

1 **Macrophage and neutrophil heterogeneity at single-cell spatial resolution in
2 inflammatory bowel disease**

3 Alba Garrido-Trigo^{1,2}, Ana M. Corraliza^{1,2}, Marisol Veny^{1,2}, Isabella Dotti^{1,2}, Elisa
4 Melon-Ardanaz^{1,2}, Aina Rill³, Helena L. Crowell⁴, Ángel Corbí⁵, Victoria Gudiño^{1,2},
5 Miriam Esteller^{1,2}, Iris Álvarez-Teubel^{1,2}, Daniel Aguilar^{1,2}, M Carme Masamunt^{1,2},
6 Emily Killingbeck⁶, Youngmi Kim⁶, Michael Leon⁶, Sudha Visvanathan⁷, Domenica
7 Marchese⁸, Ginevra Caratù⁸, Albert Martin-Cardona^{2,9}, Maria Esteve^{2,9}, Julian Panés,^{1,2}
8 Elena Ricart^{1,2}, Elisabetta Mereu^{3,*}, Holger Heyn^{8,10,*}, Azucena Salas^{1,2}

9 ¹Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I
10 Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain.

11 ²Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas
12 (CIBEREHD)

13 ³Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain

14 ⁴Department of Molecular Life Sciences, University of Zurich, Switzerland. SIB Swiss
15 Institute of Bioinformatics, Zurich, Switzerland

16 ⁵Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas
17 (CSIC), Madrid, Spain

18 ⁶NanoString Technologies, Seattle, WA, USA

19 ⁷Translational Medicine and Clinical Pharmacology, Boehringer-Ingelheim
20 Pharmaceuticals Inc, Ridgefield, CT, United States of America.

21 ⁸CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science
22 and Technology (BIST), Barcelona, Spain

23 ⁹ Department of Gastroenterology, Hospital Universitari Mútua Terrassa, Universitat de
24 Barcelona, Terrassa, Spain

25 ¹⁰Universitat Pompeu Fabra (UPF), Barcelona, Spain

26

27 *Contributed equally.

28

29 Conflicts of interest: H.H. is co-founder of Omniscope and a scientific advisory board
30 member of MiRXES. A.S. is the recipient of research grants from Roche-Genentech,
31 Abbvie, GSK, Scipher Medicine, Pfizer, Alimentiv, Inc, Boehringer Ingelheim and
32 Agomab; receives consulting fees from Genentech, GSK, Pfizer, HotSpot Therapeutics,
33 Alimentiv, Origo Biopharma, Deep Track Capital, Great Point Partners and Boxer
34 Capital; and is on the advisory boards of BioMAAdvanced Diagnostics, Goodgut and
35 Orikine. M.E. has received support for conference attendance and research support from
36 Abbvie, Biogen, Faes Farma, Ferring, Jannsen, MSD, Pfizer, Takeda, and Tillotts. J.P.
37 received financial support for research from AbbVie and Pfizer; consultancy
38 fees/honorarium from AbbVie, Arena, Athos, Atomwise, Boehringer Ingelheim,
39 Celgene, Celltrion, Ferring, Galapagos, Genentech/Roche, GlaxoSmithKline, Janssen,
40 Mirum, Morphic, Nestlé, Origo, Pandion, Pfizer, Progenity, Protagonist, Revolo,
41 Robarts, Takeda, Theravance and Wasserman; reports payment for lectures including
42 service on speaker bureau from Abbott, Ferring, Janssen, Pfizer and Takeda; and reports
43 payment for development of educational presentations from Abbott, Janssen, Pfizer
44 Roche and Takeda. A.M.C has received financial support for conference attendance,
45 educational activities, and research support from Abbvie, Biogen, Ferring, Jannsen,
46 MSD, Takeda, Dr. Falk Pharma and Tillotts. E.K, Y.K, and M.L. are current/former
47 employees and shareholders of NanoString Technologies. S.V. is a current employee of
48 Boehringer-Ingelheim Pharmaceuticals.

49

50 **FUNDING:** This work was funded by grant PID2021-123918OB-I00 from MCIN/AEI/
51 10.13039/501100011033 and co-funded by “FEDER A way to make Europe”. AMC
52 and ID were funded by grant Grant #2008-04050 from The Leona and Harry B.
53 Helmsley Charitable Trust. EM is funded by grant RH042155 (RTI2018-096946-B-I00)

54 from Ministerio de Ciencia e Innovacion. IAT is funded by grant 831434-2 (CE_IMI2-
55 2018-14 call).

56 **ACKNOWLEDGEMENTS:** We thank the Pathology Departments at Hospital Clinic
57 Barcelona and the Biobank Facility and Flow Cytometry unit at the Institut
58 d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) for providing us with the
59 samples required to conduct this study and for the technical help, and all patients for
60 their selfless participation. We also thank Agnès Fernandez-Clotet and Maite Rodrigo
61 Calvo for support, and Joe Moore for editorial assistance.

62

63

64 **ABSTRACT**

65 Ulcerative colitis (UC) and Crohn's disease (CD) are chronic inflammatory intestinal
66 diseases that show a perplexing heterogeneity in manifestations and response to
67 treatment. The molecular basis for this heterogeneity remains uncharacterized. We
68 applied single-cell RNA sequencing and CosMx™ Spatial Molecular Imaging to human
69 colon and found the highest diversity in cellular composition in the myeloid
70 compartment of UC and CD patients. Besides resident macrophage subsets (M0 and
71 M2), patients showed a variety of activated macrophages including classical (M1
72 CXCL5 and M1 ACOD1) and new inflammation-dependent alternative (IDA)
73 macrophages. In addition, we captured intestinal neutrophils in three transcriptional
74 states. Subepithelial IDA macrophages expressed *NRG1*, which promotes epithelial
75 differentiation. In contrast, *NRG1*^{low} IDA macrophages were expanded within the
76 submucosa and in granulomas, in proximity to abundant inflammatory fibroblasts,
77 which we suggest may promote macrophage activation. We conclude that macrophages
78 sense and respond to unique tissue microenvironments, potentially contributing to
79 patient-to-patient heterogeneity.

