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The retina transforms patterns of light into visual feature
representations supporting behaviour. These representations
are distributed across various types of retinal ganglion cells
(RGCs), whose spatial and temporal tuning properties have
been studied extensively in many model organisms, including
the mouse. However, it has been difficult to link the potentially
nonlinear retinal transformations of natural visual inputs to
specific ethological purposes. Here, we discover a nonlinear se-
lectivity to chromatic contrast in an RGC type that allows the
detection of changes in visual context. We trained a convolu-
tional neural network (CNN) model on large-scale functional
recordings of RGC responses to natural mouse movies, and
then used this model to search in silico for stimuli that max-
imally excite distinct types of RGCs. This procedure predicted
centre colour-opponency in transient Suppressed-by-Contrast
RGCs (tSbC), a cell type whose function is being debated. We
confirmed experimentally that these cells indeed responded
very selectively to Green-OFF, UV-ON contrasts. This type
of chromatic contrast was characteristic of transitions from
ground to sky in the visual scene, as might be elicited by head-
or eye-movements across the horizon. Because tSbC cells per-
formed best among all RGC types at reliably detecting these
transitions, we suggest a role for this RGC type in providing
contextual information (i.e. sky or ground) necessary for the
selection of appropriate behavioural responses to other stimuli,
such as looming objects. Our work showcases how a combi-
nation of experiments with natural stimuli and computational
modelling allows discovering novel types of stimulus selectivity
and identifying their potential ethological relevance.

retina | colour vision | computational modelling | digital twin | early visual
pathway | natural stimuli

Correspondence: thomas.euler@cin.uni-tuebingen.de

Introduction

Sensory systems evolved to generate representations of an
animal’s natural environment useful for survival and pro-
creation (1). These environments are complex and high-
dimensional, and different features are relevant for different
species (reviewed in (2)). As a consequence, the representa-
tions are adapted to an animal’s needs: features of the world
relevant for the animal are represented with enhanced preci-
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sion, whereas less important features are discarded. Sensory
processing is thus best understood within the context of the
environment an animal evolved in and that it interacts with
(reviewed in (3, 4)).

The visual system is well-suited for studying sensory
processing, as the first features are already extracted at
its experimentally well-accessible front-end, the retina (re-
viewed in (2, 7)). In the mouse, this tissue gives rise to
around 40 parallel channels that detect different features
(6, 8-10), represented by different types of retinal ganglion
cells (RGCs), whose axons send information to numerous
visual centres in the brain (11). Some of these channels en-
code basic features, such as luminance changes and motion,
that are only combined in downstream areas to support a
range of behaviours such as cricket hunting in mice (12).
Other channels directly extract specific features from natu-
ral scenes necessary for specific behaviours. For instance,
transient OFF-« cells trigger freezing or escape behaviour
in response to looming stimuli (13-15).

For many RGC types, however, we lack understanding
of the features they encode and how these link to behaviour
(16). One reason for this is that the synthetic stimuli com-
monly used to study retinal processing fail to drive retinal
circuits “properly” and, hence, cannot uncover critical re-
sponse properties triggered in natural environments. Colour,
for example, is a salient feature in nature, and the mouse
visual system dedicates intricate circuitry to the processing
of chromatic information (17-22). Studies using synthetic
stimuli have revealed nonlinear and centre-surround interac-
tions between colour channels, but it is not clear how these
are engaged in retinal processing of natural environments.

Indeed, stimuli capturing the statistics of natural envi-
ronments have revealed a larger complexity in retinal spa-
tial nonlinearities than had been previously described based
on simpler synthetic stimuli (23). Such nonlinearities, cru-
cial for the encoding of natural stimuli, cannot be captured
by Linear-Nonlinear (LN) models of retinal processing, and
several improvements over LN models have been proposed
for the identification of receptive fields (RF) (reviewed in
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Figure 1. Mouse RGCs display diverse responses to a natural movie stimulus (a) lllustration of a flat-mounted retina, with recording fields (white circles) and stimulus
area centred on the red recording field indicated (cross marks optic disc; d, dorsal; v, ventral; t, temporal; n, nasal). (b) Natural movie stimulus structure (top) and example
frames (bottom). The stimulus consisted of 5-s clips taken from UV-green footage recorded outside (5), with 3 repeats of a 5-clip test sequence (highlighted in grey) and a
108-clip training sequence (see Methods). (c) Representative recording field (bottom; marked by red square in (a)) showing somata of ganglion cell layer (GCL) cells loaded
with Ca2* indicator OGB-1. (d) Ca%* responses of exemplary RGCs (indicated by circles in (c)) to chirp (left), moving bar (centre), and natural movie (right) stimulus. (e)
Same recording field as in (c) but with cells colour-coded by functional RGC group (left; see Methods and (6)) and group responses (coloured, mean £ SD across cells; trace

of example cells in (d) overlaid in black).

(24)). In recent years, convolutional neural network (CNN)
models have become the state-of-the-art approach for pre-
dictive modelling of visual processing, both in the retina
(25-28), as well as in higher visual areas (29-31). In the
cortex, two recent studies took the CNN modelling approach
further, beyond response prediction, by probing the net-
works for stimuli that would maximally excite the modelled
neurons (32, 33). The resulting maximally exciting inputs
(MEIs) were more complex and diverse than expected based
on previous results obtained with synthetic stimuli and lin-
ear methods. Leveraging the power of this approach, an-
other study highlighted the ethological relevance of colour
by uncovering a state-dependent shift in chromatic prefer-
ence of mouse V1 neurons, a shift that could facilitate the
detection of aerial predators against a UV-bright sky (34).

Here, we combined the power of CNN-based mod-
elling with large-scale recordings from RGCs to investi-
gate colour processing in the mouse retina under natural
stimulus conditions. Since mouse photoreceptors are sen-
sitive to green and UV light (35), we recorded RGC re-
sponses to stimuli capturing the chromatic composition of
natural mouse environments in these two chromatic chan-
nels. A model-guided search for MEIs in chromatic stimu-
lus space predicted a novel type of chromatic tuning in tran-
sient Suppressed-by-Contrast (tSbC) RGCs, a type whose
function is being debated (36-38).

A detailed in-silico characterisation followed up by
experimental validation ex-vivo confirmed this cell type’s
pronounced and unique selectivity for dynamic full-field
changes from green-dominated to UV-dominated scenes, a
type of visual input that matches the scene statistics of tran-
sitions across the horizon (5, 39, 40). We therefore suggest
a role for tSbC RGCs in detecting behaviourally relevant
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changes in visual context, such as a transitions from ground
(i.e. below the horizon) to sky (i.e. above the horizon).

Results

Here, we investigated colour processing in the mouse retina
under natural stimulus conditions. To this end, we trained
a CNN model on RGC responses to a movie covering both
achromatic and chromatic contrasts occurring naturally in
the mouse environment, and then performed a model-guided
search for stimuli that maximise the responses of RGCs.

Mouse RGCs display diverse responses to a natu-
ral movie stimulus. Using two-photon population Ca?*
imaging, we recorded responses from 8,388 cells (in 72
recording fields across 32 retinae) in the ganglion cell layer
(GCL) of the isolated mouse retina (Figure 1a) to a range of
visual stimuli. Since complex interactions between colour
channels have been mostly reported in the ventral retina and
opsin-transitional zone, we focused our recordings on these
regions (20, 21).

The stimuli included two achromatic synthetic stimuli
— a contrast and frequency modulation (“chirp” stimulus)
and a bright-on-dark bar moving in eight directions (“mov-
ing bar”’, MB) — to identify the functional cell type (see be-
low), as well as a dichromatic natural movie (Figure 1b-d).
The latter was composed of footage recorded outside in the
field using a camera that captured the spectral bands (UV
and green; (5)) to which mouse photoreceptors are sensitive
()\geak = 360, )\%ak = 510 nm for S- and M-cones, respec-
tively (35)). We used 113 different movie clips, each lasting
5s, that were displayed in pseudo-random order. Five of
these constituted the test set and were repeated three times:
at the beginning, in the middle and at the end of the movie

A chromatic feature detector in the retina signals visual context changes
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Figure 2. CNN model captures diverse tuning of RGC groups and predicts MEls (a) lllustration of the CNN model and its output. The model takes natural movie clips
as input (1), performs convolutions with 3D space-time separable filters (2) followed by a nonlinear activation function (3) in two consecutive layers (2-4) within its core, and
feeds the output of its core into a per-neuron readout. For each RGC, the readout convolves the feature maps with a learned RF modelled as a 2D Gaussian (5), and finally
feeds a weighted sum of the resulting vector through a softplus nonlinearity (6) to yield the firing rate prediction for that RGC (7). Numbers indicate averaged single-trial
test set correlation between predicted (red) and recorded (black) responses. (b) Test set correlation between model prediction and neural response (averaged across three
repetitions) as a function of response reliability (see Methods) for N=3,527 RGCs. Coloured dots correspond to example cells shown in Figure 1c-e. Dots in darker grey
correspond to the N=1,947 RGCs that passed the model test correlation and movie response quality criterion (see Methods and Figure 1-figure supplement 1lc). (c) Test set
correlation (as in (b)) of model vs. test set correlation of a linearised version of the CNN model (for details, see Methods). Coloured dots correspond to RGC groups 1-32 (6).
Dark and light grey dots as in (b). (d) lllustration of model-guided search for maximally exciting inputs (MEIs). The trained model captures neural tuning to stimulus features
(far left; heat map illustrates "landscape”” of neural tuning to stimulus features). Starting from a randomly initialised input (2nd from left; a 3D tensor in space and time; only
one colour channel illustrated here), the model follows the gradient along the tuning surface (far left) to iteratively update the input until it arrives at the stimulus (bottom right)
that maximises the model neuron’s activation within an optimisation time window (0.66 s, grey box, top right).

presentation, thereby allowing to assess the reliability of 7% supplement 1Ib) and reached an average of 0.48 (for all
neuronal responses across the recording (Figure 1b, top). 171 N=3,527 cells passing filtering steps 1-3, Figure 1-figure

The responses elicited by the synthetic stimuli and the 172 supplement 1Ic). We also tested the performance of our
natural movie were diverse, displaying ON (Figure 1d, rows s nonlinear model against a linearised version (see Methods;
4-9), ON-OFF (row 3) and OFF (rows 1 and 2), as well 1 equivalent to a Linear-Nonlinear (LN) model, and from here
as sustained and transient characteristics (e.g., rows 8 and s on “LN model”) and found that the nonlinear CNN model
4, respectively). Some responses were suppressed by tem- 17 achieved a higher test set correlation for all RGC groups
poral contrast (generally, rows 10, 11; at high contrast and 177 (average correlation LN model: 0.38; Gi4: 0.2, Go4: 0.65,
frequency, row 9). A total of 6,984 GCL cells passed our s Figure 2¢).

response quality criteria (see Methods); 3,527 cells could Next, we wanted to leverage our nonlinear CNN model
be assigned to one of 32 previously characterised functional ;; (o search for potentially nonlinear stimulus selectivities of
RGC groups (6) based on their responses to the chirp and .,  mouse RGC groups. Towards this goal, we aimed to iden-
moving bar stimuli using our recently developed classifier ., tify stimuli that optimally drive RGCs of different groups.
(Figure le; Figure 1-figure supplement 1la) (5). Cells as- 5, For linear systems, the optimal stimulus is equivalent to the
signed to any of groups 33-46 were considered displaced ., linear filter and can be identified with classical approaches
amacrine cells and were not analysed in this study (for de- ,,; guch as reverse correlation (41). However, since both the
tailed filtering pipeline, see Figure 1-figure supplement 11c). ., RGCs and the CNN model were nonlinear, a different ap-

