

1 **Different tissues in the maternal-fetal interface harbor distinct**
2 **microbiomes showing associations related to their anatomical**
3 **position or function**

4

5 **Xiaopeng Li^{a,b,c,d}, Wei Jiang^c, Lijuan Dai^{a,b,d}, Guihong Liu^{b,d}, Bolan Yu^{b,d*} and Min Fang^{b,c,e**}**

6 ^a Guangzhou Medical University, Guangzhou, Guangdong, China.

7 ^b Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital
8 of Guangzhou Medical University, Guangzhou, Guangdong, China.

9 ^c CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology,
10 Chinese Academy of Sciences, Beijing, China.

11 ^d Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third
12 Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

13 ^e International college, University of Chinese Academy of Sciences, Beijing, China.

14

15 * Corresponding author. Fax:+86 20 81297305.

16 ** Corresponding author. Fax:+86 10 64806065.

17 E-mail addresses: yubolan-q@qq.com (Bolan Yu), fangm@im.ac.cn (Ming Fang)

18

19

20

21

22

23

24

25

26

27 **ABSTRACT**

28 The human placenta was thought to be sterile in healthy pregnancies which has been
29 challenged by the development of DNA sequence-based techniques, although it is still
30 open to controversy. Nonetheless, little is known whether different parts of fetal
31 appurtenances contain distinct microbiome profiles. Here, DNA 16S rRNA sequencing
32 was performed of the amniotic fluid cells (AC), amnion membrane (AM), the placenta
33 of fetal surface (remove the amniotic membrane, PL), maternal blood (MB), and
34 umbilical cord blood (UCB) at V3–V4 hypervariable region from participants with
35 cesarean delivery. Then sequence raw data were followed by taxonomic classification
36 at 97% similarity and diversity analysis at the genus level. The differences and
37 associations among the five tissues were analyzed. At the phylum composition level,
38 the most abundant microorganisms were Proteobacteria in all five tissues, and
39 followed by Firmicutes in AC, AM, and MB groups, Actinobacteria in UCB and
40 Bacteroidetes in PL, respectively. As the maternal-fetal barrier, PL and AM had the
41 lower OUT number and weaker co-occurrence network compared with the other three
42 tissues. At the beta diversity clustering level, the microbiota constituents in the MB
43 and UCB were highly similar; the microbiota profiles of PL and AM were also
44 remarkably alike; AC was immensely different from those two clusters. Therefore, the
45 five tissues were distinctly separated into three clusters. Our study reveals that
46 different pregnancy-related anatomical sites harbor unique microbial compositions
47 and show different degrees of correlation with other tissues.

48

49 **Keywords:** 16S rRNA sequence, Microbiomes, Placenta, Blood, Maternal-fetal
50 interface

51

52

53

54 1. Introduction

55 The human microbiome is an enormous community of microorganisms
56 occupying different body sites of human beings, such as skin, nose, mouth, lung,
57 intestinal tract, and vagina (1-8). ~80% microbes are colonized in the human intestine,
58 playing important roles in nutrient metabolism, immunomodulation, anti-pathogens,
59 free radical scavenging and gut mucosal barrier structure integrity maintenance of
60 their human hosts (9-11). Studies of the Human Microbiome Project have indicated
61 that different human body sites harbor site-specific microbiota. For the reproductive
62 system, the uterus and placenta were traditionally thought to be sterile and microbial
63 invasion of this organ had been associated with adverse pregnancy outcomes. This
64 "sterile womb" paradigm has recently been challenged by new molecular techniques,
65 mainly metagenomics and 16S rRNA gene amplicon sequencing. Several studies have
66 shown that the placenta harbors a unique microbiome, and the microbiomes are
67 altered with different maternal pregnant conditions. Studies of Xinhua Xiao team h
68 that gestational diabetes mellitus (GDM) were associated with placental microbiota
69 alternation. In the placenta, Proteobacteria were increased, and Bacteroidetes and
70 Firmicutes were decreased in women with GDM (12). Their team also found the
71 placental microbiota profile in fetal macrosomia was distinguished from normal infant
72 weight (13), and so did the low birth weight group (14). Moreover, placental
73 microbiota was elucidated to be involved in preterm birth (15, 16) and pre-eclampsia
74 (17). However, it is still controversial about the existence of a universal placental or
75 fetal microbiota, as some researchers showed there was almost a negative culture for
76 bacterial growth from those tissue samples of normal pregnancy. They argued that the
77 16S ribosomal RNA gene sequencing data might be all related either to the acquisition
78 of bacteria during labor and delivery, or to contamination of laboratory reagents
79 (18-21). However, there are more and more recognitions that 'non-cultivability' does
80 not mean "not exist" because there are some challenges to culture bacteria of low
81 abundance in vitro. In healthy term pregnancy, it is also inconclusive whether the
82 amniotic fluid harbors bacteria (10, 22, 23).

83 Regardless of the controversy, multiple studies showed that the microbiome
84 might play a role in the maintenance of a healthy pregnancy (24, 25). Throughout
85 pregnancy, the microbiome in different body sites undergoes changes associated with
86 metabolic alterations and immunological adaptations (26). The microbiome in distant
87 body sites might affect pregnancy outcomes specifically related to its residing niche.
88 Maternal gut microbiota is one of the important factors in the developmental origins
89 of health and disease (DOHaD) concept. Kuang, et al compared the gut microbial
90 composition of gestational diabetes mellitus (GDM) patients and healthy pregnant
91 women by sequencing their fecal samples collected during the second pregnant
92 trimester and found that *Parabacteroides distasonis* and *Klebsiella variicola* were
93 enriched in GDM patients, while *Methanobrevibacter smithii*, *Alistipes spp.*,
94 *Bifidobacterium spp.*, and *Eubacterium spp.* were enriched in normal pregnant women.
95 The results indicated an association between the gut microbiome and GDM status (27).
96 Maternal gut microbial diversity affected the male newborns' weight and
97 *Streptococcus* negatively regulated the female newborn's body height, suggesting the
98 maternal gut microbiota might have sex-specific effects on fetal growth (28). As
99 mentioned above, placental microbiota has been shown a significant association with
100 gestational duration, pregnancy complications, pregnancy outcomes, and infant
101 postnatal development (13, 14, 17, 29-31). A recent study found maternal blood
102 microbiome was also associated with the pregnancy process that Firmicutes and
103 Bacteroidetes were more abundant in maternal blood with preterm birth while
104 Proteobacteria was less prevalent (32). While similar to the placenta, whether there is
105 a live bacterial community in the blood is debatable. Traditionally, blood in healthy
106 humans is thought as a 'sterile' environment, and culturing the relevant microbes has
107 rarely been successful. However, the existence of a novel bacteriological system was
108 noted from blood samples taken from healthy humans (33, 34) and was not due to
109 contamination using appropriate and careful controls. Moreover, the previous studies
110 showed the flora in umbilical cord blood were identified as the genus *Enterococcus*,
111 *Streptococcus*, *Staphylococcus* belonging to Firmicutes phylum, and

112 *Propionibacterium* belonging to Actinobacteria phylum (35). Another study
113 revealed that blood fractions contain bacterial DNA mostly from the Proteobacteria
114 phylum (more than 80%) but also from Actinobacteria, Firmicutes, and Bacteroidetes,
115 and there are striking differences between the bacterial profiles of the different blood
116 fractions at deeper taxonomic levels (36). All these studies indicate that a diversified
117 microbiome might exist in healthy blood.

118 Bacteria or their metabolites from the maternal environment might be
119 translocated to the fetus via the bloodstream, and microbes in maternal different body
120 sites might have impacts on the fetus. Therefore, we intend to investigate whether
121 there is any correlation between the microbiome in maternal blood and fetal blood. In
122 addition, we further aim to investigate the profiles and correlations of microbiome
123 among diverse tissues of mother and fetus.

124 **Material and methods**

125 **Ethics statement**

126 This study was performed with the informed consent of the participants. The
127 experimental design and protocols used in this study were approved by the Third
128 Affiliated Hospital of Guangzhou Medical University Research Ethics Committee
129 (reference ECM 20/02/2019, No.042). The participants in this study were recruited
130 with an informed consent form (ICF) by the Third Affiliated Hospital of Guangzhou
131 Medical University.

132 In this study, two cohorts of total 28 patients were involved. In cohort 1, the raw
133 data of three volunteers were excluded because the participants had autoimmune
134 diseases or amniotic choritis. Finally, data from 8 participants with normal fetal
135 weight were used to explore the microbiota correlation among diverse tissues.
136 Participants in cohort 2 were all without autoimmune diseases or confirmed infections
137 of the reproductive system, so 17 Participants' data were analyzed. All the samples
138 including amniotic fluid cells (AC), amnion membrane (AM), the placenta of fetal
139 surface (remove the amniotic membrane, PL), maternal blood (MB, peripheral blood),

140 and umbilical cord blood (UCB) were collected according to SOP during C-sections
141 in the sterile operating room by medical workers complying with all relevant ethics of
142 working with human participants. The samples collected at different time were
143 preserved in liquid nitrogen until sequencing.

144

145 **DNA extraction and Polymerase Chain Reaction (PCR)**

146 DNA was extracted with Mag-Bind Soil DNA Kit (M5635-02, Omega) and then
147 detected by 0.8% agarose gel. The bacterial 16S rRNA gene V3–V4 hypervariable
148 region was amplified with the specific forward primer 338F
149 5'-ACTCCTACGGGAGGCAGCA-3' and the reverse primer 806R
150 5'-GGACTACHVGGGTWTCTAAT-3'. Sample-specific 7 bp barcodes were
151 incorporated into the primers for multiplex sequencing. Each PCR reaction contained
152 5 µl Q5 reaction buffer (5×), 5 µl Q5 High-Fidelity GC buffer (5×), 0.25 µl Q5
153 High-Fidelity DNA Polymerase (5 U/µl), 2 µl (2.5 mM) dNTPs, 1 µl (10 µM) each
154 forward and reverse primer, 2 µl DNA Template and 8.75 µl ddH2O. PCR
155 amplification was performed as follows: 98 °C for 2 min, followed by 25 cycles
156 consisting of denaturation at 98 °C for 15 s, annealing at 55 °C for 30 s, and extension
157 at 72 °C for 30 s, with a final extension of 5 min at 72 °C. PCR amplicons were
158 purified with Agencourt AMPure XP Beads (A63882, Beckman Coulter, Indianapolis,
159 IN) and quantified using the PicoGreen dsDNA Assay Kit (P7589, Invitrogen,
160 Carlsbad, CA, USA). Then amplicons were pooled in equal amounts and were
161 sequenced on the Illumina MiSeq platform using paired-end 2×300 bp MiSeq Reagent
162 V3 Kit according to the standard protocols.

163 **Bioinformatics and Statistic Analysis**

164 The sequencing raw data were filtered according to the criteria as previously
165 described (37, 38). Sequence length <150 bp, sequences containing ambiguous bases
166 or mononucleotide repeats>8 bp were excluded. Paired-end reads were assembled
167 using FLASH(fast length adjustment of short reads to improve genome assemblies)
168 (39). After denoising and chimera detection, the remaining high-quality sequences

169 were clustered into operational taxonomic units (OTUs) at 97% of sequence identity
170 by UCLUST (40) and then classified taxonomically by BLAST against the
171 Greengenes Database (41).

