

1 **A deep learning approach for improving two-photon vascular imaging speeds**

2 Annie Zhou¹, Samuel A. Mihelic¹, Shaun A. Engelmann¹, Alankrit Tomar¹, Andrew K. Dunn¹⁺
3 & Vagheesh M. Narasimhan^{2,3+}

4 ¹*Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA*

5 ²*Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway C0930, Austin, TX 78712, USA*

6 ³*Department of Statistics and Data Sciences, The University of Texas at Austin, 105 E. 24th St D9800, Austin, TX 78712, USA*

7 ⁺Co-corresponding authors

8 **Abstract**

9 A potential method for tracking neurovascular disease progression over time in preclinical
10 models is multiphoton fluorescence microscopy (MPM), which can image cerebral vasculature
11 with capillary-level resolution. However, obtaining high-quality, three-dimensional images with
12 a traditional point scanning MPM is time-consuming and limits sample sizes for chronic studies.
13 Here, we present a convolutional neural network-based algorithm for fast upscaling of low-
14 resolution or sparsely sampled images and combine it with a segmentation-less vectorization
15 process for 3D reconstruction and statistical analysis of vascular network structure. In doing so,
16 we also demonstrate that the use of semi-synthetic training data can replace the expensive and
17 arduous process of acquiring low- and high-resolution training pairs without compromising
18 vectorization outcomes, and thus open the possibility of utilizing such approaches for other
19 MPM tasks where collecting training data is challenging. We applied our approach to large field
20 of view images and show that our method generalizes across imaging depths, disease states and
21 other differences in neurovasculature. Our pre-trained models and lightweight architecture can be
22 used to reduce MPM imaging time by up to fourfold without any changes in underlying
23 hardware, thereby enabling deployability across a range of settings.

24 **Introduction**

25 The neurovascular network transports chemicals (e.g., oxygen, nutrients, waste) to and from the
26 brain to support neuronal activity. Neurovascular function is disrupted by disorders such as
27 stroke, Alzheimer's and other neurodegenerative diseases, and diabetes, with lasting effects that
28 are not fully understood^{1,2}. Advances in multiphoton fluorescence microscopy (MPM) have
29 enabled imaging with capillary-level resolution *in vivo*, and this noninvasive tool could be used
30 to monitor capillary-level changes over time in cerebral vasculature as a potential predictor of
31 disease progression/prognosis^{3–6}. A constraint with MPM, however, is the slow acquisition
32 process that is necessary for producing high quality, three-dimensional images with a traditional
33 point scanning multiphoton imaging setup. Given the physical limitations of a live animal, the
34 acquisition speed puts a limit on study sizes and the ability to reach statistically significant
35 results. Although previous approaches have sought to improve imaging speeds by incorporating
36 innovative imaging hardware, these implementations come at high cost and complexity and
37 cannot be readily employed to existing infrastructure^{7–10}.

38 An alternative, more cost-effective and accessible approach might be to computationally improve
39 the image acquisition process using Convolutional Neural Networks (CNNs), which leverage
40 existing datasets of MPM images. While several recent advances have been made in applying
41 CNNs to improve MPM imaging results^{11–16}, to our knowledge, only one has been focused on
42 improving MPM imaging speed. Guan et al. presented a CNN for improving the imaging speed
43 of a two-photon fiberscope for neuronal imaging using a conditional generative adversarial
44 network (cGAN)¹⁶. They achieved a 10-fold speedup in frame rate. A drawback to their
45 approach, however, is the requirement for a two-part training set, involving both *ex vivo* and *in*
46 *vivo* imaging, which is extremely expensive and time-consuming. Several other models for

47 general denoising or segmentation for MPM have also been focused primarily on neuronal or
48 calcium imaging¹¹⁻¹⁴, with only one to our knowledge focused on vascular segmentation¹⁵—none
49 of which is used for improving vascular imaging speeds.

50 Here, we describe a CNN based approach trained to take images captured at low-resolution (128
51 x 128 pixels), thereby at much faster speeds, and then upscale these to a higher resolution (512 x
52 512 pixels), without compromising the accuracy of vascular morphological information that is
53 extracted or introducing additional noise. The upscaling process from low- to high- resolution
54 using deep learning is referred to as image super-resolution. We then combined this with a
55 vectorization pipeline to obtain quantitative statistics of neurovasculature. Our pre-trained
56 models and light architecture allows for fast acquisition, image super-resolution, and
57 vectorization of MPM images without the limitations of added hardware and can be used to
58 reduce imaging time by up to fourfold.

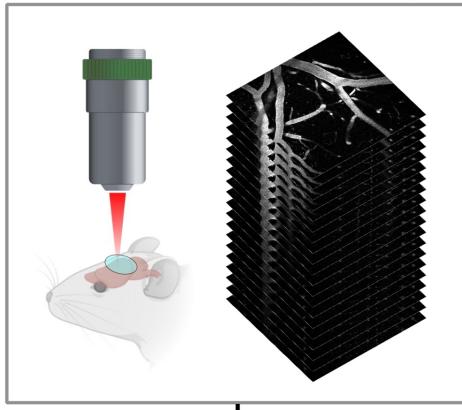
59 **Results**

60 ***Structure and analysis pipeline overview***

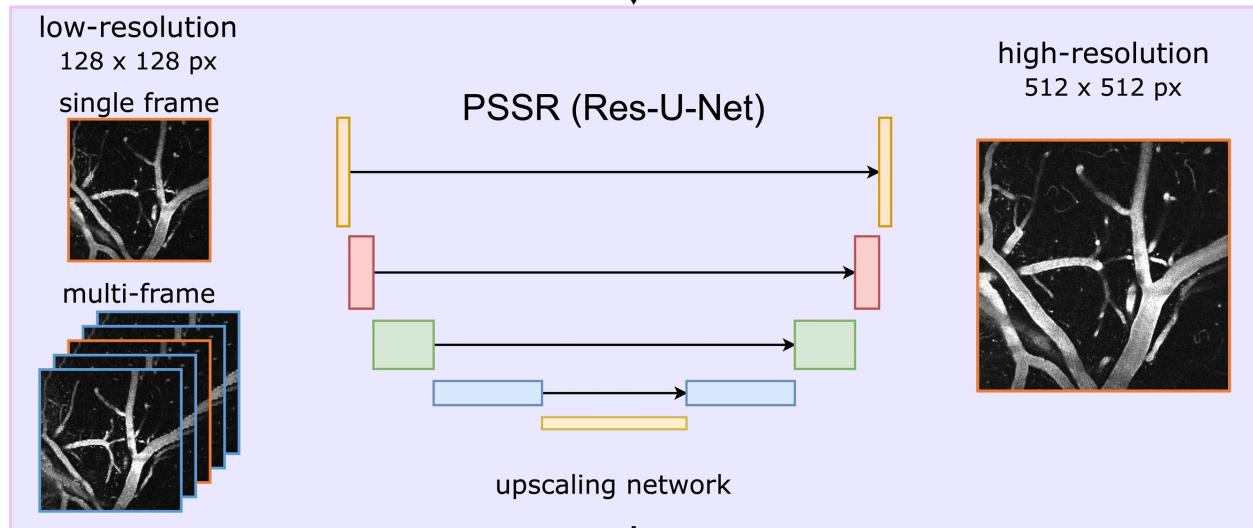
61 Our pipeline to improve two-photon microscopy acquisition and vectorization accepts individual
62 as well as multiple frames from MPM imaging. Our process is split into two main parts: an
63 image super-resolution CNN designed to upscale low-resolution images and a vectorization
64 pipeline that is designed to output morphological statistics on the acquired images (**Fig. 1**). For
65 super-resolving the images, we used the PSSR Res-U-Net architecture, which had been shown to
66 restore images of presynaptic vesicles and neuronal mitochondria from a scanning electron
67 microscope (SEM) and a laser scanning confocal microscope, respectively¹⁷. We utilized this
68 architecture over several other possible ones because it: (a) allowed us to use semi-synthetic data

69 for training which circumvents the need to acquire real-world image pairs for training, which is
70 difficult and expensive for large datasets (b) enabled us to also employ multi-frame inputs that
71 could leverage information across correlated images at similar depths (c) does not utilize an
72 adversarial network in the training, which are more challenging to train as well as to evaluate the
73 generated models (d) allowed us to use a transfer learning approach to initialize our model with
74 weights obtained with the architecture trained on ImageNet, a large natural image classification
75 dataset. For vectorization, we used Segmentation-Less, Automated, Vascular Vectorization
76 (SLAVV)¹⁸, which uses simple models of vascular anatomy, and efficient linear filtering and
77 vector extraction algorithms with manual or automated vector classification. Using a multi-frame
78 PSSR approach and combining it with a vectorization pipeline, we show that we are able to
79 restore two-photon vascular images sufficiently for extracting morphological characteristics
80 through vectorization.

