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Abstract

A potential method for tracking neurovascular disease progression over time in preclinical
models is multiphoton fluorescence microscopy (MPM), which can image cerebral vasculature
with capillary-level resolution. However, obtaining high-quality, three-dimensional images with
a traditional point scanning MPM is time-consuming and limits sample sizes for chronic studies.
Here, we present a convolutional neural network-based algorithm for fast upscaling of low-
resolution or sparsely sampled images and combine it with a segmentation-less vectorization
process for 3D reconstruction and statistical analysis of vascular network structure. In doing so,
we also demonstrate that the use of semi-synthetic training data can replace the expensive and
arduous process of acquiring low- and high-resolution training pairs without compromising
vectorization outcomes, and thus open the possibility of utilizing such approaches for other
MPM tasks where collecting training data is challenging. We applied our approach to large field
of view images and show that our method generalizes across imaging depths, disease states and
other differences in neurovasculature. Our pre-trained models and lightweight architecture can be
used to reduce MPM imaging time by up to fourfold without any changes in underlying

hardware, thereby enabling deployability across a range of settings.
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Introduction

The neurovascular network transports chemicals (e.g., oxygen, nutrients, waste) to and from the
brain to support neuronal activity. Neurovascular function is disrupted by disorders such as
stroke, Alzheimer’s and other neurodegenerative diseases, and diabetes, with lasting effects that
are not fully understood!-?. Advances in multiphoton fluorescence microscopy (MPM) have
enabled imaging with capillary-level resolution in vivo, and this noninvasive tool could be used
to monitor capillary-level changes over time in cerebral vasculature as a potential predictor of
disease progression/prognosis* . A constraint with MPM, however, is the slow acquisition
process that is necessary for producing high quality, three-dimensional images with a traditional
point scanning multiphoton imaging setup. Given the physical limitations of a live animal, the
acquisition speed puts a limit on study sizes and the ability to reach statistically significant
results. Although previous approaches have sought to improve imaging speeds by incorporating
innovative imaging hardware, these implementations come at high cost and complexity and

cannot be readily employed to existing infrastructure’ ',

An alternative, more cost-effective and accessible approach might be to computationally improve
the image acquisition process using Convolutional Neural Networks (CNNs), which leverage
existing datasets of MPM images. While several recent advances have been made in applying
CNNs to improve MPM imaging results'!"!¢, to our knowledge, only one has been focused on
improving MPM imaging speed. Guan et al. presented a CNN for improving the imaging speed
of a two-photon fiberscope for neuronal imaging using a conditional generative adversarial
network (¢cGAN)!¢. They achieved a 10-fold speedup in frame rate. A drawback to their
approach, however, is the requirement for a two-part training set, involving both ex vivo and in

vivo imaging, which is extremely expensive and time-consuming. Several other models for
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general denoising or segmentation for MPM have also been focused primarily on neuronal or

11-14

calcium imaging!!"'4, with only one to our knowledge focused on vascular segmentation!>-none

of which is used for improving vascular imaging speeds.

Here, we describe a CNN based approach trained to take images captured at low-resolution (128
x 128 pixels), thereby at much faster speeds, and then upscale these to a higher resolution (512 x
512 pixels), without compromising the accuracy of vascular morphological information that is
extracted or introducing additional noise. The upscaling process from low- to high- resolution
using deep learning is referred to as image super-resolution. We then combined this with a
vectorization pipeline to obtain quantitative statistics of neurovasculature. Our pre-trained
models and light architecture allows for fast acquisition, image super-resolution, and
vectorization of MPM images without the limitations of added hardware and can be used to

reduce imaging time by up to fourfold.

Results
Structure and analysis pipeline overview

Our pipeline to improve two-photon microscopy acquisition and vectorization accepts individual
as well as multiple frames from MPM imaging. Our process is split into two main parts: an
image super-resolution CNN designed to upscale low-resolution images and a vectorization
pipeline that is designed to output morphological statistics on the acquired images (Fig. 1). For
super-resolving the images, we used the PSSR Res-U-Net architecture, which had been shown to
restore images of presynaptic vesicles and neuronal mitochondria from a scanning electron
microscope (SEM) and a laser scanning confocal microscope, respectively!”. We utilized this

