bioRxiv preprint doi: https://doi.org/10.1101/2022.11.29.518443,; this version posted November 30, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

1 Different tissues in the maternal-fetal interface harbor distinct
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27 ABSTRACT

28  The human placenta was thought to be sterile in healthy pregnancies which has been
29  challenged by the development of DNA sequence-based techniques, although it is still
30 open to controversy. Nonetheless, little is known whether different parts of fetal
31  appurtenances contain district microbiome profiles. Here, DNA 16S rRNA sequencing
32 was performed of the amniotic fluid cells (AC), amnion membrane (AM), the placenta
33  of fetal surface (remove the amniotic membrane, PL), maternal blood (MB), and
34  umbilical cord blood (UCB) at V3-V4 hypervariable region from participants with
35  cesarean delivery. Then sequence raw data were followed by taxonomic classification
36 at 97% similarity and diversity analysis at the genus level. The differences and
37  associations among the five tissues were analyzed. At the phylum composition level,
38 the most abundant microorganisms were Proteobacteria in all five tissues, and
39 followed by Firmicutes in AC, AM, and MB groups, Actinobacteria in UCB and
40  Bacteroidetes in PL, respectively. As the maternal-fetal barrier, PL and AM had the
41 lower OUT number and weaker co-occurrence network compared with the other three
42  tissues. At the beta diversity clustering level, the microbiota constituents in the MB
43 and UCB were highly similar; the microbiota profiles of PL and AM were also
44 remarkably alike; AC was immensely different from those two clusters. Therefore, the
45  five tissues were distinctly separated into three clusters. Our study reveals that
46  different pregnancy-related anatomical sites harbor unique microbial compositions
47 and show different degrees of correlation with other tissues.

48
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54 1. Introduction

55 The human microbiome is an enormous community of microorganisms
56  occupying different body sites of human beings, such as skin, nose, mouth, lung,
57 intestinal tract, and vagina (1-8). ~80% microbes are colonized in the human intestine,
58  playing important roles in nutrient metabolism, immunomodulation, anti-pathogens,
59  free radical scavenging and gut mucosal barrier structure integrity maintenance of
60  their human hosts (9-11). Studies of the Human Microbiome Project have indicated
61  that different human body sites harbor site-specific microbiota. For the reproductive
62  system, the uterus and placenta were traditionally thought to be sterile and microbial
63 invasion of this organ had been associated with adverse pregnancy outcomes. This
64  "sterile womb" paradigm has recently been challenged by new molecular techniques,
65  mainly metagenomics and 16S rRNA gene amplicon sequencing. Several studies have
66  shown that the placenta harbors a unique microbiome, and the microbiomes are
67 altered with different maternal pregnant conditions. Studies of Xinhua Xiao team h
68  that gestational diabetes mellitus (GDM) were associated with placental microbiota
69 alternation. In the placenta, Proteobacteria were increased, and Bacteroidetes and
70  Firmicutes were decreased in women with GDM (12). Their team also found the
71 placental microbiota profile in fetal macrosomia was distinguished from normal infant
72 weight (13), and so did the low birth weight group (14). Moreover, placental
73 microbiota was elucidated to be involved in preterm birth (15, 16) and pre-eclampsia
74 (17). However, it is still controversial about the existence of a universal placental or
75  fetal microbiota, as some researchers showed there was almost a negative culture for
76  bacterial growth from those tissue samples of normal pregnancy. They argued that the
77 16S ribosomal RNA gene sequencing data might be all related either to the acquisition
78  of bacteria during labor and delivery, or to contamination of laboratory reagents
79  (18-21). However, there are more and more recognitions that ‘non-cultivability’ does
80 not mean "not exist" because there are some challenges to culture bacteria of low
81 abundance in vitro. In healthy term pregnancy, it is also inconclusive whether the

