

1 ***Plasmodium falciparum* adapts its investment into replication *versus* transmission**
2 **according to the host environment**

3

4 Abdirahman I. Abdi^{1,2*}, Fiona Achcar^{3,4}, Lauriane Sollelis^{3,4}, Joao Luiz Silva-Filho^{3,4}, Kioko
5 Mwikali¹, Michelle Muthui¹, Shaban Mwangi¹, Hannah W. Kimingi¹, Benedict Orindi¹, Cheryl
6 Andisi Kivisi^{1,2}, Manon Alkema⁵, Amrita Chandrasekar³, Peter C. Bull¹, Philip Bejon¹,
7 Katarzyna Modrzynska³, Teun Bousema⁵, Matthias Marti^{3,4*}

8

9 ¹KEMRI Wellcome Trust Research Programme, Kilifi, Kenya

10 ²Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya

11 ³Wellcome Center for Integrative Parasitology, Institute of Infection and Immunity, University
12 of Glasgow, Glasgow, Scotland, UK

13 ⁴Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich,
14 Switzerland

15 ⁵Radboud University Medical Center, Nijmegen, The Netherlands

16

17 *corresponding authors

18 **Abstract**

19 The malaria parasite life cycle includes asexual replication in human blood, with a proportion of
20 parasites differentiating to gametocytes required for transmission to mosquitoes. Commitment to
21 differentiate into gametocytes, which is marked by activation of the parasite transcription factor
22 *ap2-g*, is known to be influenced by host factors but a comprehensive model remains uncertain.
23 Here we analyze data from 828 children in Kilifi, Kenya with severe, uncomplicated, and
24 asymptomatic malaria infection over 18 years of falling malaria transmission. We examine
25 markers of host immunity and metabolism, and markers of parasite growth and transmission
26 investment. We find that inflammatory responses and reduced plasma lysophosphatidylcholine
27 levels are associated with markers of increased investment in parasite sexual reproduction (i.e.,
28 transmission investment) and reduced growth (i.e., asexual replication). This association
29 becomes stronger with falling transmission and suggests that parasites can rapidly respond to the
30 within-host environment, which in turn is subject to changing transmission.

31

32

33 **Introduction**

34 Malaria remains one of the world's major public health problems. In 2020, an estimated
35 627'000 deaths and 241 million cases were reported¹. Around 70% of deaths are in African
36 children under five years of age and are caused by a single parasite species, *Plasmodium*
37 *falciparum*¹.

38 *P. falciparum* has a complex life cycle, involving obligatory transmission through a
39 mosquito vector and asexual replication within erythrocytes of the human host. Between-host
40 transmission requires the formation of gametocytes from asexual blood stage forms, as
41 gametocytes are the only parasite stage to progress the cycle in the mosquito. A series of recent
42 studies has demonstrated that commitment to gametocyte formation (i.e., stage conversion) is
43 epigenetically regulated and occurs via activation of the transcription factor, AP2-G that in turn
44 induces transcription of the first set of gametocyte genes^{2,3}.

45 The parasites that do not convert into gametocytes continue to replicate asexually,
46 contributing to within-host parasite population growth (i.e., parasite burden) and determining *P.*
47 *falciparum* infection outcome that ranges from asymptomatic infections to severe complications
48 and death⁴⁻⁶. Cytoadhesion of infected erythrocytes (IE) to receptors on microvascular
49 endothelium of deep tissues reduces the rate of parasite elimination in the spleen^{7,8}, thus
50 supporting the within-host expansion of the parasite population (i.e., parasite burden). As a side
51 effect of this parasite survival strategy, cytoadhesion reduces the diameter of the vascular lumen,
52 thus impairing perfusion and contributing to severe malaria pathology⁹⁻¹¹. *P. falciparum*
53 erythrocyte membrane protein 1 (PfEMP1), encoded by the *var* multi-gene family, plays a
54 critical role in both pathogenesis (through cytoadhesion)^{12,13} and establishment of chronic
55 infection (through variant switching and immune evasion)^{14,15}.

56 Both *var* gene transcription and stage conversion (and hence *ap2-g* transcription) are
57 subject to within-host environmental pressures such as immunity¹⁶, febrile temperature^{17,18}, and
58 nutritional stress¹⁹, perhaps via a common epigenetic regulation mechanism²⁰. For example, *in*
59 *vitro* studies revealed that stage conversion can be induced by nutritional depletion such as spent
60 culture media^{19,21} and depletion of Lysophosphatidylcholine (LPC)^{22,23}. Recent work from Kenya
61 and Sudan provides some evidence that parasites in low relative to high transmission settings
62 invest more in sexual commitment and less in replication and *vice versa*¹⁶. Altogether these
63 studies suggest that the parasite can sense and rapidly adapt to its environment *in vitro* and *in*
64 *vivo*. A family of protein deacetylases called sirtuins are known as signaling proteins linking
65 environmental sensing to various cellular processes via metabolic regulation²⁴⁻²⁶. They do this
66 through epigenetic control of gene expression²⁶ and post-translational modification of protein
67 function^{25,27}. The *P. falciparum* genome contains two sirtuins (Pfsir2a/b) which have been linked
68 to the control of *var* gene transcription^{28,29}, and their expression is influenced by febrile
69 temperature¹⁷ and low transmission intensity¹⁶.

70 Here we investigated the interplay between parasite and host environmental factors
71 governing parasite investment in reproduction (to maximize between-host transmission) *versus*
72 replication (to ensure within-host persistence) *in vivo*. We analyzed samples and clinical data
73 collected from children in Kilifi county, Kenya, over changing malaria transmission intensity
74 between 1994 and 2014. We quantified parasite transcripts for *ap2-g*, *PfSir2a*, and *var* genes, as
75 well as *PfHRP2* protein levels (for parasite biomass) and levels of host inflammatory markers
76 and lipid metabolites. We then integrated these host and parasite-derived parameters to
77 interrogate their dynamics and interactions in the context of changing transmission intensity and
78 immunity.

79

80 **Results**

81 **A clinical malaria patient cohort across changing transmission periods in Kilifi, Kenya**

82 The study included samples and clinical data collected from 828 children from Kilifi county,
83 Kenya, over 18 years of changing malaria transmission^{30,31}. The study period encompassed three
84 defined transmission phases³¹: pre-decline (1990-2002), decline (2003-2008), and post-decline
85 (2009-2014) (**Fig.1A**). During the study period, a total of 26'564 malaria admissions were
86 recorded at Kilifi county hospital (**Fig.1A, 1B**). While the number of parasite-positive
87 admissions decreased, the mean patient age at admission increased over time^{4,6,32} (**Fig.1A**). For
88 our study, 552 of the admissions were selected to ensure adequate sampling of the transmission
89 periods and clinical phenotypes (**Fig.1C**). 150 patients presented with uncomplicated malaria and
90 402 with one or a combination of the severe malaria syndromes: impaired consciousness (IC),
91 respiratory distress (RD), and severe malaria anemia (SMA)³³ (**Fig.1D**). 223 samples from
92 children presenting with mild malaria at outpatient clinics and 53 asymptomatic children from a
93 longitudinal malaria cohort study were added to cover the full range of the possible outcomes of
94 malaria infection (**Fig.1B-E**), bringing the total number included in this study to 828 children.
95 The characteristics of participants and clinical parameters are summarized in **Table S1**. In the
96 subsequent analysis, only clinical cases were considered. Asymptomatic patients were excluded
97 except for analysis about clinical phenotype since asymptomatic sampling was limited to the
98 decline and post-decline periods (**Fig.1C**).

99

100 **Dynamics of parasite parameters across transmission period and clinical phenotype**

101 First, we analyzed the dynamics of parasite parameters across transmission periods and clinical
102 outcomes. For this purpose, we measured both total parasite biomass based on *Pf*HRP2 levels
103 and peripheral parasitemia based on parasite counts from blood smears. Total parasite biomass
104 decreased with declining transmission (**Fig.2A**). This decrease was significant in the patients
105 presenting with mild malaria at outpatient clinics (**Fig.2A**) which is a more homogenous clinical
106 subgroup as compared to admissions consisting of a range of clinical phenotypes (**Fig.1C-D**).

107 Parasite samples were subjected to qRT-PCR analysis to quantify transcription of *ap2-g*,
108 *Pfsir2a*, and *var* gene subgroups relative to two housekeeping genes (fructose biphosphate
109 aldolase and seryl tRNA synthetase)^{34,35}. In line with recent findings¹⁶, *ap2-g* transcription
110 increased significantly with declining malaria transmission (**Fig.2B**). Importantly, *ap2-g*
111 transcription showed a highly significant correlation with transcription levels of the gametocyte
112 marker *Pfs16* (**Fig. 2C**). This association validates *ap2-g* as a proxy for both, stage conversion
113 and gametocyte levels. *Pfsir2a* transcription followed the same trend across transmission periods
114 and was positively associated with *ap2-g* transcription (**Fig.2B,D**). *Pfsir2a* and *ap2-g*
115 transcription also showed a positive association with fever (**Fig. 2E**), suggesting that both factors
116 are sensitive to changes in the host inflammatory response. *Pfsir2a* but not *ap2-g* transcription
117 also showed a significant negative association with *Pf*HRP2 (**Fig.2D**). Given this unexpected
118 observation, we investigated the well-established associations between *Pfsir2a* transcription and
119 *var* gene transcription patterns^{29,34}. *Pfsir2a* transcription showed a positive association with
120 global upregulation of *var* gene transcription, particularly with subgroup B (**Fig.2F**). Likewise,
121 transcription of group B *var* subgroup, *Pfsir2a* and *ap2-g* transcription followed a similar pattern
122 in relation to clinical phenotypes (**Fig.S1**). Altogether these data suggest co-regulation of *ap2-g*

123 and *Pfsir2a* and a negative association between *Pfsir2a* and *PfHRP2*, likely through host factors
124 that are changing with the declining transmission.

125

126 ***ap2-g* and *Pfsir2a* transcription is associated with a distinct host inflammation profile**

127 We hypothesized that the observed variation in *ap2-g* and *Pfsir2a* levels across the transmission
128 period and clinical phenotype is due to underlying differences in the host inflammatory response.
129 To test this hypothesis, we quantified 34 inflammatory markers³⁶ with Luminex xMAP
130 technology in the plasma of the 523 patients from the outpatient and admissions groups. These
131 patients were selected from the original set of 828 to ensure adequate representation of the
132 transmission periods and clinical phenotypes (including fever), as summarized in **Fig. 1C, E**. For
133 this analysis, all associations were corrected for patient age and *PfHRP2* levels as possible
134 confounders.

135 The markers MCP-1, IL-10, IL-6, IL-1ra were significantly positively correlated with
136 *ap2-g* and *Pfsir2a* transcription (**Fig. 3A and S2**). To cluster the inflammatory markers based on
137 their correlation within the dataset, we used exploratory factor analysis and retained five factors
138 with eigenvalues above 1 (**Fig. S3**). Factor loadings structured the inflammation markers into 5
139 profiles with distinct inflammatory states (**Fig. 3B**). F1 consists of a mixture of inflammatory
140 markers that support effector Th1/Th2/Th9/Th17 responses (i.e., hyperinflammatory state), F2
141 represents a Th2 response, F3 represents markers that support follicular helper T cell
142 development and Th17³⁷, F4 represents markers of immune paralysis/tissue-injury linked to
143 response to cellular/tissue injury³⁸ and F5 represents the inflammasome/Th1 response³⁹. F4
144 showed a significant positive association with *ap2-g* and *Pfsir2a* transcription and fever (**Fig.**
145 **3C**). In contrast, F5 showed a negative association with *ap2-g* and fever while F1 was positively

146 associated with fever (**Fig.3C**). In parallel with the observed decrease in *Pf*HRP2 levels
147 (**Fig.2A**), F1 and F5 significantly declined with falling transmission (**Fig.3D**).
148 The data support our hypothesis and suggest that the host inflammatory response changes
149 with the falling transmission. Of note, the observed negative association between *Pfsir2a*
150 transcription and *Pf*HRP2 levels appears to be independent of the measured cytokine levels
151 (**Fig.S4**) and is hence likely the result of parasite intrinsic regulation of replication.
152

153 **Plasma phospholipids link variation in the host inflammatory profile to *ap2-g* and *Pfsir2a*
154 transcription**

155 We have previously demonstrated *in vitro* that the serum phospholipid LPC serves as a substrate
156 for parasite membrane biosynthesis during asexual replication, and as an environmental factor
157 sensed by the parasite that triggers stage conversion²². Plasma LPC is mainly derived from the
158 turnover of phosphatidylcholine (PC) via phospholipase A2, while in the presence of Acyl-CoA
159 the enzyme LPC acyltransferase (LPCAT) can drive the reaction in the other direction⁴⁰. LPC is
160 an inflammatory mediator that boosts type 1 immune response to eliminate pathogens^{41,42}. LPC
161 turnover to PC can be triggered by inflammatory responses aimed to repair and restore tissue
162 homeostasis rather than eliminate infection⁴⁰. Here we performed an unbiased lipidomics
163 analysis of plasma from a representative subset of the outpatient and admission patients (**Fig.1B-C, E, S5**)
164 to explore whether the host inflammatory profile modifies the plasma lipid profile and
165 consequently *ap2-g* and *Pfsir2a* transcription levels *in vivo*.

