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Abstract

Background & Aims: Macrophage inducible C-type lectin (Mincle) is expressed on
Kupffer cells and senses ethanol-induced danger signals released from dying
hepatocytes and promotes IL-1B production. However, it remains unclear what and how
ethanol-induced Mincle ligands activate downstream signaling events to mediate IL-13
release and contribute to alcohol-associated liver disease (ALD). In this study, we
investigated the association of circulating 3-glucosylceramide (B-GluCer), an
endogenous Mincle ligand, with severity of ALD and examined the mechanism by which
B-GluCer engages Mincle on Kupffer cells to release IL-1p3 in the absence of cell death
and exacerbates ALD.

Approach and Results: Concentrations of B-GluCer were increased in serum of
patients with severe AH and correlated with disease severity. Challenge of Kupffer cells
with LPS and B-GluCer induced formation of a Mincle and Gsdmd-dependent secretory
complex containing chaperoned full-length GSDMD (Hsp90-CDC37-NEDD4) with
polyubiquitinated pro-IL-1B and components of the Casp8-NLRP3 inflammasome loaded
as cargo in small extracellular vesicles (sEV). Gao-binge ethanol exposure to wild-type,
but not Mincle” and Gsdmd™, mice increased release of IL-18 containing SEVs from liver
explant cultures. Myeloid-specific deletion of Gsdmd similarly decreased the formation
of sEVs by liver explant cultures and protected mice from ethanol-induced liver injury.
SEVs collected from ethanol-fed wild-type, but not Gsdmd™, mice promoted injury of

cultured hepatocytes and, when injected into wild-type mice, aggravated Gao-binge
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ethanol-induced liver injury.
Conclusion: B-GluCer functions as a DAMP activating Mincle-dependent GSDMD-
mediated formation and release of IL-1B-containing sEVs, which in turn exacerbate

hepatocyte cell death and contribute to the pathogenesis of ALD.


https://doi.org/10.1101/2022.11.30.518545
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518545; this version posted November 30, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

available under aCC-BY-NC-ND 4.0 International license.

Alcohol-associated liver disease (ALD) ranges from steatosis to hepatitis, fibrosis,

cirrhosis, and hepatocellular carcinoma(l). Severe alcohol-associated hepatitis (SAH)

and chronic ALD are primary drivers of liver disease morbidity and mortality in the US,

but effective treatment strategies are not available (2, 3). Inflammatory responses are

critical contributors to progression of ALD. Impaired intestinal barrier integrity and

changes in the microbiome contribute to increased circulating concentrations of

microbes and their metabolites in patients with ALD and in animal models of ALD(4).

Recognition of lipopolysaccharide (LPS) by Toll-like receptor 4 (TLR4) on resident

hepatic macrophages (Kupffer cells) stimulates the expression of inflammatory

cytokines, including TNFa and IL-1B. These inflammatory mediators in turn impact the

functions of hepatocytes, liver sinusoidal endothelial cells and stellate cells, linking

inflammation to loss of hepatocellular function and death (5-7). Multiple programmed cell

death pathways are associated with ALD, including apoptosis, necroptosis and

pyroptosis (8, 9). Caspase (Casp) 3, commonly associated with apoptosis, a relatively

non-inflammatory form of cell death (10), is activated in livers of ethanol-fed mice and

patients with AH (11, 12). Recent evidence suggests that Caspll-mediated pyroptosis

also plays a fundamental role in ethanol-induced liver injury (13).

Abundant evidence indicates that the combination of increased circulating endotoxin and

ethanol-induced hepatocellular death drives hepatic inflammation in ALD (1). However,

the mechanisms by which the relatively low concentrations of endotoxin present in the
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context of alcohol consumption initiates chronic low-grade inflammation and how this is
amplified in the progression of ALD are unknown. We reported that low concentrations of
endotoxin, reflecting the relevant pathophysiological concentrations in both patients with
ALD and ethanol-fed mice, induces expression of macrophage inducible C-type lectin
(Mincle/Clec4e), a sensor for cell death, via IRAKM-dependent TLR4 signaling in hepatic
macrophages (5). Mincle detects molecules released by dead hepatocytes, including -
glucosylceramide (B-GluCer), spliceosome-associated protein 130 (SAP130) and
cholesterol sulfate, and activates inflammasomes and IL-1B production (14-16).
Therefore, we proposed that Mincle serves as a critical link between cell death and

inflammation in ALD (5).