172

173 **Statistical analysis**

174 Sequence data analyses were mainly performed using QIIME and R packages.
175 Alpha diversity indices, Chao1 richness estimator, ACE metric (Abundance-based
176 Coverage Estimator), Shannon diversity index and Simpson index were calculated in
177 QIIME depending on the OUTs taxonomy. Beta diversity was measured by Euclidean
178 distance metrics and Bray–Curtis distance matrices and visualized via principal
179 component analysis (PCA) and principal coordinate analysis (PCoA) based on the
180 genus-level compositional profiles. The statistical differences of microbiota structure
181 among groups were assessed by PERMANOVA (Permutational multivariate analysis
182 of variance, Adonis) using Bray–Curtis distance and ANOSIM (Analysis of
183 similarities) using weighted unifrac distance metrics by R package “vegan”.
184 Hierarchical clustering of the abundant genera (OUT abundance > 0.05%) was
185 visualized by heatmap and phyla were shown by stacked bar chart to determine
186 microbiota patterns. PLS-DA (Partial least squares discriminant analysis) reveals the
187 microbiota variation among groups using “PLS-DA” function in R package
188 “mixOmics” at the genus level. To construct the co-occurrence networks of
189 microbiota in different tissues, pairwise inter-genus correlations were calculated
190 according to the genera abundance profiles visualized using R package “igraph”.

191 For all analyses, $p < 0.05$ was considered statistically significant, and significance
192 levels were indicated as follows: ***, $p < 0.001$; **, $p < 0.01$; *, $p < 0.05$.

193

194 **Results**

195 **Participant Characteristics**

196 We studied two cohorts of participants. We collected all samples from mothers

197 with cesarean sections in the Third Affiliated Hospital of Guangzhou Medical
198 University. There were 11 participants in the first cohort and 17 in the second cohort.
199 In cohort 1, we chose 8 participants who had no autoimmune diseases or amniotic
200 choritis. In addition, all the infant weights were > 2.5 kg. The mother-child pairs
201 condition details including the maternal pregnancy age, BMI at delivery, gestational
202 duration, and baby weight were provided in Supplementary table 1. For the second
203 cohort, all the participants also had no autoimmune diseases or amniotic choritis, but
204 some parturient women suffered from gestational diabetes or preeclampsia so we
205 mainly showed the results of cohort 1 and put the results of cohort 2 as a repeat to
206 validate the conclusion. Samples from AC, AM, PL, MB, and UCB were sequenced
207 on the Illumina MiSeq platform. An average of $\sim 36,000$ reads were then analyzed for
208 each sample.

209

210 **Taxonomic composition and alpha diversity of the microbiota from five different 211 tissues**

212 To analyze the taxonomic composition of the microbiota in the five tissues, we
213 aligned the 16S rRNA sequences against the Greengenes Database (41). On average,
214 35,953 16S rRNA sequence reads were obtained, which are sufficient to detect the
215 microorganisms in the 40 samples as shown by the rarefaction curve (Fig. S1).
216 Proteobacteria were the most abundant phylum among all the tissue samples with an
217 average of 85.355% (Fig. 1A). Then followed by Actinobacteria, Firmicutes,
218 Bacteroidetes, and Thermo which were all with an abundance greater than 1% on
219 average (Fig. 1A). At the phylum level, we concluded that the MB and UCB had the
220 similar microbial compositions, for example, the levels of Firmicutes ($P=0.46$) and
221 Bacteroidetes ($P=0.78$) were almost identical in these two tissues. AM and PL had
222 very similar compositions, such as the almost same levels of Actinobacteria ($P=0.95$),
223 and similar levels of Bacteroidetes ($P=0.25$) (Fig. 1A). At the genus level,
224 Cupriavidus and Burkholderia were the two most abundant bacterial genera belonging
225 to Proteobacteria among all the samples (Fig. 1B). As shown by the genus heatmap,

226 the AM and PL had highly similar composition pattern, and so did the MB and UCB.
227 AM is the most inner layer of the placenta making up the maternal-fetal barrier, close
228 to PL (placenta, remove the amniotic membrane), therefore we hypothesized that the
229 high similarities of microbiome between AM and PL might be because of the adjacent
230 physiological location and function. Interestingly, the microbiome profiles in MB
231 were very similar to that of UCB. Thus, each body site harbors unique microbiomes
232 although there were little variations between different individuals.

233 Besides the taxonomic composition diversity, the microbiota evenness and
234 richness also varied among different tissues. In accordance with the maternal-fetal
235 barrier functions, PL and AM had the lower OUT number compared with the other
236 three tissues (Fig. 1C).

237

238 **Differences in microbial community compositions among five groups**

239 The taxonomic composition histogram (Fig.1A) showed the phyla percentages
240 with abundance greater than 0.5%. The relative abundances of four phyla including
241 Thermo, Acidobacteria, Bacteroidetes, and Chloroflexi were significantly different
242 among the five groups (Fig. 2A). The differences in genus level were performed by
243 STAMP software between every two groups. The microbes between PL and AM,
244 UCB and MB were highly similar as shown in the genus heatmap of Figure 1B. Then,
245 we further compared the AC with PL, AC with MB, and PL with MB (Fig. 2B).
246 Genus differences among other tissues (UCB and MB, UCB and AM, UCB and AC,
247 UCB and PL, AM and MB, AM and PL, AM and AC) were shown in Supplementary
248 figure 2 (Fig. S2). Differential genera in AC, MB, and PL were *Cupriavidus*,
249 *Enterobacteriaceae*, *Serratia*, *Burkholderia*, *Ochrobactrum*, *Comamonadaceae*,
250 *Burkholderiales*, *Oxalobacteraceae*, *Pseudomonas*, and *Agrobacterium* which are all
251 belonging to Proteobacteria phylum; *Geobacillus* belonging to Firmicutes; *Thermus*
252 belonging to Thermo and *Sediminibacterium* belonging to Bacteroidetes (Fig. 2B), the
253 genera differences were consistent with the differences on phyla level (Fig. 2A).

254 Then we re-organized the PL and AM to one group (named Placenta), and the

255 UCB and MB as another group (named Blood) to deeply explore the significance of
256 changes in bacterial communities among the three related tissues AC, Placenta, and
257 Blood by LEfSe. Several discriminative taxa were identified with high proportions in
258 Betaproteobacteria and Alphaproteobacteria classes between AC and Placenta groups
259 (Fig. 3A~3B). While, Placenta and Blood displayed no significant divergences by
260 LEfSe, neither did AC and Blood groups (data were not shown). These results
261 indicated that the microbial community compositions between AC and Placenta were
262 more separate.

263

264 **Microbiota structure differences and associations in five different groups**

265 Our previous data showed that the microbiota compositions varied among
266 different tissues (Fig. 1A~1B), we further performed the beta diversity clustering
267 analysis with PCA and PCoA by PERMANOVA test. Beta diversity measures the
268 between-group differences and relevancies. PCA is calculated depending on the
269 Euclidean distance matrices and PCoA is based on the Bray–Curtis distance matrices.
270 There was a notable separation among five groups sampled at each body site
271 depending on the PCoA results ($R=0.414$, $P=0.001$) (Fig. 4A). Each group separated
272 from other groups based on PC2 direction, while in PC1 axial direction, UCB and MB,
273 PL and AM had the much-closed distribution (Fig. 4A) in accordance with the
274 Bacterial community results (Fig. 1A~1B). Moreover, the width of the link line
275 between two group center nodes represents the degree of correlation indicating that
276 AM and PL, UCB and MB were highly related, respectively. Interestingly, microbiota
277 structure from AC was more related to that of UCB compared with that of MB, maybe
278 it is because AC and UCB all come from fetus tissues (Fig. 4A). Consistent with the
279 LEfSe results (Fig. 3A~3B), AC almost had no correlation with AM/PL (Placenta).
280 The PCA vision also showed similar results (Fig. 4B). Importantly, the PCoA results
281 from cohort 2 showed similar relations among five tissues (Fig. S3), and microbiome
282 in MB and UCB had no significant differences ($R=0.003$, $P=0.98$). ANOSIM
283 dissimilarity comparisons between every two groups further corroborated the PCoA

284 conclusion that AC microbiota profiles were obviously different from that of the other
285 four groups, and PL/AM were distinguished with MB/UCB (Fig. 4C), but no
286 significant differences occurred between PL and AM, or UCB and MB, respectively
287 (Fig.S4).

288 Furthermore, we used a redundancy analysis (RDA) plot to explore complex
289 associations between community composition and various explanatory variables, the
290 results were consistent with PCA/PCoA analysis (Fig. 5A). Conjoint analysis of
291 RDA1 (37.82%) and PC1 (19.57%) principal components showed that the AM and PL
292 microbiota structures were highly associated (Fig. 5B). The width of link line in
293 Figure 4A showed that the microbiome of AC was more relevant to that of blood
294 tissues (MB and UCB), and the results of figure 5A also showed the microbiota of AC
295 was more closed to that of MB.

296 Next, we identified the most discriminative taxa, which can best characterize
297 microbial compositions of five tissues. Sparse partial least squared-discriminative
298 analysis (sPLS-DA) was conducted on the abundant genera average greater than 0.1%
299 proportion. *Pseudomonas*, *Thermus*, *Oxalobacteraceae*, *Burkholderia*, *Enterobacter*,
300 *Cupriavidus*, and *Serratia* were found to best characterize the microbial genera
301 compositions in the blood (MB and UCB) and Amniotic fluids (AC). While,
302 *Sphingomonadales*, *Bradyrhizobiaceae*, *Brevibacterium*, *Sinobacteraceae*,
303 *Aminobacter*, *Burkholderiales*, *Ochrobactrum*, *Sediminibacterium*, *Amycolatopsis*,
304 *MLE1-12*, *Agrobacterium*, *Methylobacteriaceae*, *Methylobacterium*, *Chthonomonas*,
305 *Bradyrhizobium*, *Erythrobacter*, *Elusimicrobiales*, *ZB2*, and *Comamonadaceaeat* were
306 the characterized genera at placental tissues (PL and AM) (Fig. 5C~5D).

307

308 **Microbial co-occurrence network analysis**

309 Since microbiota varies from person to person, so it is important to investigate
310 the coordinated interactions of microorganisms colonized in the same body sites
311 among the 8 participants. We constructed co-occurrence networks of the
312 microorganisms by calculating the pairwise inter-genus correlations based on genera

313 abundance profiles of 8 samples in every group. We found that the strength of the
314 microbial co-occurrence was significantly greater in AC or UCB groups which are
315 originally from fetus tissues, suggesting that the microorganisms from fetus tissues
316 are very steady and coordinated (Fig. 6 and Fig. S5). This might be because the fetus
317 is in a relatively stable microenvironment during pregnancy. Conversely, bacterial
318 profiles in MB had the lowest co-occurrence, which may reflect the various physical
319 conditions of adults.

320

321 **Discussion**

322 The placenta plays important roles in sustaining fetus survival as both a lifeline
323 and a guardian, it shuttles oxygen, nutrients, and immune molecules from the mother
324 to her fetus. Placenta also serves as a barrier against infections. For a long time, the
325 placenta and even the womb were thought to be sterile unless something went wrong
326 during pregnancy. However, more and more studies have suggested the existence of
327 the placental microbiome, which might even be a crucial part of pregnancy, could
328 have an important role in shaping the developing immune system (42). Therefore, it is
329 worth exploring the microbiota profiles in different tissues at the maternal-fetal
330 interface.

331 In this study, we performed bacterial 16s rRNA sequencing from several
332 reproduction-related tissues. Clear and distinct microbiomes were identified in every
333 tissue. Among those tissues, the microbiomes in MB and UCB were highly similar
334 ($P=0.569$), and were separate from that in the placenta although the placenta is
335 infiltrated by blood. Meanwhile, PL and AM harbored highly alike microbiomes. MB
336 and UCB have functional similarity, PL and AM are anatomically and functionally
337 related. Therefore, our studies showed that different tissues in the maternal-fetal
338 interface harbor distinct microbiomes, and the profiles of the microbiomes are related
339 to their anatomical position or function.

