

1 **Soft and stretchable organic bioelectronics for continuous intra-operative**
2 **neurophysiological monitoring during microsurgery**

3 Wenjianlong Zhou^{1,9}, Yuanwen Jiang^{2,9}, Qin Xu¹, Liangpeng Chen¹, Hui Qiao³, Yixuan
4 Wang⁴, Jiancheng Lai², Donglai Zhong², Yuan Zhang¹, Weining Li⁵, Yanru Du⁶, Xuecheng
5 Wang⁵, Jiaxin Lei⁵, Gehong Dong⁶, Xiudong Guan¹, Shunchang Ma¹, Peng Kang¹, Linhao
6 Yuan¹, Milin Zhang⁵, Jeffrey B.-H. Tok², Deling Li^{1,7*}, Zhenan Bao^{2*}, Wang Jia^{1,7,8*}

7

8 ¹Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological
9 Disorders, Capital Medical University, Beijing, China.

10 ²Department of Chemical Engineering, Stanford University, Stanford, CA, USA.

11 ³Department of Neurophysiological Monitoring, Beijing Tiantan Hospital, Capital Medical
12 University, Beijing, China.

13 ⁴Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry,
14 School of Science, Tianjin University, Tianjin, China.

15 ⁵Department of Electronic Engineering, Beijing National Research Center for Information
16 Science and Technology and Beijing Innovation Center for Future Chips, Tsinghua
17 University, Beijing, China.

18 ⁶Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing,
19 China.

20 ⁷China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing,
21 China.

22 ⁸Beijing Neurosurgery Research Institute, Capital Medical University, Beijing, China.

23 ⁹These authors contributed equally: Wenjianlong Zhou, Yuanwen Jiang.

24

25 *Correspondence: Deling Li, ttyneuroli@126.com; Zhenan Bao, zbao@stanford.edu;
26 Wang Jia jwttty@126.com.

27

28 **Abstract**

29 Continuous intra-operative neurophysiological monitoring (CINM) that provides precise
30 mapping of neural anatomy through the entire microsurgery process is essential to preserve
31 the structural and functional integrity of the nerve. However, bulky and rigid electrodes
32 used currently in clinics are usually unable to reliably maintain continuous and stable
33 contacts with the vulnerable and complex nerve networks, thus often resulting in
34 detrimental post-operative complications, such as hemiplegia and sensory disturbances.
35 Here, we describe a biomechanically compatible, suture-free, and individually
36 reconfigurable CINM based on soft and stretchable organic electronic materials. Due to
37 both low impedance and modulus of our conducting polymer electrodes, we achieved *for*
38 *the first time* continuous recording of near-field action potential with high signal-to-noise
39 ratio and minimal invasiveness during microsurgeries. Utilizing this unprecedented CINM
40 modality, in conjunction with localized neurostimulation, we further demonstrated our
41 approach in enabling optimal post-operative prognosis in preclinical animal models by
42 preserving normal neural functions after a variety of tumor resection surgeries.

43

44 **Introduction**

45 Nervous system neoplasm is the most common type of tumor affecting our nervous system
46 with high associated morbidity and mortality^{1,2}. In 2021, ~85,000 patients were diagnosed
47 with primary malignant brain and other central nervous system neoplasms in the United
48 States, and ~22% of the patients died from the disease³. Currently, the most effective
49 treatment method of neurological neoplasm is through surgical excision of the tumor⁴⁻⁷.
50 However, since tumoral lesions are typically associated with significant disruptions of the
51 delicate nerve structures, even with meticulous surgical operations, post-operative
52 complications such as nerve paralysis, amyotrophy, and sensory disorders remain serious
53 issues^{8,9}. To preserve the structural and functional integrity of the nerves after tumor
54 resection, continuous intra-operative neurophysiological monitoring (CINM) throughout
55 the entire microsurgery process is essential^{5,10-12}. To date, CINM techniques used in clinics
56 mostly rely on far-field potentials, which include electromyogram (EMG),
57 electroencephalography (EEG), and brainstem auditory evoked potentials (BAEP)¹⁰⁻¹³.
58 However, these far-field signals are typically weak, requiring long-time acquisition and
59 summation to achieve discernable signal-to-noise ratios. As a result, far-field potential
60 recording itself is insufficient to provide high-quality physiological monitoring in real
61 time¹⁴⁻¹⁶. In addition, many tumor-bearing patients already have considerable pre-operative
62 neurological symptoms, which further lower the source neural signals. Moreover, the far-
63 field potential waveform is also sensitive to environmental variations, e.g., hypothermia or

64 hypocarbia, making it extra challenging for traditional neurological monitoring
65 approaches¹⁷.

66 On the other hand, near-field potentials evoked directly from the target nerves would
67 provide instantaneous feedback with much higher amplitudes (typically >20 times higher
68 than far-field signals)^{14,18-21}. Early detection of abnormal signals enables early management
69 to prevent irreversible modifications to the neural pathway. In principle, continuous
70 monitoring of near-field potentials during neurosurgery will be the ideal method to assess
71 neurological functions and improve prognosis (**Fig. 1a**). In practice, it is however highly
72 challenging to have stable and high-quality monitoring throughout the entire surgery. This
73 is because the highly complicated and vulnerable nerve networks require the neural
74 interfacing electrodes to have multiple channels, high mechanical compliance with robust
75 contacts at the same time. For clinically used ball-point electrodes made of stainless steel,
76 due to their high stiffness and bulky size, they have limited mechanical compatibility with
77 the delicate tissues, which may cause irreparable damage during probe movement. In
78 addition, these hand-held electrodes could only be used intermittently during the surgery,
79 making them inappropriate for continuous monitoring (**Fig. 1b**). Although new
80 developments based on thin metal wires have been attempted^{18,19}, none of the existing
81 probes can maintain stable and reliable recording during routine neurosurgical
82 manipulations, as they inevitably are subjected to tugging, displacing, and bending motions.

83 To address the limitations of current CINM devices^{14,18,19,22}, we developed a
84 biomechanically compatible, suture-free, and individually reconfigurable CINM based on
85 soft and stretchable organic bioelectronic devices (Fig. S1). Compared to rigid metal
86 electrodes, conducting polymer electrodes with low modulus can ‘physically conform’ to
87 the soft brain tissues and therefore significantly decrease the mechanical mismatch and
88 improve signal quality²³. In addition, conducting polymers with their electronic-ionic dual
89 conduction as well as large volumetric capacitance can further reduce the interfacial
90 impedance²⁴. To demonstrate the efficacy of our device for CINM, we focused on the
91 schwannoma, which is the most common of all nerve sheath tumors^{25,26}. Neural
92 preservation is particularly imperative in the management of schwannoma. Within the
93 schwannoma family, the most prevalent type is vestibular schwannomas (VS), which
94 accounts for ~60% of total cases^{4,27-29}. Without CINM of near field signals evoked from
95 the auditory nerves, i.e., cochlear nerve action potentials (CNAP), ~70% of the patients
96 after the surgery would suffer from ipsilateral sensorineural hypoacusis^{30,31}. In this work,
97 we describe a new surgical scheme to implant the soft and stretchable conducting polymer
98 electrodes. Using this approach, we achieved *for the first time* stable CNAP recording with
99 minimal invasiveness during the entire VS resection, yielding optimal postoperative
100 prognosis in preclinical animal models (**Fig. 1c**). Utilizing the unprecedented CINM
101 modality in conjunction with localized neurostimulation, we further demonstrated our
102 capability in restoring normal neural functions after a variety of neurosurgeries.