IL-18 and IL-18 production by inflammasomes are critical drivers of hepatic inflammation
and progression of ALD(1). The inflammasome is a Casp-containing multiprotein
complex that processes pro-IL-18 and pro-IL-18 into their mature active forms (17-19).
Mice deficient in inflammasome components, defective in IL-1 signaling, or provided
with exogenous IL-1[ receptor antagonist are protected from ethanol-induced liver injury
(20, 21). IL-1B and IL18 concentrations are increased in patients with AH and are
associated with disease severity (22-26). Two multicenter double blind, randomized,
placebo controlled trials are currently evaluating the efficacy of Canakinumab (anti-I1L-1[3)

(NCT037751090) or Anakinra (IL1 receptor antagonist)(NCT04072822) in AH.
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Canonical IL-1B secretion involves initial processing of the inactive precursor of IL-18 by
inflammasomes, followed by release of mature IL-1B from lytic cells (17). However,
multiple non-canonical forms of non-lytic/cell death-independent release of IL-13 have
also been described and are particularly important for export of mature IL-13 from
neutrophils and macrophages in response to challenge with microbial products (27, 28).
Human monocytes also release IL-1f3 in a Casp8-dependent alternative inflammasome
activation pathway that is independent of pyroptosis (29). The contributions of non-

canonical pathways of IL-1B release in the context of ALD are not well understood.

Gasdermin D (GSDMD) is classically associated with pyroptotic cell death, whereby
GSDMD is cleaved by Caspl/11 and the N-terminal fragment of GSDMD then forms
oligomeric pores in the plasma membrane, resulting in lytic cell death (30). Our recent
study utilizing intestinal epithelial cells (IECs) revealed a novel form of IL-1p secretion
mediated by a GSDMD-dependent non-pyroptotic release of small extracellular vesicles
(SEVS). In IECs, we found that GSDMD is required for formation and release of sEVs
containing polyubiquitinated pro-IL-18 upon activation of a Casp8-NLRP3 inflammasome
(31). Mechanistically, full-length GSDMD is chaperoned by an Hsp90-CDC37 complex in
IECs. In response to stimulus 1 (LPS), the chaperoned full-length GSDMD engages
NEDD4, an E3 ubiquitin ligase, and brings it into the proximity of pro-IL-1B. The pro-IL-
1B is then captured in the Casp8-NLRP3 inflammasome upon stimulus 2 (ATP). NEDD4

subsequently catalyzes the polyubiquitination of pro-IL-1; polyubiquitination promotes
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the loading of the entire complex into vesicles destined for release into the extracellular

space (31).

Since Mincle expressed on Kupffer cells senses ethanol-induced danger signals,
contributing to IL-1pB release and inflammatory responses (5), here we hypothesized that
Mincle-dependent IL-1B production in Kupffer cells also relies on the GSDMD-dependent
pathway we discovered in IECs. While in previous studies we identified SAP130 as an
important DAMP activating Mincle in response to ethanol (5), here we report
accumulation of another Mincle ligand, B-GluCer, in the circulation of patients with
severe alcohol-associated hepatitis (SAH) and in mice after chronic ethanol feeding.
Both Mincle and Gsdmd were required for release of IL-13-containing sEVs from hepatic
macrophages and myeloid Gsdmd-deficient mice were protected from ethanol-induced
liver injury. Provision of sEVs isolated from wild-type, but not Gsdmd-deficient, mice
exacerbated ethanol-induced liver injury in mice. Taken together, these data identify 3-
GluCer-Mincle-GSDMD signaling in the regulation of IL-1p secretion in SEVs, providing
an important link between hepatocellular injury and inflammation to drive the

pathogenesis of ALD.
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Experimental Procedures

Additional experimental details can be found in Supplemental Information

Patient Samples

De-identified serum and plasma samples, along with basic clinical and demographic
data, were obtained from the Northern Ohio Alcohol Center biorepository
(NCT03224949). Patients with AH were stratified as moderate AH (MELD<20), or severe
AH (MELD >20). Descriptive demographic and clinical data is provided in Supplemental
Table 1. For western blots, samples from five livers explanted from patients with severe
AH during liver transplantation and five wedge biopsies from healthy donor livers were
shap frozen in liquid nitrogen and stored at -80°C. AH and healthy donor samples were
provided by the NIAAA R24 Clinical Resource for Alcoholic Hepatitis Investigations at
Johns Hopkins University. Clinical and demographic data on these subjects was
previously reported (32). This study was approved by the Institutional Review Board at
Cleveland Clinic (IRB 17-718) and all study participants consented prior to collection of

data and blood samples.

