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1 Generative network modeling reveals quantitative definitions of bilateral symmetry
2 exhibited by a whole insect brain connectome

s Benjamin D. Pedigo!*, Mike Powell', Eric W. Bridgeford!, Michael Winding?, Carey E. Priebe’,
4 Joshua T. Vogelstein!

7 Abstract. Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development,

8 learning, and behavior. However, making statistical inferences about the significance and nature of differences
9 between two networks is an open problem, and such analysis has not been extensively applied to nanoscale
10 connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila
11 brain connectome. We translate notions of “bilateral symmetry” to generative models of the network structure of
12 the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant
13 differences in connection probabilities both across the entire left and right networks and between specific cell
14 types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted
15 definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from
16 networks can inform the study of connectomes, facilitating future comparisons of neural structures.

171 Introduction Connectomes — maps of neural wiring — have become increasingly important in neu-
18 roscience, and are thought to be an important window into studying how connectivity relates to neural
19 activity, evolution, disease, genetics, and learning [1—4]. However, many of these pursuits in connec-
20 tomics depend on being able to compare networks. For instance, to understand how memory relates
21 to connectivity, one would need to map a connectome which has learned something and one which
22 has not, and then assess whether and how the two networks are different. To understand how a gene
23 affects connectivity, one would need to map a connectome from an organism with a genetic mutation
24 and one from a wild-type organism, and then assess whether and how the two networks are different.
25 Authors have advocated for comparing connectomes across the phylogenetic tree of life [3] or disease
2 states [2]. Several recent works have already started towards this goal of comparative connectomics.
27 Gerhard et al. [5] compared the connections in the nerve cord (the insect equivalent of a spinal cord)
2s of the L1 and L3 stages of the larval Drosophila melanogaster to understand how these connections
29 change as the animal develops. Similarly, Witvliet et al. [6] collected connectomes from Caenorhabditis
30 elegans at various life stages, and examined which connections were stable and which were dynamic
a1 across development. Cook et al. [7] generated connectomes for both a male and hermaphrodite C.
32 elegans worm to understand which aspects of this organism’s wiring diagram differ between the sexes.
33 Valdes-Aleman et al. [8] made genetic perturbations to different individual D. melanogaster fly larva,
s« and examined how these perturbations affected the connectivity of a local circuit in the organism’s
35 nerve cord. Viewed through the lens of the wiring diagrams alone (i.e., ignoring morphology, subcellu-
s lar structures, etc.), these pursuits all amount to comparing two or more networks.

a7 In addition to those described above, one comparison that has been prevalent in the connectomics
ss literature is to assess the degree of left/right structural similarity of a nervous system. Bilateria is a
39 group of animals which have a left/right structural symmetry. This clade is thought to have emerged
40 around 550 million years ago [9], making it one of the oldest groups of animals. Most organisms
41 studied in neuroscience (including C. elegans, D. melanogaster, mice, rats, monkeys, and humans) are
«2 all bilaterians. While functional asymmetries in the brain have been discovered, this axis of structural
43 symmetry is generally thought to extend to the brain [10].

44 Connectomic studies have investigated this structural similarity in various ways. The degree of
s left/right symmetry in a single connectome has often been studied as a proxy or lower bound for the
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46 amount of sterotypy that one could expect between connectomes of different individuals. Lu et al. [11]
47 reconstructed the connectome of the axons projecting to the interscutularis muscle on the left and right
4 side of two individual mice. They found that the branching patterns of axons between the left and right
49 sides within one animal were no more similar than a comparison between the two animals, and also
so no more similar than two random branching patterns generated by a null model. In contrast, Schlegel
st et al. [12] found a striking similarity between the morphologies of neurons (as measured by NBLAST
s2 [13]) in the left and right hemispheres of the D. melanogaster antennal lobe, and a similar level of
s3 stereotypy between the antennal lobes of two different individuals. Cook et al. [7] used the observed
s« level of left-right variability in a C. elegans hermaphrodite connectome as a proxy for the amount of
ss  variability in connectivity between individuals, assuming that one should expect the connectomes of the
s6 left and right to be the same up to developmental and experiential variability. Conversely, they also point
57 out the fact that the ASEL neuron (on the left side) projects more strongly to neuron class AWC than
ss  the analogous version on the right, verifying this difference via fluorescent labeling in another animal.
s9  These studies highlight the complicated relationship between neuroscientists and bilateral symmetry:
e at times, we may assume that the left and right sides of a nervous system are in some sense the same
st in expectation, but at other times we find marked, reproducible differences between them. To date, no
s2 study (to our knowledge) has framed this question of bilateral symmetry of connectivity as a statistical
e3 hypothesis comparing two networks.

64 In this work, we compare the connectivity of the left and the right hemispheres of an insect con-
es nectome from the perspective of statistical hypothesis testing. Motivated by the discussion above, in
e this work we make three major contributions: 1) we formally state several notions of bilateral symmetry
o7 for connectomes as statistical hypotheses, 2) we present test procedures for each of these hypotheses
es Of bilateral symmetry, and 3) we demonstrate the utility of these tests for understanding the signifi-
69 cance and nature of bilateral symmetry/asymmetry in the brain of a D. melanogaster larva. In doing
70 S0, we provide a framework and methodology for any neuroscientist wishing to compare two networks,
7 facilitating future work in comparative connectomics. We also provide Python implementations and
72 documentation for the statistical tests for network comparison developed in this work.

73 2 Results

74 2.1 Connectome of a larval Drosophila brain Recently, authors mapped a connectome of the brain
75 of a D. melanogaster larva [14]. To understand how the neurons in this brain were connected to each
76 other, the authors first imaged this brain using electron microscopy, and then manually reconstructed
77 each neuron and its pre- and post-synaptic contacts. This synaptic wiring diagram consists of 3,013
75 neurons and over 544,000 synapses. We represent this connectome as a network, with nodes rep-
79 resenting neurons and edges representing some number of synapses between them (Figure 1). Im-
so portantly, this work yielded a complete reconstruction of both the left and right hemispheres of the
s brain. In order to assess bilateral symmetry, we focused on the left-to-left and right-to-right (ipsilateral)
&2 induced subgraphs. While there are conceivable ways to define bilateral symmetry which include the
s contralateral connections, we did not consider them here in order to restrict our methods to the more
s« widely applicable case of two-network-sample testing. More details on how we created the networks
ss 1o compare here are available in Section 4.1. This process yielded a 1,504 neuron network for the left
ss hemisphere, and a 1,503 neuron network for the right.

