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Abstract. Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development,7

learning, and behavior. However, making statistical inferences about the significance and nature of differences8

between two networks is an open problem, and such analysis has not been extensively applied to nanoscale9

connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila10

brain connectome. We translate notions of “bilateral symmetry” to generative models of the network structure of11

the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant12

differences in connection probabilities both across the entire left and right networks and between specific cell13

types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted14

definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from15

networks can inform the study of connectomes, facilitating future comparisons of neural structures.16

1 Introduction Connectomes – maps of neural wiring – have become increasingly important in neu-17

roscience, and are thought to be an important window into studying how connectivity relates to neural18

activity, evolution, disease, genetics, and learning [1–4]. However, many of these pursuits in connec-19

tomics depend on being able to compare networks. For instance, to understand how memory relates20

to connectivity, one would need to map a connectome which has learned something and one which21

has not, and then assess whether and how the two networks are different. To understand how a gene22

affects connectivity, one would need to map a connectome from an organism with a genetic mutation23

and one from a wild-type organism, and then assess whether and how the two networks are different.24

Authors have advocated for comparing connectomes across the phylogenetic tree of life [3] or disease25

states [2]. Several recent works have already started towards this goal of comparative connectomics.26

Gerhard et al. [5] compared the connections in the nerve cord (the insect equivalent of a spinal cord)27

of the L1 and L3 stages of the larval Drosophila melanogaster to understand how these connections28

change as the animal develops. Similarly, Witvliet et al. [6] collected connectomes from Caenorhabditis29

elegans at various life stages, and examined which connections were stable and which were dynamic30

across development. Cook et al. [7] generated connectomes for both a male and hermaphrodite C.31

elegans worm to understand which aspects of this organism’s wiring diagram differ between the sexes.32

Valdes-Aleman et al. [8] made genetic perturbations to different individual D. melanogaster fly larva,33

and examined how these perturbations affected the connectivity of a local circuit in the organism’s34

nerve cord. Viewed through the lens of the wiring diagrams alone (i.e., ignoring morphology, subcellu-35

lar structures, etc.), these pursuits all amount to comparing two or more networks.36

In addition to those described above, one comparison that has been prevalent in the connectomics37

literature is to assess the degree of left/right structural similarity of a nervous system. Bilateria is a38

group of animals which have a left/right structural symmetry. This clade is thought to have emerged39

around 550 million years ago [9], making it one of the oldest groups of animals. Most organisms40

studied in neuroscience (including C. elegans, D. melanogaster, mice, rats, monkeys, and humans) are41

all bilaterians. While functional asymmetries in the brain have been discovered, this axis of structural42

symmetry is generally thought to extend to the brain [10].43

Connectomic studies have investigated this structural similarity in various ways. The degree of44

left/right symmetry in a single connectome has often been studied as a proxy or lower bound for the45
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amount of sterotypy that one could expect between connectomes of different individuals. Lu et al. [11]46

reconstructed the connectome of the axons projecting to the interscutularis muscle on the left and right47

side of two individual mice. They found that the branching patterns of axons between the left and right48

sides within one animal were no more similar than a comparison between the two animals, and also49

no more similar than two random branching patterns generated by a null model. In contrast, Schlegel50

et al. [12] found a striking similarity between the morphologies of neurons (as measured by NBLAST51

[13]) in the left and right hemispheres of the D. melanogaster antennal lobe, and a similar level of52

stereotypy between the antennal lobes of two different individuals. Cook et al. [7] used the observed53

level of left-right variability in a C. elegans hermaphrodite connectome as a proxy for the amount of54

variability in connectivity between individuals, assuming that one should expect the connectomes of the55

left and right to be the same up to developmental and experiential variability. Conversely, they also point56

out the fact that the ASEL neuron (on the left side) projects more strongly to neuron class AWC than57

the analogous version on the right, verifying this difference via fluorescent labeling in another animal.58

These studies highlight the complicated relationship between neuroscientists and bilateral symmetry:59

at times, we may assume that the left and right sides of a nervous system are in some sense the same60

in expectation, but at other times we find marked, reproducible differences between them. To date, no61

study (to our knowledge) has framed this question of bilateral symmetry of connectivity as a statistical62

hypothesis comparing two networks.63

In this work, we compare the connectivity of the left and the right hemispheres of an insect con-64

nectome from the perspective of statistical hypothesis testing. Motivated by the discussion above, in65

this work we make three major contributions: 1) we formally state several notions of bilateral symmetry66

for connectomes as statistical hypotheses, 2) we present test procedures for each of these hypotheses67

of bilateral symmetry, and 3) we demonstrate the utility of these tests for understanding the signifi-68

cance and nature of bilateral symmetry/asymmetry in the brain of a D. melanogaster larva. In doing69

so, we provide a framework and methodology for any neuroscientist wishing to compare two networks,70

facilitating future work in comparative connectomics. We also provide Python implementations and71

documentation for the statistical tests for network comparison developed in this work.72

2 Results73

2.1 Connectome of a larval Drosophila brain Recently, authors mapped a connectome of the brain74

of a D. melanogaster larva [14]. To understand how the neurons in this brain were connected to each75

other, the authors first imaged this brain using electron microscopy, and then manually reconstructed76

each neuron and its pre- and post-synaptic contacts. This synaptic wiring diagram consists of 3,01377

neurons and over 544,000 synapses. We represent this connectome as a network, with nodes rep-78

resenting neurons and edges representing some number of synapses between them (Figure 1). Im-79

portantly, this work yielded a complete reconstruction of both the left and right hemispheres of the80

brain. In order to assess bilateral symmetry, we focused on the left-to-left and right-to-right (ipsilateral)81

induced subgraphs. While there are conceivable ways to define bilateral symmetry which include the82

contralateral connections, we did not consider them here in order to restrict our methods to the more83

widely applicable case of two-network-sample testing. More details on how we created the networks84

to compare here are available in Section 4.1. This process yielded a 1,504 neuron network for the left85

hemisphere, and a 1,503 neuron network for the right.86

We sought to understand whether these two networks were significantly different according to some87

definition, in order to characterize whether this brain was bilaterally symmetric. As with any statistical88

hypothesis test, this required that we make some modeling assumptions about the nature of the net-89

works being compared. We stress that our subsequent results should be interpreted in light of these90

models and what they do (and do not) tell us about these networks (see [15] for an excellent discus-91

sion of this point in network neuroscience, and see Section 3.2 for a discussion of alternative modeling92

assumptions). For all of our models, we treated the networks as directed (since we knew the direction93
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Figure 1: Visualizations of a larval Drosophila brain connectome from Winding et al. [14]. A) Adjacency matrix for the full
brain connectome network, sorted by brain hemisphere. Note that we ignore the left → right and right → left (contralateral)
subgraphs in this work. B) Network layouts for the left → left and right → right subgraphs.