103

104 **Translatable surgical procedures**

105 In this work, we used poly(3,4-ethylenedioxythiophene):polystyrene sulfonate
106 (PEDOT:PSS) as the electrode material because it possesses the best electrical properties
107 among all conducting polymers³², as well as its excellent biocompatibility³³. By blending
108 PEDOT:PSS with a previously designed crosslinkable supramolecular additive, we
109 prepared paper-thin rail electrodes with both high electrical conductivity and mechanical
110 stretchability³⁴. Due to the low modulus of the device, we can simply wrap it around the
111 nerve to create a soft enclosure, such that the PEDOT electrode can naturally fit the nerve
112 complex with tight tissue-electrode contact (**Fig. 2a**). To demonstrate the potential of the
113 soft PEDOT electrodes for clinical translation, we showed that the device can be easily
114 implanted in a human cadaver skull via a retrosigmoid approach to expose the facial-
115 acoustic nerve complex (**Fig. 2b**, Fig. S2). Retrosigmoid craniotomy is routinely performed
116 during VS microsurgical resection because it provides a wide view of the cerebellopontine
117 angle (CPA), which covers the majority of the cranial nerves from the fourth to the eleventh
118 (Fig. S3a)³⁵.

119 Besides establishing the desired neural interfaces, another key advantage of our PEDOT
120 electrode (versus what is currently used in clinics) is that we could easily multiplex the
121 number of channels to quickly identify the nerve of interest during the surgical procedure³⁴.
122 Typically, for patients with brain tumors, because of the unrestricted tumor outgrowth, their

123 cranial nerves are usually severely distorted with highly disrupted arrangements
124 (**Supplementary Fig. 3b-c**). As a result, it remains a challenging task for neurosurgeons
125 to distinguish the target nerve, e.g., the cochlear nerve in the VS case. By placing our
126 fabricated PEDOT electrode array around multiple nerves, we could effectively send
127 stimulus through individual channels of the device and hence readily identify the facial-
128 acoustic nerve complex in a rabbit model (**Fig. 2c-d**, Figs. S4-5).

129

130 **Stable and continuous intra-operative auditory monitoring**

131 To evaluate the device's performance in monitoring neurophysiological signals during
132 craniotomy, we performed two separate measurements in the rabbit model, i.e., BAEP (far-
133 field) and CNAP (near-field). BAEP is the current gold standard for CINM during VS
134 resection surgery, in which it is recorded on the scalp following sound stimulation of the
135 ear. CNAP, on the other hand, is recorded directly from the auditory nerve. Prior to the
136 microsurgery, by sweeping the stimulus sound frequencies to establish the baseline signals,
137 we observed that 16 kHz inputs could evoke the most prominent responses with stable
138 waveforms across all decibels. This acoustic property was then used for the entire
139 experiments (Figs. S6-S7).

140 Using commercial needle electrodes to monitor BAEP and our PEDOT device for CNAP,
141 we first showed that both BAEP and CNAP can be reliably recorded before and after the
142 craniotomy (**Fig. 3a-e**). The marginal differences between signal amplitudes and latencies

143 from pre- and post-operative recordings confirmed minimal damage on hearing during the
144 microsurgery (Fig. S8). However, when comparing both CNAP and BAEP signals, CNAP
145 had an average amplitude of $\sim 15 \mu\text{V}$ whereas BAEP was only $\sim 300 \text{ nV}$ due to its far-field
146 nature (**Fig. 3f**). Due to the >50 -fold differences in the signal amplitudes, the required
147 acquisition durations for each type of data were also drastically different. For example, it
148 took at least 5 s to collect a set of BAEP waveforms because of the multi-time repeats
149 needed for averaging (Video S1). On the other hand, CNAP signals can be acquired in <500
150 ms, which was one order of magnitude faster than BAEP (Video S2). The improved
151 temporal resolution was essential to capture any possible damages caused by surgical
152 maneuvers and to minimize the risk of hearing loss. To mimic the ‘extreme’ scenarios
153 during surgical procedures, we intentionally tugged the nerve using a stripper and
154 examined the dynamic changes of BAEP or CNAP. Compared to the slow response (10.5
155 s) and long recovery latency (10.6 s) of BAEP signals, CNAP recorded using PEDOT
156 showed orders of magnitude improvements of 0.52 s (response latency) and 0.58 s
157 (recovery latency), respectively (**Fig. 3g-j**).

158 Furthermore, to underscore the advantages of our soft electrode in recording CNAP, we
159 also used a clinically available ball-point probe for the same application. Because of the
160 poor electrode/nerve contacts, the ball-point electrode can only yield $\sim 10 \mu\text{V}$ for the
161 amplitude (**Fig. 3k**). More importantly, the ball-point electrode was unable to properly
162 maintain stable contacts with the nerve even under mild tugging actions, making it

163 impossible for CINM during real surgical procedures (Fig. S9). To further demonstrate the
164 unique property of PEDOT as the electrode material, we also prepared stretchable micro-
165 cracked gold (Au) electrodes as a control³⁶. Although we are able to successfully implant
166 the soft Au electrode around the nerve using the same wrapping method, the CNAP signals
167 recorded using the Au electrode could only reach ~70% of the PEDOT one (Fig. S10). This
168 may likely be due to the higher impedance at the metal/nerve interface³⁷. Besides the
169 improved static state signal qualities, the PEDOT electrode also substantially outperformed
170 the Au electrode during dynamic activities. Upon tugging the nerve, while both PEDOT
171 and Au electrodes showed very low response latencies (Fig. S11a-c), and the Au electrode
172 was also observed to require a much longer time to recover (0.58 s vs 1 s, shown in Fig.
173 S11d).

174 In addition to the long recovery period, the Au electrode also experienced substantial
175 performance drops after the tugging event, i.e., the post-tugging signal amplitude was only
176 ~44.5% of the pre-tugging one (Fig. S11e). This issue is expected to be even more severe
177 in the real-life microsurgery procedure, where multiple unintended tugging motions can
178 occur concurrently. To mimic the possible incidents throughout the surgery, we tugged on
179 the nerve every 30 mins during a 2-hour span and monitored the CNAP signals recorded
180 by both PEDOT and Au electrodes. In this case, the CNAP amplitude recorded using Au
181 showed substantial decays over time and even failed to capture any nerve responses after
182 2 hours, whereas the PEDOT electrode was able to still consistently record CNAP with

183 nearly constant waveforms (**Fig. 4a-f**). Using optical microscopy to investigate the
184 microstructures of the electrode after the entire surgery, we observed that the Au electrode
185 experienced obvious delamination and wear at the nerve contact sites, which may likely be
186 due to the interfacial micro-motions during the nerve tugging. On the other hand, because
187 of the covalent linkage between PEDOT and the elastomeric substrate (styrene-butadiene-
188 styrene, SBS) during the radical initiated crosslinking reaction, the PEDOT layer remained
189 robustly adhered to the underlying substrate, giving rise to its excellent tolerance to
190 external scratches and frictions (**Fig. 4g-h**).

191

192 **Hearing preservation without nerve tissue damage by PEDOT**

193 Besides the excellent electrical properties of PEDOT to enable stable recording of CNAP
194 signals, another desired aspect of the electrode for CINM is to have minimal invasiveness
195 for nerve function preservation. Due to the low modulus of SBS elastomer, our soft
196 electrode can be safely integrated with the nerve tissue without causing noticeable hearing
197 loss, as evidenced by the stable BAEP waveforms and minimal changes in decibel
198 threshold for sound detection (**Fig. 5**, Fig. S11a-b). In contrast, when using a stiff polyimide
199 as the substrate, its large modulus mismatch induced considerable changes in BAEP signal
200 amplitude and latency after the tugging motions (**Fig. 5d-g**, Fig. S11c-d). The lowest
201 decibel levels in which the BAEP waveform can be detected also changed from 35 dB to
202 40 dB (**Fig. 5h**).