340 Previous research has shown that maternal microbiota in other body sites such as
341 oral (43-45) and gut (26, 27) could affect the pregnancy processes and outcomes. The

342 oral flora can be capable of oral-uterine transmission during pregnancy confirming the
343 transferability of colonized flora. Studies have also suggested that the maternal
344 microbiome during pregnancy might have a key role in preventing an allergy-prone
345 immune phenotype (46) or influencing neonatal immunity (31) of the offspring. In
346 addition, the maternal microbiota might have a role in mother-infant interaction and
347 perinatal depression (47). However, the mechanisms remain unclear. Microbiota
348 transfer from mother to fetus would mediate the maternal impact on infants even till
349 childhood. So far, studies about the microbiomes in maternal and umbilical cord
350 blood are scarce. Our finding of the highly similar microbiome profiles in MB and
351 UCB suggests that the microbiota in MB or UCB may be related to blood functions.
352 The data from 17 participants of cohort 2 also showed that the microbiome profiles
353 between MB and UCB were highly similar, demonstrating the strong relevance of
354 microbiome in mother and fetus. This strong correlation suggests that the microbiome
355 might be a possible mediator for mother-to-infant epigenetic heredity.

356 Compared with the other three tissues, PL and Am have lower OUT numbers and
357 weaker co-occurrence networks, coinciding with their role as barriers. In terms of
358 taxonomic composition, our results were slightly different from another research with
359 placenta samples collected from Beijing, China. They found that Proteobacteria was
360 the most abundant phyla and then followed by Firmicutes in microbiota from PL and
361 AM (13). Since our samples were collected from the southern part of China, the minor
362 differences in microbiota composition might be related to the climate and diet
363 dissimilarity between Guangdong province and Beijing. How do the climates and
364 diets affect the composition of the microbiome in the placenta? Studies have shown
365 that oral dysbiosis is related to adverse pregnancy outcomes, suggesting there might
366 be crosstalk of microbiota between the placenta, oral, and intestine. However, little is
367 known about the microbiota mobility and exchange between mother and fetus.

368 The strengths of our study include its system and two cohorts design, with paired
369 mother-baby tissues and fetal appurtenances, which allowed us to investigate the
370 microbiota profiles in various body sites. However, the sample size in this study was

371 limited, we will recruit more participants for large-scale studies to investigate the
372 relationship between maternal microbiota and offspring development. Another
373 limitation was the lack the detection of bacteria commonly found in the environment.
374 In fact, we had run a "kit contaminant" control using ddH₂O as the amplification
375 template while the library construction was unsuccessful. Still, the microbiome
376 profiles exhibited significant differences among different tissues, which cannot be
377 solely due to contamination.

378 Collectively, our data showed that different tissues in the maternal-fetal interface
379 harbor clear and distinct microbiomes. Our data support that the fetus harbors unique
380 microbiomes in the blood and shed skin cells before birth. The microbial
381 co-occurrence is significantly greater in AC and UCB tissues which are originally
382 from the fetus indicating that the fetal microorganisms might be more steady than in
383 adult mothers. We speculate it might be because the fetus is in a relatively protected
384 microenvironment during pregnancy. It sounds paradoxical but interestingly that the
385 fetus's microbiome is affected by maternal flora while resisting maternal variability.
386 Probably, this is an important mechanism of healthy pregnancy sustaining. Therefore,
387 our data systematically reveal the correlations of microbiota among different
388 reproductive tissues and observe a possible role of microbiota in mother-to-baby
389 crosstalk. In addition, our study opens up opportunities, whereby maternal microbiota
390 interventions may be beneficial for infant health care after birth through modulating
391 their microbiota when in the maternal uterus.

392 **Availability of data and materials**

393 The sequences generated and analyzed during the current study were uploaded to
394 the NCBI Sequence Read Archive (SRA) data depository, with the project number
395 PRJNA635545.

396 **Author contributions**

397 Xiaopeng Li, Bolan Yu, and Min Fang conceived and designed the experiments
398 and wrote the draft. Xiaopeng Li analyzed the data and Wei Jiang contributed some
399 suggestions. Guihong Liu and Lijuan Dai collected the samples. All authors approved
400 the submission of this version.

401 **Funding**

402 This study was supported by the National key R&D program of China (grant
403 number 2018YFC1004104), the Guangdong Science and Technology Department
404 Project (grant number 2019B030316023), Natural Science Foundation of Guangdong
405 Province, China (grant number 2018A030313392) and the Key Project of Guangzhou
406 Science and Technology Innovation Committee (grant number 201804020057).

407 **Competing Interests**

408 The authors have declared that no competing interests exist.

409 **Reference**

- 410 1. Kramer P, Bressan P. Humans as Superorganisms: How Microbes, Viruses, Imprinted Genes,
411 and Other Selfish Entities Shape Our Behavior. *Perspectives on Psychological Science*.
412 2015;10(4):464-81.
- 413 2. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger J, Chinwalla A, et al. The Human
414 Microbiome Project (HMP) Consortium. Structure, function and diversity of the healthy human
415 microbiome. *Nature*. 2012;486:207-14.
- 416 3. Scharschmidt TC, Fischbach MA. What Lives On Our Skin: Ecology, Genomics and
417 Therapeutic Opportunities Of the Skin Microbiome. *Drug discovery today Disease mechanisms*.
418 2013;10(3-4).
- 419 4. Bassis CM, Tang AL, Young VB, Pynnonen MA. The nasal cavity microbiota of healthy adults.
420 *Microbiome*. 2014;2:27.
- 421 5. Arweiler NB, Netuschil L. The Oral Microbiota. *Advances in experimental medicine and
422 biology*. 2016;902:45-60.
- 423 6. Wu BG, Segal LN. Lung Microbiota and Its Impact on the Mucosal Immune Phenotype.
424 *Microbiology spectrum*. 2017;5(3).
- 425 7. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut
426 microbiota and host health: a new clinical frontier. *Gut*. 2016;65(2):330-9.
- 427 8. Mendling W. Vaginal Microbiota. *Advances in experimental medicine and biology*.
428 2016;902:83-93.
- 429 9. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D.

430 Role of the normal gut microbiota. *World journal of gastroenterology*. 2015;21(29):8787-803.

431 10. Urushiyama D, Suda W, Ohnishi E, Araki R, Kiyoshima C, Kurakazu M, et al. Microbiome
432 profile of the amniotic fluid as a predictive biomarker of perinatal outcome. *Scientific reports*.
433 2017;7(1):12171.

434 11. Wopereis H, Oozeer R, Knipping K, Belzer C, Knol J. The first thousand days - intestinal
435 microbiology of early life: establishing a symbiosis. *Pediatric allergy and immunology : official*
436 publication of the European Society of Pediatric Allergy and Immunology. 2014;25(5):428-38.

437 12. Zheng J, Xiao X, Zhang Q, Mao L, Yu M, Xu J, et al. The Placental Microbiota Is Altered
438 among Subjects with Gestational Diabetes Mellitus: A Pilot Study. *Frontiers in physiology*.
439 2017;8:675.

440 13. Zheng J, Xiao XH, Zhang Q, Mao LL, Yu M, Xu JP, et al. Correlation of placental microbiota
441 with fetal macrosomia and clinical characteristics in mothers and newborns. *Oncotarget*.
442 2017;8(47):82314-25.

443 14. Zheng J, Xiao X, Zhang Q, Mao L, Yu M, Xu J. The Placental Microbiome Varies in Association
444 with Low Birth Weight in Full-Term Neonates. *Nutrients*. 2015;7(8):6924-37.

445 15. Antony KM, Ma J, Mitchell KB, Racusin DA, Versalovic J, Aagaard K. The preterm placental
446 microbiome varies in association with excess maternal gestational weight gain. *American journal*
447 of *obstetrics and gynecology*. 2015;212(5):653.e1-16.

448 16. Prince AL, Ma J, Kannan PS, Alvarez M, Gisslen T, Harris RA, et al. The placental membrane
449 microbiome is altered among subjects with spontaneous preterm birth with and without
450 chorioamnionitis. *American journal of obstetrics and gynecology*. 2016;214(5):627.e1-.e16.

451 17. Amarasekara R, Jayasekara RW, Senanayake H, Dissanayake VH. Microbiome of the placenta
452 in pre-eclampsia supports the role of bacteria in the multifactorial cause of pre-eclampsia. *The*
453 *journal of obstetrics and gynaecology research*. 2015;41(5):662-9.

454 18. Leiby JS, McCormick K, Sherrill-Mix S, Clarke EL, Kessler LR, Taylor LJ, et al. Lack of detection
455 of a human placenta microbiome in samples from preterm and term deliveries. *Microbiome*.
456 2018;6(1):196.

457 19. Theis KR, Romero R, Winters AD, Greenberg JM, Gomez-Lopez N, Alhousseini A, et al. Does
458 the human placenta delivered at term have a microbiota? Results of cultivation, quantitative
459 real-time PCR, 16S rRNA gene sequencing, and metagenomics. *American journal of obstetrics*
460 and *gynecology*. 2019;220(3):267.e1-.e39.

461 20. de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, et al. Human placenta has no
462 microbiome but can contain potential pathogens. *Nature*. 2019;572(7769):329-34.

463 21. Kuperman AA, Zimmerman A, Hamadia S, Ziv O, Gurevich V, Fichtman B, et al. Deep
464 microbial analysis of multiple placentas shows no evidence for a placental microbiome. *BJOG : an*
465 *international journal of obstetrics and gynaecology*. 2019.

466 22. Lim ES, Rodriguez C, Holtz LR. Amniotic fluid from healthy term pregnancies does not
467 harbor a detectable microbial community. *Microbiome*. 2018;6(1):87.

468 23. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be
469 initiated in utero by distinct microbial communities in the placenta and amniotic fluid. *Scientific*
470 *reports*. 2016;6:23129.

471 24. Structure, function and diversity of the healthy human microbiome. *Nature*.
472 2012;486(7402):207-14.

473 25. Bhattacharyya M, Ghosh T, Shankar S, Tomar N. The conserved phylogeny of blood

474 microbiome. *Molecular Phylogenetics and Evolution*. 2017;109:404-8.

475 26. Koren O, Goodrich JK, Cullender TC, Spor A, Laitinen K, Backhed HK, et al. Host remodeling
476 of the gut microbiome and metabolic changes during pregnancy. *Cell*. 2012;150(3):470-80.

477 27. Kuang YS, Lu JH, Li SH, Li JH, Yuan MY, He JR, et al. Connections between the human gut
478 microbiome and gestational diabetes mellitus. *GigaScience*. 2017;6(8):1-12.

479 28. Sato Y, Sakurai K, Tanabe H, Kato T, Nakanishi Y, Ohno H, et al. Maternal gut microbiota is
480 associated with newborn anthropometrics in a sex-specific manner. *Journal of developmental
481 origins of health and disease*. 2019;1:1-8.

482 29. Cao B, Stout MJ, Lee I, Mysorekar IU. Placental Microbiome and Its Role in Preterm Birth.
483 *NeoReviews*. 2014;15(12):e537-e45.

484 30. Doyle RM, Alber DG, Jones HE, Harris K, Fitzgerald F, Peebles D, et al. Term and preterm
485 labour are associated with distinct microbial community structures in placental membranes which
486 are independent of mode of delivery. *Placenta*. 2014;35(12):1099-101.

487 31. Nyangahu DD, Jaspan HB. Influence of maternal microbiota during pregnancy on infant
488 immunity. *Clinical and experimental immunology*. 2019.

489 32. You Y-A, Yoo JY, Kwon EJ, Kim YJ. Blood Microbial Communities During Pregnancy Are
490 Associated With Preterm Birth. *Front Microbiol*. 2019;10:1122-.