of synapses), unweighted (creating an edge when there was one or more synapse between neurons94

unless otherwise specified), and loopless (since we ignored any observed self-loops). We made no as-95

sumptions about whether individual neurons in the left hemisphere correspond with individual neurons96

in the right hemisphere. Next, we detail a series of more specific models, what aspects of the networks97

they characterize, and how we construct a hypothesis test from each.98

2.2 Density test Our first test of bilateral symmetry was based on perhaps the simplest network99

model, the Erdos-Renyi (ER) model [16, 17], which models each potential edge as independently100

generated with the same probability, p. Comparing two networks under the ER model amounts to101

simply comparing their densities (Figure 2A).102

(2.1) H0 : p
(L) = p(R) vs. HA : p(L) ̸= p(R)

This comparison of probabilities can be tested using well-established statistical machinery for two-103

sample tests under the binomial distribution (see Section Section 4.2.2 for more details). We refer to104

this procedure as the density test.105

Figure 2B shows the comparison of the network densities between the left and right hemisphere106

networks. The densities of the left and right are ~0.016 and ~0.017, respectively, making the density of107

the left ~0.93 that of the right. To determine whether this is a difference likely to be observed by chance108

under the ER model, we ran a two-sided Fisher’s exact test, which tests whether the probabilities of two109

independent binomials are significantly different. This test yielded a p-value <10−23, suggesting that we110

have strong evidence to reject this version of our hypothesis of bilateral symmetry. While the ratio of the111

estimated densities is only ~0.93, this extremely small p-value resulted from the large sample size for112

this comparison: there are 2,260,512 and 2,257,506 potential edges on the left and right, respectively.113

To our knowledge, when neuroscientists have considered the question of bilateral symmetry, they114

have not meant such a simple comparison of network densities. In many ways, the ER model is too115

simple to be an interesting description of connectome structure. However, it is also striking that perhaps116

the simplest network comparison produced a significant difference between brain hemispheres for this117

brain. It is unclear whether this difference in densities is biological (e.g., a result of slightly differing118

rates of development for this individual), an artifact of how the data was collected (e.g., technological119

limitations causing slightly lower reconstruction rates on the left hemisphere), or something else entirely.120

Still, in addition to highlighting a simple departure from symmetry in this dataset, the density test result121

also provides important considerations for other tests. More complicated models of symmetry could122
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A) Density test methods B) Density comparison

Figure 2: Comparison of left and right hemisphere networks via the density test. A) Diagram of the methods used for testing
based on the network density. See Section 4.2.2 for more details. B) The estimated density p̂ (probability of any edge
averaged across the entire network) for the left hemisphere is ~0.016, while for the right it is ~0.017–this makes the left
density ~0.93 that of the right. Vertical lines denote 95% confidence intervals for this estimated parameter p̂. The p-value for
testing the null hypothesis that these densities are the same is <10−23 (two-sided Fisher’s exact test), meaning very strong
evidence to reject the null that the left and right hemisphere have the same density.

compare other network statistics—say, the clustering coefficients, the number of triangles, and so on.123

These statistics, as well as the model-based parameters we will consider in this paper, are strongly124

related to the network density [18, 19]. Thus, if the densities are different, it is likely that tests based125

on any of these other test statistics will also reject the null hypothesis of bilateral symmetry. Later, we126

describe methods for adjusting for a difference in density in other tests for bilateral symmetry.127

2.3 Group connection test To understand whether this broad difference between the hemispheres128

can be localized to a specific set of connections, we next tested bilateral symmetry by making an129

assumption that the left and right hemispheres both come from a stochastic block model (SBM).130

Under the SBM, each neuron is assigned to a group, and the probability of any potential edge is a131

function of the groups to which the source and target neurons belong. For instance, the probability132

of a connection from a neuron in group k to a neuron in group l is set by the parameter Bkl, where133

B is a K × K matrix of connection probabilities if there are K groups. Here, we used broad cell134

type categorizations from Winding et al. [14] to determine each neuron’s group. Alternatively, there are135

many methods for estimating these assignments to groups for each neuron which we do not explore136

here (see Section 3.2 for discussion on this point). Under the SBM with a fixed group assignment for137

each node, testing for bilateral symmetry amounts to testing whether the group-to-group connection138

probability matrices, B(L) and B(R), are the same.139

(2.2) H0 : B
(L) = B(R) vs. HA : B(L) ̸= B(R)

Rather than having to compare one probability as in Equation 2.1, we were interested in comparing all140

K2 group-to-group connection probabilities between the SBM models for the left and right hemispheres.141

We developed a novel statistical hypothesis test for this comparison, which uses many Fisher’s exact142

tests to compare each of the group-to-group connection probabilities, followed by appropriate correction143

for multiple comparisons (when examining the individual group-to-group connections) or combination of144

p-values (when assessing the overall null hypothesis in Equation 2.2). Details on the methodology used145
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here is provided in Section 4.2.3, and is shown as a schematic in Figure 3A. We refer to this procedure146

as the group connection test.147

Figure 3B shows both of the estimated group-to-group probability matrices, B̂(L) and B̂(R). From148

a visual comparison of B̂(L) and B̂(R), the group-to-group connection probabilities appear qualitatively149

similar. Note also that some group-to-group connection probabilities are zero, making it nonsensical150

to do a comparison of probabilities. We highlight these elements in the matrices with explicit "0"s, and151

note that we did not run the corresponding test in these cases. Figure 3C shows the p-values from all152

284 tests that were run to compare each element of these two matrices. After multiple comparisons153

correction, six tests produced p-values less than α = 0.05, indicating that we could reject the null154

hypothesis that those specific connection probabilities are the same between the two hemispheres.155

We also combined all (uncorrected) p-values, yielding an overall p-value for the entire null hypothesis156