203 Furthermore, as compared to the sham control, confocal microscopy images of
204 immunostained nerve tissue slices revealed no significant differences in fluorescence
205 intensities of macrophage/monocyte markers (ER-HR3) in the nerve after tugging the soft
206 electrode. On the contrary, the implanted rigid electrode caused significant inflammatory
207 responses (**Fig. 5i-j**). Additionally, we investigated the nerve injury by quantifying S-100,
208 a hallmark of Schwann cells. When comparing in between the nerve with the soft electrode
209 and the sham control, there was no statistically significant differences in S-100 expression
210 levels. However, the rigid electrode was observed to cause substantial damage to the nerve
211 with a clear boundary around the injury site with reduced S-100 expression (**Fig. 5i, 5k**).
212 To verify the long-term biocompatibility of our device, we implanted both soft and rigid
213 electrodes onto sciatic nerves in freely moving mice for two weeks (Fig. S12a). Similar to
214 results obtained from the short-term tugging experiment, the rigid electrode again induced
215 substantially elevated immune responses, whereas the soft device remained inactive (Fig.
216 S12b).

217

218 **Optimal prognosis was achieved with PEDOT monitoring**

219 To evaluate the impact of CINM enabled by the soft and stretchable PEDOT electrode, we
220 monitored the prognosis in tumor-bearing rats after microsurgery (Fig. S14). To reproduce
221 the schwannoma animal model, we first implanted tumor cells into the rat sciatic nerve^{38,39},
222 and then investigated EMG and gait changes before and after tumor resection. During the

223 microsurgical operation, since the tumor is fully integrated with the nerve itself, it is
224 impossible to distinguish them under the naked eye. Even with intermittent monitoring of
225 neurophysiological signals using the commercial ball-point electrode, the micro-scissors
226 still inevitably caused sharp nerve transection during the tumor excision. As a result, EMG
227 signals collected from the same rat showed reduced amplitude at 4 weeks after surgery (**Fig.**
228 **6a-c**, *Fig. S16*). In contrast, with the PEDOT electrode to perform CINM, we were able to
229 capture evoked neural responses immediately upon mechanical contact, therefore
230 preventing further damages by the surgical manipulation. In this instance, because of the
231 undamaged nerve structure following the tumor removal, the EMG amplitude was
232 significantly higher after the surgery (**Fig. 6d-f**, *Fig. S16*). We also evaluated the gait
233 patterns of tumor bearing rats using kinematic analysis (**Fig. 6g**, *Video S3*). Using only
234 commercial electrodes for intermittent monitoring, the rat was observed to experience
235 worse paw function with whole-foot placement on the ground and dragging of their toes
236 (**Fig. 6h**, *Fig. S17b*, *Video S4*), a typical symptom of serious sciatic nerve dysfunction. In
237 contrast, as aided by CINM using PEDOT, the rat showed significantly better gait quality
238 after the surgery⁴⁰, as evidenced by the improved paw placement (**Fig. 6i**, *Fig. S17a*,
239 *Supplementary Video 4*).
240 Finally, beside recording neurophysiological signals, the low-impedance PEDOT electrode
241 also allows functional stimulation to evaluate neural functions during surgery. This
242 modality is particularly useful to preserve motor nerve functions and preventing post-

243 operative paralysis. For VS surgery, facial nerve paralysis is one of the most clinically
244 significant complications owing to the close proximity between cochlear and facial
245 nerves⁴¹. In ~44% of individuals with VS, surgical treatment resulted in persistent facial
246 weakness^{41,42}. Localized stimulation of the facial nerve is a promising strategy for
247 minimizing the risk of facial nerve injury, as it ensures that downstream muscle actions are
248 undisturbed during the surgical operation (**Fig. 6j**). Using a rabbit model, we first implanted
249 the soft PEDOT electrode to form an intimate contact with the facial-cochlear nerve
250 complex (Video S5). Because of the low interfacial impedance and low modulus of our
251 PEDOT electrode, we could induce noticeable facial muscle movements at an ultralow
252 threshold of 1 mA, without the need to remove or penetrate the epineurium layer. In
253 comparison, the commercial ball-point electrode would require at least 4 mA to elicit
254 noticeable facial movements (Video S6). The amplitude of the EMG signal elicited by the
255 PEDOT electrode was also substantially higher than that induced by the ball-point
256 electrode (**Fig. 6k-m**). In the clinical setting, this highly efficient stimulation functionality
257 will allow the use of the PEDOT electrode to forecast the severity of facial paralysis in
258 patients undergoing VS surgery.

259

260 Conclusion

261 We have demonstrated that CINM, in combination with advanced micro-neurosurgical
262 techniques, is extremely valuable to prevent neurological injury during surgery. In this

263 work, by developing a clinically deployable bioelectronic device based on soft and low
264 impedance conducting polymers, we successfully achieved *for the first time* continuous
265 recording of near-field action potential with high signal-to-noise ratio and minimal
266 invasiveness during tumor resection surgeries, leading to dramatically reduced post-
267 operative morbidity in pre-clinical animal models. Utilizing this unprecedented CINM
268 modality in conjunction with localized neurostimulation, we further demonstrated our
269 approach to successfully restore normal functions after a variety of neurosurgeries. Moving
270 forward, further development of chronically stable, high-resolution, soft and stretchable
271 electrode arrays with efficient neurostimulation and recording modalities should allow
272 successful applications in more complicated surgical disciplines, and even for long-term
273 and closed-loop disease management.

274

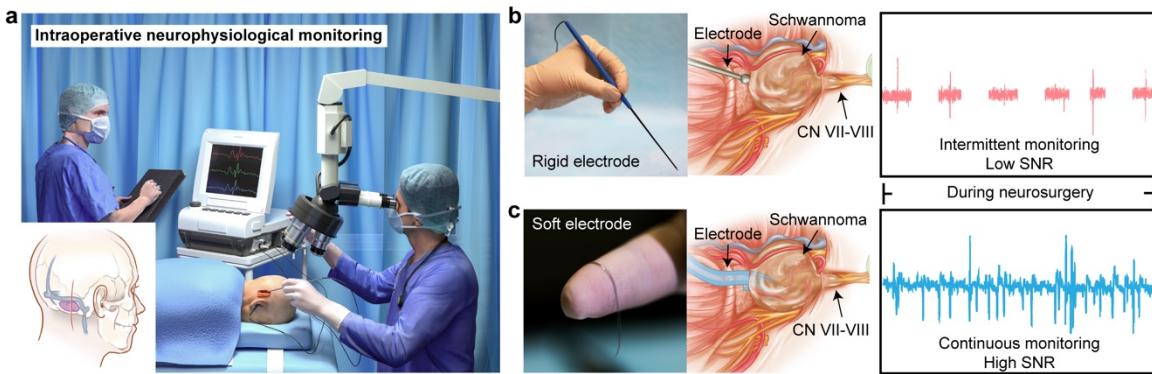
275 **Acknowledgments**

276 This work was supported by the National Natural Science Foundation of China (No.
277 82071996). Part of this work was performed at the Stanford Nano Shared Facilities (SNSF),
278 supported by the National Science Foundation under award ECCS-2026822. We thank
279 Guijun Jia and Xue Zhan for administrative support. We thank Lirui Yang for instrument
280 support of CINM measurements. We also thank Dr. Chuanbao Zhang, Dr. Xi Wang, Dr.
281 Yangyang Wang for their guidance with the project.

282 **Author Contributions**

283 W.Z., Y.J., D.L., Z.B. and W.J. designed the study. W.Z., Y.J., Q.X., L.C., M.L. performed
284 circuit design and testing. Y.J., J.L., D.Z., Y.W. performed material synthesis and
285 characterizations. W.Z., Q.X., H.Q., Y.Z., W.L., X.W., J.L., X.G., S.M., P.K., L.Y., J.B.T.
286 performed the animal, cell culture experiments and histological staining. W.Z., Y.J., D.L.
287 and Z.B. wrote the manuscript with input from all co-authors.