Mouse model

All mice were on C57BL/6 background. Mincle deficient, Gsdmd deficient and Gsdmd™"
(Cyagen Biosciences) mice were previously described (5, 31, 33). Wild type mice were
purchased from Jackson Laboratories. All procedures involving animals were approved

by the Cleveland Clinic Institutional Animal Care and Use Committee. Ten- to twelve-

10
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week-old female knock out and heterozygous littermate mice were exposed to the Gao-

binge (acute on chronic) model of ethanol exposure (34).

Cell and liver explant culture

Primary hepatocytes and primary Kupffer cells from mice were isolated and cultured as
previous described (5, 34). The immortalized mouse Kupffer cell line (imKC) was
purchased from Sigma (Cat#SCC119). For liver explant culture, mouse livers were
minced (~2mm) and cultured overnight in serum-free culture medium (DMEM). Culture

media were collected and used for isolation of EVs.

Exosomes analysis

EVs were collected from culture medium of mice liver explant cultures or cultured cells.
EVs were isolated using an exosome isolation kit (Invitrogen, 4478359) according to
manufacturer’s instructions and subjected to nanoparticle tracking ZetaView analysis for
guantification and sizing or for measurement of IL-13 by ELISA. The Polyethylene Glycol
(PEG)-based density gradient method was used for enrichment of extracellular vesicles

from human plasma.

Data analysis and statistics
Data are expressed as mean +SEM. For mouse feeding trials: n = 4 — 6 for Pair-fed, n=

6 - 8 for EtOH-fed. For cell culture experiments, at least 3 independent experiments

11
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193  were conducted. GraphPad Prism 7 was used for data analysis when Student’s t test
194  was required, as well as for data representation. SAS (Carey, IN) was used for analysis
195  of variance using the general linear models procedure and follow-up comparisons made
196 by least square means testing. Data were log-transformed as necessary to obtain a

197  normal distribution. p < 0.05 was considered significant.
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Results

Serum B-glucosylceramide was increased in patients with AH and mice exposed
to Gao-binge ethanol feeding

We recently reported that challenging peripheral blood mononuclear cells (PBMCs) from
patients with sAH with low concentrations of LPS, equivalent to those detected in the
circulation of patients with ALD, increases Mincle expression (35); secondary challenge
with LPS and/or the Mincle ligand, trehalose-6,6-dibehenate (TDB), induced higher IL-13
expression in PBMCs from patients with sAH compared to healthy controls (35). -
Glucosylceramide (B-GluCer), an endogenous Mincle ligand released by damaged or
dying cells, functions as an endogenous Danger Associated Molecular Pattern (DAMP)
to amplify inflammatory responses (15), Circulating concentrations of B-GluCer are
elevated in patients with diverse chronic inflammatory diseases, implicating B-GluCer as
a functional biomarker for tissue damage and inflammation (36). Here we find that serum
concentrations of the abundant d18:1/16:0 species of B-GluCer were increased in
patients with severe AH and alcohol associated cirrhosis (AlcCir) compared with heathy
controls (HC) (Fig. 1A). Model for end-stage liver disease (MELD) score, an indicator of
severity of AH, was positively correlated with B-GluCer (d18:1/16:0) (Fig. 1B). The
concentration of B-GluCer (d18:1/16:0) was also higher in plasma from mice after Gao-
binge (Acute on chronic) ethanol feeding compared to pair-fed controls (Fig. 1C).
Challenge of primary hepatocyte cultures with 150 mM ethanol for 24 h also increased

the accumulation of B-GluCer in the culture media (Fig. 1D).

