
1 
 

A deep learning approach for improving two-photon vascular imaging speeds 1 

Annie Zhou1, Samuel A. Mihelic1, Shaun A. Engelmann1, Alankrit Tomar1, Andrew K. Dunn1+ 2 

& Vagheesh M. Narasimhan2,3+ 3 

1Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA 4 
2Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway C0930, Austin, TX 78712, USA 5 
3Department of Statistics and Data Sciences, The University of Texas at Austin, 105 E. 24th St D9800, Austin, TX 78712, USA 6 
+Co-corresponding authors 7 

Abstract 8 

A potential method for tracking neurovascular disease progression over time in preclinical 9 

models is multiphoton fluorescence microscopy (MPM), which can image cerebral vasculature 10 

with capillary-level resolution. However, obtaining high-quality, three-dimensional images with 11 

a traditional point scanning MPM is time-consuming and limits sample sizes for chronic studies. 12 

Here, we present a convolutional neural network-based algorithm for fast upscaling of low-13 

resolution or sparsely sampled images and combine it with a segmentation-less vectorization 14 

process for 3D reconstruction and statistical analysis of vascular network structure. In doing so, 15 

we also demonstrate that the use of semi-synthetic training data can replace the expensive and 16 

arduous process of acquiring low- and high-resolution training pairs without compromising 17 

vectorization outcomes, and thus open the possibility of utilizing such approaches for other 18 

MPM tasks where collecting training data is challenging. We applied our approach to large field 19 

of view images and show that our method generalizes across imaging depths, disease states and 20 

other differences in neurovasculature. Our pre-trained models and lightweight architecture can be 21 

used to reduce MPM imaging time by up to fourfold without any changes in underlying 22 

hardware, thereby enabling deployability across a range of settings. 23 
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Introduction 24 

The neurovascular network transports chemicals (e.g., oxygen, nutrients, waste) to and from the 25 

brain to support neuronal activity. Neurovascular function is disrupted by disorders such as 26 

stroke, Alzheimer’s and other neurodegenerative diseases, and diabetes, with lasting effects that 27 

are not fully understood1,2. Advances in multiphoton fluorescence microscopy (MPM) have 28 

enabled imaging with capillary-level resolution in vivo, and this noninvasive tool could be used 29 

to monitor capillary-level changes over time in cerebral vasculature as a potential predictor of 30 

disease progression/prognosis3–6. A constraint with MPM, however, is the slow acquisition 31 

process that is necessary for producing high quality, three-dimensional images with a traditional 32 

point scanning multiphoton imaging setup. Given the physical limitations of a live animal, the 33 

acquisition speed puts a limit on study sizes and the ability to reach statistically significant 34 

results. Although previous approaches have sought to improve imaging speeds by incorporating 35 

innovative imaging hardware, these implementations come at high cost and complexity and 36 

cannot be readily employed to existing infrastructure7–10. 37 

An alternative, more cost-effective and accessible approach might be to computationally improve 38 

the image acquisition process using Convolutional Neural Networks (CNNs), which leverage 39 

existing datasets of MPM images. While several recent advances have been made in applying 40 

CNNs to improve MPM imaging results11–16, to our knowledge, only one has been focused on 41 

improving MPM imaging speed. Guan et al. presented a CNN for improving the imaging speed 42 

of a two-photon fiberscope for neuronal imaging using a conditional generative adversarial 43 

network (cGAN)16. They achieved a 10-fold speedup in frame rate. A drawback to their 44 

approach, however, is the requirement for a two-part training set, involving both ex vivo and in 45 

vivo imaging, which is extremely expensive and time-consuming. Several other models for 46 
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general denoising or segmentation for MPM have also been focused primarily on neuronal or 47 

calcium imaging11–14, with only one to our knowledge focused on vascular segmentation15–none 48 

of which is used for improving vascular imaging speeds.  49 

Here, we describe a CNN based approach trained to take images captured at low-resolution (128 50 

x 128 pixels), thereby at much faster speeds, and then upscale these to a higher resolution (512 x 51 