architecture over several other possible ones because it: (a) allowed us to use semi-synthetic data
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for training which circumvents the need to acquire real-world image pairs for training, which is
difficult and expensive for large datasets (b) enabled us to also employ multi-frame inputs that
could leverage information across correlated images at similar depths (c) does not utilize an
adversarial network in the training, which are more challenging to train as well as to evaluate the
generated models (d) allowed us to use a transfer learning approach to initialize our model with
weights obtained with the architecture trained on ImageNet, a large natural image classification
dataset. For vectorization, we used Segmentation-Less, Automated, Vascular Vectorization
(SLAVV)!®, which uses simple models of vascular anatomy, and efficient linear filtering and
vector extraction algorithms with manual or automated vector classification. Using a multi-frame
PSSR approach and combining it with a vectorization pipeline, we show that we are able to
restore two-photon vascular images sufficiently for extracting morphological characteristics

through vectorization.


https://doi.org/10.1101/2022.11.30.518528
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518528; this version posted December 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Low-Resolution Image Acquisition

Upscaling (PSSR architecture) l

low-resolution _ _
128 x 128 px high-resolution

512 x 512 px

single frame

PSSR (Res-U-Net)

\ 4

\ 4

A 4

upscaling network

5 10000
8000

3 6000

1| 2000

10’ 10? 10° 10' 10% 10* 10*
strand length [um] strand radius [um] strand area [um?)

upscaled vertex & edge vascular network

21 image stack detection rendering & statistics


https://doi.org/10.1101/2022.11.30.518528
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.30.518528; this version posted December 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

82  Fig. 1: Structure and analysis pipeline. Low-resolution images (128 x 128 pixels) are acquired
83  using two-photon microscopy. A deep learning (PSSR Res-U-Net) based upscaling process

84  generates high-resolution images (512 x 512 pixels), which take much longer to acquire, from
85  low-resolution images. Segmentation-less vascular vectorization (SLAVV) generates 3D

86  renderings and calculates network statistics from an upscaled image stack.

87  Transfer learning, creation and evaluation of semi-synthetic training data

88  Traditional approaches to upscaling images involve acquiring paired high- and low-resolution

89  real-world images that we could use for training the model. For our task, however, this process is
90  expensive and time-consuming, and in certain situations impossible for live animals. This

91  challenge greatly limits the practical sample size of training datasets. To overcome this

92  difficulty, we sought to use semi-synthetic training data that mimics low-resolution acquisition to
93  greatly improve sample size. Semi-synthetic training data was created by adding noise to, then
94  downscaling, full-resolution images from a two-photon vascular image repository of previously
95  acquired images (see Data Availability). We evaluated several approaches for the creation of this
96  semi-synthetic data and compared our results to a model trained with a real-world dataset of the

97  same sample size.

98  To mimic the noise observed in real-acquired low-resolution images (i.e., real data), we tested

99  models trained with semi-synthetic images that were created with the following noise filters: no
100  noise (downscaled only, used as the reference), Poisson noise, Gaussian noise, and additive-
101  Gaussian-distributed noise (Fig. 2a). Real-acquired low-resolution images served as input

102  images to test the model. We evaluated model performance using standard image quality metrics,
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103 specifically, by calculating peak signal-to-noise ratio (PSNR) and structural similarity index

104  measure (SSIM) between the model output and acquired full resolution image.

105  The resulting median PSNR and SSIM values from each model, ranked from highest to lowest
106  for both metrics, were as follows: Gaussian, additive-Gaussian, Poisson, no noise (Fig. 2b-c).
107  This was determined using Wilcoxon signed rank tests with P < 0.005 (Bonferroni-adjusted). We
108  noticed that the Gaussian and additive-Gaussian models perform similarly, and thus performed
109  further testing to compare the two noise methods using a larger training set, consisting of 24,069
110 semi-synthetic training image pairs—7x the preliminary training set of 3,399 semi-synthetic

111  image pairs. The test image outputs from the models trained with the larger dataset showed

112 notable qualitative improvements, with fewer false detections, less noise, and smoother vessel
113 shapes. With the larger dataset, the Gaussian model produced a slightly higher median PSNR
114 value but did not produce a median SSIM value that was statistically significantly different from
115  that produced by additive-Gaussian (Wilcoxon signed rank test, P < 0.005). Despite the slightly
116  higher PSNR performance by the Gaussian model, however, a qualitative comparison suggested
117  that the additive-Gaussian results had somewhat less noise and higher sensitivity to fainter