(Equation 2.2) of equivalence of group-to-group connection probabilities of <10−7.157

Taken together, these results suggest that while the group-to-group connections are roughly similar158

between the two hemispheres, they are not the same under this model. Notably, there are six group-159

to-group connections which were significantly different: Kenyon cells (KCs) → KCs, projection neurons160

(PNs) → lateral horn neurons (LHNs), somatosensory PNs → somatosensory PNs, others (uncatego-161

rized neurons) → LHNs, LHNs → others, and others → others. Knowing the neuron groups which are162

wired significantly differently between the two hemispheres highlights the interpretability of this test. If163

a neuroscientist wanted to study mechanisms which could cause bilateral asymmetries in the brain,164

these six group-to-group connections would be prime candidates for investigation.165

However, in Section 2.2, we saw that the densities of the two networks are significantly different. p,166

the density of the network, can be thought of as a weighted average of the individual group-to-group167

connection probabilities, B. Should we then be surprised that if the density is different, the group-to-168

group connection probabilities are, too? Interestingly, for all the group-to-group connection probabilities169

which are different, the probability on the right hemisphere (which has the greater density) is higher170

(Figure 3D). We consider this phenomenon in the next section.171

2.4 Density-adjusted group connection test Next, we examined whether the group-to-group con-172

nection probabilities on the right are simply a “scaled-up” version of those on the left. Figure 3D showed173

that for all the individual connections which are significant, the connection probability on the right hemi-174

sphere is higher. This is consistent with the hypothesis stated above, which predicts that the connection175

probabilities in B(R) should be consistently higher than those in B(L).176

We thus created a test for this notion of bilateral symmetry in group-to-group connections (up to a177

density adjustment):178

(2.3) H0 : B
(L) = cB(R) vs. HA : B(L) ̸= cB(R)

To implement this hypothesis test, we first computed the density correcting constant (c in Equation 2.3),179

which is simply the ratio of the left to the right hemisphere densities, finding that c ≈ 0.93. Then, we180

replaced each of the component tests in the group connection test with a modified version of Fisher’s181

exact test for non-unity probability ratios (see Section 4.2.4 for more details). We refer to this procedure182

as the density-adjusted group connection test (Figure 4A). The p-values for each of the component183

tests for the density-adjusted group connection test are shown in Figure 4B. After correction for multiple184

comparisons, there are two group-to-group connections which are significantly different (at significance185

level 0.05): KCs → convergence neurons (CNs) and KCs → KCs. Thus, all remaining significant186

differences between the hemispheres under this version of the SBM are associated with the Kenyon187

cells.188

2.5 Removing Kenyon cells Based on the results of Figure 4C, we sought to verify that the remaining189

differences in group-to-group connection probabilities after adjusting for a difference in density can be190

explained by asymmetry that is isolated to the Kenyon cells. To confirm this, we simply removed the191
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A) Group connection test methods

B) Group connection probabilities

C) Connection p-values D) Probabilities for
significant connections

Figure 3: Comparison of left and right hemisphere networks via the group connection test. A) Description of methodology
for the group connection test. See Section 4.2.3 for more details. B) Estimated group-to-group connection probabilities for
both hemispheres. Note that they appear qualitatively similar. Estimated probabilities which are zero (no edge was present
between that pair of groups) are indicated with a “0” in those cells. C) p-values (after multiple comparisons correction) for
each hypothesis test between individual elements of the connection probability matrices. Each cell represents a test for
whether a specific group-to-group connection probability is the same on the left and right sides. “X” denotes a significant
p-value after multiple comparisons correction, with significance level α = 0.05. “B” indicates that a test was not run since the
estimated probability was zero on both hemispheres, “L” indicates this was the case on the left only, and “R” that it was the
case on the right only. The individual (uncorrected) p-values were combined using Tippett’s method, resulting in an overall
p-value (for the null hypothesis that the two group connection probability matrices are the same) of <10−7. D) Comparison
of estimated group-to-group connection probabilities for the group pairs that are significantly different. In each case, the
connection probability on the right hemisphere is higher.
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A) Density-adjusted group connection test methods C) Connection p-values

Figure 4: Comparison of left and right hemisphere networks via the density-adjusted group connection test. A) Description of
methodology for adjusting for a density difference between the two stochastic block models. See Section 4.2.3 for more details.
The adjustment factor (ratio of the left to the right density), c, is ~0.93. B) P-values for each group-to-group comparison after
adjusting for a global density difference. P-values are shown after correcting for multiple comparisons. Note that there are
two significant p-values, and both are in group connections incident to Kenyon cells. These individual (uncorrected) p-values
were combined using Tippett’s method, resulting in an overall p-value (for the null hypothesis that the two group connection
probability matrices are the same after correcting for the density difference) of <10−2.

Kenyon cells (i.e., all Kenyon cell nodes and edges to or from those nodes) from both the left and192

right hemisphere networks, and then re-ran each of the tests for bilateral symmetry presented here193

(Figure 5A). We observed significant differences between the left and right hemispheres for the density194

and group connection tests when excluding Kenyon cells, yielding p-values of <10−27 and <10−2,195

respectively (Figure 5B and C). However, for the density-adjusted group connection test, the p-value196

was ~0.51, indicating that we no longer rejected bilateral symmetry under this definition when the197

Kenyon cells are excluded from the analysis (Figure 5D). This sequence of results suggests that the198

difference between the left and right hemispheres (at least in terms of the high-level network statistics199

studied here) can be explained as the combination of a global effect (the difference in density) and a200

cell-type-specific effect (the difference in Kenyon cell projection probabilities).201

It is noteworthy that the Kenyon cells were the specific cell type where we detected asymmetry after202

correcting for the density difference. Kenyon cells are involved in associative learning in Drosophila203

and other insects [20–22]. Other studies have suggested that certain connections (specifically from204

antennal lobe projection neurons to Kenyon cells) are random [22, 23]. The marked lack of symmetry205

we observed specifically in the Kenyon cells in the current study could be the result of these features,206

which suggest their uniquely non-stereotyped patterns of connectivity in this nervous system.207

