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Abstract:

Congenital diaphragmatic hernia (CDH) is a devastating condition characterized by incomplete
closure of the diaphragm and herniation of abdominal organs into the chest. As a result, fetuses
have pulmonary hypoplasia, whose severity is the main determinant of poor outcome. The
pathogenesis of pulmonary hypoplasia secondary to CDH is at least in part explained by lack or
dysregulation of miRNAs that are known to regulate lung developmental processes. Herein, we
report that intra-amniotic administration of extracellular vesicles derived from amniotic fluid stem
cells (AFSC-EVs) rescues lung growth and maturation in a fetal rat model of CDH. To understand
which fetal lung cells and biological pathways are affected by AFSC-EVs, we conducted whole
lung single nucleus RNA-sequencing. We discovered that CDH lungs have a multilineage
inflammatory signature with macrophage enrichment, and confirmed these findings in autopsy
samples of lungs from human fetuses with CDH. Transcriptomic analysis of CDH fetal rat lungs
also showed that AFSC-EV treatment reduced macrophage density and inflammation to normal
levels. Analyzing the miRNAs contained in the AFSC-EV cargo with validated mRNA targets, we
found that the downregulated genes in AFSC-EV treated CDH Ilungs were involved in
inflammatory response and immune system processes. This study reports a single cell atlas of
normal and hypoplastic CDH fetal rat lungs and provides evidence that AFSC-EVs restore lung

development by addressing multiple pathophysiological aspects of CDH.
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Introduction

Pulmonary hypoplasia is a devastating condition characterized by impaired development of the
fetal lung (/). A common cause of pulmonary hypoplasia is congenital diaphragmatic hernia
(CDH), a defect due to incomplete closure of the diaphragm and herniation of abdominal organs
into the chest (2). Hypoplastic lungs have fewer branches and alveoli, undifferentiated epithelium
and mesenchyme, and vascular remodeling, characterized by fewer pulmonary vessels with
muscularized wall layers and dysfunctional endothelium (2, 3). In babies with CDH, the severity
of pulmonary hypoplasia is the main determinant of morbidity and mortality. In high-income
countries, mortality has plateaued at 30% in the last three decades and can be as high as 90% in
low- and middle-income countries (4, 5). Due to severe pulmonary hypoplasia, some fetuses die
in utero or are electively terminated (6), some succumb in the first days of life without undergoing
diaphragmatic repair (4), and many who survive and undergo surgery do not regain normal lung
development (2). Longitudinal studies have shown that CDH survivors have long-term lung
morbidity that persists beyond school age (7, §). As there is consensus that the antenatal period
offers a window of opportunity to reverse pulmonary hypoplasia, attempts have been made to
promote fetal lung development antenatally (9, 10).

It is well known that lung developmental processes are regulated by multiple miRNAs (/7), whose
expression is missing or dysregulated in experimental and human CDH lungs (/2-24). A promising
avenue to deliver a heterogenous complement of miRNAs is based on the administration of
extracellular vesicles (EVs). EVs are lipid-bound nanoparticles secreted by all cells for
intercellular communication during physiological and pathological processes (25). EVs carry
cargo in the form of genetic material (including miRNAs), proteins, and lipids, and transfer their

cargo to target cells to induce biological responses (25). We previously reported that
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administration of EVs derived from amniotic fluid stem cells (AFSC-EVs) promotes branching
morphogenesis, rescues tissue homeostasis, and stimulates epithelial cell and fibroblast
differentiation in fetal rodent models of pulmonary hypoplasia (/2). The ability to stimulate lung
cell differentiation and rescue dysregulated signaling pathways was observed when AFSC-EVs
were administered at canalicular and saccular stages of lung development, timepoints that are
amenable to human translation (26). We performed enzymatic and inhibitor studies and found that
the regenerative effects observed in hypoplastic lungs following AFSC-EV treatment were exerted
at least in part via the release of their RNA cargo (/2, 27). AFSC-EV RNA sequencing revealed
that the cargo contained miRNAs that regulate the expression of genes involved in lung
development, such as the miRNA 17~92 cluster (/2, 28). However, it remains undetermined which
lung cells are affected by AFSC-EVs and how AFSC-EVs rescue the biological pathways required
for lung development. Herein, we used single nucleus RNA sequencing (snRNA-seq) to uncover
the dysregulated genes and biological pathways in CDH fetal lungs and to determine the effects of

in utero AFSC-EV therapy on fetal lung cell populations.

Results

Intra-amniotic administration of AFSC-EVs rescues branching morphogenesis and epithelial cell

differentiation in fetal rats with CDH

To induce CDH, we used the experimental model based on the administration of nitrofen (2,4-
Dichloro-1-(4-nitrophenoxy)benzene) to the rat dam at embryonic (E) day 9.5 (29-32). This is
considered robust as it reproduces pulmonary hypoplasia in the whole litter with an analogous
phenotype to the human condition (29-32). As the ideal time for fetal intervention in human babies

