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Abstract
The quantification of stomatal pore size has long been a fundamental approach to understand the
physiological response of plants in the context of environmental adaptation. Automation of such
methodologies not only alleviates human labor and bias, but also realizes new experimental research
methods through massive analysis. Here, we present an image analysis pipeline that automatically
quantifies stomatal aperture of Arabidopsis thaliana leaves from brightfield microscopy images
containing mesophyll tissue as noisy backgrounds. By combining a YOLOX-based stomatal detection
submodule and a U-Net-based pore segmentation submodule, we achieved 0.875 mAP50 (mean
average precision; stomata detection performance) and 0.745 IoU (intersection of union; pore
segmentation performance) against images of leaf discs taken with a brightfield microscope.
Moreover, we designed a portable imaging device that allows easy acquisition of stomatal images from
detached/undetached intact leaves on-site. We further combined this device with fine-tuned models of
the pipeline we generated here and recapitulated manual measurement of stomatal responses against
pathogen inoculation. Utilization of our hardware and pipeline for automated stomatal aperture
measurements is expected to accelerate research on stomatal biology of model dicots.

Introduction
Stomata, which consist of a pair of guard cells, control gas exchange between the leaf and the
atmosphere. In response to various environmental stimuli, plants regulate stomatal aperture for
adaptation. Plants perceive blue light as a signal that triggers K+ ion uptake in guard cells; plants also
use red light as an energy source for photosynthesis in chloroplasts, resulting in stomatal opening for
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CO2 uptake (Inoue and Kinoshita, 2017; Matthews et al., 2020; Shimazaki et al., 2007). Plants
synthesize the phytohormone abscisic acid (ABA) under drought conditions to promote stomatal
closure and thereby prevent excess water loss (Hsu et al., 2021). In addition to abiotic stimuli, stomata
also respond to biotic stimuli. For example, plants close their stomata by detecting cues from bacterial
and fungal infections. To counter this immune response, the phytopathogenic bacterium Pseudomonas
syringae pv. tomato (Pst) DC3000 and the fungus Fusicoccum amygdali produce coronatine and
fusicoccin, respectively, to manipulate the plant stomatal signaling pathway to force stomata open to
ensure a physical entry point for infection (Camoni et al., 2019; Melotto et al., 2017).

To elucidate the mechanisms underlying the physiology of guard cell regulation, quantification
of stomatal aperture from microscopy observations has been commonly used as a metric. Traditional
observation methods use an eyepiece micrometer to measure stomatal aperture from either epidermal
peels, epidermal fractions prepared using a blender, or partial leaf fragments, either prepared by
forceps or hole punches (leaf discs). However, the number of experimental conditions that can be
performed at once has been restricted because the manual quantification of numerous stomatal pores is
labor-intensive. Instead, alternative metrics have been measured as proxy to estimate the degree of
stomatal aperture, including thermal imaging as an estimation of leaf transpiration (Hashimoto et al.,
1984), measuring transpiration rate with a porometer (e.g. Delta-T AP4 Porometer; Delta-T Devices,
UK), or utilizing fluids with varying viscosity (Hack, 1974). Importantly, direct quantification of
stomatal aperture is still of interest to researchers, as it provides rich and direct information related to
the sensitive dynamics of stomatal movements. In such cases, ImageJ and Fiji (Schindelin et al., 2012;
Schneider et al., 2012) are some of the most commonly used software for biologists when quantifying
stomatal aperture from individually collected images in specific conditions. Recently, owing to
technical advances in image analysis libraries, image-based automatic quantification has gradually
been introduced to the community over the past decade.

Several groups have implemented image analysis pipelines using confocal microscopy images.
For example, stomatal apertures of Arabidopsis (Arabidopsis thaliana) have been quantified from such
microscopy-assisted capture using a fluorescent actin marker (Shimono et al., 2016), cell wall
autofluorescence (Bourdais et al., 2019), or a fluorescent dye (Eisele et al., 2016; Higaki et al., 2014),
each differently highlighting stomatal pore areas within the images. While these approaches can
greatly reduce background noise and facilitate the application of efficient analysis modules, the cost of
both maintaining and running a confocal microscopy facility, as well as sample preparation, can be a
potential obstacle against routine application. Notably, using a benchtop brightfield microscope or an
equivalent observation device is expected to alleviate the above-mentioned issues. However, high
noise in the acquired images (e.g., uneven light irradiation due to sample thickness, appearance of
non-stomatal components such as pavement cell and mesophyll cells, and partially out-of-focus
images) in turn limits the deployment of such devices.