166 We examined associations between the host inflammatory factors (F1-F5) and the plasma
167 lipidome data. Again, these associations were corrected for transmission period, patient age and
168 *Pf*HRP2 levels. 24 lipid species dominated by phospholipids, showed significant association with

169 the inflammatory factors at a false discovery rate below 0.05 (**Fig.4A**). Similar to the observed
170 associations with *ap2-g* and *Pfsir2a* transcription, cytokines in the F4 and F5 factors showed
171 reciprocal associations with various LPC species and phosphatidylcholine/ethanolamine
172 (PC/PE)(**Fig.4A**): F4 showed negative associations with LPC and positive associations with
173 PC/PE, respectively, and *vice versa* for F5 (**Fig.4A**). The positive association of LPC with the F5
174 inflammatory factor is consistent with previous findings that identified LPC as an
175 immunomodulator that can enhance IFN- γ production and the activation of the NLRP3
176 inflammasome, which results in increased levels of cytokines such as IL-1 β , IL-18, and IL-33⁴⁰⁻
177 ⁴⁵ and is necessary for eliminating parasites. Depletion of LPC is also associated with elevated
178 markers of tissue injury (F4), perhaps following uncontrolled parasite growth or maladaptive
179 inflammation. In summary, the association of inflammatory factors with lipids identified LPC,
180 PC and PE species as the most significant ones (**Fig.4A**), in line with their known
181 immunomodulatory role. Importantly, we observed the same pattern in a controlled human
182 infection model where parasite densities were allowed to rise to microscopic levels, both after
183 sporozoite and blood-stage infection (**Fig.4B and S6**)^{46,47}. Next, we examined the main lipid
184 species associated with the 5 inflammatory factors with respect to *ap2-g* and *Pfsir2a*
185 transcription. Indeed, LPC species showed a negative association with both *ap2-g* and *Pfsir2a*
186 transcription levels (**Fig.4C-E**). The association was only significant in our data when
187 inflammation is highest (and LPC level lowest), which is at low transmission (i.e., post decline).
188 These data provide *in vivo* evidence for the previously observed link between LPC depletion and
189 *ap2-g* activation and strongly suggest that LPC is both, a key immune modulator and a
190 metabolite whose level is sensed by the parasite. Importantly, the key relationships described in
191 figures 2-4 were independently significant in a structural equation model that examined how host

192 immunity modifies the host-parasite interaction, the within-host environment and parasite
193 investment in transmission or replication (**Table S3**).

194

195 **Discussion**

196 Malaria parasites must adapt to changing environmental conditions across the life cycle in the
197 mammalian and mosquito hosts. Similarly, changing conditions across seasons and transmission
198 settings require both within- and between-host adaptation to optimize survival in the human host
199 *versus* transmission to the next host. First, a recent transcriptomic study from Kenya and Sudan
200 suggested that parasites in low transmission settings (where within-host competition is low)
201 invest more in gametocyte production compared to high transmission settings (where within-host
202 competition is high)¹⁶. Second, a longitudinal study from Senegal demonstrated that human-to-
203 mosquito transmission efficiency (and gametocyte density) increases when parasite prevalence in
204 the human population decreases, suggesting that parasites can adapt to changes in the
205 environment⁴⁸. However, the within-host mechanisms driving parasite adaptation to the
206 prevailing environment remain unclear.

207 Here, we analysed parasite and host signatures in the plasma from a large malaria patient
208 cohort over 18 years of declining malaria transmission in Kenya. This investigation allowed us to
209 define some of the within-host environmental factors that change with transmission intensity and
210 consequently influence the parasite decision to invest in reproduction *versus* replication. A major
211 strength of our study is that observations are from a single site and are thus plausibly reflective
212 of transmission-related changes in parasite investments, rather than differences between
213 geographically distinct parasite populations. We show that high transmission is associated with a
214 host immune response that promotes parasite killing without compromising the intrinsic

215 replicative ability of the individual parasite. In contrast, low transmission is associated with a
216 host immune response that increases within-host stressors (fever, nutrient depletion), which
217 trigger higher parasite investment into transmission (see also model in **Fig.5**). Importantly, the
218 observed associations between the parasite parameters *ap2-g*, *Pfsir2a* and host inflammation
219 remain significant if corrected for transmission, but they are strongest at low transmission (i.e.,
220 post decline period) when inflammation and the risk of damaging the host are highest.

221 At a systemic level, inflammation can influence the within-host environment and
222 modulate parasite investment in replication *versus* reproduction by altering the levels of
223 environmental stressors (e.g., oxidative, thermal, or nutritional stress). Consistent with this
224 hypothesis, we show that a pro-inflammatory response mediated by IFN- γ /IL-18 (F5 in our
225 analysis) promoting pathogen killing^{39,49,50} is negatively associated with *ap2-g* and *Pfsir2a*
226 transcription. In contrast, inflammatory markers that increase within-host environmental stress
227 (e.g., fever) or reflect the extent of host tissue injury and are secreted to heal and restore
228 homeostasis rather than kill pathogens (F4) are positively associated with *ap2-g* and *Pfsir2a*
229 transcription. At a metabolic level, we previously demonstrated that LPC depletion induces *ap2-*
230 *g* transcription and therefore gametocyte production *in vitro*²². A recent study has provided first
231 indications of a possible association between LPC and *ap2-g* levels in a small malaria patient
232 cohort⁵¹. Here, we reveal that LPC levels are negatively associated with *ap2-g* transcription in
233 patient plasma, thus providing direct evidence for our *in vitro* findings²² across a large malaria
234 patient cohort. LPC is an immune effector molecule promoting macrophage polarization to M1
235 phenotype that induces the secretion of various cytokines such as IFN- γ and IL-1 family (i.e., IL-
236 18) through activation of the NLRP3 inflammasome in endothelial cells and peripheral blood
237 mononuclear cells (PBMCs)⁴⁰⁻⁴⁵. Furthermore, LPC is the main component of the oxidized form

238 of LDL (oxLDL) that induces inflammasome-mediated trained immunity in human
239 monocytes^{44,45}, resulting in increased responsiveness to LPS re-stimulation. Indeed, we
240 demonstrate that LPC levels are positively associated with IFN- γ /IL-18 levels (Factor 5). These
241 observations are in line with recent data from experimentally infected macaques and malaria
242 patients, where decreased LPC levels were associated with acute *versus* chronic malaria⁵². LPC
243 is also a nutritional resource required by the parasite for replication²² and hence scarcity is
244 expected to promote reproduction, as gametocytes require less nutritional resource and therefore
245 provide a better adaptation strategy.

246 Surprisingly, we also identified a link between *Pfsir2a* transcription, host inflammatory
247 response and parasite biomass (*Pf*HRP2). *Pf*Sir2a belongs to the evolutionarily conserved family
248 of sirtuins that act as environmental sensors to regulate various cellular processes^{24,25,53}. In *P.*
249 *falciparum*, *Pf*Sir2a and *Pf*Sir2b paralogues cooperate to regulate virulence gene transcription
250 including *var* genes^{28,54}. *In vitro* data have also demonstrated that increased *Pf*Sir2a levels are
251 associated with reduced parasite replication (i.e., lower merozoite numbers)⁵⁵. We hypothesise
252 that the observed upregulation of *Pfsir2a* transcription in response to inflammation is part of an
253 orchestrated stress response linking replication and antigenic variation (via *Pfsir2a*) to
254 reproduction and transmission (via *ap2-g*), perhaps through a shared epigenetic control
255 mechanism²⁰. It is well known that host tolerance to malaria infection reduces with falling
256 transmission^{56,57}, as shown by the declining threshold of parasite biomass (*Pf*HRP2) required for
257 clinical malaria. This suggests that parasites have more pronounced harmful consequences on the
258 infected host (i.e., clinical symptoms) in low compared to high transmission settings, perhaps
259 due to increasing host age⁵⁸. Under this scenario, we propose that parasites experience increased
260 within-host stress to which they respond through increased *ap2-g* transcription (to increase

261 reproduction, hence transmission) and increased *Pfsir2a* transcription (to affect antigenic
262 variation and replication, hence the negative association with *PfHRP2*) – as part of a self-
263 preservation strategy in the face of imminent risk of host death.

264 In summary, we propose a model where the falling host immunity with declining
265 transmission modifies the predominant host immune response, and consequently, the within-host
266 environment (e.g., LPC availability, fever), resulting in increased investment in transmission
267 (i.e., higher *ap2-g* transcription) and limiting replication (i.e., higher *Pfsir2a* transcription). Our
268 findings provide critical information to accurately model parasite population dynamics. They
269 suggest that parasite populations in elimination scenarios may increase their transmission
270 potential. Understanding how malaria parasites adapt to their environment, for example by
271 increasing investment in transmission stages at low endemicity, is highly relevant for public
272 health. Not only would this affect the timelines for successful elimination, but it would also form
273 an important argument for the deployment of gametocytocidal drugs once transmission has been
274 successfully reduced.

275

276 **Materials and Methods**

277 *Study design and participants*

278 Ethical approval was granted by the Scientific Ethics Review Unit of the Kenya Medical
279 Research Institute under the protocol; KEMRI/SERU/3149, and informed consent was obtained
280 from the parents/guardian of the children. The study was conducted at Kilifi county which is a
281 malaria-endemic region along the Kenyan coast. Over the last three decades, Kilifi has
282 experienced changes in the pattern of malaria transmission and clinical presentation spectrum³⁰⁻
283 ³². The study included i) children admitted with malaria at Kilifi county hospital (KCH) between

284 1994-2012 and recruited as part of hospital admission surveillance system, ii) children presenting
285 with mild malaria at out-patient clinic and iii) asymptomatic children which were part of a
286 longitudinal malaria surveillance cohort which were sampled during annual cross-section bleed
287 in 2007 and 2010. Clinical data, parasite isolates and plasma samples collected from the children
288 were used to conduct the study. The selection of sub-samples for quantifying inflammatory
289 markers and lipids was informed by availability of fever data and resource.

290

291 ***Clinical definitions***

292 Admission to malaria was defined as all hospitalized children with malaria parasitemia. The
293 severe malaria syndromes: severe malarial anemia (SMA), impaired consciousness (IC) and
294 respiratory distress (RD) were defined as haemoglobin <5 g/dl, Blantyre coma score (BCS) <5
295 and deep breathing, respectively. Malaria admissions that did not present with either of the
296 severe malaria syndromes were defined as moderate malaria. Mild malaria was defined as stable
297 children presenting at outpatient clinic with peripheral parasitemia, and asymptomatic as those
298 with positive malaria (Giemsa smear) but without fever or any other sign(s) of illness. The
299 combination of mild and moderate were referred to as uncomplicated.

300

301 ***Controlled infection cohort***

302 Malaria naïve volunteers were infected by either bites from 5 *P. falciparum* 3D7–infected
303 mosquitoes (n = 12) or by intravenous injection with approximately 2,800 *P. falciparum* 3D7–
304 infected erythrocytes (n=12); treatment with piperaquine was provided at a parasite density of
305 5000/mL or on day 8 following blood-stage exposure, respectively ⁴⁷.

306

307 ***Parasite parameters***

308 Thick and thin blood films were stained with Giemsa and examined for *Plasmodium falciparum*
309 parasites according to standard methods. Data was presented as the number of infected RBCs per
310 500, 200 or 100 RBC counted. This data was then used to calculate parasitemia per μl of blood
311 using the formula described in “[2096-OMS-GMP-SOP-09-20160222_v2.indd \(who.int\)](#)”.
312 Briefly, parasites/ μl = number of parasitized RBCs x number of RBCs per μl /number of RBCs
313 counted or number of parasites counted x number of WBCs per μl /number of WBCs counted.
314 Where data on actual number of RBCs or number of WBCs per μl of blood is not available, 5
315 million RBC and 8000 WBC per μl of blood was assumed.