with CDH has been identified as early as the canalicular stage of lung development (33, 34), we
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selected this stage in rats (37) to trial different routes of AFSC-EV administration. First, we opted
for topical administration to fetal lungs via intra-tracheal instillation of AFSC-EVs. However,
given the small size of fetal rats and the technical challenges with this survival surgery, we
experienced a low rate of fetal survival (20%, n=10), as also reported by other groups (35, 36), and
abandoned this route. We then tested two routes of administration that proved to have high fetal
survival rates: intra-amniotic (IA, n=48, survival 84%) and maternal intra-venous (IV, n=30,
survival 100%). When we compared the efficiency of AFSC-EV delivery to the fetus, we found
that both TA and IV injection routes successfully delivered AFSC-EVs (fluorescently labeled with
ExoGlow-Vivo)to fetal organs (Fig. 1A, fig. S1, and movie S1-6). However, we detected a positive
fluorescent signal in fetal lungs only upon IA injection (Fig. 1B). To validate that the IA delivery
of AFSC-EVs promoted lung growth and maturation in vivo, we assessed lung branching
morphogenesis and cell differentiation markers at E21.5. Compared to control, CDH lungs had a
reduction in airspace density and lower gene expression levels of lung maturation markers, such
as fibroblast growth factor-10 (Fgfi10; regulator of lung lineage commitment and branching
morphogenesis), podoplanin (Pdpn; alveolar type 1 cell marker), and surfactant protein C and A
(Sftpc, Sftpa; alveolar type 2 cell marker) (Fig. 1, C to E). CDH lungs from fetuses that received
an [A injection of AFSC-EVs had restored airspace density and gene expression of Fgf10, Pdpn,
Sfipc, and Sfipa back to control levels (Fig. 1, C to E). We validated these findings with
immunofluorescence and Western blotting and determined that CDH lungs had reduced levels of
PDPN and SPC compared to control (Fig. 1, F and G). Conversely, CDH lungs treated with AFSC-

EVs had increased protein expression levels of PDPN and SPC.
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Single nucleus interrogation of the rat fetal normal and hypoplastic lung identifies four major cell

types each with distinct subpopulations

To identify AFSC-EV cell-type specific effects, we conducted snRNA-seq on the left lung
harvested at E21.5 from two IA saline injected controls, three IA saline injected left-sided CDH
fetuses, and three IA AFSC-EV injected left-sided CDH fetuses (Fig. 2A). We selected fetuses for
snRNA-seq studies from a large cohort of pups based on severity of branching morphogenesis and
expression of lung maturation markers (Fig. 2B). After quality control filtering, we profiled a total
of 298,653 nuclei (fig. S2 and Table S1). Analysis using Seurat revealed 15 distinct clusters
representative of the four major cell types in the lung that corresponded to epithelial, endothelial,
mesenchymal, and immune cells, each containing distinct subpopulations (Fig. 2, C and D). To
the best of our knowledge, this is the first single-cell transcriptomic analysis of rat fetal lungs.
Therefore, we used LungMAP, LungCellMap, and Human Protein Atlas annotations from mouse
and human lungs to assign cell type identity based on gene expression enrichment of key marker
genes (37-39). We identified five distinct epithelial sub-populations, including alveolar type I
(AT1), alveolar type II (AT2), and ciliated epithelial cells (Fig. 2, C and D, and fig. S3). Among
these cell types, ATI cells expressed Hopx, Pdpn, Clic5, and Ager; AT2 cells expressed Napsa,
Lamp3, Fgfr2, and Etv3; ciliated epithelial cells expressed cilia-related genes Dnahl2, Hydin, Ak9,
and Spagl7. In addition, there were two other epithelial cell clusters with an inflammatory
signature: cluster 8 was called “inflamed AT2 cells” as it co-expressed AT2 cell (Lamp3, Lgi3)
and inflammatory markers, whereas cluster 14, broadly called “inflamed epithelial cells” expressed
Len2, Cel4, Cel6, and 111b. We identified two distinct endothelial clusters, one that had canonical
endothelial cell markers Tie2, Fitl, and Kdr, and one that co-expressed mesenchymal and

endothelial signatures (Nfib, Tbx5, Adamts17, and Robol) that was termed “EndMT cells” (Fig. 2,
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C and D, and fig. S3). Five mesenchymal cell subtypes were identified, including fibroblasts,
myofibroblasts, mesothelial cells, and pericytes (Fig. 2, C and D, and fig. S3). Among these cell
types, fibroblasts expressed S/it2, Fgf10, and Macf1, myofibroblasts expressed Myhl 1, Enpp2, and
Pdgfra, mesothelial cells expressed Gpmé6a, Aldhla2, and Wtli, and pericytes expressed Pdgfrb,
Ebfl, and Gucylal. Moreover, we identified a mesenchymal cluster that heavily expressed Lcn2,
Ccl4, Cxcll, Ccl3, and Plac8, and was called “inflamed fibroblasts™. Lastly, three immune cell
clusters were detected: two clusters expressing macrophage markers CD68, Adgrel, CD163, and

CD&86, and one expressing immune cell markers Aoah, Zeb2, and Lyn (Fig. 2, C and D).