491 33. Domingue GJ, Schlegel JU. Novel bacterial structures in human blood: cultural isolation.
492 *Infection and immunity*. 1977;15(2):621-7.

493 34. Nikkari S, McLaughlin IJ, Bi W, Dodge DE, Relman DA. Does blood of healthy subjects
494 contain bacterial ribosomal DNA? *Journal of clinical microbiology*. 2001;39(5):1956-9.

495 35. Jimenez E, Fernandez L, Marin ML, Martin R, Odriozola JM, Nueno-Palop C, et al. Isolation of
496 commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section.
497 *Current microbiology*. 2005;51(4):270-4.

498 36. Paisse S, Valle C, Servant F, Courtney M, Burcelin R, Amar J, et al. Comprehensive description
499 of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing.
500 *Transfusion*. 2016;56(5):1138-47.

501 37. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, et al. Metagenomic analysis
502 of the human distal gut microbiome. *Science (New York, NY)*. 2006;312(5778):1355-9.

503 38. Chen H, Jiang W. Application of high-throughput sequencing in understanding human oral
504 microbiome related with health and disease. *Front Microbiol*. 2014;5:508.

505 39. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome
506 assemblies. *Bioinformatics (Oxford, England)*. 2011;27(21):2957-63.

507 40. Edgar RC. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics (Oxford, England)*. 2010;26(19):2460-1.

509 41. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a
510 chimera-checked 16S rRNA gene database and workbench compatible with ARB. *Applied and
511 environmental microbiology*. 2006;72(7):5069-72.

512 42. Willyard C. Could baby's first bacteria take root before birth? *Nature*. 2018;553(7688):264-6.

513 43. Madianos PN, Bobetsis YA, Offenbacher S. Adverse pregnancy outcomes (APOs) and
514 periodontal disease: pathogenic mechanisms. *Journal of periodontology*. 2013;84(4
515 Suppl):S170-80.

516 44. Komine-Aizawa S, Aizawa S, Hayakawa S. Periodontal diseases and adverse pregnancy
517 outcomes. *The journal of obstetrics and gynaecology research*. 2019;45(1):5-12.

518 45. Radochova V, Stepan M, Kacerovska Musilova I, Slezak R, Vescicik P, Menon R, et al.
519 Association between periodontal disease and preterm prelabour rupture of membranes. Journal
520 of clinical periodontology. 2019;46(2):189-96.
521 46. Vuillermin PJ, Macia L, Nanan R, Tang ML, Collier F, Brix S. The maternal microbiome during
522 pregnancy and allergic disease in the offspring. Seminars in immunopathology.
523 2017;39(6):669-75.
524 47. Sanders A, Rackers H, Kimmel M. A role for the microbiome in mother-infant interaction and
525 perinatal depression. International review of psychiatry (Abingdon, England). 2019;1-15.
526

527

528 **Figure legend**

529 **Figure 1 Taxonomic composition and richness of the five tissues microbiome.** (A) Seven phyla
530 were identified with an average relative abundance greater than 0.35% among all samples. (B)
531 Heatmap based on top 76 genera among five tissues. The reads number is indicated by a color
532 gradient from light blue (low) to red (high). (C) Alpha diversity was shown as Simpson whose
533 value is negatively correlated with α -diversity and Shannon whose value is positively correlated
534 with α -diversity. Richness was indicated as OUT number.

535

536 **Figure 2 The microbe differences among tissues at phylum and genus levels.** (A) Four phyla
537 with an average relative abundance greater than 0.1% were identified that their relative
538 abundances were different among the five groups. (B) Difference analysis of genus levels between
539 two groups in AC, MB, and PL tissues with two-sided Welch's t-test on STAMP platform. Genera
540 with significant differences and an average relative abundance greater than 0.5% were shown.

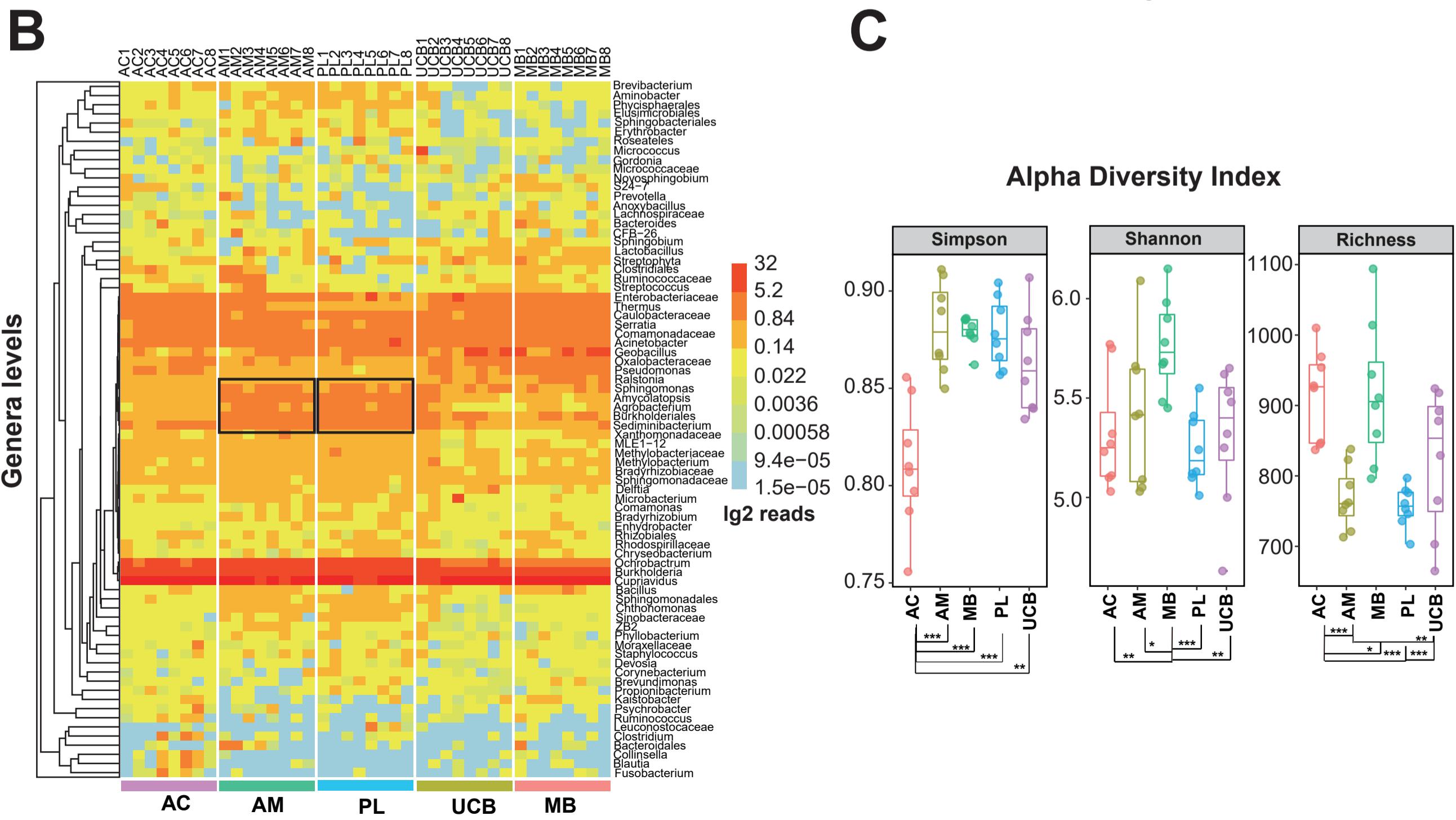
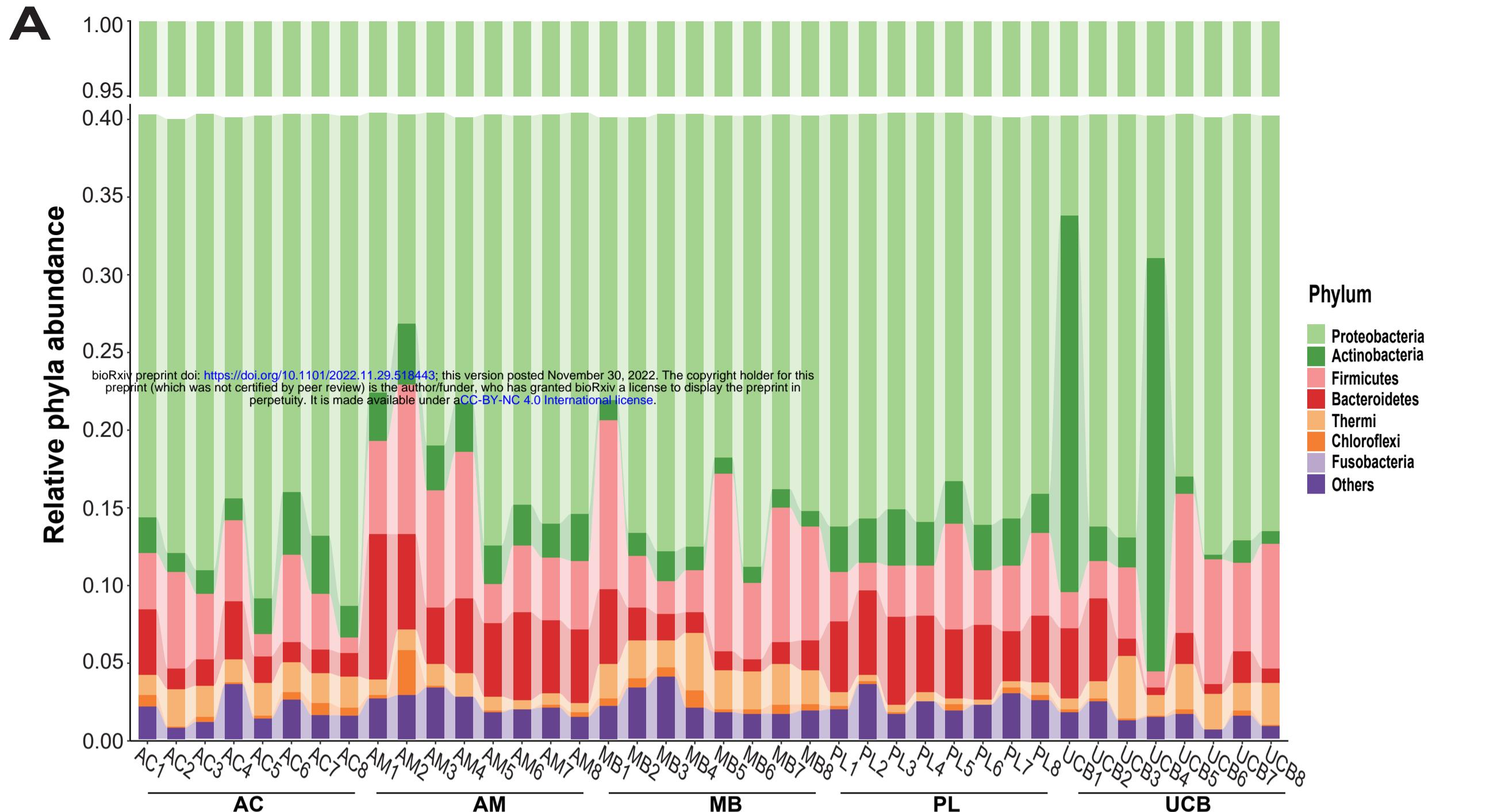
541