13
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B-GluCer promoted Mincle-dependent IL-18 production without triggering cell
death in Kupffer cells

We have previously reported that expression of Mincle on Kupffer cells is increased in
response to chronic ethanol exposure and amplifies inflammatory responses in the liver
by sensing the hepatocyte-derived danger signal SAP to promote IL-1B secretion (5).
Since B-GluCer, another endogenous Mincle ligand with potent immunostimulatory
activity (15), is elevated in patients with sAH and mice exposed to ethanol, we
hypothesized that B-GluCer would also activate Mincle-expressing Kupffer cells. Primary
cultures of Kupffer cells from Mincle*” and Mincle-deficient mice were first primed with a
LPS (10ng/ml for 12h), and then stimulated with B-GluCer (20ug/ml for 12h) or ATP (1h),
as a positive control. Pro-IL-1B expression in cell lysates was not affected by genotype
or treatments (Fig. 2A). In contrast, B-GluCer stimulation increased IL-1( cleavage
(Fig. 2A) and secretion into the cell culture media (Fig. 2B). The LPS/B-GluCer
stimulated secretion of IL-1B was modest compared to that in LPS/ATP treated cells
(Fig. 2B). Importantly, LPS/B-GluCer-stimulated, but not LPS/ATP-stimulated, I1L-13
expression was dependent on Mincle (Fig. 2A/B). Intriguingly, whereas Kupffer cells
treated with LPS/ATP produced IL-1 that was coupled with cell death, challenge of
Kupffer cells with LPS/B-GluCer did not impact cell viability, assessed by LDH release
(Fig. 2C). These data indicated that B-GluCer-activated Mincle signaling in Kupffer cells

led to IL-1 secretion in the absence of Iytic cell death.

14
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Mincle-dependent IL-1B secretion was mediated by GSDMD-guided formation and
release of small extracellular vesicles (SEVS)

We next investigated the mechanism for the non-Iytic release of IL-1p in response to [3-
GluCer-activated Mincle signaling in Kupffer cells. Emerging evidence supports an
important function for cell death-independent release of IL-1B (27-29), including our
recent discovery of a non-pyroptotic role of GSDMD in the formation and release of IL-
1B-containing seVs from IECs (31). Therefore, we asked whether Mincle-dependent IL-3
release from Kupffer cells is also achieved via activation of this GSDMD-mediated non-
Iytic pathway. To test this hypothesis, we knocked down Gsdmd (Gsdmd-KD) or Mincle
(Mincle-KD) in an immortalized murine Kupffer cell line (imKC) using small hairpin RNA
(shRNA). We primed wild-type, Gsdmd -KD and Mincle-KD imKCs with low
concentration LPS (100pg/ml for 12h), followed by challenge with the Mincle ligands, (-
GluCer (20ug/ml for 12h) or TDB (2ug/ml for 12h). Both LPS/B-GluCer and LPS/TDB
induced a robust release of seVs in wild-type imKCs; the size of the sEVs is illustrated
by electron microscopy (Fig. 3A). Importantly, knock-down of Gsdmd or Mincle impaired

the LPS/B-GluCer- and LPS/TDB- induced release of SEVs from imKCs (Fig. 3A).

We have previously reported that when the Casp8 inflammasome is activated in
intestinal epithelial cells (IECs), full-length GSDMD is chaperoned by CDC37/HSP90

and recruits NEDD4 (an E3 ligase) to the complex (31). NEDD4 in turn ubiquitinates pro-

15
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263  IL-1B; this facilitates the loading of pro-IL-1f into the cargo of the sEVs (31). Importantly,
264  sEVs released from LPS/B-GluCer-treated imKCs contained higher molecular weight
265 modified pro-IL-1pB, pro-1l-18, Casp8, full-length GSDMD, NEDD4, HSP90 and CDC37
266  (Fig.3B). The IL-1B/IL-18 containing SEVs from LPS/B-GluCer treated imKCs were
267  also positive for the exosome marker CD63 (Fig. 3B). Taken together, these data are
268 consistent with the hypothesis that B-GluCer-activated Mincle signaling in Kupffer cells
269  utilizes the GSDMD-mediated non-lytic pathway to release IL-1p/IL-18 containing SEVSs.
270

271  While the sEVs contained both IL-1B and IL-18 inflammasome products, we focused our
272  mechanistic studies on IL-1B. When IL-13 was immunoprecipitated from the culture
273  media of LPS/B-GluCer-treated imKCs (Fig. 3C) or primary Kupffer cells (Fig. 3D), these
274  same GSDMD-interacting partners were present in a secretory complex along with pro-
275  and mature-IL-1B and Casp8-NLRP3 inflammasome components (Fig. 3C/D).

