

1 **Mincle-GSDMD-mediated release of IL-1 β containing small extracellular
2 vesicles contributes to ethanol-induced liver injury**

3

4 Quanri Zhang¹, Weiwei Liu¹, Katarzyna Bulek¹, Han Wang¹, Megan R. McMullen¹,
5 Xiaoqin Wu¹, Nicole Welch², Renliang Zhang³, Jaividhya Dasarathy⁴, Srinivasan
6 Dasarathy^{1,2,5}, Laura E. Nagy^{1,2,5*}, and Xiaoxia Li^{1,5*}

7

8 ¹ Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute,
9 Cleveland, Ohio, USA.

10 ² Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH,
11 United States;

12 ³ Proteomics and Metabolomics Core, Department of Research Core Services, Lerner
13 Research Institute, Cleveland, OH, USA

14 ⁴ Department of Family Medicine, MetroHealth, Cleveland, OH, USA

15 ⁵ Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH,
16 United States

17

18

19 **Key Words:** Mincle, ceramides, gasdermin, Kupffer cells, hepatocytes

20

21 **Contact Information**

22 Corresponding authors:.. Address: Cleveland Clinic, Lerner Research Institute/NE40
23 9500 Euclid Ave, Cleveland, OH 44195. Xiaoxia Li at lix@ccf.org, Laura E. Nagy at
24 nagyl3@ccf.org

25

26 **Financial Support**

27 This work was in part supported R01AA023722 (X.L., L.E.N), P50AA024333 (L.E.N,
28 S.D., J.D.), R01AA027456 and U01AA026938 (L.E.N), K08AA028794 (N.W), RO1
29 GM119174; RO1 DK113196; RO1 AA021890; 3U01AA026976; UO1 AA 026976;
30 R56HL141744;UO1 DK061732; R21 AR 071046 (S.D.); K99AA029146 (X.W), The
31 acquisition of human liver specimens was supported by R24 AA025017 (Zhaoli Sun).

32

33 **Abbreviations**

34 Mincle, macrophage inducible c-type lectin; GSDMD, gasdermin d; IL-1 β , interleukin-1 β ;
35 β -GluCer, β -glucosylceramide; LPS, lipopolysaccharide; ALD, alcohol liver disease; sEV,
36 small extracellular vesicles; AH, alcohol-associated hepatitis; Casp, caspase; CDC37
37 cell deivision cycle 37; HSP90, heat shock protein 90; NEDD4, neural precursor cell
38 expressed developmentally down-regulated protein 4; SAP130, spliceosome-associated
39 protein 130; NLRP3, NLR family pyrin domain containing 3; MELD, model for end-stage
40 liver disease; TDB, trehalose-6,6-dibehenate; ATP, adenosine triphosphate; DAMP,
41 Damage-associated molecular pattern; HC, Healthy control; LDH, Lactate

42 Dehydrogenase; imKC, immortalized Kupffer cell; SAA1, Serum Amyloid A1; ALT,
43 alanine aminotransferase; AST, aspartate aminotransferase; TNFa, tumour necrosis
44 factor alpha; WT, wild type; EtOH, ethanol.

45 **Abstract**

46 **Background & Aims:** Macrophage inducible C-type lectin (Mincle) is expressed on
47 Kupffer cells and senses ethanol-induced danger signals released from dying
48 hepatocytes and promotes IL-1 β production. However, it remains unclear what and how
49 ethanol-induced Mincle ligands activate downstream signaling events to mediate IL-1 β
50 release and contribute to alcohol-associated liver disease (ALD). In this study, we
51 investigated the association of circulating β -glucosylceramide (β -GluCer), an
52 endogenous Mincle ligand, with severity of ALD and examined the mechanism by which
53 β -GluCer engages Mincle on Kupffer cells to release IL-1 β in the absence of cell death
54 and exacerbates ALD.

55 **Approach and Results:** Concentrations of β -GluCer were increased in serum of
56 patients with severe AH and correlated with disease severity. Challenge of Kupffer cells
57 with LPS and β -GluCer induced formation of a *Mincle* and *Gsdmd*-dependent secretory
58 complex containing chaperoned full-length GSDMD (Hsp90-CDC37-NEDD4) with
59 polyubiquitinated pro-IL-1 β and components of the Casp8-NLRP3 inflammasome loaded
60 as cargo in small extracellular vesicles (sEV). Gao-binge ethanol exposure to wild-type,
61 but not *Mincle*^{-/-} and *Gsdmd*^{-/-}, mice increased release of IL-1 β containing sEVs from liver
62 explant cultures. Myeloid-specific deletion of *Gsdmd* similarly decreased the formation
63 of sEVs by liver explant cultures and protected mice from ethanol-induced liver injury.
64 sEVs collected from ethanol-fed wild-type, but not *Gsdmd*^{-/-}, mice promoted injury of
65 cultured hepatocytes and, when injected into wild-type mice, aggravated Gao-binge

66 ethanol-induced liver injury.

67 **Conclusion:** β -GluCer functions as a DAMP activating Mincle-dependent GSDMD-

68 mediated formation and release of IL-1 β -containing sEVs, which in turn exacerbate

69 hepatocyte cell death and contribute to the pathogenesis of ALD.

70

71 Alcohol-associated liver disease (ALD) ranges from steatosis to hepatitis, fibrosis,
72 cirrhosis, and hepatocellular carcinoma(1). Severe alcohol-associated hepatitis (sAH)
73 and chronic ALD are primary drivers of liver disease morbidity and mortality in the US,
74 but effective treatment strategies are not available (2, 3). Inflammatory responses are
75 critical contributors to progression of ALD. Impaired intestinal barrier integrity and
76 changes in the microbiome contribute to increased circulating concentrations of
77 microbes and their metabolites in patients with ALD and in animal models of ALD(4).
78 Recognition of lipopolysaccharide (LPS) by Toll-like receptor 4 (TLR4) on resident
79 hepatic macrophages (Kupffer cells) stimulates the expression of inflammatory
80 cytokines, including TNF α and IL-1 β . These inflammatory mediators in turn impact the
81 functions of hepatocytes, liver sinusoidal endothelial cells and stellate cells, linking
82 inflammation to loss of hepatocellular function and death (5-7). Multiple programmed cell
83 death pathways are associated with ALD, including apoptosis, necroptosis and
84 pyroptosis (8, 9). Caspase (Casp) 3, commonly associated with apoptosis, a relatively
85 non-inflammatory form of cell death (10), is activated in livers of ethanol-fed mice and
86 patients with AH (11, 12). Recent evidence suggests that Casp11-mediated pyroptosis
87 also plays a fundamental role in ethanol-induced liver injury (13).

88
89 Abundant evidence indicates that the combination of increased circulating endotoxin and
90 ethanol-induced hepatocellular death drives hepatic inflammation in ALD (1). However,
91 the mechanisms by which the relatively low concentrations of endotoxin present in the

92 context of alcohol consumption initiates chronic low-grade inflammation and how this is
93 amplified in the progression of ALD are unknown. We reported that low concentrations of
94 endotoxin, reflecting the relevant pathophysiological concentrations in both patients with
95 ALD and ethanol-fed mice, induces expression of macrophage inducible C-type lectin
96 (Mincle/Clec4e), a sensor for cell death, via IRAKM-dependent TLR4 signaling in hepatic
97 macrophages (5). Mincle detects molecules released by dead hepatocytes, including β -
98 glucosylceramide (β -GluCer), spliceosome-associated protein 130 (SAP130) and
99 cholesterol sulfate, and activates inflammasomes and IL-1 β production (14-16).
100 Therefore, we proposed that Mincle serves as a critical link between cell death and
101 inflammation in ALD (5).

102
103 IL-1 β and IL-18 production by inflammasomes are critical drivers of hepatic inflammation
104 and progression of ALD(1). The inflammasome is a Casp-containing multiprotein
105 complex that processes pro-IL-1 β and pro-IL-18 into their mature active forms (17-19).
106 Mice deficient in inflammasome components, defective in IL-1 β signaling, or provided
107 with exogenous IL-1 β receptor antagonist are protected from ethanol-induced liver injury
108 (20, 21). IL-1 β and IL18 concentrations are increased in patients with AH and are
109 associated with disease severity (22-26). Two multicenter double blind, randomized,
110 placebo controlled trials are currently evaluating the efficacy of Canakinumab (anti-IL-1 β)
111 (NCT037751090) or Anakinra (IL1 receptor antagonist)(NCT04072822) in AH.

112

113 Canonical IL-1 β secretion involves initial processing of the inactive precursor of IL-1 β by
114 inflammasomes, followed by release of mature IL-1 β from lytic cells (17). However,
115 multiple non-canonical forms of non-lytic/cell death-independent release of IL-1 β have
116 also been described and are particularly important for export of mature IL-1 β from
117 neutrophils and macrophages in response to challenge with microbial products (27, 28).
118 Human monocytes also release IL-1 β in a Casp8-dependent alternative inflammasome
119 activation pathway that is independent of pyroptosis (29). The contributions of non-
120 canonical pathways of IL-1 β release in the context of ALD are not well understood.