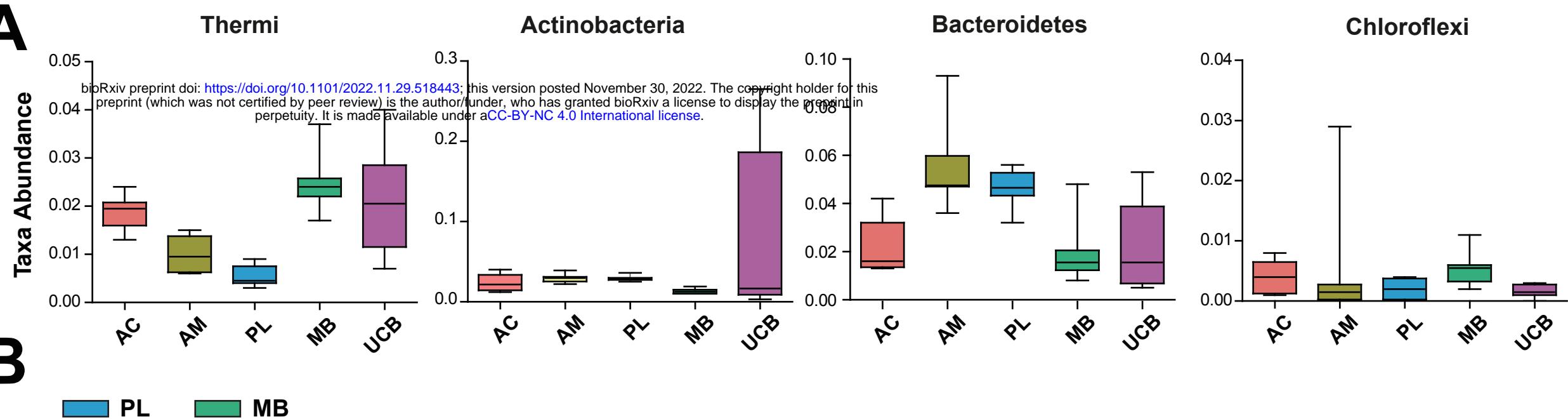
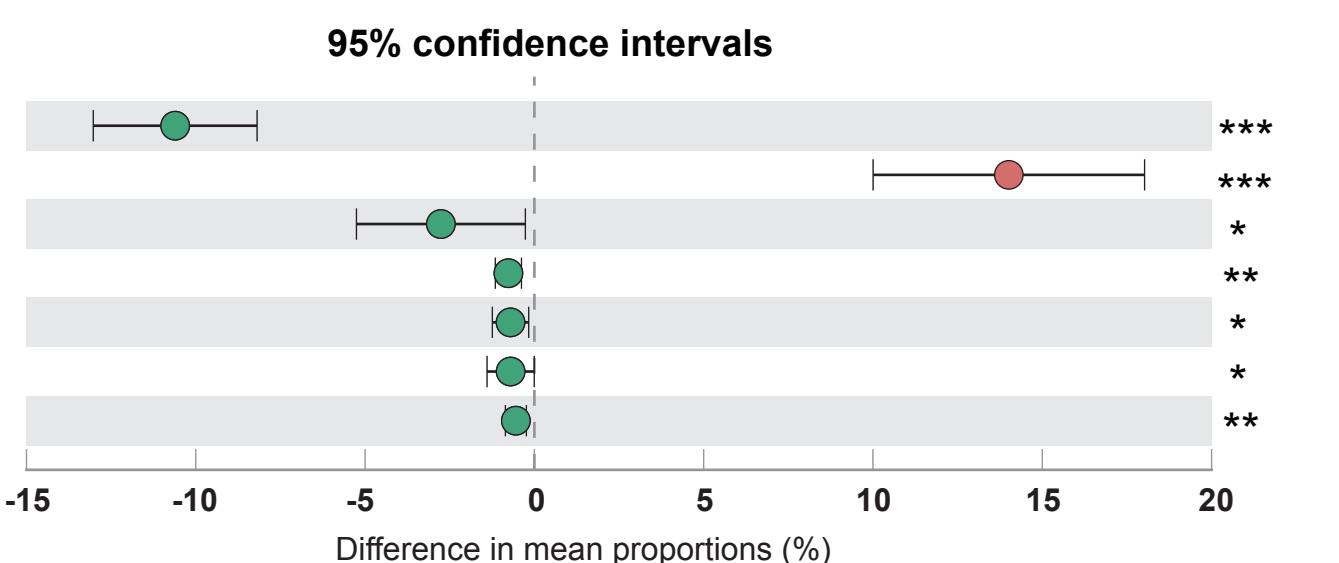
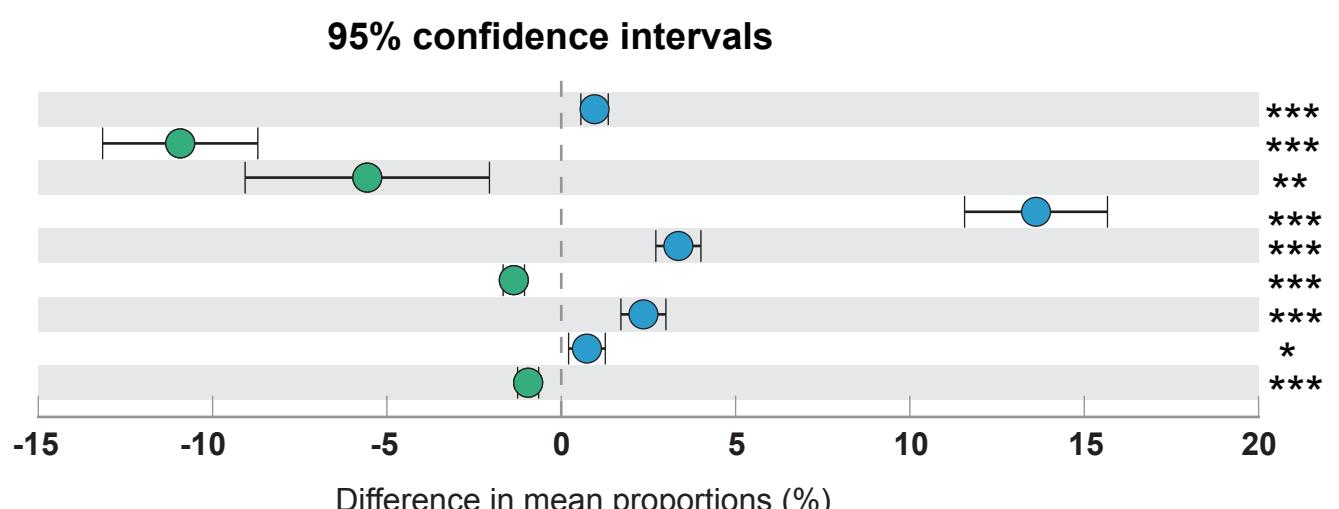
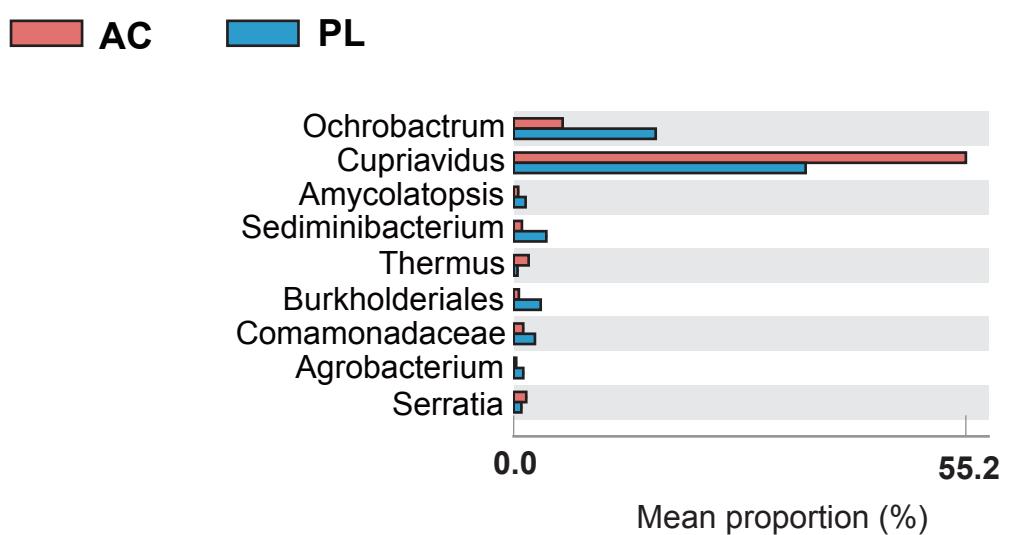
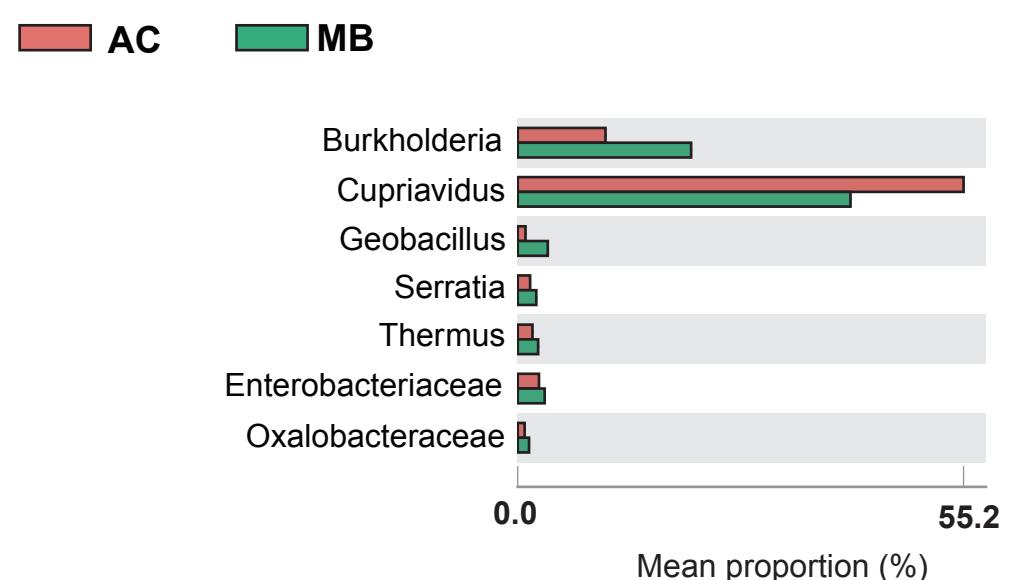
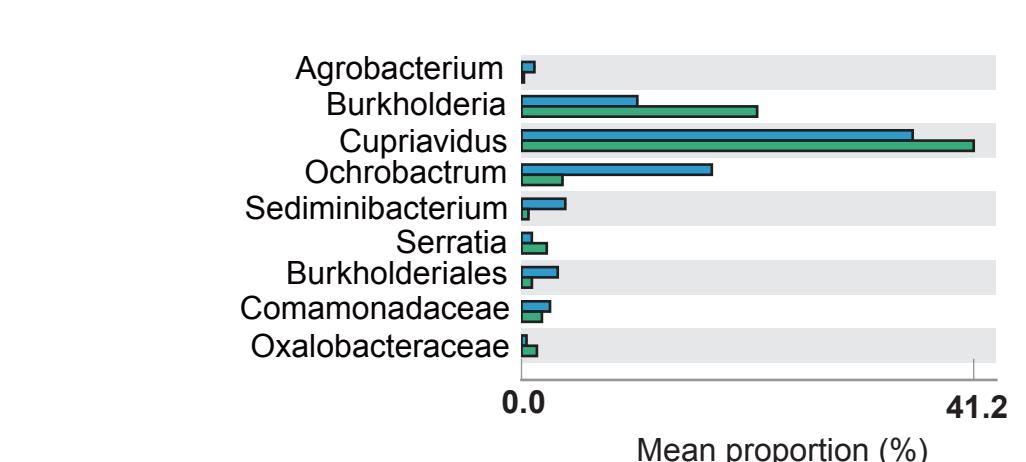
542 **Figure 3 The microbe differences from LEfSe analysis between AC and Placenta.** (A) PL and
543 AM were recognized as one group (Placenta). Taxa (Green) enriched in the Placenta group and
544 taxa (red) in AC tissue. (B) Placenta-enriched taxa were shown with a positive LDA score (green)
545 and AC-enriched taxa harbored a negative score (red). Only the taxa meeting the condition of a
546 logarithmic LDA score significant threshold>2, $P < 0.05$ were presented.