276  Importantly, Gsdmd was required for both the release of sEVs containing IL-1(3, IL-18,
277 GSDMD, NEDD4, and Casp8 (Fig. 3B) and the release of the IL-13 secretory complex
278  (Fig. 3C/D). Lysates from the Gsdmd-KD imKCs and primary Kupffer cells from Gsdmd-
279 /- mice had similar expression of pro-IL-1B, Casp8 and NEDD4 (Sup. Fig. 2A/B). Finally,
280  given the presence of the E3 ligase NEDD4 in both the sEVs and secretory complex

281  from wild-type Kupffer cells, we asked whether the higher molecular weight/modified

282  forms of IL-1B in the SEVs were poly-ubiquitinated. Immunoprecipitates of IL-13 from

283  the media of wild-type, but not Gsdmd-KD, imKCs, performed under denaturing
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284  conditions, had more ubiquitin immunoreactivity in response to LPS/B-GluCer and

285 LPS/TDB (Fig. 3E). Taken together, our results indicate that signaling by Mincle ligands
286  mediates IL-13 secretion via the release of GSDMD-dependent CD63* sEVs from

287  Kupffer cells.

288

289  Pyroptotic activation of GSDMD requires cleavage of D276, in the linker region of

290 GSDMD, in response to inflammasome assembly (37). Since B-GluCer-activated Mincle
291  signaling in Kupffer cells led to IL-1 secretion in the absence of lytic cell death (Fig.
292  2C), we hypothesized that expression of the inactive D276A form of GSDMD in Gsdmd-
293 KD imKCs would restore their ability to release IL-1B-containing seVs. Indeed, when
294  Gsdmd-KD imKCs were transduced with either wild-type or GSDMDP?7®4, both LPS/B-
295  GluCer and LPS/TDB treatment stimulated the release of IL-1f into the culture media
296 (Fig. 3F).

297

298 Mincle- or Gsdmd-deficiency impaired the release of IL-1B-containing SEVs from
299 liver explants from mice after Gao-binge ethanol feeding

300 Since both Mincle-/- and Gsdmd-/- were required for the release of IL-13-containing

301  sEVs from Kupffer cells, we next explored their role in the release of SEVs from mouse
302 liver. Mincle-/-, Gsdmd-/-, and their respective heterozygous littermates were subjected
303 to Gao-binge ethanol feeding. Liver explants were cultured overnight and exosomes

304  were isolated from the culture media by standard methods. The size distribution of SEVs
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released by liver explants was not affected by genotype or ethanol feeding (Fig. 4A/B).
In contrast, Gao-binge ethanol increased the number of sEVs and their IL-1 cargo
released from liver explants from heterozygous littermates, but not Mincle-/- or Gsdmd-
/-, mice (Fig. 4C/D). In order to characterize the composition of the secretory complexes
released from Gsdmd*" and Gsdmd™ mice, we normalized total SEV numbers released
from liver explants between genotypes and immunoprecipitated IL-13. Gao-binge
ethanol feeding induced the formation of a secretory complex containing full-length
GSDMD (Hsp90-CDC37-NEDD4) with high molecular weight modified pro-IL-1p and
Casp8 in wild-type, but not Gsdmd-/-, mice (Fig. 4E). We next asked if extracellular
vesicles circulating in patients with moderate and sAH also contained modified high
molecular weight IL-18. Indeed, exosomes isolated from patients with AH contained
pre-dominantly higher molecular weight forms of IL-18 (Fig. 4F). Taken together, these
data indicate that Gao-binge ethanol triggers a Mincle-GSDMD-dependent release of

CD63+ IL-1B-containing sEVS.

Myeloid Gsdmd-deficiency protects mice from Gao-binge induced liver injury
Consistent with the hypothesis that the Mincle-GSDMD-mediated release of IL-13-
containing sEVs in response to ethanol contributes to the progression of ethanol-induced
liver injury, we have previously reported that Mincle-/- are protected from chronic
ethanol-induced liver injury (5). Similarly, GSDMD has been implicated in progression of

ethanol-induced liver injury (13, 38). Hepatocyte overexpression of a constitutively active
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GSDMD exacerbated liver injury (13) and global Gsdmd-/- mice are protected from Gao-
binge induced liver injury (38). We also confirmed by global Gsdmd-/- mice are protected
from Gao-binge ethanol with reduced circulating ALT, hepatic triglycerides and
inflammatory cytokine expression (Suppl. Fig. 2). While these previous studies have
focused on GSDMD activity in hepatocytes, our data on GSDMD activity in Kupffer cells
led us to hypothesize the myeloid Gsdmd-deficiency would be critical for the formation of
IL-1B sEVs and the development of ethanol-induced liver injury. We generated LysM-
Cre Gsdmd" mice to test this hypothesis. As expected, Gsdmd™ mice developed the
typical profile of Gao-binge induced liver injury, including increased circulating ALT,
hepatic steatosis and increased expression of inflammatory cytokines and serum
amyloid A, an acute phase protein (Fig. 5A-D). However, myeloid-Gsdmd-deficient mice
were protected from Gao-binge induced liver injury (Fig. 5A-D). Importantly, while the
number of SEVs released from liver explants was not affected by genotype (Fig. 5E), the

