

1 Generative network modeling reveals quantitative definitions of bilateral symmetry 2 exhibited by a whole insect brain connectome

3 Benjamin D. Pedigo^{1*}, Mike Powell¹, Eric W. Bridgeford¹, Michael Winding², Carey E. Priebe¹,
4 Joshua T. Vogelstein¹

5

6

7 **Abstract.** Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development,
8 learning, and behavior. However, making statistical inferences about the significance and nature of differences
9 between two networks is an open problem, and such analysis has not been extensively applied to nanoscale
10 connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval *Drosophila*
11 brain connectome. We translate notions of “bilateral symmetry” to generative models of the network structure of
12 the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant
13 differences in connection probabilities both across the entire left and right networks and between specific cell
14 types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted
15 definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from
16 networks can inform the study of connectomes, facilitating future comparisons of neural structures.

17

18 **1 Introduction** Connectomes – maps of neural wiring – have become increasingly important in neu-
19 roscience, and are thought to be an important window into studying how connectivity relates to neural
20 activity, evolution, disease, genetics, and learning [1–4]. However, many of these pursuits in connec-
21 toomics depend on being able to compare networks. For instance, to understand how memory relates
22 to connectivity, one would need to map a connectome which has learned something and one which
23 has not, and then assess whether and how the two networks are different. To understand how a gene
24 affects connectivity, one would need to map a connectome from an organism with a genetic mutation
25 and one from a wild-type organism, and then assess whether and how the two networks are different.
26 Authors have advocated for comparing connectomes across the phylogenetic tree of life [3] or disease
27 states [2]. Several recent works have already started towards this goal of comparative connectomics.
28 Gerhard et al. [5] compared the connections in the nerve cord (the insect equivalent of a spinal cord)
29 of the L1 and L3 stages of the larval *Drosophila melanogaster* to understand how these connections
30 change as the animal develops. Similarly, Witvliet et al. [6] collected connectomes from *Caenorhabditis*
31 *elegans* at various life stages, and examined which connections were stable and which were dynamic
32 across development. Cook et al. [7] generated connectomes for both a male and hermaphrodite *C.*
33 *elegans* worm to understand which aspects of this organism’s wiring diagram differ between the sexes.
34 Valdes-Aleman et al. [8] made genetic perturbations to different individual *D. melanogaster* fly larva,
35 and examined how these perturbations affected the connectivity of a local circuit in the organism’s
36 nerve cord. Viewed through the lens of the wiring diagrams alone (i.e., ignoring morphology, subcellu-
lar structures, etc.), these pursuits all amount to comparing two or more networks.

37

38 In addition to those described above, one comparison that has been prevalent in the connectomics
39 literature is to assess the degree of left/right structural similarity of a nervous system. *Bilateria* is a
40 group of animals which have a left/right structural symmetry. This clade is thought to have emerged
41 around 550 million years ago [9], making it one of the oldest groups of animals. Most organisms
42 studied in neuroscience (including *C. elegans*, *D. melanogaster*, mice, rats, monkeys, and humans) are
43 all bilaterians. While functional asymmetries in the brain have been discovered, this axis of structural
symmetry is generally thought to extend to the brain [10].

44

45 Connectomic studies have investigated this structural similarity in various ways. The degree of
left/right symmetry in a single connectome has often been studied as a proxy or lower bound for the

¹Johns Hopkins University (JHU), ²University of Cambridge.

* corresponding author: bpedigo@jhu.edu.

46 amount of stereotypy that one could expect between connectomes of different individuals. Lu et al. [11]
47 reconstructed the connectome of the axons projecting to the interscutularis muscle on the left and right
48 side of two individual mice. They found that the branching patterns of axons between the left and right
49 sides within one animal were no more similar than a comparison between the two animals, and also
50 no more similar than two random branching patterns generated by a null model. In contrast, Schlegel
51 et al. [12] found a striking similarity between the morphologies of neurons (as measured by NBLAST
52 [13]) in the left and right hemispheres of the *D. melanogaster* antennal lobe, and a similar level of
53 stereotypy between the antennal lobes of two different individuals. Cook et al. [7] used the observed
54 level of left-right variability in a *C. elegans* hermaphrodite connectome as a proxy for the amount of
55 variability in connectivity between individuals, assuming that one should expect the connectomes of the
56 left and right to be the same up to developmental and experiential variability. Conversely, they also point
57 out the fact that the ASEL neuron (on the left side) projects more strongly to neuron class AWC than
58 the analogous version on the right, verifying this difference via fluorescent labeling in another animal.
59 These studies highlight the complicated relationship between neuroscientists and bilateral symmetry:
60 at times, we may assume that the left and right sides of a nervous system are in some sense the same
61 in expectation, but at other times we find marked, reproducible differences between them. To date, no
62 study (to our knowledge) has framed this question of bilateral symmetry of connectivity as a statistical
63 hypothesis comparing two networks.

64 In this work, we compare the connectivity of the left and the right hemispheres of an insect con-
65 nectome from the perspective of statistical hypothesis testing. Motivated by the discussion above, in
66 this work we make three major contributions: 1) we formally state several notions of bilateral symmetry
67 for connectomes as statistical hypotheses, 2) we present test procedures for each of these hypotheses
68 of bilateral symmetry, and 3) we demonstrate the utility of these tests for understanding the signifi-
69 cance and nature of bilateral symmetry/asymmetry in the brain of a *D. melanogaster* larva. In doing
70 so, we provide a framework and methodology for any neuroscientist wishing to compare two networks,
71 facilitating future work in comparative connectomics. We also provide Python implementations and
72 documentation for the statistical tests for network comparison developed in this work.

73 2 Results

74 **2.1 Connectome of a larval *Drosophila* brain** Recently, authors mapped a connectome of the brain
75 of a *D. melanogaster* larva [14]. To understand how the neurons in this brain were connected to each
76 other, the authors first imaged this brain using electron microscopy, and then manually reconstructed
77 each neuron and its pre- and post-synaptic contacts. This synaptic wiring diagram consists of 3,013
78 neurons and over 544,000 synapses. We represent this connectome as a network, with nodes rep-
79 resenting neurons and edges representing some number of synapses between them (Figure 1). Im-
80 portantly, this work yielded a complete reconstruction of both the left and right hemispheres of the
81 brain. In order to assess bilateral symmetry, we focused on the left-to-left and right-to-right (ipsilateral)
82 induced subgraphs. While there are conceivable ways to define bilateral symmetry which include the
83 contralateral connections, we did not consider them here in order to restrict our methods to the more
84 widely applicable case of two-network-sample testing. More details on how we created the networks
85 to compare here are available in Section 4.1. This process yielded a 1,504 neuron network for the left
86 hemisphere, and a 1,503 neuron network for the right.

87 We sought to understand whether these two networks were significantly different according to some
88 definition, in order to characterize whether this brain was bilaterally symmetric. As with any statistical
89 hypothesis test, this required that we make some modeling assumptions about the nature of the net-
90 works being compared. We stress that our subsequent results should be interpreted in light of these
91 models and what they do (and do not) tell us about these networks (see [15] for an excellent discus-
92 sion of this point in network neuroscience, and see Section 3.2 for a discussion of alternative modeling
93 assumptions). For all of our models, we treated the networks as directed (since we knew the direction

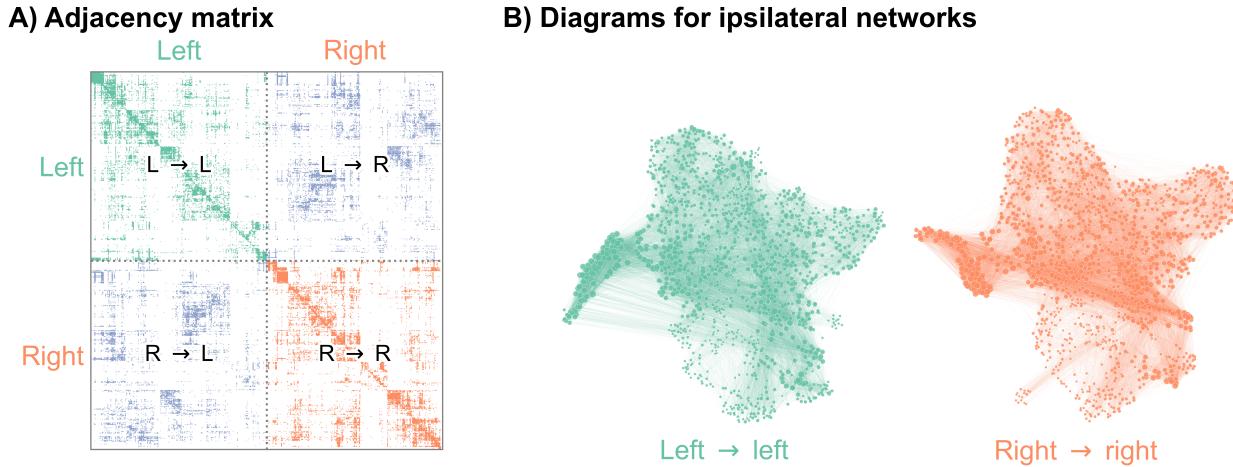


Figure 1: Visualizations of a larval *Drosophila* brain connectome from Winding et al. [14]. **A)** Adjacency matrix for the full brain connectome network, sorted by brain hemisphere. Note that we ignore the left → right and right → left (contralateral) subgraphs in this work. **B)** Network layouts for the left → left and right → right subgraphs.

94 of synapses), unweighted (creating an edge when there was one or more synapse between neurons
 95 unless otherwise specified), and loopless (since we ignored any observed self-loops). We made no as-
 96 sumptions about whether individual neurons in the left hemisphere correspond with individual neurons
 97 in the right hemisphere. Next, we detail a series of more specific models, what aspects of the networks
 98 they characterize, and how we construct a hypothesis test from each.

99 **2.2 Density test** Our first test of bilateral symmetry was based on perhaps the simplest network
 100 model, the **Erdos-Renyi (ER) model** [16, 17], which models each potential edge as independently
 101 generated with the same probability, p . Comparing two networks under the ER model amounts to
 102 simply comparing their densities (Figure 2A).

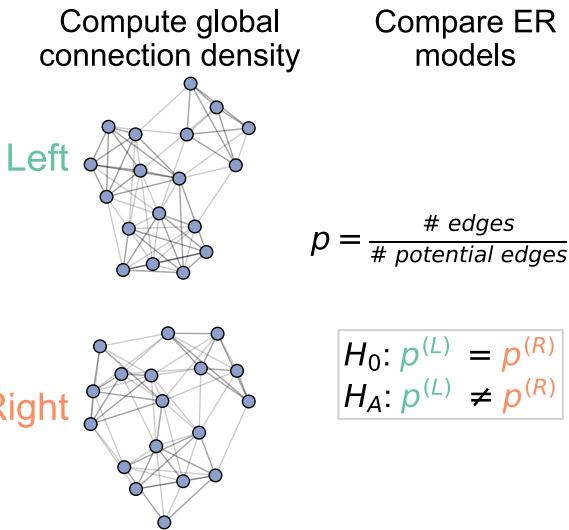
$$(2.1) \quad H_0 : p^{(L)} = p^{(R)} \text{ vs. } H_A : p^{(L)} \neq p^{(R)}$$

103 This comparison of probabilities can be tested using well-established statistical machinery for two-
 104 sample tests under the binomial distribution (see Section [Section 4.2.2](#) for more details). We refer to
 105 this procedure as the **density test**.

106 [Figure 2B](#) shows the comparison of the network densities between the left and right hemisphere
 107 networks. The densities of the left and right are ~ 0.016 and ~ 0.017 , respectively, making the density of
 108 the left ~ 0.93 that of the right. To determine whether this is a difference likely to be observed by chance
 109 under the ER model, we ran a two-sided Fisher's exact test, which tests whether the probabilities of two
 110 independent binomials are significantly different. This test yielded a p-value $< 10^{-23}$, suggesting that we
 111 have strong evidence to reject this version of our hypothesis of bilateral symmetry. While the ratio of the
 112 estimated densities is only ~ 0.93 , this extremely small p-value resulted from the large sample size for
 113 this comparison: there are 2,260,512 and 2,257,506 potential edges on the left and right, respectively.