547

548 **Figure 4 Beta diversity of the microbiota in five tissues.** **(A)** Principal coordinate analysis
549 (PCoA) based on Bray–Curtis distance matrices according to the genus-level compositional
550 profiles in five tissues. The correlation values in every two groups were indicated as the
551 Bray–Curtis distance matrices. Significant differences in microbiota structure among groups were
552 assessed by Adonis also based on Bray–Curtis distance matrices. **(B)** Principal component analysis
553 (PCA) was performed with Euclidean distance metrics among five tissues on genus levels. **(C)**
554 Analysis of similarities (ANOSIM) between two low-correlative groups and five groups was
555 performed based on the weighted-unifrac distance metrics of OUT profiles.

556

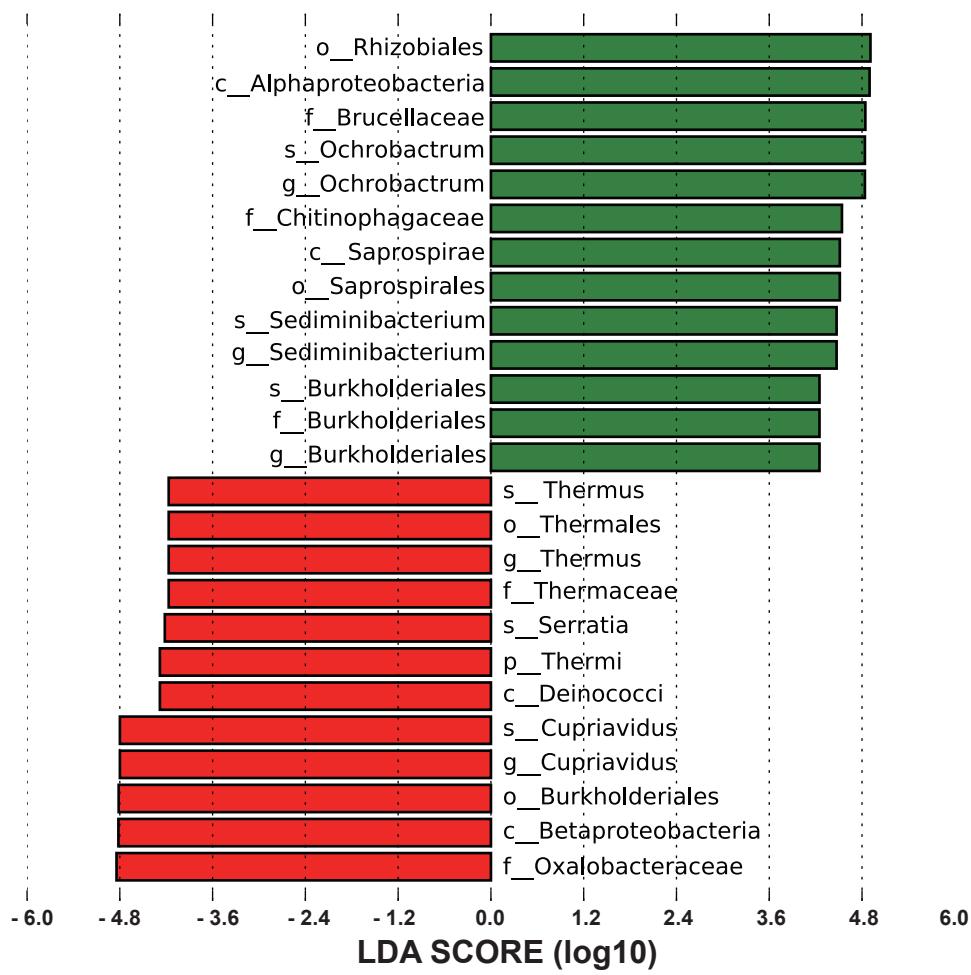


557 **Figure 5 Samples separate of different body parts based on genus composition profiles.** **(A)**
558 Redundancy analysis (RDA) of genera with average relative abundance greater than 0.1% among
559 five groups showed separation of samples by body sites. **(B)** RDA1 and PC1 conjoint analysis was
560 performed to separate groups on genus levels. **(C, D)** The Sparse Partial Least
561 Squared–Discriminative Analysis plot illustrated a clear separation in five tissues based on the
562 genera of greater than 0.1% relative abundance. The related contribution plot illustrated taxa
563 associated with the fetal-maternal interface tissues.

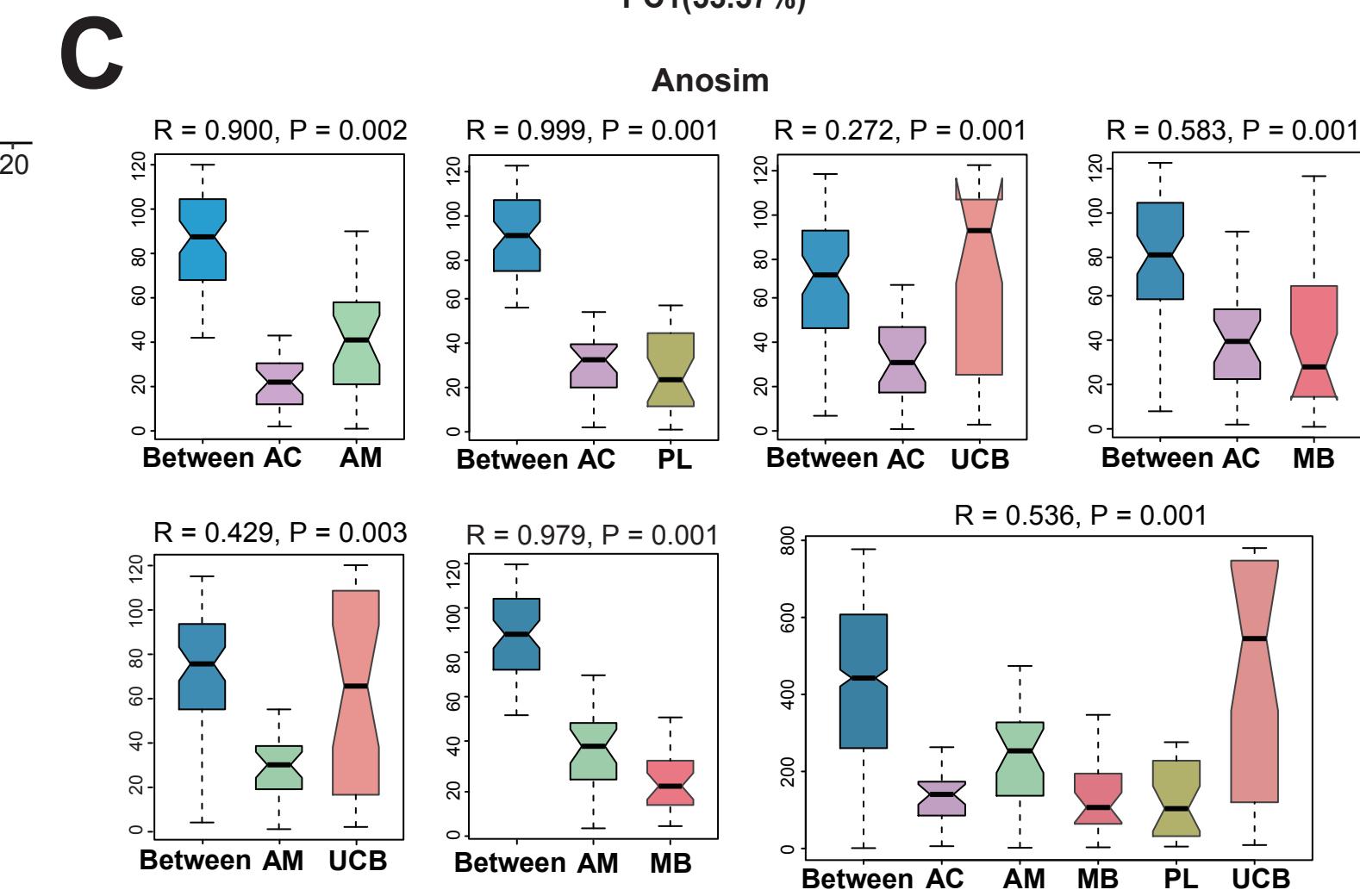
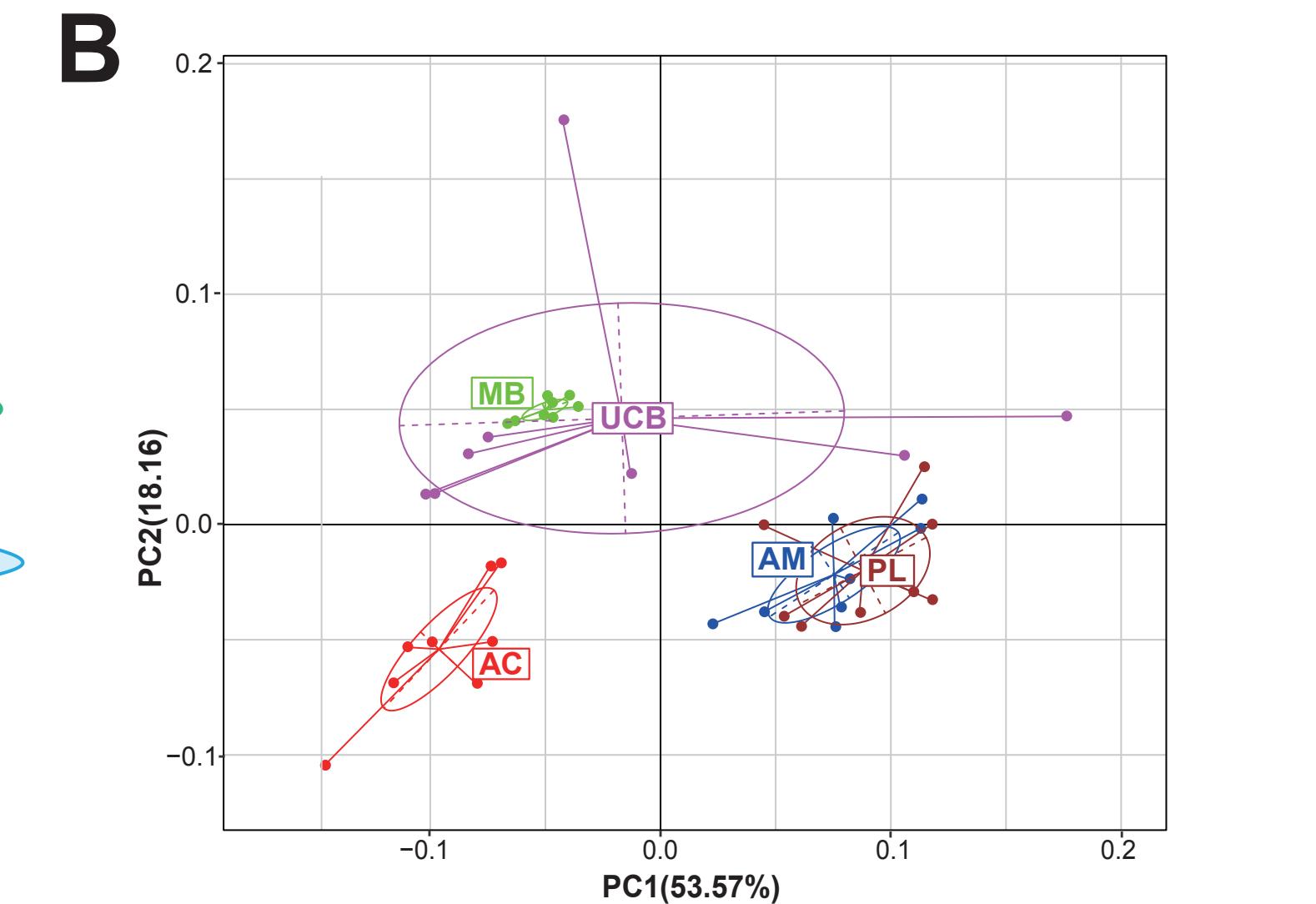
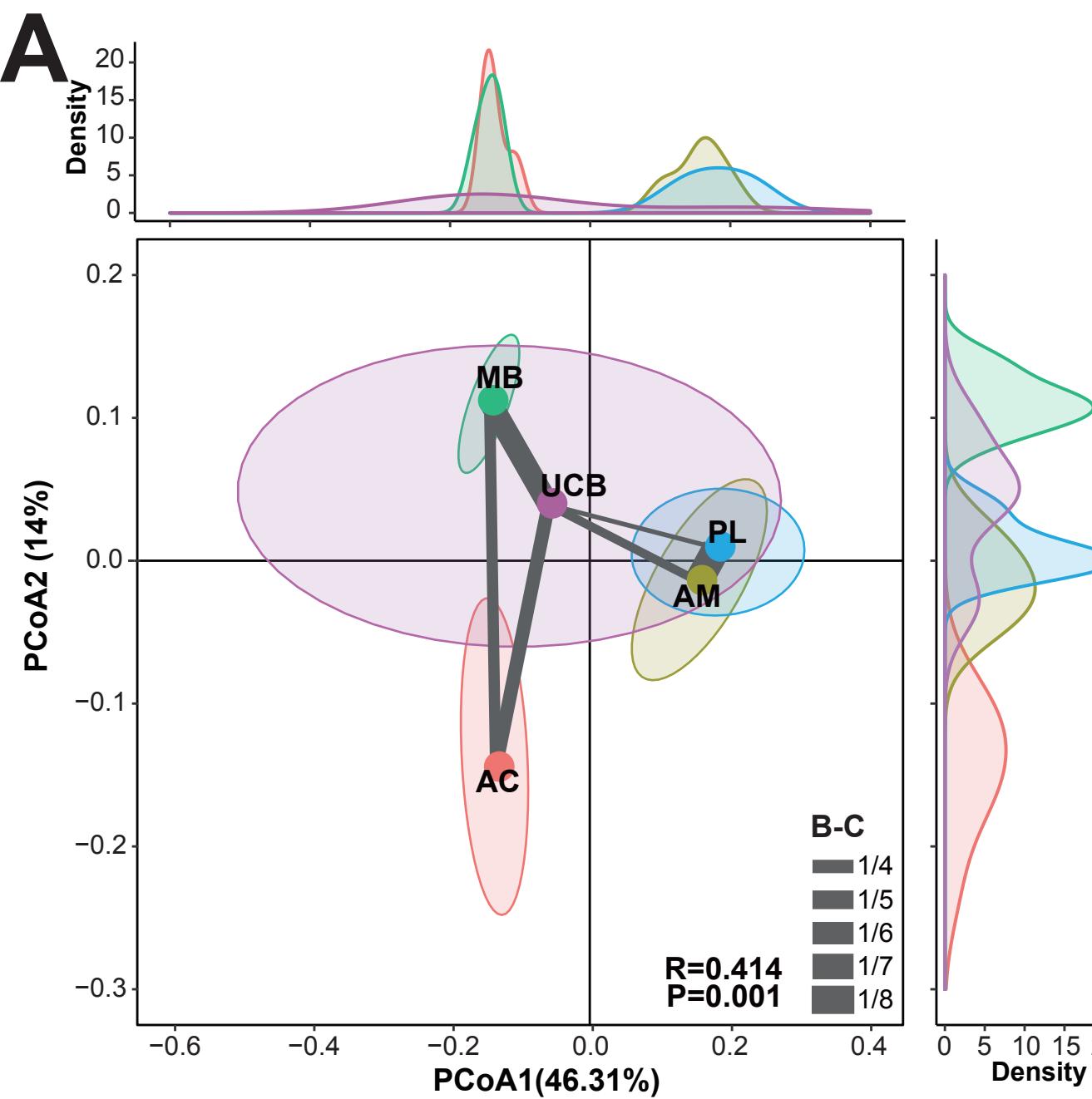