Ligand-receptor analysis of rat fetal lung transcriptomics reveals the biological pathways that are

influenced by AFSC-EV administration

To identify signaling pathways activated in CDH lungs treated with saline or AFSC-EVs, we
performed ligand-receptor analysis on our snRNA-seq data using CellChat (40). We found that of
all cell types, lung fibroblasts had the strongest outgoing signals and endothelial cells were the
most receptive to incoming ligands (Fig. 3A). Our data also indicated that compared to normal
lungs and AFSC-EV treated CDH lungs, CDH+saline lungs had upregulated ligand-receptor
signaling from fibroblasts to endothelial cells (Fig. 3B). Our ligand-receptor analysis revealed that
CDH lungs treated with saline exhibited signaling networks that are involved in inflammation and
immune response, such as Visfatin (Fig. 3, C and D). Visfatin is a pro-inflammatory cytokine that
potentiates TNFa and IL-6 production in human peripheral blood mononuclear cells and has been
proposed as a biomarker for acute lung injury (4/-44). Moreover, the strongest outgoing ligand
signal in saline-treated CDH lungs was pleiotrophin (Ptn), a signaling molecule involved in lung

development (45), which in our experiments was released from inflamed fibroblast and signaled
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to its receptors Sdc2 and Nc/ on multiple lung cell types (Fig. 3, C to E). PTN signaling was still
present in AFSC-EV treated CDH lungs, but its receptor pair changed and was predominantly
Ptprzl, a molecule responsible for regulating hematopoietic progenitor cell homing and retention
(Fig. 3E) (46). Moreover, only AFSC-EV treated CDH lungs had activated signaling networks that
control epithelial branching morphogenesis [Fgf10-Fgfr2, (47, 48)], surfactant synthesis and
alveolar development [Nrg2-Erbb4, (49)], distal lung branching and alveologenesis [Igf2-Igf1r
(50, 51)], anti-apoptotic processes [Ptn-Alk (52)], and angiogenesis [ Vegfa-Kdr (53); Fig. 3, C to

E, and Table S2].

CDH lungs have an inflammatory phenotype with high macrophage density that is rescued to

normal levels by AFSC-EV administration

When we analyzed the snRNA-seq data by condition, we found that CDH+saline lungs had striking
differences in the pattern and clustering of nuclei (Fig. 4A). Conversely, lungs from Control+saline
and CDH+AFSC-EV groups had similar populations and distributions. We found that three
clusters were unique to CDH+saline lungs, namely macrophage group 1 (cluster 1), inflamed
fibroblasts (cluster 7), and inflamed ATII (cluster 8) (Fig. 4A). Moreover, macrophage group 2
was heavily represented in CDH+saline lungs (n=89,187 nuclei), compared to Control+saline
(n=247 nuclei) and CDH+AFSC-EVs (n=739 nuclei; Table S1). Markers of macrophage identity
and function were found in several clusters (Fig. 4B). To further delineate the specific macrophage
subtypes contained in cluster 1 and 2, we used scPred, a validated machine-learning probability-
based prediction method and trained the machine algorithm on single cell data from adult rat lungs
(54, 55). We predicted that most nuclei in cluster 1 and 2 were from alveolar macrophages

(n=140,382, 77%:; fig. S4 and Table S3). Using immunofluorescence on the lungs of an additional
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cohort of rat fetuses, we confirmed a high density of macrophages in CDH+saline lungs, which

was reduced to normal levels in CDH+AFSC-EV lungs (Fig. 4C).

CDH fetal lungs have a multilineage inflammatory signature that is dampened by the

administration of AFSC-EVs

Differential gene expression analysis of CDH+saline lungs compared to Control+saline showed
an extensive inflammatory signature across clusters with upregulation of //1b, Bcl2al, Cxcll,
Ccl3/4, and Lcen2 (Fig. 5, A and B). These genes were downregulated in AFSC-EV treated lungs
(Fig. 5, A and B, and Table S2). Differential gene expression analysis revealed similar patterns
between Control+saline and CDH+AFSC-EV lungs regardless of the major cell type (Fig. 5C).
Most of the highly differentially expressed genes in CDH+saline lungs were enriched for
biological processes related to immune responses (Fig. 5D). Using immunofluorescence, we
confirmed that the lungs of an additional cohort of CDH+saline rat fetuses were inflamed with
upregulation of TNFa, which was restored to normal levels in those treated with AFSC-EVs (Fig.

5E).

To investigate the transcriptome differences across conditions and have a homogeneous
comparison with similar number of nuclei within each condition, we created a subset of data by
removing clusters 1 and 2 (macrophage group 1 and 2), as they were overrepresented in
CDH+saline lungs. In this sub-analysis that included 30,064 Control+saline nuclei, 45,114
CDH-+saline nuclei, and 42,193 CDH+AFSC-EV nuclei (fig. S2), we again found that all four
major cell types were represented in all three conditions (Fig. 5F). Given the inflammatory
signature of CDH+saline lungs, we investigated which immune cells were present in cluster 5

using scPred (54, 55). In all three conditions, we found different types of immune cells, including
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neutrophils, monocytes, and T and B cells (Fig. 5G, and Table S4). Among these immune cells,
CDH-+saline lungs had higher proportion of neutrophils compared to Control+saline lungs (53%
vs. 3%, p<0.0001; Fisher’s exact test). Conversely, CDH+AFSC-EV lungs had a lower proportion

of neutrophils (4%) compared to CDH+saline lungs (p<0.0001, Fisher’s exact test).

Predicted miRNA-mRNA signaling pathways activated by AFSC-EVs

As we have shown that the regenerative effects of AFSC-EVs are mainly due to the delivery of
miRNAs to fetal lung cells (/2, 27), we used publicly available datasets (TarBase, MicroCosm,
miRanda, miRDB, miRecords, miRTarBase) to generate a network between the miRNAs that are
known to be present in the rat AFSC-EV cargo (/2), and the mRNAs identified by snRNA-seq
that were downregulated in CDH+AFSC-EV lungs compared to CDH+saline lungs. We found that
several mRNAs that were downregulated in CDH+AFSC-EV lungs were regulated by multiple
miRNAs that were present in the AFSC-EV cargo (Fig. 6, A and B). Overall, we found 820
predicted miRNA-mRNA targets that regulate several biological processes, including
inflammatory/immune responses (Fig. 6C). From the 820 predicted miRNA-mRNA pairs, 32

miRNA-mRNA pairs (13 miRNAs, 24 mRNAs) have previously been validated (Fig. 6D).