82  amniotic fluid harbors bacteria (10, 22, 23).
3
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83 Regardless of the controversy, multiple studies showed that the microbiome
84  might play a role in the maintenance of a healthy pregnancy (24, 25). Throughout
85  pregnancy, the microbiome in different body sites undergoes changes associated with
86  metabolic alterations and immunological adaptations (26). The microbiome in district
87  body sites might affect pregnancy outcomes specifically related to its residing niche.
88  Maternal gut microbiota is one of the important factors in the developmental origins
89  of health and disease (DOHaD) concept. Kuang, et al compared the gut microbial
90  composition of gestational diabetes mellitus (GDM) patients and healthy pregnant
91 women by sequencing their fecal samples collected during the second pregnant
92  trimester and found that Parabacteroides distasonis and Klebsiella variicola were
93 enriched in GDM patients, while Methanobrevibacter smithii, Alistipes spp.,
94  Bifdobacterium spp., and Eubacterium spp. were enriched in normal pregnant women.
95  The results indicated an association between the gut microbiome and GDM status (27).
96  Maternal gut microbial diversity affected the male newborns' weight and
97  Streptococcus negatively regulated the female newborn's body height, suggesting the
98  maternal gut microbiota might have sex-specific effects on fetal growth (28). As
99  mentioned above, placental microbiota has been shown a significant association with
100  gestational duration, pregnancy complications, pregnancy outcomes, and infant
101  postnatal development (13, 14, 17, 29-31). A recent study found maternal blood
102 microbiome was also associated with the pregnancy process that Firmicutes and
103  Bacteroidetes were more abundant in maternal blood with preterm birth while
104  Proteobacteria was less prevalent (32). While similar to the placenta, whether there is
105  a live bacterial community in the blood is debatable. Traditionally, blood in healthy
106 humans is thought as a ‘sterile” environment, and culturing the relevant microbes has
107  rarely been successful. However, the existence of a novel bacteriological system was
108  noted from blood samples taken from healthy humans (33, 34) and was not due to
109  contamination using appropriate and careful controls. Moreover, the previous studies
110  showed the flora in umbilical cord blood were identified as the genus Enterococcus,

111  Streptococcus,  Staphylococcus  belonging to  Firmicutes  phylum, and
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112 Propionibacterium belonging to Actinobacteria phylum (35).  Another study
113  revealed that blood fractions contain bacterial DNA mostly from the Proteobacteria
114 phylum (more than 80%) but also from Actinobacteria, Firmicutes, and Bacteroidetes,
115  and there are striking differences between the bacterial profiles of the different blood
116  fractions at deeper taxonomic levels (36). All these studies indicate that a diversified
117 microbiome might exist in healthy blood.

118 Bacteria or their metabolites from the maternal environment might be
119  translocated to the fetus via the bloodstream, and microbes in maternal different body
120  sites might have impacts on the fetus. Therefore, we intend to investigate whether
121 there is any correlation between the microbiome in maternal blood and fetal blood. In
122 addition, we further aim to investigate the profiles and correlations of microbiome

123 among diverse tissues of mother and fetus.

124  Material and methods

125  Ethics statement

126 This study was performed with the informed consent of the participants. The
127 experimental design and protocols used in this study were approved by the Third
128  Affiliated Hospital of Guangzhou Medical University Research Ethics Committee
129  (reference ECM 20/02/2019, No0.042). The participants in this study were recruited
130  with an informed consent form (ICF) by the Third Affiliated Hospital of Guangzhou
131 Medical University.

132 In this study, two cohorts of total 28 patients were involved. In cohort 1, the raw
133  data of three volunteers were excluded because the participants had autoimmune
134  diseases or amniotic choritis. Finally, data from 8 participants with normal fetal
135  weight were used to explore the microbiota correlation among diverse tissues.
136  Participants in cohort 2 were all without autoimmune diseases or confirmed infections
137  of the reproductive system, so 17 Participants' data were analyzed. All the samples
138 including amniotic fluid cells (AC), amnion membrane (AM), the placenta of fetal

139  surface (remove the amniotic membrane, PL), maternal blood (MB, peripheral blood),
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140  and umbilical cord blood (UCB) were collected according to SOP during C-sections
141 in the sterile operating room by medical workers complying with all relevant ethics of
142 working with human participants. The samples collected at different time were
143  preserved in liquid nitrogen until sequencing.