Recently, incorporating machine learning into the image analysis pipeline has aided the
development of automatic quantification of stomatal aperture. For example, stomatal detection based
on histogram-of-oriented-gradients (HOG) followed by image skeletonization and ellipse fitting was
applied to grapevine (Vitis vinifera) images (Jayakody et al., 2017). Similarly, HOG and convolutional
neural network (CNN) were combined to detect and discriminate between open and closed stomata,
along with morphological shape filtering for pore quantification in Benghal dayflower (Commelina
benghalensis) (Toda et al., 2018). Stomatal detection by Faster Region-based CNN (Faster R-CNN)
and ChanVese-based pore segmentation was applied for poplars (Populus L.) (Li et al., 2019). Mask
R-CNN was implemented to both count stomata and quantify the stomatal aperture of black poplar
(Populus nigra) and gingko (Gingko biloba) (Song et al., 2020) or epidermal peels of Arabidopsis and
barley (Hordeum vulgare) (Sai et al., 2022).
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As real-time observations of stomata from intact leaves allow for a rigorous evaluation of the
physiological response of plants at specific moments, methods that allow such observations have been
in high demand by many researchers. Clark 2019 created a custom chamber to fix the leaves of
Tradescantia spathacea to the stage of an upright microscope for analysis of stomatal dynamics in
response to light and CO2 levels. Similarly, the VHX-2000 (Keyence, Japan), a microscope-based
apparatus with a large depth of field, was used to acquire a fully focused image of black poplar leaves
and quantify stomatal aperture (Song et al., 2020). Several research groups have attempted to utilize or
produce a portable imaging device. For example, the handheld microscope ProScope HR2 (Bodelin
technologies, USA) was used to quantify stomatal aperture of maize (Zea mays) leaves in an
undetached intact state (Liang et al., 2022). Finite 40× objective lenses were used to assemble a
customized portable microscope, allowing the monitoring of stomatal movements from tomato
(Solanum lycopersicum) plants grown in the field (Purwar and Lee, 2019). The resulting acquired
images were processed with a customized image analysis pipeline or by manual quantification to
evaluate stomatal aperture.

In this study, we aimed to develop an image analysis module that can quantify stomatal
aperture of Arabidopsis leaves to accelerate routine benchtop analysis involved in physiological
research. Up-to-date methods to quantify Arabidopsis stomatal aperture from brightfield microscope
images have been limited, with the exception of a previous study (Sai et al., 2022). Notably, the
module built in the Sai et al. study was specifically designed for epidermal peels. Since epidermal
peels consist of a single cell layer (guard cells and pavement cells) with almost noiseless background,
the stomatal pores in the acquired images are clear, allowing for the precise quantification of stomatal
dynamics. In addition to guard cell autonomous signals, recent findings indicate that signals derived
from mesophyll cells also have an important role in the regulation of stomatal movements (Matthews
et al., 2020). Thus, quantification of stomatal aperture from materials with mesophyll cells still
attached (i.e., undetached intact leaves, detached leaves, or leaf discs) has been a subject of interest.
However, the difficulty of image focusing due to the bumpy leaf surface as well as the greater noise
emanating from the mesophyll tissue has been a technical challenge for the development of an
efficient image analysis methodology.

Here, we established an image analysis pipeline to process such noisy leaf images. By
combining a YOLOX-based stomata detection and U-Net-based stomatal pore segmentation
submodules, we achieved a mean average precision value (mAP50) of 0.875 and an intersection of
union (IoU) of 0.745, which accounts to a stomatal aperture (pore width) quantification error of 0.2 ±
0.2 µm compared to manual measurements when evaluated against detached leaf disc images taken
with an upright brightfield microscope. Moreover, we designed a portable device that allows easy
stomatal observations from both undetached intact and detached leaves. We further fine-tuned the
models of our image analysis pipeline for their use with images captured with our new portable device
and successfully recapitulated manual measurement of stomatal responses against Pst DC3000
infection. Collectively, we present a system that can automatically evaluate the response of stomatal
regulation of Arabidopsis leaves in various situations.