Inflammatory markers are upregulated in hypoplastic lungs of human fetuses with CDH

To confirm that the findings observed in fetal rats are relevant to the human CDH condition, we
interrogated lung sections from autopsy samples of four human fetuses with CDH that died
between gestational weeks 19 and 26 (canalicular stage of lung development) and four controls

(no fetal lung pathology or systemic inflammatory conditions, no chorioamnionitis; Table S5). We
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first confirmed that compared to controls, the lungs of the CDH fetuses had a lower density of
airspaces (Fig. 7A). We then determined that the macrophage density was reduced in lungs of
CDH fetuses, most predominantly in the parenchyma (Fig. 7B). Moreover, the expression of
canonical markers of inflammation such as TNFa and its downstream NF-«B signaling (56) were

upregulated in lungs of CDH fetuses (Fig. 7C).

Discussion

Hypoplastic lungs of fetuses with CDH are classically described as having impaired growth (fewer
branches and airspaces), maturation (undifferentiated epithelium and mesenchyme), and
vascularization (fewer and muscularized lung vessels that undergo vascular remodeling) (2). We
employed a transcriptomic approach at a single cell resolution in an experimental model of CDH
and discovered that hypoplastic lungs also have an inflammatory signature with high density of
macrophages and upregulation of biological pathways that are involved in inflammatory and innate
immune response. Using immunofluorescence on autopsy samples, we confirmed that human
fetuses with CDH also have an inflammatory status with macrophage enrichment and increased
TNFa and pNF-kB expression. A similar observation was made in neonates with CDH postnatally,
who were found to have upregulation of pNF-xB in the proximal lung (basal cells) and TNFa in
the distal lung (57, 58). Other studies reported that neonates with CDH had high levels of
proinflammatory cytokines in the blood postnatally (59-64). Moreover, using the nitrofen model,
some studies have reported that rat fetuses with CDH had lung inflammatory changes such as high
levels of monocyte chemoattractant protein-1 (Mcp1; also known as chemokine C-C motif ligand
2, Ccl2) and Tnfa (65-67). A recent study employing unbiased proteomics on the lungs of rat

fetuses with CDH showed elevated levels of inflammatory mediators such as STAT3 compared to
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non-CDH controls (68). Our snRNA-seq experiments showed that all four major lung cell types in
CDH fetuses had upregulation of several inflammatory mediators, including Tnfa, Stat3, and
chemokines Ccl3/4 and Cxcll. Moreover, we report upregulation of pro-inflammatory mediators,
such as lipocalin-2 (Lcn2), an acute-phase protein involved in the immune response to lung
inflammation (69), and interleukin 1b (//15), a factor known to stimulate the immune response and

cause disruption of lung morphogenesis (70, 71).

In our study, the multilineage inflammatory response was accompanied by an increase in
macrophage density in the lung. Although there is robust literature on the role of macrophages in
the adult lung during injury and repair (72-75), less is known about macrophage involvement in
impaired perinatal lung development. In bronchopulmonary dysplasia (BPD), a condition typical
of premature babies characterized by hypoplastic lungs with fewer branches and alveoli similar to
CDH (76, 77), inhibition of branching morphogenesis is partly caused by the activation of fetal
lung macrophages, and depletion or targeted inactivation of macrophages is protective against
impaired branching morphogenesis (78). The role of macrophages in fetal hypoplastic CDH lungs
remains undetermined. Since macrophages have different functions that range from pro-
inflammatory to reparative, those recruited or activated in CDH fetal lungs could either contribute
to the arrest in lung development as in BPD, or aid in the rescue of branching morphogenesis (78-

80).

Given the multilineage inflammatory signature observed in CDH hypoplastic lungs, it is
reasonable to think that inflammation plays a key role in the pathogenesis of pulmonary hypoplasia
and contributes to poor prognosis in babies with CDH. Moreover, lung inflammation may provide
an alternative target to rescue lung development. In the past, attempts have been made to promote

lung maturation in CDH via prenatal administration of corticosteroids, whose anti-inflammatory
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effects are well known (81, 82). The rationale was based on promoting lung development by
stimulating surfactant protein C production, as shown in several studies on premature lungs of
neonates with BPD (817, 83). Although experimental studies in the nitrofen model showed an
improvement of fetal lung maturation upon corticosteroid administration (8§4-88), large database
retrospective studies and prospective clinical trials in CDH showed no benefit in survival, length
of stay, ventilator days, or oxygen use at 30 days (89, 90). As a result, antenatal corticosteroid
administration is not recommended as a standard practice in the care of patients with CDH (89,

90).