2.6 Edge weight thresholds Next, we sought to examine how the definition of an edge used to208

construct our binary network affects the degree of symmetry under each of the definitions considered209

here. For the networks considered in the previous sections, we considered an edge to exist if one or210

more synapses from neurons i to j were in the dataset. To understand how our analysis might change211

based on this assumption, we considered two types of edge weight threshold schemes for creating212

a binary network before testing: the first based simply on a threshold on the number of synapses,213

and the second based on a threshold of the proportion of a downstream neuron’s input (Figure 6A).214

By varying the threshold in both schemes, we were able to evaluate many hypotheses about bilateral215

symmetry, where higher thresholds meant that we only considered the symmetry present in strong216
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A) Kenyon cell removal B) Density test

C) Group connection test D) Density-adjusted
group connection test

Figure 5: Comparison of left and right hemisphere networks when not including Kenyon cells. A) Diagram of the meth-
ods used, indicating that Kenyon cells (and any incident edges) were simply removed from the network, and all previously
mentioned tests were run again. B) Comparison of network densities, as in Figure 2B. The p-value for this comparison is
<10−27, indicating very strong evidence to reject the null that the two networks share the same density. C) Comparison of
group-to-group connection probabilities, as in Figure 3C. P-values are shown for each group-to-group connection compari-
son (after multiple comparison correction). The (uncorrected) p-values were combined to yield an overall p-value of <10−2,
showing evidence that the group connection probabilities are not the same even after removing Kenyon cells. D) Comparison
of group-to-group connection probabilities after density adjustment, as in Figure 4C. P-values are shown for each group-to-
group connection comparison (after multiple comparison correction). Note that there are no longer any significantly different
connections. The (uncorrected) p-values were combined to yield an overall p-value of ~0.51. After removing Kenyon cells,
there is no longer evidence to reject the null that the group connection probabilities are the same.

Test method Model H0 (vs. HA ̸=) KCs p-value
Density test ER p(L) = p(R) + <10−23

Group connection test SBM B(L) = B(R) + <10−7

Density-adjusted group connection test DA-SBM B(L) = cB(R) + <10−2

Density test ER p(L) = p(R) - <10−27

Group connection test SBM B(L) = B(R) - <10−2

Density-adjusted group connection test DA-SBM B(L) = cB(R) - ~0.51

Table 1: Summary of tests, models, hypotheses, whether Kenyon cells (KCs) were included, and the resulting p-values for
each evaluation of bilateral symmetry.
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A) Notions of edge weight B) Thresholding methods

C) Synapse count distribution D) Input proportion distribution

E) Synapse thresholding p-values F) Input thresholding p-values

Figure 6: The effect of edge weight threshold on the significance level for each of the tests of bilateral symmetry. Diagrams of
A) two notions of edge weight, and B) application of edge weight thresholds to examine bilateral symmetry. See Section 4.3
for more explanation. C) Distribution of synapse count edge weights. The right hemisphere consistently has more edges
in each synapse count bin. D) Distribution of input percentage edge weights. The right hemisphere has more edges in the
lower (<1%) portion of this distribution, but the hemispheres match well for high edge weights. E) p-values for each test after
synapse count thresholding, plotted as a function of the percentage of edges which are removed from the networks, as well
as the corresponding weight threshold (lower x-axis). The p-values for all tests generally increased as a function of synapse
count threshold, but the density test never reached a p-value >0.05 over this range of thresholds. F) p-values for each test
after input percentage thresholding, plotted as a function of the percentage of edges which were removed from the networks,
as well as the corresponding weight threshold (lower x-axis). Note that all tests yielded insignificant (>0.05) p-values after a
threshold of around 1.25% input proportion. Compared to the results in E), thresholding based on input percentage reached
insignificant p-values faster as a function of the total amount of edges removed for all tests.
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edges (Figure 6B).217

Before running the tests for each of these notions of symmetry, we first examined the distributions218

of edge weights to get a sense for how we should expect these tests to perform. Figure 6C and D219

display the distribution (total count) for the synapse count or input proportion edge weights, respectively.220

The right hemisphere has more connections than the left for all synapse count values (Figure 6C),221

hinting that the density of the right hemisphere will be slightly higher for any potential edge weight222

threshold using this definition. Conversely, the distributions of weights as an input percentage shows a223

different trend. For edge weights less than ~1.25%, the right appears to have more edges, but past this224

threshold, the counts of edges between left and right appear comparable (Figure 6D).225

Figure 6E and F show the effect of varying these thresholds on the p-values from each of our tests226

of bilateral symmetry. We observed that for either thresholding scheme (synapse count or input propor-227

tion), the p-value for each test generally increased as a function of the threshold—in other words, the228

left and right hemisphere networks became less significantly different (under the definitions of “differ-229

ent” we have presented here) as the edge weight threshold increased. Previous works have shown that230

higher-weight edges are more likely to have that corresponding edge present on the other side of the231

nervous system [5, 24]. Here, we provide evidence that considering networks formed from only strong232

edges also decreases asymmetry at a broad, network-wide level.233

To make these two thresholding schemes more comparable, we also examined these results as a234

function of the proportion of edges from the original network which that threshold removed (Figure 6E235

and F, lower x-axis). We found that when thresholding based on synapse counts, the majority (~60%)236

of the edges of the networks need to be removed for any test (in this case the density-adjusted group237

connection test) to yield non-significant p-values. Conversely, for the thresholds based on input propor-238

tion, the density-adjusted group connection test yielded a p-value greater than 0.05 after removing only239

the weakest ~20% of edges. Strikingly, we observed that when considering only the strongest ~60%240

of edges in terms of input proportion, even the density test had a high p-value (>0.05), while for the241

synapse-based thresholds we examined, this never occurred.242

These findings are consistent with previous work in connectomics which has hinted at the impor-243

tance of input proportion as a meaningful “edge weight.” Gerhard et al. [5] compared the connectivity244

of select neurons in the nerve cord between L1 and L3 stages of the larva. They observed that while245

the number of synapses from the mdIV cell type onto various nerve cord local neurons can grow ~3-10246

fold from L1 to L3, the proportion of that downstream neuron’s input stays relatively conserved. Based247

on this finding, the authors suggested that perhaps the nervous system evolved to keep this parameter248

constant as the organism develops. An analysis of wiring in the olfactory system of the adult Drosophila249

suggested a similar interpretation after examining a projection neuron cell type with an asymmetric250

number of neurons on the two sides of the brain [25]. Here, we provide further evidence based on the251

entire brain of the Drosophila larva that while the left and right hemispheres may appear significantly252

different when considering all observed connections, the networks formed by only the strongest edges253