IL-1B content in sEVs was reduced in myeloid-Gsdmd-deficient mice (Fig. 5F)

IL-1B-containing SEVs promote hepatocyte death and liver injury

Hepatocytes are highly responsive to cytokines/chemokines produced by Kupffer cells,
such as IL-1B, contributing to the pathogenesis of ALD. We recently reported that IL-13-
induced expression of the acute phase protein SAA1L; this response, in combination with
ethanol, increased Casp3 cleavage and hepatocyte death (34). These data led us to

hypothesize that IL-1B-containing SEVs may exert their pathogenic role, at least in part,
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347  viainduction of the acute phase protein SAAL. As expected, challenge of hepatocytes
348  with ethanol or recombinant IL-1f induced expression of SAA and cytotoxicity (Fig.

349  6A/B)(34). Importantly, IL-1B-containing sEVs isolated from liver explant cultures of wild-
350 type mice after Gao-binge ethanol exposure also induced the expression of SAA1 and
351  death of primary hepatocytes (Fig. 6A/B).

352

353  These cell culture data suggest that IL-1B-containing SEVs might contribute to chronic
354  ethanol-induced liver injury. Therefore, to determine the in vivo biological activity of

355 sEVs, sEVs were collected from liver explants from wild-type and Gsdmd-/- mice and
356  10%articles were injected intraperitoneally to wild-type mice during the course of Gao-
357  binge ethanol feeding (Fig. 6C). Expression of CD63 was equal across the purified

358 sEVs, but GSDMD was absents from the sEVs isolated from Gsdmd-deficient mice (Fig.
359 6D). Importantly, sEVs purified from liver explant cultures of wild-type ethanol-fed, but
360 not pair-fed, mice markedly increased hepatic injury, steatosis and expression of

361 inflammatory cytokines and SAA (Fig. 6E-F). This exacerbation was not observed with
362  sEVs purified from liver explant cultures of Gsdmd-/- ethanol-fed mice (Fig. 6E-F). Taken
363 together, these results suggest that GSDMD-mediated production of IL-13-containing
364  sEVs contribute to the pathogenesis of ALD.

365

366

367
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Discussion

In this study, we report Mincle-dependent IL-1B secretion via GSDMD-guided formation

and release of seEVs from Kupffer cells during ethanol-induced liver injury. This pathway

is triggered by B-glucosylceramide (B-GluCer), an endogenous Mincle ligand released by

dying hepatocytes after ethanol exposure. Importantly, serum B-GluCer is elevated in

patients with AH and positively correlates with disease severity. B-GluCer is also

elevated in the circulation of mice exposed to Gao-binge ethanol feeding. Gsdmd- or

Mincle- deficiency impaired the release of IL-1B containing sEVs and IL-1B containing

SEVs exacerbated hepatocyte cell death. Intravenous injection of IL-1 containing sEVs

purified from liver explant cultures of ethanol-fed, but not pair-fed, mice markedly

increased ethanol-induced hepatic injury and steatosis, indicating that IL-1 containing

sEVs contribute to the pathogenesis of ALD.

Previous studies have suggested that Mincle ligands induce activation of the ASC-

NLRP3 inflammasome, which leads to Casp8-dependent IL-13 production (5, 39). In this

study, we showed that the Mincle ligand B-GluCer induces GSDMD and its interacting

partners (including E3 ligase NEDD4) to form a secretory complex with the Casp8-

inflammasome and polyubiquitinated pro-IL-B (Fig. 7). This secretory complex is loaded

into sEVs, which are marked by the exosome marker CD63. We recently reported the

downstream signaling events of Casp8- inflammasome activation in IECs, where full-

length GSDMD, chaperoned by CDC37/HSP90, recruits NEDD4 to mediate
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polyubiquitination of pro-IL-18, followed by cargo loading into CD63* sEVs (31).
Pyroptotic activaton of GSDMD is triggered via cleavage at D276, located in its linker
region, by either Caspl or Casp8 in response to inflammasome assembly. B-GluCer-
activated Mincle signaling in Kupffer cells led to the release of IL-1B-containing sEVS in
the absence of cytotoxicity. Importantly, when Gsdmd-deficient inKCs (Fig. 4F) or IECs
(31) are transduced with either wild-type or GSDMDP?7%4 mutant, release of IL-1B-
containing sEVs is restored, demonstrating a non-lytic function of GSDMD in the process
of sEV release. Taken together, these results indicate that B-GluCer-activated Mincle
signaling in Kupffer cells utilizes a non-lytic GSDMD-mediated mechanism to release IL-

1B-containing sEVs.