Results

Dataset and Machine Learning Model Construction
We constructed a two-step image analysis pipeline to quantify stomatal aperture (Fig. 1A). The first
object detection module identifies and retrieves stomatal coordinates, simultaneously classifying each
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stoma as opened or closed. The second semantic segmentation module processes subimages from all
open stomata and extracts stomatal pore area. The profiles of measured stomatal pores (e.g., area,
width, width/length ratio) are aggregated with the results from closed stomata (with apertures of 0 µm)
before being used for further analysis. This pipeline allows the extraction of the stomatal aperture
averages or medians along with the visualized output (Fig. 1B).

To train the machine learning models used in the pipeline, we created an annotated dataset of
Arabidopsis stomata from leaf disc images captured with a brightfield microscope. To obtain various
appearances of stomata and mesophyll cells and enhance the general performance of our pipeline, we
exposed plants to various external stimuli (different light conditions and chemical treatments) to affect
the degree of stomatal opening (see Materials and Methods for details). We collected 79 images,
resulting in the annotation of 1,300 open stomata and 880 closed stomata as bounding box coordinates,
as well as 1,300 stomatal pore areas as polygon coordinates. We then separated these annotated images
into training, validation, and test datasets (Fig. 2A). Representative results of the annotated images are
displayed in Fig. 2B.

We noticed a number of stomata with an ‘obscure’ appearance when they were out of focus or
partially occluded by the surrounding leaf surface structure (Fig. 2C, obscure). We also observed the
visuals of developmentally premature stomata suffering for the same reasons (Fig. 2C, premature).
Such ‘noisy labels’ affected the quality of our manual annotation by mislabeling open or closed
stomata, mislabeling non-stoma background features, or even incorrectly tracing stomatal pore
perimeter. Since such low-quality features influence the performance of the machine learning model,
these labeling issues must be addressed. Here, instead of repetitive manual data cleansing, we opted to
omit any structure not clearly annotated as stomata and masked the corresponding areas as black
rectangles resulting in labels of visibly clear stomata (Fig. 2C, open and closed). See Materials and
Methods for details of the dataset generation.

For the stomatal detection model, we used YOLOX (You Only Look Once X) (Ge et al.,
2021), a deep neural network aimed for object detection. We trained six YOLOX architectures
(YOLOX-nano, -tiny, -s, -m, -l, and -x) with two input image size conditions (1280 × 1280 and 1920 ×
1920). After training, we then compared the detection metrics against the test dataset. Among the
trained models, YOLOX-x and YOLOX-s with the 1920 × 1920 input image size displayed the highest
mAP50 (mean average precision) values of 0.930 and 0.875, respectively (Fig. 3A). Considering that
mAP50 values for both models were higher than 0.85, we selected YOLOX-s with 1920 × 1920 input
image size for the pipeline, which has a smaller network architecture, to prioritize pipeline processing
speed. For the isolation of stomatal pores, we separately implemented two semantic segmentation
model architectures (U-Net and DeepLabv3) (Chen et al., 2017; Ronneberger et al., 2015) each with
two types of encoder backbones (MobileNetV3-Small and MobileNetV3-Large) (Howard et al., 2019).
Out of the four combinations tested, the U-Net architecture with the MobileNetV3-Large backbone
returned the highest IoU with a value of 0.745 (Fig. 3B). We thus selected this combination for the
segmentation submodule of our pipeline. These detection and segmentation models along with
post-processing steps resulted in a stomatal aperture quantification error compared to manual
measurement (ground truth) of 0.2 ± 0.2 µm (see Supplementary Fig. 1 for measurement error on all
test images) on average in the test dataset. Pipeline-processed results (prediction) and hand-annotated
results (ground truth) were comparable in each image, regardless of the sample condition (Fig. 3C).
Notably, the masking out of noisy labels had a limited effect upon such results (prediction with
mask/prediction without mask). We conclude that we established an automated pipeline for the
quantification of stomatal aperture from Arabidopsis leaf disc images.
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Portable Stomatal Imaging Device
While the above-mentioned models in the pipeline were trained and intended for use with images
collected from isolated leaf discs with a benchtop microscope, we wished to expand the use of our
pipeline to observe and quantify stomatal aperture from both detached and undetached intact leaves
on-site. Therefore, we designed a portable device that can acquire the stomatal images by pinching the
leaf blade with the help of image acquisition software (Fig. 4A, left). This device allows for the
non-destructive (or less invasive) imaging of stomata. We reached an image sampling rate of about 0.5
µm/pixel with an optical resolution of 1 µm (see Materials and Methods for details). However, the
model that was trained with microscopy images from leaf discs did not show sufficient detection and
segmentation accuracy against images taken with the device, prompting us to fine-tune the trained
model with an additional dataset acquired by this device until sufficient results were obtained (See
Supplementary Fig. S3 and Materials and Methods for details). The use of this device with the
fine-tuned model enables the precise acquisition of stomatal images and analysis, exemplified by the
visualized result of undetached intact leaves (Fig. 4A, middle and right column).