316

317 ***Measurement of cytokine levels in the plasma samples***

318 The selection for this subset was primarily informed by availability of fever data but the
319 transmission period and clinical phenotype were also considered. However, there were more
320 children with fever data record in the post-decline period than pre-decline and decline periods
321 which biased the sampling toward post-decline period. The plasma samples were analyzed using
322 ProcartaPlex Human Cytokine & Chemokine Panel 1A(34plex) [Invitrogen/ThermoFisher
323 Scientific; catalogue # EPX340-12167-901; Lot:188561049] following the manufacturer’s
324 instructions. The following 34 cytokines were measured: GM-CSF, IFN- α , IFN- γ , IL-1 α , IL-1 β ,
325 IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17A, IL-
326 18, IL-21, IL-22, IL-23, IL-27, IL-31, IP-10 (CXCL10), MCP-1 (CCL2), MIP-1 α (CCL3), MIP-
327 1 β (CCL4), TNF- α , TNF- β , Eotaxin/CCL11, RANTES, GRO-a, and SDF-1a.

328 Briefly, 50 μ l of magnetic beads mix were added into each plate well and the 96-well plate
329 securely placed on a hand-held magnetic plate washer for 2 minutes for the beads to settle. The
330 liquid was then removed by carefully inverting the plate over a waste container while still on the
331 magnet and lightly blotted on absorbent paper towels. The beads were then washed by adding
332 150 μ l of 1 \times wash buffer, left to settle for 2 minutes and the liquid removed as before followed by
333 blotting. This was followed by adding 25 μ l of Universal Assay Buffer per well and then 25 μ l of
334 plasma samples and standards into appropriate wells or 25 μ l of Universal Assay Buffer in blank
335 wells. The plate was covered and shaken on a plate shaker at 500rpm for 30 minutes at room
336 temperature followed by an overnight incubation at 4°C. After the overnight incubation, the plate
337 was shaken on a plate shaker at 500rpm for 30 minutes at room temperature and the beads then
338 washed twice while on a magnetic plate holder as outlined above. The beads were then incubated
339 in the dark with 25 μ l of detection antibody mixture on a plate shaker at 500rpm for 30 minutes at
340 room temperature followed by two washes as before. A 50 μ l of Streptavidin-Phycoerythrin
341 (SAPE) solution was then added per well and similarly incubated for 30 minutes on a plate
342 shaker at 500rpm and at room temperature followed by two washes. After the final wash, the
343 beads were resuspended in 120 μ l of Reading Buffer per well, incubated for 5 minutes on a plate
344 shaker at 500rpm before running on a MAGPIX reader running on MAGPIX xPOTENT 4.2
345 software (Luminex Corporation). The instrument was set to count 100 beads for each analyte.
346 The analyte concentrations were calculated (via Milliplex Analyst v5.1 [VigeneTech]) from the
347 median fluorescence intensity (MdFI) expressed in pg/mL using the standard curves of each
348 cytokine.
349

350 ***Pf*HRP2 ELISA**

351 *Plasmodium falciparum* histidine-rich protein 2 (*Pf*HRP2) was quantified in the malaria acute
352 plasma samples using ELISA as outlined. Nunc MaxiSorp™ flat-bottom 96-well plates
353 (ThermoFisher Scientific) were coated with 100 μ l/well of the primary/capture antibody [Mouse
354 anti-*Pf*HRP2 monoclonal antibody (MPFM-55A; MyBioscience)] in 1 \times phosphate buffered
355 saline (PBS) at a titrated final concentration of 0.9 μ g/ml (stock = 8.53mg/ml; dilution =
356 1:10,000) and incubated overnight at 4°C. On the following day, the plates were washed thrice
357 with 1 \times PBS/0.05% Tween-20 (Sigma-Aldrich) using a BioTek ELx405 Select washer (BioTek
358 Instruments, USA) and blotted on absorbent paper to remove residual buffer. These plates were
359 then blocked with 200 μ l/well of 1 \times PBS/3% Marvel skimmed milk (Premier Foods; Thame,
360 Oxford) and incubated for 2 hours at room temperature (RT) on a shaker at 500rpm. The plates
361 were then washed thrice as before. After the final wash, plasma samples and standards were then
362 added at 100ul/well and in duplicates. The samples and standards (*Pf*HRP2 Recombinant
363 protein; MBS232321, MyBioscience) had been appropriately diluted in 1 \times PBS/2% bovine serum
364 albumin (BSA). The samples and standards were incubated for 2 hours at RT on a shaker at
365 500rpm followed by three washes with 1 \times PBS/0.05% Tween-20 and blotted dry as before. This
366 was followed by addition of a 100 μ l/well of the secondary/detection antibody [Mouse anti-
367 *Pf*HRP2 HRP-conjugated antibody (MPFG-55P; MyBioscience) diluted in 1 \times PBS/2% BSA and
368 at a final titrated concentration of 0.2 μ g/ml (stock = 1mg/ml; dilution = 1:5,000). The plates
369 were then incubated for 1 hour at RT on a shaker at 500rpm, washed thrice as before and dried
370 on absorbent paper towels. o-Phenylenediamine dihydrochloride (OPD) (ThermoFisher
371 Scientific) substrate was then added at 100 μ l/well and incubated for 15 minutes for colour

372 development. The reaction was stopped with 50µl/well of 2M sulphuric acid (H₂SO₄) and optical
373 densities (OD) read at 490nm with a BioTek Synergy4 reader (BioTek Instruments, USA).

374

375 ***Parasite transcript quantification using quantitative RT-PCR***

376 RNA was obtained from TRIzol™ reagent (Invitrogen, catalog number 15596026) preserved *P.*

377 *falciparum* positive venous blood samples obtained from the children recruited in the study.

378 RNA was extracted by Chloroform method⁵⁹ and cDNA synthesized using Superscript III kit

379 (Invitrogen, catalog number 18091050) following the manufacturer's protocol. Parasite gene

380 transcription analysis was carried out through quantitative real-time PCR as described below.

381 Real-time PCR data was obtained as described^{34,60,61}. Four primer pairs targeting DC8
382 (named dc8-1, dc8-2, dc8-3, dc8-4), one primer pair targeting DC13 (dc13) and two primer pairs
383 targeting the majority of group A *var* genes (gpA1 and gpA2) were used in real-time PCR
384 analysis as described³⁴. We also used two primer pairs, b1 and c2, targeting group B and C *var*
385 genes respectively⁶². Primer pairs targeting *Pfsir2a* and *ap2-g* were also used³⁴. Two
386 housekeeping genes, Seryl tRNA synthetase and Fructose bisphosphate aldolase^{35,63,64} were used
387 for relative quantification of the expressed *var* genes, *Pfsir2a* and *ap2-g*. The PCR reaction and
388 cycling conditions were carried out as described⁶⁴ using the Applied Biosystems 7500 Real-time
389 PCR system. We set the cycle threshold (Ct) at 0.025. Controls with no template were included
390 at the end of each batch of 22 samples per primer pairs and the melt-curves analysed for non-
391 specific amplification. The *var* gene "transcript quantity" was determined relative to the mean
392 transcript of the two housekeeping genes, Sery tRNA synthetase and Fructose biphosphate
393 aldolase as decribed⁶⁴. For each test primer, the Δ Ct was calculated relative to the average Ct of
394 the two housekeeping genes which was then transformed to arbitrary transcript unit (Tu_s) using

395 the formula ($T_{Us} = 2^{(5-\Delta Ct)}$) as described⁶⁴. We assigned a zero T_{Us} value if a reaction did not
396 result in detectable amplification after 40 cycles of amplification, i.e., if the Ct value was
397 undetermined.

398

399 ***Lipidomics analysis***

400 Serum samples were preserved at -80°C until extraction with the chloroform/methanol method.
401 25µL of serum were extracted with 1 mL of the extraction solvent chloroform/methanol/water
402 (1:3:1 ratio), the tubes rocked for 10 min at 4°C and centrifuged for 3 min at 13'000g.
403 Supernatant were collected and stored at -80°C in glass tubes until analysis.

404 Sample vials were placed in the autosampler tray in random order and kept at 5°C.
405 Separation was performed using a Dionex UltiMate 3000 RSLC system (Thermo Scientific,
406 Hemel Hempstead) by injection of 10 µl sample onto a silica gel column (150 mm × 3 mm × 3
407 µm; HiChrom, Reading, UK) used in hydrophilic interaction chromatography (HILIC) mode
408 held at 30°C⁶⁵. Two solvents were used: solvent A [20% isopropyl alcohol (IPA) in acetonitrile]
409 and solvent B [20% IPA in ammonium formate (20 mM)]. Elution was achieved using the
410 following gradient at 0.3 ml/min: 0–1 min 8% B, 5 min 9% B, 10 min 20% B, 16 min 25% B, 23
411 min 35% B, and 26–40 min 8% B. Detection of lipids was performed in a Thermo Orbitrap
412 Fusion mass spectrometer (Thermo Fisher Scientific Inc., Hemel Hempstead, UK) in polarity
413 switching mode. The instrument was calibrated according to the manufacturer's specifications to
414 give an rms mass error <1 ppm. The following electrospray ionization settings were used: source
415 voltage, ±4.30 kV; capillary temp, 325°C; sheath gas flow, 40 arbitrary units (AU); auxiliary gas

416 flow, 5 AU; sweep gas flow, 1 AU. All LC-MS spectra were recorded in the range 100–1,200 at
417 120,000 resolutions (FWHM at m/z 500).

418

419 ***Data preprocessing***

420 The raw data was converted to mzML files using proteowizard (v 3.0.9706 (2016-5-12)). These
421 files were then analysed using R (v 4.2.1) libraries xcms (v 3.14.1) and mzmatch 2 (v 1.0 - 4) for
422 peak picking, alignment, filtering and annotations⁶⁶⁻⁶⁸. Batch correction was applied as in
423 (<https://www.mdpi.com/2218-1989/10/6/241/htm>), the data was then checked using PCA
424 calculated using the R function prcomp (see supplementary figure 4B). Data was then range
425 normalised and logged transformed using MetaboanalystR (v3.1.0). The CHMI lipidomics data
426 was analysed the same way but did not require batch correction as the samples were run in one
427 batch.

428

429 ***Statistical analysis***

430 All data were analyzed using R (v4.2.1). We normalized non-normally distributed variables by
431 log transformation.

432 *qRT-PCR*: Zeros in qRT-PCR values were replaced by 0.001 (value before log transformation as
433 the smallest measured value is about 0.0017). The median transcript units from qRT-PCR were
434 calculated as follows: DC8 median from four primer pairs used (DC8-1, DC8-2, DC8-3 and
435 DC8-4) and group A median from three primer pairs (gpA1, gpA2 and dc13). Samples for which
436 *ap2-g* or *pfsir2a* arbitrary transcript unit was greater or equal to 32 (that is the transcript quantity
437 of the reference genes based on the formula ($Tu_s = 2^{(5-\Delta ct)}^{64}$) were deemed unreliable and
438 excluded from the analysis that went into generating figures 2-4. Comparison between two

439 groups was done using two-sided wilcoxon test. All correlations were conducted using
440 Spearman's rank correlation coefficient test. All forest plots were done using linear regressions
441 adjusted for transmission period, *Pf*HRP2 and age of the patient (see figure legends) using R
442 function lm. All multiple test corrections were done using Benjamini & Hochberg multiple test
443 (using R function p.adjust).

444 *Principal factor analysis:* A measurement model (i.e., factor analytic model) was fitted to
445 summarise the 34 analytes into fewer variables called factors. An exploratory factor analysis
446 (EFA) was performed to explore the factor structure underlying the 34 analytes. Factors were
447 retained based on the Kaiser's 'eigenvalue rule' of retaining eigenvalues larger than 1. In
448 addition, we also considered the scree plot, parallel analysis, fit statistics and interpretability of
449 the model/factors. This analysis resulted in the cytokine data being reduced to 5 factors. This
450 analysis was done using the R "psych" library (v 2.1.9) available at
451 <https://CRAN.R-project.org/package=psych>. The 34 analytes were individually linearly
452 regressed to *ap2-g* or *Pfsir2* transcript levels with transmission, *Pf*HRP2 and age correction
453 (model: analyte ~ transmission+*Pf*HRP2+age). Then each factor was analyzed the same way.
454 *Lipidomics analysis:* The preprocessed lipidomics data was tested using transmission period,
455 *Pf*HRP2 and age adjusted linear regression with any of the 5 factors. All m/z with a significant
456 false discovery rate with any of the factors were then manually checked for peak quality and
457 identified masses on mass and retention time⁶⁹. The remaining identified lipids were then
458 checked for relationship with *ap2-g* and *Pfsir2a* transcription levels (linear regression adjusted
459 for transmission period, HRP and age, see methods above). The CHMI lipidomics data was
460 analyzed the same way but the peaks retained were those significantly different pre and post
461 treatment in either type of infection (student's t-tests corrected for multiple testing).