17 proach was necessary. Other recent modelling studies in
CNN model captures diverse tuning of RGC groups s the visual system have leveraged CNN models to predict
and predicts MEIs. We trained a CNN model on the s static maximally exciting inputs (MEIs) for neurons in mon-
RGCs’ movie responses (Figure 2a) and evaluated model 10 key V4 (33, 42) and mouse V1 (32, 34). We adopted this
performance as the correlation between predicted and trial- 11 approach to predict dynamic (i.e., time-varying) MEIs for
averaged measured test responses, C (f("), (r(")>i) (Fig- 12 mouse RGCs. We used gradient ascent on a randomly ini-
ure 2b). This metric can be interpreted as an estimate 1 tialised, contrast- and range-constrained input to find the
of the achieved fraction of the maximally achievable cor- 14 stimulus that maximised the mean activation of a given
relation (see Methods). The mean correlation per RGC 15 model neuron within a short time window (0.66 s; see Meth-
group ranged from 0.32 (G4) to 0.79 (Gyq) (Figure 1-figure 16 ods; Figure 2d).
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Figure 3. Spatial, temporal and chromatic properties of MEls differ between RGC groups (a) Spatial component of three example MEls for green (top), UV (middle) and
overlay (bottom). Solid and dashed circles indicate MEI centre and surround fit, respectively. For display, spatial components s in the two channels were re-scaled to a similar
range and displayed on a common grey-scale map ranging from black for —max(|s|) to white for max(|s|), i.e. symmetric about 0 (grey). (b) Spatio-temporal (y-t) plot
for the three example MEls (from (a)) at a central vertical slice for green (top), UV (middle) and overlay (bottom). Grey-scale map analogous to (a). (c) Trajectories through
colour space over time for the centre of the three MEls. Trajectories start at the origin (grey level); direction of progress indicated by arrow heads. Bottom right: Bounding
boxes of the respective trajectory plots. (d) Calculation of MEI centre size, defined as o, + o, with o, and o, the s.d. in horizontal and vertical direction, respectively, of
the DoG fit to the MEL. (e) Calculation of MEI temporal frequency: Temporal components are transformed using Fast Fourier Transform, and MEI frequency is defined as the
amplitude-weighted average frequency of the Fourier-transformed temporal component. (f) Calculation of centre contrast, which is defined as the difference in intensity at the
last two peaks (indicated by ¢; and t2, respectively, in (c)). For the example cell (orange markers and lines), green intensity decreases, resulting in OFF contrast, and UV
intensity increases, resulting in ON contrast. (g) Distribution of green and UV MEI centre sizes across N=1,613 cells (example MEls from (a-c) indicated by arrows; symbols
as shown on top of (a)). 95% of MEIs were within an angle of + 8° of the diagonal (solid and dashed lines); MEls outside of this range are coloured by cell type. (h) As (g) but
for distribution of green and UV MEI temporal frequency. 95% of MEIs were within an angle of 4= 11.4° of the diagonal (solid and dashed lines). (i) As (g) but for distribution
of green and UV MEI centre contrast. MEI contrast is shifted away from the diagonal (dashed line) towards UV by an angle of 33.2° due to the dominance of UV-sensitive
S-opsin in the ventral retina. MEIs at an angle > 45° occupy the upper left, colour-opponent (UVON-green® ) quadrant. (j, k) Fraction of MEIs per cell type that lie outside
the angle about the diagonal containing 95% of MEls for centre size and temporal frequency. Broad RGC response types indicated as in (6). (I) Fraction of MEls per cell type
in the upper-left, colour-opponent quadrant for contrast.
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It is important to note that MEIs should not be con-
fused with or interpreted as the linear filters that result from
classical approaches (e.g., reverse correlation). This is be-
cause they result from an optimisation procedure that aims
at predicting the optimal stimulus for a cell. In fact, they
can differ significantly from linear filters, for example by
exhibiting more complexity and higher frequency compo-
nents (32).

MEls reflect known functional RGC group properties.
The resulting MEIs were short, dichromatic movie clips;
their spatial, temporal, and chromatic properties and inter-
actions thereof are best appreciated in lower-dimensional vi-
sualisations (Figure 3a—c; more example MEIs in Figure 3-
figure supplement 11I).

To analyse the MEIs in terms of these properties, we
decomposed them into their spatial and temporal compo-
nents, separately for green and UV, and parameterised the
spatial component as a Difference-of-Gaussians (DoG) (40)
(N=1,613 out of 1,947, see Methods). We then located
MEIs along the axes in stimulus space corresponding to
three properties: centre size, mean temporal frequency, and
centre contrast, separately for green and UV (Figure 3d-f).
These MEI properties reflect RGC response properties clas-
sically probed with synthetic stimuli, such as spots of dif-
ferent sizes (8), temporal frequency modulations (6), and
stimuli of varying chromatic contrast (20, 21). Using the
MEI approach, we were able to reproduce known proper-
ties of RGC groups (Figure 3g-i). For example, sustained
ON «a RGCs (Gy4), which are known to prefer large stim-
uli (6, 36), had MEIs with large centres (Gp4, N=20 cells:
green centre size, mean = SD: 195 482 um; UV centre
size 178 =45 pm; average across all RGC groups: green
148 +42 pm, UV 141 £ 42 pum; see Figure 3g).

The MEI’s temporal frequency relates to the tempo-
ral frequency preference of an RGC: MEIs of Gyp and
Gy, termed ON high frequency and ON low frequency
(6), had high and low average temporal frequency, respec-
tively (Gpg, N=40 cells, green, mean + SD: 2.71 +0.16 Hz,
UV 2.86+0.22Hz; Gy, N=50 cells, green, mean =+ SD:
2.32£0.63Hz, UV 1.98 + 0.5 Hz; see Figure 3h). Some
MEIs exhibit fast oscillations (Figure 3e and Figure 3-figure
supplement 11I). This is not an artefact but rather a conse-
quence of optimising a stimulus to maximise activity over a
0.66 s time window (Figure 2d). To maximise the response
of a transient RGC over several hundred milliseconds, it has
to be stimulated repetitively, hence the oscillations in the
MEI. Maximising the response over a shorter time period
results in MEIs without oscillations (Figure 3-figure supple-
ment 211I).

Finally, the contrast of an MEI reflects what is tradi-
tionally called a cell’s ON vs. OFF preference: MEIs of
ON and OFF RGCs had positive and negative contrasts, re-
spectively (Figure 3i). An ON-OFF preference can be in-
terpreted as a tuning map with two optima — one in the
OFF- and one in the ON-contrast regime. For an ON-
OFF cell, there are hence two stimuli that are approximately
equally effective at eliciting responses from that cell. Conse-
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quently, for the ON-OFF RGC groups, optimisation resulted
in MEIs with ON or OFF contrast, depending on the rela-
tive strengths of the two optima and on the initial conditions
(Figure 3-figure supplement 111, G, and see Discussion).

MEIs were also largely consistent within functional
RGC groups (Figure 3-figure supplement 11I). Where this
was not the case, the heterogeneity of MEIs could be at-
tributed to a known heterogeneity of cells within that group.
For example, MEIs of G3; RGCs were diverse (Figure 3-
figure supplement 11II), and the cells that were originally
grouped to form Gj3; probably spanned several distinct
types, as suggested by the group’s unusually high coverage
factor (6). Together, these results provided strong evidence
that RGCs grouped based on responses to synthetic stimuli
(chirp and MB) also form functional groups in natural movie
response space.

CNN model predicts centre colour-opponency in RGC
group Gag. Our goal was to explore chromatic tuning of
RGCs and to identify novel stimulus selectivities related to
chromatic contrast. Therefore, we specifically focused on
regions in stimulus space where a given stimulus property
differs for green and UV. Therefore, for centre size and tem-
poral frequency, we asked, which RGC groups contributed
to the MEIs outside of the 95" percentile around the diago-
nal (Figure 3g,h,j,k). These 5% MEIs furthest away from the
diagonal were almost exclusively contributed by ON cells;
and among these, more so by slow than by fast ON cells.

METI contrast needed to be analysed differently than
size and temporal frequency for two reasons. First, due to
the dominance of UV-sensitive S-opsin in the ventral retina
(17), stimuli in the UV channel were much more effective
at eliciting RGC responses. As a result, the contrast of most
METIs is strongly shifted towards UV (Figure 3i). Second,
contrast in green and UV can not only vary along posi-
tive valued axes (as is the case for size and temporal fre-
quency), but can also take on opposite signs, resulting in
colour-opponent stimuli. Whereas most MEIs had the same
contrast polarity in both colour channels (i.e. both ON or
OFF, Figure 3c, blue and turquoise trajectories), some MEIs
had opposing contrast polarities in UV and green (Figure 3c,
orange trajectory, and Figure 3i, upper left quadrant). Thus,
for contrast, we asked which RGC groups contributed to
colour-opponent MEIs (i.e. MEIs in the colour-opponent,
upper left or lower right quadrant in Figure 3i). Again, slow
ON RGCs made up most of the cells with colour-opponent
MEIs. Here, Gyg stood out: 66% (24/36) of all cells of this
group had colour-opponent MEIs (UVON-green®FF), fol-
lowed by G,7 with 42% colour-opponent MEIs.

The colour-opponency we found in G,g was not centre-
surround, as described before in mice (20), but rather a
centre-opponency (“co-extensive” colour-opponent RF; re-
viewed in (43)), as can be seen in the lower-dimensional
visualisations (Figure 3a,b, right column; 3c, orange trajec-
tory).

In conclusion, our model-guided in-silico exploration
of chromatic stimulus space revealed a variety of preferred
stimuli that captured known properties of RGC groups,
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range and displayed on a common grey-scale map ranging from black for —max(|s|) to white for max(|s|), i.e. symmetric about O (grey). Relative amplitudes of UV and
green are shown in the temporal components. (b) lllustration of spatial layout of MEI experiment. White circles represent 5 x 5 grid of positions where MEls were shown; red
shading shows an example RF estimate of a recorded Gz, RGC, with black dot indicating the RF centre position (Methods). (c) Responses of example RGC from (b) to the
11 different MEI stimuli at 25 different positions. (d) Recorded (top, r(™) and predicted (bottom, f(")) responses to the 11 different MEls for example RGC n from (b, c).
Left: responses are averaged across the indicated dimensions x, y (different MEI locations); black bar indicates MEI stimulus duration (from 0 to 1.66 s), grey rectangle marks
optimisation time window (from 1 to 1.66s). Right: Response to different MEls, additionally averaged across time (t; within optimisation time window). (e,f) Same as in (d),
but additionally averaged across all RGCs (n) of Gs (N=6) (e) and of Gog (N=12) (f). Error bars show SD across cells. (g) Confusion matrix, each row showing the z-scored
response magnitude of one RGC group (averaged across all RGCs of that group) to the MEls in (a). Confusion matrix for recorded cells (top; “Data”) and for model neurons
(bottom; “Model”). Black squares highlight broad RGC response types according to (6): OFF cells, (G15) ON-OFF cells (G1o), fast ON cells (G1g20), slow ON (Gz1,23,24) and
ON contrast suppressed (Gzs) cells, and OFF suppressed cells (Gs1,32).

and (ii) to represent both well-described RGC types, such
as « cells (i.e. Gsgs), as well as poorly understood RGC

and revealed a preference of Go3 RGCs for centre colour-

opponent, UVON_green®FF stimuli, a feature previously un- sz

known for this RGC group. a4 types, such as suppressed-by-contrast cells (Gog 31.32) (Fig-
a2s ure 4a). We therefore chose MEIs of RGCs from groups
Experiments confirm selectivity for chromatic con- * G1 (OFFlocal), Gs (OFF a sustained), Gy (ON-OFF local-

edge), Gig (ON transient), Gyg (ON high frequency), Gy
(ON low frequency), Gp3 (ON mini «), G4 (sustained ON
a), Gpg (ON contrast suppressed), Gz; (OFF suppressed 1),
and G3; (OFF suppressed 2). For simplicity, in the follow-
ing we refer to the MEI of an RGC belonging to group g as
group g’s MEI, or MEI g.

trast. Next, we verified experimentally that the MEIs pre-
dicted for a given RGC group actually drive cells of that
group optimally. To this end, we performed new experi-
ments in which we added to our battery of stimuli a num-
ber of MEIs chosen according to the following criteria: We
wanted the MEIs to (i) span the response space (ON, ON-
OFF, OFF, transient, sustained, and contrast-suppressed)
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Figure 5. Electrical single-cell recordings of responses to MEI stimuli confirm chromatic selectivity of tSbC RGCs. (a) Spiking activity (top, raster plot; middle, firing
rate) of a OND RGC in response to different MEI stimuli (black bar indicates MEI stimulus duration; grey rectangle marks optimisation time window, from 1 to 1.66 s). Bottom:
Activation relative to mean as a function of MEI stimulus, averaged across cells (solid line, from electrical recordings, N=4; dashed line, from Ca?* imaging, N=11 cells).
Colours as in Figure 4. (b) Like (a) but for a sustained ON « cell (Gzs; N=4 cells, both for electrical and Ca®* recordings). (c) Different ON delayed (OND/ASbC, Gzs) RGC
(green) dye-loaded by patch pipette after cell-attached electrophysiology recording (z-projection; x-y plane). (d) Cell from (c, green) as side-projection (x-z), showing dendritic
stratification pattern relative to choline-acetyltransferase (ChAT) amacrine cells (tdTomato, red) within the inner plexiform layer (IPL).