121

122 Gasdermin D (GSDMD) is classically associated with pyroptotic cell death, whereby
123 GSDMD is cleaved by Casp1/11 and the N-terminal fragment of GSDMD then forms
124 oligomeric pores in the plasma membrane, resulting in lytic cell death (30). Our recent
125 study utilizing intestinal epithelial cells (IECs) revealed a novel form of IL-1 β secretion
126 mediated by a GSDMD-dependent non-pyroptotic release of small extracellular vesicles
127 (sEVs). In IECs, we found that GSDMD is required for formation and release of sEVs
128 containing polyubiquitinated pro-IL-1 β upon activation of a Casp8-NLRP3 inflammasome
129 (31). Mechanistically, full-length GSDMD is chaperoned by an Hsp90-CDC37 complex in
130 IECs. In response to stimulus 1 (LPS), the chaperoned full-length GSDMD engages
131 NEDD4, an E3 ubiquitin ligase, and brings it into the proximity of pro-IL-1 β . The pro-IL-
132 1 β is then captured in the Casp8-NLRP3 inflammasome upon stimulus 2 (ATP). NEDD4
133 subsequently catalyzes the polyubiquitination of pro-IL-1 β ; polyubiquitination promotes

134 the loading of the entire complex into vesicles destined for release into the extracellular
135 space (31).

136

137 Since Mincle expressed on Kupffer cells senses ethanol-induced danger signals,
138 contributing to IL-1 β release and inflammatory responses (5), here we hypothesized that
139 Mincle-dependent IL-1 β production in Kupffer cells also relies on the GSDMD-dependent
140 pathway we discovered in IECs. While in previous studies we identified SAP130 as an
141 important DAMP activating Mincle in response to ethanol (5), here we report
142 accumulation of another Mincle ligand, β -GluCer, in the circulation of patients with
143 severe alcohol-associated hepatitis (sAH) and in mice after chronic ethanol feeding.

144 Both *Mincle* and *Gsdmd* were required for release of IL-1 β -containing sEVs from hepatic
145 macrophages and myeloid *Gsdmd*-deficient mice were protected from ethanol-induced
146 liver injury. Provision of sEVs isolated from wild-type, but not *Gsdmd*-deficient, mice
147 exacerbated ethanol-induced liver injury in mice. Taken together, these data identify β -
148 GluCer-Mincle-GSDMD signaling in the regulation of IL-1 β secretion in sEVs, providing
149 an important link between hepatocellular injury and inflammation to drive the
150 pathogenesis of ALD.

151

152 **Experimental Procedures**

153 ***Additional experimental details can be found in Supplemental Information***

154 **Patient Samples**

155 De-identified serum and plasma samples, along with basic clinical and demographic

156 data, were obtained from the Northern Ohio Alcohol Center biorepository

157 (NCT03224949). Patients with AH were stratified as moderate AH (MELD<20), or severe

158 AH (MELD \geq 20). Descriptive demographic and clinical data is provided in **Supplemental**

159 **Table 1.** For western blots, samples from five livers explanted from patients with severe

160 AH during liver transplantation and five wedge biopsies from healthy donor livers were

161 snap frozen in liquid nitrogen and stored at -80°C. AH and healthy donor samples were

162 provided by the NIAAA R24 Clinical Resource for Alcoholic Hepatitis Investigations at

163 Johns Hopkins University. Clinical and demographic data on these subjects was

164 previously reported (32). This study was approved by the Institutional Review Board at

165 Cleveland Clinic (IRB 17-718) and all study participants consented prior to collection of

166 data and blood samples.

167

168 **Mouse model**

169 All mice were on C57BL/6 background. *Mincle* deficient, *Gsdmd* deficient and *Gsdmd*^{fl/fl}

170 (Cyagen Biosciences) mice were previously described (5, 31, 33). Wild type mice were

171 purchased from Jackson Laboratories. All procedures involving animals were approved

172 by the Cleveland Clinic Institutional Animal Care and Use Committee. Ten- to twelve-

173 week-old female knock out and heterozygous littermate mice were exposed to the Gao-
174 binge (acute or chronic) model of ethanol exposure (34).

175

176 ***Cell and liver explant culture***

177 Primary hepatocytes and primary Kupffer cells from mice were isolated and cultured as
178 previous described (5, 34). The immortalized mouse Kupffer cell line (imKC) was
179 purchased from Sigma (Cat#SCC119). For liver explant culture, mouse livers were
180 minced (~2mm) and cultured overnight in serum-free culture medium (DMEM). Culture
181 media were collected and used for isolation of EVs.

182

183 ***Exosomes analysis***

184 EVs were collected from culture medium of mice liver explant cultures or cultured cells.
185 EVs were isolated using an exosome isolation kit (Invitrogen, 4478359) according to
186 manufacturer's instructions and subjected to nanoparticle tracking ZetaView analysis for
187 quantification and sizing or for measurement of IL-1 β by ELISA. The Polyethylene Glycol
188 (PEG)-based density gradient method was used for enrichment of extracellular vesicles
189 from human plasma.

190 ***Data analysis and statistics***

191 Data are expressed as mean \pm SEM. For mouse feeding trials: n = 4 – 6 for Pair-fed, n=
192 6 - 8 for EtOH-fed. For cell culture experiments, at least 3 independent experiments

193 were conducted. GraphPad Prism 7 was used for data analysis when Student's t test
194 was required, as well as for data representation. SAS (Carey, IN) was used for analysis
195 of variance using the general linear models procedure and follow-up comparisons made
196 by least square means testing. Data were log-transformed as necessary to obtain a
197 normal distribution. $p < 0.05$ was considered significant.
198
199

200 **Results**

201 **Serum β -glucosylceramide was increased in patients with AH and mice exposed
202 to Gao-binge ethanol feeding**

203 We recently reported that challenging peripheral blood mononuclear cells (PBMCs) from
204 patients with sAH with low concentrations of LPS, equivalent to those detected in the
205 circulation of patients with ALD, increases *Mincle* expression (35); secondary challenge
206 with LPS and/or the Mincle ligand, trehalose-6,6-dibehenate (TDB), induced higher IL-1 β
207 expression in PBMCs from patients with sAH compared to healthy controls (35). β -
208 Glucosylceramide (β -GluCer), an endogenous Mincle ligand released by damaged or
209 dying cells, functions as an endogenous Danger Associated Molecular Pattern (DAMP)
210 to amplify inflammatory responses (15). Circulating concentrations of β -GluCer are
211 elevated in patients with diverse chronic inflammatory diseases, implicating β -GluCer as
212 a functional biomarker for tissue damage and inflammation (36). Here we find that serum
213 concentrations of the abundant d18:1/16:0 species of β -GluCer were increased in
214 patients with severe AH and alcohol associated cirrhosis (AlcCir) compared with healthy
215 controls (HC) (**Fig. 1A**). Model for end-stage liver disease (MELD) score, an indicator of
216 severity of AH, was positively correlated with β -GluCer (d18:1/16:0) (**Fig. 1B**). The
217 concentration of β -GluCer (d18:1/16:0) was also higher in plasma from mice after Gao-
218 binge (Acute on chronic) ethanol feeding compared to pair-fed controls (**Fig. 1C**).
219 Challenge of primary hepatocyte cultures with 150 mM ethanol for 24 h also increased
220 the accumulation of β -GluCer in the culture media (**Fig. 1D**).

221

222 **β-GluCer promoted Mincle-dependent IL-1 β production without triggering cell**

223 **death in Kupffer cells**

224 We have previously reported that expression of Mincle on Kupffer cells is increased in
225 response to chronic ethanol exposure and amplifies inflammatory responses in the liver
226 by sensing the hepatocyte-derived danger signal SAP to promote IL-1 β secretion (5).

227 Since β-GluCer, another endogenous Mincle ligand with potent immunostimulatory
228 activity (15), is elevated in patients with sAH and mice exposed to ethanol, we
229 hypothesized that β-GluCer would also activate Mincle-expressing Kupffer cells. Primary
230 cultures of Kupffer cells from *Mincle*^{+/−} and *Mincle*-deficient mice were first primed with a
231 LPS (10ng/ml for 12h), and then stimulated with β-GluCer (20ug/ml for 12h) or ATP (1h),
232 as a positive control. Pro-IL-1 β expression in cell lysates was not affected by genotype
233 or treatments (**Fig. 2A**). In contrast, β-GluCer stimulation increased IL-1 β cleavage
234 (**Fig. 2A**) and secretion into the cell culture media (**Fig. 2B**). The LPS/β-GluCer

235 stimulated secretion of IL-1 β was modest compared to that in LPS/ATP treated cells

236 (**Fig. 2B**). Importantly, LPS/β-GluCer-stimulated, but not LPS/ATP-stimulated, IL-1 β
237 expression was dependent on *Mincle* (**Fig. 2A/B**). Intriguingly, whereas Kupffer cells
238 treated with LPS/ATP produced IL-1 β that was coupled with cell death, challenge of
239 Kupffer cells with LPS/β-GluCer did not impact cell viability, assessed by LDH release
240 (**Fig. 2C**). These data indicated that β-GluCer-activated Mincle signaling in Kupffer cells
241 led to IL-1 β secretion in the absence of lytic cell death.