462 *Figures*: All heatmaps were done using the R library pheatmap (v 1.0.12) available at
463 <https://CRAN.R-project.org/package=pheatmap>, and all other plots using the R libraries ggplot2
464 (v 3.3.5) and ggpubr (v 0.4.0) available at <https://CRAN.R-project.org/package=ggpubr>.

465

466 **Data availability**

467 Raw data and script for all the analyses in this manuscript are available at
468 <https://doi.org/10.7910/DVN/BXXVRY>. Raw mass spectrometry files for all lipidomics data sets
469 are currently being submitted to MetaboLights.

470

471 **Acknowledgements**

472 This work was supported by Wolfson Merit Royal Society Award (to M.M.), Wellcome Trust
473 Investigator Award 110166 (to F.A., L.S., J.L.S.F. and M.M.) and Wellcome Trust Center
474 Award 104111 (to F.F.A., L.S., J.L.S.F. and M.M.), Glasgow-Radboud collaborative grant (to
475 M.A., T.B. and M.M.), European Research Council (ERC) Consolidator Grant (to T.B., ERC-
476 CoG 864180 QUANTUM), Wellcome Award 209289/Z/17/Z (to A.A.) and a core Wellcome
477 award to KEMRI-Wellcome Trust (203077/Z/16/Z). This paper was published with permission
478 of the director of Kenya Medical Research Institute.

479

480 **Competing interests**

481 The authors declare that they have no financial or non-financial competing interests.

482

483 **References**

484 1. WHO. World Malaria Report 2020. (2020).

485 2. Kafsack, B.F., *et al.* A transcriptional switch underlies commitment to sexual
486 development in malaria parasites. *Nature* **507**, 248-252 (2014).

487 3. Sinha, A., *et al.* A cascade of DNA-binding proteins for sexual commitment and
488 development in Plasmodium. *Nature* **507**, 253-257 (2014).

489 4. Marsh, K. & Snow, R.W. Malaria transmission and morbidity. *Parassitologia* **41**, 241-
490 246 (1999).

491 5. Langhorne, J., Ndungu, F.M., Sponaas, A.M. & Marsh, K. Immunity to malaria: more
492 questions than answers. *Nat Immunol* **9**, 725-732 (2008).

493 6. White, N.J. Anaemia and malaria. *Malar J* **17**, 371 (2018).

494 7. Rowe, J.A., Claessens, A., Corrigan, R.A. & Arman, M. Adhesion of Plasmodium
495 falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic
496 implications. *Expert Rev Mol Med* **11**, e16 (2009).

497 8. Turner, L., *et al.* Severe malaria is associated with parasite binding to endothelial protein
498 C receptor. *Nature* **498**, 502-505 (2013).

499 9. Silamut, K., *et al.* A quantitative analysis of the microvascular sequestration of malaria
500 parasites in the human brain. *Am J Pathol* **155**, 395-410 (1999).

501 10. Taylor, T.E., *et al.* Differentiating the pathologies of cerebral malaria by postmortem
502 parasite counts. *Nat Med* **10**, 143-145 (2004).

503 11. Hanson, J., *et al.* Relative contributions of macrovascular and microvascular dysfunction
504 to disease severity in falciparum malaria. *J Infect Dis* (2012).

505 12. Smith, J.D., *et al.* Switches in expression of Plasmodium falciparum var genes correlate
506 with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. *Cell* **82**,
507 101-110 (1995).

508 13. Su, X.Z., *et al.* The large diverse gene family var encodes proteins involved in
509 cytoadherence and antigenic variation of *Plasmodium falciparum*-infected erythrocytes.
510 *Cell* **82**, 89-100 (1995).

511 14. Recker, M., *et al.* Transient cross-reactive immune responses can orchestrate antigenic
512 variation in malaria. *Nature* **429**, 555-558 (2004).

513 15. Scherf, A., Lopez-Rubio, J.J. & Riviere, L. Antigenic variation in *Plasmodium*
514 *falciparum*. *Annu Rev Microbiol* **62**, 445-470 (2008).

515 16. Rono, M.K., *et al.* Adaptation of *Plasmodium falciparum* to its transmission environment.
516 *Nat Ecol Evol* **2**, 377-387 (2018).

517 17. Oakley, M.S., *et al.* Molecular factors and biochemical pathways induced by febrile
518 temperature in intraerythrocytic *Plasmodium falciparum* parasites. *Infect Immun* **75**,
519 2012-2025 (2007).

520 18. Rawat, M., Srivastava, A., Johri, S., Gupta, I. & Karmodiya, K. Single-Cell RNA
521 Sequencing Reveals Cellular Heterogeneity and Stage Transition under Temperature
522 Stress in Synchronized *Plasmodium falciparum* Cells. *Microbiol Spectr* **9**, e0000821
523 (2021).

524 19. Carter, R. & Miller, L.H. Evidence for environmental modulation of gametocytogenesis
525 in *Plasmodium falciparum* in continuous culture. *Bull World Health Organ* **57 Suppl 1**,
526 37-52 (1979).

527 20. Coleman, B.I., *et al.* A *Plasmodium falciparum* histone deacetylase regulates antigenic
528 variation and gametocyte conversion. *Cell Host Microbe* **16**, 177-186 (2014).

529 21. Williams, J.L. Stimulation of *Plasmodium falciparum* gametocytogenesis by conditioned
530 medium from parasite cultures. *Am J Trop Med Hyg* **60**, 7-13 (1999).

531 22. Brancucci, N.M.B., *et al.* Lysophosphatidylcholine Regulates Sexual Stage
532 Differentiation in the Human Malaria Parasite *Plasmodium falciparum*. *Cell* **171**, 1532-
533 1544.e1515 (2017).

534 23. Buckling, A., Ranford-Cartwright, L.C., Miles, A. & Read, A.F. Chloroquine increases
535 *Plasmodium falciparum* gametocytogenesis in vitro. *Parasitology* **118 (Pt 4)**, 339-346
536 (1999).

537 24. Li, X. SIRT1 and energy metabolism. *Acta Biochim Biophys Sin (Shanghai)* **45**, 51-60
538 (2013).

539 25. Vasquez, M.C., Beam, M., Blackwell, S., Zuzow, M.J. & Tomanek, L. Sirtuins regulate
540 proteomic responses near thermal tolerance limits in the blue mussels *Mytilus*
541 *galloprovincialis* and *Mytilus trossulus*. *J Exp Biol* **220**, 4515-4534 (2017).

542 26. Bosch-Presegué, L. & Vaquero, A. Sirtuins in stress response: guardians of the genome.
543 *Oncogene* **33**, 3764-3775 (2014).

544 27. Zhu, A.Y., *et al.* *Plasmodium falciparum* Sir2A preferentially hydrolyzes medium and
545 long chain fatty acyl lysine. *ACS Chem Biol* **7**, 155-159 (2012).

546 28. Tonkin, C.J., *et al.* Sir2 paralogues cooperate to regulate virulence genes and antigenic
547 variation in *Plasmodium falciparum*. *PLoS Biol* **7**, e84 (2009).

548 29. Merrick, C.J., *et al.* Epigenetic dysregulation of virulence gene expression in severe
549 *Plasmodium falciparum* malaria. *J Infect Dis* **205**, 1593-1600 (2012).

550 30. O'Meara, W.P., *et al.* Effect of a fall in malaria transmission on morbidity and mortality
551 in Kilifi, Kenya. *Lancet* **372**, 1555-1562 (2008).

552 31. Mogeni, P., *et al.* Age, Spatial, and Temporal Variations in Hospital Admissions with
553 Malaria in Kilifi County, Kenya: A 25-Year Longitudinal Observational Study. *PLoS
554 Med* **13**, e1002047 (2016).

555 32. Njuguna, P., *et al.* Observational study: 27 years of severe malaria surveillance in Kilifi,
556 Kenya. *BMC Med* **17**, 124 (2019).

557 33. Marsh, K., *et al.* Indicators of life-threatening malaria in African children. *N Engl J Med*
558 **332**, 1399-1404 (1995).

559 34. Abdi, A.I., *et al.* Global selection of *Plasmodium falciparum* virulence antigen expression
560 by host antibodies. *Sci Rep* **6**, 19882 (2016).

561 35. Salanti, A., *et al.* Selective upregulation of a single distinctly structured var gene in
562 chondroitin sulphate A-adhering *Plasmodium falciparum* involved in pregnancy-
563 associated malaria. *Mol Microbiol* **49**, 179-191 (2003).

564 36. Huang, D.T., *et al.* Adaptation of influenza A (H7N9) virus in primary human airway
565 epithelial cells. *Sci Rep* **7**, 11300 (2017).

566 37. Dong, C. Cytokine Regulation and Function in T Cells. *Annu Rev Immunol* **39**, 51-76
567 (2021).

568 38. Kumar, M., Seeger, W. & Voswinckel, R. Senescence-associated secretory phenotype
569 and its possible role in chronic obstructive pulmonary disease. *Am J Respir Cell Mol Biol*
570 **51**, 323-333 (2014).

571 39. Weiss, E.S., *et al.* Interleukin-18 diagnostically distinguishes and pathogenically
572 promotes human and murine macrophage activation syndrome. *Blood* **131**, 1442-1455
573 (2018).

574 40. Law, S.H., *et al.* An Updated Review of Lysophosphatidylcholine Metabolism in Human
575 Diseases. *Int J Mol Sci* **20**(2019).

576 41. Huang, Y.H., Schäfer-Elinder, L., Wu, R., Claesson, H.E. & Frostegård, J.
577 Lysophosphatidylcholine (LPC) induces proinflammatory cytokines by a platelet-
578 activating factor (PAF) receptor-dependent mechanism. *Clin Exp Immunol* **116**, 326-331
579 (1999).

580 42. Qin, X., Qiu, C. & Zhao, L. Lysophosphatidylcholine perpetuates macrophage
581 polarization toward classically activated phenotype in inflammation. *Cell Immunol* **289**,
582 185-190 (2014).

583 43. Christ, A., *et al.* Western Diet Triggers NLRP3-Dependent Innate Immune
584 Reprogramming. *Cell* **172**, 162-175 e114 (2018).

585 44. Liu, T., *et al.* Lysophosphatidylcholine induces apoptosis and inflammatory damage in
586 brain microvascular endothelial cells via GPR4-mediated NLRP3 inflammasome
587 activation. *Toxicol In Vitro* **77**, 105227 (2021).

588 45. Bekkering, S., *et al.* Oxidized low-density lipoprotein induces long-term
589 proinflammatory cytokine production and foam cell formation via epigenetic
590 reprogramming of monocytes. *Arterioscler Thromb Vasc Biol* **34**, 1731-1738 (2014).

591 46. Alkema, M., *et al.* A Randomized Clinical Trial to Compare Plasmodium falciparum
592 Gametocytemia and Infectivity After Blood-Stage or Mosquito Bite-Induced Controlled
593 Malaria Infection. *J Infect Dis* **224**, 1257-1265 (2021).

594 47. Alkema, M., *et al.* Controlled human malaria infections by mosquito bites induce more
595 severe clinical symptoms than asexual blood-stage challenge infections. *EBioMedicine*
596 **77**, 103919 (2022).

597 48. Churcher, T.S., Trape, J.F. & Cohuet, A. Human-to-mosquito transmission efficiency
598 increases as malaria is controlled. *Nat Commun* **6**, 6054 (2015).

599 49. Kearney, S., Delgado, C. & Lenz, L.L. Differential effects of type I and II interferons on
600 myeloid cells and resistance to intracellular bacterial infections. *Immunol Res* **55**, 187-
601 200 (2013).

602 50. Hoffman, S.L., *et al.* Sterile protection of monkeys against malaria after administration of
603 interleukin-12. *Nat Med* **3**, 80-83 (1997).