144

145 DNA extraction and Polymerase Chain Reaction (PCR)

146 DNA was extracted with Mag-Bind Soil DNA Kit (M5635-02, Omega) and then
147  detected by 0.8% agarose gel. The bacterial 16S rRNA gene V3-V4 hypervariable
148 region was amplified with the specific forward primer  338F
149 5-ACTCCTACGGGAGGCAGCA-3* and the reverse  primer  806R
150 5’-GGACTACHVGGGTWTCTAAT-3’. Sample-specific 7 bp barcodes were
151  incorporated into the primers for multiplex sequencing. Each PCR reaction contained
152 5 ul QS5 reaction buffer (5%), 5 ul Q5 High-Fidelity GC buffer (5x), 0.25 ul Q5
153  High-Fidelity DNA Polymerase (5 U/ul), 2 ul (2.5 mM) dNTPs, 1 ul (10 uM) each
154  forward and reverse primer, 2 pul DNA Template and 8.75 pl ddH20. PCR
155  amplification was performed as follows: 98 °C for 2 min, followed by 25 cycles
156  consisting of denaturation at 98 °C for 15 s, annealing at 55 °C for 30 s, and extension
157  at 72 °C for 30 s, with a final extension of 5 min at 72 °C. PCR amplicons were
158  purified with Agencourt AMPure XP Beads (A63882, Beckman Coulter, Indianapolis,
159  IN) and quantified using the PicoGreen dsDNA Assay Kit (P7589, Invitrogen,
160  Carlsbad, CA, USA). Then amplicons were pooled in equal amounts and were
161  sequenced on the Illumina MiSeq platform using paired-end 2x300 bp MiSeq Reagent

162 V3 Kit according to the standard protocols.
163  Bioinformatics and Statistic Analysis

164 The sequencing raw data were filtered according to the criteria as previously
165  described (37, 38). Sequence length <150 bp, sequences containing ambiguous bases
166 or mononucleotide repeats>8 bp were excluded. Paired-end reads were assembled
167  using FLASH(fast length adjustment of short reads to improve genome assemblies)

168  (39). After denoising and chimera detection, the remaining high-quality sequences
6
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169  were clustered into operational taxonomic units (OTUs) at 97% of sequence identity
170 by UCLUST (40) and then classified taxonomically by BLAST against the
171 Greengenes Database (41).

172
173  Statistical analysis

174 Sequence data analyses were mainly performed using QIIME and R packages.
175  Alpha diversity indices, Chaol richness estimator, ACE metric (Abundance-based
176 Coverage Estimator), Shannon diversity index and Simpson index were calculated in
177 QIIME depending on the OUTs taxonomy. Beta diversity was measured by Euclidean
178  distance metrics and Bray-Curtis distance matrices and visualized via principal
179  component analysis (PCA) and principal coordinate analysis (PCoA) based on the
180  genus-level compositional profiles. The statistical differences of microbiota structure
181  among groups were assessed by PERMANOVA (Permutational multivariate analysis
182  of variance, Adonis) using Bray-Curtis distance and ANOSIM (Analysis of
183  similarities) using weighted unifrac distance metrics by R package “vegan”.
184  Hierarchical clustering of the abundant genera (OUT abundance> 0.05%) was
185  visualized by heatmap and phyla were shown by stacked bar chart to determine
186  microbiota patterns. PLS-DA (Partial least squares discriminant analysis) reveals the
187  microbiota variation among groups using “PLS-DA” function in R package
188  “mixOmics” at the genus level. To construct the co-occurrence networks of
189  microbiota in different tissues, pairwise inter-genus correlations were calculated
190  according to the genera abundance profiles visualized using R package “igraph”.

191 For all analyses, p<0.05 was considered statistically significant, and significance
192  levels were indicated as follows: ***, p < 0.001; **, p < 0.01; *, p < 0.05.

193

194 Results

195  Participant Characteristics

196 We studied two cohorts of participants. We collected all samples from mothers
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197  with cesarean sections in the Third Affiliated Hospital of Guangzhou Medical
198  University. There were 11 participants in the first cohort and 17 in the second cohort.
199  In cohort 1, we chose 8 participants who had no autoimmune diseases or amniotic
200  choritis. In addition, all the infant weights were > 2.5 kg. The mother-child pairs
201  condition details including the maternal pregnancy age, BMI at delivery, gestational
202  duration, and baby weight were provided in Supplementary table 1. For the second
203  cohort, all the participants also had no autoimmune diseases or amniotic choritis, but
204  some parturient women suffered from gestational diabetes or preeclampsia so we
205  mainly showed the results of cohort 1 and put the results of cohort 2 as a repeat to
206  validate the conclusion. Samples from AC, AM, PL, MB, and UCB were sequenced
207  on the lllumina MiSeq platform. An average of ~36,000 reads were then analyzed for
208  each sample.