242

243 **Mincle-dependent IL-1 β secretion was mediated by GSDMD-guided formation and**
244 **release of small extracellular vesicles (sEVs)**

245 We next investigated the mechanism for the non-lytic release of IL-1 β in response to β -
246 GluCer-activated Mincle signaling in Kupffer cells. Emerging evidence supports an
247 important function for cell death-independent release of IL-1 β (27-29), including our
248 recent discovery of a non-pyroptotic role of GSDMD in the formation and release of IL-
249 1 β -containing sEVs from IECs (31). Therefore, we asked whether Mincle-dependent IL- β
250 release from Kupffer cells is also achieved via activation of this GSDMD-mediated non-
251 lytic pathway. To test this hypothesis, we knocked down *Gsdmd* (*Gsdmd*-KD) or *Mincle*
252 (*Mincle*-KD) in an immortalized murine Kupffer cell line (imKC) using small hairpin RNA
253 (shRNA). We primed wild-type, *Gsdmd*-KD and *Mincle*-KD imKCs with low
254 concentration LPS (100pg/ml for 12h), followed by challenge with the Mincle ligands, β -
255 GluCer (20ug/ml for 12h) or TDB (2ug/ml for 12h). Both LPS/ β -GluCer and LPS/TDB
256 induced a robust release of sEVs in wild-type imKCs; the size of the sEVs is illustrated
257 by electron microscopy (**Fig. 3A**). Importantly, knock-down of *Gsdmd* or *Mincle* impaired
258 the LPS/ β -GluCer- and LPS/TDB- induced release of sEVs from imKCs (**Fig. 3A**).

259

260 We have previously reported that when the Casp8 inflammasome is activated in
261 intestinal epithelial cells (IECs), full-length GSDMD is chaperoned by CDC37/HSP90
262 and recruits NEDD4 (an E3 ligase) to the complex (31). NEDD4 in turn ubiquitinates pro-

263 IL-1 β ; this facilitates the loading of pro-IL-1 β into the cargo of the sEVs (31). Importantly,
264 sEVs released from LPS/ β -GluCer-treated imKCs contained higher molecular weight
265 modified pro-IL-1 β , pro-IL-18, Casp8, full-length GSDMD, NEDD4, HSP90 and CDC37
266 (**Fig. 3B**). The IL-1 β /IL-18 containing sEVs from LPS/ β -GluCer treated imKCs were
267 also positive for the exosome marker CD63 (**Fig. 3B**). Taken together, these data are
268 consistent with the hypothesis that β -GluCer-activated Mincle signaling in Kupffer cells
269 utilizes the GSDMD-mediated non-lytic pathway to release IL-1 β /IL-18 containing sEVs.

270

271 While the sEVs contained both IL-1 β and IL-18 inflammasome products, we focused our
272 mechanistic studies on IL-1 β . When IL-1 β was immunoprecipitated from the culture
273 media of LPS/ β -GluCer-treated imKCs (**Fig. 3C**) or primary Kupffer cells (**Fig. 3D**), these
274 same GSDMD-interacting partners were present in a secretory complex along with pro-
275 and mature-IL-1 β and Casp8-NLRP3 inflammasome components (**Fig. 3C/D**).

276 Importantly, *Gsdmd* was required for both the release of sEVs containing IL-1 β , IL-18,
277 GSDMD, NEDD4, and Casp8 (**Fig. 3B**) and the release of the IL-1 β secretory complex
278 (**Fig. 3C/D**). Lysates from the *Gsdmd*-KD imKCs and primary Kupffer cells from *Gsdmd*-
279 /- mice had similar expression of pro-IL-1 β , Casp8 and NEDD4 (**Sup. Fig. 2A/B**). Finally,
280 given the presence of the E3 ligase NEDD4 in both the sEVs and secretory complex
281 from wild-type Kupffer cells, we asked whether the higher molecular weight/modified
282 forms of IL-1 β in the sEVs were poly-ubiquitinated. Immunoprecipitates of IL-1 β from
283 the media of wild-type, but not *Gsdmd*-KD, imKCs, performed under denaturing

284 conditions, had more ubiquitin immunoreactivity in response to LPS/β-GluCer and
285 LPS/TDB (**Fig. 3E**). Taken together, our results indicate that signaling by Mincle ligands
286 mediates IL-1 β secretion via the release of GSDMD-dependent CD63 $^{+}$ sEVs from
287 Kupffer cells.

288

289 Pyroptotic activation of GSDMD requires cleavage of D276, in the linker region of
290 GSDMD, in response to inflammasome assembly (37). Since β-GluCer-activated Mincle
291 signaling in Kupffer cells led to IL-1 β secretion in the absence of lytic cell death (**Fig.**
292 **2C**), we hypothesized that expression of the inactive D276A form of GSDMD in *Gsdmd*-
293 KD imKCs would restore their ability to release IL-1 β -containing sEVs. Indeed, when
294 *Gsdmd*-KD imKCs were transduced with either wild-type or GSDMD^{D276A}, both LPS/β-
295 GluCer and LPS/TDB treatment stimulated the release of IL-1 β into the culture media
296 (**Fig. 3F**).

297

298 ***Mincle*- or *Gsdmd*-deficiency impaired the release of IL-1 β -containing sEVs from**
299 **liver explants from mice after Gao-binge ethanol feeding**

300 Since both *Mincle*-/- and *Gsdmd*-/- were required for the release of IL-1 β -containing
301 sEVs from Kupffer cells, we next explored their role in the release of sEVs from mouse
302 liver. *Mincle*-/-, *Gsdmd*-/-, and their respective heterozygous littermates were subjected
303 to Gao-binge ethanol feeding. Liver explants were cultured overnight and exosomes
304 were isolated from the culture media by standard methods. The size distribution of sEVs

305 released by liver explants was not affected by genotype or ethanol feeding (**Fig. 4A/B**).
306 In contrast, Gao-binge ethanol increased the number of sEVs and their IL-1 β cargo
307 released from liver explants from heterozygous littermates, but not *Mincle*-/- or *Gsdmd*-
308 /-, mice (**Fig. 4C/D**). In order to characterize the composition of the secretory complexes
309 released from *Gsdmd*^{+/−} and *Gsdmd*^{−/−} mice, we normalized total sEV numbers released
310 from liver explants between genotypes and immunoprecipitated IL-1 β . Gao-binge
311 ethanol feeding induced the formation of a secretory complex containing full-length
312 GSDMD (Hsp90-CDC37-NEDD4) with high molecular weight modified pro-IL-1 β and
313 Casp8 in wild-type, but not *Gsdmd*-/-, mice (**Fig. 4E**). We next asked if extracellular
314 vesicles circulating in patients with moderate and sAH also contained modified high
315 molecular weight IL-18. Indeed, exosomes isolated from patients with AH contained
316 pre-dominantly higher molecular weight forms of IL-18 (**Fig. 4F**). Taken together, these
317 data indicate that Gao-binge ethanol triggers a Mincle-GSDMD-dependent release of
318 CD63+ IL-1 β -containing sEVs.

319
320 **Myeloid *Gsdmd*-deficiency protects mice from Gao-binge induced liver injury**
321 Consistent with the hypothesis that the Mincle-GSDMD-mediated release of IL-1 β -
322 containing sEVs in response to ethanol contributes to the progression of ethanol-induced
323 liver injury, we have previously reported that *Mincle*-/- are protected from chronic
324 ethanol-induced liver injury (5). Similarly, GSDMD has been implicated in progression of
325 ethanol-induced liver injury (13, 38). Hepatocyte overexpression of a constitutively active

326 GSDMD exacerbated liver injury (13) and global *Gsdmd*-/- mice are protected from Gao-
327 binge induced liver injury (38). We also confirmed by global *Gsdmd*-/- mice are protected
328 from Gao-binge ethanol with reduced circulating ALT, hepatic triglycerides and
329 inflammatory cytokine expression (**Suppl. Fig. 2**). While these previous studies have
330 focused on GSDMD activity in hepatocytes, our data on GSDMD activity in Kupffer cells
331 led us to hypothesize the myeloid *Gsdmd*-deficiency would be critical for the formation of
332 IL-1 β sEVs and the development of ethanol-induced liver injury. We generated LysM-
333 Cre *Gsdmd*^{f/f} mice to test this hypothesis. As expected, *Gsdmd*^{f/f} mice developed the
334 typical profile of Gao-binge induced liver injury, including increased circulating ALT,
335 hepatic steatosis and increased expression of inflammatory cytokines and serum
336 amyloid A, an acute phase protein (**Fig. 5A-D**). However, myeloid-*Gsdmd*-deficient mice
337 were protected from Gao-binge induced liver injury (**Fig. 5A-D**). Importantly, while the
338 number of sEVs released from liver explants was not affected by genotype (**Fig. 5E**), the
339 IL-1 β content in sEVs was reduced in myeloid-*Gsdmd*-deficient mice (**Fig. 5F**)

340

341 **IL-1 β -containing sEVs promote hepatocyte death and liver injury**

342 Hepatocytes are highly responsive to cytokines/chemokines produced by Kupffer cells,
343 such as IL-1 β , contributing to the pathogenesis of ALD. We recently reported that IL-1 β -
344 induced expression of the acute phase protein SAA1; this response, in combination with
345 ethanol, increased Casp3 cleavage and hepatocyte death (34). These data led us to
346 hypothesize that IL-1 β -containing sEVs may exert their pathogenic role, at least in part,

347 via induction of the acute phase protein SAA1. As expected, challenge of hepatocytes
348 with ethanol or recombinant IL-1 β induced expression of SAA and cytotoxicity (**Fig.**
349 **6A/B**)(34). Importantly, IL-1 β -containing sEVs isolated from liver explant cultures of wild-
350 type mice after Gao-binge ethanol exposure also induced the expression of SAA1 and
351 death of primary hepatocytes (**Fig. 6A/B**).