604 51. Usui, M., *et al.* Plasmodium falciparum sexual differentiation in malaria patients is
605 associated with host factors and GDV1-dependent genes. *Nat Commun* **10**, 2140 (2019).

606 52. Cordy, R.J., *et al.* Distinct amino acid and lipid perturbations characterize acute versus
607 chronic malaria. *JCI Insight* **4**(2019).

608 53. Palacios, O.M., *et al.* Diet and exercise signals regulate SIRT3 and activate AMPK and
609 PGC-1alpha in skeletal muscle. *Aging (Albany NY)* **1**, 771-783 (2009).

610 54. Duraisingham, M.T., *et al.* Heterochromatin silencing and locus repositioning linked to
611 regulation of virulence genes in Plasmodium falciparum. *Cell* **121**, 13-24 (2005).

612 55. Mancio-Silva, L., Lopez-Rubio, J.J., Claes, A. & Scherf, A. Sir2a regulates rDNA
613 transcription and multiplication rate in the human malaria parasite Plasmodium
614 falciparum. *Nat Commun* **4**, 1530 (2013).

615 56. Borrman, S., *et al.* Declining responsiveness of Plasmodium falciparum infections to
616 artemisinin-based combination treatments on the Kenyan coast. *PLoS One* **6**, e26005
617 (2011).

618 57. Dollat, M., *et al.* Measuring malaria morbidity in an area of seasonal transmission:
619 Pyrogenic parasitemia thresholds based on a 20-year follow-up study. *PLoS One* **14**,
620 e0217903 (2019).

621 58. Sorci, G., Léchenault-Bergerot, C. & Faivre, B. Age reduces resistance and tolerance in
622 malaria-infected mice. *Infect Genet Evol* **88**, 104698 (2021).

623 59. Bull, P.C., *et al.* Plasmodium falciparum variant surface antigen expression patterns
624 during malaria. *PLoS Pathog* **1**, e26 (2005).

625 60. Abdi, A.I., *et al.* Differential Plasmodium falciparum surface antigen expression among
626 children with Malarial Retinopathy. *Sci Rep* **5**, 18034 (2015).

627 61. Abdi, A.I., *et al.* Plasmodium falciparum malaria parasite var gene expression is modified
628 by host antibodies: longitudinal evidence from controlled infections of Kenyan adults
629 with varying natural exposure. *BMC Infect Dis* **17**, 585 (2017).

630 62. Rottmann, M., *et al.* Differential expression of var gene groups is associated with
631 morbidity caused by Plasmodium falciparum infection in Tanzanian children. *Infect*
632 *Immun* **74**, 3904-3911 (2006).

633 63. Salanti, A., *et al.* Evidence for the involvement of VAR2CSA in pregnancy-associated
634 malaria. *J Exp Med* **200**, 1197-1203 (2004).

635 64. Lavstsen, T., *et al.* Plasmodium falciparum erythrocyte membrane protein 1 domain
636 cassettes 8 and 13 are associated with severe malaria in children. *Proc Natl Acad Sci U S*
637 *A* **109**, E1791-1800 (2012).

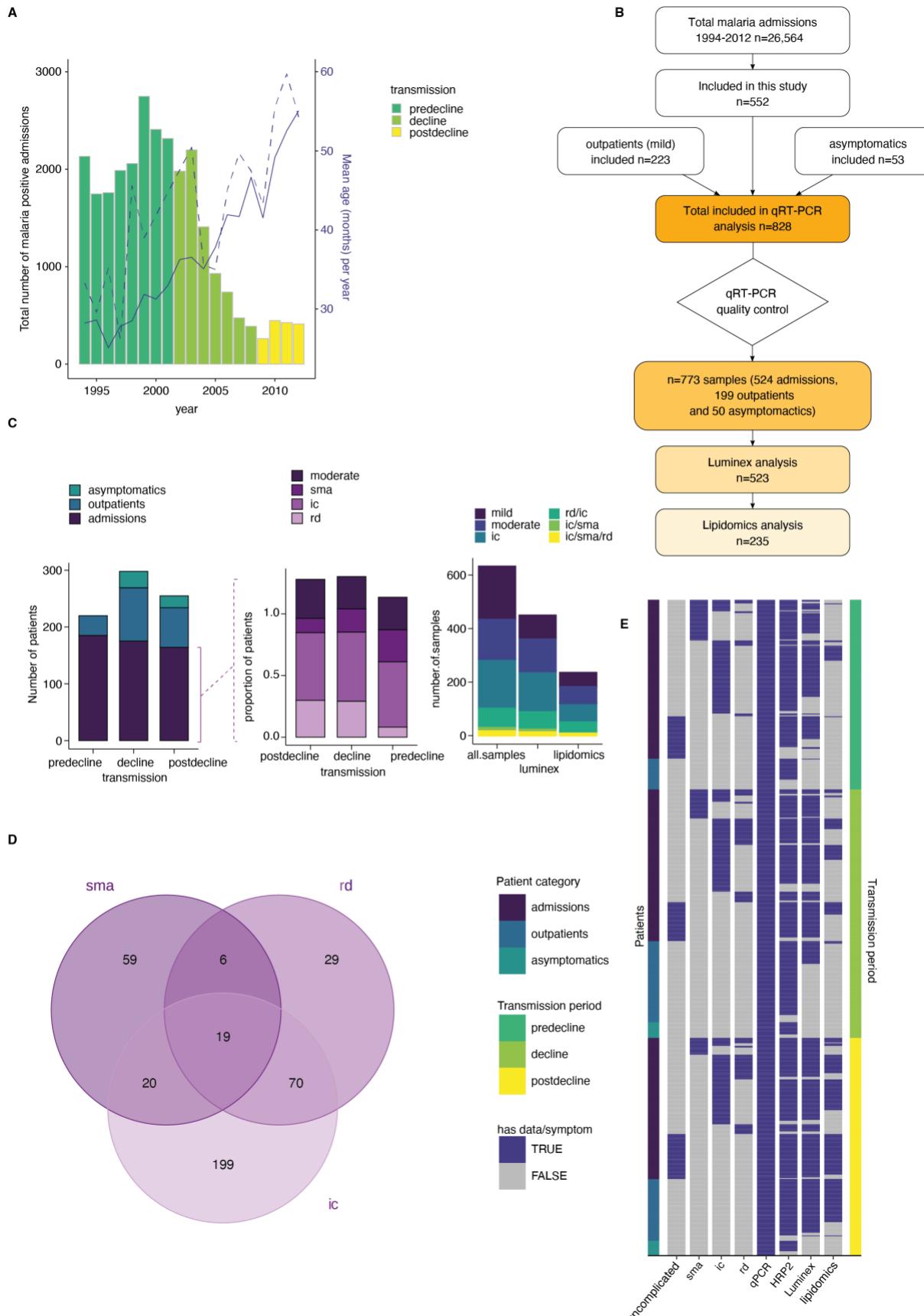
638 65. Zheng, L., *et al.* Profiling of lipids in *Leishmania donovani* using hydrophilic interaction
639 chromatography in combination with Fourier transform mass spectrometry. *Rapid*
640 *Commun Mass Spectrom* **24**, 2074-2082 (2010).

641 66. Chong, J. & Xia, J. MetaboAnalystR: an R package for flexible and reproducible analysis
642 of metabolomics data. *Bioinformatics* **34**, 4313-4314 (2018).

643 67. Scheltema, R.A., Jankevics, A., Jansen, R.C., Swertz, M.A. & Breitling, R.
644 PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass
645 spectrometry data analysis. *Anal Chem* **83**, 2786-2793 (2011).

646 68. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing
647 mass spectrometry data for metabolite profiling using nonlinear peak alignment,
648 matching, and identification. *Anal Chem* **78**, 779-787 (2006).

649 69. Reis, A., *et al.* A comparison of five lipid extraction solvent systems for lipidomic studies
650 of human LDL. *J Lipid Res* **54**, 1812-1824 (2013).


651

652

653

654

655 **Figures and legends**

657 **Figure 1. A clinical malaria patient cohort during changing transmission in Kilifi, Kenya. A.**

658 Total malaria admissions and patient age of the parent cohort. Number of patients per year (grey

659 histogram, left axis). The solid blue line is the average patient age in the parent cohort, the

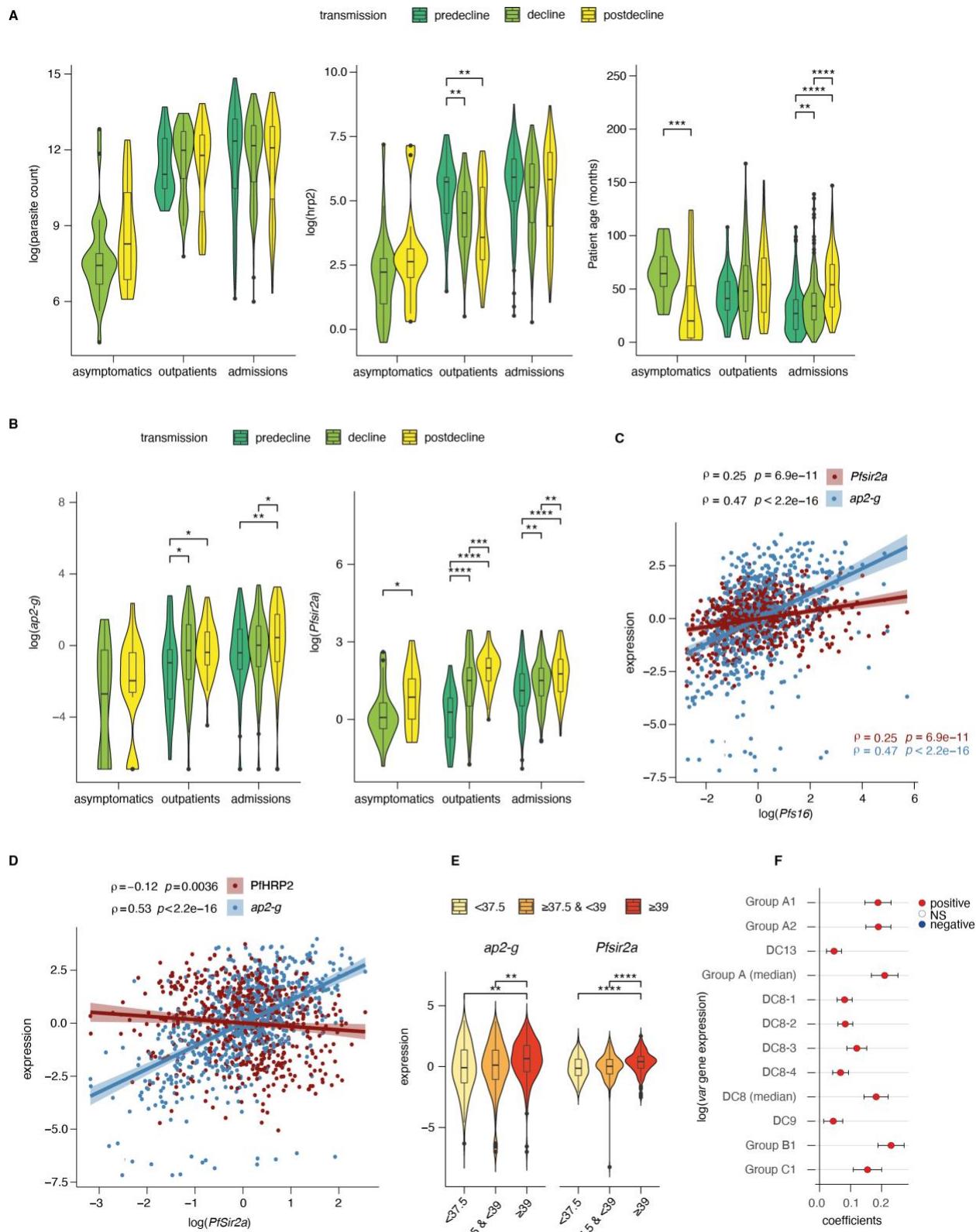
660 dashed line is the average patient age in this study (both right axis). **B.** Schematic of sample

661 selection for this study. **C.** Clinical presentation of patients selected for this study. Left: all