209

210  Taxonomic composition and alpha diversity of the microbiota from five different
211  tissues

212 To analyze the taxonomic composition of the microbiota in the five tissues, we
213  aligned the 16S rRNA sequences against the Greengenes Database (41). On average,
214 35,953 16S rRNA sequence reads were obtained, which are sufficient to detect the
215  microorganisms in the 40 samples as shown by the rarefaction curve (Fig. S1).
216  Proteobacteria were the most abundant phylum among all the tissue samples with an
217 average of 85.355% (Fig. 1A). Then followed by Actinobacteria, Firmicutes,
218  Bacteroidetes, and Thermi which were all with an abundance greater than 1% on
219  average (Fig. 1A). At the phylum level, we concluded that the MB and UCB had the
220  similar microbial compositions, for example, the levels of Firmicutes (P=0.46) and
221  Bacteroidetes (P=0.78) were almost identical in these two tissues. AM and PL had
222 very similar compositions, such as the almost same levels of Actinobacteria (P=0.95),
223 and similar levels of Bacteroidetes (P=0.25) (Fig. 1A). At the genus level,
224  Cupriavidus and Burkholderia were the two most abundant bacterial genera belonging

225  to Proteobacteria among all the samples (Fig. 1B). As shown by the genus heatmap,
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226  the AM and PL had highly similar composition pattern, and so did the MB and UCB.
227 AM is the most inner layer of the placenta making up the maternal-fetal barrier, close
228  to PL (placenta, remove the amniotic membrane), therefore we hypothesized that the
229  high similarities of microbiome between AM and PL might be because of the adjacent
230  physiological location and function. Interestingly, the microbiome profiles in MB
231  were very similar to that of UCB. Thus, each body site harbors unique microbiomes
232 although there were little variations between different individuals.

233 Besides the taxonomic composition diversity, the microbiota evenness and
234  richness also varied among different tissues. In accordance with the maternal-fetal
235  barrier functions, PL and AM had the lower OUT number compared with the other
236 three tissues (Fig. 1C).

237
238  Differences in microbial community compositions among five groups

239 The taxonomic composition histogram (Fig.1A) showed the phyla percentages
240  with abundance greater than 0.5%. The relative abundances of four phyla including
241  Thermi, Acidobacteria, Bacteroidetes, and Chloroflexi were significantly different
242  among the five groups (Fig. 2A). The differences in genus level were performed by
243  STAMP software between every two groups. The microbes between PL and AM,
244  UCB and MB were highly similar as shown in the genus heatmap of Figure 1B. Then,
245  we further compared the AC with PL, AC with MB, and PL with MB (Fig. 2B).
246 Genus differences among other tissues (UCB and MB, UCB and AM, UCB and AC,
247  UCB and PL, AM and MB, AM and PL, AM and AC) were shown in Supplementary
248  figure 2 (Fig. S2). Differential genera in AC, MB, and PL were Cupriavidus,
249  Enterobacteriaceae, Serratia, Burkholderia, Ochrobactrum, Comamonadaceae,
250  Burkholderiales, Oxalobacteraceae, Pseudomonas, and Agrobacterium which are all
251  belonging to Proteobacteria phylum; Geobacillus belonging to Firmicutes; Thermus
252  belonging to Thermi and Sediminibacterium belonging to Bacteroidetes (Fig. 2B), the
253  genera differences were consistent with the differences on phyla level (Fig. 2A).

254 Then we re-organized the PL and AM to one group (named Placenta), and the
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255 UCB and MB as another group (named Blood) to deeply explore the significance of
256  changes in bacterial communities among the three related tissues AC, Placenta, and
257  Blood by LEfSe. Several discriminative taxa were identified with high proportions in
258  Betaproteobacteria and Alphaproteobacteria classes between AC and Placenta groups
259  (Fig. 3A~3B). While, Placenta and Blood displayed no significant divergences by
260  LEfSe, neither did AC and Blood groups (data were not shown). These results
261 indicated that the microbial community compositions between AC and Placenta were
262  more separate.