We presented these MEIs on a regularly spaced 5 x 5
grid to achieve approximate centring of stimuli on RGC RFs
in the recording field (Figure 4b,c). For these recordings,
we fit models whose readout parameters allowed us to es-
timate the RGCs’ RF locations. We used these RF loca-
tion estimates to calculate a spatially weighted average of
the responses to the MEIs displayed at different locations,
weighting the response at each location proportional to the
RF strengths at those locations (Figure 4b, red highlight,
and Figure 4d, top). We then performed the same experi-
ment in-silico, confirming that the model accurately predicts
responses to the MEIs (Figure 4d, bottom; Figure 4-figure
supplement 11V). These experiments allowed us to evaluate
METI responses at the RGC group level (Figure 4e—f; Fig-
ure 3-figure supplement 1 II).

We expected RGCs to show a strong response to their
own group’s MEI, a weaker response to the MEIs of func-
tionally related groups, and no response to MEIs of groups
with different response profiles. Indeed, most RGC groups
exhibited their strongest (Gs2021,2832) or second-strongest
(G1.10.23) response to their own group’s MEI (Figure 4g,
top). Conversely, RGC groups from opposing regions in re-
sponse space showed no response to each others’ MEIs (e.g.
G1 5 (OFF cells) vs. Gyj.28 (slow ON cells)). The model’s
predictions showed a similar pattern (Figure 4g, bottom),
thereby validating the model’s ability to generalise to the
MEI stimulus regime.

Notably, Gog RGCs responded very selectively to their
own MEI 28, displaying only weak responses to most
other MEIs (Figure 4f,g, selectivity index Gpg to MEI 28
Sla,g (28) defined as the average difference in response be-
tween MEI 28 and all other MEIs in units of standard devia-
tion of the response, mean = SD: 2.58 +-0.76; see Methods).
This was in contrast to other RGC groups, such as G,3 and
Gy4, that responded strongly to MEI 28, but also to other
MEIs from the slow ON response regime (Figure 4g, top;
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Figure 4-figure supplement 1 IV, SIG23(28), mean + SD:
1.0440.69, Slg,, (28), mean + SD: 1.01 +0.46). Hence,
our validation experiments confirm the model’s prediction
that RGC group Gog is selective for centre colour-opponent,
UVON_green®FF stimuli.

Gag corresponds to the transient Suppressed-by-—
Contrast RGC type. Next, we sought to identify which
RGC type Gpg corresponds to. In addition to its unique
centre colour-opponency, the responses of Gyg displayed a
pronounced transient suppression to temporal contrast mod-
ulations (cf. chirp response in Figure le). Therefore, we hy-
pothesised that Gpg corresponds to the transient Suppressed-
by-Contrast (tSbC) RGC type (37, 38, 44), which is one of
three retinal SbC RGC types identified so far and is also re-
ferred to as ON delayed (OND) cell because of its delayed
response onset (45).

To test this hypothesis, we performed cell-attached
electrophysiology  recordings (Figure 5) targeting
tSbC/OND cells (N=4), identified by their responses
to spots of multiple sizes (8), and later confirmed by their
distinctive morphology ((45); type 73 in (9)) (Figure 5c,d).
We recorded spikes while presenting the MEI stimuli
(Figure Sa, top). Just like Gog RGCs in the Ca®* imaging,
tSbC/OND cells exhibited a pronounced selectivity for MEI
28, and were suppressed by most other MEIs (Figure Sa,
middle and bottom). Notably, the characteristic delayed
response onset was visible in both the Ca>* (Figure 4f, top)
and electrical (Figure 5a) responses but was not predicted
by the model (Figure 4f, bottom).

As a control, we also recorded MEI responses of a
different, well-characterised RGC type, sustained (s) ON
a (Gog; (46)) (Figure 5b, top; N=4). Again, the electri-
cal recordings of the cells” MEI responses yielded virtually
the same results as the Ca?" imaging (Figure 5b, middle
and bottom; cf. Figure 4-figure supplement 11V). Crucially,
SON « cells were not selective for MEI 28. The fact that
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Figure 6. Chromatic contrast selectivity of Gog RGCs derives from a nonlinear transformation of stimulus space (a) Distribution of green and UV MEI centre contrast
for a linear-nonlinear (LN) model (red) and a nonlinear CNN model (black). Colour-opponent cells highlighted by filled marker. (b,c) Left: MEls for an example cell of RGC
group Gog, generated with the LN model (b) or the CNN model (c). The cell's MEI centre contrast for both models is marked in (a) by asterisks. Right: Respective tuning
maps of example model neuron in chromatic contrast space. Colours represent responses in % of maximum response; arrows indicate the direction of the response gradient
across chromatic contrast space. (d) Difference in response predicted between LN and CNN model (in % of maximum response). (e) Contour plot of activity vs. green and
UV contrast for an example tSbC (Gzs) RGC measured in whole-cell current-clamp mode. Labels on the contour plot indicate spike count along isoresponse curves. (f)
Traces are examples of responses at the 8 extremes of -100%, 0, or 100% contrast in each colour channel.

these experiments with precise positioning of stimuli on the
cells’ RFs elicited the same responses as the 2P experiments
confirms the validity of the grid-approach for stimulus pre-
sentation used in the latter.

Chromatic contrast selectivity derives from a nonlin-
ear transformation of stimulus space. Next, we asked
whether Gpg (tSbC) RGC'’s selectivity is a linear feature, as
could be achieved by two linear filters with opposite signs
for the two colour channels, or whether it is a nonlinear
feature. To address this question, we tested whether an
LN model (implemented using convolutions; see Methods)
could recover the chromatic selectivity of Gpg by predicting
MEIs using the LN model (Figure 6). We found that the
LN model predicted colour-opponent MEIs for only 9 out
of 36 (25%) G, RGCs (nonlinear CNN: 24 out of 36 (66%)
colour-opponent MEIs; Figure 6a-c). This finding argues
against the possibility that Gpg’s colour opponency can be
explained on the computational level by two opposite-sign
linear filters operating on the two colour channels, which
could be recovered by a LN model. Instead, it suggests the
presence of a nonlinear dependency between chromatic con-
trast (of the stimulus) and chromatic selectivity (of the cell).
In other words, Gpg3 RGCs process stimuli differently de-
pending on their chromatic contrast, a nonlinear feature that
cannot be accurately captured by a LN model that makes
a single estimate of the linear filter for the whole stimulus
space.

To understand the nature of this dependency, we ex-
panded the estimate of the model RGCs’ tuning to colour
contrast around the maximum (the MEI). We did this by
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mapping the model neurons’ response and its gradient in 2D
chromatic contrast space (Figure 6¢). This analysis revealed
that, indeed, Gog RGCs have a nonlinear tuning for colour
contrast: they are strongly UV-selective at lower contrasts,
but become colour-opponent, i.e. additionally inhibited by
green, for higher contrasts. For individual neurons with very
strong colour-opponency that extends over a large region of
chromatic contrast space, also the LN model’s approxima-
tion reflects this colour-opponency, which demonstrates that
the LN model can in principle model colour-opponency, too
(Figure 5-figure supplement 1V). We confirmed the model’s
predictions about G;g’s nonlinear tuning for colour contrast
experimentally by electrically recording from morpholog-
ically identified Gy (tSbC) RGCs (Figure 6e,f). The ex-
ample cell shown in the figure exhibits the same nonlinear
tuning in chromatic contrast space, with the firing rate (Fig-
ure 6f) and, consequently, the tuning curve (Figure 6e) peak-
ing for UVON-green®FF stimuli.

The nonlinearity in tuning to colour contrast of Gog
RGCs leads to a warping of stimulus space (Figure 6) that
amplifies the distance of colour-opponent stimuli from non-
colour-opponent stimuli and thereby increases their discrim-
inability. We therefore hypothesised that the representation
of visual input formed by Gjg might serve to detect an etho-
logically relevant, colour-opponent feature from the visual
scene. What may be this feature?

Warped representation allows for detection of
ground-to-sky transitions. Studies analysing visual
scenery from the mouse’s perspective have repeatedly
found that chromatic contrast changes strongly at the

A chromatic feature detector in the retina signals visual context changes
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Figure 7. Chromatic contrast tuning allows detection of ground-to-sky transitions (a) Distribution of green and UV contrasts of all movie inter-clip transitions (centre),
separately for the 4 transition types, for each of which an example is shown: ground-to-sky (N=525, top left, red triangle), ground-to-ground (N=494, top right, green disk),
sky-to-ground (N=480, bottom left, black downward triangle), and sky-to-sky (N=499, bottom right, purple square). Images show last and first frame of pre- and post-transition
clip, respectively. Traces show mean full-field luminance of green and UV channels in last and first 1 s of pre- and post-transition clip. Black trace shows luminance averaged
across colour channels. (b) Distributions as in (a), but shown as contours indicating isodensity lines of inter-clip transitions in chromatic contrast space. Density of inter-clip
transitions was estimated separately for each type of transition from histograms within 10 x 10 bins that were equally spaced within the coloured boxes. Four levels of
isodensity for each transition type shown, with density levels at 20 % (outermost contour, strongest saturation), 40 %, 60 % and 80 % (innermost contour, weakest saturation)
of the maximum density observed per transition: 28 sky-to-ground (black), 75 ground-to-ground (green), 42 sky-to-sky (purple) and 45 ground-to-sky (red) transitions per bin.
Orange markers indicate locations of N=36 Ggg MEls in chromatic contrast space (cf. Figure 3i). (¢) Tuning map of Gog RGCs (N=78), created by averaging the tuning maps
of the individual RGCs, overlaid with outermost contour lines from (b) (cf. Figure 6-figure supplement 2VIib). (d,e) Same as (c) for Ga1 ((g), N=97) and G® ((h), N=33). (f)
Top: lllustration of ROC analysis for two RGCs, a Gy (left) and a Ggg (right). For each RGC, responses to all inter-clip transitions were binned, separately for ground-to-sky
(red) and all other transitions (grey). Middle: Sliding a threshold d across the response range, classifying all transitions with response > d as ground-to-sky, and registering
the false-positive-rate (FPR) and true-positive-rate (TPR) for each threshold yields an ROC curve. Numbers in brackets indicate (FPR, TPR) at the threshold indicated by
vertical line in histograms. Bottom: Performance for each cell, quantified as area under the ROC curve (AUC), plotted as distribution across AUC values for all cells (black),

Gg1 (grey), Gs (blue), and Ggg (orange); AUC mean =4 SD indicated as dots and horizontal lines above histograms. (g) Boxplot of AUC distributions per cell type. The box
extends from the first quartile (Q1) to the third quartile (Q3) of the data; the line within a box indicates the median. The whiskers extend to the most extreme points still within

[Q1 — 1.5 X IQR, Q3 + 1.5 X IQR], IQR = inter-quartile range. Diamonds indicate points outside this range. All elements of the plot (upper and lower boundaries of the
box, median line, whiskers, diamonds) correspond to actual observations in the data. Numbers of RGCs for each type are indicated in the plot. (h) lllustration of stimulus with

transitions as in (a) but at different velocities (50, 150, 250, and 350 %s). (i) Like (g) but for model cells and transition movies from (h) at 50s. (j) AUC as function of transition
velocity for example RGC groups (G(1,5), (10), (18,20), (21, 23, 24), (28, 31132)).
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horizon (5, 21, 39, 40). Gyg RGCs are selective to this
kind of change in chromatic contrast: their MEI consists
of a spatially extensive and sustained change in luminance
from green to UV. We hypothesised that this change in
chromatic contrast might serve as a proxy for detecting
changes in visual context, as might be elicited when a cell’s
RF transitions across the horizon. Such transitions could
be caused by head or eye movements, and detecting this
change in visual context (i.e. ground vs. sky) may help
interpreting signals in other RGC channels.