512 pixels), without compromising the accuracy of vascular morphological information that is 52 

extracted or introducing additional noise. The upscaling process from low- to high- resolution 53 

using deep learning is referred to as image super-resolution. We then combined this with a 54 

vectorization pipeline to obtain quantitative statistics of neurovasculature. Our pre-trained 55 

models and light architecture allows for fast acquisition, image super-resolution, and 56 

vectorization of MPM images without the limitations of added hardware and can be used to 57 

reduce imaging time by up to fourfold. 58 

Results 59 

Structure and analysis pipeline overview 60 

Our pipeline to improve two-photon microscopy acquisition and vectorization accepts individual 61 

as well as multiple frames from MPM imaging. Our process is split into two main parts: an 62 

image super-resolution CNN designed to upscale low-resolution images and a vectorization 63 

pipeline that is designed to output morphological statistics on the acquired images (Fig. 1). For 64 

super-resolving the images, we used the PSSR Res-U-Net architecture, which had been shown to 65 

restore images of presynaptic vesicles and neuronal mitochondria from a scanning electron 66 

microscope (SEM) and a laser scanning confocal microscope, respectively17. We utilized this 67 

architecture over several other possible ones because it: (a) allowed us to use semi-synthetic data 68 
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for training which circumvents the need to acquire real-world image pairs for training, which is 69 

difficult and expensive for large datasets (b) enabled us to also employ multi-frame inputs that 70 

could leverage information across correlated images at similar depths (c) does not utilize an 71 

adversarial network in the training, which are more challenging to train as well as to evaluate the 72 

generated models (d) allowed us to use a transfer learning approach to initialize our model with 73 

weights obtained with the architecture trained on ImageNet, a large natural image classification 74 

dataset. For vectorization, we used Segmentation-Less, Automated, Vascular Vectorization 75 

(SLAVV)18, which uses simple models of vascular anatomy, and efficient linear filtering and 76 

vector extraction algorithms with manual or automated vector classification. Using a multi-frame 77 

PSSR approach and combining it with a vectorization pipeline, we show that we are able to 78 

restore two-photon vascular images sufficiently for extracting morphological characteristics 79 

through vectorization. 80 
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Fig. 1: Structure and analysis pipeline. Low-resolution images (128 x 128 pixels) are acquired 82 

using two-photon microscopy. A deep learning (PSSR Res-U-Net) based upscaling process 83 

generates high-resolution images (512 x 512 pixels), which take much longer to acquire, from 84 

low-resolution images. Segmentation-less vascular vectorization (SLAVV) generates 3D 85 

renderings and calculates network statistics from an upscaled image stack. 86 

Transfer learning, creation and evaluation of semi-synthetic training data 87 

Traditional approaches to upscaling images involve acquiring paired high- and low-resolution 88 

real-world images that we could use for training the model. For our task, however, this process is 89 

expensive and time-consuming, and in certain situations impossible for live animals. This 90 

challenge greatly limits the practical sample size of training datasets. To overcome this 91 

difficulty, we sought to use semi-synthetic training data that mimics low-resolution acquisition to 92 

greatly improve sample size. Semi-synthetic training data was created by adding noise to, then 93 

downscaling, full-resolution images from a two-photon vascular image repository of previously 94 

acquired images (see Data Availability). We evaluated several approaches for the creation of this 95 

semi-synthetic data and compared our results to a model trained with a real-world dataset of the 96 

same sample size. 97 

To mimic the noise observed in real-acquired low-resolution images (i.e., real data), we tested 98 

models trained with semi-synthetic images that were created with the following noise filters: no 99 

noise (downscaled only, used as the reference), Poisson noise, Gaussian noise, and additive-100 

Gaussian-distributed noise (Fig. 2a). Real-acquired low-resolution images served as input 101 

images to test the model. We evaluated model performance using standard image quality metrics, 102 
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specifically, by calculating peak signal-to-noise ratio (PSNR) and structural similarity index 103 

measure (SSIM) between the model output and acquired full resolution image. 104 

The resulting median PSNR and SSIM values from each model, ranked from highest to lowest 105 

for both metrics, were as follows: Gaussian, additive-Gaussian, Poisson, no noise (Fig. 2b-c). 106 

This was determined using Wilcoxon signed rank tests with P < 0.005 (Bonferroni-adjusted). We 107 

noticed that the Gaussian and additive-Gaussian models perform similarly, and thus performed 108 

further testing to compare the two noise methods using a larger training set, consisting of 24,069 109 

semi-synthetic training image pairs—7x the preliminary training set of 3,399 semi-synthetic 110 

image pairs. The test image outputs from the models trained with the larger dataset showed 111 

notable qualitative improvements, with fewer false detections, less noise, and smoother vessel 112 

shapes. With the larger dataset, the Gaussian model produced a slightly higher median PSNR 113 

value but did not produce a median SSIM value that was statistically significantly different from 114 

that produced by additive-Gaussian (Wilcoxon signed rank test, P < 0.005). Despite the slightly 115 

higher PSNR performance by the Gaussian model, however, a qualitative comparison suggested 116 

that the additive-Gaussian results had somewhat less noise and higher sensitivity to fainter 117 

vessels. Additionally, PSNR only measures similarity in pixel values and does not necessarily 118 

predict vectorization performance, which is what we ultimately wish to optimize. To fully 119 

validate and compare the performance between the Gaussian- and additive-Gaussian-trained 120 

models, we performed a final comparison test using the Segmentation-Less Automated Vascular 121 