A promising avenue for targeting multiple molecules and pathways is through an EV-based
therapy. We have previously shown that antenatal AFSC-EV administration rescues dysregulated
signaling pathways relevant to lung development, and results in improvement of lung branching
morphogenesis and epithelial and mesenchymal maturation (/2, 26). In the current study, we
provide evidence that AFSC-EVs also have anti-inflammatory effects in a robust fetal rat model
of CDH. The anti-inflammatory effects of stem cell-derived EVs have been recognized within the
last decade in numerous experimental and clinical trials in several conditions, including BPD (91-
93). Furthermore, with the advent of SARS-CoV2-induced acute respiratory distress syndrome
(ARDS), many research groups have attempted to use EVs from different sources, including stem
cells, as a possible strategy to treat lung inflammation (94, 95). One clinical trial testing the
efficacy of stem cell-derived EVs on reduction of ARDS symptoms reported that EV
administration is safe, restores oxygenation, downregulates cytokine storm, and reconstitutes
immunity in patients with ARDS (96). Evidence that stem cell-derived EVs have a beneficial effect
also in premature lungs has been shown in several experimental studies (97-104). In these studies,

mesenchymal stem/stromal cell-derived EVs (MSC-EVs) administered to different models of
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experimental BPD showed improvements in lung function, reversal of lung vascular remodeling
and fibrosis, and attenuation of lung inflammation. MSC-EV beneficial effects to BPD lungs were
found to be due to the epigenetic and phenotypic reprogramming of myeloid cells (/05) and
modulation of lung macrophage phenotype (/02). While we had previously shown that MSC-EV
administration partially promoted epithelial cell homeostasis and differentiation in CDH lungs, we
did not observe a complete rescue of biological pathways and key phenotypic aspects of lung
development, such as branching morphogenesis and alveolarization (/2, 26). Conversely, we
found that AFSC-EVs were a better candidate than MSC-EVs for reversing key features of
pulmonary hypoplasia in CDH, likely due to their RNA cargo that was enriched with miRNAs
responsible for lung developmental processes at a comparative analysis (/2). In the present study,
we have shown that AFSC-EVs rescue the density of macrophages and the expression of
inflammatory mediators in the lung back to control levels. This observation is in line with a recent
study that reported the ability of AFSC-EVs to modulate inflammasome activation in monocytic
cells in vitro (106). Although immune cells are not predominant in fetal lungs, our snRNA-seq
analysis was able to detect gene expression differences in immune cell populations. Moreover,
several genes identified by our snRNA-seq analysis to be upregulated were also observed in a
single cell RNA-sequencing study postnatal lungs of mice with BPD (7/07). This study found that
upregulation of inflammatory cytokine signaling was associated with major structural and cell-to-

cell signaling changes in the lung (107).

Although we provide evidence that AFSC-EV administration has potential for reversing
pulmonary hypoplasia in rat fetuses with CDH, there are several steps that still need to be taken
before translating this promising approach to clinical application, including the establishment of

the optimal route of administration. In this study, we initially tested three routes and ultimately
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opted for AFSC-EV intra-amniotic injection during the saccular stage of lung development. At
this timepoint, clustered fetal breathing movements occur at ~40 movements/hour in fetal rats
(108) and intra-amniotically injected products reach the fetal lung, as reported (27, 109-111).
Translating this approach to humans is feasible, as access to the amniotic sac is routine during
pregnancy for diagnostic procedures, such as amniocentesis. Moreover, a study has reported that
intra-amniotic administration of ectodysplasin A to human twins with X-linked hypohidrotic
ectodermal dysplasia resulted in a profound reversal of their disease phenotype (/72). Herein, we
also tested the intra-tracheal route, which had a high rate of fetal demise due to the invasiveness
of the procedure in fetal rodents, as reported (35, 36). Nonetheless, this route could be tested in a
larger animal model, such as the lamb, and possibly considered to be used in conjunction with fetal
endoscopic tracheal occlusion (FETO) in human babies. FETO is a surgery procedure based on
the deployment of a balloon in the fetal trachea to prevent egression of amniotic fluid and promote
lung growth (2). Two randomized controlled trials reported 25% improved survival following
FETO in severe but not moderate CDH (713, 114). Lastly, we tested the maternal intra-venous
route of administration and demonstrated that AFSC-EVs cross the placental barrier, a property of
EVs that has been well-described (715, 116). Although this strategy would circumvent the
invasiveness of fetal intervention for both mother and fetus, efforts should be focused on custom
designed EVs that could specifically target the fetal lung and avoid off-target effects. Alternatively,
the fetal circulation can be directly accessed through the umbilical vein as recently shown in a
fetus with Pompe’s disease (/77). In this case, the fetus received multiple infusions of in utero
enzyme-replacement therapy, administered under ultrasonic guidance from 24 to 34 weeks of

gestation, and resulted in reversal of cardiac and motor function deficits (/17).
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We acknowledge that our study has some limitations. Due to the poor capture of lowly expressed
transcripts, our snRNA-seq analysis could not be used to discern the origin (monocyte-derived vs.
tissue resident) or the polarization status (M1-like pro-inflammatory vs. M2-like reparative) of
CD68" cells. Moreover, as snRNA-seq transcriptomics requires tissue dissociation, we were not
able to define where the CD68" cells were located within the lung, thus not being able to discern
between alveolar and interstitial macrophages. Nonetheless, using one other adult rat lung single
cell RNA dataset, we were able to make predictions on which types of macrophages reside in our
sequencing clusters. Furthermore, without conducting genetic knock-down studies, it is difficult
to ascertain if macrophages are at the root cause of the pathogenesis of pulmonary hypoplasia
secondary to CDH or if they are recruited and activated by an increased inflammatory state.
Similarly, it remains unclear how AFSC-EVs induce a reduction in macrophage density. Further
studies are underway to address these important questions before translating these findings to

human patients with CDH.