352

353 These cell culture data suggest that IL-1 β -containing sEVs might contribute to chronic
354 ethanol-induced liver injury. Therefore, to determine the *in vivo* biological activity of
355 sEVs, sEVs were collected from liver explants from wild-type and *Gsdmd*-/- mice and
356 10¹⁰ particles were injected intraperitoneally to wild-type mice during the course of Gao-
357 binge ethanol feeding (**Fig. 6C**). Expression of CD63 was equal across the purified
358 sEVs, but GSDMD was absent from the sEVs isolated from *Gsdmd*-deficient mice (**Fig.**
359 **6D**). Importantly, sEVs purified from liver explant cultures of wild-type ethanol-fed, but
360 not pair-fed, mice markedly increased hepatic injury, steatosis and expression of
361 inflammatory cytokines and SAA (**Fig. 6E-F**). This exacerbation was not observed with
362 sEVs purified from liver explant cultures of *Gsdmd*-/- ethanol-fed mice (**Fig. 6E-F**). Taken
363 together, these results suggest that GSDMD-mediated production of IL-1 β -containing
364 sEVs contribute to the pathogenesis of ALD.

365

366

367

368 **Discussion**

369 In this study, we report Mincle-dependent IL-1 β secretion via GSDMD-guided formation
370 and release of sEVs from Kupffer cells during ethanol-induced liver injury. This pathway
371 is triggered by β -glucosylceramide (β -GluCer), an endogenous Mincle ligand released by
372 dying hepatocytes after ethanol exposure. Importantly, serum β -GluCer is elevated in
373 patients with AH and positively correlates with disease severity. β -GluCer is also
374 elevated in the circulation of mice exposed to Gao-binge ethanol feeding. *Gsdmd-* or
375 *Mincle-* deficiency impaired the release of IL-1 β containing sEVs and IL-1 β containing
376 sEVs exacerbated hepatocyte cell death. Intravenous injection of IL-1 β containing sEVs
377 purified from liver explant cultures of ethanol-fed, but not pair-fed, mice markedly
378 increased ethanol-induced hepatic injury and steatosis, indicating that IL-1 β containing
379 sEVs contribute to the pathogenesis of ALD.

380

381 Previous studies have suggested that Mincle ligands induce activation of the ASC-
382 NLRP3 inflammasome, which leads to Casp8-dependent IL-1 β production (5, 39). In this
383 study, we showed that the Mincle ligand β -GluCer induces GSDMD and its interacting
384 partners (including E3 ligase NEDD4) to form a secretory complex with the Casp8-
385 inflammasome and polyubiquitinated pro-IL- β (**Fig. 7**). This secretory complex is loaded
386 into sEVs, which are marked by the exosome marker CD63. We recently reported the
387 downstream signaling events of Casp8- inflammasome activation in IECs, where full-
388 length GSDMD, chaperoned by CDC37/HSP90, recruits NEDD4 to mediate

389 polyubiquitination of pro-IL-1 β , followed by cargo loading into CD63 $^+$ sEVs (31).
390 Pyroptotic activation of GSDMD is triggered via cleavage at D276, located in its linker
391 region, by either Casp1 or Casp8 in response to inflammasome assembly. β -GluCer-
392 activated Mincle signaling in Kupffer cells led to the release of IL-1 β -containing sEVs in
393 the absence of cytotoxicity. Importantly, when *Gsdmd*-deficient imKCs (**Fig. 4F**) or IECs
394 (31) are transduced with either wild-type or GSDMD^{D276A} mutant, release of IL-1 β -
395 containing sEVs is restored, demonstrating a non-lytic function of GSDMD in the process
396 of sEV release. Taken together, these results indicate that β -GluCer-activated Mincle
397 signaling in Kupffer cells utilizes a non-lytic GSDMD-mediated mechanism to release IL-
398 1 β -containing sEVs.

399
400 The concentration of β -GluCer is tightly regulated and restricted to endoplasmic
401 reticulum and Golgi apparatus in normal living cells. Elevated circulating β -GluCer
402 concentrations are observed in various human diseases, including Gaucher disease,
403 multiple sclerosis, and non-alcoholic fatty liver disease (NAFLD). Gaucher disease is an
404 inherited genetic disorder caused by mutation of a critical GluCer hydrolysis enzyme
405 (glucocerebrosidase), leading to accumulation of GluCer in multiple organs, including the
406 liver (40). The fact that liver disease is common in Gaucher disease (41), implicates the
407 critical pathogenic impact of GluCer on hepatic cellular function. In support of this, a
408 recent study indicated that GluCer accumulation in sphingomyelin synthase 1-deficient
409 mouse liver resulted in steatosis, steatohepatitis and fibrosis (42). Consistently,

410 pharmaceutic inhibition of glucosylceramide synthase alleviated the hepatic steatosis
411 and fibrosis in obese mice (43). Collectively, the current study, in combination with
412 previous work, identify β -GluCer, a danger signal released by damaged cells, as a potent
413 pathogenic mediator in driving the progression of liver disease. Our study, in particular,
414 identifies a critical link between β -GluCer and the production of pathogenic IL-1 β -
415 containing sEVs that could be an important target for the development of future
416 therapeutic strategies for the prevention or treatment of ALD, as well as liver diseases of
417 other etiologies.

418

419 **Acknowledgements**

420 We sincerely thank Dr. Zhaoli Sun at Johns Hopkins University for the human liver
421 specimens.

422

423 **Conflict of Interest**

424 The authors declare that they have no conflict of interest.

425

426 **Author contributions**

427 Q.Z performed experiments, and wrote the manuscript. W.L., K.B., H.W., M.R.M., R.Z.
428 and X.W. performed experiments. N.W., J.D., and S.D. collected patient samples.
429 L.E.N. and X.L. initiated the idea and wrote the manuscript.

430

431 **Reference**

432 1. Nagy LE, Ding WX, Cresci G, Saikia P, Shah VH. Linking Pathogenic Mechanisms of Alcoholic
433 Liver Disease With Clinical Phenotypes. *Gastroenterology* 2016;150:1756-1768.

434 2. Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets.
435 *Gastroenterology* 2011;141:1572-1585.

436 3. Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment.

437 *Nat Rev Gastroenterol Hepatol* 2015;12:231-242.

438 4. Jiang L, Schnabl B. Gut Microbiota in Liver Disease: What Do We Know and What Do We Not
439 Know? *Physiology (Bethesda)* 2020;35:261-274.

440 5. Zhou H, Yu M, Zhao J, Martin BN, Roychowdhury S, McMullen MR, Wang E, et al. IRAKM-
441 Mincle axis links cell death to inflammation: Pathophysiological implications for chronic alcoholic
442 liver disease. *Hepatology* 2016;64:1978-1993.

443 6. **Inzaugarat ME, Johnson CD**, Holtmann TM, McGeough MD, Trautwein C, Papouchado BG,
444 Schwabe R, et al. NLR Family Pyrin Domain-Containing 3 Inflammasome Activation in Hepatic
445 Stellate Cells Induces Liver Fibrosis in Mice. *Hepatology* 2019;69:845-859.

446 7. Wilkinson AL, Qurashi M, Shetty S. The Role of Sinusoidal Endothelial Cells in the Axis of
447 Inflammation and Cancer Within the Liver. *Front Physiol* 2020;11:990.

448 8. Miyata T, Nagy LE. Programmed cell death in alcohol-associated liver disease. *Clin Mol
449 Hepatol* 2020;26:618-625.

450 9. Roychowdhury S, McMullen MR, Pisano SG, Liu X, Nagy LE. Absence of receptor interacting

451 protein kinase 3 prevents ethanol-induced liver injury. *Hepatology* 2013;57:1773-1783.

452 10. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. *Cold Spring*

453 *Harb Perspect Biol* 2015;7.

454 11. Zhou Z, Sun X, Kang YJ. Ethanol-induced apoptosis in mouse liver: Fas- and cytochrome c-

455 mediated caspase-3 activation pathway. *Am J Pathol* 2001;159:329-338.

456 12. Natori S, Rust C, Stadheim LM, Srinivasan A, Burgart LJ, Gores GJ. Hepatocyte apoptosis is

457 a pathologic feature of human alcoholic hepatitis. *J Hepatol* 2001;34:248-253.

458 13. Khanova E, Wu R, Wang W, Yan R, Chen Y, French SW, Llorente C, et al. Pyroptosis by

459 caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients. *Hepatology*

460 2018;67:1737-1753.

461 14. Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Mincle is an ITAM-coupled

462 activating receptor that senses damaged cells. *Nat Immunol* 2008;9:1179-1188.

463 15. Nagata M, Izumi Y, Ishikawa E, Kiyotake R, Doi R, Iwai S, Omahdi Z, et al. Intracellular

464 metabolite β -glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory

465 activity. *Proc Natl Acad Sci U S A* 2017;114:E3285-e3294.

466 16. Kostarnoy AV, Gancheva PG, Lepenies B, Tukhvatulin AI, Dzharullaeva AS, Polyakov NB,

467 Grumov DA, et al. Receptor Mincle promotes skin allergies and is capable of recognizing

468 cholesterol sulfate. *Proc Natl Acad Sci U S A* 2017;114:E2758-e2765.

469 17. **Zheng D, Liwinski T, Elinav E.** Inflammasome activation and regulation: toward a better

470 understanding of complex mechanisms. *Cell Discov* 2020;6:36.

471 18. He Y, Hara H, Núñez G. Mechanism and Regulation of NLRP3 Inflammasome Activation.