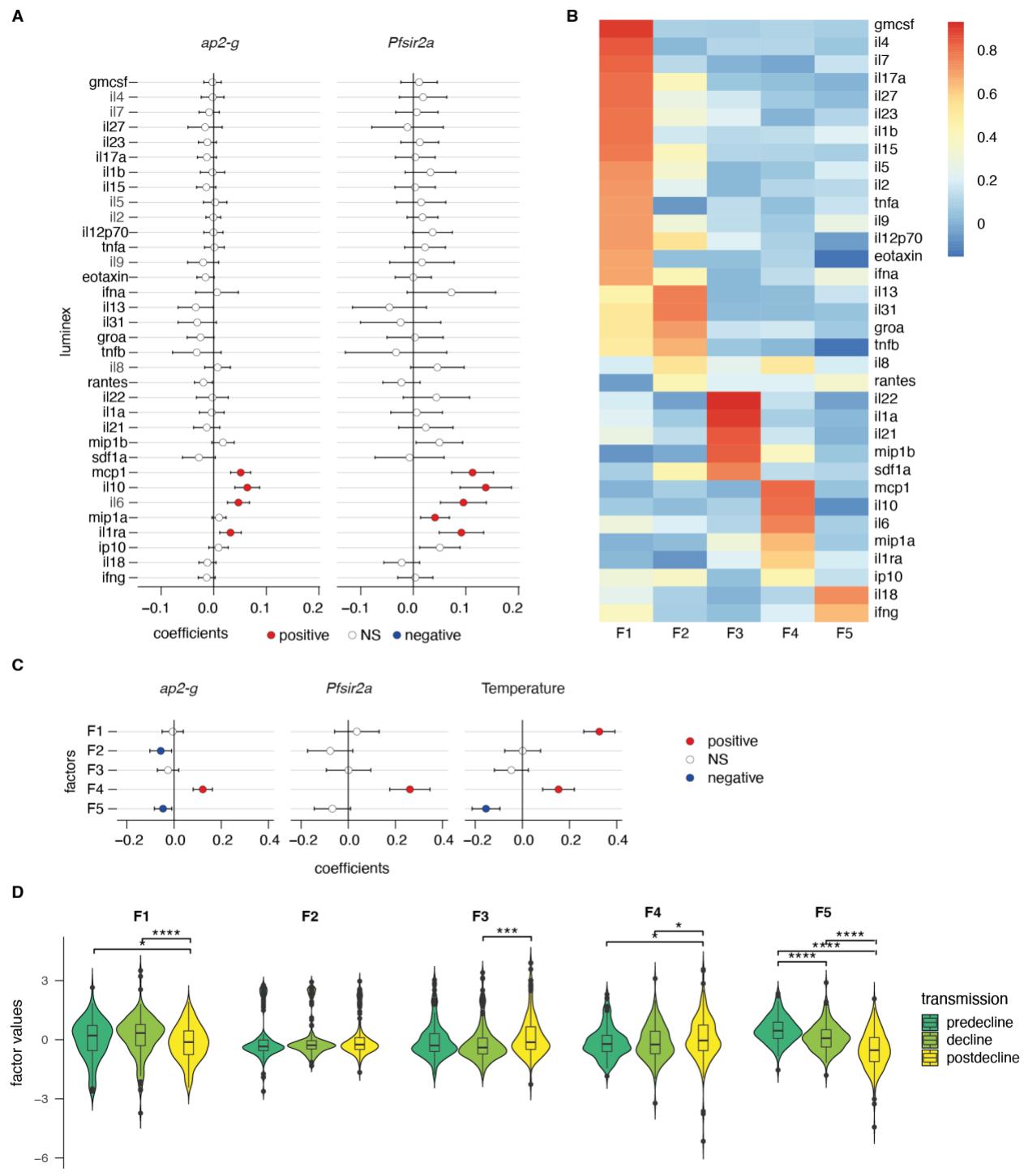
662 patients, middle: admissions only, right: subset selected for luminex and lipidomics analysis.

663 sma=severe malarial anemia, ic=impaired consciousness, rd=respiratory distress. **D.** Number of

664 patients in this study with different clinical presentations (402 severe cases initially selected). **E.**


665 Overview of the data available for each patient of the study, after excluding samples with *Pfsir2a*

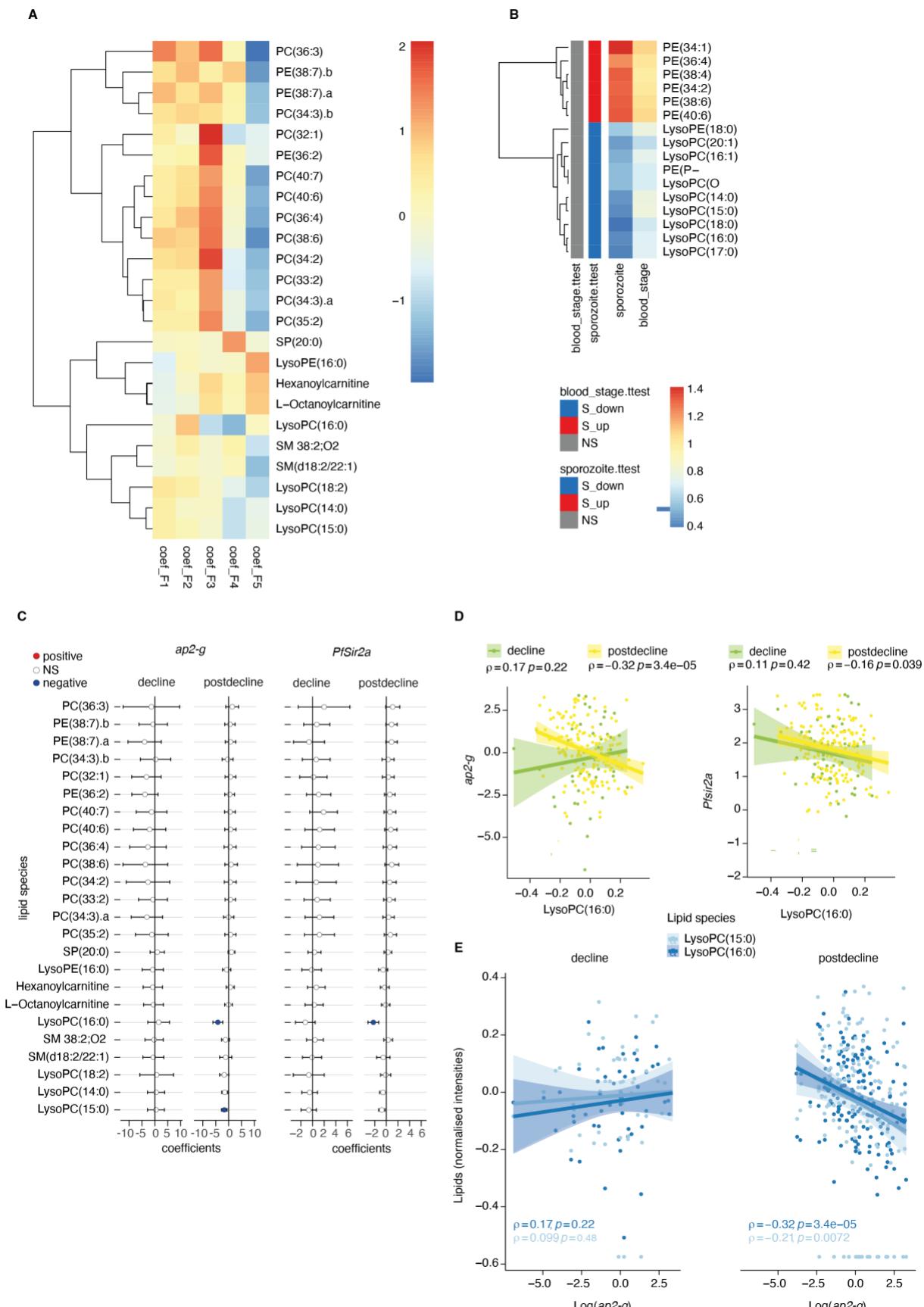
666 and *ap2-g* transcript transcription units greater or equal 32 as described in the methods. Each row


667 is one patient, organised by patient category (left axis) and transmission period (right axis).

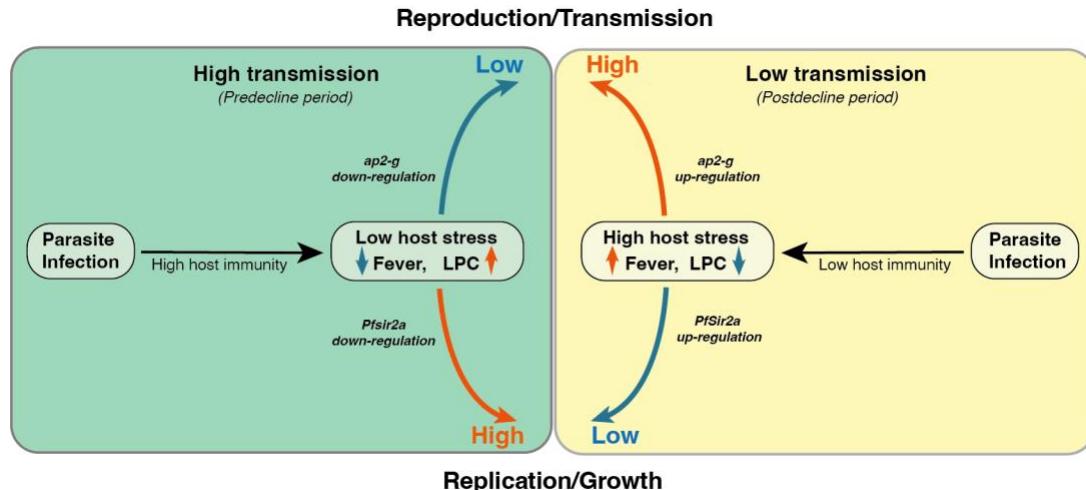
668

669

671 **Figure 2. Dynamics of parasite parameters across transmission periods. A.** Peripheral
672 parasitemia (smear, left), total parasite biomass (*Pf*HRP2, middle) and patient age (right) across
673 patients. **B.** *ap2-g* transcript levels (left) and *Pfsir2a* levels (right) across patients. **C.** Spearman's
674 correlation between *Pfs16* and *ap2-g* (blue) or *PfSir2a* transcription (red) across patients
675 (corrected for transmission). The lines fitted are linear regressions for visualisation only. **D.**
676 Spearman's correlation between *Pfsir2a* and *ap2-g* transcription (blue) or *Pf*HRP2 levels (red)
677 across patients (corrected for transmission). The lines fitted are linear regressions for
678 visualisation only. **E.** *ap2-g* and *Pfsir2a* transcription (corrected for transmission) stratified by
679 patient temperature. **F.** Linear regression of *var* gene transcription levels with *Pfsir2a* levels
680 (adjusted for transmission). 95% confidence intervals are shown. The color indicates whether the
681 relationship is statistically significant (with Benjamini & Hochberg multiple tests correction).
682 Positive correlations in red, negative in blue. In above figures, asymptomatics were excluded in
683 analyses involving transmission period since they are not represented in the pre-decline period.
684 All pairwise statistical tests indicated in the graphs are wilcoxon tests corrected for multiple
685 testing (Benjamini & Hochberg, * $=$ FDR <0.05 , ** $=$ <0.01 , *** $=$ <0.001 and **** $=$ <0.0001).
686
687