87 We sought to understand whether these two networks were significantly different according to some
ss definition, in order to characterize whether this brain was bilaterally symmetric. As with any statistical
ss hypothesis test, this required that we make some modeling assumptions about the nature of the net-
90 works being compared. We stress that our subsequent results should be interpreted in light of these
st models and what they do (and do not) tell us about these networks (see [15] for an excellent discus-
92 sion of this point in network neuroscience, and see Section 3.2 for a discussion of alternative modeling
93 assumptions). For all of our models, we treated the networks as directed (since we knew the direction
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A) Adjacency matrix B) Diagrams for ipsilateral networks
L= L L-R
R - L R>R

Figure 1: Visualizations of a larval Drosophila brain connectome from Winding et al. [14]. A) Adjacency matrix for the full
brain connectome network, sorted by brain hemisphere. Note that we ignore the left — right and right — left (contralateral)
subgraphs in this work. B) Network layouts for the left — left and right — right subgraphs.

of synapses), unweighted (creating an edge when there was one or more synapse between neurons
unless otherwise specified), and loopless (since we ignored any observed self-loops). We made no as-
sumptions about whether individual neurons in the left hemisphere correspond with individual neurons
in the right hemisphere. Next, we detail a series of more specific models, what aspects of the networks
they characterize, and how we construct a hypothesis test from each.

2.2 Density test Our first test of bilateral symmetry was based on perhaps the simplest network
model, the Erdos-Renyi (ER) model [16, 17], which models each potential edge as independently
generated with the same probability, p. Comparing two networks under the ER model amounts to
simply comparing their densities (Figure 2A).

(2.1) Hy: pB) = pB vs. Hy : plb) £ pB)

This comparison of probabilities can be tested using well-established statistical machinery for two-
sample tests under the binomial distribution (see Section Section 4.2.2 for more details). We refer to
this procedure as the density test.

Figure 2B shows the comparison of the network densities between the left and right hemisphere
networks. The densities of the left and right are ~0.016 and ~0.017, respectively, making the density of
the left ~0.93 that of the right. To determine whether this is a difference likely to be observed by chance
under the ER model, we ran a two-sided Fisher’s exact test, which tests whether the probabilities of two
independent binomials are significantly different. This test yielded a p-value <1022, suggesting that we
have strong evidence to reject this version of our hypothesis of bilateral symmetry. While the ratio of the
estimated densities is only ~0.93, this extremely small p-value resulted from the large sample size for
this comparison: there are 2,260,512 and 2,257,506 potential edges on the left and right, respectively.

To our knowledge, when neuroscientists have considered the question of bilateral symmetry, they
have not meant such a simple comparison of network densities. In many ways, the ER model is too
simple to be an interesting description of connectome structure. However, it is also striking that perhaps
the simplest network comparison produced a significant difference between brain hemispheres for this
brain. It is unclear whether this difference in densities is biological (e.g., a result of slightly differing
rates of development for this individual), an artifact of how the data was collected (e.g., technological
limitations causing slightly lower reconstruction rates on the left hemisphere), or something else entirely.
Still, in addition to highlighting a simple departure from symmetry in this dataset, the density test result
also provides important considerations for other tests. More complicated models of symmetry could
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Figure 2: Comparison of left and right hemisphere networks via the density test. A) Diagram of the methods used for testing
based on the network density. See Section 4.2.2 for more details. B) The estimated density p (probability of any edge
averaged across the entire network) for the left hemisphere is ~0.016, while for the right it is ~0.017—this makes the left
density ~0.93 that of the right. Vertical lines denote 95% confidence intervals for this estimated parameter p. The p-value for
testing the null hypothesis that these densities are the same is <10~2% (two-sided Fisher’s exact test), meaning very strong
evidence to reject the null that the left and right hemisphere have the same density.

compare other network statistics—say, the clustering coefficients, the number of triangles, and so on.
These statistics, as well as the model-based parameters we will consider in this paper, are strongly
related to the network density [18, 19]. Thus, if the densities are different, it is likely that tests based
on any of these other test statistics will also reject the null hypothesis of bilateral symmetry. Later, we
describe methods for adjusting for a difference in density in other tests for bilateral symmetry.

2.3 Group connection test To understand whether this broad difference between the hemispheres
can be localized to a specific set of connections, we next tested bilateral symmetry by making an
assumption that the left and right hemispheres both come from a stochastic block model (SBM).
Under the SBM, each neuron is assigned to a group, and the probability of any potential edge is a
function of the groups to which the source and target neurons belong. For instance, the probability
of a connection from a neuron in group k£ to a neuron in group [ is set by the parameter By;, where
B is a K x K matrix of connection probabilities if there are K groups. Here, we used broad cell
type categorizations from Winding et al. [14] to determine each neuron’s group. Alternatively, there are
many methods for estimating these assignments to groups for each neuron which we do not explore
here (see Section 3.2 for discussion on this point). Under the SBM with a fixed group assignment for
each node, testing for bilateral symmetry amounts to testing whether the group-to-group connection
probability matrices, BX) and B, are the same.

(2.2) Hy: BY) = BB vs. Hy - B £ B

Rather than having to compare one probability as in Equation 2.1, we were interested in comparing all
K? group-to-group connection probabilities between the SBM models for the left and right hemispheres.
We developed a novel statistical hypothesis test for this comparison, which uses many Fisher’s exact
tests to compare each of the group-to-group connection probabilities, followed by appropriate correction
for multiple comparisons (when examining the individual group-to-group connections) or combination of
p-values (when assessing the overall null hypothesis in Equation 2.2). Details on the methodology used
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146 here is provided in Section 4.2.3, and is shown as a schematic in Figure 3A. We refer to this procedure
17 as the group connection test.

148 Figure 3B shows both of the estimated group-to-group probability matrices, B%) and B®). From
s a visual comparison of B and B(®), the group-to-group connection probabilities appear qualitatively
150 similar. Note also that some group-to-group connection probabilities are zero, making it nonsensical
151 to do a comparison of probabilities. We highlight these elements in the matrices with explicit "0"s, and
152 note that we did not run the corresponding test in these cases. Figure 3C shows the p-values from all
153 284 tests that were run to compare each element of these two matrices. After multiple comparisons
154 correction, six tests produced p-values less than a = 0.05, indicating that we could reject the null
155 hypothesis that those specific connection probabilities are the same between the two hemispheres.
156 We also combined all (uncorrected) p-values, yielding an overall p-value for the entire null hypothesis
157 (Equation 2.2) of equivalence of group-to-group connection probabilities of <10~".