472 Trends Biochem Sci 2016;41:1012-1021.

473 19. Man SM, Kanneganti TD. Converging roles of caspases in inflammasome activation, cell death

474 and innate immunity. Nat Rev Immunol 2016;16:7-21.

475 20. Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, Barrieau M, et al. IL-1 receptor

476 antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest

477 2012;122:3476-3489.

478 21. Cui K, Yan G, Xu C, Chen Y, Wang J, Zhou R, Bai L, et al. Invariant NKT cells promote alcohol-

479 induced steatohepatitis through interleukin-1 β in mice. J Hepatol 2015;62:1311-1318.

480 22. McClain CJ, Cohen DA, Dinarello CA, Cannon JG, Shedlofsky SI, Kaplan AM. Serum

481 interleukin-1 (IL-1) activity in alcoholic hepatitis. Life Sci 1986;39:1479-1485.

482 23. Sekiyama KD, Yoshioka M, Thomson AW. Circulating proinflammatory cytokines (IL-1 beta,

483 TNF-alpha, and IL-6) and IL-1 receptor antagonist (IL-1Ra) in fulminant hepatic failure and acute

484 hepatitis. Clin Exp Immunol 1994;98:71-77.

485 24. Ludwiczek O, Vannier E, Moschen A, Salazar-Montes A, Borggraefe I, Gabay C, Enrich B, et

486 al. Impaired counter-regulation of interleukin-1 by the soluble IL-1 receptor type II in patients with

487 chronic liver disease. Scand J Gastroenterol 2008;43:1360-1365.

488 25. Hanck C, Manigold T, Böcker U, Kurimoto M, Kölbel CB, Singer MV, Rossol S. Gene

489 expression of interleukin 18 in unstimulated peripheral blood mononuclear cells of patients with

490 alcoholic cirrhosis. Gut 2001;49:106-111.

491 26. Spahr L, Garcia I, Bresson-Hadni S, Rubbia-Brandt L, Guler R, Olleros M, Chvatchko Y, et al.

492 Circulating concentrations of interleukin-18, interleukin-18 binding protein, and gamma interferon

493 in patients with alcoholic hepatitis. *Liver Int* 2004;24:582-587.

494 27. Chen KW, Groß CJ, Sotomayor FV, Stacey KJ, Tschopp J, Sweet MJ, Schroder K. The

495 neutrophil NLRC4 inflammasome selectively promotes IL-1 β maturation without pyroptosis during

496 acute *Salmonella* challenge. *Cell Rep* 2014;8:570-582.

497 28. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. The Pore-Forming Protein Gasdermin D

498 Regulates Interleukin-1 Secretion from Living Macrophages. *Immunity* 2018;48:35-44.e36.

499 29. Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, Robertson AA, et

500 al. Human Monocytes Engage an Alternative Inflammasome Pathway. *Immunity* 2016;44:833-846.

501 30. Gaidt MM, Hornung V. Pore formation by GSDMD is the effector mechanism of pyroptosis.

502 *Embo j* 2016;35:2167-2169.

503 31. **Bulek K, Zhao J, Liao Y, Rana N, Corridoni D, Antanaviciute A, Chen X, et al.** Epithelial-derived

504 gasdermin D mediates nonlytic IL-1 β release during experimental colitis. *J Clin Invest*

505 2020;130:4218-4234.

506 32. **Miyata T, Wu X, Fan X, Huang E, Sanz-Garcia C, Ross CKC, Roychowdhury S, et al.**

507 Differential role of MLKL in alcohol-associated and non-alcohol-associated fatty liver diseases in

508 mice and humans. *JCI Insight* 2021;6.

509 33. **Li S, Wu Y, Yang D, Wu C, Ma C, Liu X, Moynagh PN, et al.** Gasdermin D in peripheral myeloid

510 cells drives neuroinflammation in experimental autoimmune encephalomyelitis. *J Exp Med*

511 2019;216:2562-2581.

512 34. **Wang H, Zhou H, Zhang Q, Poulsen KL, Taylor V, McMullen MR, Czarnecki D, et al.** Inhibition
513 of IRAK4 kinase activity improves ethanol-induced liver injury in mice. *J Hepatol* 2020;73:1470-
514 1481.

515 35. Kim A, Bellar A, McMullen MR, Li X, Nagy LE. Functionally Diverse Inflammatory Responses
516 in Peripheral and Liver Monocytes in Alcohol-Associated Hepatitis. *Hepatol Commun* 2020;4:1459-
517 1476.

518 36. Kurz J, Brunkhorst R, Foerch C, Blum L, Henke M, Gabriel L, Ulshofer T, et al. The relevance
519 of ceramides and their synthesizing enzymes for multiple sclerosis. *Clin Sci (Lond)* 2018;132:1963-
520 1976.

521 37. **Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, et al.** Cleavage of GSDMD by
522 inflammatory caspases determines pyroptotic cell death. *Nature* 2015;526:660-665.

523 38. **Luan J, Chen W, Fan J, Wang S, Zhang X, Zai W, Jin X, et al.** GSDMD membrane pore is
524 critical for IL-1 β release and antagonizing IL-1 β by hepatocyte-specific nanobiologics is a promising
525 therapeutics for murine alcoholic steatohepatitis. *Biomaterials* 2020;227:119570.

526 39. Zhang Q, Liu W, Wang H, Zhou H, Bulek K, Chen X, Zhang CJ, et al. TH17 cells promote CNS
527 inflammation by sensing danger signals via Mincle. *Nat Commun* 2022;13:2406.

528 40. Hruska KS, LaMarca ME, Scott CR, Sidransky E. Gaucher disease: mutation and
529 polymorphism spectrum in the glucocerebrosidase gene (GBA). *Hum Mutat* 2008;29:567-583.

530 41. Adar T, Ilan Y, Elstein D, Zimran A. Liver involvement in Gaucher disease - Review and clinical

531 approach. *Blood Cells Mol Dis* 2018;68:66-73.

532 42. **Li Z, Chiang YP, He M, Worgall TS, Zhou H, Jiang XC.** Liver sphingomyelin synthase 1

533 deficiency causes steatosis, steatohepatitis, fibrosis, and tumorigenesis: An effect of

534 glucosylceramide accumulation. *iScience* 2021;24:103449.

535 43. Zhao H, Przybylska M, Wu IH, Zhang J, Maniatis P, Pacheco J, Piepenhagen P, et al. Inhibiting

536 glycosphingolipid synthesis ameliorates hepatic steatosis in obese mice. *Hepatology* 2009;50:85-

537 93.

538

539

540

541 **Figure legends**

542 **Figure 1. The Mincle ligand, β -GluCer, was increased in the circulation of patients**

543 **with AH and mice after exposure to Gao-binge ethanol feeding.**

544 (A) Concentration of β -GluCer (d18:1/16:0) in serum of healthy controls (HC) (n=8) and

545 patients with moderate AH (n=6), severe AH (n=9) or alcohol-associated cirrhosis (n=9).

546 (B) Concentration of β -GluCer was correlated with MELD scores of patients with

547 moderate and severe AH. (C) Concentration of β -GluCer in plasma of mice after Gao-

548 binge ethanol feeding. (D) β -GluCer in culture medium of primary hepatocytes treated

549 with 150mM EtOH for 24hrs. β -GluCer concentrations were measured by mass

550 spectroscopy. Data represent mean \pm SEM. ANOVA (A) or 2-tailed unpaired Student's t

551 test (C, D). *P<0.05, **P<0.01, ***P<0.0001.

552

553 **Figure 2. β -GluCer promoted Mincle-dependent IL-1 β production without**

554 **triggering cell death in Kupffer cells**

555 Primary Kupffer cells isolated from *Mincle*^{+/−} and *Mincle*^{−/−} mice were primed overnight

556 with 10 ng/ml LPS and then stimulated with 20ug/ml GluCer for 12 hrs or 2.5mM ATP for

557 1hr. (A) Cell lysates were collected for western blot analysis of pro- and mature- (m) IL-

558 1 β , with β -actin used as a loading control. (B/C) Cell culture medium was collected and

559 used to (B) measure for IL-1 β concentration by ELISA or (C) measure LDH release to

560 assess cytotoxicity. Data represent mean \pm SEM. 2-tailed unpaired Student's t test.

561 *P<0.05, ***P<0.001.

562

563 **Figure 3. Mincle signal-dependent release of IL-1 β containing sEVs from Kupffer
564 cells requires GSDMD**

565 **(A-D)** imKCs were transfected with shRNA to knockdown *Gsdmd* or *Mincle* and then
566 primed overnight with 100 pg/ml LPS followed by stimulation with 20ug/ml GluCer or
567 2ug/ml TDB for 12 hrs. **(A)** sEVs released from immortalized murine KC (imKC) were
568 quantified by ZetaView and visualized by electron microscopy. **(B)** Western analysis of
569 sEVs from WT and *Gsdmd* KD imKCs utilizing antibodies against the indicated proteins
570 (**Rec**: recombinant protein as + control; **p**: precursor; **m**: mature IL-1 β or IL-18). *Note*:
571 For all western using sEVs, sEVs isolated from an equal volume of cell culture media
572 were loaded in gels; sEVs were not normalized for particle number. **(C)** IL-1 β was
573 immunoprecipitated from WT and *Gsdmd*-KD imKC culture media followed by western
574 analyses with antibodies against the indicated proteins. **(D)** IL-1 β was
575 immunoprecipitated from the cell culture media from WT and *Gsdmd*-KD imKCs and
576 probed with antibodies to IL-1 β or Ubiquitin under denaturing conditions. **(E)** Primary KC
577 isolated from heterozygous littermates and *Gsdmd*^{-/-} mice were primed overnight with
578 100 pg/ml LPS followed by stimulation with 20ug/ml GluCer or 2ug/ml TDB for 12 hrs.
579 IL-1 β was immunoprecipitated from culture media and analyzed by western blot as in
580 **(C)**. **(F)** Expression vectors containing wild-type *Gsdmd* or D276A mutated *Gsdmd* were
581 transfected into *Gsdmd*-KD imKCs, then primed with 100 pg/ml LPS overnight and

582 stimulated with 20ug/ml GluCer or 2ug/ml TDB for 12 hrs. Cell lysates and culture
583 medium were collected for western analyses for indicated proteins. N=3 independent
584 experiments. Data represent mean \pm SEM. One way ANOVA **P<0.01, ***P<0.001.