114 To our knowledge, when neuroscientists have considered the question of bilateral symmetry, they
 115 have not meant such a simple comparison of network densities. In many ways, the ER model is too
 116 simple to be an interesting description of connectome structure. However, it is also striking that perhaps
 117 the simplest network comparison produced a significant difference between brain hemispheres for this
 118 brain. It is unclear whether this difference in densities is biological (e.g., a result of slightly differing
 119 rates of development for this individual), an artifact of how the data was collected (e.g., technological
 120 limitations causing slightly lower reconstruction rates on the left hemisphere), or something else entirely.
 121 Still, in addition to highlighting a simple departure from symmetry in this dataset, the density test result
 122 also provides important considerations for other tests. More complicated models of symmetry could

A) Density test methods



B) Density comparison

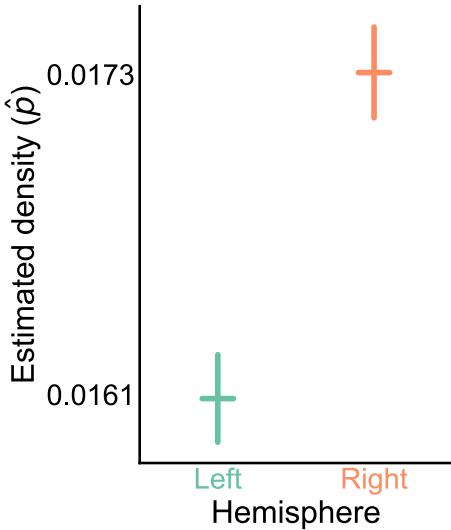


Figure 2: Comparison of left and right hemisphere networks via the density test. **A)** Diagram of the methods used for testing based on the network density. See Section 4.2.2 for more details. **B)** The estimated density \hat{p} (probability of any edge averaged across the entire network) for the left hemisphere is ~ 0.016 , while for the right it is ~ 0.017 —this makes the left density ~ 0.93 that of the right. Vertical lines denote 95% confidence intervals for this estimated parameter \hat{p} . The p-value for testing the null hypothesis that these densities are the same is $< 10^{-23}$ (two-sided Fisher's exact test), meaning very strong evidence to reject the null that the left and right hemisphere have the same density.

123 compare other network statistics—say, the clustering coefficients, the number of triangles, and so on.
 124 These statistics, as well as the model-based parameters we will consider in this paper, are strongly
 125 related to the network density [18, 19]. Thus, if the densities are different, it is likely that tests based
 126 on any of these other test statistics will also reject the null hypothesis of bilateral symmetry. Later, we
 127 describe methods for adjusting for a difference in density in other tests for bilateral symmetry.

128 **2.3 Group connection test** To understand whether this broad difference between the hemispheres
 129 can be localized to a specific set of connections, we next tested bilateral symmetry by making an
 130 assumption that the left and right hemispheres both come from a **stochastic block model (SBM)**.
 131 Under the SBM, each neuron is assigned to a group, and the probability of any potential edge is a
 132 function of the groups to which the source and target neurons belong. For instance, the probability
 133 of a connection from a neuron in group k to a neuron in group l is set by the parameter B_{kl} , where
 134 B is a $K \times K$ matrix of connection probabilities if there are K groups. Here, we used broad cell
 135 type categorizations from Winding et al. [14] to determine each neuron's group. Alternatively, there are
 136 many methods for estimating these assignments to groups for each neuron which we do not explore
 137 here (see Section 3.2 for discussion on this point). Under the SBM with a fixed group assignment for
 138 each node, testing for bilateral symmetry amounts to testing whether the group-to-group connection
 139 probability matrices, $B^{(L)}$ and $B^{(R)}$, are the same.

$$(2.2) \quad H_0 : B^{(L)} = B^{(R)} \text{ vs. } H_A : B^{(L)} \neq B^{(R)}$$

140 Rather than having to compare one probability as in Equation 2.1, we were interested in comparing all
 141 K^2 group-to-group connection probabilities between the SBM models for the left and right hemispheres.
 142 We developed a novel statistical hypothesis test for this comparison, which uses many Fisher's exact
 143 tests to compare each of the group-to-group connection probabilities, followed by appropriate correction
 144 for multiple comparisons (when examining the individual group-to-group connections) or combination of
 145 p-values (when assessing the overall null hypothesis in Equation 2.2). Details on the methodology used

146 here is provided in [Section 4.2.3](#), and is shown as a schematic in [Figure 3A](#). We refer to this procedure
147 as the **group connection test**.

148 [Figure 3B](#) shows both of the estimated group-to-group probability matrices, $\hat{B}^{(L)}$ and $\hat{B}^{(R)}$. From
149 a visual comparison of $\hat{B}^{(L)}$ and $\hat{B}^{(R)}$, the group-to-group connection probabilities appear qualitatively
150 similar. Note also that some group-to-group connection probabilities are zero, making it nonsensical
151 to do a comparison of probabilities. We highlight these elements in the matrices with explicit "0"s, and
152 note that we did not run the corresponding test in these cases. [Figure 3C](#) shows the p-values from all
153 284 tests that were run to compare each element of these two matrices. After multiple comparisons
154 correction, six tests produced p-values less than $\alpha = 0.05$, indicating that we could reject the null
155 hypothesis that those specific connection probabilities are the same between the two hemispheres.
156 We also combined all (uncorrected) p-values, yielding an overall p-value for the entire null hypothesis
157 ([Equation 2.2](#)) of equivalence of group-to-group connection probabilities of $<10^{-7}$.

158 Taken together, these results suggest that while the group-to-group connections are roughly similar
159 between the two hemispheres, they are not the same under this model. Notably, there are six group-
160 to-group connections which were significantly different: Kenyon cells (KCs) \rightarrow KCs, projection neurons
161 (PNs) \rightarrow lateral horn neurons (LHNs), somatosensory PNs \rightarrow somatosensory PNs, others (uncatego-
162 rized neurons) \rightarrow LHNs, LHNs \rightarrow others, and others \rightarrow others. Knowing the neuron groups which are
163 wired significantly differently between the two hemispheres highlights the interpretability of this test. If
164 a neuroscientist wanted to study mechanisms which could cause bilateral asymmetries in the brain,
165 these six group-to-group connections would be prime candidates for investigation.

166 However, in [Section 2.2](#), we saw that the densities of the two networks are significantly different. p ,
167 the density of the network, can be thought of as a weighted average of the individual group-to-group
168 connection probabilities, B . Should we then be surprised that if the density is different, the group-to-
169 group connection probabilities are, too? Interestingly, for all the group-to-group connection probabilities
170 which are different, the probability on the right hemisphere (which has the greater density) is higher
171 ([Figure 3D](#)). We consider this phenomenon in the next section.

172 **2.4 Density-adjusted group connection test** Next, we examined whether the group-to-group con-
173 nection probabilities on the right are simply a “scaled-up” version of those on the left. [Figure 3D](#) showed
174 that for all the individual connections which are significant, the connection probability on the right hemi-
175 sphere is higher. This is consistent with the hypothesis stated above, which predicts that the connection
176 probabilities in $B^{(R)}$ should be consistently higher than those in $B^{(L)}$.

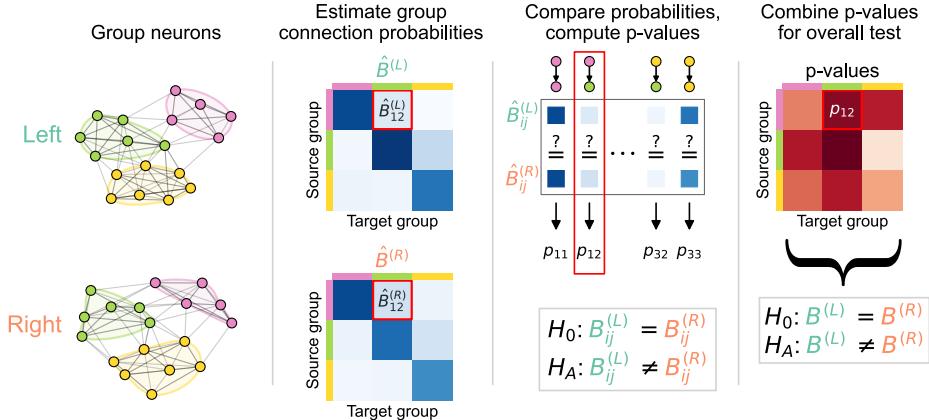
177 We thus created a test for this notion of bilateral symmetry in group-to-group connections (up to a
178 density adjustment):

$$(2.3) \quad H_0 : B^{(L)} = cB^{(R)} \text{ vs. } H_A : B^{(L)} \neq cB^{(R)}$$

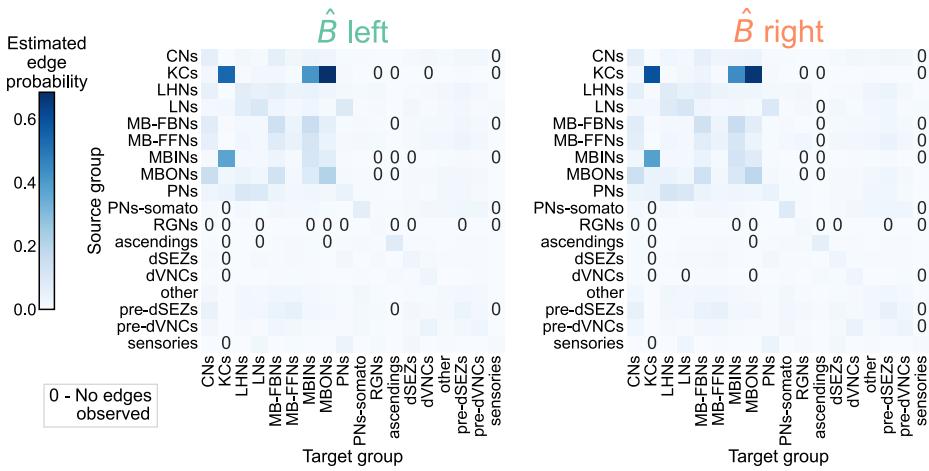
179 To implement this hypothesis test, we first computed the density correcting constant (c in [Equation 2.3](#)),
180 which is simply the ratio of the left to the right hemisphere densities, finding that $c \approx 0.93$. Then, we
181 replaced each of the component tests in the group connection test with a modified version of Fisher’s
182 exact test for non-unity probability ratios (see [Section 4.2.4](#) for more details). We refer to this procedure
183 as the **density-adjusted group connection test** ([Figure 4A](#)). The p-values for each of the component
184 tests for the density-adjusted group connection test are shown in [Figure 4B](#). After correction for multiple
185 comparisons, there are two group-to-group connections which are significantly different (at significance
186 level 0.05): KCs \rightarrow convergence neurons (CNs) and KCs \rightarrow KCs. Thus, all remaining significant
187 differences between the hemispheres under this version of the SBM are associated with the Kenyon
188 cells.

189 **2.5 Removing Kenyon cells** Based on the results of [Figure 4C](#), we sought to verify that the remaining
190 differences in group-to-group connection probabilities after adjusting for a difference in density can be
191 explained by asymmetry that is isolated to the Kenyon cells. To confirm this, we simply removed the

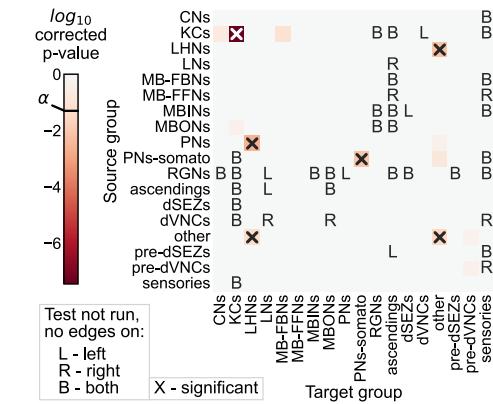
A) Group connection test methods



B) Group connection probabilities



C) Connection p-values



D) Probabilities for significant connections

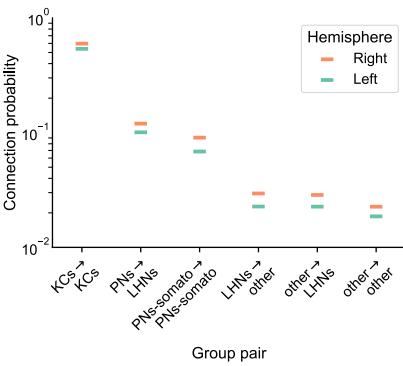


Figure 3: Comparison of left and right hemisphere networks via the group connection test. **A)** Description of methodology for the group connection test. See Section 4.2.3 for more details. **B)** Estimated group-to-group connection probabilities for both hemispheres. Note that they appear qualitatively similar. Estimated probabilities which are zero (no edge was present between that pair of groups) are indicated with a "0" in those cells. **C)** p-values (after multiple comparisons correction) for each hypothesis test between individual elements of the connection probability matrices. Each cell represents a test for whether a specific group-to-group connection probability is the same on the left and right sides. "X" denotes a significant p-value after multiple comparisons correction, with significance level $\alpha = 0.05$. "B" indicates that a test was not run since the estimated probability was zero on both hemispheres, "L" indicates this was the case on the left only, and "R" that it was the case on the right only. The individual (uncorrected) p-values were combined using Tippett's method, resulting in an overall p-value (for the null hypothesis that the two group connection probability *matrices* are the same) of $<10^{-7}$. **D)** Comparison of estimated group-to-group connection probabilities for the group pairs that are significantly different. In each case, the connection probability on the right hemisphere is higher.