To test if Gog (tSbC) RGCs respond to such a stimu-
lus, we used the transitions between movie clips (inter-clip
transitions; cf. Figure 1b) as a proxy for the type of visual
input elicited by head or eye movements: ground-to-ground
and sky-to-sky transitions for horizontal movements with-
out change in visual context, and ground-to-sky and sky-to-
ground transitions for vertical movements with a change in
visual context. We then calculated the contrast of these tran-
sitions in the green and UV channel and mapped them to the
chromatic contrast stimulus space (Figure 7a). We found
that ground-to-ground and sky-to-sky transitions were dis-
tributed along the diagonal, whereas the two transitions re-
sembling visual input elicited by vertical movements cross-
ing the horizon fell into the two colour-opponent quadrants:
sky-to-ground transitions in the lower right quadrant, and
ground-to-sky transitions in the upper left quadrant (Fig-
ure 7a,b). The UVON -greenOFF MEIs 28 share a location
in stimulus space with ground-to-sky transitions in terms of
chromatic contrast (cf. Fig 3i).

Do Gyg RGCs indeed respond strongly to visual con-
text changes as occur in ground-to-sky transitions, i.e. to the
“naturally occurring version” of their MEIs? To address this
question, we extracted the RGC responses to the inter-clip
transitions, thereby mapping out their tuning across chro-
matic contrasts (Figure 6-figure supplement 1VI, Figure 6-
figure supplement 6VIIb), and then averaged the resulting
single-cell tuning maps for each RGC group (for exam-
ples, see Figure 7c-e). Gpg is most strongly tuned to full-
field transitions in the upper left quadrant containing mostly
ground-to-sky inter-clip transitions (Figure 7c) — unlike, for
example, non-colour-opponent reference RGC groups from
the slow ON and OFF response regime (Figure 7d,e).

Could a downstream visual area detect ground-to-sky
visual context changes based on input from G35 RGCs? To
answer this question, we performed a linear detection analy-
sis for each RGC by sliding a threshold across its responses
to the inter-clip transitions, classifying all transitions that
elicited an above-threshold response as ground-to-sky, and
evaluating false-positive and true-positive rates (FPR and
TPR, respectively) for each threshold (Figure 7f). Plotting
the resulting TPRs for all thresholds as a function of FPRs
yields a receiver operating characteristic (ROC) curve (47)
(Figure 7f, middle). The area under this curve (AUC) can
be used as a measure of detection performance: it is equiv-
alent to the probability that a given RGC will respond more
strongly to a ground-to-sky transition than to any other type
of transition. Indeed, G,g3 RGCs achieved the highest AUC
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on average (Figure 7f, bottom, and g; G,g, mean = SD AUC
(N=78 cells): 0.68 £ 0.08; two-sample permutation test Gpg
vs. all other groups with at least N=4 cells (see Methods),
significant for each group, with a = 0.0017 Bonferroni-
corrected for 30 multiple comparisons).

Ground-to-sky transitions and, therefore visual context
changes, can also appear in the lower visual field, that is,
on the dorsal retina, where RGCs receive weaker UV input
(20). Therefore, we recorded additional fields in the dor-
sal retina (Figure 6-figure supplement 2VIla) and found also
here that Gyg (tSbC) RGCs displayed the strongest tuning to
ground-to-sky transitions among all dorsal RGCs (Figure 6-
figure supplement 2VIlc-h, for statistics, see legends).

Visual context changes triggered by different be-
haviours, such as locomotion and head or eye movements
will differ strongly with respect to their statistics — in partic-
ular with respect to their speed. Therefore, for Gg (tSbC)
RGC:s to play a role in detecting context changes, their de-
tection performance should be robust across velocities. To
test whether this is the case, we conducted additional in-
silico experiments where we predicted responses of all RGC
groups to stimuli simulating transitions across the visual
field with and without context change (Figure 7h) at differ-
ent velocities: 50, 150, 250, and 350 visual degrees per sec-
ond (°/s; see Methods; Figure 6-figure supplement 3VIIIa,b)
The slowest speed simulated visual input as could be elicited
by locomotion, and the fastest speed approached that of sac-
cades (48). We then performed an ROC analysis on the
model cell responses, which confirmed that G,g RGCs could
distinguish ground-to-sky context changes from all other
types of transitions robustly across different speeds (Fig-
ure 7i,j). Interestingly, the advantage of Gpg over other RGC
groups in performing this detection task diminished with in-
creasing speed (Figure 6-figure supplement 3VIllc,d); see
also Discussion).

Together, these analyses demonstrate that a down-
stream area, reading out from a single RGC group, would
achieve the best performance in detecting ground-to-sky
context changes if it based its decisions on inputs from Gog
RGCs, robustly across different lighting conditions (transi-
tions between movie snippets), retinal location (ventral and
dorsal), and speeds. Since such an area would receive input
not from a single cell, but from a local population of cells,
the detection performance of single cells should represent a
lower bound to that area’s detection performance.

Discussion

We combined large-scale recordings of RGC responses to
natural movie stimulation with CNN-based modelling to in-
vestigate colour processing in the mouse retina. By search-
ing the stimulus space in silico to identify most exciting
inputs (MEIs), we found a novel type of chromatic tuning
in tSbC RGCs. We revealed this RGC type’s pronounced
and unique selectivity for full-field changes from green-
dominated to UV-dominated scenes, a stimulus that matches
the chromatic statistics of ground-to-sky transitions in natu-
ral scenes. Therefore, we suggest that tSbC cells may signal
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context changes within their RF. Beyond our focus on tSbC
cells, our study demonstrates the utility of an in silico ap-
proach for generating and testing hypotheses about the etho-
logical relevance of sensory representations.

Nonlinear approaches for characterising neuronal
selectivities and invariances. We leverage image-
computable models in combination with an optimisation
approach to search in dynamic, chromatic stimulus space
for globally optimal inputs for RGCs, the MEIs. The result-
ing MEI represents the peak in the nonlinear loss landscape
that describes the neuron’s tuning in high-dimensional
stimulus space. This approach has also been used to reveal
the complexities and nonlinearities of neuronal tuning in
monkey visual cortex area V4 (33, 42) and mouse area V1
(32, 34). Still, these approaches are not the “silver bullet”
for identifying nonlinear selectivities. =~ One important
limitation is that searching for the most exciting input will
return a single input — even when there are several inputs
that would elicit equal response, such as ON and OFF
stimuli for ON-OFF cells (see Figure II, G;p MEIs). A
remedy for this limitation is to search for diverse exciting
inputs by generating stimuli that are both highly effective at
eliciting neural responses and at the same time distinct from
one another. Ding et al. (49) used this approach to study
bipartite invariance in mouse V1 (see also (50)). Related to
this, Goldin et al. (51) searched for locally optimal stimulus
perturbations for mouse RGCs and found that the selectivity
for positive or negative contrast in a subset of cells is
context-dependent. These cells signal absolute contrast, i.e.
they are invariant to contrast polarity (“classical” ON vs.
OFF). Together, these studies showcase the versatility of the
toolkit of optimisation-based approaches at characterising
nonlinear neuronal operations in high-dimensional, natural
stimulus spaces. We add to this toolkit by first searching
for a globally optimal stimulus, and then searching locally
in its vicinity to map the cells’ loss landscape around the
maximum.

Circuit mechanisms for colour-opponency in tSbC
RGCs. Most previous studies of colour-opponency in the
mouse retina have identified sparse populations of colour-
opponent RGCs that have not been systematically assigned
to a particular functional type (20, 21, 52). The only studies
that have examined the mechanisms of colour-opponency in
identified mouse RGC types showed a centre-surround or-
ganisation, with RF centre and surround having different
chromatic preferences ((18, 53); and (54), but see (55)).
While we do not specifically analyse centre-surround op-
ponency in this study, we see a similar trend as described
previously in many RGC types, with stronger surrounds
in the green channel relative to the UV channel (see Fig-
ure 4a, Figure 3-figure supplement 1II). tSbC RGCs, in
contrast, respond to spatially co-extensive colour-opponent
stimuli, functionally reminiscent of colour-opponent RGCs
in Guinea pig (56) and ground squirrels (57).

In mice, centre-surround opponency has been at-
tributed to the opsin gradient (53) and rod contributions in
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the outer retina (18, 20), whereas the circuitry for spatially
co-extensive opponency remains unknown. It seems un-
likely, though, that the opsin gradient plays a major role
in the tSbC cell’s colour opponency, because both ventral
and dorsal tSbC cells preferentially responded to full-field
green-to-UV transitions. In primates, spatially co-extensive
colour-opponency in small bistratified RGCs is thought to
arise from the selective wiring of S-ON and M/L-OFF bipo-
lar cells onto the inner and outer dendritic strata, respec-
tively ((58), but see (59)). A similar wiring pattern seems
unlikely for tSbC RGCs, since their inner dendrites do not
co-stratify with the S-ON (type 9) bipolar cells, nor do their
outer dendrites co-stratify with the candidate M-OFF bipo-
lar cell (type 1) (60). The bistratified dendritic arbour distin-
guishes the mouse tSbC also from the colour-opponent ON
RGC type in Guinea pig, which is monostratified (56).

The large RF centres of the tSbC cells, extending well
beyond their dendritic fields, come from a non-canonical cir-
cuit, in which tonic inhibition onto the RGC via GABAg
receptors is relieved via serial inhibition from different
amacrine cells using GABA( receptors (36). An intriguing
possibility is that a colour-selective amacrine cell is part of
this circuit, perhaps supporting chromatically tuned disinhi-
bition in the absence of selective wiring from the aforemen-
tioned cone-selective bipolar cells onto the RGC.

A new functional role for tSbC RGCs. Suppressed-by-
contrast responses have been recorded along the early visual
pathway in dorsal lateral geniculate nucleus (dLGN), supe-
rior colliculus (SC), and primary visual cortex (V1) (61-63),
with their function still being debated (64). In the retina,
three types of SbC RGCs have so far been identified (re-
viewed in (45)), among them the tSbC cell (36-38). De-
spite their relatively recent discovery, tSbC RGCs have been
suggested to play a role in several different visual computa-
tions. The first report of their light responses in mice con-
nected them to the SbC RGCs previously discovered in rab-
bit, cat, and macaque, and suggested a role in signalling self-
generated stimuli, perhaps for saccade suppression (37).
Aided by a new intersectional transgenic line to selectively
label tSbC RGCs (38), their projections were traced to areas
in SC, v- and dLGN, and nucleus of the optic tract (NOT).
The latter stabilises horizontal eye movements; however, as
the medial terminal nucleus (MTN), which serves stabilisa-
tion of vertical eye movements, lacks tSbC innervation, it
is unclear whether and how these RGCs contribute to gaze
stabilisation.