564

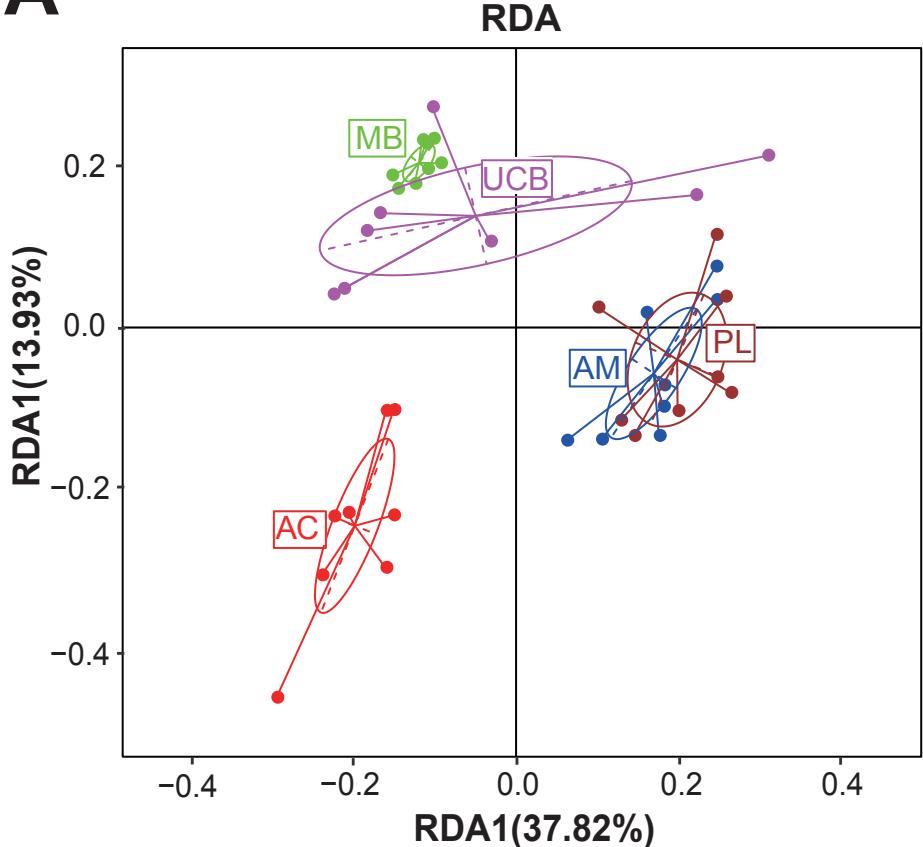
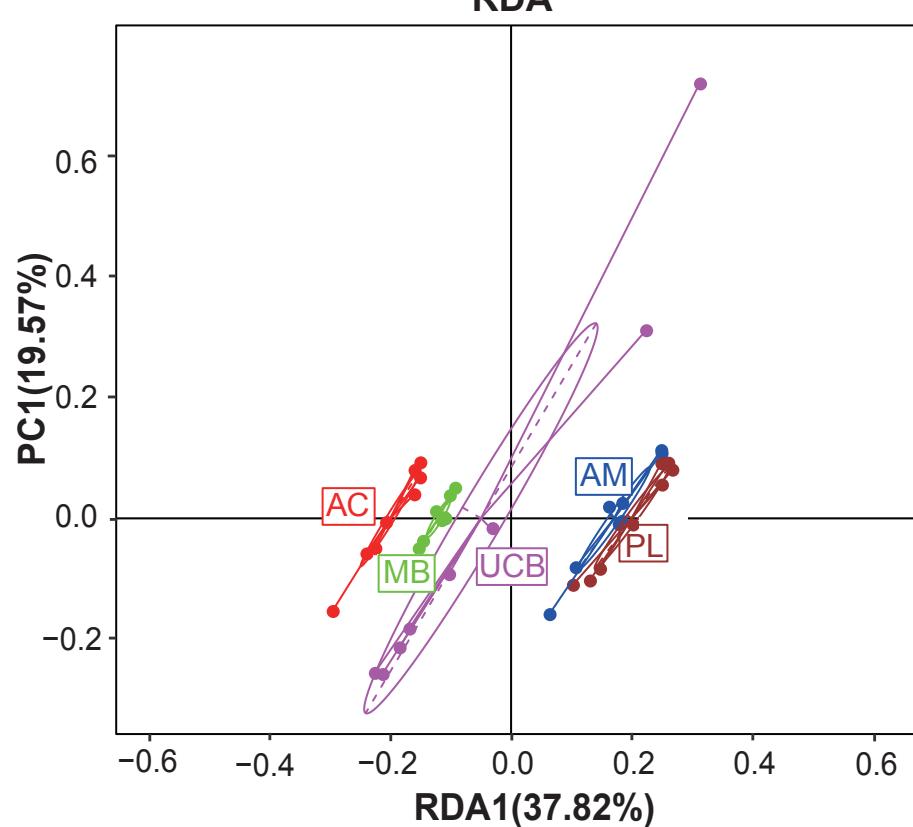
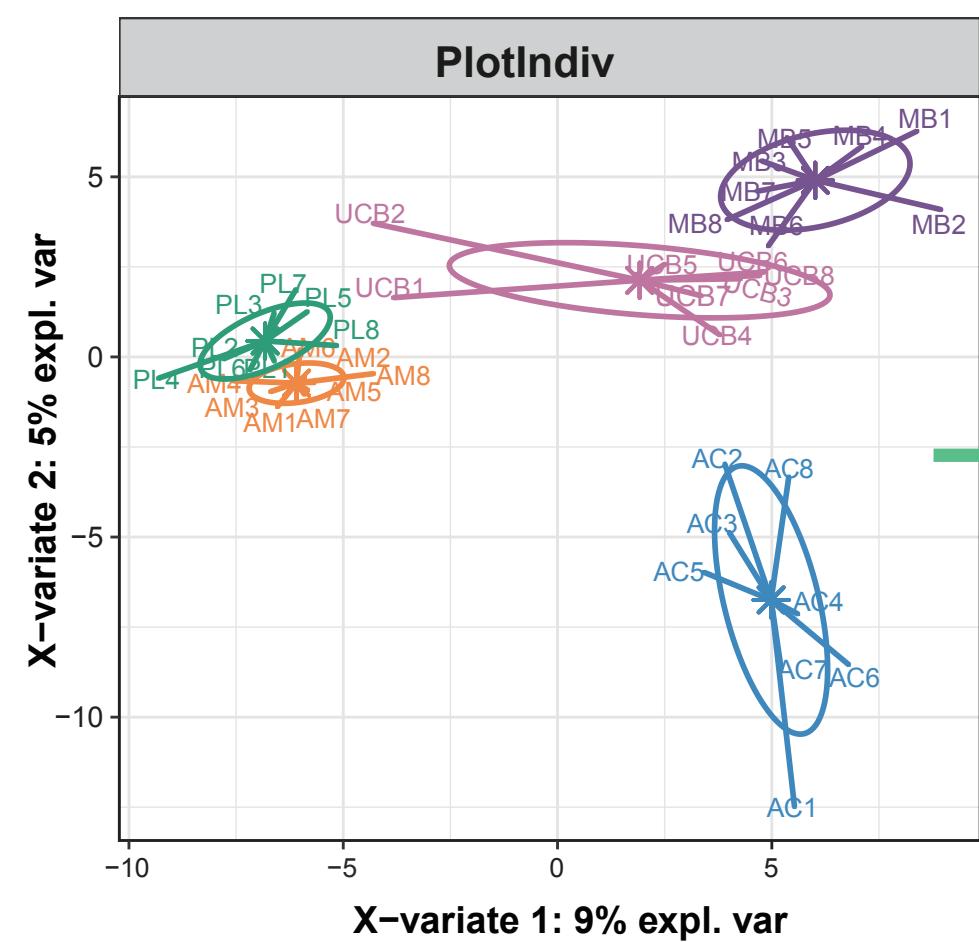
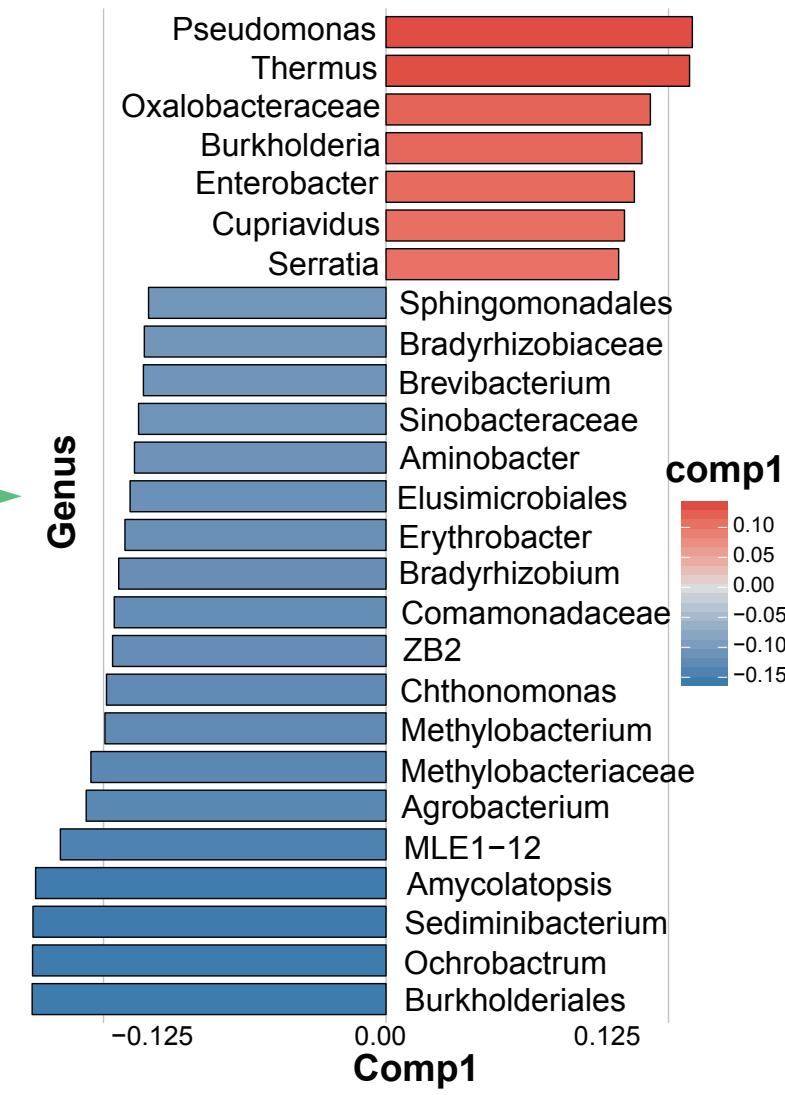
565 **Figure 6 Microbial co-occurrence network analysis.** Co-occurrence networks were constructed
566 using Bray–Curtis distance matrices less than 0.1 based on the genera relative abundance profiles
567 among the five groups. The smaller the distance, the stronger the co-occurrence correlation. Each
568 node represented a genus and genera belonging to the same phylum were shown in one color.