80

81

82

83 INTRODUCTION

84 Inflammatory bowel diseases (IBDs) are chronic immune-mediated diseases of the
85 gastrointestinal tract that are normally classified as Crohn's disease (CD) or ulcerative
86 colitis (UC) based on histological, imaging, and clinical features¹. Despite this
87 classification, a remarkable degree of variability is routinely observed in clinics in terms
88 of disease severity, response to therapy and disease progression². However, no validated
89 clinical or biological features have been established to explain and faithfully predict
90 such variability.

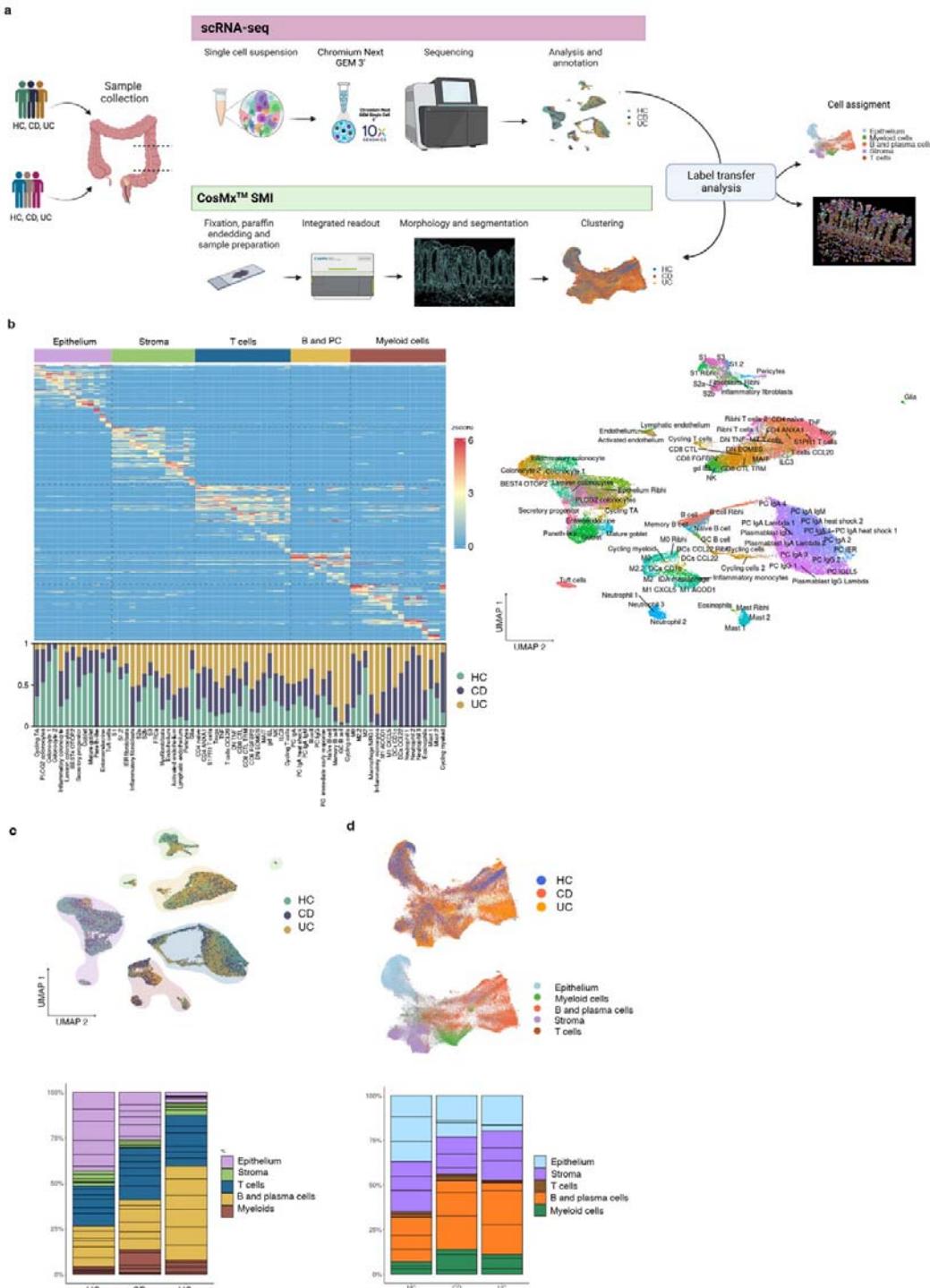
91 Single-cell RNA sequencing (scRNA-seq) of the intestinal mucosa recently provided a
92 description of close to sixty different cell types present in UC³⁻⁶ and ileal CD⁷,
93 emphasizing the magnitude of changes across cell populations in the context of
94 intestinal inflammation. We applied scRNA-seq to colonic biopsies of healthy and
95 active UC and colonic CD patients with a focus on understanding the heterogeneity
96 among patients within each cellular compartment. The myeloid compartment, including
97 macrophages and neutrophils, showed the highest diversity in composition within
98 patient groups, suggesting these cell types may contribute to differences among patients
99 in disease phenotype and progression over time.