118  vessels. Additionally, PSNR only measures similarity in pixel values and does not necessarily
119  predict vectorization performance, which is what we ultimately wish to optimize. To fully

120  validate and compare the performance between the Gaussian- and additive-Gaussian-trained

121  models, we performed a final comparison test using the Segmentation-Less Automated Vascular
122 Vectorization (SLAVYV) software (further described in later section). We found that the additive-
123 Gaussian model output allowed for a more accurate vessel detection overall compared to the

124 Gaussian model output (95.7% vs 95.6%). Based on these results, we chose to perform
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125  subsequent analyses using the model trained with the full dataset of semi-synthetic images

126  created using the additive-Gaussian noise method to maximize accurate vessel detection.

127  To evaluate the effectiveness of using semi-synthetic data in place of real-world training data, we
128  compared the performance of models trained with each method (Fig. 2d-e). For this comparison,
129  both models were trained with 234 image pairs, due to the limited availability of acquired image
130  pairs. The output image from the real-acquired model appeared blurrier and over-predicted

131  vessel diameters more significantly compared to the semi-synthetic model (Supplemental

132 Figure 1). Nonetheless, the model trained with real-world data had higher median PSNR and

133 SSIM values compared to the model trained with semi-synthetic data (Wilcoxon signed rank test,
134 P <0.05), although the values were close (PSNR: 26.9 vs. 26.6; SSIM: 0.492 vs. 0.494). We

135  deem the results similar enough for semi-synthetic training data to be used in place of real-world
136  training data. The use of semi-synthetic data advantageously circumvents complications from
137  imprecise alignment in the acquisition of image pairs, limited availability of existing images (677

138  pairs), and high material and labor costs for data collection.
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140  Fig. 2: Generating and evaluating semi-synthetic training data. a Examples of semi-synthetic
141  training images created using different types of added noise prior to downscaling: no noise

142 (downscaling only), Poisson, Gaussian, and additive Gaussian. Acquired low-resolution (LR,

143 128x128 pixels) and high-resolution (HR, 512x512 pixels) ground truth images are shown for
144  reference. b Resulting test images from models trained using each noise method, with acquired
145  low-resolution image for model input and acquired high-resolution image as ground truth for

146  comparison. All models were trained with 3,399 image pairs, with the Gaussian and additive

147  Gaussian models further tested on 24,069 image pairs (7x) to further test performance. ¢ Boxplot
148  comparison of PSNR and SSIM values for each noise method image in b measured against

149  ground truth image. Values plotted for an image stack of 222 images. d Comparison of test

150  images from models trained using real-world acquired vs. semi-synthetic data, with real-acquired
151  low-resolution image for model input and acquired high-resolution image as ground truth for

152 reference. All models were trained with 234 image pairs, a large reduction from the noise model
153  comparison, due to the limited availability of real-world pairs. e Boxplot comparison of PSNR
154  and SSIM values for real-acquired vs. semi-synthetic model outputs corresponding to d,

155  measured against high-resolution ground truth image. All values are plotted for an image stack of

156 222 images.

157  Single-frame vs. multi-frame training

158 A key issue with low-resolution acquired images is the diminished amount of total signal

159  capture. This can result in noisier images and cause spurious vessels to appear in the

160  vectorization process. A potential method for reducing false detections is providing the model
161  neighboring depth images on a stack, which are highly correlated in signal but not in noise. Thus,
162  we sought to improve the performance of our model by using multi-frame image input.

10
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163 We compare the performance of the single-frame model to a multi-frame model, with an

164  additional comparison against the traditional bilinear upscaling method, for both semi-synthetic
165  and real-world test images (Fig. 3). The traditional bilinear upscaling method offers a baseline
166  performance measure for a non-CNN approach. The multi-frame model is trained with input

167  image stacks consisting of five sequential images in depth, with axial offsets of 0.3 um, to

168  predict a single output image—the third image in the input sequence. The multi-frame model
169  yields images with higher PSNR and SSIM values than the single-frame model, and both PSSR
170  methods outperform the bilinear upscaling method for both semi-synthetic and real-world test
171  images (Wilcoxon signed rank test, P < 0.0167, Bonferroni-adjusted). Overall PSNR and SSIM
172 values are higher for semi-synthetic images compared to real-world images, which is

173 unsurprising given the model was trained completely on semi-synthetic images. Nonetheless, the
174  real-world output images from our models show that individual vessels can be resolved, which is
175  much more important for the final vectorization process than the exact pixel values measured by