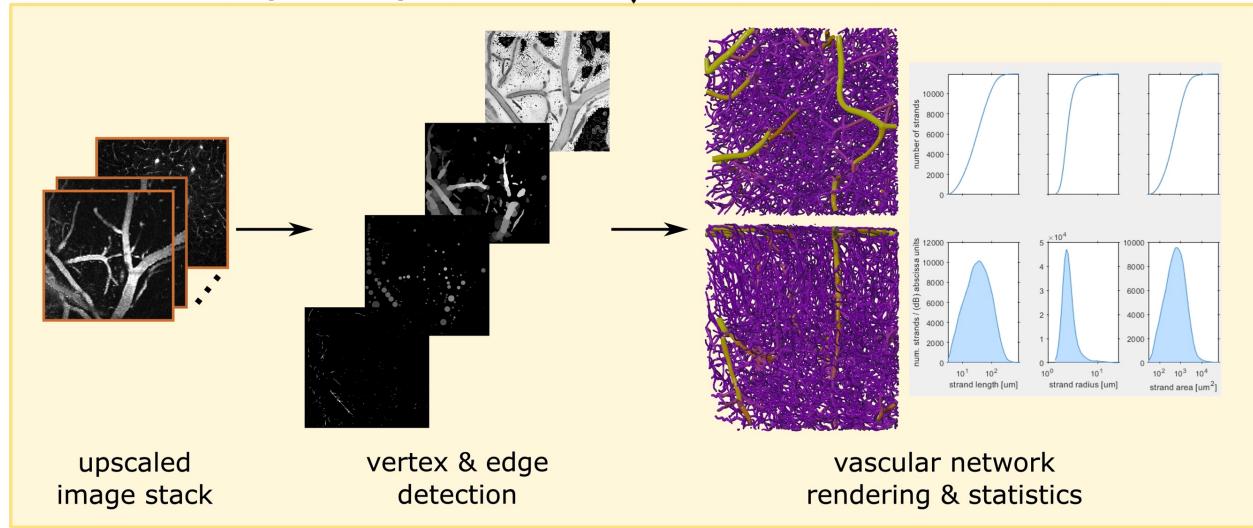
Low-Resolution Image Acquisition



Upscaling (PSSR architecture)



Vectorization (SLAVV)



82 **Fig. 1: Structure and analysis pipeline.** Low-resolution images (128 x 128 pixels) are acquired
83 using two-photon microscopy. A deep learning (PSSR Res-U-Net) based upscaling process
84 generates high-resolution images (512 x 512 pixels), which take much longer to acquire, from
85 low-resolution images. Segmentation-less vascular vectorization (SLAVV) generates 3D
86 renderings and calculates network statistics from an upscaled image stack.

87 ***Transfer learning, creation and evaluation of semi-synthetic training data***

88 Traditional approaches to upscaling images involve acquiring paired high- and low-resolution
89 real-world images that we could use for training the model. For our task, however, this process is
90 expensive and time-consuming, and in certain situations impossible for live animals. This
91 challenge greatly limits the practical sample size of training datasets. To overcome this
92 difficulty, we sought to use semi-synthetic training data that mimics low-resolution acquisition to
93 greatly improve sample size. Semi-synthetic training data was created by adding noise to, then
94 downscaling, full-resolution images from a two-photon vascular image repository of previously
95 acquired images (see Data Availability). We evaluated several approaches for the creation of this
96 semi-synthetic data and compared our results to a model trained with a real-world dataset of the
97 same sample size.

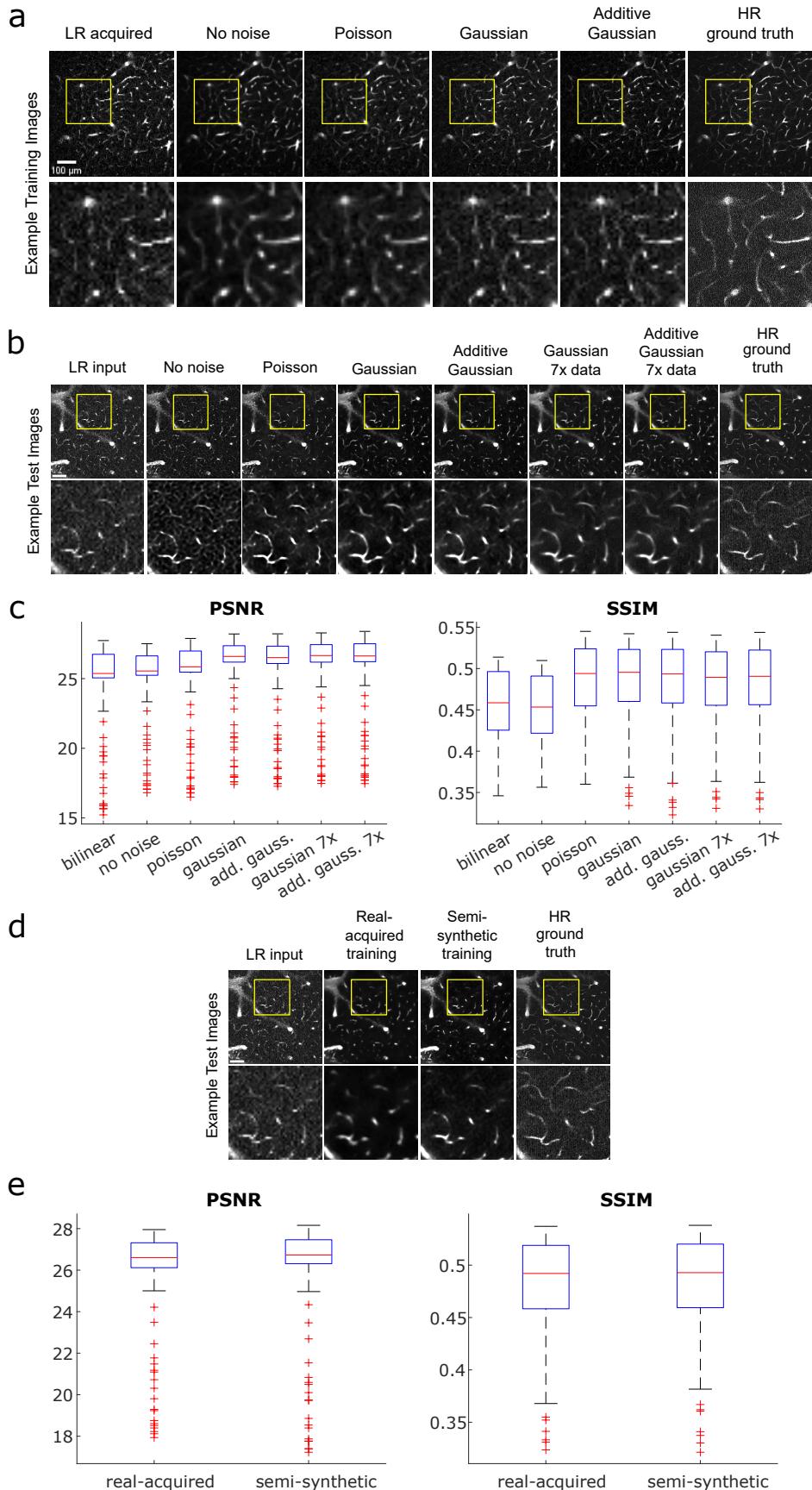
98 To mimic the noise observed in real-acquired low-resolution images (i.e., real data), we tested
99 models trained with semi-synthetic images that were created with the following noise filters: no
100 noise (downscaled only, used as the reference), Poisson noise, Gaussian noise, and additive-
101 Gaussian-distributed noise (**Fig. 2a**). Real-acquired low-resolution images served as input
102 images to test the model. We evaluated model performance using standard image quality metrics,