158 Taken together, these results suggest that while the group-to-group connections are roughly similar
159 between the two hemispheres, they are not the same under this model. Notably, there are six group-
160 to-group connections which were significantly different: Kenyon cells (KCs) — KCs, projection neurons
16t (PNs) — lateral horn neurons (LHNs), somatosensory PNs — somatosensory PNs, others (uncatego-
162 rized neurons) — LHNs, LHNs — others, and others — others. Knowing the neuron groups which are
163 wired significantly differently between the two hemispheres highlights the interpretability of this test. If
164 @ neuroscientist wanted to study mechanisms which could cause bilateral asymmetries in the brain,
165 these six group-to-group connections would be prime candidates for investigation.

166 However, in Section 2.2, we saw that the densities of the two networks are significantly different. p,
17 the density of the network, can be thought of as a weighted average of the individual group-to-group
168 connection probabilities, B. Should we then be surprised that if the density is different, the group-to-
169 group connection probabilities are, too? Interestingly, for all the group-to-group connection probabilities
170 which are different, the probability on the right hemisphere (which has the greater density) is higher
i1 (Figure 3D). We consider this phenomenon in the next section.

172 2.4 Density-adjusted group connection test Next, we examined whether the group-to-group con-
173 nection probabilities on the right are simply a “scaled-up” version of those on the left. Figure 3D showed
174 that for all the individual connections which are significant, the connection probability on the right hemi-
175 sphere is higher. This is consistent with the hypothesis stated above, which predicts that the connection
176 probabilities in B(*) should be consistently higher than those in B(X).

177 We thus created a test for this notion of bilateral symmetry in group-to-group connections (up to a
178 density adjustment):

(2.3) Hy: BY = ¢BW® vs, Hy : BE) £ cBH)

179 To implement this hypothesis test, we first computed the density correcting constant (c in Equation 2.3),
180 Which is simply the ratio of the left to the right hemisphere densities, finding that ¢ ~ 0.93. Then, we
181 replaced each of the component tests in the group connection test with a modified version of Fisher’s
1.2 exact test for non-unity probability ratios (see Section 4.2.4 for more details). We refer to this procedure
183 as the density-adjusted group connection test (Figure 4A). The p-values for each of the component
18« tests for the density-adjusted group connection test are shown in Figure 4B. After correction for multiple
185 comparisons, there are two group-to-group connections which are significantly different (at significance
16 level 0.05): KCs — convergence neurons (CNs) and KCs — KCs. Thus, all remaining significant
17 differences between the hemispheres under this version of the SBM are associated with the Kenyon
188 cells.

18 2.5 Removing Kenyon cells Based on the results of Figure 4C, we sought to verify that the remaining
190 differences in group-to-group connection probabilities after adjusting for a difference in density can be
191 explained by asymmetry that is isolated to the Kenyon cells. To confirm this, we simply removed the
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Figure 3: Comparison of left and right hemisphere networks via the group connection test. A) Description of methodology
for the group connection test. See Section 4.2.3 for more details. B) Estimated group-to-group connection probabilities for
both hemispheres. Note that they appear qualitatively similar. Estimated probabilities which are zero (no edge was present
between that pair of groups) are indicated with a “0” in those cells. C) p-values (after multiple comparisons correction) for
each hypothesis test between individual elements of the connection probability matrices. Each cell represents a test for
whether a specific group-to-group connection probability is the same on the left and right sides. “X” denotes a significant
p-value after multiple comparisons correction, with significance level a = 0.05. “B” indicates that a test was not run since the
estimated probability was zero on both hemispheres, “L” indicates this was the case on the left only, and “R” that it was the
case on the right only. The individual (uncorrected) p-values were combined using Tippett's method, resulting in an overall
p-value (for the null hypothesis that the two group connection probability matrices are the same) of <10~7. D) Comparison
of estimated group-to-group connection probabilities for the group pairs that are significantly different. In each case, the
connection probability on the right hemisphere is higher.
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Figure 4: Comparison of left and right hemisphere networks via the density-adjusted group connection test. A) Description of
methodology for adjusting for a density difference between the two stochastic block models. See Section 4.2.3 for more details.
The adjustment factor (ratio of the left to the right density), c, is ~0.93. B) P-values for each group-to-group comparison after
adjusting for a global density difference. P-values are shown after correcting for multiple comparisons. Note that there are
two significant p-values, and both are in group connections incident to Kenyon cells. These individual (uncorrected) p-values
were combined using Tippett's method, resulting in an overall p-value (for the null hypothesis that the two group connection
probability matrices are the same after correcting for the density difference) of <1072,

Kenyon cells (i.e., all Kenyon cell nodes and edges to or from those nodes) from both the left and
right hemisphere networks, and then re-ran each of the tests for bilateral symmetry presented here
(Figure 5A). We observed significant differences between the left and right hemispheres for the density
and group connection tests when excluding Kenyon cells, yielding p-values of <10727 and <1072,
respectively (Figure 5B and C). However, for the density-adjusted group connection test, the p-value
was ~0.51, indicating that we no longer rejected bilateral symmetry under this definition when the
Kenyon cells are excluded from the analysis (Figure 5D). This sequence of results suggests that the
difference between the left and right hemispheres (at least in terms of the high-level network statistics
studied here) can be explained as the combination of a global effect (the difference in density) and a
cell-type-specific effect (the difference in Kenyon cell projection probabilities).

It is noteworthy that the Kenyon cells were the specific cell type where we detected asymmetry after
correcting for the density difference. Kenyon cells are involved in associative learning in Drosophila
and other insects [20-22]. Other studies have suggested that certain connections (specifically from
antennal lobe projection neurons to Kenyon cells) are random [22, 23]. The marked lack of symmetry
we observed specifically in the Kenyon cells in the current study could be the result of these features,
which suggest their uniquely non-stereotyped patterns of connectivity in this nervous system.