Using the fine-tuned pipeline and the portable device, we investigated the response of
Arabidopsis stomata against inoculation with Pst DC3000. According to the previously established
method (Melotto et al., 2006), abaxial sides of detached leaves were placed onto stomata opening
buffer alone or that containing bacteria, and stomatal images were collected with the stomata imaging
device at 1 and 3 h after inoculation. Manual measurement of stomatal aperture confirmed previously
reported stomatal responses to Pst DC3000; stomata close at 1h but open at 3 h (Supplementary Fig.
S4) (Melotto et al., 2006). Prediction of stomatal aperture by our fine-tuned pipeline nicely
recapitulated the stomatal responses to Pst DC3000 (Fig. 4B). Notably, the method introduced in the
prior study required peeling of the epidermal layer from the detached leaves prior to microscopic
observation, followed by manual measurement. Image acquisition without such sample preparation
and automatic analysis of the pipeline obviously allows conduction of the experiment at higher
throughput. We conclude that the device we present here now makes it possible to easily observe the
stomata of leaves on-site.

Discussion
In this study, we implemented an image analysis pipeline intended for quantifying stomatal aperture
from Arabidopsis leaf disc images. We also developed a portable device specialized for easy image
acquisition of leaves on-site. Utilizing such a device and/or the pipeline should enable researchers to
accelerate routine analysis of stomatal aperture for physiological dissection of model dicot species.

Recent physiological research involving quantification of plant stomatal aperture greatly relies
on isolated epidermal peels or leaf discs. Any interpretation of the derived results must therefore take
into account unavoidable effects of phytohormones such as jasmonate and ABA on the experimental
results, as their biosynthesis is triggered through sample preparation (e.g., physical damage and water
loss). Ideally, utilizing undetached intact leaves in any situations should enable observation of the
‘natural’ physiological response of plants, repetitive analysis of the same plantlet at different time
points, and analysis of the effect of long-distance (leaf to leaf) signaling, such as defense signaling
(Mousavi et al., 2013). Nonetheless, observations of stomata in epidermal peels, excised leaf discs, or
detached/undetached intact leaves have their specific merits and are complementary approaches to the
same end; they should be the subject of careful selection as a function of the research inquiry at play.
Here, we assembled an analysis pipeline that can quantify stomatal features from images of leaf disks
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captured with a brightfield microscope and then adapted the training model to accommodate the use of
images from intact leaves taken by a portable device to address unchallenged issues up-to-date.

Training machine learning models, specifically supervised learning, generally require an
annotated dataset that consists of images and their corresponding object labels. For example, general
object (e.g., a bus, a person, or a horse) detection and segmentation datasets such as COCO (common
objects in context) were created by defining a bounding box and outline around a given object (Lin et
al., 2014). The bounding box coordinates for the location of each stoma and the stomatal pore outline
corresponds to such labels in our stomatal dataset. While COCO was annotated by non-experts hired
through a crowd labeling service, our images were annotated by multiple experienced plant
physiologists who, unlike non-experts, were trained to pinpoint ambiguous stomata “hiding” in
brightfield images. Notably, we further tried to enhance the quality of our labeling by applying focus
stacking (see Material and Methods) and masking noisy labels in the dataset. Nonetheless, we noticed
inconsistent annotations from one expert to another even when processing the same image, although
all images and annotations were double-checked by an independent expert (Supplementary Figure.
S2). Such differences were likely derived from variations in bounding box sizes, false negative labels,
and personal decisions on what constituted a premature or an obscure stoma. Ideally, such inconsistent
criteria should be unified during annotation. However, contrary to general object detection tasks (i.e.,
labeling regions with a dog or a cat), reaching a consensus for stomatal boundaries and label
classification requires a substantial amount of time. Rather than striving for perfection, we limited the
extent of annotation refinement and trained our machine learning models in advance to verify that the
quality of our dataset was sufficient for deployment. We anticipate that coming to terms with the
quality of each dataset labeling will be integral to deploying the analysis pipeline when the objects of
interest are more difficult to annotate.