16


https://doi.org/10.1101/2022.11.29.518388
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.29.518388; this version posted December 2, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Materials and Methods

Study design

The objective of this study was to investigate the AFSC-EV regenerative ability and mechanism
of action on fetal hypoplastic lungs through in vivo administration and snRNA-seq. The rat model
of CDH and pulmonary hypoplasia was used for part of this study, as obtaining fresh human CDH
lung tissue is not considered ethically acceptable. Fetal rat lungs with CDH closely resemble the
degree of pulmonary hypoplasia that is observed in human fetuses with CDH. Findings were
confirmed on lung autopsy samples obtained from four fetuses with CDH and appropriate controls.
As detailed below, experimental models and sample collection were approved by the regulatory
committee at The Hospital for Sick Children, Toronto (AUP#49892 and REB#1000074888).
Sprague-Dawley rats were randomly assigned to treatment groups. All data including outliers is
shown, and all experiments were performed in at least triplicate, with the number of replicates
indicated in the figure legends. Additional details on the methods used in this study are provided

in the Supplementary Materials.

EVisolation, characterization, and tracking

EVs from rat AFSCs were isolated and characterized as described previously (/2). Briefly, rat
AFSC conditioned medium was obtained by treating cells with exosome-depleted FBS for 18
hours. EVs were isolated by differential ultracentrifugation as previously described (//8). Rat
AFSC-EVs were previously characterized in accordance with the International Society for
Extracellular Vesicles guidelines for proper size, morphology, and expression of canonical EV
protein markers (/2). To track AFSC-EV migration in vivo, ExoGlowVivo™ was used following
the manufacturer’s recommended protocol, with 250 pg protein equivalent of AFSC-EVs stained

using 2 uL. of ExoGlow™-Vivo (Near IR) EV Labeling Kit (System Biosciences, Palo Alto, CA).
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Experimental model of pulmonary hypoplasia

Pulmonary hypoplasia was induced in rat fetuses as previously described (29-32) with the
administration of 100 mg nitrofen to pregnant rat dams by oral gavage on E9.5. For in vivo AFSC-
EV administration, three routes were used and described in detail in the Supplementary Materials.
The IA route of administration was conducted by anesthetizing rat dams at E18.5, exposing uterine
horns through a midline laparotomy, and injecting 100 pL of AFSC-EVs intra-amniotically with
a 30G needle, away from the body but close to the face of the fetus. Rat dams and fetuses were
monitored in accordance with Canadian Council on Animal Care guidelines. At E21.5, rat dams
were anesthetized, uterine horns exposed, and each fetus was examined for survival by assessing
fetal size and movement. Fetuses were then delivered, immediately euthanized, and fetal lungs
were perfused with saline to remove red blood cells then immediately frozen or placed into 4%
paraformaldehyde solution. Samples were stored at -80 °C for RNA/protein analysis or at 4 °C for

histology.

Outcome measures

For EV tracking, ExoGlow™-Vivo labelled AFSC-EVs (784 nm excitation, 820 nm emission)
were injected through IA or IV route of administration. Whole fetuses, individual fetal organs, and
maternal organs were imaged using the IVIS® Spectrum In Vivo Imaging System — PerkinElmer
(CFI Facility, University of Toronto). For lung morphometry, lung sections of fetal rats or human
autopsy samples were stained with hematoxylin and eosin, and analyzed for radial airspace count
and mean linear intercept, as previously described (/2, 27), and recommended by the American
Thoracic Society (/79). For assessment of lung development, gene expression analysis was
conducted using quantitative polymerase chain reaction (RT-qPCR), and protein expression

analysis of SPC and PDPN was conducted using immunofluorescence assays and Western blotting.
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To study the transcriptomic changes at the single cell level, a subset of fetal lung samples was
chosen (Control+saline, n=2; CDH+saline, n=3; and CDH+AFSC-EVs, n=3), and nuclei were
extracted and subjected to the 10X Genomics protocol (NovaSeq 6000). Data files were obtained
with Cellranger-6.0.0, aligned to the rattus norvegicus version 6 genome, and analyzed using
Seurat (4.0.3). Differential gene expression was determined with FindMarkers (MAST), and
ligand-receptor analysis was performed using CellChat (1.1.3, 40) with default parameters. Further
details on sequencing analysis are described in supplementary materials. To assess the presence of
macrophages, immunofluorescence staining of pan-macrophage marker CD68 was used on fetal
rat lungs and human lung autopsy samples. Immunofluorescence assays of inflammatory
mediators was also conducted to determine whether fetal rat lungs and human lung autopsy
samples were inflamed. For human autopsy samples, two independent researchers differentiated
between red blood cells and macrophages to assess CD68" cells. To identify miRNA-mRNA
regulatory pathways, AFSC-EV miRNA cargo analysis (/2) and downregulated genes from
snRNA-seq dataset were analyzed using multiMiR (version 1.16.0, /20). Gene set enrichment

analysis was conducted using g:Profiler (version 0.7.0, 121).
Statistical analysis

Experimental groups were compared using two-tailed Student’s t-test, Mann-Whitney, Fisher’s
exact test, one-way ANOVA (Tukey post-test), Kruskal-Wallis (post-hoc Dunn’s nonparametric
comparison), or Brown-Forsythe and Welch ANOVA (Dunnett's T3 multiple comparisons test)
tests according to Gaussian distribution assessed by Shapiro-Wilk normality test. P value <0.05
was considered significant. All statistical analyses were produced using GraphPad Prism® software

version 6.0. Differential gene expression analysis was conducted using BioConducter R (3.15)
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package MAST (1.22.0) between two conditions, with adjusted p-value <0.05 and logx(fold

change) > |0.5| considered as significant for snRNA-seq experiments.
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Movie S1. Representative 3-dimensional image of in vivo AFSC-EV tracking experiments for
Control+AFSC-EVs.