(especially in terms of input proportion) are not significantly different between the hemispheres when254

viewed through the lens of the models considered in this work.255

3 Discussion256

3.1 Summary We began with what was at its face a very simple question: is the connectivity on the257

left and the right side of this brain “different?” We then described several ways that one could mathe-258

matically formalize notions of “different” from the perspective of network model parameters: difference259

in density of connections across the entire network (Section 2.2), difference in group connection prob-260

abilities (Section 2.3), or difference in group connection probabilities while adjusting for a difference in261

density (Section 2.4). We proposed a test procedure corresponding with each of these notions, relying262

on well established statistical techniques for evaluating contingency tables and combining p-values to263

construct our tests. The results of these different test procedures varied markedly (Table 1). Specif-264
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ically, we saw that the network densities were significantly different between the hemispheres. The265

group connection test also detected a difference, highlighting six group-to-group connections which266

had significantly differing connection probabilities when comparing the hemispheres. However, when267

we added an adjustment to the group connection comparison to account for the difference in network268

density, this test had only two significant group connections, and both were projections from the Kenyon269

cells. Thus, the asymmetry observed (at least when viewed through the lens of these high-level network270

statistics) between the hemispheres can be thought of as a global density difference in addition to a cell271

type-specific effect shown in the Kenyon cells. We confirmed this finding by simply removing the Kenyon272

cells, and showing that the density-adjusted group connection test no longer rejected (Section 2.5). Fi-273

nally, we examined whether the left and right hemisphere networks would become less dissimilar when274

only high-edge-weight edges were considered (Section 2.6). We found that whether thresholding based275

on number of synapses or the proportion of input to the post-synaptic neuron, p-values generally in-276

creased for each test (i.e., less significant asymmetry was detected) as the edge weight threshold grew.277

However, we observed that thresholds based on neuron input proportion could achieve symmetry while278

removing fewer (only 20% for some tests) edges. These results are consistent with the idea that the279

nervous system evolved to preserve a relative balance of inputs to individual neurons, which has been280

suggested by previous studies on specific subcircuits in the larval and adult Drosophila nervous system281

[5, 25, 26].282

3.2 Limitations As with any statistical inference, our conclusions are valid under particular model283

assumptions. Therefore, it is important to highlight the assumptions which motivated each of our tests284

in order to understand what each p-value means (and what it does not). We highlight several of these285

assumptions below, and comment on alternative assumptions that one could make in each case.286

What model? First, while we motivated the tests presented here by assuming that some statistical287

model produced the connectivity of the left and the right hemispheres, these models do not literally288

describe the process which generated these networks. However, without knowledge of how genes and289

development give rise to the connectome, we know of no more correct model for how this connectome290

was generated [1, 6, 27] (and even this would still be just a model). Without an agreed upon definition291

of bilateral symmetry, we chose to start from the simplest definition of what one could mean by bilateral292

symmetry. From this simplest network model, we iteratively added complexity to the definition of bilateral293

symmetry until we found the simplest model for which the Drosophila larva connectome displayed no294

significant asymmetry.295

However, many other network models could have been applied to examine different definitions of296

bilateral symmetry. Tests based on the random dot product graph model [28–30] would allow us to297

compare connection probabilities between hemispheres without assuming that neurons belong to a298

finite number of groups. Bravo-Hermsdorff et al. [31] showed that a two-network-sample test could299

be constructed from subgraph counts, which they argue characterize a network’s “texture” rather than300

its “backbone” as studied in this work. We also did not use network models that incorporate edge301

weights, as two-network-sample tests for this case are even less developed than for the unweighted302

case. Further, a variety of neuroscience-specific network models (such as those which incorporate303

spatial information) have been proposed [15]. Nevertheless, we note that even if one is concerned with304

these more elaborate notions of symmetry, they are still related to the simple models studied here. For305

instance, the network density would affect a network’s latent positions under the random dot product306

graph model, as well as the count of any possible subgraph. Thus, even if one prefers a different307

definition of bilateral symmetry, the definitions presented here were worth testing.308

What is a cell type? Second, even if these networks were generated from SBMs, alternative groupings309

of neurons could have been used. We used broad cell type categorizations from previous literature310

[14] to partition our network into groups. However, we could have used a coarser partition, categorizing311
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neurons as sensory, interneuron, and descending/output. Conversely, we could have used a finer312

partition, splitting the cell types used here into subgroups (such as whether a sensory neuron receives313

odor or visual information). Thus, the results presented for any group connection test need to be314

interpreted in terms of the specific cell type groupings used.315

Further, a rich literature exists on inferring the partition for an SBM from the observed connectivity316

[32–37] - this is one perspective for clustering neurons based on their observed connectivity, much like317

clustering procedures are used to predict meaningful groups of neurons based on morphology, activity,318

or gene expression. Applying these techniques to a connectome would yield alternative groupings of319

neurons (as in Winding et al. [14]) to use for a group connection test, which again, could change its320

conclusions. However, this approach requires further study, as it introduces a new source of uncertainty321

since more model parameters are estimated from the data.322

What about neuron pairs? Third, we assumed that the two networks we observed were unmatched –323

that is, the tests we applied did not use any pairing of individual neurons between hemispheres. In324

Drosophila, this 1-to-1 neuron correspondence is known to exist for most neurons, particularly in the325

larva. GAL-4 lines are able to reliably label bilateral neuron pairs on the basis of their gene expression326

[38, 39]. These neurons tend to be similar in terms of their morphology and their connectivity [5, 12, 14,327