A) Density-adjusted group connection test methods C) Connection p-values

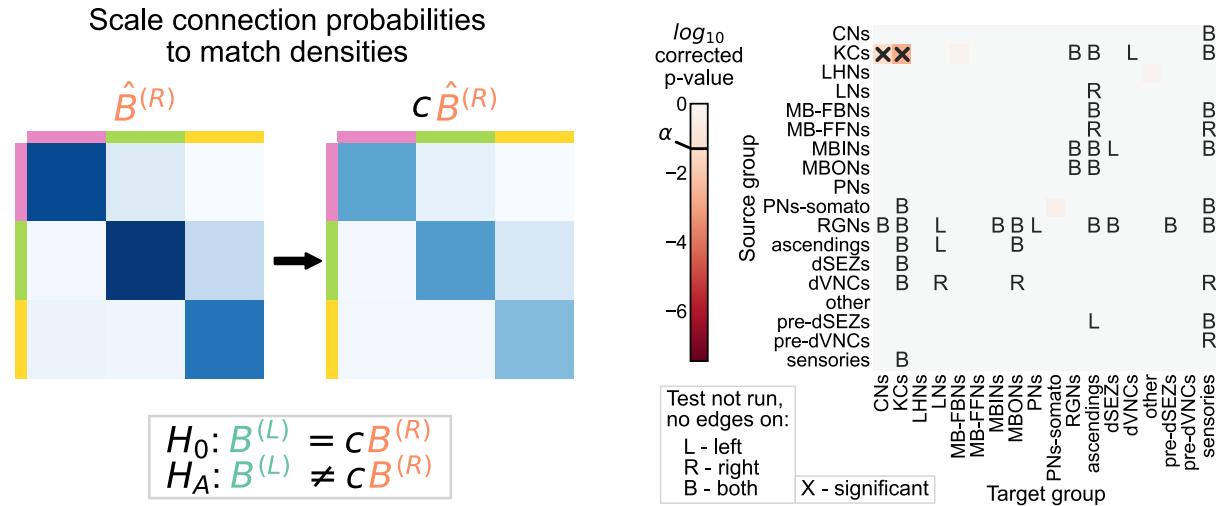


Figure 4: Comparison of left and right hemisphere networks via the density-adjusted group connection test. **A)** Description of methodology for adjusting for a density difference between the two stochastic block models. See [Section 4.2.3](#) for more details. The adjustment factor (ratio of the left to the right density), c , is ~ 0.93 . **B)** P-values for each group-to-group comparison after adjusting for a global density difference. P-values are shown after correcting for multiple comparisons. Note that there are two significant p-values, and both are in group connections incident to Kenyon cells. These individual (uncorrected) p-values were combined using Tippett's method, resulting in an overall p-value (for the null hypothesis that the two group connection probability *matrices* are the same after correcting for the density difference) of $< 10^{-2}$.

192 Kenyon cells (i.e., all Kenyon cell nodes and edges to or from those nodes) from both the left and
 193 right hemisphere networks, and then re-ran each of the tests for bilateral symmetry presented here
 194 ([Figure 5A](#)). We observed significant differences between the left and right hemispheres for the density
 195 and group connection tests when excluding Kenyon cells, yielding p-values of $< 10^{-27}$ and $< 10^{-2}$,
 196 respectively ([Figure 5B](#) and C). However, for the density-adjusted group connection test, the p-value
 197 was ~ 0.51 , indicating that we no longer rejected bilateral symmetry under this definition when the
 198 Kenyon cells are excluded from the analysis ([Figure 5D](#)). This sequence of results suggests that the
 199 difference between the left and right hemispheres (at least in terms of the high-level network statistics
 200 studied here) can be explained as the combination of a global effect (the difference in density) and a
 201 cell-type-specific effect (the difference in Kenyon cell projection probabilities).

202 It is noteworthy that the Kenyon cells were the specific cell type where we detected asymmetry after
 203 correcting for the density difference. Kenyon cells are involved in associative learning in *Drosophila*
 204 and other insects [20–22]. Other studies have suggested that certain connections (specifically from
 205 antennal lobe projection neurons to Kenyon cells) are random [22, 23]. The marked lack of symmetry
 206 we observed specifically in the Kenyon cells in the current study could be the result of these features,
 207 which suggest their uniquely non-stereotyped patterns of connectivity in this nervous system.

208 **2.6 Edge weight thresholds** Next, we sought to examine how the definition of an edge used to
 209 construct our binary network affects the degree of symmetry under each of the definitions considered
 210 here. For the networks considered in the previous sections, we considered an edge to exist if one or
 211 more synapses from neurons i to j were in the dataset. To understand how our analysis might change
 212 based on this assumption, we considered two types of edge weight threshold schemes for creating
 213 a binary network before testing: the first based simply on a threshold on the number of synapses,
 214 and the second based on a threshold of the proportion of a downstream neuron's input ([Figure 6A](#)).
 215 By varying the threshold in both schemes, we were able to evaluate many hypotheses about bilateral
 216 symmetry, where higher thresholds meant that we only considered the symmetry present in strong

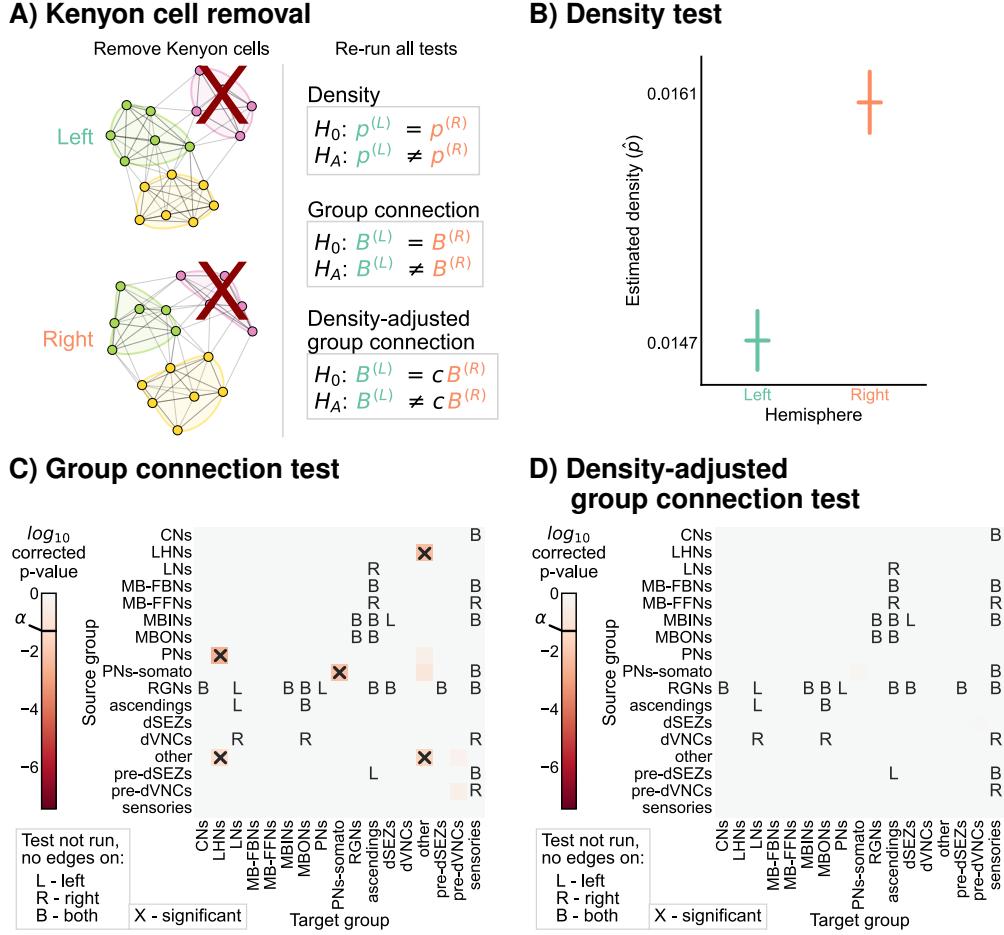
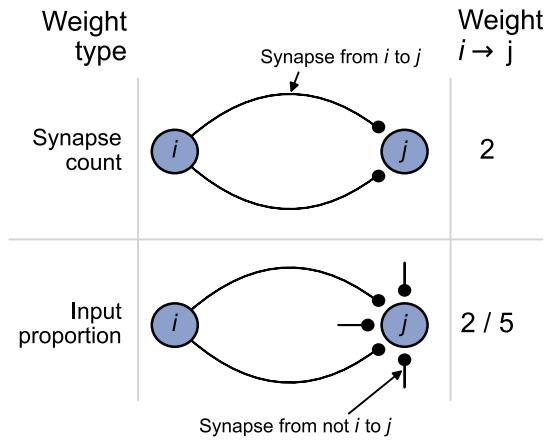


Figure 5: Comparison of left and right hemisphere networks when not including Kenyon cells. **A)** Diagram of the methods used, indicating that Kenyon cells (and any incident edges) were simply removed from the network, and all previously mentioned tests were run again. **B)** Comparison of network densities, as in Figure 2B. The p-value for this comparison is $<10^{-27}$, indicating very strong evidence to reject the null that the two networks share the same density. **C)** Comparison of group-to-group connection probabilities, as in Figure 3C. P-values are shown for each group-to-group connection comparison (after multiple comparison correction). The (uncorrected) p-values were combined to yield an overall p-value of $<10^{-2}$, showing evidence that the group connection probabilities are not the same even after removing Kenyon cells. **D)** Comparison of group-to-group connection probabilities after density adjustment, as in Figure 4C. P-values are shown for each group-to-group connection comparison (after multiple comparison correction). Note that there are no longer any significantly different connections. The (uncorrected) p-values were combined to yield an overall p-value of ~ 0.51 . After removing Kenyon cells, there is no longer evidence to reject the null that the group connection probabilities are the same.

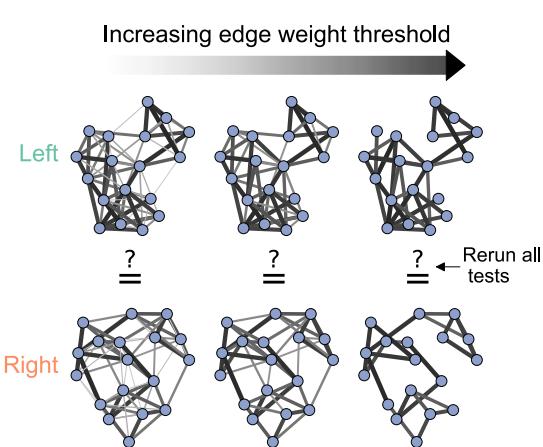
Test method	Model	H_0 (vs. $H_A \neq$)	KCs	p-value
Density test	ER	$p^{(L)} = p^{(R)}$	+	$<10^{-23}$
Group connection test	SBM	$B^{(L)} = B^{(R)}$	+	$<10^{-7}$
Density-adjusted group connection test	DA-SBM	$B^{(L)} = cB^{(R)}$	+	$<10^{-2}$
Density test	ER	$p^{(L)} = p^{(R)}$	-	$<10^{-27}$
Group connection test	SBM	$B^{(L)} = B^{(R)}$	-	$<10^{-2}$
Density-adjusted group connection test	DA-SBM	$B^{(L)} = cB^{(R)}$	-	~ 0.51

Table 1: Summary of tests, models, hypotheses, whether Kenyon cells (KCs) were included, and the resulting p-values for each evaluation of bilateral symmetry.