Movie S2. Representative 3-dimensional image of in vivo AFSC-EV tracking experiments
Nitrofen+AFSC-EVs.

Movie S3. Representative 3-dimensional image of in vivo AFSC-EV tracking experiments
Nitrofen+saline (negative control).

Data file S1. Images and quantification of in vivo AFSC-EV administration in whole fetuses.
Data file S2. Images and quantification of in vivo AFSC-EV administration in fetal organs.

Data file S3. Data for Western blotting experiments.

Data file S4. Differentially expressed genes between Control+saline, CDH+saline, and
CDH+AFSC-EVs by major cell type in fetal rat lungs.

Data file S5. Gene set enrichment analysis of differentially expressed genes between
Control+saline vs. CDH+saline and CDH+saline vs. CDH+AFSC-EVs
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Fig. 1. In vivo administration of AFSC-EVs reaches fetal lungs and rescues lung development
in fetal rats with CDH. (A) Representative IVIS Spectrum instrument cross-sectional images
from 3D bioluminescence reconstructions of whole fetuses at E21.5. Fetuses received either saline
injection (left), intra-venous (IV) injection of ExoGlowVivo-stained AFSC-EVs (middle), or intra-
amniotic (IA) injection of ExoGlowVivo-stained AFSC-EVs (right) at E18.5, in control fetuses
(top row) or fetuses with pulmonary hypoplasia/CDH that received nitrofen (bottom row). Scale
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bar shows background-corrected fluorescence in pmol M cm!. Control+saline (n=3),
Control+IV-AFSC-EVs  (n=3), Control+IA-AFSC-EVs (n=7), Nitrofentsaline (n=6),
Nitrofen+IV-AFSC-EVs (n=3), Nitrofen+IA-AFSC-EVs (n=16). No fluorescent signal was
detected in saline injected controls. (B) Representative 2D optical images of dissected fetal lungs
from the same conditions described in (A), quantified as radiant efficiency [p/s/sr]/[uW/cm?].
Control+saline  (n=3), Control+IV-AFSC-EVs (n=3), Control+IA-AFSC-EVs (n=3),
Nitrofen+saline (n=3), Nitrofen+tIV-AFSC-EVs (n=4), Nitrofen+IA-AFSC-EVs (n=9). (C)
Representative histology images (hematoxylin/eosin) of fetal lungs from Control+saline,
CDH+saline, and CDH+AFSC-EV fetuses. Each condition included fetal lungs from n=5
experiments. Scale bar = 50 um. (D) Differences in number of alveoli (radial alveolar count, RAC)
in Control+saline (n=8), CDH+saline (n=8), CDH+AFSC-EVs (n=9), and paranchyme/airspace
ratio (mean linear intercept, MLI) in Control+saline (n=8), CDH+saline (n=6), CDH+AFSC-EVs
(n=6), quantified in at least 5 fields per fetal lung. ****P<(0.0001, ***P<0.001. (E) Gene
expression changes in lung developmental markers fibroblast growth factor-10 (Fgf10),
podoplanin (Pdpn), a marker of alveolar type 1 (AT1) cells), and surfactant protein C (Sfipc) and
A (Sftpa), a marker of alveolar type 2 (AT2) cells. Control+saline (n=5), CDH+saline (n=5),
CDH+AFSC-EVs (n=5). **P<0.01, *P<0.05. (F) Representative immunofluorescence images of
PDPN (red, top) and SPC (green, bottom) protein expression differences between Control+saline,
CDH+saline, and CDH+AFSC-EVs fetuses (DAPI, blue). Scale bar = 50 um. (G) Western blot
analysis of PDPN and SPC expression in fetal lung quantified by signal intensity normalized to
GAPDH. Control+saline (n=6), CDH+saline (n=7), CDH+AFSC-EVs (n=6). Groups were
compared using Kruskal-Wallis (post hoc Dunn’s nonparametric comparison) for (D, RAC) and

(E, Pdpn and Sftpc), Brown-Forsythe and Welch ANOVA (Dunnett's T3 multiple comparisons
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test) for (E, Figfi10), and one-way ANOVA (Tukey post-test) for (D, MLI), (E, Sftpa), and (G),

according to Shapiro-Wilk normality test.
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Fig. 2. Single nucleus interrogation

of the rat fetal normal and hypoplastic lung identifies

four major cell types each with distinct subpopulations. (A) Schematic of experimental design

and in vivo administration of AFSC-EVs in the rat model of CDH. (B) Criteria used for selection

of 8 fetuses to undergo snRNA-seq analysis. Quantification of radial airspace count (RAC),

paranchyme/airspace ratio (MLI), and gene expression differences in lung developmental markers

from the three experimental groups. Control+saline (n=2), CDH+saline (n=3), and CDH+AFSC-