The machine learning model trained on images acquired from leaf discs with a brightfield
microscope was not directly compatible with our portable device, thus necessitating further fine-tuning
(Supplementary Fig. S3). We suspect that this lack of initial compatibility was due to intrinsic
differences in the acquired images derived from hardware configuration (imaging sensors, light
intensity, and/or light color). Further analysis is needed to identify the cause, which is a common issue
in the machine learning domain that is often referred to as extrapolation. Machine learning models
cannot properly process a type of images that differ from that used for model training. A general
solution is to simply generate a larger training dataset in the context of both image quantity and types
of images acquired in various environments (e.g., type of image acquisition apparatus) to enhance the
general applicability of the trained model. We anticipate that ongoing collections of various stomatal
images will clarify these issues in future studies. Also, our trained pipeline was designed for a fixed
image acquisition condition (see Materials and Methods for details) and is not a generalized stomatal
aperture processing module. Importantly, our pipeline is not intended to quantify stomata from species
other than Arabidopsis. Nonetheless, our approach utilizes generalized neural network architecture and
is easy to adapt to a specific experimental condition, including another plant species, provided an
appropriate training dataset is generated.

Here, we introduced an intuitive example of the utility of our stomatal aperture measurement
pipeline and portable device by quantifying the stomatal response of Arabidopsis leaves to various
environmental stimuli. Observation of stomatal response against chemical treatment in leaf discs (Fig.
4C), and pathogen inoculation against detached leaves are no more than a representative use case. For
example, screening for Arabidopsis mutants, compounds, and pathogens that respectively influence
the stomatal regulation is a potential scope.

Further investigation using this pipeline/device is expected to accelerate research aimed at
elucidating the molecular mechanisms underlying stomatal regulation in response to various external
stimuli, including light regulation and plant–microbe interactions.
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Materials and Methods

Dataset Generation
Images used for generating the training dataset for the machine learning model were acquired as
described previously (Toh et al., 2018). Briefly, Arabidopsis thaliana plants (Col-0 accession) were
grown on soil at 22°C under a 16-h-Red/Blue-light (50 and 10 µmol/m2/s, respectively)/8-h-dark
photoperiod. Prior to the day of image acquisition, plants were moved to a dark room for at least 12 h
to induce stomatal closure. Under dim light, leaf discs were excised from the center of fully expanded
rosette leaves using a hole puncher (6-mm-diameter Biopsy Punch; Kai Medical). Samples were then
immersed in a basal buffer (5 mM MES-Bis-tris propane pH 6.5, 50 mM KCl, and 0.1 mM CaCl2)
either containing 20 µM abscisic acid (ABA), 10 µM fusicoccin (FC), or 50 µM DMSO, and then
further incubated in the dark or white light (50 µmol/m2/s) for 3 h. In this study, four conditions were
selected to obtain images containing stomata in various conditions; ABA + light, DMSO + light, FC +
dark, and DMSO + dark. Images were acquired using an upright optical microscope (BX43; Olympus,
Tokyo, Japan) with a 10× objective lens with a CCD camera (DP27; Olympus) at a resolution of 1920
× 2448 (height × width) pixels and a scale of 0.35 µm/pixel using cellSens software (Olympus). The
Instant Extended Focal Imaging (Instant EFI) add-on of cellSens was used upon image acquisition to
gain as full a focus of the acquired view as possible.

To annotate images used for training the stomatal aperture quantification model, we utilized a
cloud labeling service, Labelbox (Labelbox, 2022. https://labelbox.com). Four bounding box label
classes were defined to mark “open stomata,” “closed stomata,” “premature stomata,” and “obscure
stomata”, and an independent polygon label was used to trace the outline of stomatal pores. After
labeling, datasets were converted to COCO format and used as the basis for the stomatal detection
dataset. Bounding box coordinates of obscure stomata and premature stomata in the images were
black-filled and omitted from the annotation. Upon model training in the later stage, datasets were
divided into training/validation/test subsets. To prepare images for the stomatal aperture pore
segmentation model, the center point of the bounding box was first calculated. Then, with its
coordinate as a center, a subset image of 64 × 64 pixels was cropped along with the corresponding
stomatal pore mask image to create a dataset.