100 Macrophages are resident immune cells that act as gatekeepers in tissues and are well-
101 known for their ability to sense and adapt to environmental changes. Two states of
102 activation were initially described in mice, termed classical or M1 and alternative or M2
103 macrophages⁸ that express different markers⁹⁻¹¹. Importantly, signature genes for both
104 subsets have been found in the human colon, including IBD samples¹², which showed a
105 marked increase in M1 populations in those patients. Macrophage polarization has been
106 more recently revisited showing a broader functional repertoire of this cell population,

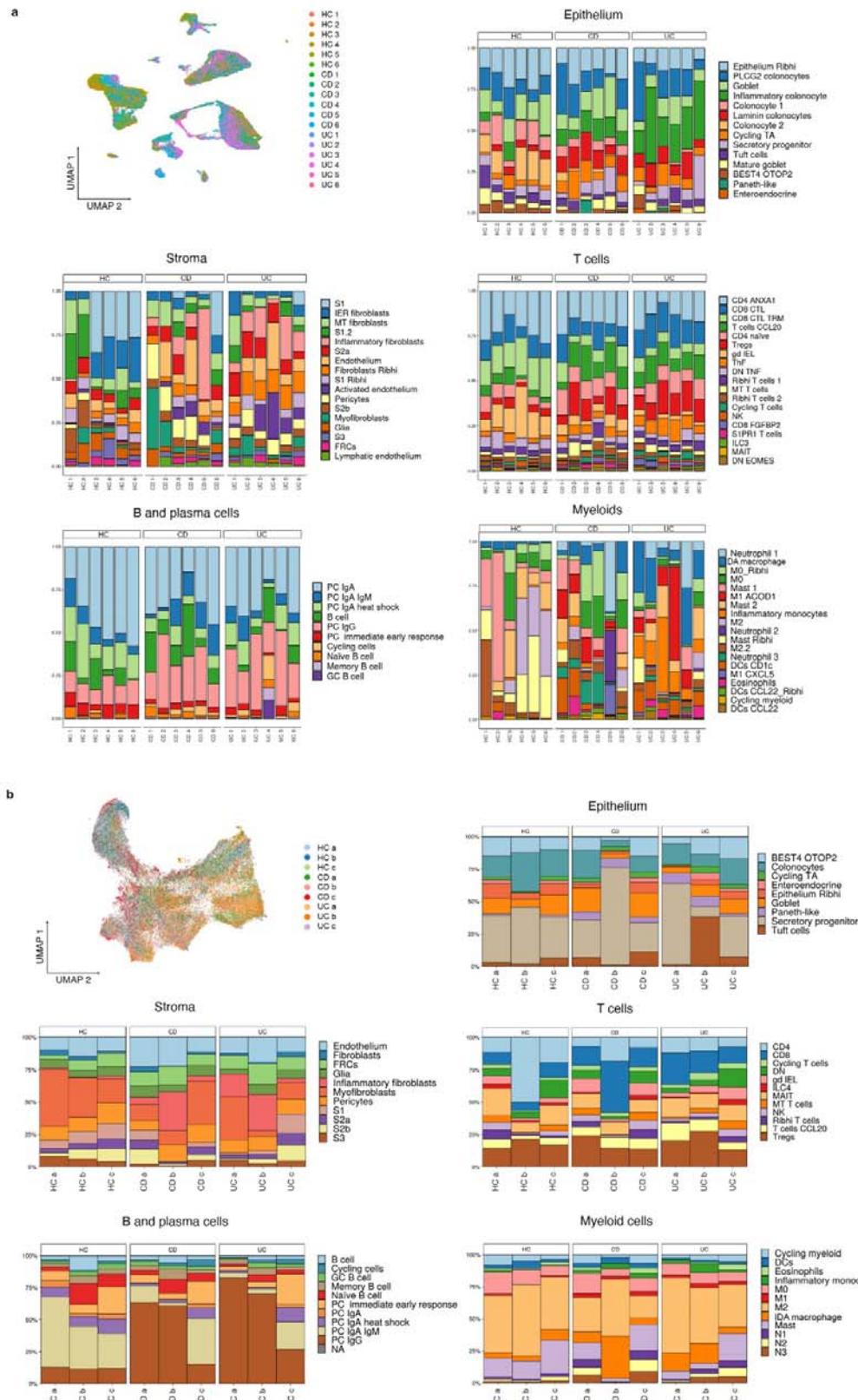
107 and important differences among intestinal macrophages phenotype and function have
108 been linked to their spatial distribution within intestinal layers¹⁴.

109 By combining scRNA-seq with the recently developed highly multiplexed CosMx
110 Spatially Molecular Imaging (SMI) (NanoString Technologies) analysis¹³, we
111 discovered the signatures and tissue distribution of previously uncharacterized intestinal
112 macrophage populations, including two subsets of resident and novel inflammation-
113 related macrophages. This approach helped us understand the potential *in vivo* roles and
114 likely interacting partners, including epithelial cells and fibroblasts, of the different
115 macrophage subsets. Overall, our study emphasizes the diversity and plasticity of the
116 intestinal myeloid compartment, specifically of the macrophage and neutrophil
117 populations, and reveals novel mechanisms potentially contributing to heterogeneity in
118 IBD.