Vectorization (SLAVV) software (further described in later section). We found that the additive-122 

Gaussian model output allowed for a more accurate vessel detection overall compared to the 123 

Gaussian model output (95.7% vs 95.6%). Based on these results, we chose to perform 124 
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subsequent analyses using the model trained with the full dataset of semi-synthetic images 125 

created using the additive-Gaussian noise method to maximize accurate vessel detection.  126 

To evaluate the effectiveness of using semi-synthetic data in place of real-world training data, we 127 

compared the performance of models trained with each method (Fig. 2d-e). For this comparison, 128 

both models were trained with 234 image pairs, due to the limited availability of acquired image 129 

pairs. The output image from the real-acquired model appeared blurrier and over-predicted 130 

vessel diameters more significantly compared to the semi-synthetic model (Supplemental 131 

Figure 1). Nonetheless, the model trained with real-world data had higher median PSNR and 132 

SSIM values compared to the model trained with semi-synthetic data (Wilcoxon signed rank test, 133 

P < 0.05), although the values were close (PSNR: 26.9 vs. 26.6; SSIM: 0.492 vs. 0.494). We 134 

deem the results similar enough for semi-synthetic training data to be used in place of real-world 135 

training data. The use of semi-synthetic data advantageously circumvents complications from 136 

imprecise alignment in the acquisition of image pairs, limited availability of existing images (677 137 

pairs), and high material and labor costs for data collection. 138 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.11.30.518528doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518528
http://creativecommons.org/licenses/by/4.0/


9 
 

 139 

No noise GaussianPoisson
Additive 

GaussianLR acquired
HR

ground truth

Ex
am

pl
e 

Tr
ai

ni
ng

 Im
ag

es

a

b

c

d

e

LR input
ground 

truth

Real- 
acquired 
training

Semi-
synthetic 
training

Ex
am

pl
e 

Te
st

 Im
ag

es

HR

No noise GaussianPoisson
Additive 

GaussianLR input
ground 

truth

Additive 
Gaussian
7x data

Gaussian
7x data

Ex
am

pl
e 

Te
st

 Im
ag

es

HR

bilin
ear

no n
ois

e
pois

son

gaussia
n

add. gauss.

gaussia
n 7x

add. gauss.
 7x

15

20

25

PSNR

bilin
ear

no n
ois

e
pois

son

gaussia
n

add. gauss.

gaussia
n 7x

add. gauss.
 7x

0.35

0.4

0.45

0.5

0.55
SSIM

real-acquired semi-synthetic

18

20

22

24

26

28

PSNR

real-acquired semi-synthetic

0.35

0.4

0.45

0.5

SSIM

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.11.30.518528doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518528
http://creativecommons.org/licenses/by/4.0/


10 
 

Fig. 2: Generating and evaluating semi-synthetic training data. a Examples of semi-synthetic 140 

training images created using different types of added noise prior to downscaling: no noise 141 

(downscaling only), Poisson, Gaussian, and additive Gaussian. Acquired low-resolution (LR, 142 

128x128 pixels) and high-resolution (HR, 512x512 pixels) ground truth images are shown for 143 

reference. b Resulting test images from models trained using each noise method, with acquired 144 

low-resolution image for model input and acquired high-resolution image as ground truth for 145 

comparison. All models were trained with 3,399 image pairs, with the Gaussian and additive 146 

Gaussian models further tested on 24,069 image pairs (7x) to further test performance. c Boxplot 147 

comparison of PSNR and SSIM values for each noise method image in b measured against 148 

ground truth image. Values plotted for an image stack of 222 images. d Comparison of test 149 

images from models trained using real-world acquired vs. semi-synthetic data, with real-acquired 150 

low-resolution image for model input and acquired high-resolution image as ground truth for 151 

reference. All models were trained with 234 image pairs, a large reduction from the noise model 152 

comparison, due to the limited availability of real-world pairs. e Boxplot comparison of PSNR 153 

and SSIM values for real-acquired vs. semi-synthetic model outputs corresponding to d, 154 

measured against high-resolution ground truth image. All values are plotted for an image stack of 155 