Image Analysis Pipeline
Stomata detection models were trained using YOLOX (Ge et al., 2021) following the manual of the
official repository (https://github.com/Megvii-BaseDetection/YOLOX) with slight modifications. The
dataset used for training was generated as described in the previous section. Prior to model training,
five augmented images per image were generated using the Rotate and ColorJitter functions from the
Albumentations library (https://github.com/albumentations-team/albumentations). The training was
performed at an image resolution of 1280 × 1280 pixels or 1920 × 1920 pixels with 300 epochs. The
batch sizes were set to 4 and 2 for the YOLOX-l and YOLOX-x models, respectively, and to 8 for the
others for 1280 × 1280 input size. For 1920 × 1920 input size, batch sizes were set to 6 and 1 for the
YOLOX-s and YOLOX-x models, respectively. After training, the model weight that displayed the
best mean average precision (mAP50) against the validation dataset was selected.
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Stomatal pore segmentation models were trained using the pytorch segmentation library
following the procedure of the official repository
(https://github.com/qubvel/segmentation_models.pytorch). Images were augmented upon training with
the HorizontalFlip and ShiftScaleRotate functions and then CLAHE, RandomBrightnessContrast,
RandomGamma, IAASharpen, Blur, MotionBlur, and HueSaturationValue functions randomly from
the Albumentation library. Training was carried out with 400 epochs with a 64 × 64 pixel input size.
After training, the model weight that displayed the best intersection of union (IoU) against the
validation dataset was selected. Stomatal aperture quantification from stomatal pore mask images was
performed by obtaining the minor axis length of the segmented region using the measure.regionprops
module of the scikit-image library. Finally, the stomatal detection model and the stomatal pore
segmentation model were converted from pytorch to ONNX format upon deployment.

Additionally, fine-tuning (i.e. further training of models to adapt to a new dataset) was
performed against the above-mentioned detection and segmentation models with a dataset whose
images were taken by the portable imaging device with detached/undetached intact leaves
(Supplementary Fig. S3A). In contrast to the dataset of microscopic leaf disc images, the majority of
the stomata were opened, and completely closed stomata were absent. This may be due to the
condition of the sample or observation condition but reasons are currently unknown. Labeled stomata
in the dataset were all handled as open stomata, and pore segmentation was performed against all
objects. Similar to the training of microscopic models, stomatal detection and pore segmentation
models were trained using YOLOX and the pytorch segmentation library by fine-tuning the model
weights generated for the microscopy. For the stomatal detection models, five augmented images per
image were generated using the Rotate, ColorJitter, ShiftScaleRotate, Blur and HueSaturationValue
functions from Albumentations library. The training was performed at an image resolution of 1920 ×
1920 pixels with 300 epochs. The batch sizes were set to 6 and 1 for the YOLOX-s and YOLOX-x
models, respectively. For the stomatal pore segmentation models, 28 × 28 pixels cropped images were
augmented with the HorizontalFlip and ShiftScaleRotate functions and then CLAHE,
RandomBrightnessContrast, RandomGamma, and HueSaturationValue functions randomly from the
Albumentation library, and finally resized to 96 × 96 pixels. The training was conducted with 400
epochs with 96 × 96 input image size. Upon inference, 28 × 28 of stomata images were resized to 96 ×
96, inferred with the segmentation model, and resized back to 28 × 28, and further gone through the
post processing for pore measurement. To measure the model performance, 32 images of detached
leaves were additionally acquired and used as a test dataset. First, only the stomatal detection were
performed, and were handed to the manual annotator to evaluate which detection were not suitable for
biological analysis as well as identifying non-stomata detection (i.e. counting false positives). Out of
585 stomata detected by the model, 32 was manually judged as false positive, accounting to a
precision value of 0.945. Then, stomatal pore segmentation with the analysis pipeline and
manual-measurement with ImageJ were individually performed without containing false positives. The
two sets of values were compared, plotted as a scatterplot, and pearson correlation were calculated
(Supplementary Fig. S3C). This set of images were also used to generate Fig.4B, however the stomatal
apertures deriving from the false positives were included to display the raw output values.