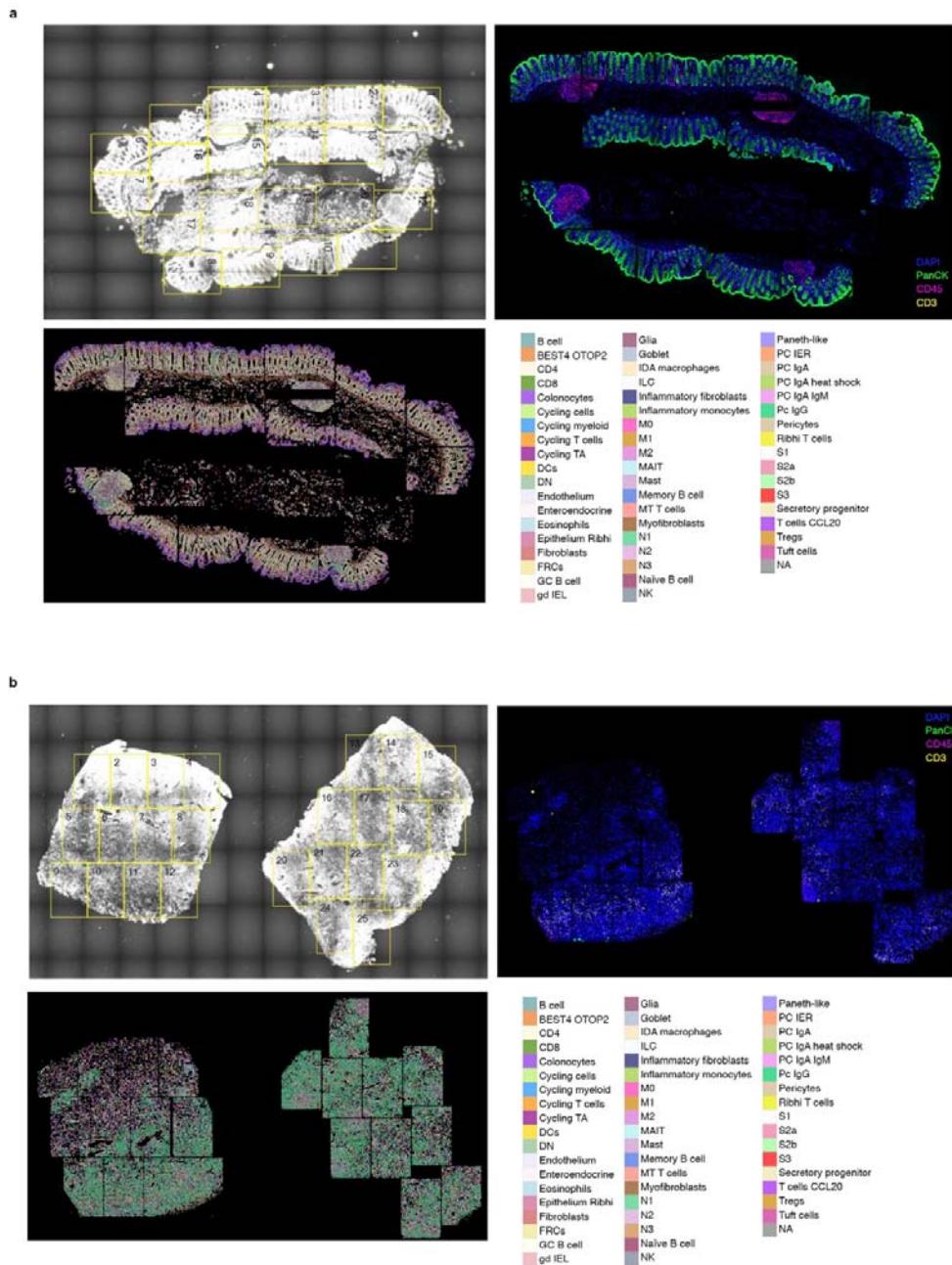
119


120 **RESULTS**

121 **Integration of single-cell RNA sequencing and spatial molecular imaging analysis** 122 **provides a map of healthy and inflamed colon**