A retinal study identified the circuit mechanisms re-
sponsible for some of the unique spatial and temporal re-
sponse properties of tSbC cells and suggested a possible role
in defocus detection to drive emmetropization in growing
eyes and accommodation in adults (36, 65). Here, we iden-
tified another potential role for these RGCs in vision based
on the chromatic properties of their RFs: signalling visual
context changes (see next section). These different possible
functional roles are not mutually exclusive, and might even
be complementary in some cases, highlighting the difficulty
in assigning single features to distinct RGC types (16). In
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particular, the centre colour-opponency that we discovered
in tSbC RGCs could serve to enhance their role in defocus
detection by adding a directional signal (myopic vs. hyper-
opic) based on the chromatic aberration of lens and cornea
(66). Future studies may test these theories by manipulating
these cells in vivo using the new transgenic tSbC mouse line
(38).

Behavioural relevance of context change detection.
The horizon is a prominent landmark in visual space: it bi-
sects the visual field into two regions, ground and sky. This
is particularly relevant in animals like mice, where eye mo-
tion largely accounts for head movements and keeps the vi-
sual field stable with respect to the horizon (48). Visual
stimuli carry different meaning depending on where they oc-
cur relative to the horizon, and context-specific processing
of visual inputs is necessary for selecting appropriate be-
havioural responses (reviewed in (67)). For example, it is
sensible to assume that a looming stimulus above the hori-
zon is a predator, the appropriate response to which would
be avoidance (that is, escape or freezing). A similar stimu-
lus below the horizon, however, is more likely to be harm-
less or even prey. To allow for time-critical perceptual de-
cisions — predator or prey — and corresponding behavioural
response selection — avoidance or approach — it might be
useful that stimulus (e.g., dark moving spot) and contex-
tual information converge soon in the visual circuitry. No-
tably, VGluT3-expressing amacrine cells (a “hub” for dis-
tributing information about motion) represent a shared ele-
ment in upstream circuitry, providing opposite-sign input to
tSbC and to RGCs implicated in triggering avoidance be-
haviour, such as tOFF « (13, 46) and W3 cells (68). In
downstream circuitry, SbC inputs have been found to con-
verge with “conventional” RGC inputs onto targets in dLGN
and NOT; whether tSbC axons specifically converge with
tOFF « or W3 axons remains to be tested. Such conver-
gence may allow “flagging” the activity of these RGCs with
their local context (sky/threat or ground/no threat).

Depending on the behaviour that elicits a context
change — be it a head or eye movement or locomotion —
the parameters of the incoming stimulus, such as illumina-
tion level and velocity, may change. To be behaviourally
useful, a context-change-flagging signal needs to be reliable
and robust across these different stimulus parameters. While
many slow-ON RGCs achieve high detection performance at
higher transition velocities, probably reacting to the increas-
ingly flash-like stimuli, tSbC RGCs were the only type with
robustly high performance across different levels of illumi-
nation and all simulated speeds.

In-silico approaches to linking neural tuning and
function. The modelling of retinal responses to natural
stimuli has advanced our understanding of the complexity
of retinal processing in recent years. As suggested in a re-
cent review, it is helpful to consider the contributions of dif-
ferent studies in terms of one of three perspectives on the
retinal encoding of natural scenes: The circuit perspective
(“how?”), the normative perspective (“why?”), and the cod-
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ing perspective (“what?”) (69). For example, an in-silico
dissection of a CNN model of the retina offered explana-
tions on how the surprisingly complex retinal computations,
such as motion reversal, omitted stimulus response, and po-
larity reversal, emerge from simpler computations within
retinal circuits (26, 27). Taking on the normative perspec-
tive, anatomically constrained deep CNNs trained on image
recognition suggested a dependency between the complex-
ity of retinal representations and the computational power of
downstream cortical networks: Whereas a computationally
powerful cortex, as found in primates, can deal with faith-
ful, linear representations of visual inputs, a simpler cortical
circuitry, as found in mice, requires more complex feature
extraction upstream in the retina ((70, 71); but see (72)).
However, the full potential of CNN models as tools for un-
derstanding sensory processing goes beyond response pre-
diction and reproducing effects that are already described in
the literature.

Here, we developed an approach that allows investi-
gating the complexity of retinal processing simultaneously
from the coding and the normative perspectives: A global
search for most exciting mouse RGC inputs in dynamic,
chromatic stimulus space answers the question of what it is
that retinal neurons encode. Interpreting the abstract fea-
tures extracted by the retina against the backdrop of nat-
ural stimulus space points to why these features might be
behaviourally relevant. And finally, classifying individual
RGCs into types then allows to bring in the circuit perspec-
tive through targeted experiments aimed at dissecting how
specific retinal computations are implemented.

Methods

Animals and tissue preparation. All imaging experi-
ments were conducted at the University of Tiibingen; the
corresponding animal procedures were approved by the
governmental review board (Regierungspriasidium Tiibin-
gen, Baden-Wiirttemberg, Konrad-Adenauer-Str. 20, 72072
Tiibingen, Germany) and performed according to the laws
governing animal experimentation issued by the German
Government. All electrophysiological experiments were
conducted at Northwestern University; the corresponding
animal procedures were performed according to standards
provided by Northwestern University Center for Compara-
tive Medicine and approved by the Institutional Animal Care
and Use Committee (IACUC).

For all imaging experiments, we used 4- to 15-week-
old C57B1/6 J mice (n=23; JAX 000664) of either sex (10
male, 13 female). These animals were housed under a stan-
dard 12h day/night rhythm at 22° and 55% humidity. On
the day of the recording experiment, animals were dark-
adapted for at least 1h, then anaesthetised with isoflurane
(Baxter) and killed by cervical dislocation. All following
procedures were carried out under very dim red (> 650 nm)
light. The eyes were enucleated and hemisected in carboxy-
genated (95% O,, 5% CO,) artificial cerebrospinal fluid
(ACSF) solution containing (in mM): 125 NaCl, 2.5 KCI,
2 CaClp, 1 MgCl,, 1.25 NaH,;POy4, 26 NaHCO3, 20 glu-
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cose, and 0.5 L-glutamine at pH 7.4. Next, the retinae were
bulk-electroporated with the fluorescent Ca®* indicator Ore-
gon—Green BAPTA-1 (OGB-1), as described earlier (73).
In brief, the dissected retina was flat-mounted onto an An-
odisc (#13, 0.2 um pore size, GE Healthcare) with the RGCs
facing up, and placed between a pair of 4-mm horizontal
plate electrodes (CUY700P4E/L, Nepagene/Xceltis). A 10-
wl drop of 5mM OGB-1 (hexapotassium salt; Life Tech-
nologies) in ACSF was suspended from the upper electrode
and lowered onto the retina. Next, nine pulses (=9.2V,
100 ms pulse width, at 1 Hz) from a pulse generator/wide-
band amplifier combination (TGP110 and WA301, Thurlby
handar/Farnell) were applied. Finally, the tissue was placed
into the microscope’s recording chamber, where it was per-
fused with carboxygenated ACSF (at ~36°C) and left to
recover for >30min before recordings started. To visu-
alise vessels and damaged cells in the red fluorescence
channel, the ACSF contained ~0.1 uM Sulforhodamine-
101 (SR101, Invitrogen) (74). All procedures were carried
out under dim red (> 650 nm) light.

For electrophysiology experiments, we used ChAT-Cre
(JAX 006410) x Ail4 (JAX 007914) mice on a C57Bl/6]
background (n=2, male, aged 27 and 30 weeks). Mice were
housed with siblings in groups up to 4, fed normal mouse
chow and maintained on a 12:12 h light/dark cycle. Be-
fore the experiment, mice were dark-adapted overnight and
sacrificed by cervical dislocation. Retinal tissue was iso-
lated under infrared illumination (900 nm) with the aid
of night-vision goggles and IR dissection scope attach-
ments (BE Meyers). Retinal orientation was identified us-
ing scleral landmarks (75), and preserved using relieving
cuts in cardinal directions, with the largest cut at the dor-
sal retina. Retinas were mounted on 12mm poly-D-lysine
coated glass affixed to a recording dish with grease, with
the GCL up. Oxygenation was maintained by superfus-
ing the dish with carboxygenated Ames medium (US Bi-
ological, A1372-25) warmed to 32 °C. For cell-attached
single cell recordings, we used Symphony software (https:
/Isymphony-das.github.io/) with custom extensions (https://
github.com/Schwartz- AlaLaurila-Labs/sa-labs-extension).

Owing to the exploratory nature of our study, we did
not use randomisation and blinding. No statistical methods
were used to predetermine sample size.

Two-photon calcium imaging. We used a MOM-type
two-photon microscope (designed by W. Denk; pur-
chased from Sutter Instruments) (74, 76), which was
equipped with a mode-locked Ti:Sapphire laser (MaiTai-HP
DeepSee, Newport Spectra-Physics) tuned to 927 nm, two
fluorescence detection channels for OGB-1 (HQ 510/84,
AHF/Chroma) and SR101 (HQ 630/60, AHF), and a wa-
ter immersion objective (CF175 LW D x 16/0.8W, DIC N2,
Nikon, Germany). Image acquisition was performed with
custom-made software (ScanM by M. Miiller and T.E.) run-
ning under IGOR Pro 6.3 for Windows (Wavemetrics), tak-
ing time-lapsed 64 x 64 pixel image scans (= (100 pm)?
at 7.8125Hz (Figure 1c). For simplicity, we refer to such
a time-lapsed scan of a local population of GCL cells as
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a “recording”. Despite the low frame rate, the Ca’* re-
sponses can be related to the spike rate (77-80). For doc-
umenting the position of the recording fields, the retina un-
der the microscope was oriented such that the most ventral
edge pointed always towards the experimenter. In addition,
higher resolution images (512 x 512 pixel) were acquired
and recording field positions relative to the optic nerve were
routinely logged.

Data preprocessing. Ca>* traces were extracted for in-
dividual ROIs as described previously (6, 20). Extracted
traces Cqq, Were then detrended to remove slow drifts in the
recorded signal that were unrelated to changes in the neural
response. First, a smoothed version of the traces, Cgmooth,
was calculated by applying a Savitzky-Golay filter of 3™
polynomial order and a window length of 60 s using the
SciPy implementation scipy.signal.savgol_fil-
ter. This smoothed version was then subtracted from the
raw traces to yield the detrended traces.

Cdetrend = Craw — Csmooth

To make traces non-negative (c), we then clipped all
values smaller than the 2.5t percentile, 12 5, to that value,
and then subtracted 75 5 from the detrended traces:

C+ = Cdetrend —12.5

This procedure (i.e. clipping to, and subtracting 13 5) was
more robust than simply subtracting the minimum.

Finally, traces were then divided by the standard devi-
ation within the time window before stimulus start at ¢:

Cnn

SD(C+[:f0])

C:=Cfinal =

For training the model on movie response, we then es-
timated firing rates r from the detrended Ca”* traces c using
the package C2S (https://github.com/lucastheis/c2s, Theis
et al. (80)).

Inclusion criteria. We applied a sequence of quality filter-
ing steps to recorded cells before analysis illustrated in Fig-
ure 1-figure supplement 1Ic. As a first step, we applied a
general response quality criterion, defined as a sufficiently
reliable response to the Moving bar stimulus (as quantified
by a quality index QIysp > 0.6), or a sufficiently reliable
response to the chirp stimulus (as quantified by a quality
index QI.pirp > 0.35). The quality index is defined as in
ref.(6):

 Var[(r);];
1= Narrlo):

where 7 is the T by I response matrix (time samples
by stimulus repetitions) and (), and Var([], denote the mean
and variance across the indicated dimension z, respectively.
The second and third step made sure only cells were
included that were assigned to a ganglion cell group (i.e.,
group index between 1 and 32) with sufficient confidence.
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Confidence is defined as the probability assigned to the pre-
dicted class by the random forest classifier (see (81)), and
the threshold was set at > 0.25.