585

586 **Figure 4 Mincle and GSDMD promoted IL-1 β secretion via small extracellular
587 vesicles (sEVs)**

588 **(A-E)** *Gsdmd*^{-/-} or *Mincle*^{-/-} and heterozygous littermate mice (n=6) were exposed to Gao-
589 binge ethanol feeding. **(A,B)** 100 mg of liver explants were cultured overnight. sEVs
590 were isolated from the cell culture media and analyzed by nanoparticle tracking with
591 ZetaView for size distribution and total EV numbers/ml media. **(C,D)** Concentration of IL-
592 1 β in the collected sEVs was measured by ELISA. **(E)** IL-1 β was immunoprecipitated
593 from culture medium for western blotting with the indicated antibodies. Recombinant IL1-
594 β (**Rec**) was included as a positive control. **p**: precursor; **m**: mature IL-1 β ; **W**: wild type;
595 **K**: knock-out). **(F)** EVs isolated from plasma of healthy controls (HC) and patients with
596 AH were analyzed by western blotting with antibodies against the indicated proteins.

597 Data represent mean \pm SEM. ANOVA *P<0.05, **P<0.01, ***P<0.001.

598

599 **Figure 5 Myeloid GSDMD promoted release of IL-1 β containing sEVs**

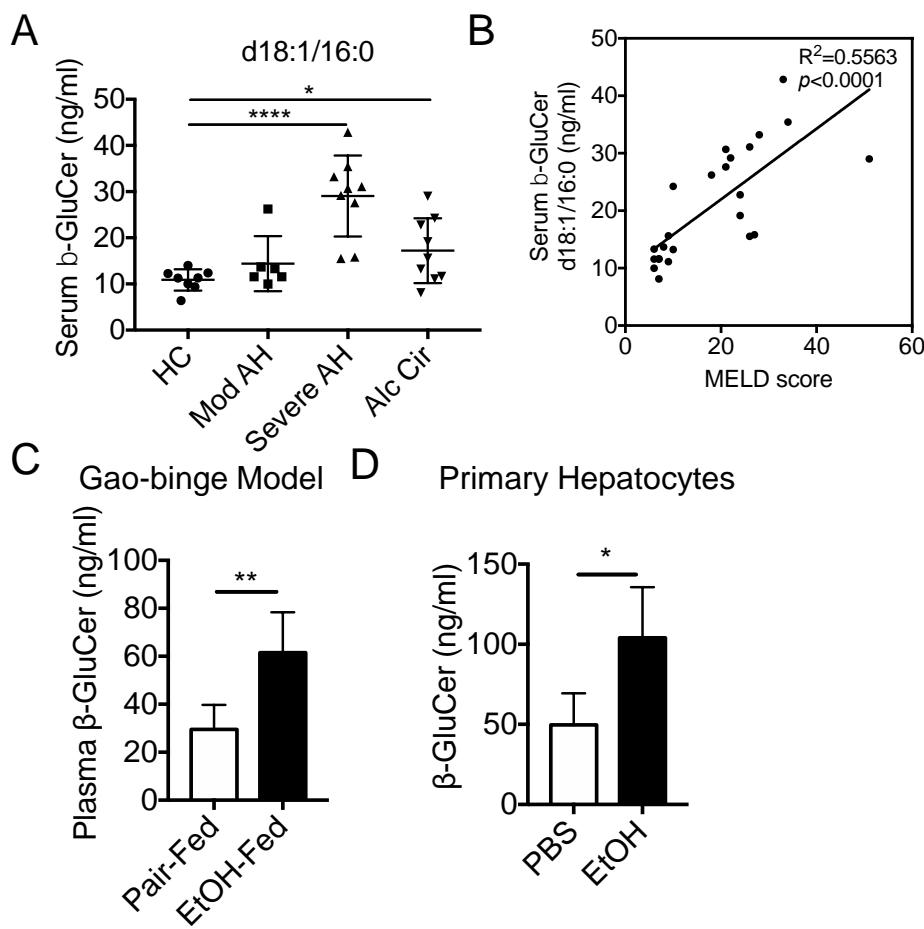
600 *LysM-Cre Gsdmd*^{fl/fl} and *Gsdmd*^{fl/fl} mice (n=6) were exposed to Gao-binge ethanol
601 feeding. **(A)** H&E staining for liver histology. **(B)** ALT activity in plasma. **(C)** Hepatic
602 triglyceride content. **(D)** IL-6, IL-1 β , TNF α and SAA1 mRNA expression. **(E)** sEVs from

603 liver explants cultures were quantified by ZetaView as described in Fig 4. **(F)** sEV
604 numbers were equalized and the concentration of IL-1 β measured by ELISA. Data
605 represent mean \pm SEM. ANOVA. *P<0.05, **P<0.01, ***P<0.001.

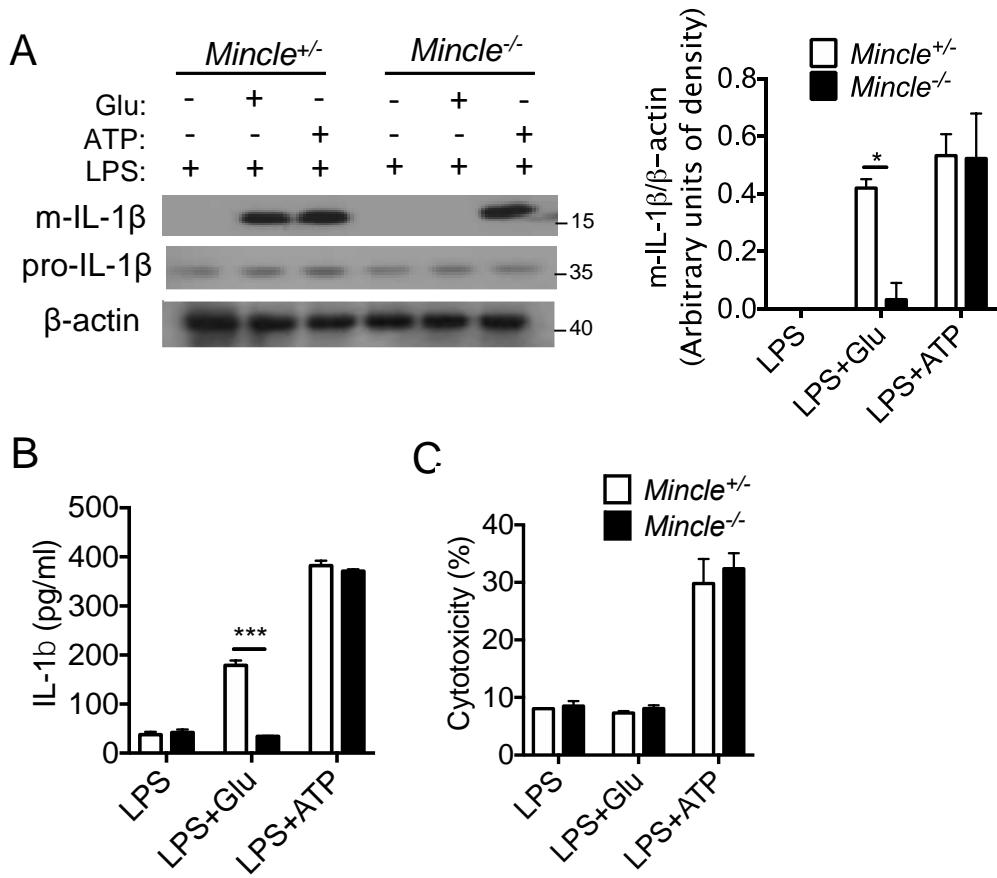
606

607 **Figure 6 Exosomes from liver explant cultures of Gao-binge mice promote liver
608 injury.**

609 **(A, B)** Primary hepatocytes were treated with recombinant IL-1 β (10 ng/ml) or sEVs
610 isolated from liver explant cultures of Gao-binge EtOH-fed WT mice. **(A)** Expression of
611 SAA1 mRNA. **(B)** Cytotoxicity was assessed by LDH assay. **(C-F)** **(C)** Schematic
612 diagram illustrating the protocol for exosome donor experiment. sEVs were isolated from
613 liver explant cultures from WT Pair-fed, WT EtOH-fed and Gsdmd-/- EtOH-fed mice. WT
614 mice were injected with 10¹⁰ sEVs during Gao-binge acute on chronic ethanol feeding.
615 **(D)** sEV numbers were normalized and CD63 and GSDMD assessed by western blot.
616 **(E)** AST/ALT activity in plasma and hepatic triglyceride content. **(F)** SAA1 mRNA
617 expression. Data represent mean \pm SEM. ANOVA. *P<0.05, **P<0.01, ***P<0.001.