263
264  Microbiota structure differences and associations in five different groups

265 Our previous data showed that the microbiota compositions varied among
266  different tissues (Fig. 1A~1B), we further performed the beta diversity clustering
267 analysis with PCA and PCoA by PERMANOVA test. Beta diversity measures the
268  between-group differences and relevancies. PCA is calculated depending on the
269  Euclidean distance matrices and PCoA is based on the Bray—Curtis distance matrices.
270  There was a notable separation among five groups sampled at each body site
271  depending on the PCoA results (R=0.414, P=0.001) (Fig. 4A). Each group separated
272 from other groups based on PC2 direction, while in PC1 axial direction, UCB and MB,
273 PL and AM had the much-closed distribution (Fig. 4A) in accordance with the
274  Bacterial community results (Fig. 1A~1B). Moreover, the width of the link line
275  between two group center nodes represents the degree of correlation indicating that
276 AM and PL, UCB and MB were highly related, respectively. Interestingly, microbiota
277  structure from AC was more related to that of UCB compared with that of MB, maybe
278 it is because AC and UCB all come from fetus tissues (Fig. 4A). Consistent with the
279  LEfSe results (Fig. 3A~3B), AC almost had no correlation with AM/PL (Placenta).
280  The PCA vision also showed similar results (Fig.4B). Importantly, the PCoA results
281  from cohort 2 showed similar relations among five tissues (Fig.S3), and microbiome
282 in MB and UCB had no significant differences (R=0.003, P=0.98). ANOSIM

283  dissimilarity comparisons between every two groups further corroborated the PCoA
10
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284  conclusion that AC microbiota profiles were obviously different from that of the other
285  four groups, and PL/AM were distinguished with MB/UCB (Fig. 4C), but no
286  significant differences occurred between PL and AM, or UCB and MB, respectively
287  (Fig.S4).

288 Furthermore, we used a redundancy analysis (RDA) plot to explore complex
289  associations between community composition and various explanatory variables, the
290  results were consistent with PCA/PCoA analysis (Fig. 5A). Conjoint analysis of
291 RDA1 (37.82%) and PC1 (19.57%) principal components showed that the AM and PL
292  microbiota structures were highly associated (Fig. 5B). The width of link line in
293  Figure 4A showed that the microbiome of AC was more relevant to that of blood
294  tissues (MB and UCB), and the results of figure 5A also showed the microbiota of AC
295  was more closed to that of MB.

296 Next, we identified the most discriminative taxa, which can best characterize
297  microbial compositions of five tissues. Sparse partial least squared—discriminative
298  analysis (SPLS-DA) was conducted on the abundant genera average greater than 0.1%
299  proportion. Pseudomonas, Thermus, Oxalobacteraceae, Burkholderia, Enterobacter,
300 Cupriavidus, and Serratia were found to best characterize the microbial genera
301  compositions in the blood (MB and UCB) and Amniotic fluids (AC). While,
302  Sphingomonadales, Bradyrhizobiaceae, Brevibacterium, Sinobacteraceae,
303  Aminobacter, Burkholderiales, Ochrobactrum, Sediminibacterium, Amycolatopsis,
304 MLEI—12, Agrobacterium, Methylobacteriaceae, Methylobacterium, Chthonomonas,
305  Bradyrhizobium, Erythrobacter, Elusimicrobiales, ZB2, and Comamonadaceaeat were
306  the characterized genera at placental tissues (PL and AM) (Fig. 5C~5D).

307
308  Microbial co-occurrence network analysis

309 Since microbiota varies from person to person, so it is important to investigate
310 the coordinated interactions of microorganisms colonized in the same body sites
311 among the 8 participants. We constructed co-occurrence networks of the

312  microorganisms by calculating the pairwise inter-genus correlations based on genera
11
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313  abundance profiles of 8 samples in every group. We found that the strength of the
314  microbial co-occurrence was significantly greater in AC or UCB groups which are
315 originally from fetus tissues, suggesting that the microorganisms from fetus tissues
316  are very steady and coordinated (Fig. 6 and Fig. S5). This might be because the fetus
317 is in a relatively stable microenvironment during pregnancy. Conversely, bacterial
318  profiles in MB had the lowest co-occurrence, which may reflect the various physical
319  conditions of adults.