222 images. 156 

Single-frame vs. multi-frame training 157 

A key issue with low-resolution acquired images is the diminished amount of total signal 158 

capture. This can result in noisier images and cause spurious vessels to appear in the 159 

vectorization process. A potential method for reducing false detections is providing the model 160 

neighboring depth images on a stack, which are highly correlated in signal but not in noise. Thus, 161 

we sought to improve the performance of our model by using multi-frame image input. 162 
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We compare the performance of the single-frame model to a multi-frame model, with an 163 

additional comparison against the traditional bilinear upscaling method, for both semi-synthetic 164 

and real-world test images (Fig. 3). The traditional bilinear upscaling method offers a baseline 165 

performance measure for a non-CNN approach. The multi-frame model is trained with input 166 

image stacks consisting of five sequential images in depth, with axial offsets of 0.3 µm, to 167 

predict a single output image—the third image in the input sequence. The multi-frame model 168 

yields images with higher PSNR and SSIM values than the single-frame model, and both PSSR 169 

methods outperform the bilinear upscaling method for both semi-synthetic and real-world test 170 

images (Wilcoxon signed rank test, P < 0.0167, Bonferroni-adjusted). Overall PSNR and SSIM 171 

values are higher for semi-synthetic images compared to real-world images, which is 172 

unsurprising given the model was trained completely on semi-synthetic images. Nonetheless, the 173 

real-world output images from our models show that individual vessels can be resolved, which is 174 

much more important for the final vectorization process than the exact pixel values measured by 175 

PSNR. 176 
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Fig. 3: Comparison of performance between bilinear upscaling, a single-frame model, and a 178 

multi-frame model for semi-synthetic and real-acquired test images. All models were trained 179 

with 24,069 image pairs. a Semi-synthetic test images from bilinear upscaling and models 180 

trained using single- vs. multi-frame data. Acquired low-resolution image for model input and 181 

acquired high-resolution image as ground truth are shown for reference. b PSNR and SSIM plots 182 

corresponding to semi-synthetic test results from a. c Real-world test images from bilinear 183 

upscaling and models trained using single- vs. multi-frame data. d PSNR and SSIM plots 184 

corresponding to real-world test image results from c. 185 

Reconstruction and stitching of infarct images 186 

A major application of two-photon imaging that we aim to make more accessible with our 187 

approach is large field of view (FOV) imaging of diseased vasculature. An example of this is 188 

acquiring images from a stroke model, which is of interest for studying disease effects on 189 

vascular morphology. Large FOV imaging with high resolution is a time-consuming process and 190 

thus would benefit substantially from the speedup offered by low-resolution imaging. Large 191 

FOV images are achieved by acquiring, then stitching standard-sized tiles together using 192 

ImageJ’s Grid/Collection Stitching plugin19. However, the long acquisition times required of 193 

current technologies limit our ability to collect substantial two-photon image sets of diseased 194 

vascular networks and thus limit the availability of images of diseased vasculature that could be 195 

used for training data. 196 

To investigate the feasibility of using our models to drastically reduce imaging times for large 197 

FOV images of diseased vasculature with minimal information loss, we examined the ability of 198 

our single-frame and multi-frame models, trained only with images of normal vasculature, to 199 
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restore a semi-synthetic large FOV image of an ischemic infarct (four weeks post-stroke) 200 

collected in a preliminary study (Fig. 4). The differences in morphology between vasculature in 201 

the peri-infarct region and normal vasculature are exemplified by the differences between the top 202 

half of the full image, which more closely resembles normal vasculature, and the bottom half of 203 

the image, which captures the infarct region and the more immediately surrounding vessels. 204 

Ischemic infarct vessels appear significantly more parallel to the imaging plane, thus creating 205 

image slices with higher vascular area density compared to the more perpendicularly oriented 206 

vessels further from the infarct. Despite these morphological differences and having only trained 207 

with images of normal vasculature, our models are able to resolve capillaries in the infarct 208 

region, as shown in the insets of Fig. 4. The multi-frame output image more closely resembles 209 

the HR image compared to the single-frame image, as vessel radii are more consistent in the 210 

multi-frame image. In the case of the LR and bilinear-upscaled images, the individual capillaries 211 

in the inset cannot be resolved. 212 

 213 
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 214 

Fig. 4. Maximum intensity projections (x-y) of ischemic infarct images consisting of 2x4 tiles 215 

with 213 slices (final dimensions 1.18 mm x 2.10 mm x 0.636 mm, pixel dimensions 1.34 µm x 216 

1.36 µm x 3 µm) for a semi-synthetic low-resolution image, bilinear upscaled image, single- and 217 

multi-frame output images, and acquired high-resolution image. 218 

Vectorization  219 

Vectorization is the ultimate step that extracts quantitative information for evaluating the 220 

vascular morphology of a network. Therefore, we are interested in comparing different image 221 

generation strategies by comparing performance after vectorization. We demonstrate successful 222 

vectorization of single- and multi-frame model output images from real-acquired low-resolution 223 

images using manual-curation-assisted SLAVV and visualization with VessMorphoVis20 (Fig. 224 

5a). Additionally, we perform a more objective comparison of our models’ performance using a 225 

previously described method18, which uses simulated images from a known ground truth and 226 