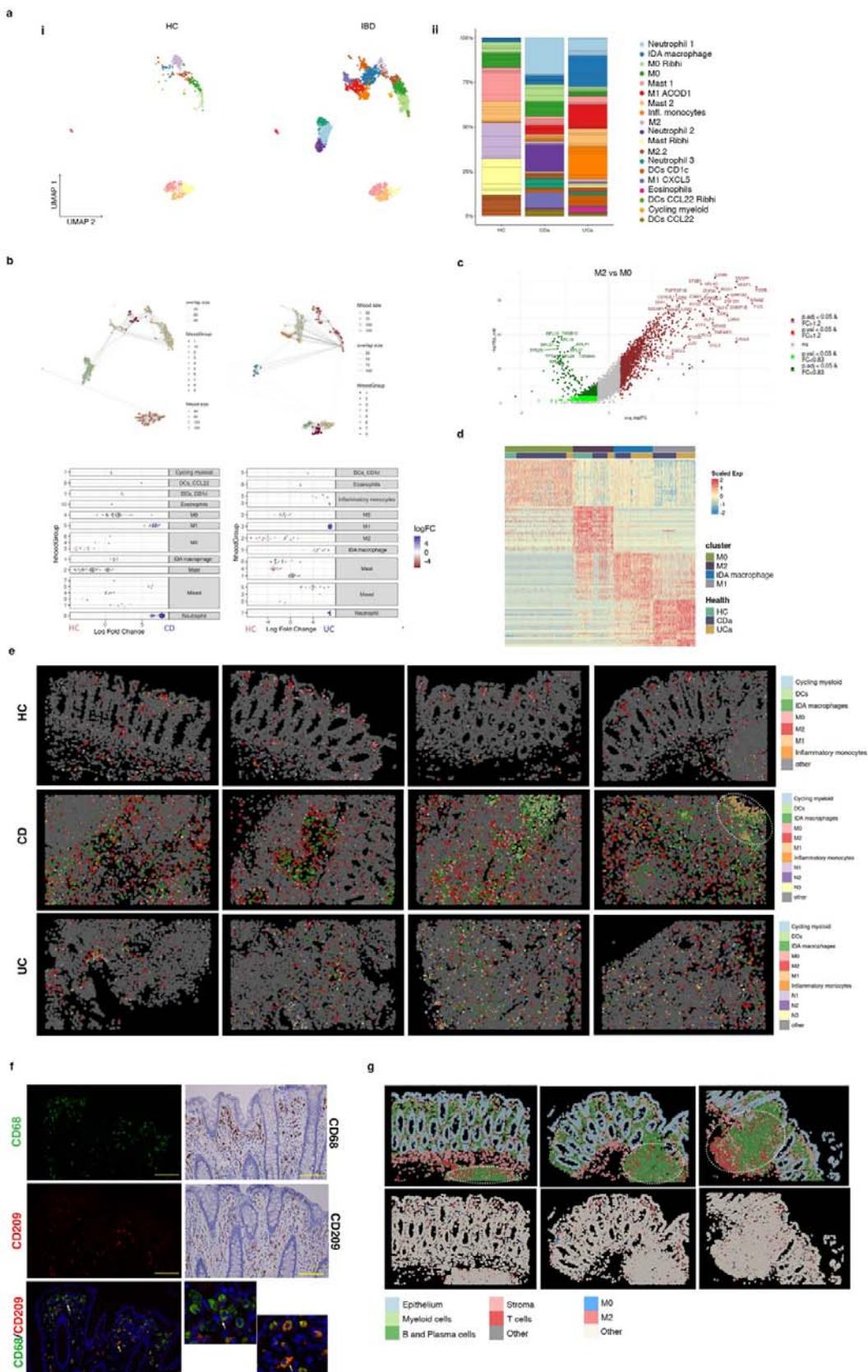

123 ScRNA-seq analysis of colonic biopsies from HC (n=6), CD (n=6) and UC (n=6) active
124 patients (Fig. 1a; Supplementary Table 1) totaling 46,700 cells identified 79 different
125 clusters (Fig. 1b), whose proportions varied significantly between disease groups (Fig.
126 1b and 1c; Extended data Fig 1a). Each compartment (epithelium, stroma, B and plasma
127 cells, T cells and myeloid cells) was isolated *in silico* to achieve higher resolution on
128 cell populations. Analysis of differentially expressed genes (DEGs) detected cluster-
129 specific marker genes with adjusted p-values (see online Methods). DEG for each
130 cluster (Supplementary Table 2) were used to annotate subpopulations. Subsets, such as
131 inflammatory fibroblasts, neutrophils, or inflammatory M1 macrophages, were found in
132 some CD or UC patients, but were absent in HC (Extended data Fig 1a).

133 An additional cohort of formalin-fixed paraffin-embedded (FFPE) colonic samples (Fig.
134 1a; Supplementary Table 1, cohort 2) was processed using CosMx Spatial Molecular
135 Imaging (SMI; NanoString Technologies)¹⁵. Scanner for Fields of View (FoVs) and
136 immunofluorescence staining of pan-cell markers (CD45, PanCK, CD3) were
137 performed on all tissues (Extended data Fig 2a and 2b). Selected FoVs were processed
138 by CosMx SMI using a multiplex panel of 1,000 genes. Annotation of cells was
139 performed by label transfer based on scRNA-seq clusters, using the 100 top-ranked
140 markers and count matrix (see online Methods), which assigned a unique label to each
141 cell (Fig. 1d; Extended data Fig 1b and Extended data Fig 2).

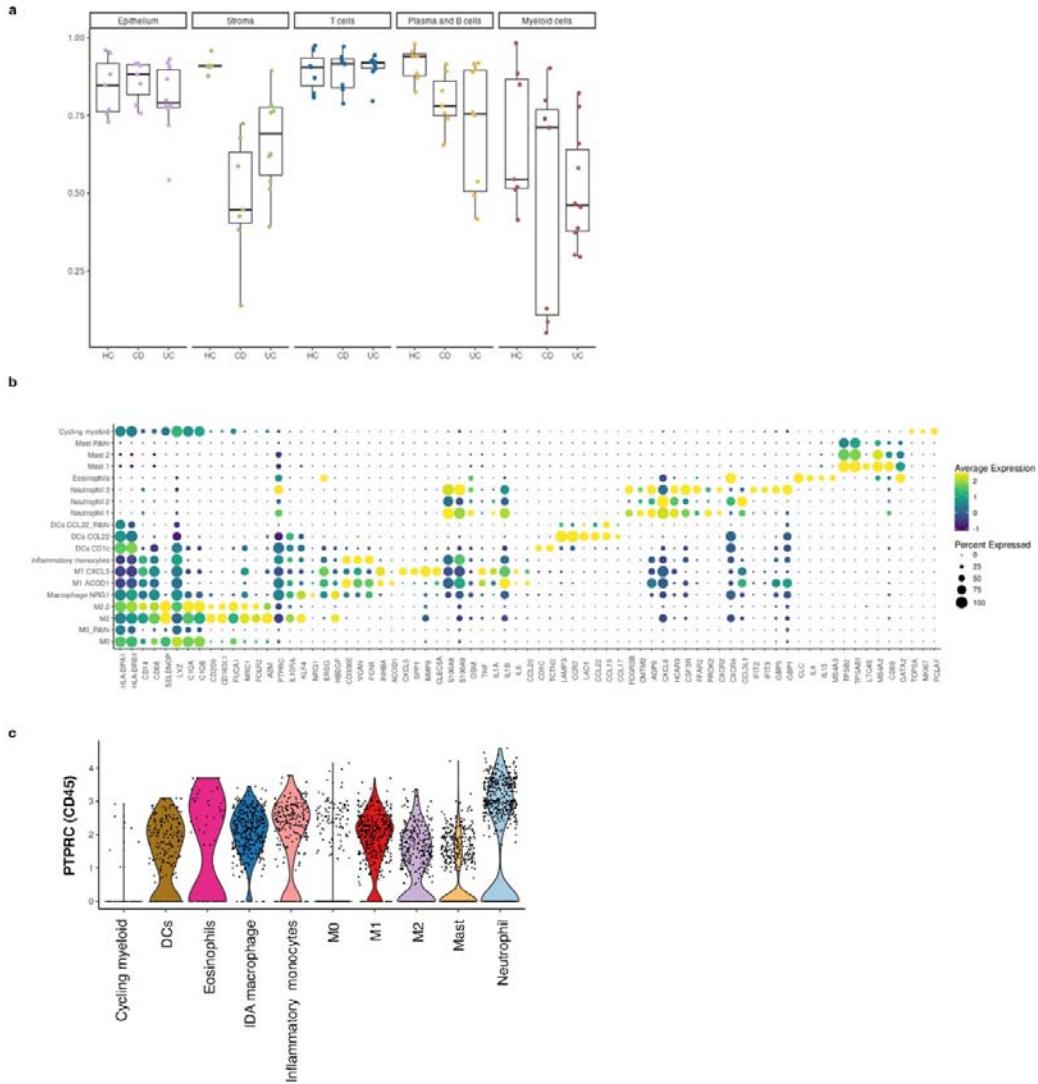

142 Thus, by integrating scRNA-seq and CosMx SMI from human colonic samples, we
 143 have generated the first spatially resolved map of healthy and diseased colon at single-
 144 cell spatial resolution.