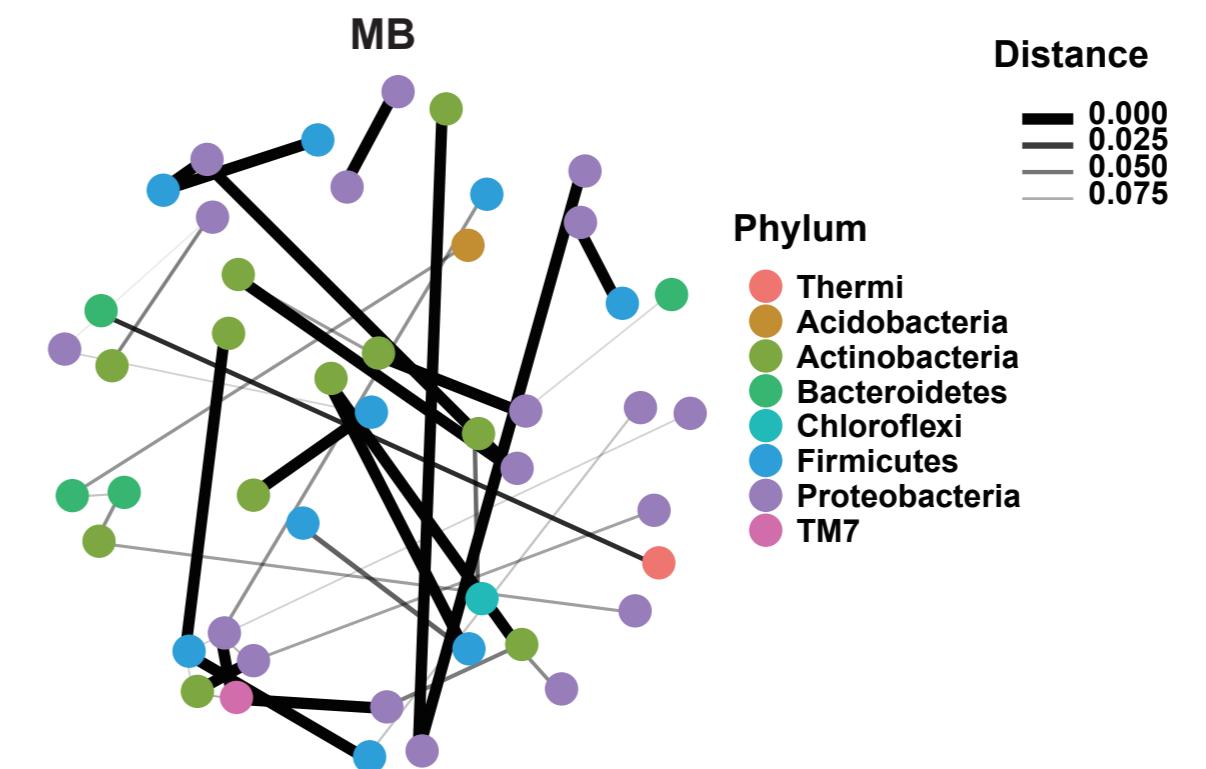
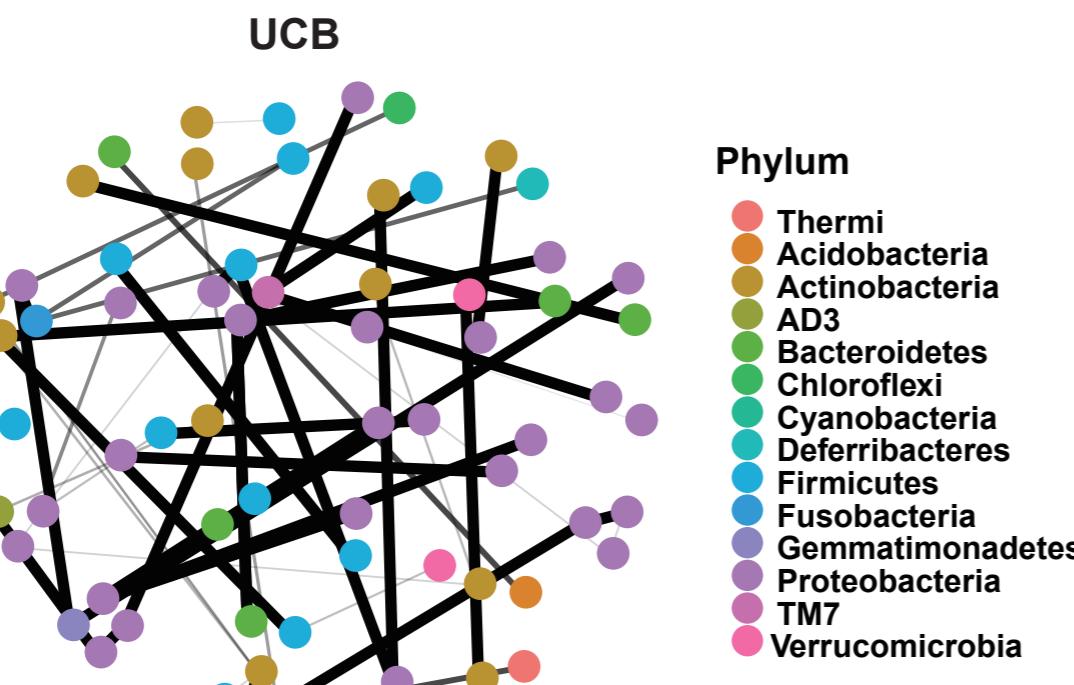
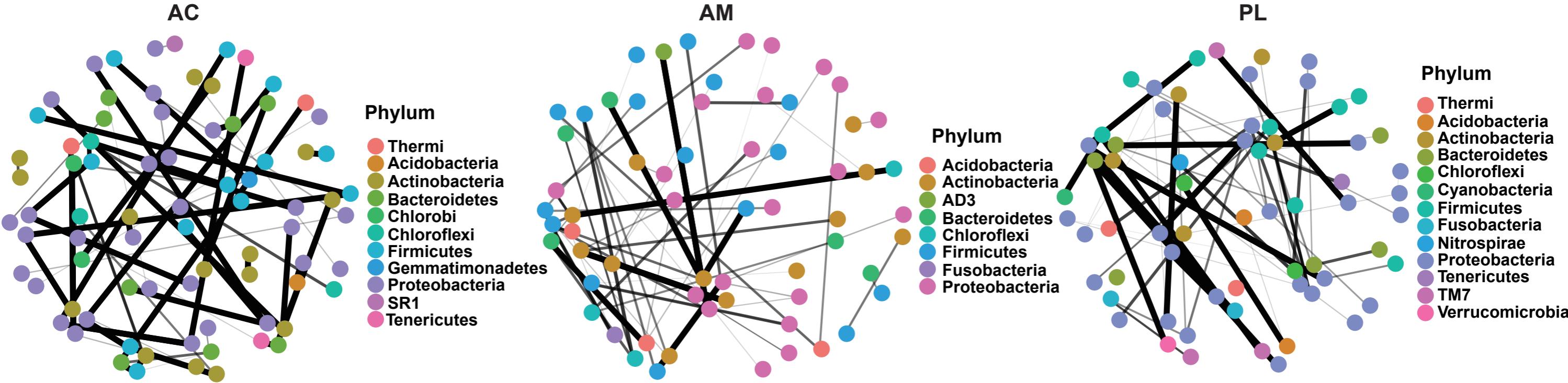
569


570


A**B**




A





■ AC
■ Placenta




B

■ AC ■ Placenta

A**B****C****D**