103 specifically, by calculating peak signal-to-noise ratio (PSNR) and structural similarity index
104 measure (SSIM) between the model output and acquired full resolution image.

105 The resulting median PSNR and SSIM values from each model, ranked from highest to lowest
106 for both metrics, were as follows: Gaussian, additive-Gaussian, Poisson, no noise (**Fig. 2b-c**).
107 This was determined using Wilcoxon signed rank tests with $P < 0.005$ (Bonferroni-adjusted). We
108 noticed that the Gaussian and additive-Gaussian models perform similarly, and thus performed
109 further testing to compare the two noise methods using a larger training set, consisting of 24,069
110 semi-synthetic training image pairs—7x the preliminary training set of 3,399 semi-synthetic
111 image pairs. The test image outputs from the models trained with the larger dataset showed
112 notable qualitative improvements, with fewer false detections, less noise, and smoother vessel
113 shapes. With the larger dataset, the Gaussian model produced a slightly higher median PSNR
114 value but did not produce a median SSIM value that was statistically significantly different from
115 that produced by additive-Gaussian (Wilcoxon signed rank test, $P < 0.005$). Despite the slightly
116 higher PSNR performance by the Gaussian model, however, a qualitative comparison suggested
117 that the additive-Gaussian results had somewhat less noise and higher sensitivity to fainter
118 vessels. Additionally, PSNR only measures similarity in pixel values and does not necessarily
119 predict vectorization performance, which is what we ultimately wish to optimize. To fully
120 validate and compare the performance between the Gaussian- and additive-Gaussian-trained
121 models, we performed a final comparison test using the Segmentation-Less Automated Vascular
122 Vectorization (SLAVV) software (further described in later section). We found that the additive-
123 Gaussian model output allowed for a more accurate vessel detection overall compared to the
124 Gaussian model output (95.7% vs 95.6%). Based on these results, we chose to perform

125 subsequent analyses using the model trained with the full dataset of semi-synthetic images
126 created using the additive-Gaussian noise method to maximize accurate vessel detection.

127 To evaluate the effectiveness of using semi-synthetic data in place of real-world training data, we
128 compared the performance of models trained with each method (**Fig. 2d-e**). For this comparison,
129 both models were trained with 234 image pairs, due to the limited availability of acquired image
130 pairs. The output image from the real-acquired model appeared blurrier and over-predicted
131 vessel diameters more significantly compared to the semi-synthetic model (**Supplemental**
132 **Figure 1**). Nonetheless, the model trained with real-world data had higher median PSNR and
133 SSIM values compared to the model trained with semi-synthetic data (Wilcoxon signed rank test,
134 $P < 0.05$), although the values were close (PSNR: 26.9 vs. 26.6; SSIM: 0.492 vs. 0.494). We
135 deem the results similar enough for semi-synthetic training data to be used in place of real-world
136 training data. The use of semi-synthetic data advantageously circumvents complications from
137 imprecise alignment in the acquisition of image pairs, limited availability of existing images (677
138 pairs), and high material and labor costs for data collection.