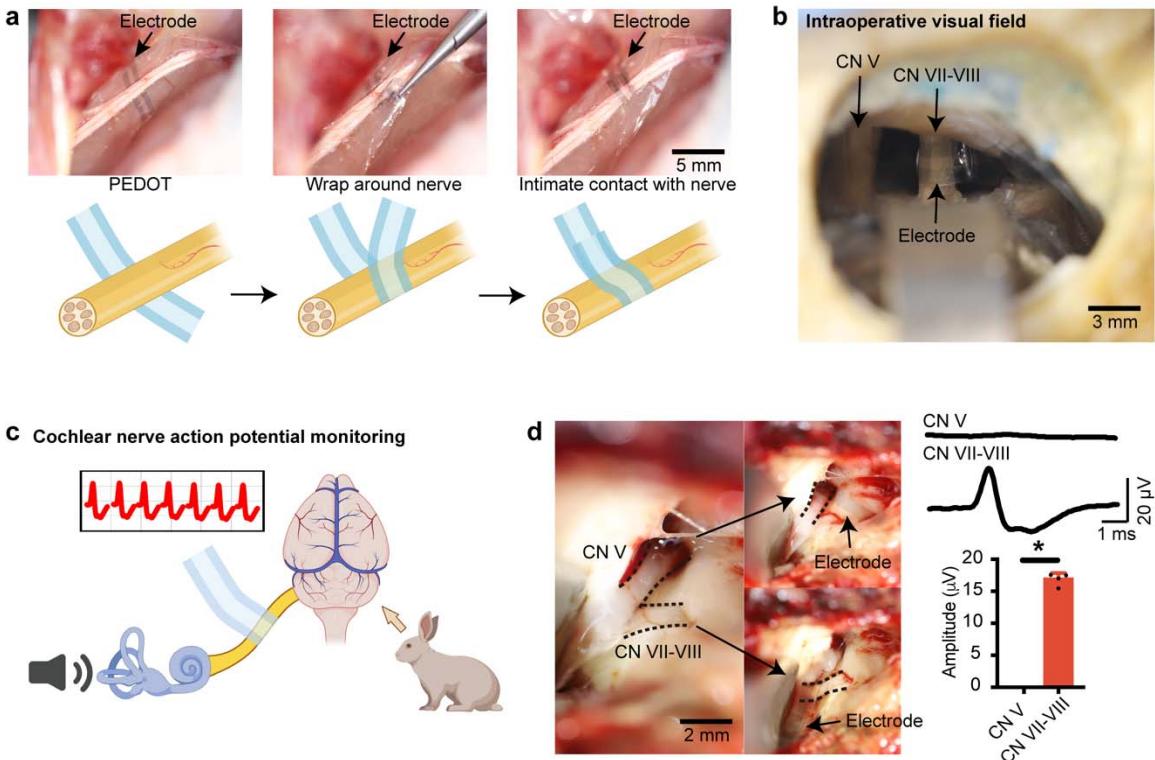
288 **Competing Interests Statement**


289 All the authors declared that they have no competing interests.

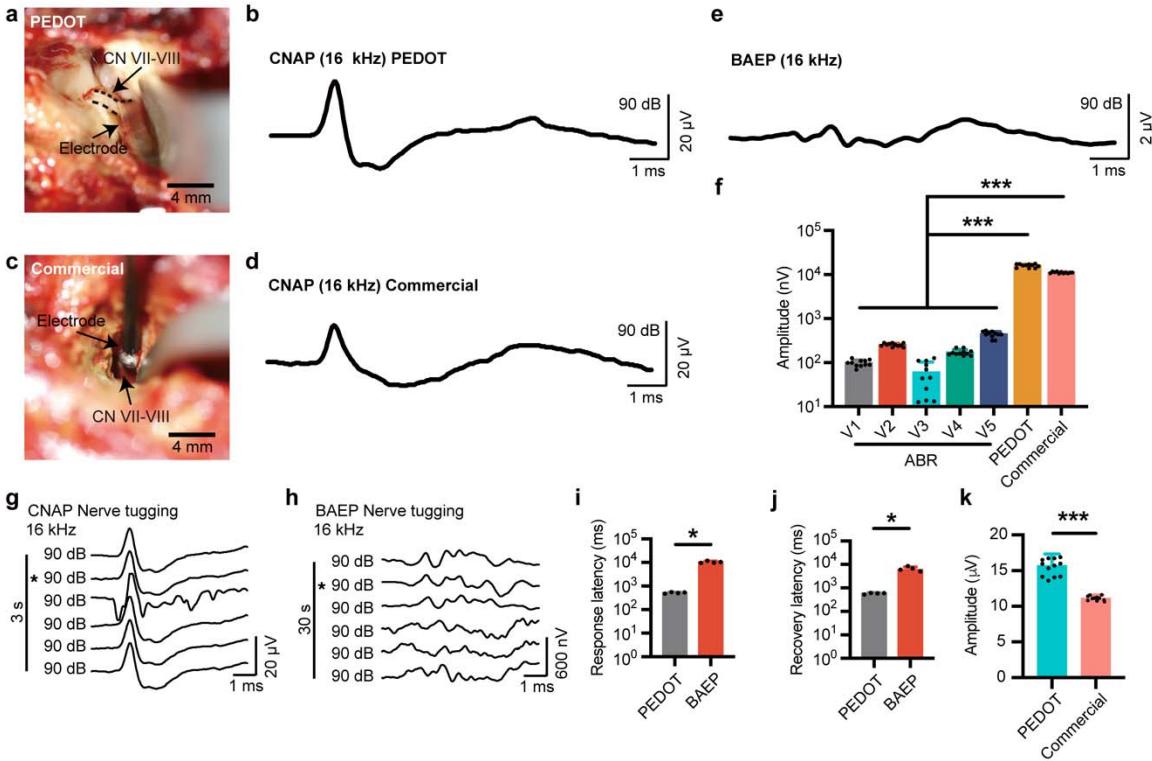
290 **Methods**

291 A complete, detailed description of methods can be found in the Supplementary
292 Information.

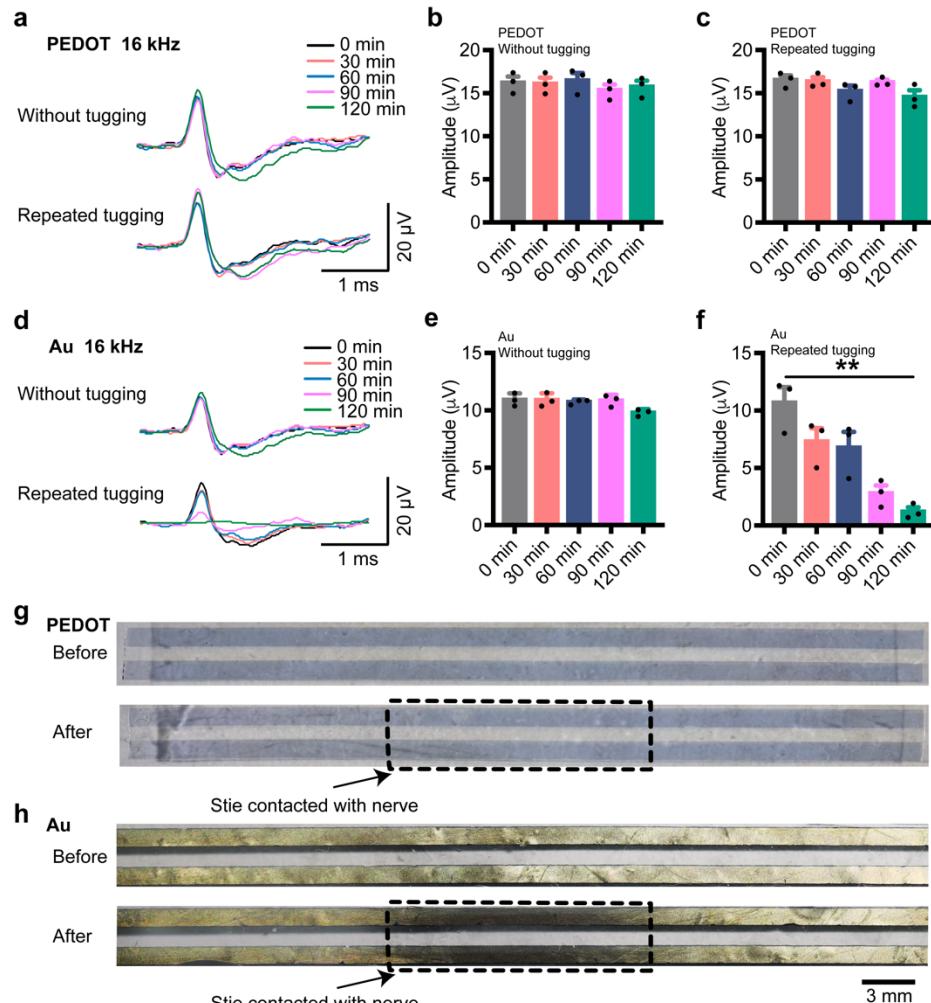
293


294 **Figure legends**

295


296 **Fig. 1 | Soft PEDOT electrodes for CINM.** **a**, Schematics showing CINM during
297 neurosurgery. **b**, Images and schematics of INM using conventional rigid ball-point
298 electrodes. The bulky electrode could only be placed on the cisternal portion of the cochlear
299 nerve proximal to the cerebellopontine angle tumor. In addition, these hand-held electrodes
300 could only be used intermittently during the surgery, making them not feasible for
301 continuous monitoring. **c**, Images and schematics of CINM using soft PEDOT electrodes.
302 Stable enclosure and CINM were achieved by wrapping a PEDOT electrode around the
303 facial-acoustic nerve complex. CINM: Continuous intra-operative neurophysiological
304 monitoring. SNR: Signal-to-noise ratio.

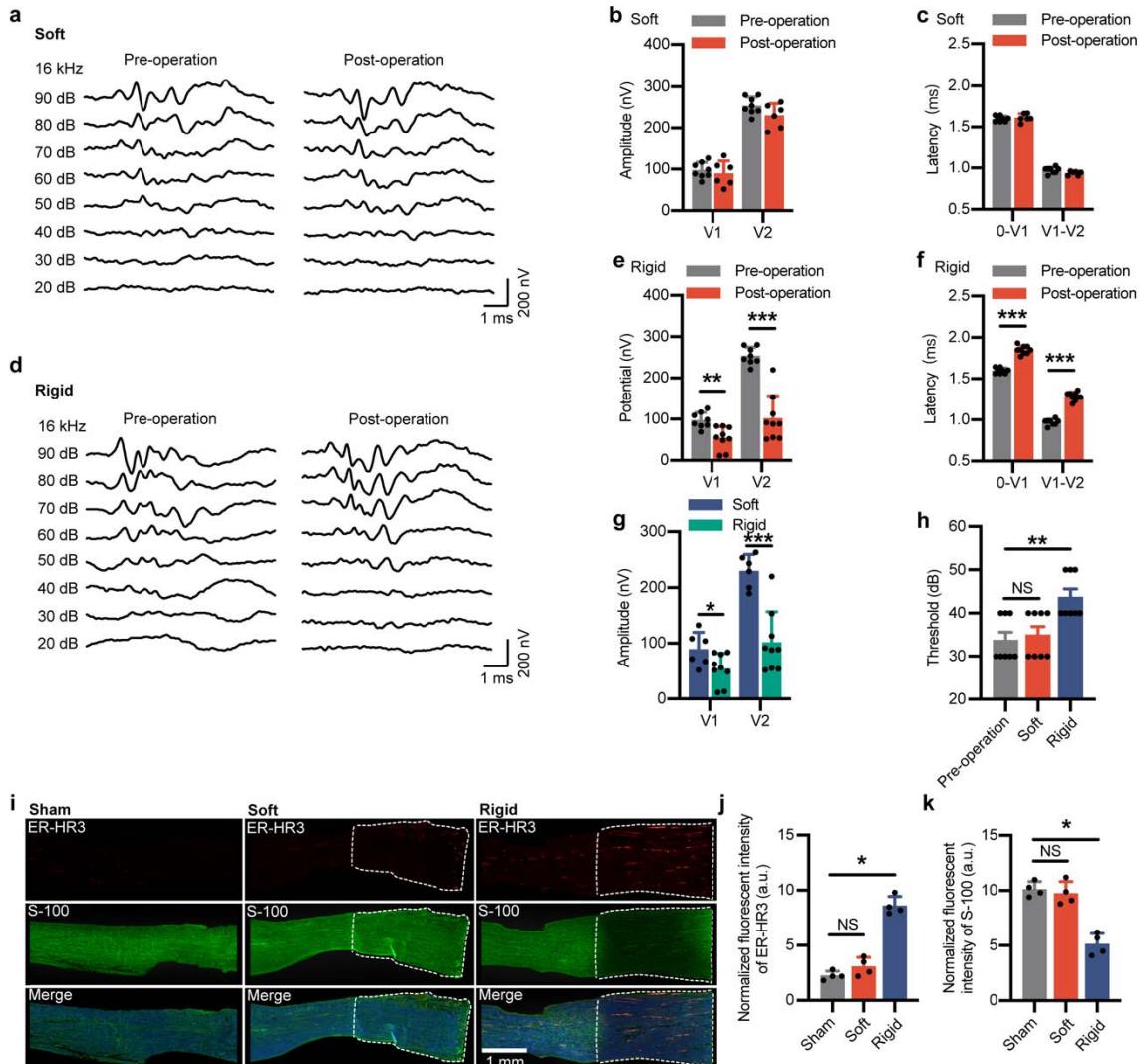
305


306

307 **Fig. 2 | Soft PEDOT electrodes for conformable neural interfaces.** **a**, Schematics and
308 images of the implantation process for soft PEDOT electrode. Stable enclosure was
309 achieved by wrapping a soft PEDOT electrode around the sciatic nerve and pressing gently
310 without noticeable nerve tugging. **b**, Photograph of a soft PEDOT electrode wrapping
311 around the facial-acoustic nerve complex in a human cadaver skull using a retrosigmoid
312 approach. **c**, Schematics showing intra-operative CNAP monitoring during VS surgery in
313 a rabbit model. **d**, Isolation of the facial-acoustic nerve complex from the cranial nerves.
314 Two unidentified nerves were exposed after retracting the cerebellum of an anesthetized
315 rabbit. Soft PEDOT electrodes were wrapped around each visible nerve for facial-acoustic
316 nerve complex identification ($n = 4$, $P = 0.029$). CNAP values were measured from the
317 PEDOT device. All error bars denote s.d. * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; unpaired,
318 two-tailed Student's t-test was used for d. CNAP: Cochlear nerve action potentials; VS:
319 Vestibular schwannomas.