2.6 Edge weight thresholds Next, we sought to examine how the definition of an edge used to
construct our binary network affects the degree of symmetry under each of the definitions considered
here. For the networks considered in the previous sections, we considered an edge to exist if one or
more synapses from neurons ¢ to j were in the dataset. To understand how our analysis might change
based on this assumption, we considered two types of edge weight threshold schemes for creating
a binary network before testing: the first based simply on a threshold on the number of synapses,
and the second based on a threshold of the proportion of a downstream neuron’s input (Figure 6A).
By varying the threshold in both schemes, we were able to evaluate many hypotheses about bilateral
symmetry, where higher thresholds meant that we only considered the symmetry present in strong
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Figure 5: Comparison of left and right hemisphere networks when not including Kenyon cells. A) Diagram of the meth-
ods used, indicating that Kenyon cells (and any incident edges) were simply removed from the network, and all previously
mentioned tests were run again. B) Comparison of network densities, as in Figure 2B. The p-value for this comparison is
<10~%", indicating very strong evidence to reject the null that the two networks share the same density. C) Comparison of
group-to-group connection probabilities, as in Figure 3C. P-values are shown for each group-to-group connection compari-
son (after multiple comparison correction). The (uncorrected) p-values were combined to yield an overall p-value of <1072,
showing evidence that the group connection probabilities are not the same even after removing Kenyon cells. D) Comparison
of group-to-group connection probabilities after density adjustment, as in Figure 4C. P-values are shown for each group-to-
group connection comparison (after multiple comparison correction). Note that there are no longer any significantly different
connections. The (uncorrected) p-values were combined to yield an overall p-value of ~0.51. After removing Kenyon cells,
there is no longer evidence to reject the null that the group connection probabilities are the same.

Test method Model Hy (vs. H4 #) | KCs | p-value
Density test ER pL) = p(B) + | <1072
Group connection test SBM B(L) = p(#) + | <107"
Density-adjusted group connection test | DA-SBM | B(X) = ¢B() + | <1072
Density test ER pL) = p(B) - | <1077
Group connection test SBM B(L) = p(#) - | <1072
Density-adjusted group connection test | DA-SBM | B(X) = ¢B() - | ~0.51

Table 1:
each evaluation of bilateral symmetry.

Summary of tests, models, hypotheses, whether Kenyon cells (KCs) were included, and the resulting p-values for
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Figure 6: The effect of edge weight threshold on the significance level for each of the tests of bilateral symmetry. Diagrams of
A) two notions of edge weight, and B) application of edge weight thresholds to examine bilateral symmetry. See Section 4.3
for more explanation. C) Distribution of synapse count edge weights. The right hemisphere consistently has more edges
in each synapse count bin. D) Distribution of input percentage edge weights. The right hemisphere has more edges in the
lower (<1%) portion of this distribution, but the hemispheres match well for high edge weights. E) p-values for each test after
synapse count thresholding, plotted as a function of the percentage of edges which are removed from the networks, as well
as the corresponding weight threshold (lower x-axis). The p-values for all tests generally increased as a function of synapse
count threshold, but the density test never reached a p-value >0.05 over this range of thresholds. F) p-values for each test
after input percentage thresholding, plotted as a function of the percentage of edges which were removed from the networks,
as well as the corresponding weight threshold (lower x-axis). Note that all tests yielded insignificant (>0.05) p-values after a
threshold of around 1.25% input proportion. Compared to the results in E), thresholding based on input percentage reached
insignificant p-values faster as a function of the total amount of edges removed for all tests.
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217 edges (Figure 6B).

218 Before running the tests for each of these notions of symmetry, we first examined the distributions
219 Of edge weights to get a sense for how we should expect these tests to perform. Figure 6C and D
220 display the distribution (total count) for the synapse count or input proportion edge weights, respectively.
221 The right hemisphere has more connections than the left for all synapse count values (Figure 6C),
222 hinting that the density of the right hemisphere will be slightly higher for any potential edge weight
223 threshold using this definition. Conversely, the distributions of weights as an input percentage shows a
224 different trend. For edge weights less than ~1.25%, the right appears to have more edges, but past this
225 threshold, the counts of edges between left and right appear comparable (Figure 6D).

226 Figure 6E and F show the effect of varying these thresholds on the p-values from each of our tests
227 Of bilateral symmetry. We observed that for either thresholding scheme (synapse count or input propor-
28 tion), the p-value for each test generally increased as a function of the threshold—in other words, the
220 left and right hemisphere networks became less significantly different (under the definitions of “differ-
230 ent” we have presented here) as the edge weight threshold increased. Previous works have shown that
231 higher-weight edges are more likely to have that corresponding edge present on the other side of the
232 nervous system [5, 24]. Here, we provide evidence that considering networks formed from only strong
233 edges also decreases asymmetry at a broad, network-wide level.

234 To make these two thresholding schemes more comparable, we also examined these results as a
235 function of the proportion of edges from the original network which that threshold removed (Figure 6E
256 and F, lower x-axis). We found that when thresholding based on synapse counts, the majority (~60%)
237 Of the edges of the networks need to be removed for any test (in this case the density-adjusted group
233 connection test) to yield non-significant p-values. Conversely, for the thresholds based on input propor-
239 tion, the density-adjusted group connection test yielded a p-value greater than 0.05 after removing only
200 the weakest ~20% of edges. Strikingly, we observed that when considering only the strongest ~60%
241 Of edges in terms of input proportion, even the density test had a high p-value (>0.05), while for the
22 synapse-based thresholds we examined, this never occurred.

243 These findings are consistent with previous work in connectomics which has hinted at the impor-
244 tance of input proportion as a meaningful “edge weight.” Gerhard et al. [5] compared the connectivity
245 Of select neurons in the nerve cord between L1 and L3 stages of the larva. They observed that while
246 the number of synapses from the mdlV cell type onto various nerve cord local neurons can grow ~3-10
247 fold from L1 to L3, the proportion of that downstream neuron’s input stays relatively conserved. Based
24s 0N this finding, the authors suggested that perhaps the nervous system evolved to keep this parameter
249 constant as the organism develops. An analysis of wiring in the olfactory system of the adult Drosophila
250 suggested a similar interpretation after examining a projection neuron cell type with an asymmetric
251 number of neurons on the two sides of the brain [25]. Here, we provide further evidence based on the
252 entire brain of the Drosophila larva that while the left and right hemispheres may appear significantly
253 different when considering all observed connections, the networks formed by only the strongest edges
254 (especially in terms of input proportion) are not significantly different between the hemispheres when
255 viewed through the lens of the models considered in this work.