A) Notions of edge weight



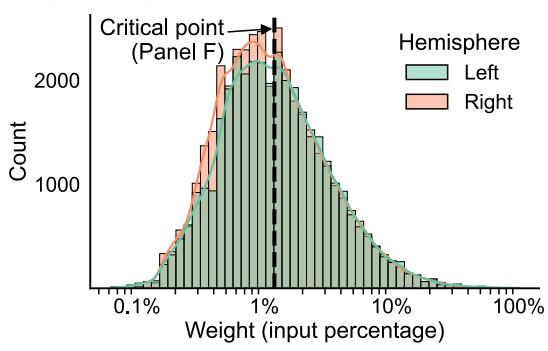
B) Thresholding methods



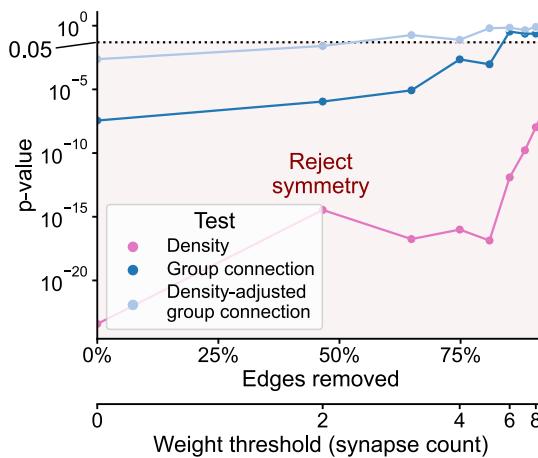
C) Synapse count distribution



D) Input proportion distribution



E) Synapse thresholding p-values



F) Input thresholding p-values

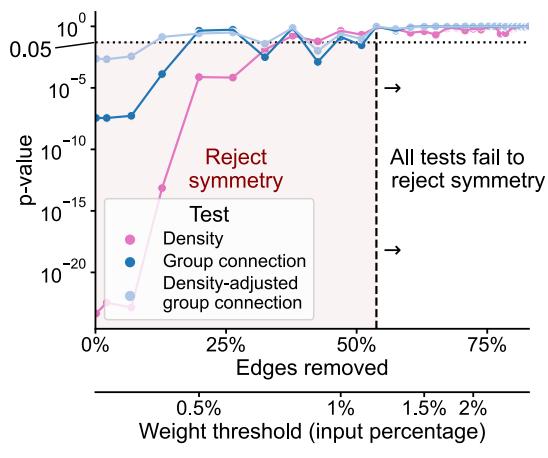


Figure 6: The effect of edge weight threshold on the significance level for each of the tests of bilateral symmetry. Diagrams of **A**) two notions of edge weight, and **B**) application of edge weight thresholds to examine bilateral symmetry. See [Section 4.3](#) for more explanation. **C**) Distribution of synapse count edge weights. The right hemisphere consistently has more edges in each synapse count bin. **D**) Distribution of input percentage edge weights. The right hemisphere has more edges in the lower ($<1\%$) portion of this distribution, but the hemispheres match well for high edge weights. **E**) p-values for each test after synapse count thresholding, plotted as a function of the percentage of edges which are removed from the networks, as well as the corresponding weight threshold (lower x-axis). The p-values for all tests generally increased as a function of synapse count threshold, but the density test never reached a p-value >0.05 over this range of thresholds. **F**) p-values for each test after input percentage thresholding, plotted as a function of the percentage of edges which were removed from the networks, as well as the corresponding weight threshold (lower x-axis). Note that all tests yielded insignificant (>0.05) p-values after a threshold of around 1.25% input proportion. Compared to the results in E), thresholding based on input percentage reached insignificant p-values faster as a function of the total amount of edges removed for all tests.

217 edges (Figure 6B).

218 Before running the tests for each of these notions of symmetry, we first examined the distributions
219 of edge weights to get a sense for how we should expect these tests to perform. Figure 6C and D
220 display the distribution (total count) for the synapse count or input proportion edge weights, respectively.
221 The right hemisphere has more connections than the left for all synapse count values (Figure 6C),
222 hinting that the density of the right hemisphere will be slightly higher for any potential edge weight
223 threshold using this definition. Conversely, the distributions of weights as an input percentage shows a
224 different trend. For edge weights less than ~1.25%, the right appears to have more edges, but past this
225 threshold, the counts of edges between left and right appear comparable (Figure 6D).

226 Figure 6E and F show the effect of varying these thresholds on the p-values from each of our tests
227 of bilateral symmetry. We observed that for either thresholding scheme (synapse count or input propor-
228 tion), the p-value for each test generally increased as a function of the threshold—in other words, the
229 left and right hemisphere networks became less significantly different (under the definitions of “dif-
230 ferent” we have presented here) as the edge weight threshold increased. Previous works have shown that
231 higher-weight edges are more likely to have that corresponding edge present on the other side of the
232 nervous system [5, 24]. Here, we provide evidence that considering networks formed from only strong
233 edges also decreases asymmetry at a broad, network-wide level.

234 To make these two thresholding schemes more comparable, we also examined these results as a
235 function of the proportion of edges from the original network which that threshold removed (Figure 6E
236 and F, lower x-axis). We found that when thresholding based on synapse counts, the majority (~60%)
237 of the edges of the networks need to be removed for any test (in this case the density-adjusted group
238 connection test) to yield non-significant p-values. Conversely, for the thresholds based on input propor-
239 tion, the density-adjusted group connection test yielded a p-value greater than 0.05 after removing only
240 the weakest ~20% of edges. Strikingly, we observed that when considering only the strongest ~60%
241 of edges in terms of input proportion, even the density test had a high p-value (>0.05), while for the
242 synapse-based thresholds we examined, this never occurred.

243 These findings are consistent with previous work in connectomics which has hinted at the impor-
244 tance of input proportion as a meaningful “edge weight.” Gerhard et al. [5] compared the connectivity
245 of select neurons in the nerve cord between L1 and L3 stages of the larva. They observed that while
246 the number of synapses from the mdIV cell type onto various nerve cord local neurons can grow ~3-10
247 fold from L1 to L3, the proportion of that downstream neuron’s input stays relatively conserved. Based
248 on this finding, the authors suggested that perhaps the nervous system evolved to keep this parameter
249 constant as the organism develops. An analysis of wiring in the olfactory system of the adult *Drosophila*
250 suggested a similar interpretation after examining a projection neuron cell type with an asymmetric
251 number of neurons on the two sides of the brain [25]. Here, we provide further evidence based on the
252 entire brain of the *Drosophila* larva that while the left and right hemispheres may appear significantly
253 different when considering all observed connections, the networks formed by only the strongest edges
254 (especially in terms of input proportion) are not significantly different between the hemispheres when
255 viewed through the lens of the models considered in this work.

256 3 Discussion

257 **3.1 Summary** We began with what was at its face a very simple question: is the connectivity on the
258 left and the right side of this brain “different?” We then described several ways that one could mathe-
259 matically formalize notions of “different” from the perspective of network model parameters: difference
260 in density of connections across the entire network (Section 2.2), difference in group connection prob-
261 abilities (Section 2.3), or difference in group connection probabilities while adjusting for a difference in
262 density (Section 2.4). We proposed a test procedure corresponding with each of these notions, relying
263 on well established statistical techniques for evaluating contingency tables and combining p-values to
264 construct our tests. The results of these different test procedures varied markedly (Table 1). Specif-

265 ically, we saw that the network densities were significantly different between the hemispheres. The
266 group connection test also detected a difference, highlighting six group-to-group connections which
267 had significantly differing connection probabilities when comparing the hemispheres. However, when
268 we added an adjustment to the group connection comparison to account for the difference in network
269 density, this test had only two significant group connections, and both were projections from the Kenyon
270 cells. Thus, the asymmetry observed (at least when viewed through the lens of these high-level network
271 statistics) between the hemispheres can be thought of as a global density difference in addition to a cell
272 type-specific effect shown in the Kenyon cells. We confirmed this finding by simply removing the Kenyon
273 cells, and showing that the density-adjusted group connection test no longer rejected (Section 2.5). Fi-
274 nally, we examined whether the left and right hemisphere networks would become less dissimilar when
275 only high-edge-weight edges were considered (Section 2.6). We found that whether thresholding based
276 on number of synapses or the proportion of input to the post-synaptic neuron, p-values generally in-
277 creased for each test (i.e., less significant asymmetry was detected) as the edge weight threshold grew.
278 However, we observed that thresholds based on neuron input proportion could achieve symmetry while
279 removing fewer (only 20% for some tests) edges. These results are consistent with the idea that the
280 nervous system evolved to preserve a relative balance of inputs to individual neurons, which has been
281 suggested by previous studies on specific subcircuits in the larval and adult *Drosophila* nervous system
282 [5, 25, 26].

283 **3.2 Limitations** As with any statistical inference, our conclusions are valid under particular model
284 assumptions. Therefore, it is important to highlight the assumptions which motivated each of our tests
285 in order to understand what each p-value means (and what it does not). We highlight several of these
286 assumptions below, and comment on alternative assumptions that one could make in each case.

287 **What model?** First, while we motivated the tests presented here by assuming that some statistical
288 model produced the connectivity of the left and the right hemispheres, these models do not literally
289 describe the process which generated these networks. However, without knowledge of how genes and
290 development give rise to the connectome, we know of no more correct model for how this connectome
291 was generated [1, 6, 27] (and even this would still be just a model). Without an agreed upon definition
292 of bilateral symmetry, we chose to start from the simplest definition of what one *could* mean by bilateral
293 symmetry. From this simplest network model, we iteratively added complexity to the definition of bilateral
294 symmetry until we found the simplest model for which the *Drosophila* larva connectome displayed no
295 significant asymmetry.

296 However, many other network models could have been applied to examine different definitions of
297 bilateral symmetry. Tests based on the random dot product graph model [28–30] would allow us to
298 compare connection probabilities between hemispheres without assuming that neurons belong to a
299 finite number of groups. Bravo-Hermsdorff et al. [31] showed that a two-network-sample test could
300 be constructed from subgraph counts, which they argue characterize a network’s “texture” rather than
301 its “backbone” as studied in this work. We also did not use network models that incorporate edge
302 weights, as two-network-sample tests for this case are even less developed than for the unweighted
303 case. Further, a variety of neuroscience-specific network models (such as those which incorporate
304 spatial information) have been proposed [15]. Nevertheless, we note that even if one is concerned with
305 these more elaborate notions of symmetry, they are still related to the simple models studied here. For
306 instance, the network density would affect a network’s latent positions under the random dot product
307 graph model, as well as the count of any possible subgraph. Thus, even if one prefers a different
308 definition of bilateral symmetry, the definitions presented here were worth testing.

309 **What is a cell type?** Second, even if these networks were generated from SBMs, alternative groupings
310 of neurons could have been used. We used broad cell type categorizations from previous literature
311 [14] to partition our network into groups. However, we could have used a coarser partition, categorizing

312 neurons as sensory, interneuron, and descending/output. Conversely, we could have used a finer
313 partition, splitting the cell types used here into subgroups (such as whether a sensory neuron receives
314 odor or visual information). Thus, the results presented for any group connection test need to be
315 interpreted in terms of the specific cell type groupings used.

316 Further, a rich literature exists on *inferring* the partition for an SBM from the observed connectivity
317 [32–37] - this is one perspective for clustering neurons based on their observed connectivity, much like
318 clustering procedures are used to predict meaningful groups of neurons based on morphology, activity,
319 or gene expression. Applying these techniques to a connectome would yield alternative groupings of
320 neurons (as in Winding et al. [14]) to use for a group connection test, which again, could change its
321 conclusions. However, this approach requires further study, as it introduces a new source of uncertainty
322 since more model parameters are estimated from the data.

323 **What about neuron pairs?** Third, we assumed that the two networks we observed were *unmatched* –
324 that is, the tests we applied did not use any pairing of individual neurons between hemispheres. In
325 *Drosophila*, this 1-to-1 neuron correspondence is known to exist for most neurons, particularly in the
326 larva. GAL-4 lines are able to reliably label bilateral neuron pairs on the basis of their gene expression
327 [38, 39]. These neurons tend to be similar in terms of their morphology and their connectivity [5, 12, 14,
328 24, 39–41]. Methods which use this pairing (e.g., [28, 42, 43], as well as tests based on correlated ER
329 and SBM models) would be able to evaluate symmetry in light of edge correspondences between the
330 two networks, and could have higher power at detecting certain asymmetries. However, these methods
331 assume that the matching of nodes is *perfect* and *complete*—if even one neuron pairing is a mistake, or
332 if even one neuron does not have a partner in the opposite hemisphere, then these tests could be invalid
333 or inapplicable. We note that graph matching techniques could estimate a correspondence between
334 nodes for all neurons [14, 40, 44–46]; however, the statistical consequences of first learning this (likely
335 imperfect) alignment prior to using a method which assumes the alignment is known and exact have
336 not been thoroughly studied, so we did not explore it further here.

337 **3.3 Outlook** We presented the first statistical comparison of bilateral networks in a neuron-level brain
338 connectome. While we focused on the larval *Drosophila* brain connectome, these techniques could be
339 applied to future connectomes to evaluate bilateral symmetry in other individuals or organisms. More
340 generally, we presented several notions that can be used to compare two networks, a particularly rel-
341 evant problem in the current age of connectomics. Human (macroscale) connectomics has seen an
342 explosion in the number of network samples that can be obtained, allowing for different approaches
343 for comparing connectomes across populations, from simple comparisons of edges [47] to low-rank
344 and sparse regressions across networks [48]. However, nanoscale connectomics is still technologically
345 limited in its acquisition rate, often to only one or at best a few (< 10, e.g., [6]) individuals for a given
346 experiment. Nevertheless, we wish to make valid inferences and comparisons between these connec-
347 tomes [1–4]. The framework for two-network-sample testing presented here will facilitate these kinds
348 of comparisons. To make these comparisons more practical to neuroscientists, we demonstrated the
349 importance of adjustments to simple null hypotheses—as we saw, even a difference in something as
350 simple as a network density can be related to other network comparisons. For example, take the prob-
351 lem of comparing the connectome of the larval and adult *Drosophila*. Since the adult *Drosophila* brain
352 has orders of magnitude more nodes [14, 49, 50], the density of this network is likely to be smaller than
353 that of the larva. Therefore, we may want to consider a more subtle question—are the connectomes of
354 the adult and larva different (and if so, how) after adjusting for this difference in density? These kinds of
355 biologically-motivated adjustments to out-of-the-box statistical hypotheses will be key to drawing valid
356 inferences from connectomes which are also relevant to meaningful questions in neuroscience.