320

321 Discussion

322 The placenta plays important roles in sustaining fetus survival as both a lifeline
323 and a guardian, it shuttles oxygen, nutrients, and immune molecules from the mother
324  to her fetus. Placenta also serves as a barrier against infections. For a long time, the
325  placenta and even the womb were thought to be sterile unless something went wrong
326  during pregnancy. However, more and more studies have suggested the existence of
327  the placental microbiome, which might even be a crucial part of pregnancy, could
328 have an important role in shaping the developing immune system (42). Therefore, it is
329  worth exploring the microbiota profiles in different tissues at the maternal-fetal
330 interface.

331 In this study, we performed bacterial 16s rRNA sequencing from several
332  reproduction-related tissues. Clear and distinct microbiomes were identified in every
333  tissue. Among those tissues, the microbiomes in MB and UCB were highly similar
334 (P=0.569), and were separate from that in the placenta although the placenta is
335 infiltrated by blood. Meanwhile, PL and AM harbored highly alike microbiomes. MB
336 and UCB have functional similarity, PL and AM are anatomically and functionally
337 related. Therefore, our studies showed that different tissues in the maternal-fetal
338 interface harbor distinct microbiomes, and the profiles of the microbiomes are related
339  to their anatomical position or function.

340 Previous research has shown that maternal microbiota in other body sites such as

341  oral (43-45)and gut (26, 27) could affect the pregnancy processes and outcomes. The

12
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342  oral flora can be capable of oral-uterine transmission during pregnancy confirming the
343  transferability of colonized flora. Studies have also suggested that the maternal
344  microbiome during pregnancy might have a key role in preventing an allergy-prone
345 immune phenotype (46) or influencing neonatal immunity (31) of the offspring. In
346  addition, the maternal microbiota might have a role in mother-infant interaction and
347  perinatal depression (47). However, the mechanisms remain unclear. Microbiota
348  transfer from mother to fetus would mediate the maternal impact on infants even till
349  childhood. So far, studies about the microbiomes in maternal and umbilical cord
350 blood are scarce. Our finding of the highly similar microbiome profiles in MB and
351  UCB suggests that the microbiota in MB or UCB may be related to blood functions.
352  The data from 17 participants of cohort 2 also showed that the microbiome profiles
353  between MB and UCB were highly similar, demonstrating the strong relevance of
354  microbiome in mother and fetus. This strong correlation suggests that the microbiome
355  might be a possible mediator for mother-to-infant epigenetic heredity.

356 Compared with the other three tissues, PL and Am have lower OUT numbers and
357  weaker co-occurrence networks, coinciding with their role as barriers. In terms of
358  taxonomic composition, our results were slightly different from another research with
359  placenta samples collected from Beijing, China. They found that Proteobacteria was
360 the most abundant phyla and then followed by Firmicutes in microbiota from PL and
361  AM (13). Since our samples were collected from the southern part of China, the minor
362  differences in microbiota composition might be related to the climate and diet
363  dissimilarity between Guangdong province and Beijing. How do the climates and
364  diets affect the composition of the microbiome in the placenta? Studies have shown
365 that oral dysbiosis is related to adverse pregnancy outcomes, suggesting there might
366  be crosstalk of microbiota between the placenta, oral, and intestine. However, little is
367  known about the microbiota mobility and exchange between mother and fetus.

368 The strengths of our study include its system and two cohorts design, with paired
369  mother-baby tissues and fetal appurtenances, which allowed us to investigate the

370  microbiota profiles in various body sites. However, the sample size in this study was

13
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371 limited, we will recruit more participants for large-scale studies to investigate the
372  relationship between maternal microbiota and offspring development. Another
373  limitation was the lack the detection of bacteria commonly found in the environment.
374 In fact, we had run a "kit contaminant” control using ddH,O as the amplification
375 template while the library construction was unsuccessful. Still, the microbiome
376  profiles exhibited significant differences among different tissues, which cannot be
377  solely due to contamination.