Program Development Environment
Machine learning model training as well as pipeline construction were performed using a

cloud programming service (Google Colaboratory Pro+) using Python language. All code
development was done on a laptop computer (Macbook Air M1) or desktop computer (Mac mini
2018).
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Portable Imaging Device Design and Imaging Software
The hardware was designed to acquire stomatal images by pinching the plant leaf. The base unit was
created using a filament PolyMAX PLA White (Polymaker, China) with an L-DEVO M2030 3D
printer (Fusion Technology, Japan). An LED light (OSTCWBTHC1S; Optosupply Limited, China)
irradiated downward through semi-transparent silicon rubber (GELS1-50; MISUMI, JAPAN) onto the
adaxial side of the leaf. The silicon rubber was inserted to function as a light diffusion and a pressure
source for sample flattening. A camera module (Happy Quality, Japan; CY&K INTERNATIONAL,
Japan) was mounted to the bottom side of the device facing upward to acquire an image of the abaxial
leaf surface. The camera module consisted of a compound of micro-size lens, focus control motor, and
a complementary metal oxide semiconductor sensor (IMX 415; Sony, Japan), which can acquire 2592
× 1944 (height × width; pixels) images with a resolution of about 0.5 µm/px at maximum. A 32 × 32
mm cover glass (Iwanami, Japan) was inserted between the camera and the leaf. The device was
connected to a computer by a USB 3.1 (GEN2) cable for data transmission and power supply. The
camera module is UVC (USB Video Class) compatible so the input image can be displayed on any
computer without a specific driver.

Bacterial Inoculation
Arabidopsis thaliana plants (Col-0 accession) were grown on soil in a chamber at 22°C, under a
10-h-light/14-h-dark photoperiod and 60% relative humidity. Light intensity was abt. 5000 lx
measured by an illuminometer, which corresponds to photosynthetic photon flux density of abt. 80
µmol/m2/s. Five-week-old plants were used for bacterial inoculation. To ensure that most stomata were
open, plants were kept in the light for at least 3 h prior to assay. Pst DC3000 was cultured at 22°C in
King’s B (KB) medium with 50 µg/mL rifampicin. The bacterial cultures were pelleted by
centrifugation, washed twice with water, and resuspended in stomata opening buffer (25 mM
MES-KOH pH 6.15, 10 mM KCl) (Melotto et al., 2006). Detached leaves were immersed in bacterial
suspension at OD600 of 0.2 in stomata opening buffer and incubated under light at an intensity of abt.
10000 lx (abt. 170 µmol/m2/s).

Data Availability
The model weights and codes in ONNX format to execute the Arabidopsis stomata quantification
pipeline as well as mask and unmasked test data are available through
(https://github.com/phytometrics/arabidopsis_leaf_stomata_quantification). The software used to
process image streams from the portable device is under development at
(https://github.com/phytometrics/cvgui_linux).
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Figure Legends
Figure 1 Schematic diagram of the stomatal aperture quantification pipeline and representative
output.
(A) Schematic diagram of the quantification pipeline for Arabidopsis stomatal pores. Numbers in
parentheses under “Input Image” indicate input image shape (height, width, BGR color channels),
while those of “Stomata Coordinates with Labels'' correspond to (number of detected stomata, [xmin,
ymin, xmax, ymax, object confidenceness score, class index]). See Materials and Methods for further
details. (B) Representative output of a processed image selected from the test dataset. Red and blue
boxes represent detected coordinates of open and closed stomata, respectively. The red polygon
indicates the detected area of the stomatal pore. Enlarged views of detected stomata are displayed on
the right.

Figure 2 Dataset information.
(A) Details of the annotated dataset of Arabidopsis leaf discs captured with a brightfield microscope.
(B) Representative labeled images used in this study. Red and purple boxes represent labeled
coordinates of open and closed stomata, respectively. The red polygon indicates the labeled area of the
stomatal pore. Light blue and orange boxes represent premature stomata or stomata with obscure
appearance, respectively. (C) Enlarged image of representative stomata from the four labeled
categories.