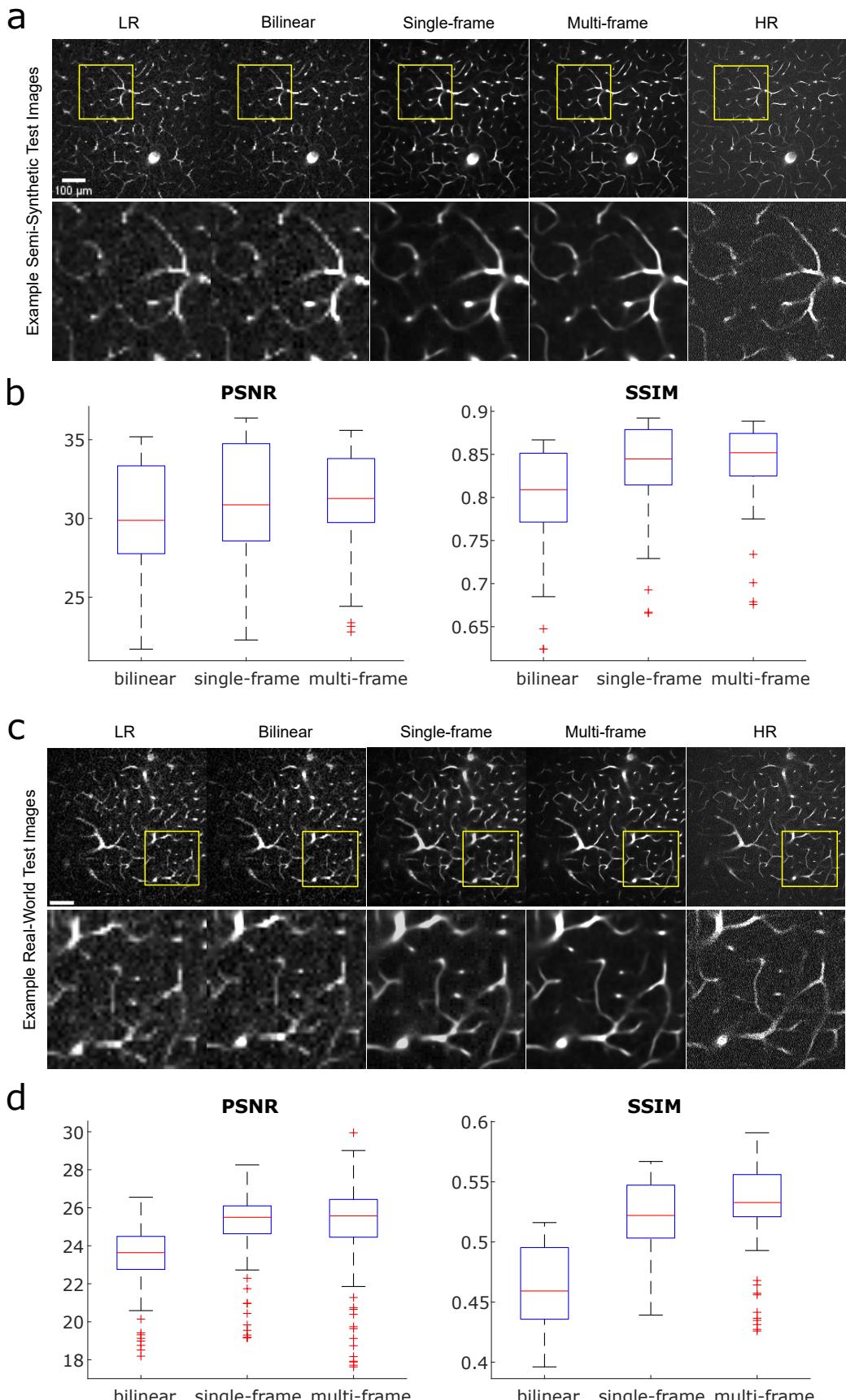


140 **Fig. 2: Generating and evaluating semi-synthetic training data.** **a** Examples of semi-synthetic
141 training images created using different types of added noise prior to downscaling: no noise
142 (downscaling only), Poisson, Gaussian, and additive Gaussian. Acquired low-resolution (LR,
143 128x128 pixels) and high-resolution (HR, 512x512 pixels) ground truth images are shown for
144 reference. **b** Resulting test images from models trained using each noise method, with acquired
145 low-resolution image for model input and acquired high-resolution image as ground truth for
146 comparison. All models were trained with 3,399 image pairs, with the Gaussian and additive
147 Gaussian models further tested on 24,069 image pairs (7x) to further test performance. **c** Boxplot
148 comparison of PSNR and SSIM values for each noise method image in **b** measured against
149 ground truth image. Values plotted for an image stack of 222 images. **d** Comparison of test
150 images from models trained using real-world acquired vs. semi-synthetic data, with real-acquired
151 low-resolution image for model input and acquired high-resolution image as ground truth for
152 reference. All models were trained with 234 image pairs, a large reduction from the noise model
153 comparison, due to the limited availability of real-world pairs. **e** Boxplot comparison of PSNR
154 and SSIM values for real-acquired vs. semi-synthetic model outputs corresponding to **d**,
155 measured against high-resolution ground truth image. All values are plotted for an image stack of
156 222 images.

157 ***Single-frame vs. multi-frame training***

158 A key issue with low-resolution acquired images is the diminished amount of total signal
159 capture. This can result in noisier images and cause spurious vessels to appear in the
160 vectorization process. A potential method for reducing false detections is providing the model
161 neighboring depth images on a stack, which are highly correlated in signal but not in noise. Thus,
162 we sought to improve the performance of our model by using multi-frame image input.

163 We compare the performance of the single-frame model to a multi-frame model, with an
164 additional comparison against the traditional bilinear upscaling method, for both semi-synthetic
165 and real-world test images (Fig. 3). The traditional bilinear upscaling method offers a baseline
166 performance measure for a non-CNN approach. The multi-frame model is trained with input
167 image stacks consisting of five sequential images in depth, with axial offsets of 0.3 μm , to
168 predict a single output image—the third image in the input sequence. The multi-frame model
169 yields images with higher PSNR and SSIM values than the single-frame model, and both PSSR
170 methods outperform the bilinear upscaling method for both semi-synthetic and real-world test
171 images (Wilcoxon signed rank test, $P < 0.0167$, Bonferroni-adjusted). Overall PSNR and SSIM
172 values are higher for semi-synthetic images compared to real-world images, which is
173 unsurprising given the model was trained completely on semi-synthetic images. Nonetheless, the
174 real-world output images from our models show that individual vessels can be resolved, which is
175 much more important for the final vectorization process than the exact pixel values measured by
176 PSNR.



178 **Fig. 3: Comparison of performance** between bilinear upscaling, a single-frame model, and a
179 multi-frame model for semi-synthetic and real-acquired test images. All models were trained
180 with 24,069 image pairs. **a** Semi-synthetic test images from bilinear upscaling and models
181 trained using single- vs. multi-frame data. Acquired low-resolution image for model input and
182 acquired high-resolution image as ground truth are shown for reference. **b** PSNR and SSIM plots
183 corresponding to semi-synthetic test results from **a**. **c** Real-world test images from bilinear
184 upscaling and models trained using single- vs. multi-frame data. **d** PSNR and SSIM plots
185 corresponding to real-world test image results from **c**.

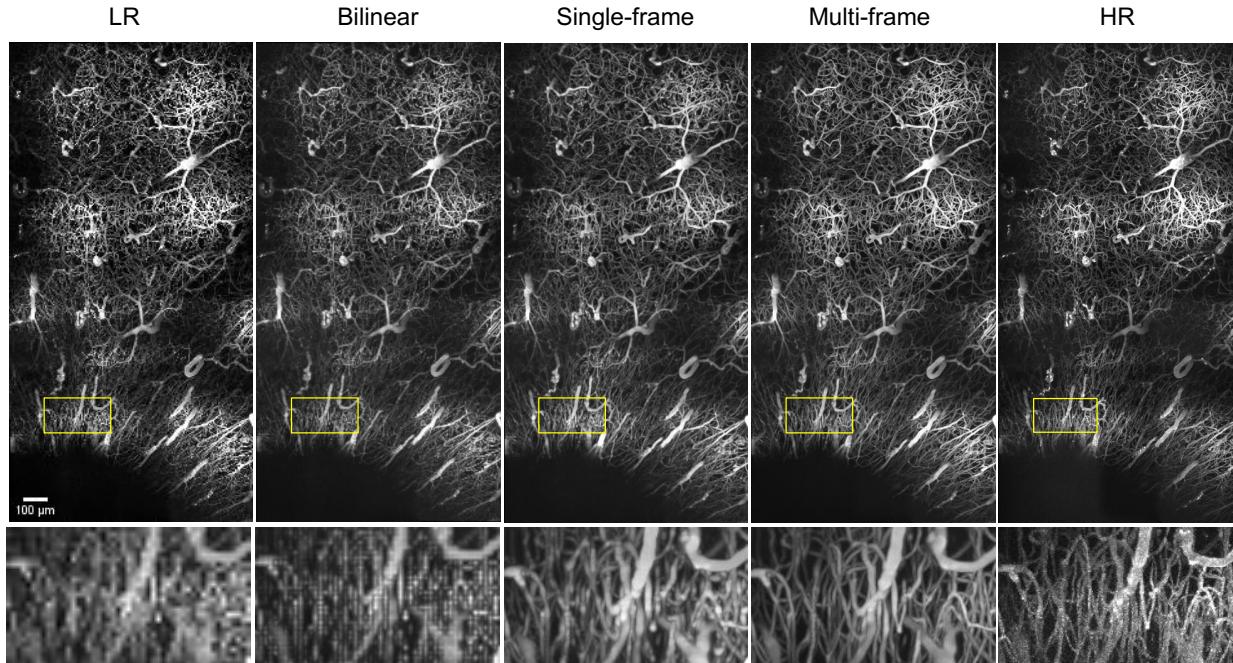
186 ***Reconstruction and stitching of infarct images***

187 A major application of two-photon imaging that we aim to make more accessible with our
188 approach is large field of view (FOV) imaging of diseased vasculature. An example of this is
189 acquiring images from a stroke model, which is of interest for studying disease effects on
190 vascular morphology. Large FOV imaging with high resolution is a time-consuming process and
191 thus would benefit substantially from the speedup offered by low-resolution imaging. Large
192 FOV images are achieved by acquiring, then stitching standard-sized tiles together using
193 ImageJ's Grid/Collection Stitching plugin¹⁹. However, the long acquisition times required of
194 current technologies limit our ability to collect substantial two-photon image sets of diseased
195 vascular networks and thus limit the availability of images of diseased vasculature that could be
196 used for training data.