24, 39–41]. Methods which use this pairing (e.g., [28, 42, 43], as well as tests based on correlated ER328

and SBM models) would be able to evaluate symmetry in light of edge correspondences between the329

two networks, and could have higher power at detecting certain asymmetries. However, these methods330

assume that the matching of nodes is perfect and complete–if even one neuron pairing is a mistake, or331

if even one neuron does not have a partner in the opposite hemisphere, then these tests could be invalid332

or inapplicable. We note that graph matching techniques could estimate a correspondence between333

nodes for all neurons [14, 40, 44–46]; however, the statistical consequences of first learning this (likely334

imperfect) alignment prior to using a method which assumes the alignment is known and exact have335

not been thoroughly studied, so we did not explore it further here.336

3.3 Outlook We presented the first statistical comparison of bilateral networks in a neuron-level brain337

connectome. While we focused on the larval Drosophila brain connectome, these techniques could be338

applied to future connectomes to evaluate bilateral symmetry in other individuals or organisms. More339

generally, we presented several notions that can be used to compare two networks, a particularly rel-340

evant problem in the current age of connectomics. Human (macroscale) connectomics has seen an341

explosion in the number of network samples that can be obtained, allowing for different approaches342

for comparing connectomes across populations, from simple comparisons of edges [47] to low-rank343

and sparse regressions across networks [48]. However, nanoscale connectomics is still technologically344

limited in its acquisition rate, often to only one or at best a few (< 10, e.g., [6]) individuals for a given345

experiment. Nevertheless, we wish to make valid inferences and comparisons between these connec-346

tomes [1–4]. The framework for two-network-sample testing presented here will facilitate these kinds347

of comparisons. To make these comparisons more practical to neuroscientists, we demonstrated the348

importance of adjustments to simple null hypotheses—as we saw, even a difference in something as349

simple as a network density can be related to other network comparisons. For example, take the prob-350

lem of comparing the connectome of the larval and adult Drosophila. Since the adult Drosophila brain351

has orders of magnitude more nodes [14, 49, 50], the density of this network is likely to be smaller than352

that of the larva. Therefore, we may want to consider a more subtle question—are the connectomes of353

the adult and larva different (and if so, how) after adjusting for this difference in density? These kinds of354

biologically-motivated adjustments to out-of-the-box statistical hypotheses will be key to drawing valid355

inferences from connectomes which are also relevant to meaningful questions in neuroscience.356
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4 Methods357

4.1 Network construction Here, we explain how we generated networks for the bilateral symmetry358

comparison. We started from a network of all neurons in the brain and sensory neurons which project359

into it for a larval Drosophila [14]. As in Winding et al. [14], we removed neurons which were con-360

sidered partially differentiated. From this network, we selected only the left-to-left (ipsilateral) induced361

subgraph, and likewise for the right-to-right. We ignored a pair of neurons which had no left/right desig-362

nation, as their cell bodies lie on the midline [14]. To ensure we had fully connected networks on either363

hemisphere, we took the largest weakly connected component of neurons on the left, and likewise on364

the right.365

With this selection for our nodes of interest, we then choose our set of edges to be:366

• Unweighted : we only considered the presence or absence of a connection, creating a binary367

network. For most analyses except where explicitly indicated, this meant we considered an368

edge to exist if there was at least one synapse from the source to the target neuron. For this369

connectome, four edge types are available: axo-axonic, axo-dendritic, dendro-dendritic, and370

dendro-axonic. We made no distinction between these four edge types when constructing the371

binary networks. One could consider notions of bilateral symmetry for a weighted network, but372

we focused on the unweighted case for simplicity and the fact that most network models are373

for binary networks. We studied the effect of varying the edge weight requirement (i.e., the374

threshold) for an edge to exist in Section 2.6.375

• Directed : we allow for a distinction between edges which go from neuron i (presynaptic) to376

neuron j (postsynaptic) and the reverse.377

• Loopless: we remove any edges which go from neuron i to neuron i, as the theory on network378

testing typically makes this assumption. We note that while ~18% of neurons have a connection379

to themselves, these self-loops comprise only ~0.7% of edges.380

When comparing two networks, methods may make differing assumptions about the nature of the381

two networks being compared. One of the most important is whether the method assumes a cor-382

respondence between nodes [51]. Some methods (matched comparisons, also called known node-383

correspondence) require that the two networks being compared have the same number of nodes, and384

that for each node in network 1, there is a known node in network 2 which corresponds to it. Other meth-385

ods (unmatched comparisons, also called unknown node-correspondence) do not have this require-386

ment. To make an analogy to the classical statistical literature on two-sample testing, this distinction387

is similar to that between an unpaired (unmatched) and a paired (matched) t-test. We focused on the388

unmatched case in this work, where we say nothing about whether any neurons on the left correspond389

with any specific neurons on the right.390

4.2 Two-network-sample testing Here, we describe in more detail the methods used to evaluate391

bilateral symmetry, each of which is based on some generative statistical model for the network. For392

each model, we formally define the model, describe how its parameters can be estimated from observed393

data, and then explain the test procedure motivated by the model. A more thorough review of these394

models can be found in Chung et al. [52].395

4.2.1 Independent edge random networks Many statistical network models fall under the umbrella396

of independent edge random networks, sometimes called the Inhomogeneous Erdos-Renyi model.397

Under this model, the elements of the network’s adjacency matrix A are sampled independently from a398

Bernoulli distribution:399

Aij ∼ Bernoulli(Pij)

If n is the number of nodes, the matrix P is a n × n matrix of probabilities with elements in [0, 1].400

Depending on how the matrix P is constructed, we can create different models. We next describe401

several of these choices. Note that for each model, we assume that there are no loops, or in other402
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words the diagonal of the matrix P will always be set to zero.403

4.2.2 Erdos-Renyi model and density testing Perhaps the simplest model of a network is the404

Erdos-Renyi (ER) model. This model treats the probability of each potential edge in the network occur-405

ring to be the same. In other words, all edges between any two nodes are equally likely. Thus, for all406

(i, j), i ̸= j, with i and j both running from 1...n, the probability of the edge (i, j) occurring is:407

P [Aij = 1] = Pij = p

where p is the global connection probability.408

Thus, for this model, the only parameter of interest is the global connection probability, p. This is409

sometimes also referred to as the network density. For a directed, loopless network, with n nodes,410

there are n(n − 1) unique potential edges (since we ignore the n elements on the diagonal of the411

adjacency matrix). If the observed network A has m total edges, then the estimated density is simply412

p̂ =
m

n(n− 1)
.

In order to compare two networks A(L) and A(R) under this model, we simply need to compute these413

estimated network densities (p̂(L) and p̂(R)), and then run a statistical test to see if these densities are414

significantly different. Under this model, the total number of edges m comes from a Binomial(n(n −415

1), p) distribution. This is because the number of edges is the sum of independent Bernoulli trials with416

the same probability. If m(L) is the number of edges on the left hemisphere, and m(R) is the number of417

edges on the right, then we have:418

m(L) ∼ Binomial(n(L)(n(L) − 1), p(L))

and independently,419

m(R) ∼ Binomial(n(R)(n(R) − 1), p(R))

To compare the two networks, we are interested in a comparison of p(L) vs. p(R). Formally, we are420

testing:421

H0 : p
(L) = p(R), Ha : p(L) ̸= p(R).