Figure 3 Pipeline performance.
(A) Object detection metrics, for model architectures of trained stomata detection against the test
dataset when masking noisy (premature and obscure stomata) labels. mAP50, mean average precision
(mAP) with IoU threshold of 50%. mAP50:95, average of mAPs of IoU threshold from 0.5 to 0.95 with
the step size of 0.05. AR, average recall. (B) Semantic segmentation metrics (intersection of union,
IoU) for model architectures of the trained stomatal pore segmentation against the test dataset. (C)
Graphs showing stomatal aperture (top, ratio; bottom, width) values measured either by
hand-measured ground truth (yellow), prediction with mask (blue), or prediction without mask (pink)
against eight images of the test dataset. Samples were either treated with 50 µM FC, 10 µM ABA, or
DMSO (mock) and incubated under dark or Red-Blue light. See materials and methods for details.
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Figure 4 Portable imaging device.
(A) Left, appearance of the portable device. Red insets show the mechanism pinching leaves without
leaf detachment. Middle, representative result of an undetached intact leaf image acquired by the
portable device, processed by the pipeline for stomatal aperture quantification. The area highlighted by
the black rectangle is enlarged to the right. (B) Stomatal aperture (width and area) obtained by the
pipeline. Detached leaves were immersed with a buffer alone or containing Pst DC3000, and were
incubated for 1 or 3 h before the images were acquired, and stomatal apertures were measured. p value
indicates the value of student t-test. n.s. indicates no significant difference between the two conditions.
The same test images were used in the manual measurement of the stomatal aperture described in
Supplementary Fig. S4.

Supplementary Fig. 1 Stomatal aperture (width, µm) quantification difference between
hand-measured ground truth and pipeline-processed results in test images. SD indicates standard
deviation. Values of prediction with and without mask are displayed.
Supplementary Fig. 2 Representative result showing annotation inconsistencies. Top and bottom
images were annotated by different labelers and reviewers.
Supplementary Fig. 3 Adaptation of the pipeline suitable for the image acquired by the portable
device. (A) Representative output of a processed image selected from the test dataset (same dataset
used in Fig. 4B). Left, an image inferred by the models trained on images acquired by a brightfield
microscope. Right, an image inferred by the models fine-tuned with images acquired by a portable
device. (B) Details of the annotated dataset of Arabidopsis leaves captured with a portable device. (C)
Scatter plots showing the correlation between manual measurement and automated-measurement
stomatal aperture [Left, Width (µm); Middle, Area (µm2); Right, Ratio (Width/Length)] from the test
dataset. The area values of manual measurement were calculated using the ellipse function in ImageJ.
Pearson's correlation coefficients (r) and p-values were indicated in the upper left of each panel.
Supplementary Fig. 4 Manual measurements of Arabidopsis stomatal aperture (ratio) upon Pst
DC3000 inoculation. In each experimental condition, at least 65 stomata were manually measured
from two to three inoculated different leaves, and p-values were calculated by student's t-test. This
data shows the representative result of at least three independent experiments.
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mask

File name Mean SD Mean SD Error Mean SD Error

20190507_Disk_Dark_DMSO_18.jpg 0.7606 1.0108 0.8322 1.2407 0.0715 0.7666 1.1876 0.0059

20190507_Disk_Dark_DMSO_20.jpg 0.3857 0.8334 0.3225 0.8673 0.0632 0.5512 1.1131 0.1655

20190507_Disk_Dark_FC_09.jpg 2.3164 1.1856 2.7608 0.9359 0.4443 2.8070 0.8708 0.4906

20190507_Disk_Dark_FC_11.jpg 2.1469 0.9954 2.3425 1.1982 0.1956 2.5458 1.1000 0.3988

20190507_Disk_Light_ABA_05.jpg 1.0999 1.6339 1.2250 1.7528 0.1251 1.1693 1.6735 0.0694

20190507_Disk_Light_ABA_18.jpg 1.5867 1.1979 1.7205 1.2788 0.1338 1.6665 1.3190 0.0799

20190507_Disk_Light_DMSO_05.jpg 3.1363 0.8389 3.1589 0.8420 0.0227 3.0930 0.8081 0.0433

20190507_Disk_Light_DMSO_10.jpg 2.8616 0.6363 2.9262 0.8875 0.0646 2.8806 1.0816 0.0190

Mean 0.1401 0.1591

SD 0.1296 0.1674

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.30.518467doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518467
http://creativecommons.org/licenses/by-nc/4.0/


S.Fig 2

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.30.518467doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518467
http://creativecommons.org/licenses/by-nc/4.0/


S.Fig 3

C

A

B

Number 
of

Images

Open
Stomata 

Label

Masked 
out

Label

Train 86 1498 812

Validation 22 381 231

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.30.518467doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518467
http://creativecommons.org/licenses/by-nc/4.0/


S.Fig 4

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2022. ; https://doi.org/10.1101/2022.11.30.518467doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.30.518467
http://creativecommons.org/licenses/by-nc/4.0/