320

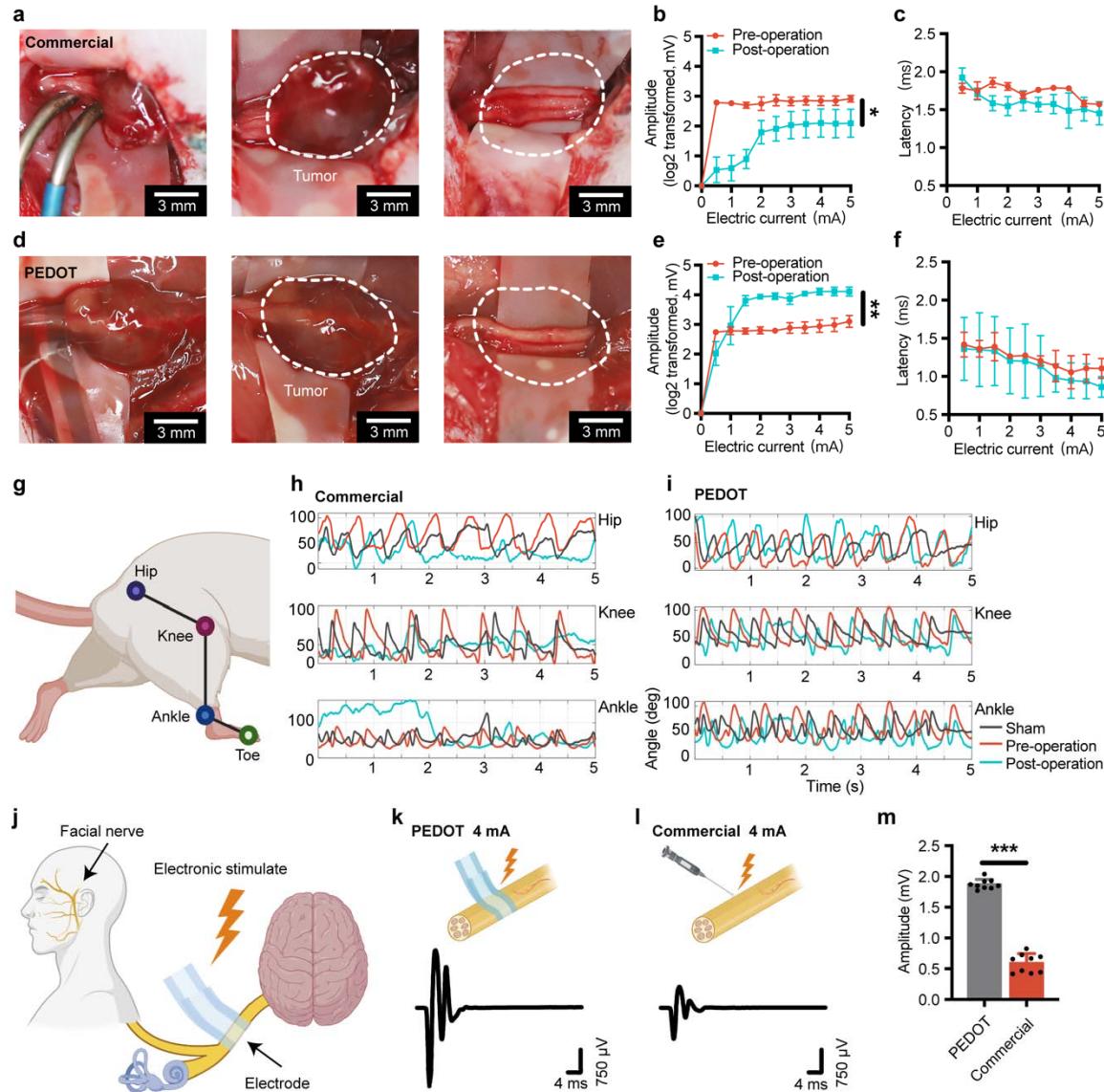
321 **Fig. 3 | Soft PEDOT electrodes for intra-operative CNAP monitoring.** **a**, Photograph
 322 of a soft PEDOT electrode wrapping around the facial-acoustic nerve complex for CNAP
 323 recording. **b**, CNAP waveforms recorded from the soft PEDOT electrode. **c**, Photograph of
 324 a commercial ball-point electrode for CNAP recording. **d**, CNAP waveforms recorded from
 325 the conventional metal ball-point electrode. **e**, Control BAEP signals for comparison with
 326 the CNAP signals. **f**, Representative auditory monitoring data from BAEP and CNAP. The
 327 *P* values for comparison of the amplitudes are as follows: for the BAEP ($n = 11$) versus the
 328 PEDOT electrode ($n = 11$), V1 versus the PEDOT, $P < 0.001$; V2 versus the PEDOT, $P <$
 329 0.001; V3 versus the PEDOT, $P < 0.001$; V4 versus the PEDOT, $P < 0.001$; V5 versus the
 330 PEDOT, $P < 0.001$. For the BAEP ($n = 11$) versus the commercial electrode ($n = 11$), V1
 331 versus the commercial, $P < 0.001$; V2 versus the commercial, $P < 0.001$; V3 versus the
 332 commercial, $P < 0.001$; V4 versus the commercial, $P < 0.001$; V5 versus the commercial,
 333 $P < 0.001$. **g-h**, Variation of CNAP (**g**) and BAEP (**h**) waveform during nerve tugging. *
 334 denotes the time point of nerve tugging. **i**, Response latencies of BAEP and CNAP after
 335 nerve tugging ($n = 4$, $P = 0.029$). **j**, Recovery latencies of BAEP and CNAP after physical
 336 nerve tugging ($n = 4$, $P = 0.029$). **k**, Amplitudes of CNAP values recorded using PEDOT
 337 and commercial metal electrodes ($n = 11$, $P < 0.001$). All error bars denote s.d. * $P < 0.05$;
 338 ** $P < 0.01$; *** $P < 0.001$; unpaired, two-tailed Student's t-test was used for **f**, **i**, **j**, and **k**.
 339 CNAP: Cochlear nerve action potentials; BAEP: Brainstem auditory evoked potentials.



340

341 **Fig. 4 | Soft PEDOT electrode for reliable and consistent long-term CNAP monitoring.**
342 **a-c**, Continuous intra-operative CNAP monitoring by a soft PEDOT electrode with and
343 without nerve tugging during a 120-min span ($n = 3$). P values for comparing CNAP
344 amplitudes without tugging are as follows: for the minute 0 versus minute 30, $P = 0.700$;
345 for the minute 0 versus minute 60, $P = 0.990$; for the minute 0 versus minute 90, $P = 0.700$;
346 for the minute 0 versus minute 120, $P = 0.700$. P values for comparing CNAP amplitudes
347 with tugging are as follows: for the minute 0 versus minute 30, $P = 0.990$; for the minute
348 0 versus minute 60, $P = 0.400$; for the minute 0 versus minute 90, $P = 0.990$; for the minute
349 0 versus minute 120, $P = 0.200$. **d-f**, Continuous intra-operative CNAP monitoring by an
350 Au electrode with and without nerve tugging during a 120-min span ($n = 3$). P values for
351 comparing CNAP amplitudes without tugging are as follows: for the minute 0 versus minute 30,
352 $P = 0.990$; for the minute 0 versus minute 60, $P = 0.700$; for the minute 0 versus
353 minute 90, $P = 0.990$; for the minute 0 versus minute 120, $P = 0.100$. P values for
354 comparing CNAP amplitudes with tugging are as follows: for the minute 0 versus minute 30,
355 $P = 0.400$; for the minute 0 versus minute 60, $P = 0.200$; for the minute 0 versus minute

356 90, $P = 0.100$; for the minute 0 versus minute 120, $P = 0.002$. **g**, Microscope images
357 showing minimal changes of surface appearance of the soft PEDOT electrode after the 120-
358 min CNAP monitoring. **h**, Microscope images showing significant damage of the Au
359 electrode with Au delaminated from the substrate after contacting with the nerve and
360 undergoing micro-motions during the tugging activities during surgery. All error bars
361 denote s.d. * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; unpaired, two-tailed Student's t-test was
362 used for **b**, **c**, **e**, and **f**. CNAP: Cochlear nerve action potentials; CINM: Continuous intra-
363 operative neurophysiological monitoring.