197 To investigate the feasibility of using our models to drastically reduce imaging times for large
198 FOV images of diseased vasculature with minimal information loss, we examined the ability of
199 our single-frame and multi-frame models, trained only with images of normal vasculature, to

200 restore a semi-synthetic large FOV image of an ischemic infarct (four weeks post-stroke)
201 collected in a preliminary study (**Fig. 4**). The differences in morphology between vasculature in
202 the peri-infarct region and normal vasculature are exemplified by the differences between the top
203 half of the full image, which more closely resembles normal vasculature, and the bottom half of
204 the image, which captures the infarct region and the more immediately surrounding vessels.
205 Ischemic infarct vessels appear significantly more parallel to the imaging plane, thus creating
206 image slices with higher vascular area density compared to the more perpendicularly oriented
207 vessels further from the infarct. Despite these morphological differences and having only trained
208 with images of normal vasculature, our models are able to resolve capillaries in the infarct
209 region, as shown in the insets of **Fig. 4**. The multi-frame output image more closely resembles
210 the HR image compared to the single-frame image, as vessel radii are more consistent in the
211 multi-frame image. In the case of the LR and bilinear-upscaled images, the individual capillaries
212 in the inset cannot be resolved.

213



214

215 **Fig. 4. Maximum intensity projections (x-y) of ischemic infarct images** consisting of 2x4 tiles
216 with 213 slices (final dimensions 1.18 mm x 2.10 mm x 0.636 mm, pixel dimensions 1.34 μ m x
217 1.36 μ m x 3 μ m) for a semi-synthetic low-resolution image, bilinear upscaled image, single- and
218 multi-frame output images, and acquired high-resolution image.

219 ***Vectorization***

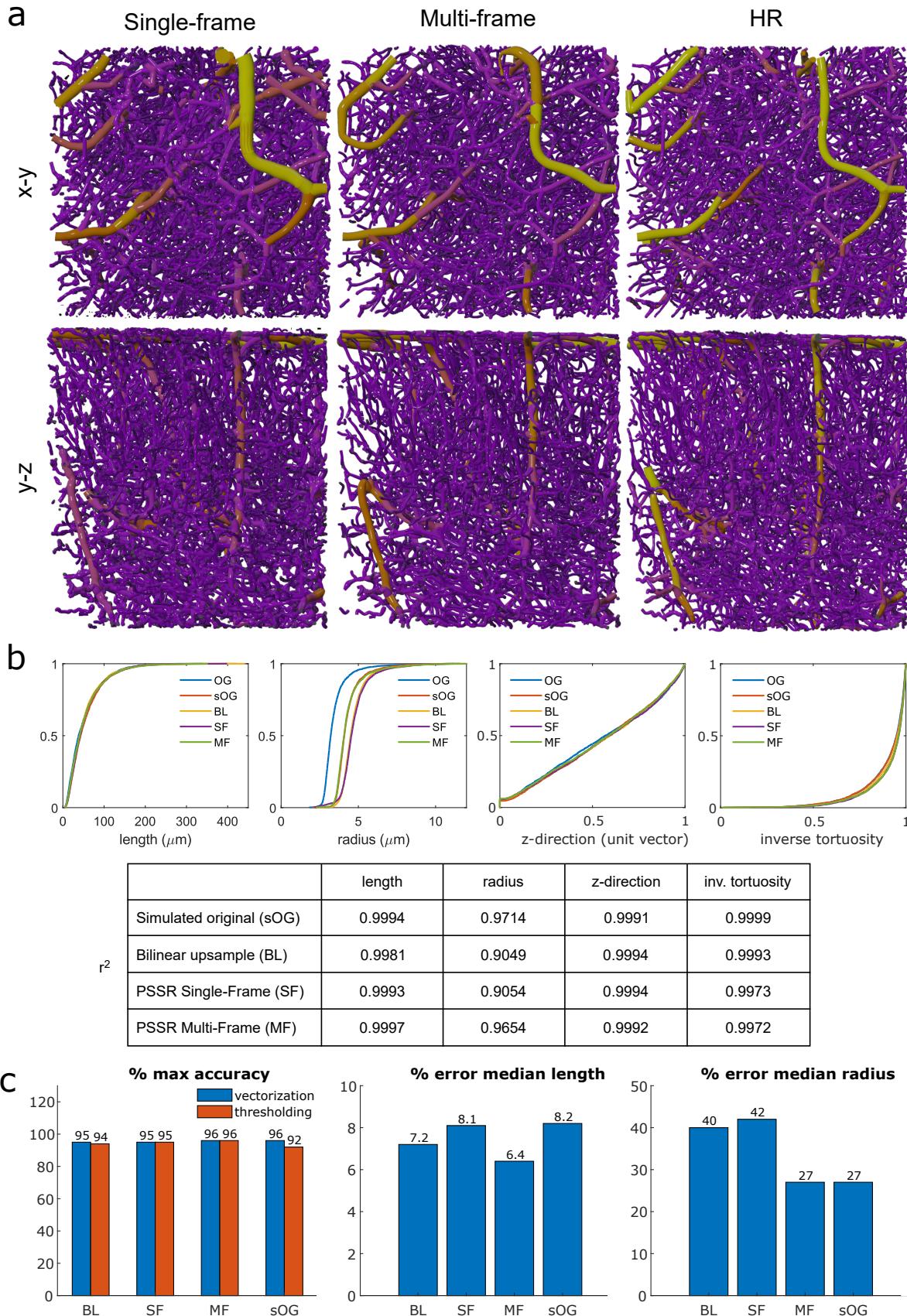
220 Vectorization is the ultimate step that extracts quantitative information for evaluating the
221 vascular morphology of a network. Therefore, we are interested in comparing different image
222 generation strategies by comparing performance after vectorization. We demonstrate successful
223 vectorization of single- and multi-frame model output images from real-acquired low-resolution
224 images using manual-curation-assisted SLAVV and visualization with VessMorphoVis²⁰ (**Fig.**
225 **5a**). Additionally, we perform a more objective comparison of our models' performance using a
226 previously described method¹⁸, which uses simulated images from a known ground truth and

227 automated vector classification (no manual assist). Using a known ground truth (derived from the
228 real-acquired high resolution vectorized network shown in (**Fig. 5a**), we are able to quantify the
229 sensitivity, specificity, and accuracy of the vectorized upscaled images. We generated the
230 simulated vascular image to have the same contrast-to-noise ratio (CNR) of 0.94 as the real
231 acquired high resolution image and to be representative of the image quality of a typical image
232 acquired by our two-photon microscope. We created a low-resolution version of the simulated
233 image using the same method for creating semi-synthetic training data and then upscaled it using
234 bilinear interpolation and our single-frame and multi-frame models. We then vectorized these
235 images using fully automated (globally thresholded) SLAVV at peak segmentation performance
236 (measured against the ground truth image). The resulting strand objects are the minimal set of
237 one-dimensional traces which span the entire vascular network.

238 We plotted cumulative distribution functions (CDFs) for each image for each of the following
239 strand metrics: length, radius, z-direction, and inverse tortuosity (**Fig. 5b**). We included the
240 simulated original image in the analysis as a control for the automated curation process since the
241 ground truth image was obtained through manual curation. For each strand metric, we calculated
242 Pearson's correlation (r^2) values between the CDFs of the ground truth image and the simulated
243 images. Of all the images, the simulated original image maintained the highest r^2 value for
244 average strand radius and inverse tortuosity. Our multi-frame model had the highest r^2 value for
245 strand length, while bilinear and the single-frame model produced the highest r^2 value for z-
246 direction. We performed a Kolmogorov–Smirnov (K-S) test to compare the CDFs of each
247 upscaling method against that of the simulated original image. The multi-frame CDFs for strand
248 length, radius, and z-direction; the single-frame CDFs for length and z-direction; and the bilinear
249 CDF for z-direction were not significantly different from those of the simulated original image (p

250 < 0.0167, Bonferroni-adjusted). Thus, of the tested upscaling methods, the multi-frame model
251 produced the most statistically comparable strand metrics to the simulated original image.