618

619 **Figure 7 Model for the critical link between β -GluCer and the production of IL-1 β -
620 containing sEVs.** Ethanol exposure results in the release of β -GluCer from injury
621 hepatocyte. Mincle, expressed by hepatic macrophages, senses β -GluCer and
622 stimulates the release of IL-1 β -containing sEVs in a GSDMD-dependent mechanism.
623 The sEVs, in turn, interact with hepatocytes to stimulate the expression of the acute


624 phase protein SAA. The Mincle-GSDMD-IL-1 β pathway provides a mechanism linking

625 hepatocyte injury to inflammation to perpetuate chronic inflammation in ALD.

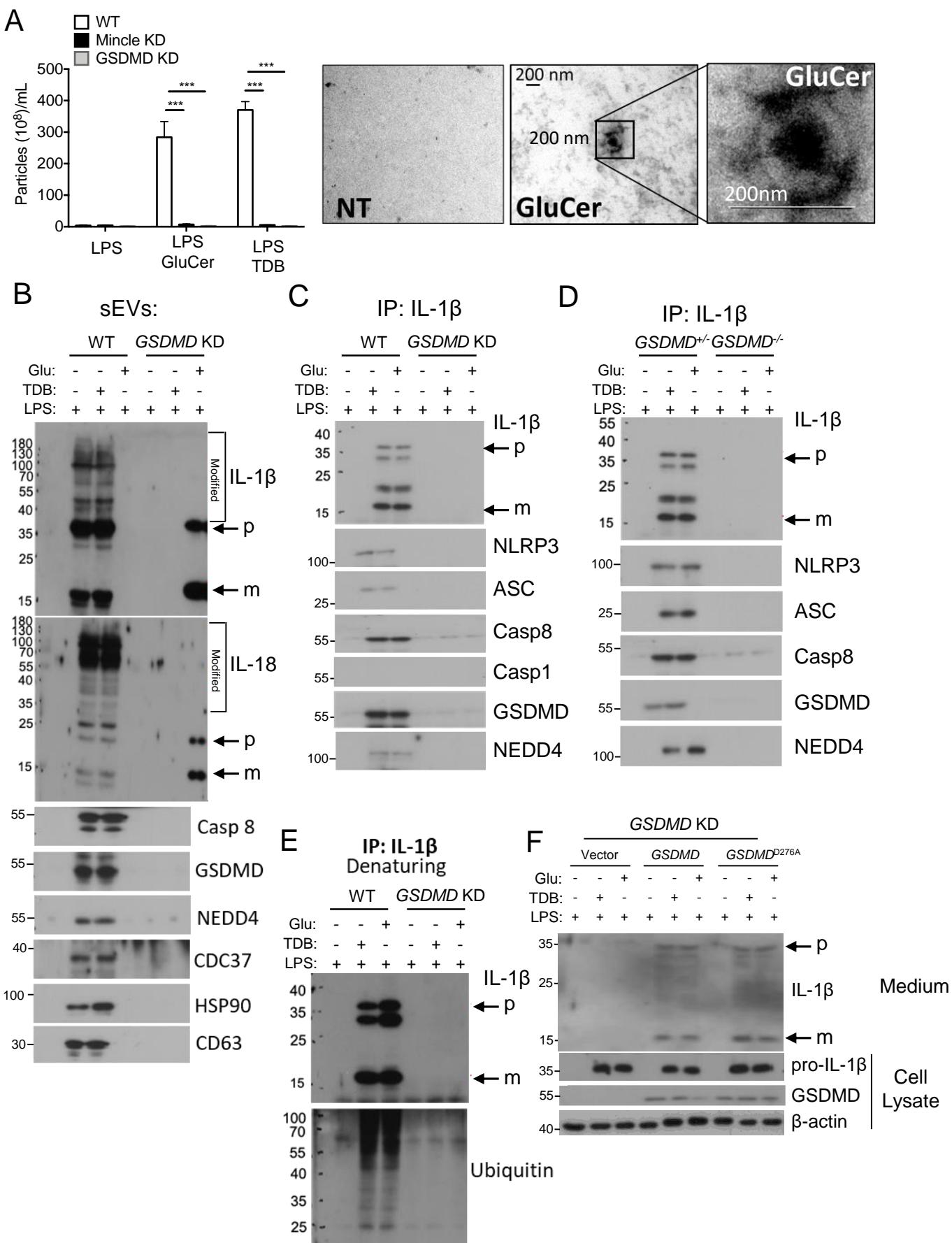

Figure 1.

Figure 2.

Figure 3.

Figure 4.

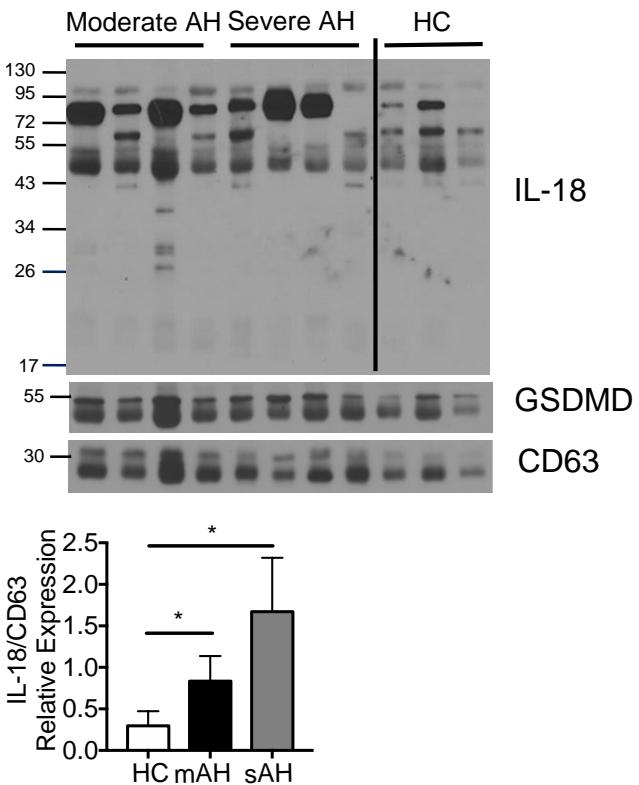
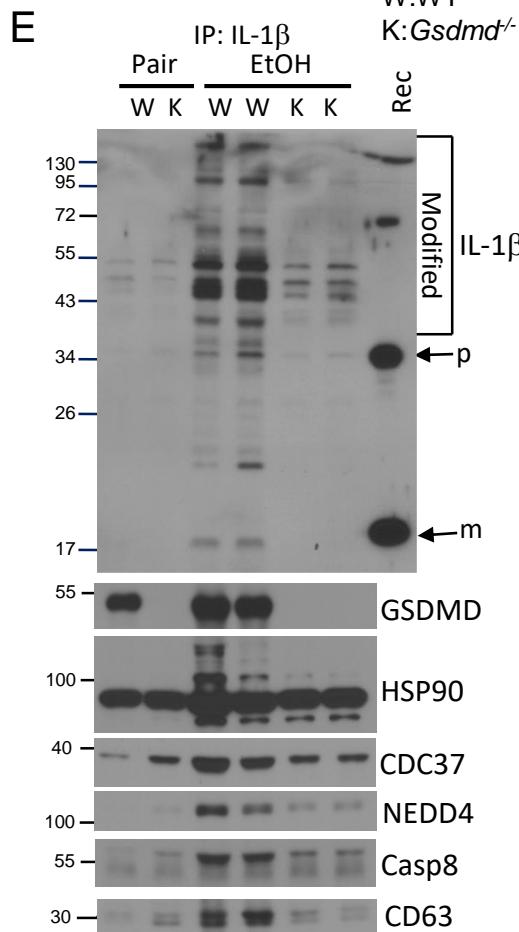
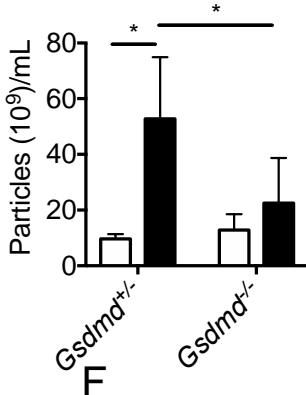
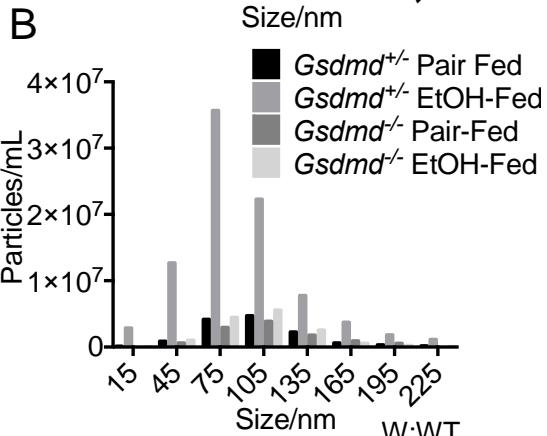
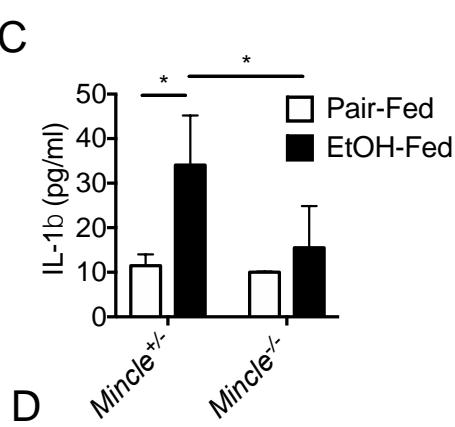
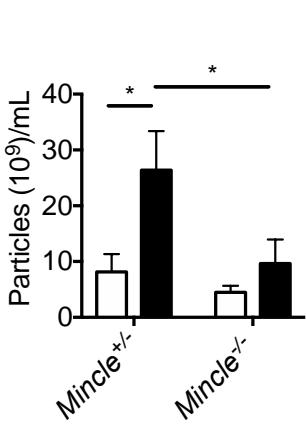
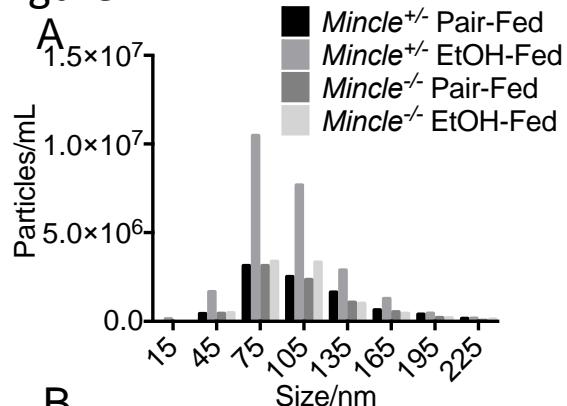