146 **Figure 1. Integration of single cell RNA sequencing (scRNA-seq) and Spatial Molecular Imaging**
147 **(SMI) provides a map of healthy and inflammatory bowel disease (IBD) colonic biopsies. a,**
148 Overview of the study design for scRNA-seq, CosMxTM SMI and label transfer from scRNA-seq
149 annotations to the SMI dataset. Two cohorts of Colonic samples including active Crohn's disease (CD),
150 active ulcerative colitis (UC) and healthy controls (HC) were processed by scRNA-seq (n=18 samples)
151 and CosMxTM SMI (n=9 samples). See Supplementary Table 1 for details. **b**, Heatmap of top marker
152 genes discriminating the different cell subsets (epithelium, stroma, T cells, B and Plasma cells, and
153 myeloid cells) and, below, barplots representing the proportions of each cell type resolved by scRNA-seq
154 for HC, CD and UC. On the right, UMAP showing annotation of all cell types identified by scRNA-seq.
155 **c**, UMAP and barplots of scRNA-seq data. Cells in UMAP are colored by group origin (HC, CD and UC)
156 and clusters are shaded by cell subset (epithelium, stroma, T cells, B and Plasma cells, and myeloid cells).
157 Barplots show the proportions of each cell subset in HC, CD and UC. **d**, UMAP and barplots of CosMxTM
158 SMI data. Top UMAP shows cells colored by group (HC, CD and UC) while bottom UMAP is colored
159 by cell subset (epithelium, stroma, T cells, B and Plasma cells and myeloid cells). Barplots show the
160 proportions of each cell subset in HC, CD and UC.

162 **Extended Data Figure 1. Single-cell RNA-seq (scRNA-seq) and CosMxTM Spatial Molecular**
163 **Imaging (SMI) cell clusters.** **a**, UMAP representation of a sample (n=18) distribution across subsets
164 analyzed by scRNA-seq. Barplots describe the proportions of each cell type within each cell subset
165 (epithelium, stroma, B cells and plasma cells, T cells and myeloid cells) in healthy controls (HC, n=6),
166 active CD (n=6) and active UC (n=6) patients using scRNA-seq data. **b**, UMAP representation of samples
167 analyzed by CosMxTM SMI (n=9). Cells in CosMxTM SMI were annotated by label-transfer of scRNA-seq
168 differentially expressed genes per cell cluster. Barplots describe the proportions of each cell type within
169 each cell subset (epithelium, stroma, B cells and plasma cells, T cells and myeloid cells) in HC (n=3),
170 active CD (n=3) and UC (n=3) patients using CosMxTM SMI data.


176 **Transcriptional analysis at single-cell and spatial resolution reveals novel**
177 **populations of resident and inflammatory macrophages in the colonic mucosa**

178 Remarkably, when comparing cluster proportions within patient groups, the largest
179 discrepancies between individuals were found within the myeloid, followed by the
180 stromal, compartment (Extended data Fig. 1a and 3a), suggesting that the composition
181 of these cell groups may be heavily influenced by patient-dependent factors, and could
182 thus contribute to patient-to-patient heterogeneity.


183 Pooled HC, CD and UC scRNA-seq data identified different myeloid clusters including
184 several macrophage subtypes, dendritic cells, inflammatory monocytes, mast cells,
185 neutrophils, and eosinophils, whose proportions changed in both UC and CD samples
186 compared to controls (Fig. 2a and Extended data Fig. 3b; Supplementary Table 2). To
187 perform a differential abundance test without relying on cell clustering, we applied Milo
188 a tool which relies on k-nearest neighbor graphs¹⁶, and we confirmed the differential
189 abundance between groups in the myeloid compartment (Fig. 2b).

190 In healthy colon, resident macrophages (expressing *C1QA*, *HLA-DRB1* and *SELENOP*,
191 among others) were found in different transcriptional states (Extended data Fig. 3b).
192 These included macrophages expressing well-described M2-specific markers (i.e.,
193 *CD163L1*, *CD209*, *FOLR2*), annotated as M2 and M2.2, and hereafter referred to as
194 M2. We annotated the other two clusters present in HC as M0 (M0 and M0_Rib^{hi}), as
195 they lacked M2 markers but highly expressed all other macrophage-specific genes (Fig.
196 2c and Supplementary Table 3), while showing low expression of *PTPRC* (CD45)
197 (Extended data Fig. 3c). Besides M0 and M2, samples from UC and CD contained
198 inflammatory monocytes and activated macrophage clusters that we annotated as M1
199 *ACOD1*, M1 *CXCL5* (pooled as M1) and Inflammation-Dependent Alternative (IDA)
200 macrophages (Fig. 2a and 2d).

201 All myeloid subsets were found in tissue sections analyzed by CosMx SMI, showing
202 marked differences in abundance and spatial distribution depending on the patient
203 and/or disease type (Fig. 2e).

