg = 0.8 0.040 (1 x 1072) | 0.007 (2 x 1073) | 0.0007 (8 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.007 (2 x 1073) | 0.0006 (6 x 10~%)

Table S2. The mvMAPIT framework using Fisher’s method preserves type I error rates
under the null model when traits are generated by only additive effects (sample size N =
1,750 individuals). In these simulations, quantitative traits are simulated to have narrow-sense heri-
tability h? = 0.6 with an architecture made up of only additive genetic variation. Each row corresponds
to a setting where the additive genetic effects for a causal SNP have different correlation structures across
traits. In these simulations, we consider scenarios where we have traits with independent additive effects
(vg = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly correlated
additive effects (vg = 1). We assess the calibration of the P-values that are produced by mvMAPIT
during each of the three key steps in its combinatorial hypothesis testing procedure (see Materials and
Methods). We show type I error rates resulting from P-values taken from the “univariate” test on each
trait independently, the “covariance” P-values which corresponds to assessing the pairwise interactions
affecting both traits, and the final “combined” P-value. Results are summarized over 100 simulated
replicates. Values in the parentheses are the standard deviations across replicates.
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Add. Effect Corr. P =0.05 P =0.01 P =0.001
vg = 0.0 0.030 (1 x 1072) | 0.007 (3 x 1073) | 0.0007 (6 x 10~%)
Univariate vg = 0.8 0.030 (1 x 1072) | 0.007 (2 x 1073) | 0.0007 (6 x 10~%)
vg = 1.0 0.030 (1 x 1072) | 0.007 (2 x 1073) | 0.0007 (6 x 10~%)
vg = 0.0 0.040 (1 x 1072) | 0.005 (2 x 1073) | 0.0002 (4 x 10~%)
Covariance vg = 0.8 0.040 (1 x 1072) | 0.005 (2 x 1073) | 0.0002 (3 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.005 (2 x 1073) | 0.0003 (3 x 10~%)
vg = 0.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0005 (5 x 10~%)
Combined vg = 0.8 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0004 (4 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0005 (5 x 10~%)

Table S3. The mvMAPIT framework using the harmonic mean preserves type I error
rates under the null model when traits are generated by only additive effects (sample
size N = 1,000 individuals). In these simulations, quantitative traits are simulated to have narrow-
sense heritability h? = 0.6 with an architecture made up of only additive genetic variation. Each row
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vg = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly
correlated additive effects (vg = 1). We assess the calibration of the P-values that are produced by
mvMAPIT during each of the three key steps in its combinatorial hypothesis testing procedure (see
Materials and Methods). We show type I error rates resulting from P-values taken from the “univariate”
test on each trait independently, the “covariance” P-values which corresponds to assessing the pairwise
interactions affecting both traits, and the final “combined” P-value. Results are summarized over 100
simulated replicates. Values in the parentheses are the standard deviations across replicates.
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Add. Effect Corr. P =0.05 P =0.01 P =0.001
vg = 0.0 0.030 (1 x 1072) | 0.008 (2 x 1073) | 0.0007 (5 x 10~%)
Univariate vg = 0.8 0.030 (1 x 1072) | 0.008 (2 x 1073) | 0.0009 (7 x 10~%)
vg = 1.0 0.030 (1 x 1072) | 0.008 (3 x 1073) | 0.0009 (9 x 10~%)
vg = 0.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0003 (4 x 10~%)
Covariance vg = 0.8 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0002 (3 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0002 (3 x 10~%)
vg = 0.0 0.040 (1 x 1072) | 0.008 (2 x 1073) | 0.0006 (5 x 10~%)
Combined vg = 0.8 0.040 (1 x 1072) | 0.008 (2 x 1073) | 0.0007 (8 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.007 (2 x 1073) | 0.0005 (5 x 10~%)