The fourth step made sure only cells with a sufficient
model prediction performance, defined as an average single-
trial test set correlation of <C’(TA("),T’En))>i > .3, were in-
cluded.

All cells passing steps 1-3 were included in the horizon
detection analysis (Figure 7); all cells passing steps 1-4 were
included in the MEI analysis (Figure 3); the "red" cells pass-
ing steps 1-4 were included in the MEI validation analysis
(Figure 4). In the process of analysing MEIs, we fitted DoGs
to their green and UV spatial component (see Methods sec-
tion Concentric anisotropic 2D Difference-of-Gaussians fit).
For the analysis of MEI properties (temporal frequency, cen-
tre size, chromatic contrast), we only included cells with a
sufficient DoG goodness-of-fit, determined as a value of the
cost function of < .11 for both green and UV on the re-
sulting DoG fit. This threshold was determined by visual
inspection of the DoG fits and led to the inclusion of 1613
out of 1947 RGCs in the MEI property analysis.

Visual stimulation. For light stimulation (imaging ex-
periments), we projected the image generated by a dig-
ital light processing (DLP) projector (lightcrafter DPM-
FE4500MKIIF, EKB Technologies Ltd) through the objec-
tive onto the tissue. The lightcrafter featured a light-guide
port to couple in external, band-pass filtered UV and green
LEDs (light-emitting diodes) (green: 576 BP 10, F37-576;
UV: 387 BP 11, F39-387; both AHF/Chroma) (82). To
optimise spectral separation of mouse M- and S-opsins,
LEDs were band-pass filtered (390/576 dual-band, F59-003,
AHF/Chroma). LEDs were synchronised with the micro-
scope’s scan retrace. Stimulator intensity (as photoisomer-
ization rate, 103 P*s~! per cone) was calibrated to range
from ~ 0.5 (black image) to ~ 20 for M- and S-opsins, re-
spectively. Additionally, we estimated a steady illumina-
tion component of ~ 10* P*s~1 per cone to be present dur-
ing the recordings because of two photon excitation of pho-
topigments (74, 76). Before data acquisition, the retina was
adapted to the light stimulation by presenting a binary noise
stimulus (20 x 15 matrix, (40 pm)2 pixels, balanced random
sequence) at 5 Hz for 5 min to the tissue.

For electrophysiology experiments, stimuli were pre-
sented using a digital projector (DPM-FE4500MKII, EKB
Technologies Ltd) at a frame rate of 60 Hz and a spa-
tial resolution of 1140 x 912 pixels (1.3 pm per pixel)
focused on the photoreceptor layer. Neutral density fil-
ters (Thorlabs), a triple-band pass filter (405 BP 20,
485 BP 20, 552 BP 16; 69000x, Chroma), and a cus-
tom LED controller circuit were used to attenuate the
light intensity of stimuli either to match that of the Ca®*
imaging experiments (for MEI presentation) or to range
from ~ 0-200 P*s—! per rod (for cell identification).
Stimuli were presented using Symphony software (https:
/Isymphony-das.github.io/) with custom extensions (https://
github.com/Schwartz- AlaLaurila-Labs/sa-labs-extension).
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Identifying retinal ganglion cell types. To functionally
identify RGC groups in the Ca®* imaging experiments, we
used our default “fingerprinting” stimuli, as described ear-
lier (6). These stimuli included a full-field (700 pm in diam-
eter) chirp stimulus, and a 300 x 1,000 ;m bright bar mov-
ing at 1,000 um -s~! in eight directions across the recording
field (with the shorter edge leading; Figure 1b).

The procedure and rationale for identifying cells in
the electrophysiological recordings is presented in ref. (8).
Cells with responses that qualitatively matched that of the
OND and ON « types were included in the study. Fol-
lowing recording, cells were filled with AlexaFluor-488
by patch pipette and imaged under a two-photon micro-
scope. Dendrites were traced in Fiji (NIH) using the SNT
plugin (83). Dendritic arbours were computationally flat-
tened using a custom MATLAB tool (https://doi.org/10.
5281/zenodo.6578530) based on the method in ref. (84) to
further confirm their identity as morphological type 73 from
ref. (9).

Mouse natural movies. The natural movie stimulus con-
sisted of clips of natural scenes recording outside in the
field with a specialised, calibrated camera (5). This cam-
era featured a fish-eye lens, and two spectral channels,
UV (band-pass filter F37-424, AHF, >90% transmission
at 350-419 nm) and green (F47-510, > 90%, 470-550 nm,
AHF), approximating the spectral sensitivities of mouse
opsins (35). In mice, eye movements often serve to sta-
bilise the image on the retina during head movements (48).
Therefore, the camera was also stabilised by mounting it on
a gimbal. As a result, the horizon bisected the camera’s vi-
sual field.

A mouse cam movie frame contained a circular field
of view (FOV) of 180° corresponding to 437 pixels along
the diameter. To minimise the influence of potential chro-
matic and spatial aberrations introduced by the lenses, we
focused on image cut-outs (crops; 30° x 26°, equivalent to
72 x 64 pixels in size) from upper and lower visual field,
centred at [28°,56°] and [—42°,—31°], respectively, rela-
tive to the horizon (for details, see (5)). Our stimulus movie
consisted of 113 movie clips, each 150 frames (=5 s) long.
108 clips were randomly reordered for each recording and
split into two 54 clips-long training sequences. The remain-
ing 5 clips formed a fixed fest sequence that was presented
before, in between, and after the training sequences (Fig-
ure 1b). To keep intensity changes at clip transitions small,
we only used clips with mean intensities between 0.04 and
0.22 (for intensities in [0, 1]). For display during the experi-
ments, intensities were then mapped to the range covered by
the stimulator, i.e. [0, 255].

Convolutional neural network model of the retina. We
trained a convolutional neural network (CNN) model to pre-
dict responses of RGCs to a dichromatic natural movie. The
CNN model consisted of two modules, a convolutional core
that was shared between all neurons, and a readout that was
specific for each neuron (85).
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The core module was modelled as a two-layer convolu-
tional neural network with 16 feature channels in each layer.
Both layers consisted of space-time separable 3D convolu-
tional kernels followed by a batch normalisation layer and
an ELU (exponential linear unit) nonlinearity. In the first
layer, sixteen 2 x 11 x 11 x 21 (c=#input channels (green
and UV) x h=height x w=width x t=#frames) kernels were
applied as valid convolution; in the second layer, sixteen
16 x 5 x 5 x 11 kernels were applied with zero padding
along the spatial dimensions. We parameterised the tempo-
ral kernels as Fourier series and added one time stretching
parameter per recording to account for inter-experimental
variability affecting the speed of retinal processing. More
precisely, every temporal kernel was represented by the first
k sine and cosine functions, with trainable weights and
phases, on an evenly spaced temporal grid, where k = 7 for
the first layer, and k = 3 for the second layer. Addition-
ally, we introduced a trainable stretch parameter for every
recording to account for faster and slower response kernels.
For example, the first layer temporal kernels are 21 steps
long. Then, in order to stay well under the Nyquist limit,
we parameterise the kernels with k = 21/3 = 7 sines and
cosines.

For each of those sines and cosines a weight (o, ) is
learned to represent the shape of the temporal responses ker-
nel (shared among cells within a recording). Per scan ¢, the
time grid ¢ (21 steps from O to 1) is stretched by a factor 7; to
account for different response speeds. To avoid adding ad-
ditional cycles (e.g., for stretch factors 7 > 1) this is masked
by an exponential envelope

1
)= 1+ exp —(t + 2-095) @
Thus,
k
w; = Zaj sin(2m-7; -t €(m;)) +5; cos(2m - 7; - t-€(7;)).
J
(2

is the temporal kernel parameterisation, that allows the
model to learn a shared temporal filter that is made faster
or slower for each specific scan (86).

In the readout, we modelled each cell’s spatial recep-
tive field (RF) as a 2D isotropic Gaussian, parameterised as
N (fta, fy;0). We then modelled the neural response as an
affine function of the core feature maps weighted by the spa-
tial RF, followed by a softplus nonlinearity.

For the linearised version of the model, the architec-
ture was exactly the same except for the fact that there was
no ELU nonlinearity after both convolutional layers. The
resulting CNN was therefore equivalent to an LN model.

Model training and evaluation. We trained our network
by minimising the Poisson loss

- p(n) _ n(n) 10 p(0)
,;(r —r\"]og? )

Héfling etal. |

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

A chromatic feature detector in the retina signals visual context changes

where N is the number of neurons, (™) is the mea-
sured and 7#(") the predicted firing rate of neuron n for an
input of duration t=50 frames. We followed the training
schedule of Lurz et al. (87). Specifically, we used early stop-
ping (88) on the correlation between predicted and measured
neuronal responses on the validation set, which consisted of
15 out of the 108 movie clips. If the correlation failed to
increase during any 5 consecutive passes through the entire
training set (epochs), we stopped the training and restored
the model to the best performing model over the course of
training. We went through 4 cycles of early stopping, restor-
ing the model to the best performing, and continuing train-
ing, each time reducing the initial learning rate of 0.01 by a
learning rate decay factor of 0.3. Network parameters were
iteratively optimised via stochastic gradient descent using
the Adam optimiser (89) with a batch size of 32 and a chunk
size (number of frames for each element in the batch) of 50.
For all analyses and MEI generation, we used an ensemble
of models as described in ref. (34). Briefly, we trained 5 in-
stances of the same model initialised with different random
seeds. Inputs to the ensemble model were passed to each
member and the final ensemble model prediction was ob-
tained by averaging the outputs of the 5 members. For ease
of notation, we thus redefine () 10 be the ensemble model
prediction.

After training, we evaluated model performance for
each modelled neuron n as the correlation to the mean, i.e.
the correlation between predicted response 7#(") and mea-
sured response (") to the held-out test sequence, the latter
averaged across 3 repetitions i = {1,2,3}: C(#("™), (rz(n)>z)
Unlike the single-trial correlation C (f(”),rl(")) which is al-
ways limited to values < 1 by inherent neuronal noise, a per-
fect model can in theory achieve a value of 1 for the corre-
lation to the mean, in the limit of infinitely many repetitions
when the sample average <r(”)i )i is a perfect estimate of the
true underlying response p{™). The observed correlation to
the mean can thus be interpreted as an estimate of the frac-
tion of the maximally achievable correlation achieved by our
model. For deciding which cells to exclude from analysis,
we used average single-trial correlation ((C(f(”),rgn)»i)
since this measure reflects both model performance as well
as reliability of the neuronal response to the movie stimulus
for neuron n (see also Methods section on Inclusion crite-
ria).