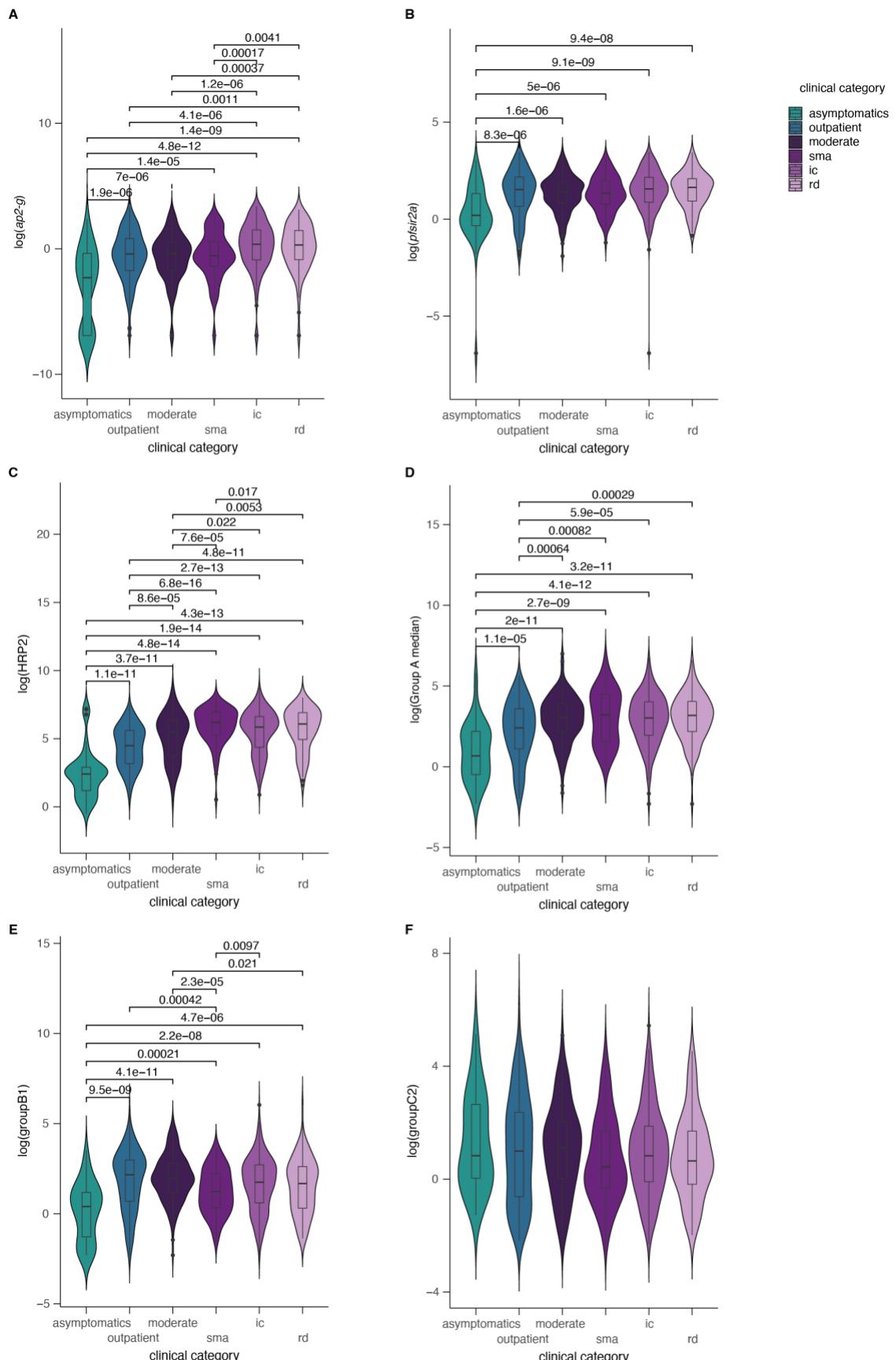
688


689 **Figure 3. *ap2-g* and *Pfsir2a* transcription levels are associated with the host inflammation**

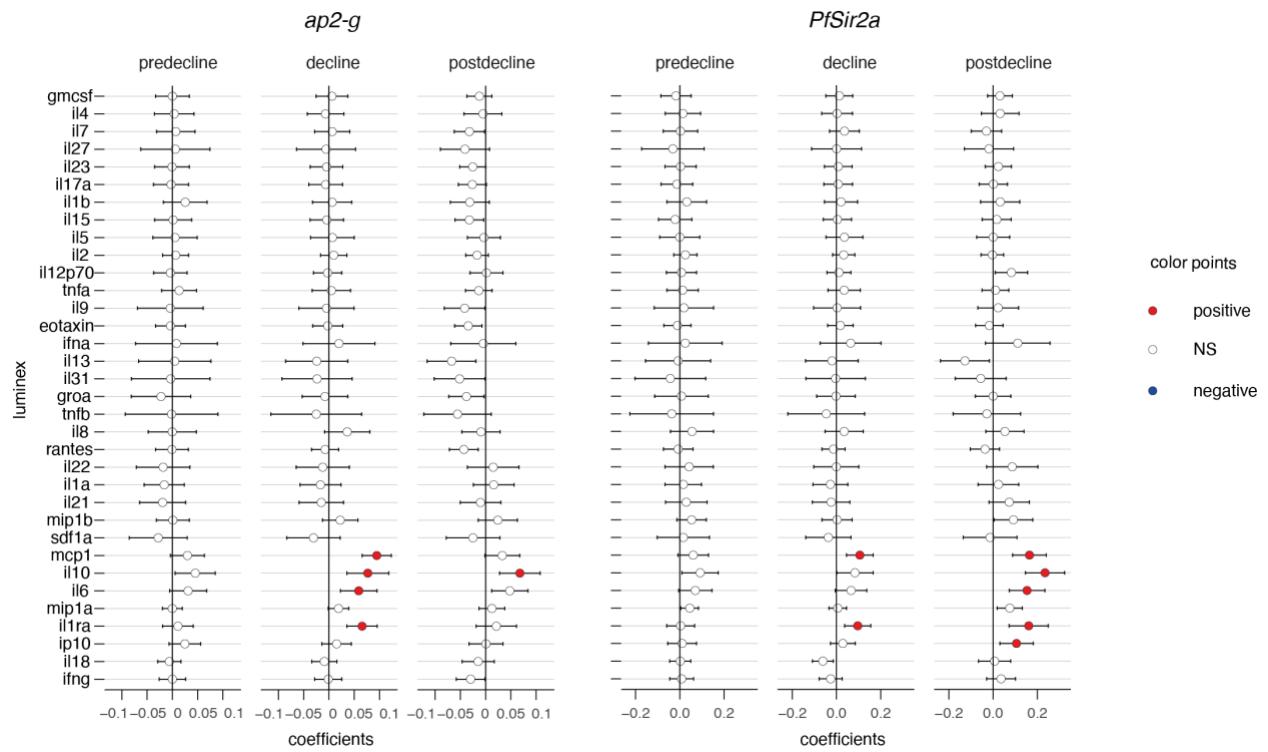
690 **profile. A.** Association of inflammatory markers with *ap2-g* and *Pfsir2a* transcripts, tested using
 691 transmission period, age and *Pf*HRP2 adjusted linear regression (*p*-values adjusted for multiple
 692 testing using Benjamini & Hochberg multiple tests correction). Plotted is the regression

693 coefficient (estimate) and 95%CI. Above and below zero indicate statistically significant positive
694 (red) and negative association (blue), respectively. **B.** Principal exploratory factor analysis. The
695 figure shows the inflammatory marker loadings on the five factors (F1-F5) identified to have
696 eigenvalue above 1. **C.** Linear regression between inflammatory factors (F1-F5) and *ap2-g* and
697 *Pfsir2a* transcription and patient temperature (adjusted for transmission, *PfHRP2* and age).
698 Plotted is the coefficient between the factor and the parameter (estimate) and 95%CI. The
699 association is significant if the correlation FDR < 0.05, in which case the positive associations
700 are marked in red and the negative ones in blue. **D.** Inflammatory factors stratified by
701 transmission period. Pairwise tests are wilcoxon tests (Benjamini & Hochberg, *=FDR<0.05,
702 **=<0.01, **=<0.001 and ****=<0.0001).
703
704

706 **Figure 4. Plasma LPC links host inflammation to *ap2-g* and *Pfsir2a* transcription. A.**
707 Heatmap of the linear regression coefficients between lipids and inflammatory factors (F1-F5,
708 adjusted for transmission period and corrected for multiple testing). Shown are all lipids that are
709 significantly associated (positive or negative) with factors F1-F5, clustered using R hclust
710 (distance=Euclidean, method=centroid) and that have been manually identified and filtered for
711 peak quality (isotopes and fragments were also filtered out). **B.** Shown are the lipids with
712 significant differences (student's t-test corrected for multiple testing) between pre- and post-
713 treatment in the controlled human malaria infections (CHMI) for either infection type (blood or
714 sporozoite infection). Plotted is the fold-change post-treatment *vs* pre-treatment. On the left is
715 indicated whether the lipid is significantly increased (red) or decreased (blue) in either type of
716 infection. **C.** Linear regression between the lipids from A and *ap2-g* or *Pfsir2a* transcription
717 levels. Plotted is the coefficient and 95%CI. Blue dots are the statistically significant negative
718 correlations, red are the statically significant positive correlations (FDR<0.05). **D.** Correlation
719 between LPC (16:0) (top) and *ap2-g* (top) or *Pfsir2a* (bottom) transcription (Spearman's
720 correlations corrected for multiple testing). **E.** Correlations between identified LPCs and *ap2-g*
721 transcription by transmission period (Spearman's correlations corrected for multiple testing).
722 Note that predecline period is not plotted separately in panels C-E due to insufficient sample
723 numbers for the statistical analysis.
724
725


726

727 **Figure 5. Proposed model on within-host adaptation of the parasite to changing**
728 **environments.** The model is based on the interaction between the different host and parasite
729 parameters described in this study. It proposes that declining transmission reduces host
730 immunity, resulting in increased inflammation (including reduced LPC availability, fever) and
731 susceptibility to clinical symptoms/damage. The altered host response modifies the parasite
732 response during infection, resulting in increased investment in transmission (as indicated by the
733 elevated *ap2-g* levels) and reduced replication (as indicated by elevated *Pfsir2a* levels and
734 reduced parasite burden/*Pf*HRP2 levels).

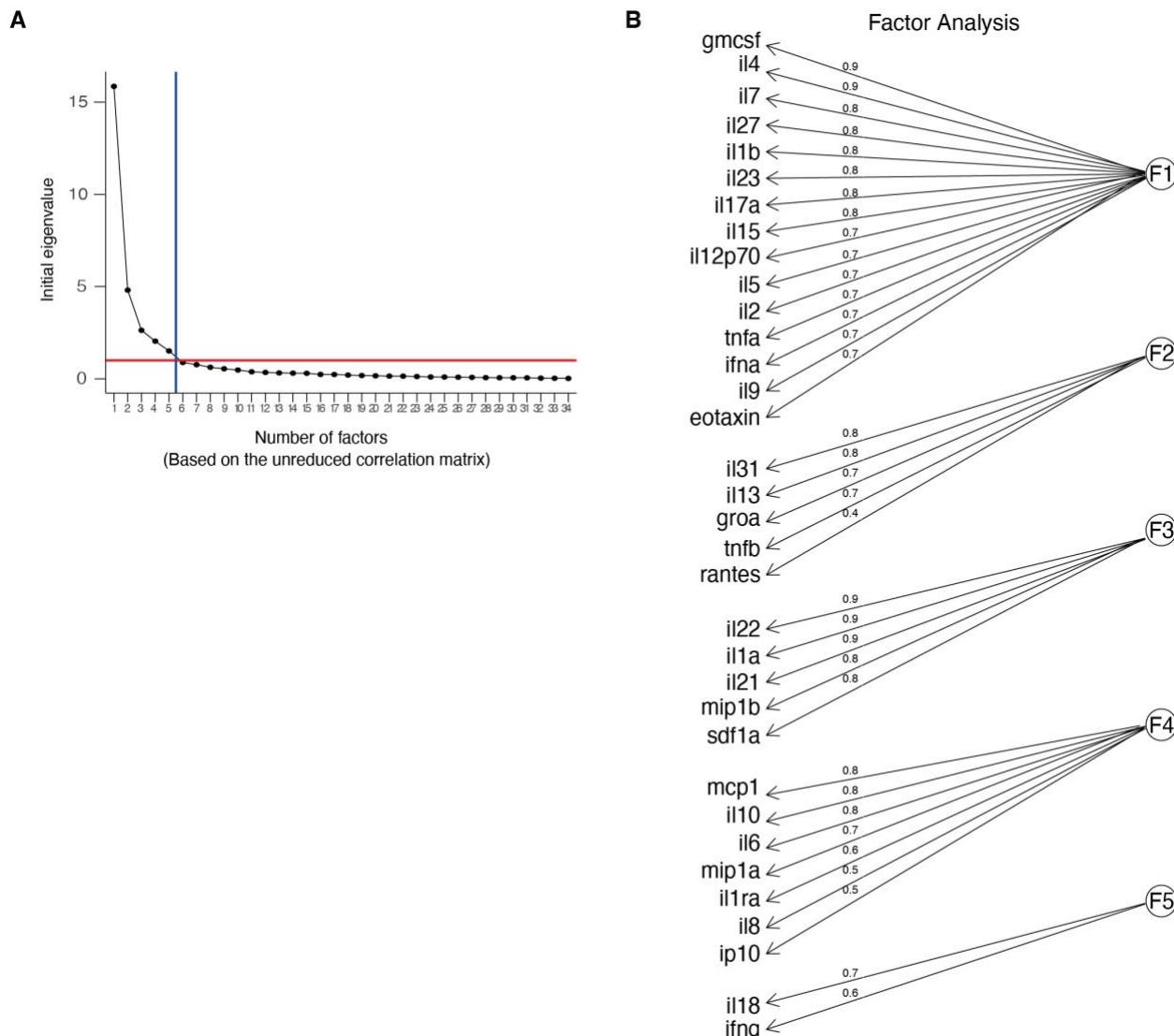

735

736

737 **Supplementary figures and tables**

739 **Figure S1. Parasite parameters stratified by clinical categories.** *ap2-g*, *Pfsir2a*, *var* gene
740 transcription and *PfHRP2* levels stratified by clinical categories. Significant wilcoxon test *p*-
741 values (corrected for multiple testing) marked with * <0.05 , ** <0.01 , *** <0.001 , **** <0.0001 .
742
743