Fortunately, the problem of testing for equal proportions under the binomial is well studied. In our case,422

we use Fisher’s exact test [53] to run this test for the null and alternative hypotheses above.423

4.2.3 Stochastic block model and group connection testing A stochastic block model (SBM)424

is a popular statistical model of networks [54]. Put simply, this model treats the probability of an edge425

occurring between node i and node j as purely a function of the communities or groups that node i and426

j belong to. This model is parameterized by:427

• An assignment of each node in the network to a group. Note that this assignment can be428

considered to be deterministic or random, depending on the specific framing of the model one429

wants to use. Here we are assuming τ is a fixed vector of assignments. We represent this430

non-random assignment of neuron to group by an n-length vector τ . If there are K groups, τ431

has elements in {1...K}. If the i-th element of τ is equal to k, then that means that neuron i is432

assigned to group k.433

• A set of group-to-group connection probabilities. We represent these probabilities by the matrix434

B ∈ [0, 1]K×K , where the element (k, l) of this matrix represents the probability of an edge435

from a neuron in group k to one in group l.436

Thus, the probability of any specific edge (i, j) can be found by looking up the appropriate element of437

B:438

P [Aij = 1] = Pij = Bτi,τj
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In our case, we assume τ is known—in the case where it is not, or one simply wishes to estimate an439

alternative partition of the network, many methods exist for estimating τ . But with τ known, estimating440

B becomes simple, amounting to doing K2 subgraph density estimates. Specifically, let m(k, l) be441

the number of edges from nodes in group k to nodes in group l. We then compute the density of this442

subgraph for each (k, l) pair (ignoring self-loops):443

B̂k,l =

{
m(k,l)
nknl

, if k ̸= l
m(k,l)

nk(nk−1) , if k = l

where nk is the number of nodes in group k, and likewise for nl.444

Assuming the SBM, we are interested in comparing the group-to-group connection probability ma-445

trices, B, for the left and right hemispheres. The null hypothesis of bilateral symmetry becomes446

(4.1) H0 : B
(L) = B(R), HA : B(L) ̸= B(R)

Rather than having to compare one proportion as in Section 4.2.2, we are now interested in comparing447

all K2 probabilities between the SBM models for the left and right hemispheres. The hypothesis test448

above can be decomposed into K2 hypotheses. B(L) and B(R) are both K ×K matrices, where each449

element Bkl represents the probability of a connection from a neuron in group k to one in group l. We450

also know that group k for the left network corresponds with group k for the right. In other words, the451

groups are matched. Thus, we are interested in testing, for k, l both running from 1...K:452

(4.2) H0 : B
(L)
kl = B

(R)
kl , HA : B

(L)
kl ̸= B

(R)
kl

Now, we are left with K2 p-values from Equation 4.2, each of which bears upon the overall null453

hypothesis in Equation 4.1. We therefore require some method of combining these p-values into one,454

or otherwise making a decision about the hypothesis in Equation 4.1. Many methods for combining p-455

values have been proposed. This problem of combining p-values can itself be viewed as a hypothesis456

testing problem. Denoting the (k, l)th p-value from Equation 4.2 as pkl, we are testing457

H0 : pkl ∼ Uniform(0, 1)

versus the alternative hypothesis that at least one of the p-values is distributed according to some non-458

uniform, non-increasing density with support [0, 1] [55, 56]. Birnbaum [55] showed that no method of459

combining these p-values can be optimal in general to all alternatives, so we are left with a decision460

to make (with no universally preferred answer) about which methods to use to combine p-values [56].461

Here, we select Tippett’s method [56, 57] due to its ubiquity, simplicity, and power against various alter-462

natives to bilateral symmetry under a simulation described in Section 7.1. We note that for future works,463

specific classes of alternatives may motivate different methods for combining p-values, as described in464

Heard and Rubin-Delanchy [56].465

We also examined the p-values from each of the individual tests after Holm-Bonferroni correction466

to correct for multiple comparisons. As in Section 4.2.2, we used Fisher’s exact test [53] to perform467

each of the individual hypothesis tests in Equation 4.2. Note also that in some cases, an element of468

B(L) and/or B(R) could be 0; in each of these cases, we did not run that specific comparison between469

elements, as the notion of testing for proportions being the same becomes nonsensical. We indicated470

these tests in Figure 3C, Figure 4C and Figure 5C-D, and note that these tests were not included when471

computing the number of comparisons for the Holm-Bonferroni correction.472

4.2.4 Density-adjusted group connection testing In Section 2.4, we considered the null hypothesis473

that the left hemisphere connection probabilities under the SBM are a scaled version of those on the474

right:475

(4.3) H0 : B
(L) = cB(R) vs. HA : B(L) ̸= cB(R).
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The scale for this comparison is the ratio of the densities between the left and the right hemisphere476

networks:477

(4.4) c =
p(L)

p(R)
.

Analogous to the group connection testing in Equation 4.2, this means that the individual group con-478

nection hypotheses become479

(4.5) H0 : B
(L)
kl = cB

(R)
kl , HA : B

(L)
kl ̸= cB

(R)
kl .