26 3 Discussion

7 3.1 Summary We began with what was at its face a very simple question: is the connectivity on the
28 left and the right side of this brain “different?” We then described several ways that one could mathe-
259 matically formalize notions of “different” from the perspective of network model parameters: difference
260 in density of connections across the entire network (Section 2.2), difference in group connection prob-
261 abilities (Section 2.3), or difference in group connection probabilities while adjusting for a difference in
262 density (Section 2.4). We proposed a test procedure corresponding with each of these notions, relying
263 on well established statistical techniques for evaluating contingency tables and combining p-values to
264 construct our tests. The results of these different test procedures varied markedly (Table 1). Specif-
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265 ically, we saw that the network densities were significantly different between the hemispheres. The
266 group connection test also detected a difference, highlighting six group-to-group connections which
267 had significantly differing connection probabilities when comparing the hemispheres. However, when
26s We added an adjustment to the group connection comparison to account for the difference in network
269 density, this test had only two significant group connections, and both were projections from the Kenyon
270 cells. Thus, the asymmetry observed (at least when viewed through the lens of these high-level network
271 statistics) between the hemispheres can be thought of as a global density difference in addition to a cell
272 type-specific effect shown in the Kenyon cells. We confirmed this finding by simply removing the Kenyon
273 cells, and showing that the density-adjusted group connection test no longer rejected (Section 2.5). Fi-
274 nally, we examined whether the left and right hemisphere networks would become less dissimilar when
275 only high-edge-weight edges were considered (Section 2.6). We found that whether thresholding based
276 0N number of synapses or the proportion of input to the post-synaptic neuron, p-values generally in-
277 creased for each test (i.e., less significant asymmetry was detected) as the edge weight threshold grew.
27s  However, we observed that thresholds based on neuron input proportion could achieve symmetry while
279 removing fewer (only 20% for some tests) edges. These results are consistent with the idea that the
280 nervous system evolved to preserve a relative balance of inputs to individual neurons, which has been
281 suggested by previous studies on specific subcircuits in the larval and adult Drosophila nervous system
232 [5, 25, 26].

233 3.2 Limitations As with any statistical inference, our conclusions are valid under particular model
28« assumptions. Therefore, it is important to highlight the assumptions which motivated each of our tests
285 in order to understand what each p-value means (and what it does not). We highlight several of these
286 assumptions below, and comment on alternative assumptions that one could make in each case.

257 What model? First, while we motivated the tests presented here by assuming that some statistical
288 model produced the connectivity of the left and the right hemispheres, these models do not literally
259 describe the process which generated these networks. However, without knowledge of how genes and
200 development give rise to the connectome, we know of no more correct model for how this connectome
201 was generated [1, 6, 27] (and even this would still be just a model). Without an agreed upon definition
202 Of bilateral symmetry, we chose to start from the simplest definition of what one could mean by bilateral
203 symmetry. From this simplest network model, we iteratively added complexity to the definition of bilateral
20¢  symmetry until we found the simplest model for which the Drosophila larva connectome displayed no
205 Significant asymmetry.

296 However, many other network models could have been applied to examine different definitions of
207 bilateral symmetry. Tests based on the random dot product graph model [28—30] would allow us to
208 compare connection probabilities between hemispheres without assuming that neurons belong to a
209 finite number of groups. Bravo-Hermsdorff et al. [31] showed that a two-network-sample test could
a0 be constructed from subgraph counts, which they argue characterize a network’s “texture” rather than
a1 its “backbone” as studied in this work. We also did not use network models that incorporate edge
sz weights, as two-network-sample tests for this case are even less developed than for the unweighted
a3 case. Further, a variety of neuroscience-specific network models (such as those which incorporate
a4 spatial information) have been proposed [15]. Nevertheless, we note that even if one is concerned with
305 these more elaborate notions of symmetry, they are still related to the simple models studied here. For
s instance, the network density would affect a network’s latent positions under the random dot product
sz graph model, as well as the count of any possible subgraph. Thus, even if one prefers a different
ss definition of bilateral symmetry, the definitions presented here were worth testing.

a9 What is a cell type? Second, even if these networks were generated from SBMs, alternative groupings
a0 of neurons could have been used. We used broad cell type categorizations from previous literature
a1 [14] to partition our network into groups. However, we could have used a coarser partition, categorizing
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312 Neurons as sensory, interneuron, and descending/output. Conversely, we could have used a finer
s13  partition, splitting the cell types used here into subgroups (such as whether a sensory neuron receives
a1« odor or visual information). Thus, the results presented for any group connection test need to be
a5 interpreted in terms of the specific cell type groupings used.

316 Further, a rich literature exists on inferring the partition for an SBM from the observed connectivity
a7 [32-37] - this is one perspective for clustering neurons based on their observed connectivity, much like
st clustering procedures are used to predict meaningful groups of neurons based on morphology, activity,
319 Or gene expression. Applying these techniques to a connectome would yield alternative groupings of
320 neurons (as in Winding et al. [14]) to use for a group connection test, which again, could change its
321 conclusions. However, this approach requires further study, as it introduces a new source of uncertainty
322 since more model parameters are estimated from the data.

323  What about neuron pairs? Third, we assumed that the two networks we observed were unmatched —
s« that is, the tests we applied did not use any pairing of individual neurons between hemispheres. In
325 Drosophila, this 1-to-1 neuron correspondence is known to exist for most neurons, particularly in the
a6 larva. GAL-4 lines are able to reliably label bilateral neuron pairs on the basis of their gene expression
327 [38, 39]. These neurons tend to be similar in terms of their morphology and their connectivity [5, 12, 14,
a8 24, 39-41]. Methods which use this pairing (e.g., [28, 42, 43], as well as tests based on correlated ER
s20 and SBM models) would be able to evaluate symmetry in light of edge correspondences between the
a0 two networks, and could have higher power at detecting certain asymmetries. However, these methods
331 assume that the matching of nodes is perfect and complete—if even one neuron pairing is a mistake, or
a2 if even one neuron does not have a partner in the opposite hemisphere, then these tests could be invalid
sz or inapplicable. We note that graph matching techniques could estimate a correspondence between
s« nodes for all neurons [14, 40, 44—46]; however, the statistical consequences of first learning this (likely
a5 imperfect) alignment prior to using a method which assumes the alignment is known and exact have
ss not been thoroughly studied, so we did not explore it further here.