364

365

366 **Fig. 5 | Hearing preservation with minimal nerve tissue damage induced by the soft**
 367 **PEDOT electrode. a, BAEP waveforms of the facial-cochlear nerve complex before and**
 368 **after wrapping of a soft PEDOT electrode. b, Comparison of BAEP amplitude before and**
 369 **after wrapping of the soft PEDOT electrode. P values for comparing the BAEP amplitudes**
 370 **are as follows: V1, pre-operation ($n = 8$) versus post-operation ($n = 6$), $P = 0.555$; V2, pre-**
 371 **operation ($n = 8$) versus post-operation ($n = 6$), $P = 0.103$. c, Comparison of BAEP latencies**
 372 **before and after wrapping of the soft PEDOT electrode. P values for comparing the BAEP**
 373 **latencies are as follows: 0 - V1, pre-operation ($n = 8$) versus post-operation ($n = 6$), $P =$**
 374 **0.576; V1 - V2, pre-operation ($n = 8$) versus post-operation ($n = 6$), $P = 0.070$. d, BAEP**
 375 **waveforms of the facial-cochlear nerve complex before and after wrapping of a rigid**
 376 **electrode. e, Comparison of BAEP amplitudes before and after wrapping of a rigid**
 377 **electrode. P values for comparing the BAEP amplitudes are as follows: V1, pre-operation**
 378 **($n = 8$) versus post-operation ($n = 9$), $P = 0.002$; V2, pre-operation ($n = 8$) versus post-**

379 operation ($n = 9$), $P < 0.001$. **f**, Comparison of BAEP latencies before and after wrapping
380 of a rigid electorde. P values for comparing the BAEP latencies are as follows: 0 - V1, pre-
381 operation ($n = 8$) versus post-operation ($n = 9$), $P < 0.001$; V1 - V2, pre-operation ($n = 8$)
382 versus post-operation ($n = 9$), $P < 0.001$. **g**, Comparison of BAEP amplitudes after
383 wrapping of a soft PEDOT electrode and a rigid electorde. P values for comparing the
384 BAEP amplitudes are as follows: V1, PEDOT electorde ($n = 8$) versus rigid electorde ($n =$
385 9), $P = 0.038$; V2, PEDOT electorde ($n = 8$) versus rigid electorde ($n = 9$), $P < 0.001$. **h**,
386 Hearing threshold pre-operation, after wrapping of soft PEDOT and rigid electrodes. P
387 values for comparing the hearing thresholds are as follows: pre-operation ($n = 8$) versus
388 PEDOT electrode ($n = 8$), $P = 0.990$; pre-operation ($n = 8$) versus rigid electrode ($n = 8$),
389 $P = 0.009$. **i**, Longitudinal-section slice of the facial-cochlear nerve complex labeled by an
390 inflammatory biomarker (macrophage/monocyte) and a Schwann cell biomarker (S-100)
391 for soft PEDOT electrode, rigid electrode and sham control. **j-k**, Comparison of normalized
392 fluorescence intensities from ER-HR3 (**j**) and S-100 (**k**) for soft PEDOT electrode, rigid
393 electrode and sham control. P values for comparing ER-HR3 intensities are as follows:
394 sham ($n = 4$) and PEDOT electrode ($n = 4$), $P = 0.200$; sham ($n = 4$) and rigid electrode ($n =$
395 4), $P = 0.029$. P values for comparing the S-100 intensities are as follows: sham ($n = 4$)
396 and PEDOT electrode ($n = 4$), $P = 0.686$; sham ($n = 4$) and rigid electrode ($n = 4$), $P =$
397 0.029. All error bars denote s.d. * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; NS, not significant;
398 unpaired, two-tailed Student's t-test was used for **b, c, e, f, g, h, j**, and **k**. BAEP: Brainstem
399 auditory evoked potentials.

400

401 **Fig. 6 | Improved post-operative prognosis using soft PEDOT electrodes.** **a**,
402 Photographs showing a commercial metal electrode for intra-operative monitoring, and a
403 sciatic nerve with tumor before after resection. **b-c**, Comparison of evoked
404 electromyographic amplitudes (**b**) and latencies (**c**) before tumor removal and 4 weeks after
405 resection using a commercial metal electrode for intra-operative monitoring (**b**, $n = 4, P =$
406 0.024 ; **c**, $n = 4, P = 0.354$). **d**, Photographs showing a soft PEDOT electrode for intra-
407 operative monitoring, and a sciatic nerve with tumor before after resection. **e-f**, Comparison
408 of evoked electromyographic amplitudes (**e**) and latencies (**f**) before tumor removal and 4
409 weeks after resection using a commercial metal electrode for intra-operative monitoring (**e**,
410 $n = 4, P = 0.003$; **f**, $n = 4, P = 0.387$). **g**, Schematic diagram illustrating the hindlimb
411 kinematics during walking. **h-i**, Representative angular movements for the hip, knee and
412 ankle joints for the mouse before and 4 weeks after tumor removal on the sciatic nerve by

413 commercial metal electrode (**h**) and soft PEDOT (**i**) monitoring. **j**, Schematic of neural
414 stimulation for facial nerve evaluation. **k-l**, Schematic and evoked electromyography
415 waveforms by stimulating the facial nerves using a PEDOT electrode (k) and a commercial
416 metal electrode (l) at 4 mA. **m**, Comparison of evoked electromyography amplitudes by
417 PEDOT electrode and conventional metal electrode at 4 mA ($n = 9$, $P < 0.001$). All error
418 bars denote s.d. * $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$; unpaired, two-tailed Student's t-test
419 was used for **d**. One-way ANOVA with Holm-Sidak's multiple comparisons test was used
420 for **f**, **g**, **i**, and **j**.

421 **References**

422 1 Buckner, J. C. *et al.* Central nervous system tumors. *Mayo Clin
423 Proc* **82**, 1271–1286, doi:10.4065/82.10.1271 (2007).

424 2 Horbinski, C., Berger, T., Packer, R. J. & Wen, P. Y. Clinical
425 implications of the 2021 edition of the WHO classification of
426 central nervous system tumours. *Nat Rev Neurol*,
427 doi:10.1038/s41582-022-00679-w (2022).

428 3 Miller, K. D. *et al.* Brain and other central nervous system tumor
429 statistics, 2021. *CA Cancer J Clin* **71**, 381–406,
430 doi:10.3322/caac.21693 (2021).

431 4 Carlson, M. L. & Link, M. J. Vestibular Schwannomas. *N Engl J Med*
432 **384**, 1335–1348, doi:10.1056/NEJMra2020394 (2021).

433 5 Goldbrunner, R. *et al.* EANO guideline on the diagnosis and
434 treatment of vestibular schwannoma. *Neuro Oncol* **22**, 31–45,
435 doi:10.1093/neuonc/noz153 (2020).

436 6 Sanai, N. & Berger, M. S. Surgical oncology for gliomas: the state
437 of the art. *Nat Rev Clin Oncol* **15**, 112–125,
438 doi:10.1038/nrclinonc.2017.171 (2018).

439 7 Lapointe, S., Perry, A. & Butowski, N. A. Primary brain tumours in
440 adults. *The Lancet* **392**, 432–446, doi:10.1016/s0140-6736(18)30990-
441 5 (2018).

442 8 Betka, J. *et al.* Complications of microsurgery of vestibular
443 schwannoma. *Biomed Res Int* **2014**, 315952, doi:10.1155/2014/315952
444 (2014).

445 9 Hirbe, A. C. & Gutmann, D. H. Neurofibromatosis type 1: a
446 multidisciplinary approach to care. *Lancet Neurol* **13**, 834–843,
447 doi:10.1016/S1474-4422(14)70063-8 (2014).

448 10 Gonzalez, A. A., Jeyanandarajan, D., Hansen, C., Zada, G. & Hsieh,
449 P. C. Intraoperative neurophysiological monitoring during spine
450 surgery: a review. *Neurosurg Focus* **27**, E6,
451 doi:10.3171/2009.8.FOCUS09150 (2009).

452 11 Rho, Y. J., Rhim, S. C. & Kang, J. K. Is intraoperative
453 neurophysiological monitoring valuable predicting postoperative
454 neurological recovery? *Spinal Cord* **54**, 1121–1126,
455 doi:10.1038/sc.2016.65 (2016).