205 **Figure 2. Analysis of myeloid cell subsets in healthy and inflamed colonic mucosa.** **a**, UMAP
206 representation of scRNA-seq data showing the different myeloid clusters (macrophages, mast cells,
207 dendritic cells, neutrophils and eosinophils) present in healthy controls (HC, n=6) and IBD colonic
208 samples (CD n= 6 and UC n=6) (i); myeloid cell subset proportions across healthy and IBD samples, x-
209 axis represents patient groups and y-axis the percentages of each myeloid subset (ii). **b**, Cell type
210 enrichment analysis using the differential abundance test Milo. Top plots represent independent clustering
211 performed by Milo, in which nhood groups are shown for HC and CD cells (left) and for HC and UC cells
212 (right). Lower panels show the cell subsets enriched in HC vs CD (left) or in HC vs UC (right).
213 Annotation of each nhood group based on our analysis (panel a) is shown on the right for each
214 comparison. The logarithm of the fold-change comparing CD or UC to HC is represented on the
215 horizontal axis. The nhood group number is represented in the vertical axis for each analysis. **c**, Volcano
216 plot of differentially expressed genes (DEGs) in M2 compared to M0 macrophages (Supplementary Table
217 3 contains the complete list of genes). Genes upregulated in M2 macrophages are shown in dark (UUP, p
218 value<0.05) or light red (UP, nominal p value<0.05). Genes downregulated in M2 are shown in dark
219 (DDW, FDR<0.05) or light green (DW, p value<0.05). **d**, Heat map showing the average expression of
220 DEGs for M0, M2, M1 and IDA macrophages in HC, CD and UC. **e**, CosMxTM SMI images showing
221 spatial distribution of the different myeloid cell populations in representative Fields of View (FoVs) of
222 colonic tissue of two HC, one inflamed CD and two inflamed UC patients. White dotted circle indicates
223 ulcerated area with abundant M1 macrophages. **f**, On the left and right insets, double immunofluorescence
224 showing M2 (CD209⁺ in red and CD68⁺ in green) and M0 (CD209⁺ and CD68⁺) subsets in a
225 representative healthy colonic tissue. White and yellow arrows indicate M0 and M2 macrophages,
226 respectively. Right two top panels: immunohistochemistry showing the distribution of CD68 and CD209
227 markers in healthy colonic tissue (Scale bar 20 μ m). **g**, CosMxTM SMI images of a representative healthy
228 colonic mucosa with lymphoid follicles (highlighted by dotted circles). Upper panels show the cellular
229 localization of the five cell subsets (epithelial, stroma, T cells B and plasma cells, and myeloid cells) and
230 lower panels M0 and M2 resident macrophages location.

231

232 **Extended Figure 3. Myeloid characterization.** **a**, Morisita-Index analysis of dispersion between
233 samples within each group (HC, CD, UC) for each cell subset (epithelium, stroma, B cells and plasma
234 cells, T cells and myeloid cells) based on scRNA-seq data. **b**, Myeloid cell subsets and their top gene
235 markers. Dot plot shows the fraction of expressing cells (size of the dot) and mean expression levels (dot
236 color). **c**, Violin plot visualization of *PTPRC* (CD45) expression in myeloid populations by scRNA-seq.