7 3.3 Outlook We presented the first statistical comparison of bilateral networks in a neuron-level brain
ss connectome. While we focused on the larval Drosophila brain connectome, these techniques could be
a3 applied to future connectomes to evaluate bilateral symmetry in other individuals or organisms. More
a0 generally, we presented several notions that can be used to compare two networks, a particularly rel-
s evant problem in the current age of connectomics. Human (macroscale) connectomics has seen an
a2 explosion in the number of network samples that can be obtained, allowing for different approaches
a3 for comparing connectomes across populations, from simple comparisons of edges [47] to low-rank
a4 and sparse regressions across networks [48]. However, nanoscale connectomics is still technologically
a5 limited in its acquisition rate, often to only one or at best a few (< 10, e.g., [6]) individuals for a given
as experiment. Nevertheless, we wish to make valid inferences and comparisons between these connec-
a7 tomes [1-4]. The framework for two-network-sample testing presented here will facilitate these kinds
as  of comparisons. To make these comparisons more practical to neuroscientists, we demonstrated the
a9 importance of adjustments to simple null hypotheses—as we saw, even a difference in something as
30 simple as a network density can be related to other network comparisons. For example, take the prob-
351 lem of comparing the connectome of the larval and adult Drosophila. Since the adult Drosophila brain
32 has orders of magnitude more nodes [14, 49, 50], the density of this network is likely to be smaller than
353 that of the larva. Therefore, we may want to consider a more subtle question—are the connectomes of
s« the adult and larva different (and if so, how) after adjusting for this difference in density? These kinds of
355 biologically-motivated adjustments to out-of-the-box statistical hypotheses will be key to drawing valid
36 inferences from connectomes which are also relevant to meaningful questions in neuroscience.
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ss7 4 Methods

s 4.1 Network construction Here, we explain how we generated networks for the bilateral symmetry
sse  comparison. We started from a network of all neurons in the brain and sensory neurons which project
se0 into it for a larval Drosophila [14]. As in Winding et al. [14], we removed neurons which were con-
31 sidered partially differentiated. From this network, we selected only the left-to-left (ipsilateral) induced
a2 subgraph, and likewise for the right-to-right. We ignored a pair of neurons which had no left/right desig-
33 nation, as their cell bodies lie on the midline [14]. To ensure we had fully connected networks on either
s« hemisphere, we took the largest weakly connected component of neurons on the left, and likewise on
ss the right.

366 With this selection for our nodes of interest, we then choose our set of edges to be:

367 e Unweighted: we only considered the presence or absence of a connection, creating a binary
368 network. For most analyses except where explicitly indicated, this meant we considered an
369 edge to exist if there was at least one synapse from the source to the target neuron. For this
370 connectome, four edge types are available: axo-axonic, axo-dendritic, dendro-dendritic, and
a71 dendro-axonic. We made no distinction between these four edge types when constructing the
372 binary networks. One could consider notions of bilateral symmetry for a weighted network, but
373 we focused on the unweighted case for simplicity and the fact that most network models are
374 for binary networks. We studied the effect of varying the edge weight requirement (i.e., the
375 threshold) for an edge to exist in Section 2.6.

376 e Directed: we allow for a distinction between edges which go from neuron 7 (presynaptic) to
377 neuron j (postsynaptic) and the reverse.

378 e Loopless: we remove any edges which go from neuron i to neuron ¢, as the theory on network
379 testing typically makes this assumption. We note that while ~18% of neurons have a connection
380 to themselves, these self-loops comprise only ~0.7% of edges.

381 When comparing two networks, methods may make differing assumptions about the nature of the

a2 two networks being compared. One of the most important is whether the method assumes a cor-
a3 respondence between nodes [51]. Some methods (matched comparisons, also called known node-
ss4 correspondence) require that the two networks being compared have the same number of nodes, and
sss that for each node in network 1, there is a known node in network 2 which corresponds to it. Other meth-
sss 0ds (unmatched comparisons, also called unknown node-correspondence) do not have this require-
s7  ment. To make an analogy to the classical statistical literature on two-sample testing, this distinction
sss IS similar to that between an unpaired (unmatched) and a paired (matched) t-test. We focused on the
sse unmatched case in this work, where we say nothing about whether any neurons on the left correspond
a0 with any specific neurons on the right.

st 4.2 Two-network-sample testing Here, we describe in more detail the methods used to evaluate
se2 bilateral symmetry, each of which is based on some generative statistical model for the network. For
se3 each model, we formally define the model, describe how its parameters can be estimated from observed
s« data, and then explain the test procedure motivated by the model. A more thorough review of these
sss  models can be found in Chung et al. [52].

s 4.2.1 Independent edge random networks Many statistical network models fall under the umbrella
sz Of independent edge random networks, sometimes called the Inhomogeneous Erdos-Renyi model.
ss  Under this model, the elements of the network’s adjacency matrix A are sampled independently from a
a9 Bernoulli distribution:

A;; ~ Bernoulli(P;j)

w0 If n is the number of nodes, the matrix P is a n x n matrix of probabilities with elements in [0, 1].
a0t Depending on how the matrix P is constructed, we can create different models. We next describe
a2 several of these choices. Note that for each model, we assume that there are no loops, or in other

13


https://doi.org/10.1101/2022.11.28.518219
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.28.5182109; this version posted November 28, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a3 words the diagonal of the matrix P will always be set to zero.

a4 4.2.2 Erdos-Renyi model and density testing Perhaps the simplest model of a network is the
a5 Erdos-Renyi (ER) model. This model treats the probability of each potential edge in the network occur-
a6 ring to be the same. In other words, all edges between any two nodes are equally likely. Thus, for all
w7 (i,7),1 # 7, with ¢ and j both running from 1...n, the probability of the edge (i, j) occurring is:

P[Aljzl]:PU =p

a8 Where p is the global connection probability.