EV (n=3). (C) Global UMAP projections of all nuclei (n=298,653) included in our study, further

delineated by major cell type and subtype. (D) Expression of known cell type specific markers
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used to distinguish cellular subtypes within major cell type clusters. Node size is proportional to

the percentage of nuclei within the specified cluster and node color denotes the average expression

across nuclei within the specified cluster.
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Fig. 3. Ligand-receptor analysis reveals the biological pathways that are influenced by
AFSC-EV treatment of rat fetal hypoplastic lungs. (A-E) CellChat analysis of signaling
pathways in fetal lungs from all three conditions. (A) Comparison of interaction strength of
outgoing and incoming signals by specific cluster. Node size represents number of interactions.
(B) Significant interactions between clusters (arrows) showing number of interactions that are
down- (blue) and up-regulated (red) when comparing Control+saline vs. CDH+saline (left) and

CDH-+saline vs. CDH+AFSC-EVs. Thickness of arrow indicates interaction strength. (C) Highly
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expressed ligand-receptor pairs displayed as a heatmap showing outgoing signal strength (top x
axis), individual signaling pathways (left y-axis), strength of signaling pathway (right y-axis), and
cell identity (bottom y axis). (D) Shift of signaling pathways related to lung development following
AFSC-EV administration to fetal CDH lungs. (E) Chord diagram showing significantly up- or
down-regulated signaling pathways in each cluster between CDH+saline and CDH+AFSC-EV

conditions. Thickness of arrow indicates relative strength of specific pathway.
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Fig. 4. CDH lungs have an inflammatory phenotype with high macrophage density that is
rescued to normal levels by AFSC-EV administration. (A) UMAP of snRNA-seq data split by
condition. (B) Violin plots of macrophage and inflammatory marker gene expression across cell
types, as measured by snRNA-seq. (C) Representative immunofluorescence images of pan-
macrophage marker CD68 in rat fetal lungs from all three conditions, quantified as fluorescence
intensity of CD68 per field (AU, arbitrary units). Scale bar = 50 um. Control+saline (n=8),
CDH+saline (n=6), and CDH+AFSC-EV (n=8). Groups were compared using Kruskal-Wallis

(post hoc Dunn’s nonparametric comparison) for (C), according to Shapiro-Wilk normality test.
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Fig. 5. CDH fetal lungs have a multilineage inflammatory signature that is dampened by the
administration of AFSC-EVs. (A) Featureplot of snRNA-seq data split by condition for six

inflammatory genes with high expression in CDH+saline lungs. (B) Violin plot of inflammatory
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signature genes expression split by condition across cell types, as measured by snRNA-seq. (C)
Heatmap displaying differential gene expression by major cell type, showing expression all genes
ranked by logr-fold change and p-adjusted <0.05 within all conditions. (D) Volcano plots
indicating most significantly differentially expressed genes by major cell type between
CDH-+saline and CDH+AFSC-EV treated groups. (E) Representative immunofluorescence images
of inflammation marker TNFa in rat fetal lungs from all three conditions, quantified as density per
mm?. Scale bar = 50 pm. Control+saline (n=5), CDH+saline (n=5), and CDH+AFSC-EV (n=5).
(F) UMAP of a subset of data that excludes clusters 1 and 2 (overrepresented in CDH+saline
group) split by condition. Outlines indicate nuclei or clusters that are represented in CDH+saline
group compared to Control+saline and CDH+AFSC-EV groups. Control+saline (n=30,064),
CDH+saline (n=45,114), CDH+AFSC-EV (n=42,193). (G) UMAP of predicted cell types
contained in cluster 5 Immune cells from Fig. 5F, generated by machine learning algorithm
(scPred) trained on rat adult lungs. Groups were compared using Kruskal-Wallis (post hoc Dunn’s

nonparametric comparison) for (E), according to Shapiro-Wilk normality test.
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Fig. 6. Predicted miRNA-mRNA signaling pathways activated by AFSC-EVs. (A) Bar graph

indicating number of miRNA-mRNA interactions (y-axis) between AFSC-EV cargo miRNAs and
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down-regulated genes in CDH+AFSC-EV lungs (x-axis). Predicted miRNA-target interactions
obtained from publicly available datasets (tarbase, MicroCosm, miRanda, miRDB, miRecords,
miRTarBase). (B) Heatmap of specific AFSC-EV miRNAs (x-axis) and their redundant roles in
downregulating genes in CDH+AFSC-EV lungs (y-axis). (C) Gene set enrichment analysis of the
downregulated genes using g:Profiler. (D) Network of validated miRNA-mRNA pairs showing

downregulated genes (blue nodes) and AFSC-EV miRNAs (purple nodes).
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Fig. 7. Hypoplastic lungs of human fetuses with CDH have increased macrophage density
and upregulation of inflammatory mediators and can be targeted with human AFSC-EV
treatment. (A) Representative histology images (hematoxylin/eosin) of fetal lungs from autopsy
studies of CDH fetuses (n=4) and controls with no lung pathology or inflammatory condition
(n=4). Scale bar = 100 um. Quantification of paranchyme/airspace ratio (MLI) and number of

alveoli (RAC) in 10 fields per fetal lung. (B) Representative immunofluorescence images of pan-
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macrophage marker CD68 in human fetal lungs autopsy samples from CDH (n=4) and controls
(n=4), quantified as number per field. Scale bar = 50 um. (C) Representative immunofluorescence
images of inflammatory mediators TNFa and phosphorylated NF-xB (p-NF-kB) in the same
experimental groups as (B) quantified by fluorescence intensity of TNFa and density of p-NF-xB*
cells per field. Scale bar = 50 um. Groups were compared using two-tailed Mann Whitney test for
(A), (B), and (C, pNF-xB), and two-tailed Student’s t-test for (C, TNFa), according to Shapiro-

Wilk normality test.
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