Single-frame Multi-frame HRBilinearLR
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automated vector classification (no manual assist). Using a known ground truth (derived from the 227 

real-acquired high resolution vectorized network shown in (Fig. 5a), we are able to quantify the 228 

sensitivity, specificity, and accuracy of the vectorized upscaled images. We generated the 229 

simulated vascular image to have the same contrast-to-noise ratio (CNR) of 0.94 as the real 230 

acquired high resolution image and to be representative of the image quality of a typical image 231 

acquired by our two-photon microscope. We created a low-resolution version of the simulated 232 

image using the same method for creating semi-synthetic training data and then upscaled it using 233 

bilinear interpolation and our single-frame and multi-frame models. We then vectorized these 234 

images using fully automated (globally thresholded) SLAVV at peak segmentation performance 235 

(measured against the ground truth image). The resulting strand objects are the minimal set of 236 

one-dimensional traces which span the entire vascular network. 237 

We plotted cumulative distribution functions (CDFs) for each image for each of the following 238 

strand metrics: length, radius, z-direction, and inverse tortuosity (Fig. 5b). We included the 239 

simulated original image in the analysis as a control for the automated curation process since the 240 

ground truth image was obtained through manual curation. For each strand metric, we calculated 241 

Pearson’s correlation (r2) values between the CDFs of the ground truth image and the simulated 242 

images. Of all the images, the simulated original image maintained the highest r2 value for 243 

average strand radius and inverse tortuosity. Our multi-frame model had the highest r2 value for 244 

strand length, while bilinear and the single-frame model produced the highest r2 value for z-245 

direction. We performed a Kolmogorov–Smirnov (K-S) test to compare the CDFs of each 246 

upscaling method against that of the simulated original image. The multi-frame CDFs for strand 247 

length, radius, and z-direction; the single-frame CDFs for length and z-direction; and the bilinear 248 

CDF for z-direction were not significantly different from those of the simulated original image (p 249 
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< 0.0167, Bonferroni-adjusted). Thus, of the tested upscaling methods, the multi-frame model 250 

produced the most statistically comparable strand metrics to the simulated original image.  251 

We calculated overall accuracy with respect to the ground truth for each image (Fig. 5c). The 252 

original simulated image retains the highest vectorization accuracy (96.2%), followed by multi-253 

frame (95.7%), single-frame (95.2%), and bilinear (94.5%). In terms of accuracy with raw image 254 

segmentation through intensity thresholding, however, multi-frame performs best (96.0%), 255 

followed by single-frame (95.3%), bilinear (94.4%), and original simulated image (91.9%). We 256 

also calculated the percent error in the median length and median radius, the characteristics that 257 

best represent the vessel morphology, between each image against the ground truth values. 258 

Multi-frame produced the lowest median length error (6.4%), followed by bilinear (7.2%), 259 

single-frame (8.1%), and the original simulated image (8.2%). The bilinear and single-frame 260 

images had notably higher median radius errors (40.1% and 41.6%, respectively) compared to 261 

the multi-frame and original simulated images (both 26.9%), which was noted with visual 262 

inspection of the images as well. These statistics further support that a multi-frame upscaled 263 

image produces comparable vectorization results to an original high-resolution image. 264 
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Fig. 5. Vectorization results. a Blender rendering of vectorized images using VessMorphoVis20 266 

for visual comparison between single- and multi-frame results and an acquired high-resolution 267 

image. We performed manual curation for this vectorization process. b Vectorized image 268 

statistics for automated curation process with known ground truth (simulated from manually 269 

curated high-resolution image). CDFs shown for metrics of length, radius, z-direction, and 270 

inverse tortuosity for original (OG), simulated original (sOG), bilinear upscaled (BL), and PSSR 271 

single- and multi-frame (SF, MF, respectively) images. Pearson’s correlation values (r2) were 272 

calculated between the original image and each simulated or upscaled image for each metric. c 273 

Statistics regarding maximum accuracy (%) achieved with vectorization or thresholding and % 274 

error in median length and radius for each method. 275 

Discussion 276 

To our knowledge, this is the first time that a deep learning model has been demonstrated to 277 

improve imaging speeds for two-photon microscopy by upscaling and denoising low-resolution 278 

images of vasculature while retaining accuracy in extracted morphological characteristics. For 279 

this application, our model outperforms the traditional, non-CNN bilinear upscaling technique in 280 

output image quality (Fig. 3, 4) and vectorization accuracy (Fig. 5). The performance of our 281 

models also improves notably with increased training data (Fig. 2b), therefore substantial time 282 

and material costs are reduced by training the model with semi-synthetic images generated from 283 

our database of 28,563 previously acquired two-photon vascular images. Real-world data also 284 

introduces further complications by requiring image registration. Not only would this add 285 

computational hours, but the image registration process also does not produce perfect alignment 286 

because it is limited to being purely translational and free of interpolation to maintain the 287 

original recorded pixel values. Any rotational misalignments would not be accurately 288 
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correctable. We speculate that these misalignments in real-world training image pairs caused the 289 

overly blurry and enlarged vascular structures seen in the results of preliminary experiments 290 