The concentration of B-GluCer is tightly regulated and restricted to endoplasmic
reticulum and Golgi apparatus in normal living cells. Elevated circulating B-GluCer
concentrations are observed in various human diseases, including Gaucher disease,
multiple sclerosis, and non-alcoholic fatty liver disease (NAFLD). Gaucher disease is an
inherited genetic disorder caused by mutation of a critical GluCer hydrolysis enzyme
(glucocerebrosidase), leading to accumulation of GluCer in multiple organs, including the
liver (40). The fact that liver disease is common in Gaucher disease (41), implicates the
critical pathogenic impact of GluCer on hepatic cellular function. In support of this, a
recent study indicated that GluCer accumulation in sphingomyelin synthase 1-deficient

mouse liver resulted in steatosis, steatohepatitis and fibrosis (42). Consistently,
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pharmaceutic inhibition of glucosylceramide synthase alleviated the hepatic steatosis

and fibrosis in obese mice (43). Collectively, the current study, in combination with

previous work, identify B-GluCer, a danger signal released by damaged cells, as a potent

pathogenic mediator in driving the progression of liver disease. Out study, in particular,

identifies a critical link between -GluCer and the production of pathogenic IL-13-

containing sEVs that could be an important target for the development of future

therapeutic strategies for the prevention or treatment of ALD, as well as liver diseases of

other etiologies.
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Figure legends

Figure 1. The Mincle ligand, B-GluCer, was increased in the circulation of patients
with AH and mice after exposure to Gao-binge ethanol feeding.

(A) Concentration of B-GluCer (d18:1/16:0) in serum of healthy controls (HC) (n=8) and
patients with moderate AH (n=6), severe AH (n=9) or alcohol-associated cirrhosis (n=9).
(B) Concentration of B-GluCer was correlated with MELD scores of patients with
moderate and severe AH. (C) Concentration of 3-GluCer in plasma of mice after Gao-
binge ethanol feeding. (D) B-GluCer in culture medium of primary hepatocytes treated
with 150mM EtOH for 24hrs. B-GluCer concentrations were measured by mass
spectroscopy. Data represent mean £ SEM. ANOVA (A) or 2-tailed unpaired Student’s t

test (C, D). *P<0.05, **P<0.01, ****P<0.0001.

Figure 2. B-GluCer promoted Mincle-dependent IL-1f production without
triggering cell death in Kupffer cells

Primary Kupffer cells isolated from Mincle*- and Mincle” mice were primed overnight
with 10 ng/ml LPS and then stimulated with 20ug/ml GluCer for 12 hrs or 2.5mM ATP for
1hr. (A) Cell lysates were collected for western blot analysis of pro- and mature- (m) IL-
1B, with B-actin used as a loading control. (B/C) Cell culture medium was collected and
used to (B) measure for IL-1 concentration by ELISA or (C) measure LDH release to

assess cytotoxicity. Data represent mean + SEM. 2-tailed unpaired Student’s t test.
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*P<0.05, ***P<0.001.

Figure 3. Mincle signal-dependent release of IL-1B8 containing sEVs from Kupffer
cells requires GSDMD