Figure 5.

Figure 6.

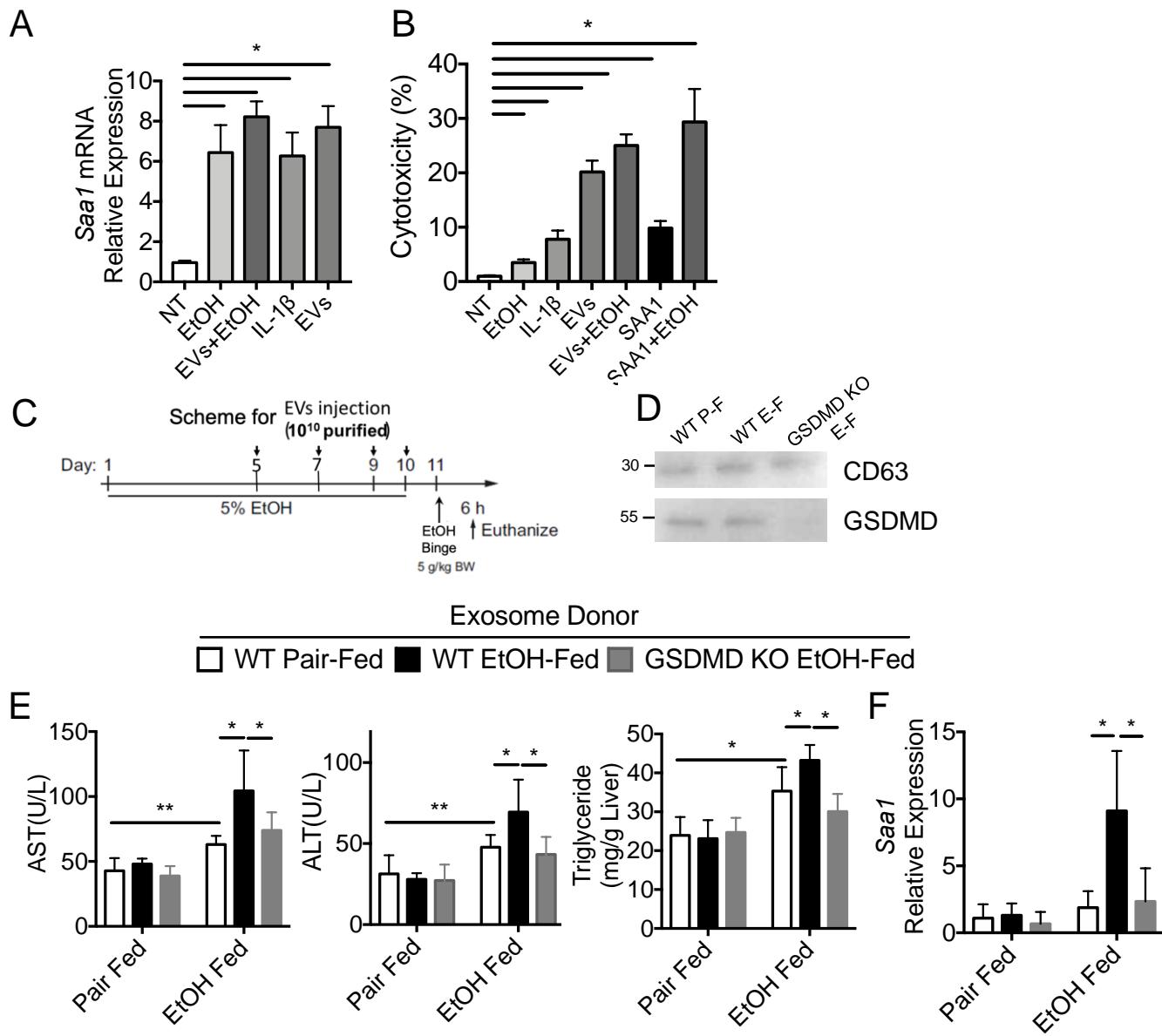
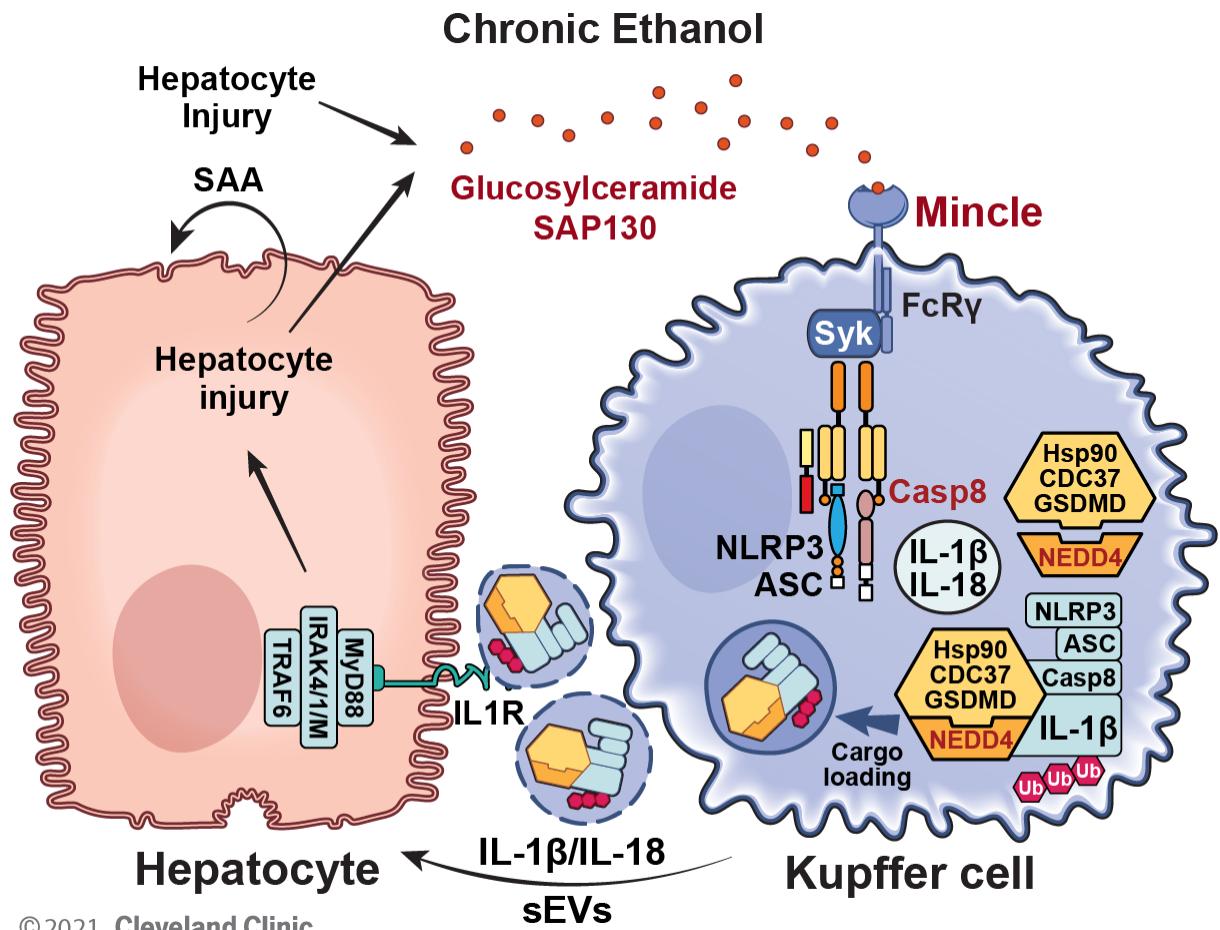



Figure 7.