Table S4. The mvMAPIT framework using the harmonic mean preserves type I error
rates under the null model when traits are generated by only additive effects (sample
size N = 1,750 individuals). In these simulations, quantitative traits are simulated to have narrow-
sense heritability h? = 0.6 with an architecture made up of only additive genetic variation. Each row
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vg = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly
correlated additive effects (vg = 1). We assess the calibration of the P-values that are produced by
mvMAPIT during each of the three key steps in its combinatorial hypothesis testing procedure (see
Materials and Methods). We show type I error rates resulting from P-values taken from the “univariate”
test on each trait independently, the “covariance” P-values which corresponds to assessing the pairwise
interactions affecting both traits, and the final “combined” P-value. Results are summarized over 100
simulated replicates. Values in the parentheses are the standard deviations across replicates.
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Add. Effect Corr. P =0.05 P =0.01 P =10.001

vg = 0.0 0.030 (1 x 1072) | 0.009 (2 x 1073) | 0.0010 (9 x 10~%)

Univariate vg = 0.8 0.030 (1 x 1072) | 0.009 (2 x 1073) | 0.0009 (7 x 10~%)
5= 1.0 0.030 (1 x 1072) | 0.009 (3 x 1073) | 0.0009 (7 x 10~%)

vg = 0.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0003 (4 x 10~%)

Covariance vg = 0.8 0.040 (1 x 1072) | 0.007 (2 x 1073) | 0.0004 (5 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.006 (2 x 1073) | 0.0003 (4 x 10~%)

vg = 0.0 0.040 (1 x 1072) | 0.008 (2 x 1073) | 0.0007 (6 x 10~%)

Combined vg = 0.8 0.040 (1 x 1072) | 0.008 (2 x 1073) | 0.0007 (6 x 10~%)
vg = 1.0 0.040 (1 x 1072) | 0.008 (2 x 1073) | 0.0005 (6 x 10~%)

Table S5. The mvMAPIT framework using the harmonic mean preserves type I error
rates under the null model when traits are generated by only additive effects (sample
size N = 2,500 individuals). In these simulations, quantitative traits are simulated to have narrow-
sense heritability h? = 0.6 with an architecture made up of only additive genetic variation. Each row
corresponds to a setting where the additive genetic effects for a causal SNP have different correlation
structures across traits. In these simulations, we consider scenarios where we have traits with independent
additive effects (vg = 0), traits with highly correlated additive effects (vg = 0.8), and traits with perfectly
correlated additive effects (vg = 1). We assess the calibration of the P-values that are produced by
mvMAPIT during each of the three key steps in its combinatorial hypothesis testing procedure (see
Materials and Methods). We show type I error rates resulting from P-values taken from the “univariate”
test on each trait independently, the “covariance” P-values which corresponds to assessing the pairwise
interactions affecting both traits, and the final “combined” P-value. Results are summarized over 100
simulated replicates. Values in the parentheses are the standard deviations across replicates.

Table S6. Complete summary of the marginal epistatic results after applying the mvMAPIT
framework to protein sequence data from a nearly combinatorially complete library of two
broadly neutralizing anti-influenza antibodies. Here, data is from Phillips et al. 38 who generated
a nearly combinatorially complete library for two broadly neutralizing anti-influenza antibodies (bnAbs),
CR6261 and CR9114. In the first column, we list the antibody being analyzed. In the second column,
we give their corresponding residue. In the third and fourth columns, we list all the pairwise antigen
combinations done in the analysis. In the remaining columns, we give the results stemming from univariate
analyses on antigens #1 and #2, respectively, the covariance (cov) test, and the overall P-values derived
by mvMAPIT using both Fisher’s method and the harmonic mean. Tutorials for how to take these results
and recreate the Manhattan plots shown in Figures 5 and S16 can be found in the mvMAPIT GitHub
repository (see Materials and Methods). (XLSX)
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Table S7. Complete summary of the marginal epistatic results after applying the mvMAPIT
framework to 15 hematology traits in the heterogenous stock of mice dataset from the
Wellcome Trust Centre for Human Genetics32791. In the first column, we list the ID of each SNP.
In the second and third columns, we give their corresponding chromosome and basepair according to the
mouse assembly NCBI build 34 (accessed from Shifman et al.!3%). In the fourth and fifth columns, we
list all the pairwise trait combinations done in the analysis. In the remaining columns, we give the results
stemming from univariate analyses on traits #1 and #2, respectively, the covariance (cov) test, and the
overall P-values derived by mvMAPIT using both Fisher’s method and the harmonic mean. Tutorials for
how to take these results and recreate the Manhattan plots shown in Figures S17 and S18 can be found
in the mvMAPIT GitHub repository (see Materials and Methods). (XLSX)
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