Synthesising MEls. We synthesised maximally exciting
inputs for RGCs as described previously (32). Formally, for
each model neuron n we wanted to find

3

m*(n) = argmax <'I/'\'(n) (m)30:50>t7

ie. the input *("™) where the model neuron’s re-
sponse (7(x)30:50)+, averaged across frames 30 to 50, at-
tains a maximum, subject to norm and range constraints
(see below). To this end, we randomly initialised an input

:cé”) € ReXwXhXt of duration t=50 frames with Gaussian
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white noise, and then iteratively updated :Ugn)

the gradient of the model neuron’s response:

according to

. 5 e (n
mg+)1 —z )+)\T<r( ) (@™)30:50)

n
ox;

@

where A\ = 10 was the learning rate. The optimisation was
performed using Stochastic Gradient Descent (SGD), and
was subject to a norm and a range constraint. The norm con-
straint was applied jointly across both channels and ensured
that the L2 norm of each MEI did not exceed a fixed budget
b of 30. The norm-constrained MEI :Tcgn) was calculated at
each iteration as

_b
[ESRTP

The range constraint was defined and applied for each
colour channel separately and ensured that the range of the
MEI values stayed within the range covered by the training
movie. This was achieved by clipping values of the MEI ex-
ceeding the range covered by the training movie to the min-
imum or maximum value. Optimisation was run for at least
100 iterations, and then stopped when the number of itera-
tions reached 1,000, or when it had converged (whichever
occurred first). Convergence was defined as 10 consecutive
iterations with a change in model neuron activation of less
than 0.001; model neuron activations ranged from ~ 1 to ~
10. We denote the resulting MEI for neuron n as «*(™).

& = x a{™ (5)

Analysing MEIls. We analysed MEIs to quantify their spa-
tial, temporal, and chromatic properties.

Spatial and temporal components of MEIs. For each colour
channel ¢, we decomposed the spatiotemporal MEIs into a
spatial component and a temporal component by singular
value decomposition:

U,S,V = svd(zi™)

with :cz(") € RP0X288 for ¢ € [green, UV] is the
MEI of neuron n in a given colour channel with its spatial
dimension (18x 16 = 288 ) flattened out. As a result, any
spatiotemporal dependencies are removed and we only
analyse spatial and temporal properties separately. The
following procedures were carried out in the same manner
for the green and the UV component of the MEI, and we
drop the colour channel index c for ease of notation. The
temporal component is then defined as the first left singular
vector, U.1, and the spatial component is defined as the
first right singular vector, VZ{, reshaped to the original
dimensions 18 x 16.

Concentric anisotropic 2D Difference-of-Gaussians fit. We
modelled the spatial component as concentric anisotropic
Difference-of-Gaussians (DoG) using the nonlinear least-
squares solver scipy.optimize.least_squares
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with soft-L1 loss function (40). The DoGs were parameter-
ized by a location (u, ptyy) shared between centre and sur-
round, amplitudes A°, A®, variances (ag,a;), (a;,o;), and
rotation angles 0¢, 6° separately for centre and surround:

DoG = G¢ - G*
with
G(x,y) = A° exp(—f(x — piz)?
+29°(y — py) (T — p1)
+h(y — piy)?)
and

I cos20¢  sin?f°
- )
20¢ 207,
. sin26¢  sin26¢
g9 = c c
4oy 4o
e sin?0¢  cos?6°
- )
20¢ 20

and likewise for G®. We initialised (i, 1t ) in the fol-
lowing way: Since we set the model readout’s location pa-
rameters to (0, 0) for all model neurons when generating
their MEIs, we also expected the MEIs to be centred at (0,
0), as well. Hence, we determined the location of the min-
imum and the maximum value of the MEI; whichever was
closer to the centre (0,0) provided the initial values for the
parameters (i, fty). Starting from there, we then first fit a
single Gaussian to the MEI, and took the resulting param-
eters as initial parameters for the DoG fit. This was a con-
strained optimisation problem, with lower and upper bounds
on all parameters; in particular, such that the location param-
eter would not exceed the canvas of the MEI, and such that
the variance would be strictly positive.

MEI properties.

Centre size We defined the diameter of the centre of
the MEI in the horizontal and the vertical orientation,
respectively, as dg = 207 and dj; = 207, The centre size
was calculated as (dS + dy,). We then estimated a contour
outlining the MEI centre as the line that is defined by all
points at which the 2D centre Gaussian G¢ attains the value
G(z,y) with (2,y) = (1o + 05, f1y +07). The centre mask
m was then defined as a binary matrix with all pixels within
the convex hull of this contour being 1 and all other pixels
set to 0. This mask is used for calculating centre chromatic
contrast (see below).

Temporal frequency To estimate temporal frequency of
the MEIs, we estimated the power spectrum of the temporal
components using a Fast Fourier Transform after attenuating
high frequency noise by filtering with a 5™ order low-pass

A chromatic feature detector in the retina signals visual context changes
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Butterworth filter with cutoff frequency 10 Hz. We then es-
timated the mean frequency of the temporal component by
calculating an average of the frequency components, each
weighted with its relative power.

Contrast The contrast of the MEIs in the two channels,
'y(:cj(”)) for ¢ € [green, UV], was defined as the difference
between the mean value within the centre mask m at the two
last peaks of the temporal component of the MEI in the UV
channel at time points ¢ and ¢1:

(@) = (@ om)(t2) - (@ o m)(t),

where © denotes the element-wise multiplication of the
METI and the binary mask. (see Figure 3f). The peaks were
found with the function scipy.signal.find_peaks,
and the peaks found for the UV channel were used to calcu-
late contrast both in the green and the UV channel.

Validating MEls experimentally.

Generating MEI stimuli. To test experimentally whether the
model correctly predicts which stimuli would maximally ex-
cite RGCs of different RGC groups, we performed a new set
of experiments (numbers indicated in red in Figure 1-figure
supplement 11c), where we complemented our stimulus set
with MEI stimuli. For the MEI stimuli, we selected 11
RGCs, chosen to span the responses space and to represent
both well-described and poorly understood RGC groups, for
which we generated MEIs at different positions on a 5 X 5
grid (spanning 110um in vertical and horizontal direction).
We decomposed the MEIs as described above, and recon-
structed MEISs as rank 1 tensors by taking the outer product
of the spatial and temporal components:

¥ =511U.1 ®V{

The MEI stimuli, lasting 50 frames (1.66 s) were
padded with 10 frames (.34 s) of inter-stimulus grey, and
were randomly interleaved. With 11 stimuli, presented at
25 positions and lasting 2 s each, the total stimulus duration
was 11 x 25 x 2 s = 550 s. Since the model operated on a
z-scored (0 mean, 1 SD) version of the movie, MEIs as pre-
dicted by the model lived in the same space and had to be
transformed back to the stimulator range ([0, 255]) before
being used as stimuli in an experiment by scaling with the
movie’s SD and adding the movie’s mean. The MEIs’ green
channel was then displayed with the green LED, and the UV
channel was displayed with the UV LED. For experiments at
Northwestern University, an additional transform was nec-
essary to achieve the same levels of photoreceptor activation
(photoisomerization rates) for M- and S-cones with different
LEDs. To ensure proper chromatic scaling between the dif-
ferent experimental apparatuses with different spectral pro-
files, we described the relative activation of M- and S-cones
by the green and UV LEDs in the stimulation setup used in
the two photon imaging experiments (setup A) by a matrix
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asg| |1 0.19
asu| |0 1 |7

and the relative activation of M- and S-cones by
the stimulation setup used in the patch-clamp experiments

(setup B) by a matrix
bsg| | 1 0.9
bsw| 0.035 1 |’

where diagonal entries describe the activation of M-
cones by the green LED, and of S-cones by the UV LED,
and entries in the off-diagonal describe the cross-activation
(i.e., M-cones by UV-LED and S-cones by green LED). The
activation of M-cones and S-cones €T = (e,,, ;) by a stim-
ulus & € R?*! displayed on a given stimulation setup was
approximated as e = Az (90). Hence, a stimulus &’ dis-
played on setup B, defined as ' = B~'Ax, will achieve
the same photoreceptor activation as stimulus & displayed
on setup A. Since the solution exceeded the valid range of
the stimulator ([0, 255]), we added an offset and multiplied
with a scalar factor to ensure all stimuli were within the valid
range.

B[y

l)77ITL

Analysing RGC responses to MEI stimuli. We wanted to
evaluate the responses of RGCs to the MEI stimuli in a spa-
tially resolved fashion, i.e. weighting responses to MEIs
displayed at different locations proportional to the strength
of the RGCs RF at that location. In order to be able to
meaningfully compare MEI responses between RGCs and
across groups, for each RGC, we first centred and scaled
the responses to zero mean and a standard deviation of 1.
Then, for each RGC n, we computed a spatial average of its
responses, weighting its responses at each spatial location
(x,y) proportional to the Gaussian density N, o, (,y),
where the parameters of the Gaussian pty, = (lz, [ty),0n
were the model’s estimated readout parameters for neuron
n (Figure 4b,c.d left):

/

5 5
(M) gy = Z Z TLT'L’)y/ Ny on (7,9
z/=1yl=1

where rg(;)y, € R11*60 is the 60 frames (2 s) long re-

sponse of neuron n to an MEI at position (z,y) = (z,,y/),
resampled from the recording frame rate of 7.81 Hz to
30 Hz. We then averaged (r(?)), , across time in the op-
timisation time window, i.e. frames 30-50, to get a scalar
response 7(") = (r(™), ., for each MEI stimulus (Fig-
ure 4d).

Selectivity index. To quantify the selectivity of the response
#(") (%) of an RGC n to an MEI x}, we defined a selec-
tivity index as follows. First, we standardised the responses
#(") across all MEIs by subtracting the mean and dividing
by the standard deviation. The selectivity index of RGC
group G, to MEI &} was then defined as
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11
* ~(n * 1 ~(n *
Sly(w3) = <7"( )(mi) - Ez5ijr( )(wj»n,
j=1

where 0;; is the Kronecker delta. In words, the Sl is the
difference (in units of SD response) between the response to
the MEI of interest (z}) and the mean response to all other
(10) MEIs, 1—10 2311:1 8;;7() (), averaged across all cells
n belonging to the group of interest Gg.

Characterising nonlinear processing of chromatic
contrast space. We wanted to analyse the tuning of
G)g/tSbC RGCs to chromatic contrast and to this end, we
mapped the model response and its gradient across chro-
matic contrast space (Figure 6). Specifically, the MEIs
have d =2 x 18 x 16 x 50 = 28,800 pixels and dimensions,
14,400 for each colour channel. Now let z*() e R 1728800
be the cell’s MEI estimated using the LN model, with the
first d=14,400 dimensions defining the green pixels and the
remaining dimensions defining the UV pixels. Then for each
cell we consider a two-dimensional subspace spanned by
two basis vectors e ,e where

Bl 0]
x;(”)
: 0
e = *(n) = $T(n)
d *(n)
0 Lo
Lo ] L™ ]

In words, the basis vectors consist of the UV compo-
nent of the MEI in the UV channel and Os in the green chan-
nel for ey, and of Os in the UV channel and the UV com-
ponent of the MEI in the green channel for ea. We chose
this subspace due to its vicinity to the optimum of the neu-
ron’s tuning curve, and we chose the UV MEI as compo-
nent of both basis vectors, since the green and UV compo-
nent of Gpg MEIs were very similar except for their tem-
poral contrast (see Figure 3-figure supplement 11I). We then
sampled 11 points along each dimension, equally spaced be-
tween [—1,1], which resulted in stimuli that are identical in
terms of their spatial and temporal properties and only differ
in their contrast. We then evaluated the model neuron re-
sponse at these points in the subspace (Figure 6d). We also
evaluated the gradient of the model neuron response at these
points and plotted the direction of the gradient projected into
the subspace spanned by e, ea (Figure 6b,c).

Detection performance analysis.To test the perfor-
mance of individual RGCs of different groups in detecting
the target class of inter-clip transitions (ground-to-sky) from
all other classes of inter-clip transitions, we performed a
receiver operating characteristic (ROC) analysis (47). For
each RGC, we calculated its response to an inter-clip tran-
sition occurring at time ¢( as the baseline-subtracted aver-
age response within 1 second following the transition, i.e.
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% Zfzor(t) —r(tg), with T=30 frames at 30 Hz. For all
n=40 equally spaced thresholds within the response range of
a RGC, we then calculated the true positive rate (TPR) and
false positive rate (FPR) of a hypothetical classifier classi-
fying all transitions eliciting an above-threshold response as
a positive, and all other transitions as negative. Plotting the
TPR as a function of FPR yields an ROC curve, the area
under which (AUC) is equivalent to the probability that the
RGC will respond more strongly to a randomly chosen inter-
clip transition of the target class than to a randomly chosen
inter-clip transition of a different class. The AUC thus is a
measure of performance for RGCs in this detection task.