176  PSNR.

11
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178  Fig. 3: Comparison of performance between bilinear upscaling, a single-frame model, and a
179  multi-frame model for semi-synthetic and real-acquired test images. All models were trained

180  with 24,069 image pairs. a Semi-synthetic test images from bilinear upscaling and models

181  trained using single- vs. multi-frame data. Acquired low-resolution image for model input and
182  acquired high-resolution image as ground truth are shown for reference. b PSNR and SSIM plots
183  corresponding to semi-synthetic test results from a. ¢ Real-world test images from bilinear

184  upscaling and models trained using single- vs. multi-frame data. d PSNR and SSIM plots

185  corresponding to real-world test image results from c.

186  Reconstruction and stitching of infarct images

187 A major application of two-photon imaging that we aim to make more accessible with our

188  approach is large field of view (FOV) imaging of diseased vasculature. An example of this is
189  acquiring images from a stroke model, which is of interest for studying disease effects on

190  vascular morphology. Large FOV imaging with high resolution is a time-consuming process and
191  thus would benefit substantially from the speedup offered by low-resolution imaging. Large

192  FOV images are achieved by acquiring, then stitching standard-sized tiles together using

193 ImagelJ’s Grid/Collection Stitching plugin'®. However, the long acquisition times required of
194 current technologies limit our ability to collect substantial two-photon image sets of diseased
195  vascular networks and thus limit the availability of images of diseased vasculature that could be

196  used for training data.

197  To investigate the feasibility of using our models to drastically reduce imaging times for large
198  FOV images of diseased vasculature with minimal information loss, we examined the ability of

199  our single-frame and multi-frame models, trained only with images of normal vasculature, to

13
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200  restore a semi-synthetic large FOV image of an ischemic infarct (four weeks post-stroke)

201  collected in a preliminary study (Fig. 4). The differences in morphology between vasculature in
202  the peri-infarct region and normal vasculature are exemplified by the differences between the top
203 half of the full image, which more closely resembles normal vasculature, and the bottom half of
204  the image, which captures the infarct region and the more immediately surrounding vessels.

205  Ischemic infarct vessels appear significantly more parallel to the imaging plane, thus creating
206  image slices with higher vascular area density compared to the more perpendicularly oriented
207  vessels further from the infarct. Despite these morphological differences and having only trained
208  with images of normal vasculature, our models are able to resolve capillaries in the infarct

209  region, as shown in the insets of Fig. 4. The multi-frame output image more closely resembles
210  the HR image compared to the single-frame image, as vessel radii are more consistent in the

211  multi-frame image. In the case of the LR and bilinear-upscaled images, the individual capillaries

212  in the inset cannot be resolved.

213

14
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LR Bilinear Single-frame Multi-frame HR

214

215  Fig. 4. Maximum intensity projections (x-y) of ischemic infarct images consisting of 2x4 tiles
216  with 213 slices (final dimensions 1.18 mm x 2.10 mm x 0.636 mm, pixel dimensions 1.34 um x
217  1.36 um x 3 pm) for a semi-synthetic low-resolution image, bilinear upscaled image, single- and

218  multi-frame output images, and acquired high-resolution image.

219 Vectorization

220  Vectorization is the ultimate step that extracts quantitative information for evaluating the

221  vascular morphology of a network. Therefore, we are interested in comparing different image
222 generation strategies by comparing performance after vectorization. We demonstrate successful
223 vectorization of single- and multi-frame model output images from real-acquired low-resolution
224 images using manual-curation-assisted SLAVV and visualization with VessMorphoVis? (Fig.
225  5a). Additionally, we perform a more objective comparison of our models’ performance using a

226  previously described method!®, which uses simulated images from a known ground truth and

15
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227  automated vector classification (no manual assist). Using a known ground truth (derived from the
228  real-acquired high resolution vectorized network shown in (Fig. Sa), we are able to quantify the
229  sensitivity, specificity, and accuracy of the vectorized upscaled images. We generated the

230  simulated vascular image to have the same contrast-to-noise ratio (CNR) of 0.94 as the real

231  acquired high resolution image and to be representative of the image quality of a typical image
232 acquired by our two-photon microscope. We created a low-resolution version of the simulated
233 image using the same method for creating semi-synthetic training data and then upscaled it using
234  bilinear interpolation and our single-frame and multi-frame models. We then vectorized these
235  images using fully automated (globally thresholded) SLAVYV at peak segmentation performance
236  (measured against the ground truth image). The resulting strand objects are the minimal set of

237  one-dimensional traces which span the entire vascular network.