(A-D) imKCs were transfected with shRNA to knockdown Gsdmd or Mincle and then
primed overnight with 100 pg/ml LPS followed by stimulation with 20ug/ml GluCer or
2ug/ml TDB for 12 hrs. (A) sEVs released from immortalized murine KC (imKC) were
guantified by ZetaView and visualized by electron microscopy. (B) Western analysis of
sEVs from WT and Gsdmd KD imKCs utilizing antibodies against the indicated proteins
(Rec: recombinant protein as + control; p: precursor; m: mature IL-18 or IL-18). Note:
For all western using sEVs, sEVs isolated from an equal volume of cell culture media
were loaded in gels; sEVs were not normalized for particle number. (C) IL-18 was
immunoprecipitated from WT and Gsdmd-KD imKC culture media followed by western
analyses with antibodies against the indicated proteins. (D) IL-18 was
immunoprecipitated from the cell culture media from WT and Gsdmd-KD imKCs and
probed with antibodies to IL-18 or Ubiquitin under denaturing conditions. (E) Primary KC
isolated from heterozygous littermates and Gsdmd™ mice were primed overnight with
100 pg/ml LPS followed by stimulation with 20ug/ml GluCer or 2ug/ml TDB for 12 hrs.
IL-1B was immunoprecipitated from culture media and analyzed by western blot as in
(C). (F)Expression vectors containing wild-type Gsdmd or D276A mutated Gsdmd were

transfected into Gsdmd-KD imKCs, then primed with 100 pg/ml LPS overnight and
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stimulated with 20ug/ml GluCer or 2ug/ml TDB for 12 hrs. Cell lysates and culture
medium were collected for western analyses for indicated proteins. N=3 independent

experiments. Data represent mean + SEM. One way ANOVA **P<0.01, **P<0.001.

Figure 4 Mincle and GSDMD promoted IL-1B secretion via small extracellular
vesicles (sEVs)

(A-E) Gsdmd™ or Mincle™ and heterozygous littermate mice (n=6) were exposed to Gao-
binge ethanol feeding. (A,B) 100 mg of liver explants were cultured overnight. SEVs
were isolated from the cell culture media and analyzed by nanopatrticle tracking with
ZetaView for size distribution and total EV numbers/ml media. (C,D) Concentration of IL-
1B in the collected sEVs was measured by ELISA. (E) IL-1B was immunoprecipitated
from culture medium for western blotting with the indicated antibodies. Recombinant IL1-
B (Rec) was included as a positive control. p: precursor; m: mature I1L-13; W: wild type;
K: knock-out). (F) EVs isolated from plasma of healthy controls (HC) and patients with
AH were analyzed by western blotting with antibodies against the indicated proteins.

Data represent mean = SEM. ANOVA *P<0.05, **P<0.01, **P<0.001.

Figure 5 Myeloid GSDMD promoted release of IL-1B containing sEVs
LysM-Cre Gsdmd” and Gsdmd” mice (n=6) were exposed to Gao-binge ethanol
feeding. (A) H&E staining for liver histology. (B) ALT activity in plasma. (C) Hepatic

triglyceride content. (D) IL-6, IL-18, TNFa and SAAL1 mRNA expression. (E) sEVs from
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liver explants cultures were quantified by ZetaView as described in Fig 4. (F) sEV
numbers were equalized and the concentration of IL-18 measured by ELISA. Data

represent mean £ SEM. ANOVA. *P<0.05, *P<0.01, **P<0.001.

Figure 6 Exosomes from liver explant cultures of Gao-binge mice promote liver
injury.

(A, B) Primary hepatocytes were treated with recombinant IL-1B (10 ng/ml) or sEVs
isolated from liver explant cultures of Gao-binge EtOH-fed WT mice. (A) Expression of
SAA1 mRNA. (B) Cytotoxicity was assessed by LDH assay. (C-F) (C) Schematic
diagram illustrating the protocol for exosome donor experiment. sEVs were isolated from
liver explant cultures from WT Pair-fed, WT EtOH-fed and Gsdmd-/- EtOH-fed mice. WT
mice were injected with 101° sEVs during Gao-binge acute on chronic ethanol feeding.
(D) seV numbers were normalized and CD63 and GSDMD assessed by western blot.
(E) AST/ALT activity in plasma and hepatic triglyceride content. (F) SAA1 mRNA

expression. Data represent mean + SEM. ANOVA. *P<0.05, **P<0.01, ***P<0.001.

Figure 7 Model for the critical link between B-GluCer and the production of IL-1B-
containing seVs. Ethanol exposure results in the release of B-GlucCer from injury
hepatocyte. Mincle, expressed by hepatic macrophages, senses B-GluCer and
stimulates the release of IL-1B-containing SEVs in a GSDMD-dependent mechanism.

The sEVs, in turn, interact with hepatocytes to stimulate the expression of the acute
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624  phase protein SAA. The Mincle-GSDMD-IL-1B pathway provides a mechanism linking

625  hepatocyte injury to inflammation to perpetuate chronic inflammation in ALD.
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