456 12 Liu, Y. *et al.* Intraoperative monitoring of neuromuscular function
457 with soft, skin-mounted wireless devices. *NPJ Digit Med* **1**,
458 doi:10.1038/s41746-018-0023-7 (2018).

459 13 Langguth, B., Kreuzer, P. M., Kleinjung, T. & De Ridder, D.
460 Tinnitus: causes and clinical management. *Lancet Neurol* **12**, 920–

461 930, doi:10.1016/S1474-4422(13)70160-1 (2013).
462 14 Watanabe, N. *et al.* Intraoperative cochlear nerve mapping with the
463 mobile cochlear nerve compound action potential tracer in
464 vestibular schwannoma surgery. *J Neurosurg*, 1-8,
465 doi:10.3171/2017.12.JNS171545 (2018).
466 15 Nakatomi, H. *et al.* Improved preservation of function during
467 acoustic neuroma surgery. *J Neurosurg* **122**, 24-33,
468 doi:10.3171/2014.8.JNS132525 (2015).
469 16 Piccirillo, E. *et al.* Intraoperative cochlear nerve monitoring in
470 vestibular schwannoma surgery--does it really affect hearing
471 outcome? *Audiol Neurotol* **13**, 58-64, doi:10.1159/000108623
472 (2008).
473 17 Legatt, A. D. Electrophysiology of Cranial Nerve Testing: Auditory
474 Nerve. *J Clin Neurophysiol* **35**, 25-38,
475 doi:10.1097/WNP.0000000000000421 (2018).
476 18 Yamakami, I., Yoshinori, H., Saeki, N., Wada, M. & Oka, N. Hearing
477 preservation and intraoperative auditory brainstem response and
478 cochlear nerve compound action potential monitoring in the removal
479 of small acoustic neurinoma via the retrosigmoid approach. *J*
480 *Neurol Neurosurg Psychiatry* **80**, 218-227,
481 doi:10.1136/jnnp.2008.156919 (2009).
482 19 Yamakami, I., Oka, N. & Yamaura, A. Intraoperative monitoring of
483 cochlear nerve compound action potential in cerebellopontine angle
484 tumour removal. *J Clin Neurosci* **10**, 567-570, doi:10.1016/s0967-
485 5868(03)00143-7 (2003).
486 20 O’ Doherty, J. E. *et al.* Active tactile exploration using a
487 brain - machine - brain interface. *Nature* **479**, 228-231,
488 doi:10.1038/nature10489 (2011).
489 21 Betzel, R. F. *et al.* Structural, geometric and genetic factors
490 predict interregional brain connectivity patterns probed by
491 electrocorticography. *Nature Biomedical Engineering* **3**, 902-916,
492 doi:10.1038/s41551-019-0404-5 (2019).
493 22 Miyazaki, H. & Caye-Thomasen, P. Intraoperative Auditory System
494 Monitoring. *Adv Otorhinolaryngol* **81**, 123-132,
495 doi:10.1159/000485577 (2018).
496 23 Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. *Chem Soc Rev*
497 **48**, 1642-1667, doi:10.1039/c8cs00595h (2019).
498 24 Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic
499 mixed ionic-electronic conductors. *Nat Mater* **19**, 13-26,
500 doi:10.1038/s41563-019-0435-z (2020).
501 25 Helbing, D. L., Schulz, A. & Morrison, H. Pathomechanisms in

502 503 schwannoma development and progression. *Oncogene* **39**, 5421–5429,
doi:10.1038/s41388-020-1374-5 (2020).

504 26 Ammoun, S. & Hanemann, C. O. Emerging therapeutic targets in
505 schwannomas and other merlin-deficient tumors. *Nat Rev Neurol* **7**,
506 392–399, doi:10.1038/nrneurol.2011.82 (2011).

507 27 Matthies, C. & Samii, M. Management of 1000 vestibular schwannomas
508 (acoustic neuromas): clinical presentation. *Neurosurgery* **40**, 1–9;
509 discussion 9–10, doi:10.1097/00006123-199701000-00001 (1997).

510 28 Kirchmann, M. *et al.* Ten-Year Follow-up on Tumor Growth and
511 Hearing in Patients Observed With an Intracanalicular Vestibular
512 Schwannoma. *Neurosurgery* **80**, 49–56,
513 doi:10.1227/NEU.0000000000001414 (2017).

514 29 Propp, J. M., McCarthy, B. J., Davis, F. G. & Preston-Martin, S.
515 Descriptive epidemiology of vestibular schwannomas. *Neuro Oncol*
516 **8**, 1–11, doi:10.1215/S1522851704001097 (2006).

517 30 Ochal-Choinska, A., Lachowska, M., Kurczak, K. & Niemczyk, K.
518 Audiologic prognostic factors for hearing preservation following
519 vestibular schwannoma surgery. *Adv Clin Exp Med* **28**, 747–757,
520 doi:10.17219/acem/90768 (2019).

521 31 Zhou, W. *et al.* A Novel Imaging Grading Biomarker for Predicting
522 Hearing Loss in Acoustic Neuromas. *Clin Neuroradiol*,
523 doi:10.1007/s00062-020-00938-7 (2020).

524 32 Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic
525 bioelectronics. *Nature* **540**, 379–385, doi:10.1038/nature21004
526 (2016).

527 33 Khodagholy, D. *et al.* NeuroGrid: recording action potentials from
528 the surface of the brain. *Nat Neurosci* **18**, 310–315,
529 doi:10.1038/nn.3905 (2015).

530 34 Jiang, Y. *et al.* Topological supramolecular network enabled high-
531 conductivity, stretchable organic bioelectronics. *Science* **375**,
532 1411–1417, doi:10.1126/science.abj7564 (2022).

533 35 Yamakami, I., Ito, S. & Higuchi, Y. Retrosigmoid removal of small
534 acoustic neuroma: curative tumor removal with preservation of
535 function. *J Neurosurg* **121**, 554–563, doi:10.3171/2014.6.JNS132471
536 (2014).

537 36 Lacour, S. P., Chan, D., Wagner, S., Li, T. & Suo, Z. Mechanisms
538 of reversible stretchability of thin metal films on elastomeric
539 substrates. *Applied Physics Letters* **88**, 204103,
540 doi:10.1063/1.2201874 (2006).

541 37 Liu, Y. *et al.* Soft and elastic hydrogel-based microelectronics
542 for localized low-voltage neuromodulation. *Nat Biomed Eng* **3**, 58–

543 68, doi:10.1038/s41551-018-0335-6 (2019).

544 38 Gao, X. *et al.* Anti-VEGF treatment improves neurological function
545 and augments radiation response in NF2 schwannoma model. *Proc Natl
546 Acad Sci U S A* **112**, 14676–14681, doi:10.1073/pnas.1512570112
547 (2015).

548 39 Wu, L. *et al.* Losartan prevents tumor-induced hearing loss and
549 augments radiation efficacy in NF2 schwannoma rodent models. *Sci
550 Transl Med* **13**, 4816, doi:10.1126/scitranslmed.abd4816 (2021).

551 40 de Medinaceli, L., Freed, W. J. & Wyatt, R. J. An index of the
552 functional condition of rat sciatic nerve based on measurements
553 made from walking tracks. *Experimental Neurology* **77**, 634–643,
554 doi:10.1016/0014-4886(82)90234-5 (1982).

555 41 Leong, S. C. & Lesser, T. H. A national survey of facial paralysis
556 on the quality of life of patients with acoustic neuroma. *Otolaryngology
557 & neurotology* **36**, 503–509 (2015).

558 42 Owusu, J. A., Stewart, C. M. & Boahene, K. Facial Nerve Paralysis.
559 *Med Clin North Am* **102**, 1135–1143, doi:10.1016/j.mcna.2018.06.011
560 (2018).

561