238  We plotted cumulative distribution functions (CDFs) for each image for each of the following
239  strand metrics: length, radius, z-direction, and inverse tortuosity (Fig. Sb). We included the

240  simulated original image in the analysis as a control for the automated curation process since the
241  ground truth image was obtained through manual curation. For each strand metric, we calculated
242 Pearson’s correlation (°) values between the CDFs of the ground truth image and the simulated
243 images. Of all the images, the simulated original image maintained the highest 7 value for

244 average strand radius and inverse tortuosity. Our multi-frame model had the highest 7 value for
245 strand length, while bilinear and the single-frame model produced the highest 7 value for z-

246  direction. We performed a Kolmogorov—Smirnov (K-S) test to compare the CDFs of each

247  upscaling method against that of the simulated original image. The multi-frame CDFs for strand
248  length, radius, and z-direction; the single-frame CDFs for length and z-direction; and the bilinear

249  CDF for z-direction were not significantly different from those of the simulated original image (p
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250  <0.0167, Bonferroni-adjusted). Thus, of the tested upscaling methods, the multi-frame model

251  produced the most statistically comparable strand metrics to the simulated original image.

252  We calculated overall accuracy with respect to the ground truth for each image (Fig. Sc¢). The
253  original simulated image retains the highest vectorization accuracy (96.2%), followed by multi-
254  frame (95.7%), single-frame (95.2%), and bilinear (94.5%). In terms of accuracy with raw image
255  segmentation through intensity thresholding, however, multi-frame performs best (96.0%),

256  followed by single-frame (95.3%), bilinear (94.4%), and original simulated image (91.9%). We
257  also calculated the percent error in the median length and median radius, the characteristics that
258  best represent the vessel morphology, between each image against the ground truth values.

259  Multi-frame produced the lowest median length error (6.4%), followed by bilinear (7.2%),

260  single-frame (8.1%), and the original simulated image (8.2%). The bilinear and single-frame
261  images had notably higher median radius errors (40.1% and 41.6%, respectively) compared to
262  the multi-frame and original simulated images (both 26.9%), which was noted with visual

263  inspection of the images as well. These statistics further support that a multi-frame upscaled

264  image produces comparable vectorization results to an original high-resolution image.
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Single-frame
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) Bilinear upsample (BL) 0.9981 0.9049 0.9994 0.9993
r
PSSR Single-Frame (SF) 0.9993 0.9054 0.9994 0.9973
PSSR Multi-Frame (MF) 0.9997 0.9654 0.9992 0.9972
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266  Fig. 5. Vectorization results. a Blender rendering of vectorized images using VessMorphoVis?’
267  for visual comparison between single- and multi-frame results and an acquired high-resolution
268  image. We performed manual curation for this vectorization process. b Vectorized image

269  statistics for automated curation process with known ground truth (simulated from manually

270  curated high-resolution image). CDFs shown for metrics of length, radius, z-direction, and

271  inverse tortuosity for original (OG), simulated original (sOG), bilinear upscaled (BL), and PSSR
272  single- and multi-frame (SF, MF, respectively) images. Pearson’s correlation values (°) were
273 calculated between the original image and each simulated or upscaled image for each metric. ¢
274  Statistics regarding maximum accuracy (%) achieved with vectorization or thresholding and %

275  error in median length and radius for each method.
276  Discussion

277  To our knowledge, this is the first time that a deep learning model has been demonstrated to
278  improve imaging speeds for two-photon microscopy by upscaling and denoising low-resolution
279  images of vasculature while retaining accuracy in extracted morphological characteristics. For
280  this application, our model outperforms the traditional, non-CNN bilinear upscaling technique in
281  output image quality (Fig. 3, 4) and vectorization accuracy (Fig. 5). The performance of our
282  models also improves notably with increased training data (Fig. 2b), therefore substantial time
283  and material costs are reduced by training the model with semi-synthetic images generated from
284  our database of 28,563 previously acquired two-photon vascular images. Real-world data also
285  introduces further complications by requiring image registration. Not only would this add

286  computational hours, but the image registration process also does not produce perfect alignment
287  because it is limited to being purely translational and free of interpolation to maintain the

288  original recorded pixel values. Any rotational misalignments would not be accurately
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289  correctable. We speculate that these misalignments in real-world training image pairs caused the
290  overly blurry and enlarged vascular structures seen in the results of preliminary experiments

291  (Fig. 2d, Supplementary Fig. 1).