252 We calculated overall accuracy with respect to the ground truth for each image (**Fig. 5c**). The
253 original simulated image retains the highest vectorization accuracy (96.2%), followed by multi-
254 frame (95.7%), single-frame (95.2%), and bilinear (94.5%). In terms of accuracy with raw image
255 segmentation through intensity thresholding, however, multi-frame performs best (96.0%),
256 followed by single-frame (95.3%), bilinear (94.4%), and original simulated image (91.9%). We
257 also calculated the percent error in the median length and median radius, the characteristics that
258 best represent the vessel morphology, between each image against the ground truth values.
259 Multi-frame produced the lowest median length error (6.4%), followed by bilinear (7.2%),
260 single-frame (8.1%), and the original simulated image (8.2%). The bilinear and single-frame
261 images had notably higher median radius errors (40.1% and 41.6%, respectively) compared to
262 the multi-frame and original simulated images (both 26.9%), which was noted with visual
263 inspection of the images as well. These statistics further support that a multi-frame upscaled
264 image produces comparable vectorization results to an original high-resolution image.



266 **Fig. 5. Vectorization results.** **a** Blender rendering of vectorized images using VessMorphoVis²⁰
267 for visual comparison between single- and multi-frame results and an acquired high-resolution
268 image. We performed manual curation for this vectorization process. **b** Vectorized image
269 statistics for automated curation process with known ground truth (simulated from manually
270 curated high-resolution image). CDFs shown for metrics of length, radius, z-direction, and
271 inverse tortuosity for original (OG), simulated original (sOG), bilinear upscaled (BL), and PSSR
272 single- and multi-frame (SF, MF, respectively) images. Pearson's correlation values (r^2) were
273 calculated between the original image and each simulated or upscaled image for each metric. **c**
274 Statistics regarding maximum accuracy (%) achieved with vectorization or thresholding and %
275 error in median length and radius for each method.

276 **Discussion**

277 To our knowledge, this is the first time that a deep learning model has been demonstrated to
278 improve imaging speeds for two-photon microscopy by upscaling and denoising low-resolution
279 images of vasculature while retaining accuracy in extracted morphological characteristics. For
280 this application, our model outperforms the traditional, non-CNN bilinear upscaling technique in
281 output image quality (**Fig. 3, 4**) and vectorization accuracy (**Fig. 5**). The performance of our
282 models also improves notably with increased training data (**Fig. 2b**), therefore substantial time
283 and material costs are reduced by training the model with semi-synthetic images generated from
284 our database of 28,563 previously acquired two-photon vascular images. Real-world data also
285 introduces further complications by requiring image registration. Not only would this add
286 computational hours, but the image registration process also does not produce perfect alignment
287 because it is limited to being purely translational and free of interpolation to maintain the
288 original recorded pixel values. Any rotational misalignments would not be accurately

289 correctable. We speculate that these misalignments in real-world training image pairs caused the
290 overly blurry and enlarged vascular structures seen in the results of preliminary experiments
291 (**Fig. 2d, Supplementary Fig. 1**).

292 Models trained from semi-synthetic images proved capable of restoring low-resolution vascular
293 images and outperformed the standard bilinear interpolation method. For performing
294 segmentation via intensity thresholding (**Fig. 5c**), multi-frame had the highest accuracy of the
295 upscaling methods and significantly outperformed the original standard-resolution image. We
296 hypothesize that this is a result of the denoising that occurs in the PSSR process. Since all
297 upscaled images had higher intensity thresholding accuracy compared to the original image, we
298 further postulate that upscaled images have less noise overall because fewer pixels are physically
299 captured—all pixels created during upscaling are interpolated from neighboring pixel values and
300 thus free of noise from the image acquisition process²¹. For performing vectorization, however,
301 the diminished noise does not offset accuracy losses from the upscaling process. We determined
302 that the multi-frame model yields the highest accuracy of the three upscaling methods but did not
303 outperform the original standard-resolution image. Nonetheless, the multi-frame image also
304 produced the greatest number of CDFs for strand metrics that were not significantly different
305 from those of a standard-resolution image. We consider these results from the multi-frame model
306 to be within acceptable tolerance for vectorization accuracy and similarity in strand statistics for
307 our previously described purposes of characterizing the structural properties of the vessels of a
308 particular network^{22,23}.

309 By acquiring low-resolution images, the imaging time could be reduced by up to half in a two-
310 photon microscope with a resonant-galvo scanning system and by up to fourfold with a galvo-
311 galvo scanning system. The reduction in imaging time can have several benefits. For instance,

312 faster imaging times reduce risk of phototoxicity and thermal damage if excitation powers are
313 kept constant^{24,25}. Additionally, the amount of time for which the subject is under anesthesia is
314 reduced, decreasing the risk of vascular dilation²⁶ which can create skewed vectorization
315 statistics. The reduction in imaging time can also decrease the injection volume and frequency of
316 fluorescent dye, which alone can save up to hundreds of dollars in addition to eliminate the risk
317 of sample misalignment caused by a re-injection during an imaging session. A specific but major
318 benefit for those wishing to conduct chronic studies is that the faster acquisition times will allow
319 for larger cohorts, which are currently constrained by the number of animals that can reasonably
320 be imaged within each timepoint. This would yield more statistically significant sample sizes for
321 studying and comparing healthy and diseased vasculatures over time.

322 With the potential for future disease studies in mind, we tested our model on data from a mouse
323 that was given a stroke. We show that our model, despite having only been trained with images
324 of healthy vasculature, can reasonably restore images taken from a peri-infarct region with
325 sufficient resolution for the image stitching algorithm to successfully create a large FOV image.
326 These results from semi-synthetic test data are promising for being able to apply the model
327 broadly to different disease models, although further validation should be performed with real-
328 world test data.

329 Another area of research that could benefit from increased imaging speeds is in the study of light
330 propagation through the brain, for the development of noninvasive brain imaging devices. With
331 accessibility to a larger database of large FOV two-photon images, light propagation models can
332 be more thoroughly developed, tested, and refined²⁷. As precise capillary capture is not necessary
333 for these models, the use of even lower resolution and faster imaging could be further explored
334 with PSSR. Although losses in accuracy in low-resolution images are inevitable due to less

335 information being captured, experimentation with the accuracy and speedup tradeoff can be done
336 to fit the tolerance of any application.

337 The potential for further speedup by reducing frame averaging could also be explored. Lower
338 frame averaging leads to higher noise levels, which PSSR can be used to reduce. With higher
339 noise, we would expect increased false positive and/or false negative detections, leading to an
340 overall reduction in restoration accuracy. A potential method that can be explored to combat this
341 effect would be to modify the loss function to increase the penalty for false negative detections
342 with the tradeoff of accepting more noise in the image. Alternatively, to prioritize denoising over
343 having high sensitivity, the loss function could be modified to penalize false positive detections
344 more heavily.

345

346 **Methods**

347 ***In vivo imaging***

348 *Animal Preparation*

349 Cranial window implants were prepared in C57 mice with dura intact, as previously described²⁸.

350 During imaging, mice were anesthetized with isoflurane and body temperature was maintained at

351 37.5 °C. Blood plasma was fluorescently labeled with dextran conjugated Texas Red (70kDa,

352 D1830, Thermo Fisher) dissolved in saline (5% w/v). The dye was administered intravenously

353 via retro-orbital injection (0.1 mL). All animal protocols were approved by The University of

354 Texas at Austin Institutional Animal Care and Use Committee.

355 For stroke model mice in **Fig. 4**, photothrombotic ischemia was induced through retro-orbitally

356 injecting rose bengal (0.15ml at 15 mg/ml) and irradiating a penetrating arteriole branching from

357 the middle cerebral artery for 15 minutes. The laser source had a 532 nm wavelength, a 20mW

358 average power, and was focused to a ~300 μm diameter spot size. Mice were anesthetized with

359 isoflurane (1.5%, 0.6-0.8 LPM) and body temperature was maintained with a heating pad during

360 the procedure. Pial anatomy was visualized using laser speckle contrast imaging to select which

361 artery to target and to confirm occlusion.