Detection task in simulation. We simulated the four types
of transitions (sky-sky, sky-ground, ground-ground, ground-
sky) in natural scenes to include various visual context
changes across velocities, which could be triggered by dif-
ferent behaviours such as locomotion or eye movements.
With the simulated context-changing stimuli, we predicted
model neuron responses in-silico and then determined if Gg
could perform the detection task robustly well across speeds.

For generating the stimuli, 500 frames were randomly
extracted from the same mouse natural movies used for the
2P-imaging experiments. For each frame, we simulated vi-
sual transitions by moving a 72 x 64 pixel-large window
along a fixed trajectory (Figure 7h bottom) at four different
angular velocities: 50, 150, 250, and 350°/s, corresponding
to 4, 12, 20, and 28 pixels per frame, respectively (Figure 6-
figure supplement 3VIIIa,b). Each edge of the trajectory is
220 pixels long, covering 90.6°of visual angle. Each se-
lected scene frame was sampled 8 times (that is, twice per
velocity). To avoid potential biases due to asymmetries in
the mouse natural movie, we sampled each frame for each
velocity both in clockwise and counterclockwise direction.
The stimuli were then down-sampled to 18 x 14 pixels and
shown to the model at a frame rate of 30 Hz. Because the
trajectories contained different numbers of moving frames
for the 4 velocities, we “padded” the stimuli at the begin-
ning and the end of each transition stimulus by duplicating
the start and end frames, resulting in a total of 60 frames
each (see illustration in Figure 6-figure supplement 3VIIIb).

Statistical analysis.

Permutation test. We wanted to test how likely the differ-
ence in AUC observed for different RGC groups are to oc-
cur under the null hypothesis that the underlying distribu-
tions they are sampled from are equal. To this end, we per-
formed a permutation test. We generated a null distribution
for our test statistic, the absolute difference in AUC values
AAUC, by shuffling the RGC group labels of the two groups
of interest (e.g. Gyg and Go4) and calculating the test statis-
tic with shuffled labels 100,000 times. We only included
RGC groups with at least N=4 cells in this analysis. We then
obtained a p-value for AAUC observed with true labels as
the proportion of entries in the null distribution larger than
AAUC.
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Bootstrapped confidence intervals. We bootstrapped con-
fidence intervals for AAUC (Figure 7 and Figure 6-figure
supplement 2VII). For AAUC, we generated a bootstrapped
distribution by sampling 100 times with replacement from
the AUC values of the two groups that were being com-
pared and calculated AAUC. We then estimated the 95 %
confidence interval for AAUC as the interval defined by the
2.5t" and 97.5!" percentile of the bootstrapped distribution
of AAUC.

For ['(¢s, ¢y, ), we generated a bootstrapped distribu-
tion by sampling 100 times with replacement from the MEI
responses of RGC group g and then calculating RDM®¥9
and T'(¢s, ¢y, ) for each sample. We then estimated the 95
% confidence interval for I'(¢s, ¢, ) as the interval defined
by the 2.5t" and 97.5t" percentile of the bootstrapped dis-
tribution of I'(¢s, ¢, )-

Estimating effect size. The effect size of difference in AUC
observed for different RGC groups ! and k, AAUC (Fig-
ure 7 and Figure 6-figure supplement 2VII), was estimated
as Cohen’s d (91, 92):

|y, —my|
b

s
with

(N —1)s2 + (N, —1)s?

5= N+ N —2

and my and sy the sample mean and standard devia-
tion, respectively, of the AUC observed for the N, RGCs of
group k.

Estimating linear correlation. Wherever the linear correla-
tion between two paired samples z and y of size N was
calculated (for evaluating model performance, Figure 2, Fig-
ure 1-figure supplement 11, Figure 4-figure supplement 11V,
we used Pearson’s correlation coefficient:

0y = 2 @)y =9)
VEN@i—22 SN -9

Data availability

The data and the movie stimulus will be made available at
https://retinal-functomics.net upon journal publication.

Code availability

Custom analysis and model training code will be made
available at https://github.com/eulerlab upon journal publi-
cation.
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Figure | 1-figure supplement 1. (a) Distribution across cell types for this dataset, and for the dataset described in Baden et al. (6) which was the basis for our classifier (81).
(b) Mean + SD of model performance, evaluated as correlation between model prediction and RGC response on the 25 s long test sequence, averaged across 3 repetitions
of the test sequence, for each cell type. (¢) Response quality, RGC group assignment and model performance filtering pipeline showing the consecutive steps and the fraction
of cells remaining after each step. Black bars and numbers indicate cells from all experiments (i.e. all RGCs for which we recorded chirp, MB, and movie responses), red bars
and numbers indicate the subset of cells recorded in the MEI validation experiments (i.e. those RGCs for which we additionally recorded MEI stimuli responses). Dotted bars
indicate the number of cells before the current filtering step. The filtering steps were as follows: 1. Keep only cells that pass the chirp OR MB quality criterion (Qlasp > .6
OR Qlcnirp > .35). 2. Keep only cells that the classifier assigns to a group with confidence > .25. 3. Keep only cells assigned to a ganglion cell group (groups 1-32;
groups 33-46 are amacrine cell groups); 4. Keep only cells with sufficiently high model performance (<C(f("> , ri") ))i > .3). All cells passing steps 1-3 were included in
the horizon detection analysis (Figure 7); all cells passing steps 1-4 were included in the MEI analysis (Figure 3); the "red" cells passing steps 1-4 were included in the MEI
validation analysis (Figure 4). All quality criteria are described in the Methods section.
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Figure Il 3-figure supplement 2. lllustration of how different time windows for optimisation affect MEI temporal properties. (a) MEls (bottom panels) and model neuron
responses (top panels) for a short optimisation window of 2 frames (= .066 s, indicated by grey shaded area). The top row shows the responses of a more transient RGC to
its own MEI (left stimulus) and to the MEI of a more sustained RGC (right stimulus). The bottom row shows the responses of the more sustained RGC to its own MEI (right
stimulus) and to the MEI of the more transient RGC (right stimulus). (b) MEls (bottom panels) and model neuron responses (top panels) for a longer optimisation window of
20 frames (= .66 s, indicated by grey shaded area) as used throughout the paper. The top row shows the responses of a more transient RGC to its own MEI (left stimulus)
and to the MEI of a more sustained RGC (right stimulus). The bottom row shows the responses of the more sustained RGC to its own MEI (right stimulus) and to the MEI of
the more transient RGC (right stimulus). Same cells as in (a).
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Figure IV 4-figure supplement 1. (a) Recorded (top, r) and predicted (bottom, ) responses to the 11 different MEls for all example cell types. Left: responses are averaged
across the indicated dimensions x, y, n: different MEI locations (x, y) and RGCs in a group (n); black bar indicates stimulus duration (from 0 to 1.66 s), grey rectangle marks
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Figure V 5-figure supplement 1. (a) Distribution of green and UV MEI centre contrast for a linear-nonlinear (LN) model (red) and a CNN model (black); from Figure 6a. (b,c)
Left: MEls for a second example cell of RGC group Gag, generated with the LN model (b) or the CNN model (c). The cell's MEI centre contrast for both models is marked in
(a) by cross. Right: Respective tuning maps of example neuron in chromatic contrast space. Colours represent responses in % of maximum response; arrows indicate the
direction of the gradient across chromatic contrast space. (d) Difference in response between LN and CNN model (in % of maximum response).
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Figure VI 6-figure supplement 1. (a) Traces of example cells of different cell groups (G1o, G1s, G2z, G4, G2g) from a single recording field, responding to 33 (of 122)
inter-clip transitions. Inter-clip transitions are colour-coded by transition type (red: ground-to-sky, purple: sky-to-sky, green: ground-to-ground, black: sky-to-ground. (b) The

resulting tuning maps in chromatic contrast space.
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Figure VII 6-figure supplement 2. (a) lllustration of a flat-mounted retina, with recording fields in the dorsal (black circles) and ventral (white circles) retina (cross marks
optic disc; d, dorsal; v, ventral; t, temporal; n, nasal). (b) Left: Distribution of green and UV contrasts of N=122 inter-clip transitions seen by a ventral group 28 (Gzg) RGC,
coloured by transition type (red triangle, ground-to-sky; green disk, ground-to-ground; black downward triangle, sky-to-ground; purple square, sky-to-sky). Middle: Responses
of example RGC in the 1 s following an inter-clip transition, averaged across transitions within the bins indicated by the grid. Right: Responses transformed into a tuning map
by averaging within bins as defined by grid (Left. Responses are z-scored (i = 0, o = 1). (c) Like (b) but for a dorsal Gog RGC. (d) Tuning map of N=9 dorsal Gos RGCs,
created by averaging the tuning maps of the individual RGCs. (e) Same as (d) for N=13 G21 RGCs. (f) Same as (d) for N=4 Gs RGCs. (g) Top: lllustration of ROC analysis for
two dorsal RGCs, a Gy1 (left) and a Ggs (right). For each RGC, responses were binned to all inter-clip transitions, separately for ground-to-sky (red) and all other transitions
(grey). Middle: Sliding a threshold d across the response range, classifying all transitions with response > d as ground-to-sky, and registering the false-positive-rate (FPR)
and true-positive-rate (TPR) for each threshold yields an ROC curve (middle). Numbers in brackets indicate (FPR, TPR) at the threshold indicated by black vertical line
in histogram plots. Bottom: We evaluated performance for each cell as the area under the ROC curve (AUC), and plotted the distribution across AUC values for all cells
(black), for Gs (blue), for Go1 (grey), and for Ggg (orange). Among the dorsal RGCs, Ggg RGCs achieved the highest AUC on average (mean £ SD AUC, Gg (N=9 cells):
0.62 4+ 0.07; all other groups (N=720): 0.49 £ 0.09, AAUC = 0.13, bootstrapped 95% confidence interval Clgs = [0.08,0.18], Cohen’s d = 1.45, two-sample permutation
test Ggg vs. all other groups (see Methods): p = 0 with 100,000 permutations; next-best performing Go4 (N=6): 0.54 +0.12, AAUC = 0.08, bootstrapped 95% confidence
interval Clgs = [0.01,0.18], Cohen’s d = 0.87; two-sided ¢-test Gog vs. Gos: p = .15 with 100,000 permutations (not significant)). AUC mean + SD indicated as dots and
horizontal lines above histograms. (h) Boxplot of AUC distributions per cell type (dorsal). The box extends from the first quartile (Q1) to the third quartile (Q3) of the data; the
line within a box indicates the median. The whiskers extend to the most extreme points still within [Q1 — 1.5 X IQR, Q3 + 1.5 x IQR], IQR = inter-quartile range. Diamonds
indicate points outside this range. All elements of the plot (upper and lower boundaries of the box, median line, whiskers, diamonds) correspond to actual observations in the
data. Numbers of RGCs for each type are indicated in the plot.
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Figure VIl 6-figure supplement 3. (a) lllustration transition stimulus paradigm (from Figure 7h). (b) Structure of stimuli for different velocities, using a ground-to-sky transition
as an example. (c) Statistics of the area under the ROC curve (AUC) for the sky-ground detection task in the simulation for different velocities (Gzg vs. the next-best RGC
group). Columns (from /eft): mean + standard deviation of AUC values (top: Ggg; bottom: the respective best next RGC type); difference in mean AUC and corresponding
bootstrapped 95% confidence intervals; Cohen’s d and p-value of a two-sample permutation test with 100,000 repeats. (d) Boxplots of AUC distributions per cell type for the
different velocities (plots like in Figure 7g.,j).
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