409 Thus, for this model, the only parameter of interest is the global connection probability, p. This is
a0 sometimes also referred to as the network density. For a directed, loopless network, with n nodes,
s there are n(n — 1) unique potential edges (since we ignore the n elements on the diagonal of the
a2 adjacency matrix). If the observed network A has m total edges, then the estimated density is simply

L m
p= n(n—1)
413 In order to compare two networks A(X) and A4 under this model, we simply need to compute these

ss  estimated network densities (p&) and p#), and then run a statistical test to see if these densities are
a1 significantly different. Under this model, the total number of edges m comes from a Binomial(n(n —
ss 1), p) distribution. This is because the number of edges is the sum of independent Bernoulli trials with
«7  the same probability. If m (%) is the number of edges on the left hemisphere, and m () is the number of
a8 edges on the right, then we have:

m®&) ~ Binomial(n(L) (n(L) — 1),p(L))

419 and independently,
m ~ Binomial (n" (n — 1), p()

20 To compare the two networks, we are interested in a comparison of p(X) vs. p(X). Formally, we are
21 testing:
Hy:pB) =p H, : plB) £ pd),

a2 Fortunately, the problem of testing for equal proportions under the binomial is well studied. In our case,
a3 We use Fisher’s exact test [53] to run this test for the null and alternative hypotheses above.

24 4.2.3 Stochastic block model and group connection testing A stochastic block model (SBM)
425 is a popular statistical model of networks [54]. Put simply, this model treats the probability of an edge
426 Occurring between node ¢ and node j as purely a function of the communities or groups that node 7 and
427 j belong to. This model is parameterized by:

428 e An assignment of each node in the network to a group. Note that this assignment can be
429 considered to be deterministic or random, depending on the specific framing of the model one
430 wants to use. Here we are assuming 7 is a fixed vector of assignments. We represent this
431 non-random assignment of neuron to group by an n-length vector 7. If there are K groups, 7
432 has elements in {1...K}. If the i-th element of 7 is equal to k, then that means that neuron i is
433 assigned to group k.

434 e A set of group-to-group connection probabilities. We represent these probabilities by the matrix
435 B € [0,1]5*K where the element (k, 1) of this matrix represents the probability of an edge
436 from a neuron in group & to one in group I.

w7 Thus, the probability of any specific edge (i, j) can be found by looking up the appropriate element of
a8 B:
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439 In our case, we assume 7 is known—in the case where it is not, or one simply wishes to estimate an
a0 alternative partition of the network, many methods exist for estimating ~. But with 7 known, estimating
w1 B becomes simple, amounting to doing K2 subgraph density estimates. Specifically, let m(k,[) be
a2 the number of edges from nodes in group & to nodes in group I. We then compute the density of this
a3 subgraph for each (k, 1) pair (ignoring self-loops):

R m(k,l) if ko £ 1
By = { e #

m(k,l) . -
=T ifk=1
a4 where ny is the number of nodes in group &, and likewise for n;.
445 Assuming the SBM, we are interested in comparing the group-to-group connection probability ma-
as trices, B, for the left and right hemispheres. The null hypothesis of bilateral symmetry becomes

(4.1) Hy: BY =W g, . pBL £ B

«7  Rather than having to compare one proportion as in Section 4.2.2, we are now interested in comparing
us  all K2 probabilities between the SBM models for the left and right hemispheres. The hypothesis test
1s above can be decomposed into K2 hypotheses. B(X) and B are both K x K matrices, where each
a0 element By represents the probability of a connection from a neuron in group & to one in group [. We
a5t also know that group k for the left network corresponds with group & for the right. In other words, the
a2 groups are matched. Thus, we are interested in testing, for &, [ both running from 1...K:

(4.2) Hy: B =B Hy: B 2 B

453 Now, we are left with K2 p-values from Equation 4.2, each of which bears upon the overall null
a4 hypothesis in Equation 4.1. We therefore require some method of combining these p-values into one,
ass  or otherwise making a decision about the hypothesis in Equation 4.1. Many methods for combining p-
46 values have been proposed. This problem of combining p-values can itself be viewed as a hypothesis
ss7  testing problem. Denoting the (k, 1)th p-value from Equation 4.2 as py;, we are testing

Hy : pg ~ Uniform(0,1)

a8 versus the alternative hypothesis that at least one of the p-values is distributed according to some non-
a9 uniform, non-increasing density with support [0, 1] [55, 56]. Birnbaum [55] showed that no method of
a0 combining these p-values can be optimal in general to all alternatives, so we are left with a decision
w61 to make (with no universally preferred answer) about which methods to use to combine p-values [56].
a2 Here, we select Tippett's method [56, 57] due to its ubiquity, simplicity, and power against various alter-
a3 Natives to bilateral symmetry under a simulation described in Section 7.1. We note that for future works,
a4 specific classes of alternatives may motivate different methods for combining p-values, as described in
45 Heard and Rubin-Delanchy [56].

466 We also examined the p-values from each of the individual tests after Holm-Bonferroni correction
a7 1o correct for multiple comparisons. As in Section 4.2.2, we used Fisher’s exact test [53] to perform
a8 each of the individual hypothesis tests in Equation 4.2. Note also that in some cases, an element of
s BE) and/or B could be 0; in each of these cases, we did not run that specific comparison between
470 elements, as the notion of testing for proportions being the same becomes nonsensical. We indicated
an1 these tests in Figure 3C, Figure 4C and Figure 5C-D, and note that these tests were not included when
a2 computing the number of comparisons for the Holm-Bonferroni correction.

sz 4.2.4 Density-adjusted group connection testing In Section 2.4, we considered the null hypothesis
a74  that the left hemisphere connection probabilities under the SBM are a scaled version of those on the
475 right:

(4.3) Hy: BY) = cBW s Hy : BE) £ cBW),
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476 The scale for this comparison is the ratio of the densities between the left and the right hemisphere
a7z networks:

(4.4) c="—=.

a7s Analogous to the group connection testing in Equation 4.2, this means that the individual group con-
479 nection hypotheses become

(4.5) Hy:BWY =B Hy:BY £ B
480 The parameter c can be viewed as a probability ratio:

L) ? R
Bl(cl) = CBl(cl :

481

a2 In essence, we wish to test whether a probability ratio matches a prespecified hypothesized value, c.
483 To test Equation 4.2, we were able to use Fisher's exact test [53], which aims to determine whether
s8¢ two proportions are significantly different in a 2 x 2 contingency table. By conditioning on the marginal
a5 Observations of the table, it was shown that the distribution of one of the cells follows a hypergeometric
s distribution under the null that the two proportions are the same. Fisher's exact test compares the
a7 observed count to this hypergeometric distribution under the null to compute its p-value. Similarly, it
sss was shown that the distribution of one of the cells conditioned on the marginals and a specific odds
a0 ratio follows Fisher’s non-central hypergeometric distribution under the null hypothesis [58, 59]. This
a0 leads to a test analogous to Fisher’s exact test, but for a potentially non-unity probability ratio, c. Note
a9 that this test reduces exactly to Fisher’s exact test when the probability ratio ¢ = 1. We used this
a2 non-unity Fisher's exact test in the individual group connection tests, with all other machinery (e.g., for
s93  combining p-values or correcting for multiple comparisons) remaining the same as in Section 4.2.3.

s« 4.3 Edge weight thresholds To examine the effect of which edges are used to define the left and
95 right networks on the p-values from each test, we tested various edge weight thresholds used to define
a6 OUr binary networks for comparison. Given a set of edges (i.e., (¢, j) pairs) with corresponding weights
w7 wjj, a thresholding £(t) simply selects the subset of those edges for which w;; is greater than or equal
a8 to some threshold, ¢.