The parameter c can be viewed as a probability ratio:480

B
(L)
kl

?
= cB

(R)
kl

481

B
(L)
kl

B
(R)
kl

?
= c

In essence, we wish to test whether a probability ratio matches a prespecified hypothesized value, c.482

To test Equation 4.2, we were able to use Fisher’s exact test [53], which aims to determine whether483

two proportions are significantly different in a 2× 2 contingency table. By conditioning on the marginal484

observations of the table, it was shown that the distribution of one of the cells follows a hypergeometric485

distribution under the null that the two proportions are the same. Fisher’s exact test compares the486

observed count to this hypergeometric distribution under the null to compute its p-value. Similarly, it487

was shown that the distribution of one of the cells conditioned on the marginals and a specific odds488

ratio follows Fisher’s non-central hypergeometric distribution under the null hypothesis [58, 59]. This489

leads to a test analogous to Fisher’s exact test, but for a potentially non-unity probability ratio, c. Note490

that this test reduces exactly to Fisher’s exact test when the probability ratio c = 1. We used this491

non-unity Fisher’s exact test in the individual group connection tests, with all other machinery (e.g., for492

combining p-values or correcting for multiple comparisons) remaining the same as in Section 4.2.3.493

4.3 Edge weight thresholds To examine the effect of which edges are used to define the left and494

right networks on the p-values from each test, we tested various edge weight thresholds used to define495

our binary networks for comparison. Given a set of edges (i.e., (i, j) pairs) with corresponding weights496

wij , a thresholding E(t) simply selects the subset of those edges for which wij is greater than or equal497

to some threshold, t.498

E(t) = {(i, j) : wij >= t}

Let sij be the observed number of synapses from neuron i to neuron j. We considered two thresh-499

olding schemes: the first was to simply use the number of synapses from neuron i to j as the edge500

weight and the second was to consider the edge weight from neuron i to j to be the number of synapses501

from i to j divided by the total number of observed synapses onto neuron j. We stress that the number502

of synapses onto neuron j is not necessarily equal to the weighted degree of neuron j. This is simply503

because we consider all annotated postsynaptic contacts onto neuron j, and some number of those504

contacts may not be connected to another neuron in the current networks considered here. We denote505

the number of synapses onto neuron j as Dj . To summarize:506

• Synapse number threshold: wij = sij507

• Input proportion threshold: wij =
sij
Dj

508

Given either definition of the weighting scheme, we formed a series of networks by varying the509

edge weight threshold, t. We stress that edge weights were used only for the purposes of defining510

the edges to consider for our (binary) networks—the edge weights themselves were not used in the511
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statistical tests. We then re-ran the density, group connection, and density-adjusted group connection512

tests for each network. The p-values for these tests are plotted against the weight thresholds and513

the proportion of edges removed in Figure 6E and F for the synapse number and input proportion514

thresholds, respectively.515

5 Code Analyses relied on graspologic [60], NumPy [61], SciPy [62], Pandas [63], and NetworkX516

[64]. Plotting was performed using matplotlib [65] and Seaborn [66]. All code used for this pa-517

per can be found at github.com/neurodata/bilateral-connectome and viewed as a JupyterBook [67] at518

docs.neurodata.io/bilateral-connectome. The data used in these analyses will be made public and in-519

cluded in the source code repository above upon the release of the data in Winding et al. [14].520
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7 Supplemental Information792

7.1 Power and validity of group connection test under various alternatives In Section 4.2.3, we793

considered the group connection test, where the goal was to test794

(7.1) H0 : B
(L) = B(R) vs. HA : B(L) ̸= B(R).

We saw that this set of hypotheses could be decomposed into K2 (where K is the number of groups)795

different hypotheses796

(7.2) H0 : B
(L)
kl = B

(R)
kl , HA : B

(L)
kl ̸= B

(R)
kl ,

yielding a p-value for the (k, l)th test, pkl. We now consider the problem of trying to combine these797

p-values into one which bears on the overall hypotheses in Equation 7.1. We proposed using Tippett’s798

method for combining p-values [57], and we now demonstrate the utility of this method against various799

alternatives.800

To do so, we performed the following simulation experiment. First, we consider two hypothetical801

group connection matrices, B(1) and B(2). We set B(1) = B̂(L). We also consider the matrix M ,802

which is a K × K matrix denoting the number of possible edges in each block of an SBM. Here, we803

again set M = M̂ (L), in other words, we use the number of potential edges for each block observed804

for the left hemisphere network. To analyze the sensitivity of Tippett’s method to different alternatives,805

we conducted the following simulation: Let t be the number of probabilities to perturb. Let δ represent806

the strength of the perturbation. We performed experiments using δ ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5} ×807

t ∈ {0, 25, 50, 75, 100, 125} (note that if δ = 0 or t = 0, then we are under the null hypothesis in808

Equation 7.1). For each (δ, t), we ran 50 replicates of the simulation below:809

1. Randomly select t probabilities without replacement from the elements of B.810

2. For each of the selected elements, set B(2)
kl = TN(B

(1)
kl , δB

(1)
kl ) where TN is a truncated811

normal distribution with support [0, 1].812

3. For each of the unselected elements, set B(2)
kl = B

(1)
kl .813

4. For each block (k, l), sample the number of edges in that block for network 1:814

m
(1)
kl ∼ Binomial(Mkl, B

(1)
kl ).

Sample the number of edges in each block similarly for network 2, but using B(2).815

5. For each block (k, l), compare m
(1)
kl and m

(2)
kl using Fisher’s exact test as in Section 4.2.3. This816

yields a set of p-values P = {p1,1, p1,2...p(K−1),K , pK,K} for each comparison.817

6. Apply Tippett’s method to combine the p-values P into one p-value for the overall hypotheses.818

We observed that the p-values obtained from Tippett’s method were valid – they controlled the819

probability of Type I error for any significance level (Supplemental Figure 1A). Further, we observed that820

Tippett’s method was also powerful against differing alternatives to the null hypothesis (Supplemental821

Figure 1B). Tippett’s method had a power of 1 against the alternative (t = 25, δ = 0.5), meaning a small822

number of large perturbations. It also had a power of ~0.8 against the alternative (t = 125, δ = 0.1),823

in other words, a large number of small perturbations. Thus, we concluded that Tippett’s method is a824

reasonable choice of method for combining p-values for our group connection test.825
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A) B)

Supplemental Figure 1: Demonstration that the group connection test is both valid and powerful against a range of alternatives
in a synthetic simulation based on the observed data. See Section 7.1 for more details on the simulation. A) Cumulative
distribution of p-values from Tippett’s method for combining p-values under the null, where the two group connection matrices
B(1) and B(2) are the same. Note that the distribution of these p-values is sub-Uniform(0, 1) (i.e., below the dashed line
indicating the cumulative distribution of a Uniform(0, 1) random variable, meaning that the test is valid and the Type-I error
is properly controlled for any level α. B) Power (probability of correctly rejecting the null hypothesis when it is false) as a
function of the number of perturbed blocks (t) and the strength of each perturbation (δ). Note that the test is powerful against
both a small number of strong perturbations and a large number of small perturbations, indicating its general applicability.
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