357 **4 Methods**

358 **4.1 Network construction** Here, we explain how we generated networks for the bilateral symmetry
359 comparison. We started from a network of all neurons in the brain and sensory neurons which project
360 into it for a larval *Drosophila* [14]. As in Winding et al. [14], we removed neurons which were con-
361 sidered partially differentiated. From this network, we selected only the left-to-left (ipsilateral) induced
362 subgraph, and likewise for the right-to-right. We ignored a pair of neurons which had no left/right desig-
363 nation, as their cell bodies lie on the midline [14]. To ensure we had fully connected networks on either
364 hemisphere, we took the largest weakly connected component of neurons on the left, and likewise on
365 the right.

366 With this selection for our nodes of interest, we then choose our set of edges to be:

- 367 • *Unweighted*: we only considered the presence or absence of a connection, creating a binary
368 network. For most analyses except where explicitly indicated, this meant we considered an
369 edge to exist if there was at least one synapse from the source to the target neuron. For this
370 connectome, four edge types are available: axo-axonic, axo-dendritic, dendro-dendritic, and
371 dendro-axonic. We made no distinction between these four edge types when constructing the
372 binary networks. One could consider notions of bilateral symmetry for a weighted network, but
373 we focused on the unweighted case for simplicity and the fact that most network models are
374 for binary networks. We studied the effect of varying the edge weight requirement (i.e., the
375 threshold) for an edge to exist in [Section 2.6](#).
- 376 • *Directed*: we allow for a distinction between edges which go from neuron i (presynaptic) to
377 neuron j (postsynaptic) and the reverse.
- 378 • *Loopless*: we remove any edges which go from neuron i to neuron i , as the theory on network
379 testing typically makes this assumption. We note that while $\sim 18\%$ of neurons have a connection
380 to themselves, these self-loops comprise only $\sim 0.7\%$ of edges.

381 When comparing two networks, methods may make differing assumptions about the nature of the
382 two networks being compared. One of the most important is whether the method assumes a cor-
383 respondence between nodes [51]. Some methods (**matched** comparisons, also called known node-
384 correspondence) require that the two networks being compared have the same number of nodes, and
385 that for each node in network 1, there is a known node in network 2 which corresponds to it. Other meth-
386 ods (**unmatched** comparisons, also called unknown node-correspondence) do not have this require-
387 ment. To make an analogy to the classical statistical literature on two-sample testing, this distinction
388 is similar to that between an unpaired (unmatched) and a paired (matched) t-test. We focused on the
389 unmatched case in this work, where we say nothing about whether any neurons on the left correspond
390 with any specific neurons on the right.

391 **4.2 Two-network-sample testing** Here, we describe in more detail the methods used to evaluate
392 bilateral symmetry, each of which is based on some generative statistical model for the network. For
393 each model, we formally define the model, describe how its parameters can be estimated from observed
394 data, and then explain the test procedure motivated by the model. A more thorough review of these
395 models can be found in Chung et al. [52].

396 **4.2.1 Independent edge random networks** Many statistical network models fall under the umbrella
397 of independent edge random networks, sometimes called the Inhomogeneous Erdos-Renyi model.
398 Under this model, the elements of the network's adjacency matrix A are sampled independently from a
399 Bernoulli distribution:

$$A_{ij} \sim \text{Bernoulli}(P_{ij})$$

400 If n is the number of nodes, the matrix P is a $n \times n$ matrix of probabilities with elements in $[0, 1]$.
401 Depending on how the matrix P is constructed, we can create different models. We next describe
402 several of these choices. Note that for each model, we assume that there are no loops, or in other

403 words the diagonal of the matrix P will always be set to zero.

404 **4.2.2 Erdos-Renyi model and density testing** Perhaps the simplest model of a network is the
405 Erdos-Renyi (ER) model. This model treats the probability of each potential edge in the network occur-
406 ring to be the same. In other words, all edges between any two nodes are equally likely. Thus, for all
407 $(i, j), i \neq j$, with i and j both running from $1 \dots n$, the probability of the edge (i, j) occurring is:

$$P[A_{ij} = 1] = P_{ij} = p$$

408 where p is the global connection probability.

409 Thus, for this model, the only parameter of interest is the global connection probability, p . This is
410 sometimes also referred to as the **network density**. For a directed, loopless network, with n nodes,
411 there are $n(n - 1)$ unique potential edges (since we ignore the n elements on the diagonal of the
412 adjacency matrix). If the observed network A has m total edges, then the estimated density is simply

$$\hat{p} = \frac{m}{n(n - 1)}.$$

413 In order to compare two networks $A^{(L)}$ and $A^{(R)}$ under this model, we simply need to compute these
414 estimated network densities ($\hat{p}^{(L)}$ and $\hat{p}^{(R)}$), and then run a statistical test to see if these densities are
415 significantly different. Under this model, the total number of edges m comes from a $\text{Binomial}(n(n -$
416 $1), p)$ distribution. This is because the number of edges is the sum of independent Bernoulli trials with
417 the same probability. If $m^{(L)}$ is the number of edges on the left hemisphere, and $m^{(R)}$ is the number of
418 edges on the right, then we have:

$$m^{(L)} \sim \text{Binomial}(n^{(L)}(n^{(L)} - 1), p^{(L)})$$

419 and independently,

$$m^{(R)} \sim \text{Binomial}(n^{(R)}(n^{(R)} - 1), p^{(R)})$$

420 To compare the two networks, we are interested in a comparison of $p^{(L)}$ vs. $p^{(R)}$. Formally, we are
421 testing:

$$H_0 : p^{(L)} = p^{(R)}, \quad H_a : p^{(L)} \neq p^{(R)}.$$

422 Fortunately, the problem of testing for equal proportions under the binomial is well studied. In our case,
423 we use Fisher's exact test [53] to run this test for the null and alternative hypotheses above.

424 **4.2.3 Stochastic block model and group connection testing** A **stochastic block model (SBM)**
425 is a popular statistical model of networks [54]. Put simply, this model treats the probability of an edge
426 occurring between node i and node j as purely a function of the communities or groups that node i and
427 j belong to. This model is parameterized by:

- 428 • An assignment of each node in the network to a group. Note that this assignment can be
429 considered to be deterministic or random, depending on the specific framing of the model one
430 wants to use. Here we are assuming τ is a fixed vector of assignments. We represent this
431 non-random assignment of neuron to group by an n -length vector τ . If there are K groups, τ
432 has elements in $\{1 \dots K\}$. If the i -th element of τ is equal to k , then that means that neuron i is
433 assigned to group k .
- 434 • A set of group-to-group connection probabilities. We represent these probabilities by the matrix
435 $B \in [0, 1]^{K \times K}$, where the element (k, l) of this matrix represents the probability of an edge
436 from a neuron in group k to one in group l .

437 Thus, the probability of any specific edge (i, j) can be found by looking up the appropriate element of
438 B :

$$P[A_{ij} = 1] = P_{ij} = B_{\tau_i, \tau_j}$$

439 In our case, we assume τ is known—in the case where it is not, or one simply wishes to estimate an
 440 alternative partition of the network, many methods exist for estimating τ . But with τ known, estimating
 441 B becomes simple, amounting to doing K^2 subgraph density estimates. Specifically, let $m(k, l)$ be
 442 the number of edges from nodes in group k to nodes in group l . We then compute the density of this
 443 subgraph for each (k, l) pair (ignoring self-loops):

$$\hat{B}_{k,l} = \begin{cases} \frac{m(k,l)}{n_k n_l}, & \text{if } k \neq l \\ \frac{m(k,l)}{n_k(n_k-1)}, & \text{if } k = l \end{cases}$$

444 where n_k is the number of nodes in group k , and likewise for n_l .

445 Assuming the SBM, we are interested in comparing the group-to-group connection probability ma-
 446 trices, B , for the left and right hemispheres. The null hypothesis of bilateral symmetry becomes

$$(4.1) \quad H_0 : B^{(L)} = B^{(R)}, \quad H_A : B^{(L)} \neq B^{(R)}$$

447 Rather than having to compare one proportion as in [Section 4.2.2](#), we are now interested in comparing
 448 all K^2 probabilities between the SBM models for the left and right hemispheres. The hypothesis test
 449 above can be decomposed into K^2 hypotheses. $B^{(L)}$ and $B^{(R)}$ are both $K \times K$ matrices, where each
 450 element B_{kl} represents the probability of a connection from a neuron in group k to one in group l . We
 451 also know that group k for the left network corresponds with group k for the right. In other words, the
 452 *groups* are matched. Thus, we are interested in testing, for k, l both running from 1... K :

$$(4.2) \quad H_0 : B_{kl}^{(L)} = B_{kl}^{(R)}, \quad H_A : B_{kl}^{(L)} \neq B_{kl}^{(R)}$$

453 Now, we are left with K^2 p-values from [Equation 4.2](#), each of which bears upon the overall null
 454 hypothesis in [Equation 4.1](#). We therefore require some method of combining these p-values into one,
 455 or otherwise making a decision about the hypothesis in [Equation 4.1](#). Many methods for combining p-
 456 values have been proposed. This problem of combining p-values can itself be viewed as a hypothesis
 457 testing problem. Denoting the (k, l) th p-value from [Equation 4.2](#) as p_{kl} , we are testing

$$H_0 : p_{kl} \sim \text{Uniform}(0, 1)$$

458 versus the alternative hypothesis that at least one of the p-values is distributed according to some non-
 459 uniform, non-increasing density with support $[0, 1]$ [\[55, 56\]](#). Birnbaum [\[55\]](#) showed that no method of
 460 combining these p-values can be optimal in general to all alternatives, so we are left with a decision
 461 to make (with no universally preferred answer) about which methods to use to combine p-values [\[56\]](#).
 462 Here, we select Tippett's method [\[56, 57\]](#) due to its ubiquity, simplicity, and power against various alter-
 463 natives to bilateral symmetry under a simulation described in [Section 7.1](#). We note that for future works,
 464 specific classes of alternatives may motivate different methods for combining p-values, as described in
 465 Heard and Rubin-Delanchy [\[56\]](#).

466 We also examined the p-values from each of the individual tests after Holm-Bonferroni correction
 467 to correct for multiple comparisons. As in [Section 4.2.2](#), we used Fisher's exact test [\[53\]](#) to perform
 468 each of the individual hypothesis tests in [Equation 4.2](#). Note also that in some cases, an element of
 469 $B^{(L)}$ and/or $B^{(R)}$ could be 0; in each of these cases, we did not run that specific comparison between
 470 elements, as the notion of testing for proportions being the same becomes nonsensical. We indicated
 471 these tests in [Figure 3C](#), [Figure 4C](#) and [Figure 5C-D](#), and note that these tests were not included when
 472 computing the number of comparisons for the Holm-Bonferroni correction.

473 **4.2.4 Density-adjusted group connection testing** In [Section 2.4](#), we considered the null hypothesis
 474 that the left hemisphere connection probabilities under the SBM are a scaled version of those on the
 475 right:

$$(4.3) \quad H_0 : B^{(L)} = cB^{(R)} \text{ vs. } H_A : B^{(L)} \neq cB^{(R)}.$$

476 The scale for this comparison is the ratio of the densities between the left and the right hemisphere
477 networks:

$$(4.4) \quad c = \frac{p^{(L)}}{p^{(R)}}.$$

478 Analogous to the group connection testing in [Equation 4.2](#), this means that the individual group con-
479 nection hypotheses become

$$(4.5) \quad H_0 : B_{kl}^{(L)} = c B_{kl}^{(R)}, \quad H_A : B_{kl}^{(L)} \neq c B_{kl}^{(R)}.$$

480 The parameter c can be viewed as a probability ratio:

$$B_{kl}^{(L)} \stackrel{?}{=} c B_{kl}^{(R)}$$

$$481 \quad \frac{B_{kl}^{(L)}}{B_{kl}^{(R)}} \stackrel{?}{=} c$$

482 In essence, we wish to test whether a probability ratio matches a prespecified hypothesized value, c .
483 To test [Equation 4.2](#), we were able to use Fisher's exact test [53], which aims to determine whether
484 two proportions are significantly different in a 2×2 contingency table. By conditioning on the marginal
485 observations of the table, it was shown that the distribution of one of the cells follows a hypergeometric
486 distribution under the null that the two proportions are the same. Fisher's exact test compares the
487 observed count to this hypergeometric distribution under the null to compute its p-value. Similarly, it
488 was shown that the distribution of one of the cells conditioned on the marginals *and* a specific odds
489 ratio follows Fisher's non-central hypergeometric distribution under the null hypothesis [58, 59]. This
490 leads to a test analogous to Fisher's exact test, but for a potentially non-unity probability ratio, c . Note
491 that this test reduces exactly to Fisher's exact test when the probability ratio $c = 1$. We used this
492 non-unity Fisher's exact test in the individual group connection tests, with all other machinery (e.g., for
493 combining p-values or correcting for multiple comparisons) remaining the same as in [Section 4.2.3](#).