292  Models trained from semi-synthetic images proved capable of restoring low-resolution vascular
293  images and outperformed the standard bilinear interpolation method. For performing

294  segmentation via intensity thresholding (Fig. Sc¢), multi-frame had the highest accuracy of the
295  upscaling methods and significantly outperformed the original standard-resolution image. We
296  hypothesize that this is a result of the denoising that occurs in the PSSR process. Since all

297  upscaled images had higher intensity thresholding accuracy compared to the original image, we
298  further postulate that upscaled images have less noise overall because fewer pixels are physically
299  captured—all pixels created during upscaling are interpolated from neighboring pixel values and
300 thus free of noise from the image acquisition process®!. For performing vectorization, however,
301 the diminished noise does not offset accuracy losses from the upscaling process. We determined
302  that the multi-frame model yields the highest accuracy of the three upscaling methods but did not
303  outperform the original standard-resolution image. Nonetheless, the multi-frame image also

304  produced the greatest number of CDFs for strand metrics that were not significantly different
305  from those of a standard-resolution image. We consider these results from the multi-frame model
306  to be within acceptable tolerance for vectorization accuracy and similarity in strand statistics for
307  our previously described purposes of characterizing the structural properties of the vessels of a

308  particular network?>23,

309 By acquiring low-resolution images, the imaging time could be reduced by up to half in a two-
310  photon microscope with a resonant-galvo scanning system and by up to fourfold with a galvo-

311  galvo scanning system. The reduction in imaging time can have several benefits. For instance,
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312 faster imaging times reduce risk of phototoxicity and thermal damage if excitation powers are
313 kept constant?*?>, Additionally, the amount of time for which the subject is under anesthesia is
314  reduced, decreasing the risk of vascular dilation?® which can create skewed vectorization

315  statistics. The reduction in imaging time can also decrease the injection volume and frequency of
316  fluorescent dye, which alone can save up to hundreds of dollars in addition to eliminate the risk
317  of sample misalignment caused by a re-injection during an imaging session. A specific but major
318  benefit for those wishing to conduct chronic studies is that the faster acquisition times will allow
319  for larger cohorts, which are currently constrained by the number of animals that can reasonably
320  be imaged within each timepoint. This would yield more statistically significant sample sizes for

321  studying and comparing healthy and diseased vasculatures over time.

322 With the potential for future disease studies in mind, we tested our model on data from a mouse
323  that was given a stroke. We show that our model, despite having only been trained with images
324  of healthy vasculature, can reasonably restore images taken from a peri-infarct region with

325  sufficient resolution for the image stitching algorithm to successfully create a large FOV image.
326  These results from semi-synthetic test data are promising for being able to apply the model

327  broadly to different disease models, although further validation should be performed with real-

328  world test data.

329  Another area of research that could benefit from increased imaging speeds is in the study of light
330  propagation through the brain, for the development of noninvasive brain imaging devices. With
331  accessibility to a larger database of large FOV two-photon images, light propagation models can
332 be more thoroughly developed, tested, and refined?’. As precise capillary capture is not necessary
333  for these models, the use of even lower resolution and faster imaging could be further explored

334  with PSSR. Although losses in accuracy in low-resolution images are inevitable due to less
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information being captured, experimentation with the accuracy and speedup tradeoff can be done

to fit the tolerance of any application.

The potential for further speedup by reducing frame averaging could also be explored. Lower
frame averaging leads to higher noise levels, which PSSR can be used to reduce. With higher
noise, we would expect increased false positive and/or false negative detections, leading to an
overall reduction in restoration accuracy. A potential method that can be explored to combat this
effect would be to modify the loss function to increase the penalty for false negative detections
with the tradeoff of accepting more noise in the image. Alternatively, to prioritize denoising over
having high sensitivity, the loss function could be modified to penalize false positive detections

more heavily.
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346  Methods
347  Invivo imaging
348  Animal Preparation