378 Collectively, our data showed that different tissues in the maternal-fetal interface
379  harbor clear and distinct microbiomes. Our data support that the fetus harbors unique
380 microbiomes in the blood and shed skin cells before birth. The microbial
381  co-occurrence is significantly greater in AC and UCB tissues which are originally
382  from the fetus indicating that the fetal microorganisms might be more steady than in
383  adult mothers. We speculate it might be because the fetus is in a relatively protected
384  microenvironment during pregnancy. It sounds paradoxical but interestingly that the
385  fetus's microbiome is affected by maternal flora while resisting maternal variability.
386  Probably, this is an important mechanism of healthy pregnancy sustaining. Therefore,
387 our data systematically reveal the correlations of microbiota among different
388  reproductive tissues and observe a possible role of microbiota in mother-to-baby
389  crosstalk. In addition, our study opens up opportunities, whereby maternal microbiota
390 interventions may be beneficial for infant health care after birth through modulating

391 their microbiota when in the maternal uterus.
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527

528  Figure legend

529  Figure 1 Taxonomic composition and richness of the five tissues microbiome. (A) Seven phyla
530  were identified with an average relative abundance greater than 0.35% among all samples. (B)
531  Heatmap based on top 76 genera among five tissues. The reads number is indicated by a color
532  gradient from light blue (low) to red (high). (C) Alpha diversity was shown as Simpson whose
533  value is negatively correlated with a-diversity and Shannon whose value is positively correlated
534  with a-diversity. Richness was indicated as OUT number.

535

536  Figure 2 The microbe differences among tissues at phylum and genus levels. (A) Four phyla
537  with an average relative abundance greater than 0.1% were identified that their relative
538  abundances were different among the five groups. (B) Difference analysis of genus levels between
539  two groups in AC, MB, and PL tissues with two-sided Welch’s t-test on STAMP platform. Genera
540  with significant differences and an average relative abundance greater than 0.5% were shown.

541

542  Figure 3 The microbe differences from LEfSe analysis between AC and Placenta. (A) PL and
543  AM were recognized as one group (Placenta). Taxa (Green) enriched in the Placenta group and
544  taxa (red) in AC tissue. (B) Placenta-enriched taxa were shown with a positive LDA score (green)
545  and AC-enriched taxa harbored a negative score (red). Only the taxa meeting the condition of a

546  logarithmic LDA score significant threshold>2, P < 0.05 were presented.

547
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548  Figure 4 Beta diversity of the microbiota in five tissues. (A) Principal coordinate analysis
549  (PCoA) based on Bray—Curtis distance matrices according to the genus-level compositional
550  profiles in five tissues. The correlation values in every two groups were indicated as the
551  Bray-Curtis distance matrices. Significant differences in microbiota structure among groups were
552  assessed by Adonis also based on Bray—Curtis distance matrices. (B) Principal component analysis
553  (PCA) was performed with Euclidean distance metrices among five tissues on genus levels. (C)
554  Analysis of similarities (ANOSIM) between two low-correlative groups and five groups was
555  performed based on the weighted-unifrac distance metrics of OUT profiles.

556

557  Figure 5 Samples separate of different body parts based on genus composition profiles. (A)
558  Redundancy analysis (RDA) of genera with average relative abundance greater than 0.1% among
559  five groups showed separation of samples by body sites. (B) RDAL and PC1 conjoint analysis was
560  performed to separate groups on genus levels. (C, D) The Sparse Partial Least
561  Squared-Discriminative Analysis plot illustrated a clear separation in five tissues based on the
562  genera of greater than 0.1% relative abundance. The related contribution plot illustrated taxa
563  associated with the fetal-maternal interface tissues.

564

565  Figure 6 Microbial co-occurrence network analysis. Co-occurrence networks were constructed
566  using Bray—Curtis distance matrices less than 0.1 based on the genera relative abundance profiles
567  among the five groups. The smaller the distance, the stronger the co-occurrence correlation. Each
568  node represented a genus and genera belonging to the same phylum were shown in one color.

569

570
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