494 **4.3 Edge weight thresholds** To examine the effect of which edges are used to define the left and
495 right networks on the p-values from each test, we tested various edge weight thresholds used to define
496 our binary networks for comparison. Given a set of edges (i.e., (i, j) pairs) with corresponding weights
497 w_{ij} , a thresholding $\mathcal{E}(t)$ simply selects the subset of those edges for which w_{ij} is greater than or equal
498 to some threshold, t .

$$\mathcal{E}(t) = \{(i, j) : w_{ij} \geq t\}$$

499 Let s_{ij} be the observed number of synapses from neuron i to neuron j . We considered two thresh-
500 olding schemes: the first was to simply use the number of synapses from neuron i to j as the edge
501 weight and the second was to consider the edge weight from neuron i to j to be the number of synapses
502 from i to j divided by the total number of observed synapses onto neuron j . We stress that the number
503 of synapses onto neuron j is not necessarily equal to the weighted degree of neuron j . This is simply
504 because we consider all annotated postsynaptic contacts onto neuron j , and some number of those
505 contacts may not be connected to another neuron in the current networks considered here. We denote
506 the number of synapses onto neuron j as D_j . To summarize:

- **Synapse number threshold:** $w_{ij} = s_{ij}$
- **Input proportion threshold:** $w_{ij} = \frac{s_{ij}}{D_j}$

507 Given either definition of the weighting scheme, we formed a series of networks by varying the
508 edge weight threshold, t . We stress that edge weights were used *only* for the purposes of defining
509 the edges to consider for our (binary) networks—the edge weights themselves were not used in the

512 statistical tests. We then re-ran the density, group connection, and density-adjusted group connection
513 tests for each network. The p-values for these tests are plotted against the weight thresholds and
514 the proportion of edges removed in Figure 6E and F for the synapse number and input proportion
515 thresholds, respectively.

516 **5 Code** Analyses relied on `graspologic` [60], `NumPy` [61], `SciPy` [62], `Pandas` [63], and `NetworkX`
517 [64]. Plotting was performed using `matplotlib` [65] and `Seaborn` [66]. All code used for this pa-
518 per can be found at github.com/neurodata/bilateral-connectome and viewed as a `JupyterBook` [67] at
519 docs.neurodata.io/bilateral-connectome. The data used in these analyses will be made public and in-
520 cluded in the source code repository above upon the release of the data in Winding et al. [14].

521 **6 Acknowledgements** B.D.P. was supported by the **NSF Graduate Research Fellowship** (Grant no.
522 **DGE1746891**). J.T.V. was supported by the **NSF CAREER Award** (Grant no. 1942963). J.T.V. was
523 supported by the **NSF NeuroNex Award** (Grant no. 2014862). J.T.V and C.E.P. were supported by the
524 **NIH BRAIN Initiative** (Grant no. 1RF1MH123233-01).

525 References

526 [1] Joshua T Vogelstein, Eric W Bridgeford, Benjamin D Pedigo, Jaewon Chung, Keith Levin, Brett
527 Mensh, and Carey E Priebe. Connectal coding: discovering the structures linking cognitive phe-
528 notypes to individual histories. *Current Opinion in Neurobiology*, 55:199–212, April 2019. ISSN
529 0959-4388. doi: 10.1016/j.conb.2019.04.005. URL <http://www.sciencedirect.com/science/article/pii/S0959438818301430>.

530 [2] Larry F. Abbott, Davi D. Bock, Edward M. Callaway, Winfried Denk, Catherine Dulac, Adrienne L.
531 Fairhall, Ila Fiete, Kristen M. Harris, Moritz Helmstaedter, Viren Jain, Narayanan Kasthuri, Yann Le-
532 Cun, Jeff W. Lichtman, Peter B. Littlewood, Liqun Luo, John H.R. Maunsell, R. Clay Reid, Bruce R.
533 Rosen, Gerald M. Rubin, Terrence J. Sejnowski, H. Sebastian Seung, Karel Svoboda, David W.
534 Tank, Doris Tsao, and David C. Van Essen. The Mind of a Mouse. *Cell*, 182(6):1372–1376, 2020.
535 ISSN 10974172. doi: 10.1016/j.cell.2020.08.010. URL <https://doi.org/10.1016/j.cell.2020.08.010>.
536 Publisher: Elsevier Inc.

537 [3] Elizabeth Barsotti, Ana Correia, and Albert Cardona. Neural architectures in the light of compa-
538 rative connectomics. *Current Opinion in Neurobiology*, 71:139–149, 2021. ISSN 18736882. doi:
539 10.1016/j.conb.2021.10.006. URL <https://doi.org/10.1016/j.conb.2021.10.006>. Publisher: MRC
540 Laboratory of Molecular Biology.

541 [4] Dana Shani Galili, Gregory S. X. E. Jefferis, and Marta Costa. Connectomics and the neural
542 basis of behaviour. *Current Opinion in Insect Science*, page 100968, September 2022. ISSN
543 2214-5745. doi: 10.1016/j.cois.2022.100968. URL <https://www.sciencedirect.com/science/article/pii/S2214574522001031>.

544 [5] Stephan Gerhard, Ingrid Andrade, Richard D Fetter, Albert Cardona, and Casey M Schneider-
545 Mizell. Conserved neural circuit structure across Drosophila larval. *eLife*, 6:e29089:1–17, 2017.
546 ISSN 2050-084X. ISBN: 2050-084X (Electronic) 2050-084X (Linking).

547 [6] Daniel Witvliet, Ben Mulcahy, James K. Mitchell, Yaron Meirovitch, Daniel R. Berger, Yuelong Wu,
548 Yufang Liu, Wan Xian Koh, Rajeev Parvathala, Douglas Holmyard, Richard L. Schalek, Nir Shavit,
549 Andrew D. Chisholm, Jeff W. Lichtman, Aravinthan D. T. Samuel, and Mei Zhen. Connectomes
550 across development reveal principles of brain maturation. *Nature*, 596(7871):257–261, August
551 2021. ISSN 1476-4687. doi: 10.1038/s41586-021-03778-8. URL <https://www.nature.com/articles/s41586-021-03778-8>. Number: 7871 Publisher: Nature Publishing Group.

552 [7] Steven J. Cook, Travis A. Jarrell, Christopher A. Brittin, Yi Wang, Adam E. Bloniarz, Mak-
553 sim A. Yakovlev, Ken C. Q. Nguyen, Leo T.-H. Tang, Emily A. Bayer, Janet S. Duerr, Hannes E.
554 Bülow, Oliver Hobert, David H. Hall, and Scott W. Emmons. Whole-animal connectomes of both
555 *Caenorhabditis elegans* sexes. *Nature*, 571(7763):63–71, July 2019. ISSN 1476-4687. doi:
556 10.1038/s41586-019-1352-7. URL <https://www.nature.com/articles/s41586-019-1352-7>. Number:
557 7763 Publisher: Nature Publishing Group.

558 [8] Javier Valdes-Aleman, Richard D. Fetter, Emily C. Sales, Emily L. Heckman, Lalanti Venkata-
559 subramanian, Chris Q. Doe, Matthias Landgraf, Albert Cardona, and Marta Zlatic. Comparative
560 Connectomics Reveals How Partner Identity, Location, and Activity Specify Synaptic Connectivity
561 in Drosophila. *Neuron*, 109(1):105–122.e7, 2021. ISSN 10974199. doi: 10.1016/j.neuron.2020.
562 10.004. URL <https://doi.org/10.1016/j.neuron.2020.10.004>. Publisher: Elsevier Inc.

563 [9] Mikhail A. Fedonkin and Benjamin M. Waggoner. The late Precambrian fossil Kimberella is a
564 mollusc-like bilaterian organism. *Nature*, 388(6645):868–871, 1997. ISSN 00280836. doi: 10.
565 1038/42242.

566 [10] Oliver Hobert. Development of left/right asymmetry in the *Caenorhabditis elegans* nervous system:
567 From zygote to postmitotic neuron. *Genesis*, 52(6):528–543, 2014. ISSN 1526968X. doi: 10.1002/
568 dvg.22747. ISBN: 1526-954X.

569 [11] Ju Lu, Juan Carlos Tapia, Olivia L. White, and Jeff W. Lichtman. The interscutularis muscle connec-
570 tome. *PLoS Biology*, 7(2):0265–0277, 2009. ISSN 15457885. doi: 10.1371/journal.pbio.1000032.

571

572

573

574 [12] Philipp Schlegel, Alexander Shakeel Bates, Tomke Stürner, Sridhar R Jagannathan, Nikolas
575 Drummond, Joseph Hsu, Laia Serratosa Capdevila, Alexandre Javier, Elizabeth C Marin, Asa
576 Barth-Maron, Imaan FM Tamimi, Feng Li, Gerald M Rubin, Stephen M Plaza, Marta Costa,
577 and Gregory S X E Jefferis. Information flow, cell types and stereotypy in a full olfactory
578 connectome. *eLife*, 10:e66018, May 2021. ISSN 2050-084X. doi: 10.7554/eLife.66018. URL
579 <https://doi.org/10.7554/eLife.66018>. Publisher: eLife Sciences Publications, Ltd.

580 [13] Marta Costa, James D. Manton, Aaron D. Ostrovsky, Steffen Prohaska, and Gregory S.X.E. Jef-
581 feris. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron
582 Family Databases. *Neuron*, 91(2):293–311, 2016. ISSN 10974199. doi: 10.1016/j.neuron.2016.
583 06.012. URL <http://dx.doi.org/10.1016/j.neuron.2016.06.012>. Publisher: Elsevier Inc.

584 [14] Michael Winding, Benjamin D. Pedigo, Christopher L. Barnes, Heather G. Patsolic, Youngser Park,
585 Tom Kazimiers, Akira Fushiki, Ingrid V. Andrade, Feng Li, Javier Valdes-Aleman, Avinash Khan-
586 delwal, Nadine Randel, Elizabeth Barsotti, Ana Correia, Richard D. Fetter, Volker Hartenstein,
587 Carey E. Priebe, Joshua T. Vogelstein, Albert Cardona, and Marta Zlatic. The connectome of an
588 insect brain, November 2022. URL <https://www.biorxiv.org/content/10.1101/2022.11.28.516756v1>.
589 Pages: 2022.11.28.516756 Section: New Results.

590 [15] František Váša and Bratislav Mišić. Null models in network neuroscience. *Nature Reviews
591 Neuroscience*, May 2022. ISSN 1471-003X, 1471-0048. doi: 10.1038/s41583-022-00601-9. URL
592 <https://www.nature.com/articles/s41583-022-00601-9>.

593 [16] E. N. Gilbert. Random Graphs. *The Annals of Mathematical Statistics*, 30(4):1141–1144, 1959.
594 URL <http://www.jstor.org/stable/2237458>.

595 [17] P. Erdős and A. Rényi. On the Evolution of Random Graphs. In *Publication of the Mathematical
596 Institute of the Hungarian Academy of Sciences*, pages 17–61, 1960.

597 [18] Laura E. Suárez, Yossi Yovel, Martijn P. van den Heuvel, Olaf Sporns, Yaniv Assaf, Guillaume
598 Lajoie, and Bratislav Misic. A connectomics-based taxonomy of mammals, March 2022. URL
599 <https://www.biorxiv.org/content/10.1101/2022.03.11.483995v1>. Pages: 2022.03.11.483995 Section:
600 New Results.

601 [19] Hang Chen, Utkarsh Soni, Yafeng Lu, Vahan Huroyan, Ross Maciejewski, and Stephen Kobourov.
602 Same Stats, Different Graphs: Exploring the Space of Graphs in Terms of Graph Properties. *IEEE
603 Transactions on Visualization and Computer Graphics*, 27(3):2056–2072, March 2021. ISSN 1077-
604 2626, 1941-0506, 2160-9306. doi: 10.1109/TVCG.2019.2946558. URL <https://ieeexplore.ieee.org/document/8863985>.

605 [20] Martin Heisenberg. Mushroom body memoir: From maps to models. *Nature Reviews
606 Neuroscience*, 4(4):266–275, 2003. ISSN 14710048. doi: 10.1038/nrn1074.