(Fig. 2d, Supplementary Fig. 1). 291 

Models trained from semi-synthetic images proved capable of restoring low-resolution vascular 292 

images and outperformed the standard bilinear interpolation method. For performing 293 

segmentation via intensity thresholding (Fig. 5c), multi-frame had the highest accuracy of the 294 

upscaling methods and significantly outperformed the original standard-resolution image. We 295 

hypothesize that this is a result of the denoising that occurs in the PSSR process. Since all 296 

upscaled images had higher intensity thresholding accuracy compared to the original image, we 297 

further postulate that upscaled images have less noise overall because fewer pixels are physically 298 

captured—all pixels created during upscaling are interpolated from neighboring pixel values and 299 

thus free of noise from the image acquisition process21. For performing vectorization, however, 300 

the diminished noise does not offset accuracy losses from the upscaling process. We determined 301 

that the multi-frame model yields the highest accuracy of the three upscaling methods but did not 302 

outperform the original standard-resolution image. Nonetheless, the multi-frame image also 303 

produced the greatest number of CDFs for strand metrics that were not significantly different 304 

from those of a standard-resolution image. We consider these results from the multi-frame model 305 

to be within acceptable tolerance for vectorization accuracy and similarity in strand statistics for 306 

our previously described purposes of characterizing the structural properties of the vessels of a 307 

particular network22,23. 308 

By acquiring low-resolution images, the imaging time could be reduced by up to half in a two-309 

photon microscope with a resonant-galvo scanning system and by up to fourfold with a galvo-310 

galvo scanning system. The reduction in imaging time can have several benefits. For instance, 311 
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faster imaging times reduce risk of phototoxicity and thermal damage if excitation powers are 312 

kept constant24,25. Additionally, the amount of time for which the subject is under anesthesia is 313 

reduced, decreasing the risk of vascular dilation26 which can create skewed vectorization 314 

statistics. The reduction in imaging time can also decrease the injection volume and frequency of 315 

fluorescent dye, which alone can save up to hundreds of dollars in addition to eliminate the risk 316 

of sample misalignment caused by a re-injection during an imaging session. A specific but major 317 

benefit for those wishing to conduct chronic studies is that the faster acquisition times will allow 318 

for larger cohorts, which are currently constrained by the number of animals that can reasonably 319 

be imaged within each timepoint. This would yield more statistically significant sample sizes for 320 

studying and comparing healthy and diseased vasculatures over time. 321 

With the potential for future disease studies in mind, we tested our model on data from a mouse 322 

that was given a stroke. We show that our model, despite having only been trained with images 323 

of healthy vasculature, can reasonably restore images taken from a peri-infarct region with 324 

sufficient resolution for the image stitching algorithm to successfully create a large FOV image. 325 

These results from semi-synthetic test data are promising for being able to apply the model 326 

broadly to different disease models, although further validation should be performed with real-327 

world test data. 328 

Another area of research that could benefit from increased imaging speeds is in the study of light 329 

propagation through the brain, for the development of noninvasive brain imaging devices. With 330 

accessibility to a larger database of large FOV two-photon images, light propagation models can 331 

be more thoroughly developed, tested, and refined27. As precise capillary capture is not necessary 332 

for these models, the use of even lower resolution and faster imaging could be further explored 333 

with PSSR. Although losses in accuracy in low-resolution images are inevitable due to less 334 
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information being captured, experimentation with the accuracy and speedup tradeoff can be done 335 

to fit the tolerance of any application.  336 

The potential for further speedup by reducing frame averaging could also be explored. Lower 337 

frame averaging leads to higher noise levels, which PSSR can be used to reduce. With higher 338 

noise, we would expect increased false positive and/or false negative detections, leading to an 339 

overall reduction in restoration accuracy. A potential method that can be explored to combat this 340 

effect would be to modify the loss function to increase the penalty for false negative detections 341 

with the tradeoff of accepting more noise in the image. Alternatively, to prioritize denoising over 342 

having high sensitivity, the loss function could be modified to penalize false positive detections 343 

more heavily.  344 

  345 
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Methods 346 

In vivo imaging 347 

Animal Preparation 348 

Cranial window implants were prepared in C57 mice with dura intact, as previously described28. 349 

During imaging, mice were anesthetized with isoflurane and body temperature was maintained at 350 