744

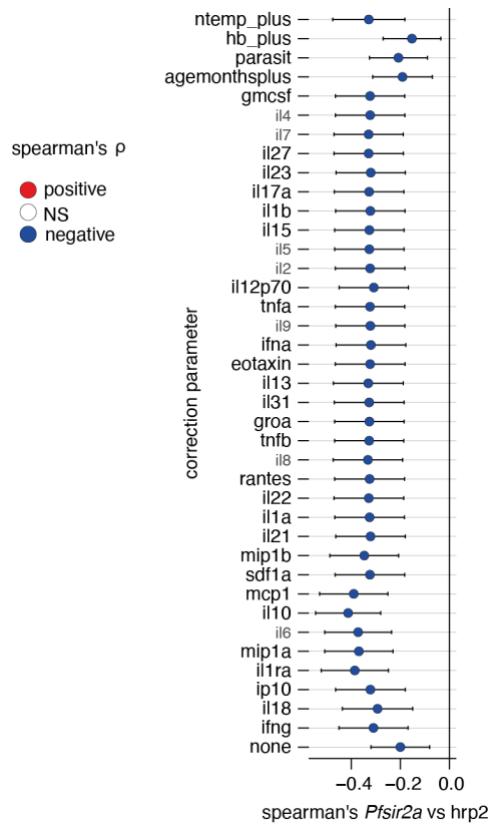

745 **Figure S2. Inflammatory markers stratified by transmission period.** Linear regressions

746 between *ap2-g* (A) or *PfSir2a* (B) transcription and luminex markers as per figure 3A, stratified

747 by transmission period.

748

749

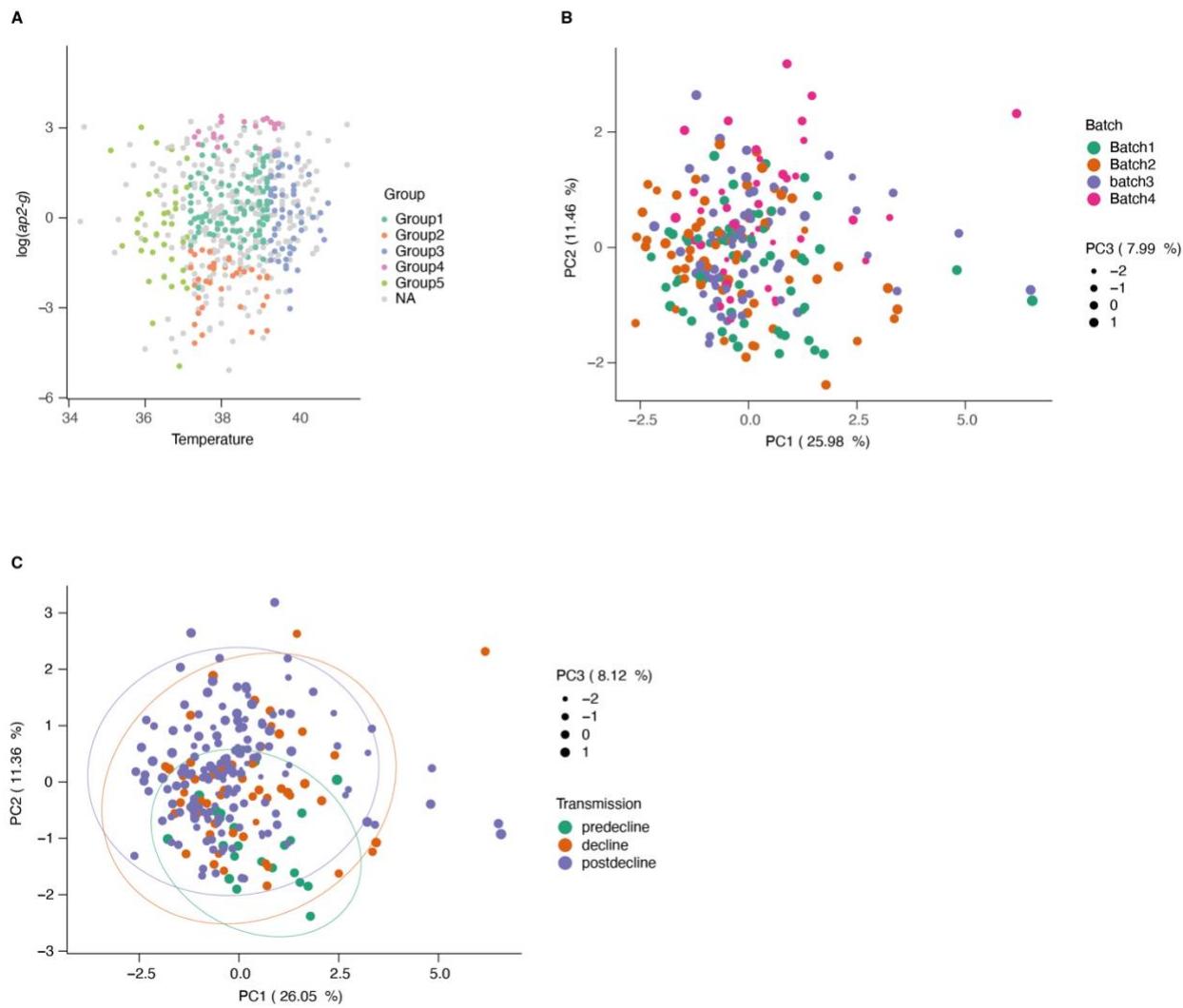


750

751 **Figure S3. Factor loadings. A.** Scree plot showing the eigen values *vs* the number of factors
752 (factor analysis of the luminex data). **B.** Major loadings of each factor calculated by factor
753 analysis of the luminex data (values ≥ 0.3). Loading values are noted on the edges.

754

755

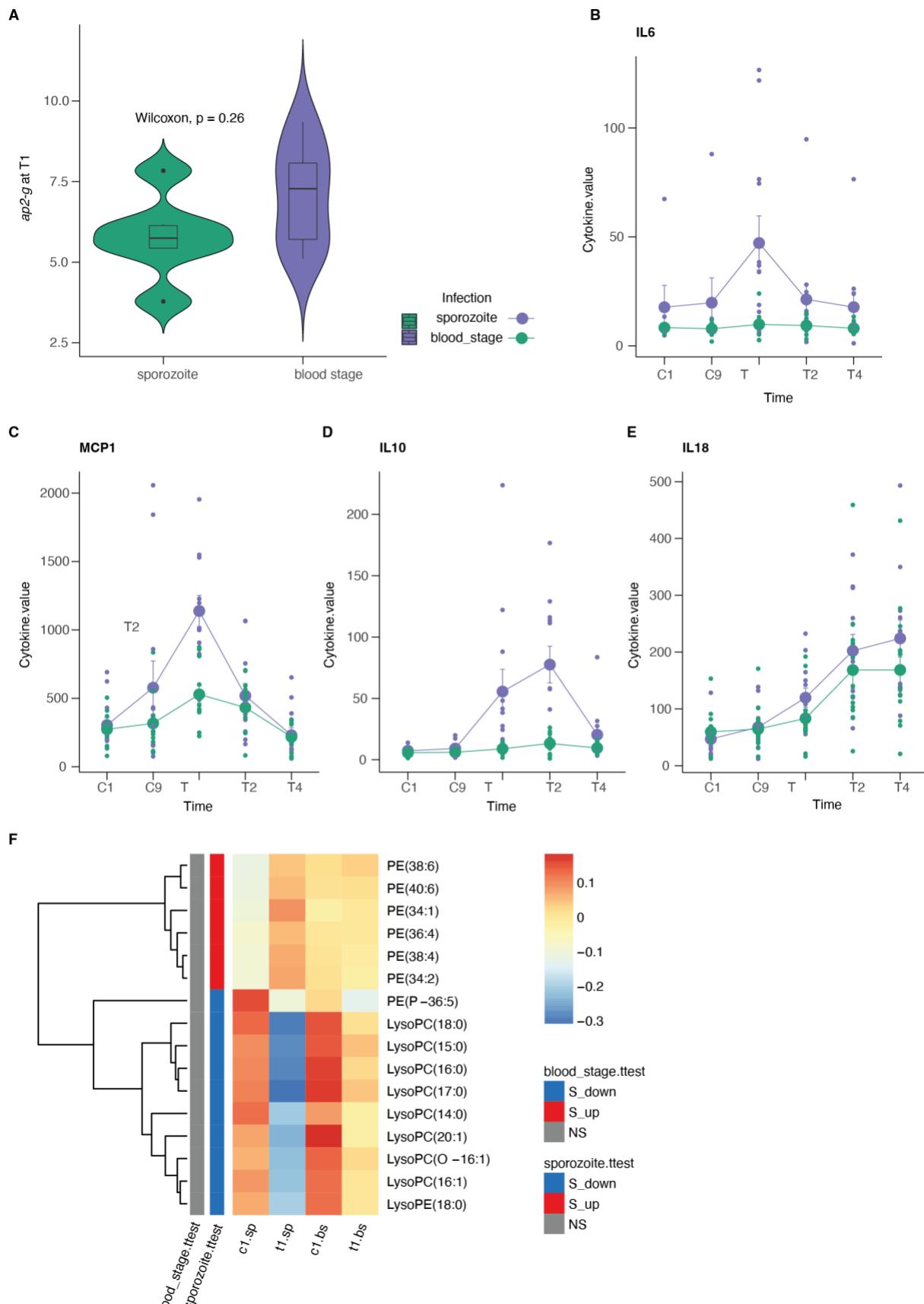


756

757 **Figure S4. Correcting *Pf*HRP2 vs *Pfsir2a* associations for external factors.** Plotted is the
758 linear regression coefficient (estimate) and 95%CI. Blue indicates a significant negative
759 correlation between *Pf*HRP2 levels and *Pfsir2a* transcription with the additional correction
760 indicated on the left.

761

762



763

764 **Figure S5. Sample subsetting and batch correction for lipidomics data. A.** Patient
765 temperature, $ap2-g$ transcription level and disease type were used to subset samples for
766 metabolomics. This resulted in 5 groups from severe disease categories and matching mild cases
767 (outpatients, in grey). **B.** PCA of the lipidomics data colored by batch number (post batch
768 correction). **C.** PCA of the lipidomics data colored by transmission period.

769

770

772 **Figure S6. CHMI data.** **A.** *ap2-g* transcription measured on day 1 of treatment (T1) and
773 stratified by type of infection. **B-E:** Average (and standard deviation) cytokine levels during the
774 experiment per infection type. Shown are those markers shared with the luminex analysis of the
775 Kilifi cohort. **F.** Average normalized lipid levels are significantly different pre and post treatment
776 (sp=sporozoite infection, bs=blood stage infection). (C=days post infection, T=days post
777 treatment). On the left is indicated whether the lipid is significantly increased (red) or decreased
778 (blue) in either type of infection.

779

780 **Table S1.** Associations between parasite parameters *ap2-g*, *Pfsir2-a* and *PfHRP2* and clinical
781 parameters.

782

783 **Table S2.** Associations between parasite parameters *ap2-g*, *Pfsir2-a* and *PfHRP2*, host luminex
784 markers and lipidomics data.

785

786 **Table S3.** Structural equation model (SEM). The model assumes that pre-existing host immunity
787 affects the interaction between host (i.e., altered within host environment including inflammatory
788 response, fever, nutritional resource availability) and parasite (i.e., altered investment in
789 reproduction vs replication). Significant *p*-values are highlighted in bold and negative and
790 positive estimates of associations are highlighted in blue and red, respectively.