349  Cranial window implants were prepared in C57 mice with dura intact, as previously described?®.
350  During imaging, mice were anesthetized with isoflurane and body temperature was maintained at
351  37.5 °C. Blood plasma was fluorescently labeled with dextran conjugated Texas Red (70kDa,
352  DI1830, Thermo Fisher) dissolved in saline (5% w/v). The dye was administered intravenously
353  viaretro-orbital injection (0.1 mL). All animal protocols were approved by The University of

354  Texas at Austin Institutional Animal Care and Use Committee.

355  For stroke model mice in Fig. 4, photothrombotic ischemia was induced through retro-orbitally
356  injecting rose bengal (0.15ml at 15 mg/ml) and irradiating a penetrating arteriole branching from
357  the middle cerebral artery for 15 minutes. The laser source had a 532 nm wavelength, a 20mW
358  average power, and was focused to a ~300 um diameter spot size. Mice were anesthetized with
359  isoflurane (1.5%, 0.6-0.8 LPM) and body temperature was maintained with a heating pad during
360  the procedure. Pial anatomy was visualized using laser speckle contrast imaging to select which

361 artery to target and to confirm occlusion.
362  Image Acquisition

363  All images were acquired using a custom-built two-photon microscope, previously described?!.
364  The excitation source was an ytterbium fiber amplifier with an output beam of 1050 nm

365  wavelength, 120 fs pulse width, and 80 MHz repetition rate?®. High-resolution images were
366  512x512 pixels and low-resolution images were 128x128 pixels, both with a field size of

367  700x700 pm. Image stacks were acquired with 3 pm axial spacing. A resonant-galvanometer
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368  scanning system was used?!, with average pixel dwell times of 87.8 ns and 20-frame averaging.
369  Power at the sample did not exceed 170 mW and was identical between low- and high-resolution
370  pairs. Large field of view images were taken as a 2-by-4 grid of standard images, with ~25-30%

371  overlap between tiles.
372  Image processing
373  Image pre-processing

374  All images were normalized prior to use as a training image or semi-synthetic test image. A 3D
375  median filter of size [1 1 1] was applied to raw image stacks, followed by a full-scale contrast
376  stretch (FSCS) to fill the 16-bit range with 0.3% saturation across the entire stack, using the

377  normalization function provided by Fiji ImageJ*°. This FSCS normalization method was

378  determined to create the best images compared to FSCS across the entire stack without saturation
379  and FSCS by image slice (Supplementary Fig. 2). Images were then converted from 16-bit to 8-

380  bit and separated into individual frames.
381  Stitching

382  Large field of view images acquired as a 2-by-4 grid of standard images were stitched together

383  using Imagel’s Grid/Collection Stitching plugin'®.
384  Semi-synthetic image generation
385  Single-frame images

386  To create semi-synthetic low-resolution images for training, pre-processed real-world images
387  received one of the following types of noise: Poisson, Gaussian (n =0, ¢ = 0.1), additive-

388  Gaussian (L =0, 6 =5), or no noise prior to fourfold downscaling (from 512 x 512 pixels to 128
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389  x 128 pixels). For additive-Gaussian noise, the local variance was scaled by 0.001. A range of
390  parameters (i.e., mean, standard deviation, local variance) were tested to identify values for
391  optimal performance. Models were trained for each combination of parameters and given test
392 images. Output images were inspected visually, and image quality metrics (PSNR, SSIM) were

393  calculated.
394 Multi-frame images

395  Low-resolution images from the single-frame semi-synthetic image generation step were used to
396  create multi-frame training images. Multi-frame images consisted of five low-resolution images

397  sequential in axial space with 0.3 pum separation (axial distance between acquired images).
398  Neural networks and training

399  The Res-U-Net architecture as described by Fang et al. as PSSR (point-scanning super

400  resolution) was used for single-frame and multi-frame training!’. We used an MSE loss function
401  after determining that L1 and feature loss did not perform as well (Supplementary Fig. 3). A
402  learning rate of 9e-4 was used for single-frame training and 1e-4 was used for multi-frame

403  training.
404  Training/Test Images

405  Preliminary training for finding the best noise model was done with 3,399 training (data from 5
406  mice, 16 stacks, 6 imaging sessions) and 676 validation image pairs (2 mice, 3 stacks, 2 imaging
407  sessions). Final full dataset training was completed using 24,069 training (6 mice, 114 stacks, 19
408  imaging sessions) and 4,494 validation (6 mice, 22 stacks, 7 imaging sessions) image pairs. Real-
409  acquired image pairs (677 image pairs from 2 mice, 3 stacks, 2 imaging sessions) were used for
410  testing and evaluating the models. These image pairs were also used for comparing the
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411  performance between training with real-acquired pairs vs. semi-synthetic pairs (234 image pairs
412 for training, 221 image pairs for validation, 222 image pairs for testing; each set from 1 mouse, 1

413  stack, 1 imaging session).