607 [21] Yoshinori Aso, Divya Sitaraman, Toshiharu Ichinose, Karla R. Kaun, Katrin Vogt, Ghislain Belliart-
608 Guérin, Pierre Yves Plaçais, Alice A. Robie, Nobuhiro Yamagata, Christopher Schnaitmann, Will-
609 iam J. Rowell, Rebecca M. Johnston, Teri T.B. Ngo, Nan Chen, Wyatt Korff, Michael N. Nitabach,
610 Ulrike Heberlein, Thomas Prent, Kristin M. Branson, Hiromu Tanimoto, and Gerald M. Rubin.
611 Mushroom body output neurons encode valence and guide memory-based action selection in
612 *Drosophila*. *eLife*, 3(3):e04580, 2014. ISSN 2050084X. doi: 10.7554/eLife.04580.

613 [22] Katharina Eichler, Feng Li, Ashok Litwin-Kumar, Youngser Park, Ingrid Andrade, Casey M.
614 Schneider-Mizell, Timo Saumweber, Annina Huser, Claire Eschbach, Bertram Gerber, Richard D.
615 Fetter, James W. Truman, Carey E. Priebe, L. F. Abbott, Andreas S. Thum, Marta Zlatic, and
616 Albert Cardona. The complete connectome of a learning and memory centre in an insect
617 brain. *Nature*, 548(7666):175–182, 2017. ISSN 14764687. doi: 10.1038/nature23455. URL
618 <http://dx.doi.org/10.1038/nature23455>. Publisher: Nature Publishing Group.

619 [23] Sophie J.C. Caron, Vanessa Ruta, L. F. Abbott, and Richard Axel. Random convergence of olfac-
620 tory inputs in the *Drosophila* mushroom body. *Nature*, 497(7447):113–117, 2013. ISSN 00280836.
621 doi: 10.1038/nature12063. Publisher: Nature Publishing Group.

623 [24] Tomoko Ohyama, Casey M. Schneider-Mizell, Richard D. Fetter, Javier Valdes Aleman, Romain
624 Franconville, Marta Rivera-Alba, Brett D. Mensh, Kristin M. Branson, Julie H. Simpson, James W.
625 Truman, Albert Cardona, and Marta Zlatic. A multilevel multimodal circuit enhances action selec-
626 tion in *Drosophila*. *Nature*, 520(7549):633–639, 2015. ISSN 14764687. doi: 10.1038/nature14297.

627 [25] William F. Tobin, Rachel I. Wilson, and Wei Chung Allen Lee. Wiring variations that enable and
628 constrain neural computation in a sensory microcircuit. *eLife*, 6:1–26, 2017. ISSN 2050084X. doi:
629 10.7554/eLife.24838.

630 [26] Matthew E Berck, Avinash Khandelwal, Lindsey Claus, Luis Hernandez-Nunez, Guangwei Si,
631 Christopher J Tabone, Feng Li, James W Truman, Rick D Fetter, Matthieu Louis, Aravinthan DT
632 Samuel, and Albert Cardona. The wiring diagram of a glomerular olfactory system. *eLife*, 5:1–21,
633 2016. doi: 10.7554/elife.14859.

634 [27] Dániel L. Barabási and Albert-László Barabási. A Genetic Model of the Connectome. *Neuron*,
635 105(3):435–445.e5, February 2020. ISSN 0896-6273. doi: 10.1016/j.neuron.2019.10.031. URL
636 <https://www.sciencedirect.com/science/article/pii/S0896627319309262>.

637 [28] Minh Tang, Avanti Athreya, Daniel L. Sussman, Vince Lyzinski, Youngser Park, and Carey E.
638 Priebe. A Semiparametric Two-Sample Hypothesis Testing Problem for Random Graphs. *Journal*
639 *of Computational and Graphical Statistics*, 26(2):344–354, 2017. ISSN 15372715. doi: 10.1080/
640 10618600.2016.1193505. URL <https://doi.org/10.1080/10618600.2016.1193505>. arXiv: 1409.2344
641 Publisher: Taylor & Francis.

642 [29] Avanti Athreya, Donniell E. Fishkind, Minh Tang, Carey E. Priebe, Youngser Park, Joshua T. Vogelstein,
643 Keith Levin, Vince Lyzinski, Yichen Qin, and Daniel L. Sussman. Statistical Inference on
644 Random Dot Product Graphs: a Survey. *Journal of Machine Learning Research*, 18(226):1–92,
645 2018. ISSN 1533-7928. URL <http://jmlr.org/papers/v18/17-448.html>.

646 [30] Jaewon Chung, Bijan Varjavand, Jesús Arroyo-Relión, Anton Alyakin, Joshua Agterberg, Minh
647 Tang, Carey E. Priebe, and Joshua T. Vogelstein. Valid two-sample graph testing via optimal
648 transport Procrustes and multiscale graph correlation with applications in connectomics. *Stat*, 11
649 (1):e429, 2022. ISSN 2049-1573. doi: 10.1002/sta4.429. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.429>. _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/sta4.429>.

650 [31] Gecia Bravo-Hermsdorff, Lee M. Gunderson, Pierre-André Maugis, and Carey E. Priebe. A prin-
651 cipled (and practical) test for network comparison, July 2021. URL <http://arxiv.org/abs/2107.11403>.
652 arXiv:2107.11403 [cs, math, stat].

653 [32] Clement Lee and Darren J. Wilkinson. A review of stochastic block models and extensions
654 for graph clustering. *Applied Network Science*, 4(1), 2019. ISSN 23648228. doi: 10.1007/
655 s41109-019-0232-2. arXiv: 1903.00114 Publisher: Applied Network Science.

656 [33] Tiago P. Peixoto. Efficient Monte Carlo and greedy heuristic for the inference of stochastic block
657 models. *Physical Review E - Statistical, Nonlinear, and Soft Matter Physics*, 89(1):1–8, 2014. ISSN
658 15393755. doi: 10.1103/PhysRevE.89.012804. arXiv: 1310.4378.

659 [34] Tiago P. Peixoto. Nonparametric Bayesian inference of the microcanonical stochastic block model.
660 *Physical Review E*, 95(1), 2017. ISSN 24700053. doi: 10.1103/PhysRevE.95.012317. arXiv:
661 1610.02703.

662 [35] Karl Rohe, Sourav Chatterjee, and Bin Yu. Spectral clustering and the high-dimensional sto-
663 chastic blockmodel. *Annals of Statistics*, 39(4):1878–1915, 2011. ISSN 00905364. doi:
664 10.1214/11-AOS887.

665 [36] Daniel L. Sussman, Minh Tang, Donniell E. Fishkind, and Carey E. Priebe. A consistent adj-
666 acency spectral embedding for stochastic blockmodel graphs. *Journal of the American Statistical
667 Association*, 107(499):1119–1128, 2012. ISSN 01621459. doi: 10.1080/01621459.2012.699795.
668 arXiv: 1108.2228.

669 [37] Thorben Funke and Till Becker. Stochastic block models: A comparison of variants and inference
670 methods. *PLOS ONE*, 14(4):e0215296, April 2019. ISSN 1932-6203. doi: 10.1371/journal.pone.
671

672 0215296. URL <https://dx.plos.org/10.1371/journal.pone.0215296>.

673 [38] Arnim Jenett, Gerald M. Rubin, Teri-T. B. Ngo, David Shepherd, Christine Murphy, Heather Dionne,
674 Barret D. Pfeiffer, Amanda Cavallaro, Donald Hall, Jennifer Jeter, Nirmala Iyer, Dona Fetter,
675 Joanna H. Hausenfluck, Hanchuan Peng, Eric T. Trautman, Robert R. Svirskas, Eugene W. My-
676 ers, Zbigniew R. Iwinski, Yoshinori Aso, Gina M. DePasquale, Adrienne Enos, Phuson Hulamm,
677 Shing Chun Benny Lam, Hsing-Hsi Li, Todd R. Laverty, Fuhui Long, Lei Qu, Sean D. Murphy,
678 Konrad Rokicki, Todd Safford, Kshiti Shaw, Julie H. Simpson, Allison Sowell, Susana Tae, Yang
679 Yu, and Christopher T. Zugates. A GAL4-Driver Line Resource for Drosophila Neurobiology. *Cell
680 Reports*, 2(4):991–1001, October 2012. ISSN 2211-1247. doi: 10.1016/j.celrep.2012.09.011. URL
681 [https://www.cell.com/cell-reports/abstract/S2211-1247\(12\)00292-6](https://www.cell.com/cell-reports/abstract/S2211-1247(12)00292-6). Publisher: Elsevier.

682 [39] Claire Eschbach, Akira Fushiki, Michael Winding, Casey M. Schneider-Mizell, Mei Shao, Rebecca
683 Arruda, Katharina Eichler, Javier Valdes-Aleman, Tomoko Ohshima, Andreas S. Thum, Bertram
684 Gerber, Richard D. Fetter, James W. Truman, Ashok Litwin-Kumar, Albert Cardona, and Marta
685 Zlatic. Recurrent architecture for adaptive regulation of learning in the insect brain. *Nature
686 Neuroscience*, 23(4):544–555, April 2020. ISSN 1546-1726. doi: 10.1038/s41593-020-0607-9.
687 URL <https://www.nature.com/articles/s41593-020-0607-9>. Number: 4 Publisher: Nature Publish-
688 ing Group.

689 [40] Benjamin D. Pedigo, Michael Winding, Carey E. Priebe, and Joshua T. Vogelstein. Bisected
690 graph matching improves automated pairing of bilaterally homologous neurons from connectomes.
691 *Network Neuroscience*, pages 1–29, October 2022. ISSN 2472-1751. doi: 10.1162/netn_a_
692 00287. URL https://doi.org/10.1162/netn_a_00287.

693 [41] Casey M. Schneider-Mizell, Stephan Gerhard, Mark Longair, Tom Kazimiers, Feng Li, Maarten F.
694 Zwart, Andrew Champion, Frank M. Midgley, Richard D. Fetter, Stephan Saalfeld, and Albert Car-
695 dona. Quantitative neuroanatomy for connectomics in Drosophila. *eLife*, 5(MARCH2016):1–36,
696 2016. ISSN 2050084X. doi: 10.7554/eLife.12059.

697 [42] Debarghya Ghoshdastidar and Ulrike Von Luxburg. Practical methods for graph two-sample test-
698 ing. *Advances in Neural Information Processing Systems*, 2018-Decem:3015–3024, 2018. ISSN
699 10495258. arXiv: 1811.12752.

700 [43] Somnath Bhadra, Kaustav Chakraborty, Srijan Sengupta, and Soumendra Lahiri. A Bootstrap-
701 based Inference Framework for Testing Similarity of Paired Networks, November 2019. URL <http://arxiv.org/abs/1911.06869>. arXiv:1911.06869 [stat].

702 [44] Donniell E. Fishkind, Sancar Adali, Heather G. Patsolic, Lingyao Meng, Digvijay Singh, Vince
703 Lyzinski, and Carey E. Priebe. Seeded graph matching. *Pattern Recognition*, 87:203–215, 2019.
704 ISSN 00313203. doi: 10.1016/j.patcog.2018.09.014. URL [https://doi.org/10.1016/j.patcog.2018.09.014](https://doi.org/10.1016/j.patcog.2018.
705 09.014). arXiv: 1209.0367 Publisher: Elsevier Ltd.

706 [45] Joshua T. Vogelstein, John M. Conroy, Vince Lyzinski, Louis J. Podrazik, Steven G. Kratzer, Eric T.
707 Harley, Donniell E. Fishkind, R. Jacob Vogelstein, and Carey E. Priebe. Fast Approximate Qua-
708 dratic programming for graph matching. *PLoS ONE*, 10(4):1–17, 2015. ISSN 19326203. doi:
709 10.1371/journal.pone.0121002.

710 [46] Ali Saad-Eldin, Benjamin D. Pedigo, Carey E. Priebe, and Joshua T. Vogelstein. Graph matching
711 via optimal transport. arXiv: 2111.05366, 2021. URL <http://arxiv.org/abs/2111.05366>.

712 [47] Madhura Ingaliikar, Alex Smith, Drew Parker, Theodore D. Satterthwaite, Mark A. Elliott, Kosha
713 Ruparel, Hakon Hakonarson, Raquel E. Gur, Ruben C. Gur, and Ragini Verma. Sex differences in
714 the structural connectome of the human brain. *Proceedings of the National Academy of Sciences*,
715 111(2):823–828, January 2014. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.1316909110.
716 URL <https://pnas.org/doi/full/10.1073/pnas.1316909110>.

717 [48] Cedric Huchuan Xia, Zongming Ma, Zaixu Cui, Danilo Bzdok, Bertrand Thirion, Danielle S. Bas-
718 sett, Theodore D. Satterthwaite, Russell T. Shinohara, and Daniela M. Witten. Multi-scale network
719 regression for brain-phenotype associations. *Human Brain Mapping*, 41(10):2553–2566, 2020.

720

721 ISSN 10970193. doi: 10.1002/hbm.24982.

722 [49] Joshua I. Raji and Christopher J. Potter. The number of neurons in *Drosophila* and mosquito
723 brains. *PLoS ONE*, 16(5 May):1–11, 2021. ISSN 19326203. doi: 10.1371/journal.pone.0250381.
724 URL <http://dx.doi.org/10.1371/journal.pone.0250381>. ISBN: 1111111111.