362 *Image Acquisition*

363 All images were acquired using a custom-built two-photon microscope, previously described²¹.

364 The excitation source was an ytterbium fiber amplifier with an output beam of 1050 nm

365 wavelength, 120 fs pulse width, and 80 MHz repetition rate²⁹. High-resolution images were

366 512x512 pixels and low-resolution images were 128x128 pixels, both with a field size of

367 700x700 μm. Image stacks were acquired with 3 μm axial spacing. A resonant-galvanometer

368 scanning system was used²¹, with average pixel dwell times of 87.8 ns and 20-frame averaging.
369 Power at the sample did not exceed 170 mW and was identical between low- and high-resolution
370 pairs. Large field of view images were taken as a 2-by-4 grid of standard images, with ~25-30%
371 overlap between tiles.

372 ***Image processing***

373 *Image pre-processing*

374 All images were normalized prior to use as a training image or semi-synthetic test image. A 3D
375 median filter of size [1 1 1] was applied to raw image stacks, followed by a full-scale contrast
376 stretch (FSCS) to fill the 16-bit range with 0.3% saturation across the entire stack, using the
377 normalization function provided by Fiji ImageJ³⁰. This FSCS normalization method was
378 determined to create the best images compared to FSCS across the entire stack without saturation
379 and FSCS by image slice (**Supplementary Fig. 2**). Images were then converted from 16-bit to 8-
380 bit and separated into individual frames.

381 *Stitching*

382 Large field of view images acquired as a 2-by-4 grid of standard images were stitched together
383 using ImageJ's Grid/Collection Stitching plugin¹⁹.

384 ***Semi-synthetic image generation***

385 *Single-frame images*

386 To create semi-synthetic low-resolution images for training, pre-processed real-world images
387 received one of the following types of noise: Poisson, Gaussian ($\mu = 0, \sigma = 0.1$), additive-
388 Gaussian ($\mu = 0, \sigma = 5$), or no noise prior to fourfold downscaling (from 512 x 512 pixels to 128

389 x 128 pixels). For additive-Gaussian noise, the local variance was scaled by 0.001. A range of
390 parameters (i.e., mean, standard deviation, local variance) were tested to identify values for
391 optimal performance. Models were trained for each combination of parameters and given test
392 images. Output images were inspected visually, and image quality metrics (PSNR, SSIM) were
393 calculated.

394 *Multi-frame images*

395 Low-resolution images from the single-frame semi-synthetic image generation step were used to
396 create multi-frame training images. Multi-frame images consisted of five low-resolution images
397 sequential in axial space with 0.3 μm separation (axial distance between acquired images).

398 ***Neural networks and training***

399 The Res-U-Net architecture as described by Fang et al. as PSSR (point-scanning super
400 resolution) was used for single-frame and multi-frame training¹⁷. We used an MSE loss function
401 after determining that L1 and feature loss did not perform as well (**Supplementary Fig. 3**). A
402 learning rate of 9e-4 was used for single-frame training and 1e-4 was used for multi-frame
403 training.

404 *Training/Test Images*

405 Preliminary training for finding the best noise model was done with 3,399 training (data from 5
406 mice, 16 stacks, 6 imaging sessions) and 676 validation image pairs (2 mice, 3 stacks, 2 imaging
407 sessions). Final full dataset training was completed using 24,069 training (6 mice, 114 stacks, 19
408 imaging sessions) and 4,494 validation (6 mice, 22 stacks, 7 imaging sessions) image pairs. Real-
409 acquired image pairs (677 image pairs from 2 mice, 3 stacks, 2 imaging sessions) were used for
410 testing and evaluating the models. These image pairs were also used for comparing the

411 performance between training with real-acquired pairs vs. semi-synthetic pairs (234 image pairs
412 for training, 221 image pairs for validation, 222 image pairs for testing; each set from 1 mouse, 1
413 stack, 1 imaging session).

414 *Hardware*

415 Training was performed using Frontera at the Texas Advanced Computing Center (TACC) with
416 four NVIDIA Quadro RTX 5000 GPUs using the CUDA version 10.0 toolkit.

417 *Image Quality Evaluation*

418 Image quality between upscaled images and the original image was preliminarily assessed with
419 peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). Both metrics
420 were computed using built-in MATLAB functions. In combination, these metrics gave a general
421 sense for image similarity, but were not indicators for morphological accuracy from
422 vectorization. Generally, higher PSNR and SSIM values are desired. However, both metrics
423 correlate similarities in raw intensity values to higher similarity between images, whereas the
424 vectorization process is designed for vascular networks, is the end-goal of image acquisition, and
425 produces quantitative anatomical information which may or may not be of interest to a particular
426 researcher. For simplicity, when possible, we chose image segmentation accuracy (with respect
427 to the ground truth) to measure general vectorization performance. In the case of unknown
428 ground truth, SLAVV was used to segment the original image and estimate the CNR, which was
429 used to match the quality of the simulated and real-acquired images. PSNR and SSIM values do
430 not seem to fully reflect image quality improvement from denoising, as seen in **Fig. 2b** where
431 image quality improves visually with the increased training data, but PSNR and SSIM values
432 decrease slightly. In addition, higher variations in predicted pixel intensity value are seen within

433 white vessel regions, which can cause lower PSNR and SSIM values despite not affecting visual
434 quality or vectorization performance. This especially affects images closer to the surface of the
435 brain, where large arteries dominate the image, and accounts for the outlier points seen in the
436 boxplots of **Fig. 2** and **Fig. 3**.

437 ***Vectorization***

438 All vectorization was performed using SLAVV software¹⁸. Real acquired low-resolution images
439 were upscaled using PSSR, then vectorized and manually curated. To obtain an objective
440 comparison of methods without manual curation bias, a simulated image with known ground
441 truth was created from the manually curated high-resolution image. The simulated image had an
442 identical CNR (0.94) to the original acquired high-resolution image, as measured by SLAVV as:

$$443 \quad CNR = \frac{(I_{foreground} - I_{background})}{std(I_{background})}$$

444 where $I_{foreground}$ is average foreground intensity and $I_{background}$ is average background intensity.

445 A low-resolution image was created using the previously described semi-synthetic image
446 generation method. The low-resolution image was upscaled using bilinear interpolation, the
447 single-frame model, and the multi-frame model. Vectorization of simulated images using
448 automated curation was possible with the known ground truth, as previously described¹⁸.

449 From the vectorized networks for each upscaled image, the original simulated image, and the
450 ground truth network, cumulative distribution functions were calculated for strand statistics
451 (length, average radius, average z-direction, and inverse tortuosity). Two comparisons were then
452 made for each strand statistics: Pearson's correlation between each upscaled or original
453 simulated image CDF and ground truth CDF; and Kolmogorov–Smirnov (K-S) test between each

454 upscaled image and original simulated image. The Pearson's correlation values compare the
455 performance of each simulated (upscaled or original) image against the ground truth. The
456 original simulated image serves as a baseline for vectorization performance. The K-S test is used
457 to determine whether the performance of each model is significantly different compared to the
458 original simulated image.

459 Overall accuracy was calculated for comparison as follows:

460
$$\text{accuracy} = 0.1(\text{sensitivity}) + 0.9(\text{specificity})$$

461 with *sensitivity* and *specificity* defined as follows:

462
$$\text{sensitivity} = \frac{TP}{(TP + FN)}$$

463
$$\text{specificity} = \frac{TN}{(TN + FP)}$$

464 where TP is the number of true positive detections, TN is true negative, FP is false positive, and
465 FN is false negative.