414  Hardware

415  Training was performed using Frontera at the Texas Advanced Computing Center (TACC) with

416  four NVIDIA Quadro RTX 5000 GPUs using the CUDA version 10.0 toolkit.

417  Image Quality Evaluation

418  Image quality between upscaled images and the original image was preliminarily assessed with
419  peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Both metrics
420  were computed using built-in MATLAB functions. In combination, these metrics gave a general
421  sense for image similarity, but were not indicators for morphological accuracy from

422  vectorization. Generally, higher PSNR and SSIM values are desired. However, both metrics

423 correlate similarities in raw intensity values to higher similarity between images, whereas the
424  vectorization process is designed for vascular networks, is the end-goal of image acquisition, and
425  produces quantitative anatomical information which may or may not be of interest to a particular
426  researcher. For simplicity, when possible, we chose image segmentation accuracy (with respect
427  to the ground truth) to measure general vectorization performance. In the case of unknown

428  ground truth, SLAVV was used to segment the original image and estimate the CNR, which was
429  wused to match the quality of the simulated and real-acquired images. PSNR and SSIM values do
430 not seem to fully reflect image quality improvement from denoising, as seen in Fig. 2b where
431  image quality improves visually with the increased training data, but PSNR and SSIM values

432  decrease slightly. In addition, higher variations in predicted pixel intensity value are seen within
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433 white vessel regions, which can cause lower PSNR and SSIM values despite not affecting visual
434  quality or vectorization performance. This especially affects images closer to the surface of the
435  brain, where large arteries dominate the image, and accounts for the outlier points seen in the

436  boxplots of Fig. 2 and Fig. 3.
437  Vectorization

438  All vectorization was performed using SLAVV software!8. Real acquired low-resolution images
439  were upscaled using PSSR, then vectorized and manually curated. To obtain an objective

440  comparison of methods without manual curation bias, a simulated image with known ground
441  truth was created from the manually curated high-resolution image. The simulated image had an

442  identical CNR (0.94) to the original acquired high-resolution image, as measured by SLAVYV as:

443 CNR = ( Iforeground - Ibackground )

std (Ibackground)

444 where Iforeground 1S average foreground intensity and Ipackground 1S average background intensity.

445 A low-resolution image was created using the previously described semi-synthetic image
446  generation method. The low-resolution image was upscaled using bilinear interpolation, the
447  single-frame model, and the multi-frame model. Vectorization of simulated images using

448  automated curation was possible with the known ground truth, as previously described!®.

449  From the vectorized networks for each upscaled image, the original simulated image, and the
450  ground truth network, cumulative distribution functions were calculated for strand statistics

451  (length, average radius, average z-direction, and inverse tortuosity). Two comparisons were then
452  made for each strand statistics: Pearson’s correlation between each upscaled or original

453  simulated image CDF and ground truth CDF; and Kolmogorov—Smirnov (K-S) test between each
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upscaled image and original simulated image. The Pearson’s correlation values compare the
performance of each simulated (upscaled or original) image against the ground truth. The
original simulated image serves as a baseline for vectorization performance. The K-S test is used
to determine whether the performance of each model is significantly different compared to the

original simulated image.

Overall accuracy was calculated for comparison as follows:

accuracy = 0.1(sensitivity) + 0.9(specificity)

with sensitivity and specificity defined as follows:

ity = TP
sensitivity = (TP n FN)

e TN
SPElelClty = m

where TP is the number of true positive detections, TN is true negative, FP is false positive, and

FN is false negative.

Blender renderings for vectorization visualization were created using VessMorphoVis

software?’,

Statistical Analysis

All significance values were Bonferroni-adjusted from the standard P value of 0.05 to address

the increased possibility of type-I error.

Data availability

All data used for training, validation, and testing are available at the following link: (link to

dataverse)
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474  Code availability

475  All the code presented in this work together with the trained network model are freely available

476  at the following link: (link to gitHub page)
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