37.5 °C. Blood plasma was fluorescently labeled with dextran conjugated Texas Red (70kDa, 351 

D1830, Thermo Fisher) dissolved in saline (5% w/v). The dye was administered intravenously 352 

via retro-orbital injection (0.1 mL). All animal protocols were approved by The University of 353 

Texas at Austin Institutional Animal Care and Use Committee.  354 

For stroke model mice in Fig. 4, photothrombotic ischemia was induced through retro-orbitally 355 

injecting rose bengal (0.15ml at 15 mg/ml) and irradiating a penetrating arteriole branching from 356 

the middle cerebral artery for 15 minutes. The laser source had a 532 nm wavelength, a 20mW 357 

average power, and was focused to a ~300 µm diameter spot size. Mice were anesthetized with 358 

isoflurane (1.5%, 0.6-0.8 LPM) and body temperature was maintained with a heating pad during 359 

the procedure. Pial anatomy was visualized using laser speckle contrast imaging to select which 360 

artery to target and to confirm occlusion.    361 

Image Acquisition  362 

All images were acquired using a custom-built two-photon microscope, previously described21. 363 

The excitation source was an ytterbium fiber amplifier with an output beam of 1050 nm 364 

wavelength, 120 fs pulse width, and 80 MHz repetition rate29. High-resolution images were 365 

512x512 pixels and low-resolution images were 128x128 pixels, both with a field size of 366 

700x700 µm. Image stacks were acquired with 3 µm axial spacing. A resonant-galvanometer 367 
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scanning system was used21, with average pixel dwell times of 87.8 ns and 20-frame averaging. 368 

Power at the sample did not exceed 170 mW and was identical between low- and high-resolution 369 

pairs. Large field of view images were taken as a 2-by-4 grid of standard images, with ~25-30% 370 

overlap between tiles.  371 

Image processing 372 

Image pre-processing 373 

All images were normalized prior to use as a training image or semi-synthetic test image. A 3D 374 

median filter of size [1 1 1] was applied to raw image stacks, followed by a full-scale contrast 375 

stretch (FSCS) to fill the 16-bit range with 0.3% saturation across the entire stack, using the 376 

normalization function provided by Fiji ImageJ30. This FSCS normalization method was 377 

determined to create the best images compared to FSCS across the entire stack without saturation 378 

and FSCS by image slice (Supplementary Fig. 2). Images were then converted from 16-bit to 8-379 

bit and separated into individual frames.  380 

Stitching 381 

Large field of view images acquired as a 2-by-4 grid of standard images were stitched together 382 

using ImageJ’s Grid/Collection Stitching plugin19. 383 

Semi-synthetic image generation  384 

Single-frame images 385 

To create semi-synthetic low-resolution images for training, pre-processed real-world images 386 

received one of the following types of noise: Poisson, Gaussian (µ = 0, σ = 0.1), additive-387 

Gaussian (µ = 0, σ = 5), or no noise prior to fourfold downscaling (from 512 x 512 pixels to 128 388 
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x 128 pixels). For additive-Gaussian noise, the local variance was scaled by 0.001. A range of 389 

parameters (i.e., mean, standard deviation, local variance) were tested to identify values for 390 

optimal performance. Models were trained for each combination of parameters and given test 391 

images. Output images were inspected visually, and image quality metrics (PSNR, SSIM) were 392 

calculated.  393 

Multi-frame images 394 

Low-resolution images from the single-frame semi-synthetic image generation step were used to 395 

create multi-frame training images. Multi-frame images consisted of five low-resolution images 396 

sequential in axial space with 0.3 µm separation (axial distance between acquired images).  397 

Neural networks and training 398 

The Res-U-Net architecture as described by Fang et al. as PSSR (point-scanning super 399 

resolution) was used for single-frame and multi-frame training17. We used an MSE loss function 400 

after determining that L1 and feature loss did not perform as well (Supplementary Fig. 3). A 401 

learning rate of 9e-4 was used for single-frame training and 1e-4 was used for multi-frame 402 

training. 403 

Training/Test Images  404 

Preliminary training for finding the best noise model was done with 3,399 training (data from 5 405 

mice, 16 stacks, 6 imaging sessions) and 676 validation image pairs (2 mice, 3 stacks, 2 imaging 406 

sessions). Final full dataset training was completed using 24,069 training (6 mice, 114 stacks, 19 407 

imaging sessions) and 4,494 validation (6 mice, 22 stacks, 7 imaging sessions) image pairs. Real-408 

acquired image pairs (677 image pairs from 2 mice, 3 stacks, 2 imaging sessions) were used for 409 

testing and evaluating the models. These image pairs were also used for comparing the 410 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2022. ; https://doi.org/10.1101/2022.11.30.518528doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518528
http://creativecommons.org/licenses/by/4.0/