Et) ={(i,7) : wiy >=t}

499 Let s;; be the observed number of synapses from neuron 7 to neuron j. We considered two thresh-
so0 olding schemes: the first was to simply use the number of synapses from neuron ¢ to j as the edge
sot  weight and the second was to consider the edge weight from neuron : to j to be the number of synapses
sz from ¢ to j divided by the total number of observed synapses onto neuron j. We stress that the number
s03  Of synapses onto neuron j is not necessarily equal to the weighted degree of neuron j. This is simply
so4 because we consider all annotated postsynaptic contacts onto neuron j, and some number of those
sos contacts may not be connected to another neuron in the current networks considered here. We denote
sos the number of synapses onto neuron j as D;. To summarize:

507 e Synapse number threshold: w;; = s;;
508 e Input proportion threshold: w;; = Z—;
509 Given either definition of the weighting scheme, we formed a series of networks by varying the

sio edge weight threshold, t. We stress that edge weights were used only for the purposes of defining
s11  the edges to consider for our (binary) networks—the edge weights themselves were not used in the
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sz statistical tests. We then re-ran the density, group connection, and density-adjusted group connection
513 tests for each network. The p-values for these tests are plotted against the weight thresholds and
s14 the proportion of edges removed in Figure 6E and F for the synapse number and input proportion
515 thresholds, respectively.

st6 5 Code Analyses relied on graspologic [60], NumPy [61], SciPy [62], Pandas [63], and NetworkX
si7  [64]. Plotting was performed using matplotlib [65] and Seaborn [66]. All code used for this pa-
sts per can be found at github.com/neurodata/bilateral-connectome and viewed as a JupyterBook [67] at
st9 docs.neurodata.io/bilateral-connectome. The data used in these analyses will be made public and in-
s20 cluded in the source code repository above upon the release of the data in Winding et al. [14].
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792 7 Supplemental Information

793 7.1 Power and validity of group connection test under various alternatives In Section 4.2.3, we
794 considered the group connection test, where the goal was to test

(7.1) Hy: BY) = BW s H, - B+ BU),

75 We saw that this set of hypotheses could be decomposed into K? (where K is the number of groups)
796 different hypotheses

(7.2) Hy: B =BW  H,:. B + B,

797 yielding a p-value for the (k,[)th test, px;. We now consider the problem of trying to combine these
798 p-values into one which bears on the overall hypotheses in Equation 7.1. We proposed using Tippett’s
799 method for combining p-values [57], and we now demonstrate the utility of this method against various
soo alternatives.

801 To do so, we performed the following simulation experiment. First, we consider two hypothetical
sz group connection matrices, B() and B®. We set B®) = B, We also consider the matrix M,
sos Which is a K x K matrix denoting the number of possible edges in each block of an SBM. Here, we
s+ again set M = MWL) in other words, we use the number of potential edges for each block observed
sos for the left hemisphere network. To analyze the sensitivity of Tippett's method to different alternatives,
sos we conducted the following simulation: Let ¢t be the number of probabilities to perturb. Let § represent
so7 the strength of the perturbation. We performed experiments using 6 € {0,0.1,0.2,0.3,0.4,0.5} X
ss ¢t € {0,25,50,75,100,125} (note that if &6 = 0 or ¢ = 0, then we are under the null hypothesis in
soo Equation 7.1). For each (4, t), we ran 50 replicates of the simulation below:

810 1. Randomly select ¢ probabilities without replacement from the elements of B.

811 2. For each of the selected elements, set B,(j) = TN(B,S),éB,S)) where T'N is a truncated
812 normal distribution with support [0, 1].

813 3. For each of the unselected elements, set B,(j) = B,(j).

814 4. For each block (k, ), sample the number of edges in that block for network 1:

m](d) ~ Binomial( My, B,S)).

815 Sample the number of edges in each block similarly for network 2, but using B(2).

816 5. For each block (k,1), compare m,(j) and m,(j) using Fisher’s exact test as in Section 4.2.3. This
817 yields a set of p-values P = {p1 1, p12.--P(x—1),K> Pk K } for each comparison.

818 6. Apply Tippett's method to combine the p-values P into one p-value for the overall hypotheses.
819 We observed that the p-values obtained from Tippett's method were valid — they controlled the

s20 probability of Type | error for any significance level (Supplemental Figure 1A). Further, we observed that
s21  Tippett’s method was also powerful against differing alternatives to the null hypothesis (Supplemental
s22  Figure 1B). Tippett's method had a power of 1 against the alternative (t = 25,6 = 0.5), meaning a small
s2a  number of large perturbations. It also had a power of ~0.8 against the alternative (t = 125, = 0.1),
s2¢« in other words, a large number of small perturbations. Thus, we concluded that Tippett’s method is a
825 reasonable choice of method for combining p-values for our group connection test.
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Supplemental Figure 1: Demonstration that the group connection test is both valid and powerful against a range of alternatives
in a synthetic simulation based on the observed data. See Section 7.1 for more details on the simulation. A) Cumulative
distribution of p-values from Tippett's method for combining p-values under the null, where the two group connection matrices
B® and B® are the same. Note that the distribution of these p-values is sub-Uni form(0,1) (i.e., below the dashed line
indicating the cumulative distribution of a Uni form(0, 1) random variable, meaning that the test is valid and the Type-I error
is properly controlled for any level . B) Power (probability of correctly rejecting the null hypothesis when it is false) as a
function of the number of perturbed blocks (t) and the strength of each perturbation (§). Note that the test is powerful against
both a small number of strong perturbations and a large number of small perturbations, indicating its general applicability.
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