466 Blender renderings for vectorization visualization were created using VessMorphoVis
467 software²⁰.

468 ***Statistical Analysis***

469 All significance values were Bonferroni-adjusted from the standard P value of 0.05 to address
470 the increased possibility of type-I error.

471 **Data availability**

472 All data used for training, validation, and testing are available at the following link: (link to
473 dataverse)

474 **Code availability**

475 All the code presented in this work together with the trained network model are freely available
476 at the following link: (link to GitHub page)

477 **References**

- 478 1. Girouard, H. & Iadecola, C. Neurovascular coupling in the normal brain and in hypertension,
479 stroke, and Alzheimer disease. *Journal of Applied Physiology* **100**, 328–335 (2006).
- 480 2. Lecrux, C. & Hamel, E. The neurovascular unit in brain function and disease: The
481 neurovascular unit function. *Acta Physiologica* **203**, 47–59 (2011).
- 482 3. Meng, G. *et al.* Ultrafast two-photon fluorescence imaging of cerebral blood circulation in
483 the mouse brain in vivo. *Proc. Natl. Acad. Sci. U.S.A.* **119**, e2117346119 (2022).
- 484 4. Hatakeyama, M., Ninomiya, I. & Kanazawa, M. Angiogenesis and neuronal remodeling after
485 ischemic stroke. *Neural Regen Res* **15**, 16 (2020).
- 486 5. Recommendations for Standards Regarding Preclinical Neuroprotective and Restorative
487 Drug Development. *Stroke* **30**, 2752–2758 (1999).
- 488 6. Shih, A. Y. *et al.* Two-Photon Microscopy as a Tool to Study Blood Flow and Neurovascular
489 Coupling in the Rodent Brain. *J Cereb Blood Flow Metab* **32**, 1277–1309 (2012).
- 490 7. Voleti, V. *et al.* Real-time volumetric microscopy of in vivo dynamics and large-scale
491 samples with SCAPE 2.0. *Nat Methods* **16**, 1054–1062 (2019).
- 492 8. Beaulieu, D. R., Davison, I. G., Kılıç, K., Bifano, T. G. & Mertz, J. Simultaneous multiplane
493 imaging with reverberation two-photon microscopy. *Nat Methods* **17**, 283–286 (2020).
- 494 9. Mahou, P., Vermot, J., Beaurepaire, E. & Supatto, W. Multicolor two-photon light-sheet
495 microscopy. *Nat Methods* **11**, 600–601 (2014).

496 10. Wu, J. *et al.* Kilohertz two-photon fluorescence microscopy imaging of neural activity in
497 vivo. *Nat Methods* **17**, 287–290 (2020).

498 11. Sità, L. *et al.* A deep-learning approach for online cell identification and trace extraction in
499 functional two-photon calcium imaging. *Nat Commun* **13**, 1529 (2022).

500 12. Soltanian-Zadeh, S., Sahingur, K., Blau, S., Gong, Y. & Farsiu, S. Fast and robust active
501 neuron segmentation in two-photon calcium imaging using spatiotemporal deep learning.
502 *Proc. Natl. Acad. Sci. U.S.A.* **116**, 8554–8563 (2019).

503 13. Luo, L. *et al.* Restoration of Two-Photon Ca²⁺ Imaging Data Through Model Blind
504 Spatiotemporal Filtering. *Front. Neurosci.* **15**, 630250 (2021).

505 14. Lee, S., Negishi, M., Urakubo, H., Kasai, H. & Ishii, S. Mu-net: Multi-scale U-net for two-
506 photon microscopy image denoising and restoration. *Neural Networks* **125**, 92–103 (2020).

507 15. Tahir, W. *et al.* Anatomical Modeling of Brain Vasculature in Two-Photon Microscopy by
508 Generalizable Deep Learning. *BME Frontiers* **2021**, 1–12 (2021).

509 16. Guan, H. *et al.* Deep-learning two-photon fiberscopy for video-rate brain imaging in freely-
510 behaving mice. *Nat Commun* **13**, 1534 (2022).

511 17. Fang, L. *et al.* Deep learning-based point-scanning super-resolution imaging. *Nat Methods*
512 **18**, 406–416 (2021).

513 18. Mihelic, S. A. *et al.* Segmentation-Less, Automated, Vascular Vectorization. *PLoS Comput
514 Biol* **17**, e1009451 (2021).

515 19. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic
516 image acquisitions. *Bioinformatics* **25**, 1463–1465 (2009).

517 20. Abdellah, M. *et al.* Interactive visualization and analysis of morphological skeletons of brain
518 vasculature networks with VessMorphoVis. *Bioinformatics* **36**, i534–i541 (2020).

519 21. Zhou, A. *et al.* Evaluation of resonant scanning as a high-speed imaging technique for two-
520 photon imaging of cortical vasculature. *Biomed. Opt. Express* **13**, 1374 (2022).

521 22. Linninger, A., Hartung, G., Badr, S. & Morley, R. Mathematical synthesis of the cortical
522 circulation for the whole mouse brain-part I. theory and image integration. *Computers in
523 Biology and Medicine* **110**, 265–275 (2019).

524 23. Hartung, G. *et al.* Mathematical synthesis of the cortical circulation for the whole mouse
525 brain—part II: Microcirculatory closure. *Microcirculation* **28**, (2021).

526 24. Hopt, A. & Neher, E. Highly Nonlinear Photodamage in Two-Photon Fluorescence
527 Microscopy. *Biophysical Journal* **80**, 2029–2036 (2001).

528 25. Wang, T. *et al.* Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse
529 brain. *eLife* **9**, e53205 (2020).

530 26. Cao, R. *et al.* Functional and oxygen-metabolic photoacoustic microscopy of the awake
531 mouse brain. *NeuroImage* **150**, 77–87 (2017).

532 27. Jafari, C. Z., Mihelic, S. A., Engelmann, S. & Dunn, A. K. High-resolution three-
533 dimensional blood flow tomography in the subdiffuse regime using laser speckle contrast
534 imaging. *J. Biomed. Opt.* **27**, (2022).

535 28. Schrandt, C. J., Kazmi, S. S., Jones, T. A. & Dunn, A. K. Chronic Monitoring of Vascular
536 Progression after Ischemic Stroke Using Multiexposure Speckle Imaging and Two-Photon
537 Fluorescence Microscopy. *J Cereb Blood Flow Metab* **35**, 933–942 (2015).

538 29. Engelmann, S. A. *et al.* Diamond Raman laser and Yb fiber amplifier for in vivo multiphoton
539 fluorescence microscopy. *Biomed. Opt. Express* **13**, 1888 (2022).

540 30. Schindelin, J. *et al.* Fiji: an open-source platform for biological-image analysis. *Nat Methods*
541 **9**, 676–682 (2012).

542

543 **Acknowledgments**

544 V.M.N. was supported on a grant for human brain evolution by the Allen Discovery Center
545 program, a Paul G. Allen Frontiers Group advised program of the Paul G. Allen Family
546 Foundation as well as a fellowship from the Good Systems for Ethical AI at The University of
547 Texas at Austin. This work was also supported by the National Institutes of Health (NS108484 to
548 A.K.D; 3T32EB007507 and 5T32LM012414 to A.Z.). Objective and mouse images in Figure 1
549 were adapted from Biorender. GPU and computing support for the project was supported on
550 Director's discretionary fund at the Texas Advanced Computing Cluster.

551 **Contributions**

552 A.Z. conceived of the study. A.Z., S.E., and A.T. collected data. A.Z., S.M., and V.M.N.
553 analyzed the imaging data and built the pipeline. A.Z. and V.M.N. wrote the manuscript with
554 input from all co-authors. V.M.N. and A.D. supervised the study.

555 **Competing interests**

556 The authors declare no competing interests.