26 
 

performance between training with real-acquired pairs vs. semi-synthetic pairs (234 image pairs 411 

for training, 221 image pairs for validation, 222 image pairs for testing; each set from 1 mouse, 1 412 

stack, 1 imaging session).  413 

Hardware 414 

Training was performed using Frontera at the Texas Advanced Computing Center (TACC) with 415 

four NVIDIA Quadro RTX 5000 GPUs using the CUDA version 10.0 toolkit.  416 

Image Quality Evaluation 417 

Image quality between upscaled images and the original image was preliminarily assessed with 418 

peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Both metrics 419 

were computed using built-in MATLAB functions. In combination, these metrics gave a general 420 

sense for image similarity, but were not indicators for morphological accuracy from 421 

vectorization. Generally, higher PSNR and SSIM values are desired. However, both metrics 422 

correlate similarities in raw intensity values to higher similarity between images, whereas the 423 

vectorization process is designed for vascular networks, is the end-goal of image acquisition, and 424 

produces quantitative anatomical information which may or may not be of interest to a particular 425 

researcher. For simplicity, when possible, we chose image segmentation accuracy (with respect 426 

to the ground truth) to measure general vectorization performance. In the case of unknown 427 

ground truth, SLAVV was used to segment the original image and estimate the CNR, which was 428 

used to match the quality of the simulated and real-acquired images. PSNR and SSIM values do 429 

not seem to fully reflect image quality improvement from denoising, as seen in Fig. 2b where 430 

image quality improves visually with the increased training data, but PSNR and SSIM values 431 

decrease slightly. In addition, higher variations in predicted pixel intensity value are seen within 432 
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white vessel regions, which can cause lower PSNR and SSIM values despite not affecting visual 433 

quality or vectorization performance. This especially affects images closer to the surface of the 434 

brain, where large arteries dominate the image, and accounts for the outlier points seen in the 435 

boxplots of Fig. 2 and Fig. 3.  436 

Vectorization 437 

All vectorization was performed using SLAVV software18. Real acquired low-resolution images 438 

were upscaled using PSSR, then vectorized and manually curated. To obtain an objective 439 

comparison of methods without manual curation bias, a simulated image with known ground 440 

truth was created from the manually curated high-resolution image. The simulated image had an 441 

identical CNR (0.94) to the original acquired high-resolution image, as measured by SLAVV as: 442 

𝐶𝑁𝑅	 = 	
(	I()*+,*)-./		–		I1234,*)-./	)	

𝑠𝑡𝑑(I1234,*)-./)
 443 

where Iforeground is average foreground intensity and Ibackground is average background intensity. 444 

A low-resolution image was created using the previously described semi-synthetic image 445 

generation method. The low-resolution image was upscaled using bilinear interpolation, the 446 

single-frame model, and the multi-frame model. Vectorization of simulated images using 447 

automated curation was possible with the known ground truth, as previously described18.  448 

From the vectorized networks for each upscaled image, the original simulated image, and the 449 

ground truth network, cumulative distribution functions were calculated for strand statistics 450 

(length, average radius, average z-direction, and inverse tortuosity). Two comparisons were then 451 

made for each strand statistics: Pearson’s correlation between each upscaled or original 452 

simulated image CDF and ground truth CDF; and Kolmogorov–Smirnov (K-S) test between each 453 
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upscaled image and original simulated image. The Pearson’s correlation values compare the 454 

performance of each simulated (upscaled or original) image against the ground truth. The 455 

original simulated image serves as a baseline for vectorization performance. The K-S test is used 456 

to determine whether the performance of each model is significantly different compared to the 457 

original simulated image.  458 

Overall accuracy was calculated for comparison as follows:  459 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = 	0.1(𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) 	+ 	0.9(𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 460 

with sensitivity and specificity defined as follows: 461 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 = 	
𝑇𝑃

(𝑇𝑃	 + 	𝐹𝑁) 462 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = 	
𝑇𝑁	

(𝑇𝑁	 + 	𝐹𝑃) 463 

where TP is the number of true positive detections, TN is true negative, FP is false positive, and 464 

FN is false negative.  465 

Blender renderings for vectorization visualization were created using VessMorphoVis 466 

software20. 467 

Statistical Analysis 468 

All significance values were Bonferroni-adjusted from the standard P value of 0.05 to address 469 

the increased possibility of type-I error. 470 

Data availability 471 

All data used for training, validation, and testing are available at the following link: (link to 472 

dataverse) 473 
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Code availability 474 

All the code presented in this work together with the trained network model are freely available 475 

at the following link: (link to gitHub page) 476 
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