725 [50] Alexander S. Bates, Philipp Schlegel, Ruairí J.V. Roberts, Nikolas Drummond, Imaan F.M. Tamimi,
726 Robert Turnbull, Xincheng Zhao, Elizabeth C. Marin, Patricia D. Popovici, Serene Dhawan, Arian
727 Jamasb, Alexandre Javier, Laia Serratosa Capdevila, Feng Li, Gerald M. Rubin, Scott Waddell,
728 Davi D. Bock, Marta Costa, and Gregory S.X.E. Jefferis. Complete Connectomic Reconstruction
729 of Olfactory Projection Neurons in the Fly Brain. *Current Biology*, 30(16):3183–3199.e6, 2020.
730 ISSN 18790445. doi: 10.1016/j.cub.2020.06.042. URL <https://doi.org/10.1016/j.cub.2020.06.042>.
731 Publisher: Elsevier Ltd.

732 [51] Mattia Tantardini, Francesca Ieva, Lucia Tajoli, and Carlo Piccardi. Comparing methods for
733 comparing networks. *Scientific Reports*, 9(1):1–19, 2019. ISSN 20452322. doi: 10.1038/
734 s41598-019-53708-y.

735 [52] Jaewon Chung, Eric Bridgeford, Jesús Arroyo, Benjamin D. Pedigo, Ali Saad-Eldin, Vivek
736 Gopalakrishnan, Liang Xiang, Carey E. Priebe, and Joshua T. Vogelstein. Statistical connec-
737 toomics. *Annual Review of Statistics and Its Application*, 8:463–492, 2021. ISSN 2326831X. doi:
738 10.1146/annurev-statistics-042720-023234.

739 [53] Alan Agresti. *Categorical Data Analysis*. Wiley, third edition, January 2013. ISBN 978-0-470-
740 46363-5.

741 [54] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
742 steps. *Social Networks*, 5(2):109–137, June 1983. ISSN 0378-8733. doi: 10.1016/0378-8733(83)
743 90021-7. URL <http://www.sciencedirect.com/science/article/pii/0378873383900217>.

744 [55] Allan Birnbaum. Combining Independent Tests of Significance. *Journal of the American Statistical
745 Association*, 49(267):559–574, 1954. ISSN 1537274X. doi: 10.1080/01621459.1954.10483521.

746 [56] N. A. Heard and P. Rubin-Delanchy. Choosing between methods of combining p -values.
747 *Biometrika*, 105(1):239–246, 2018. ISSN 14643510. doi: 10.1093/biomet/asx076. arXiv:
748 1707.06897.

749 [57] Leonard Henry Caleb Tippett. *The Methods Of Statistics*. Williams and Norgate LTD, third edition,
750 1931. URL <http://archive.org/details/in.ernet.dli.2015.189563>.

751 [58] Charles William Dunnett and Michael Gent. Significance Testing to Establish Equivalence between
752 Treatments, with Special Reference to Data in the Form of 2 x 2 Tables. *Biometrics*, 33(4):593,
753 1977. ISSN 0006341X. doi: 10.2307/2529457.

754 [59] Ivan S.F. Chan. Proving non-inferiority or equivalence of two treatments with dichotomous end-
755 points using exact methods. *Statistical Methods in Medical Research*, 12(1):37–58, 2003. ISSN
756 09622802. doi: 10.1191/096228020203sm314ra.

757 [60] Jaewon Chung, Benjamin D. Pedigo, Eric W. Bridgeford, Bijan K. Varjavand, Hayden S. Helm, and
758 Joshua T. Vogelstein. GraSPy: Graph Statistics in Python. *arXiv:1904.05329 [cs, stat]*, March
759 2019. URL <http://arxiv.org/abs/1904.05329>. arXiv: 1904.05329.

760 [61] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
761 David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
762 Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
763 del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
764 Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array pro-
765 gramming with NumPy. *Nature*, 585(7825):357–362, September 2020. ISSN 1476-4687. doi:
766 10.1038/s41586-020-2649-2. URL <https://www.nature.com/articles/s41586-020-2649-2>. Number:
767 7825 Publisher: Nature Publishing Group.

768 [62] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
769 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der

770 Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
771 Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore,
772 Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
773 Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, and Paul
774 van Mulbregt. SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nature*
775 *Methods*, 17(3):261–272, March 2020. ISSN 1548-7105. doi: 10.1038/s41592-019-0686-2. URL
776 <https://www.nature.com/articles/s41592-019-0686-2>. Number: 3 Publisher: Nature Publishing
777 Group.

778 [63] Wes McKinney. Data Structures for Statistical Computing in Python. *Proceedings of the 9th Python*
779 *in Science Conference (Scipy 2010)*, pages 56–61, 2010. doi: 10.25080/Majora-92bf1922-00a.
780 URL <https://conference.scipy.org/proceedings/scipy2010/mckinney.html>.

781 [64] Aric A Hagberg, Daniel A Schult, and Pieter J Swart. Exploring Network Structure, Dynamics, and
782 Function using NetworkX. *Proceedings of Seventh Python in Science Conference (SciPy 2008)*,
783 page 5, 2008.

784 [65] John D. Hunter. Matplotlib: A 2D Graphics Environment. *Computing in Science & Engineering*, 9
785 (3):90–95, May 2007. ISSN 1558-366X. doi: 10.1109/MCSE.2007.55. Conference Name: Com-
786 puting in Science & Engineering.

787 [66] Michael L. Waskom. seaborn: statistical data visualization. *Journal of Open Source Software*,
788 6(60):3021, April 2021. ISSN 2475-9066. doi: 10.21105/joss.03021. URL <https://joss.theoj.org/papers/10.21105/joss.03021>.

789 [67] Executable Books Community. Jupyter Book, February 2020. URL <https://zenodo.org/record/4539666>.

790

791

792 7 Supplemental Information

793 7.1 Power and validity of group connection test under various alternatives In Section 4.2.3, we
794 considered the group connection test, where the goal was to test

$$(7.1) \quad H_0 : B^{(L)} = B^{(R)} \text{ vs. } H_A : B^{(L)} \neq B^{(R)}.$$

795 We saw that this set of hypotheses could be decomposed into K^2 (where K is the number of groups)
796 different hypotheses

$$(7.2) \quad H_0 : B_{kl}^{(L)} = B_{kl}^{(R)}, \quad H_A : B_{kl}^{(L)} \neq B_{kl}^{(R)},$$

797 yielding a p-value for the (k, l) th test, p_{kl} . We now consider the problem of trying to combine these
798 p-values into one which bears on the overall hypotheses in Equation 7.1. We proposed using Tippett's
799 method for combining p-values [57], and we now demonstrate the utility of this method against various
800 alternatives.

801 To do so, we performed the following simulation experiment. First, we consider two hypothetical
802 group connection matrices, $B^{(1)}$ and $B^{(2)}$. We set $B^{(1)} = \hat{B}^{(L)}$. We also consider the matrix M ,
803 which is a $K \times K$ matrix denoting the number of possible edges in each block of an SBM. Here, we
804 again set $M = \hat{M}^{(L)}$, in other words, we use the number of potential edges for each block observed
805 for the left hemisphere network. To analyze the sensitivity of Tippett's method to different alternatives,
806 we conducted the following simulation: Let t be the *number of probabilities to perturb*. Let δ represent
807 the *strength of the perturbation*. We performed experiments using $\delta \in \{0, 0.1, 0.2, 0.3, 0.4, 0.5\} \times$
808 $t \in \{0, 25, 50, 75, 100, 125\}$ (note that if $\delta = 0$ or $t = 0$, then we are under the null hypothesis in
809 Equation 7.1). For each (δ, t) , we ran 50 replicates of the simulation below:

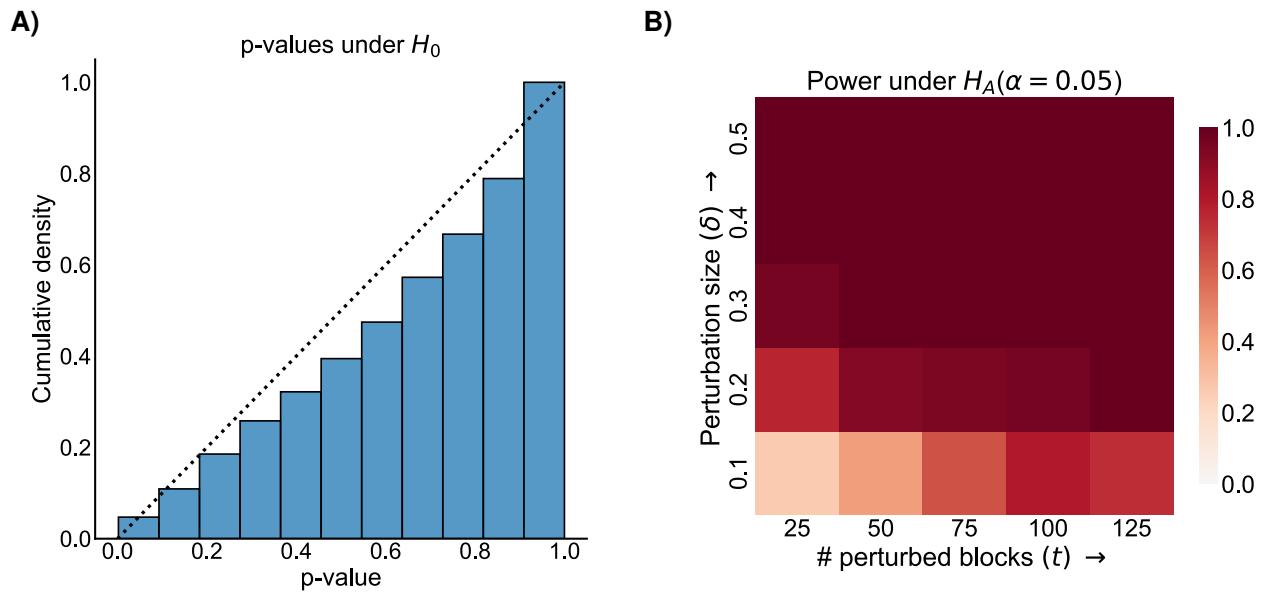
- 810 1. Randomly select t probabilities without replacement from the elements of B .
- 811 2. For each of the selected elements, set $B_{kl}^{(2)} = TN(B_{kl}^{(1)}, \delta B_{kl}^{(1)})$ where TN is a truncated
812 normal distribution with support $[0, 1]$.
- 813 3. For each of the unselected elements, set $B_{kl}^{(2)} = B_{kl}^{(1)}$.
- 814 4. For each block (k, l) , sample the number of edges in that block for network 1:

$$m_{kl}^{(1)} \sim Binomial(M_{kl}, B_{kl}^{(1)}).$$

815 Sample the number of edges in each block similarly for network 2, but using $B^{(2)}$.

- 816 5. For each block (k, l) , compare $m_{kl}^{(1)}$ and $m_{kl}^{(2)}$ using Fisher's exact test as in Section 4.2.3. This
817 yields a set of p-values $\mathcal{P} = \{p_{1,1}, p_{1,2} \dots p_{(K-1),K}, p_{K,K}\}$ for each comparison.
- 818 6. Apply Tippett's method to combine the p-values \mathcal{P} into one p-value for the overall hypotheses.

819 We observed that the p-values obtained from Tippett's method were valid – they controlled the
820 probability of Type I error for any significance level (Supplemental Figure 1A). Further, we observed that
821 Tippett's method was also powerful against differing alternatives to the null hypothesis (Supplemental
822 Figure 1B). Tippett's method had a power of 1 against the alternative ($t = 25, \delta = 0.5$), meaning a small
823 number of large perturbations. It also had a power of ~ 0.8 against the alternative ($t = 125, \delta = 0.1$),
824 in other words, a large number of small perturbations. Thus, we concluded that Tippett's method is a
825 reasonable choice of method for combining p-values for our group connection test.



Supplemental Figure 1: Demonstration that the group connection test is both valid and powerful against a range of alternatives in a synthetic simulation based on the observed data. See [Section 7.1](#) for more details on the simulation. **A)** Cumulative distribution of *p*-values from Tippett's method for combining *p*-values under the null, where the two group connection matrices $B^{(1)}$ and $B^{(2)}$ are the same. Note that the distribution of these *p*-values is sub- $Uniform(0, 1)$ (i.e., below the dashed line indicating the cumulative distribution of a $Uniform(0, 1)$ random variable, meaning that the test is valid and the Type-I error is properly controlled for any level α . **B)** Power (probability of correctly rejecting the null hypothesis when it is false) as a function of the number of perturbed blocks (t) and the strength of each perturbation (δ). Note that the test is powerful against both a small number of strong perturbations and a large number of small perturbations, indicating its general applicability.