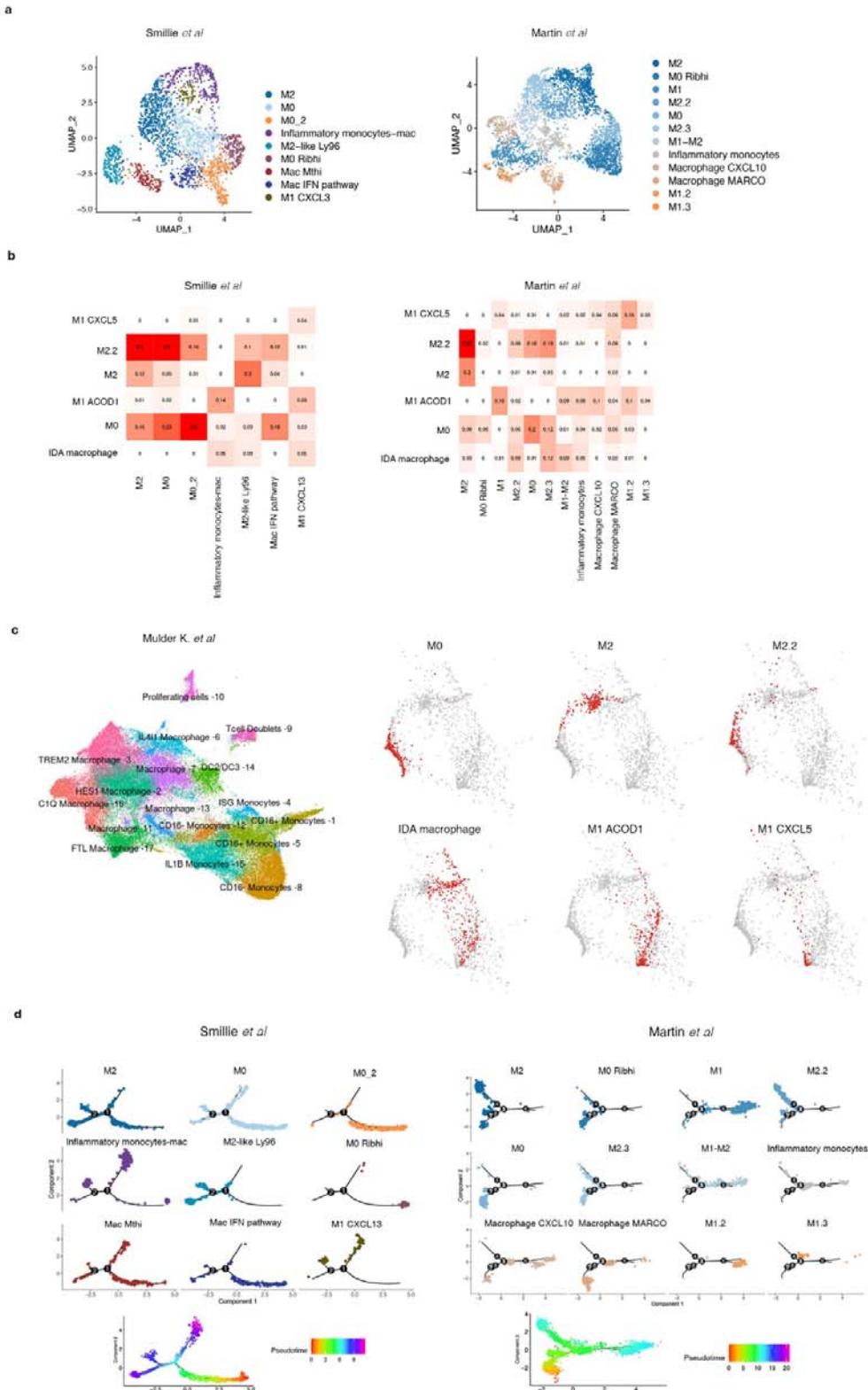
237

238 **M0 and M2 represent two independent states**

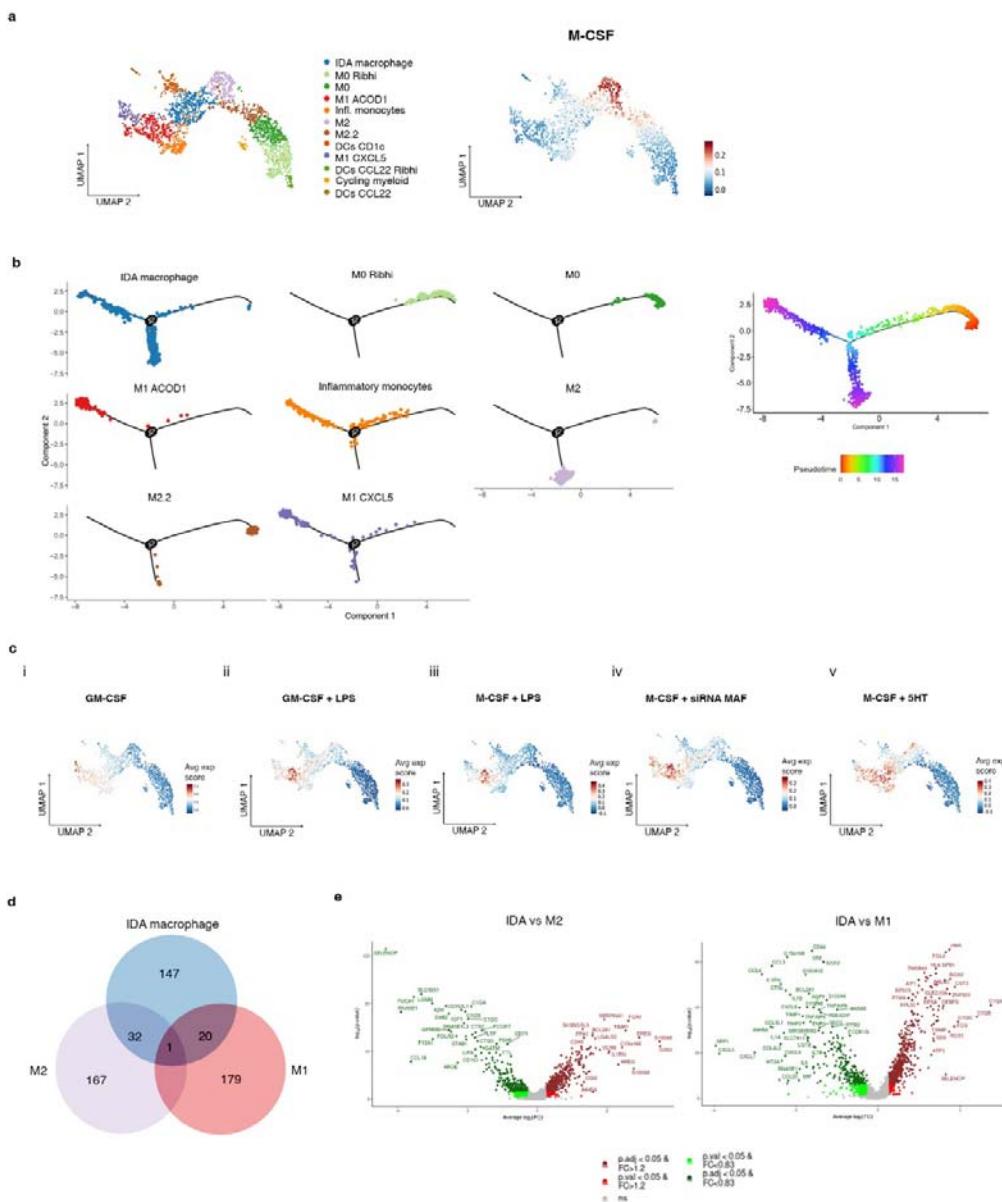
239 Until now, M0 macrophages have not been formally described in the human intestine.

240 Thus, we first compared our monocyte/macrophage signatures to publicly available data
241 from HC, UC ³ and CD terminal ileum⁷ (Extended data Fig. 4a) and found, in both
242 cohorts, populations of macrophages that resembled the M0 and M2 subsets (Jaccard
243 indexes=0.3) (Extended data Fig. 4b).

244 In agreement with the scRNA-seq data, we could visualize both CD209⁺CD68⁺ (M2)
245 and CD209⁻ CD68⁺ (M0) cells using immunostaining in healthy colonic lamina propria,
246 mostly localizing below the apical epithelium (Fig. 2f) and also present throughout the
247 lamina propria. Likewise, M0 and M2 cells were identified by CosMx SMI analysis
248 (Fig. 2), confirming the dual identity of these resident macrophages.


249 To understand their phylogenetic origin and their relation to other previously described
250 macrophage subsets, we mapped our dataset to a recently published human monocyte-
251 macrophage database containing data from 41 studies on several organs and diseases
252 (MoMac-VERSE)¹⁷ (Extended data Fig. 4c). M0, M2.2 and M2 mapped to independent
253 macrophage clusters within the MoMac-Verse dataset, supporting the hypothesis that
254 they do represent two unique states.

255 Indeed, comparison of M0 and M2 macrophages in our dataset to *in vitro* monocyte-
256 derived macrophages from published datasets¹⁸ showed high similarity between
257 intestinal M2 and *in vitro* M-CSF monocyte-derived macrophages (Extended Fig. 5a),
258 while no or little overlapping with M0 macrophages was observed under these same
259 conditions.


260 Interestingly, trajectory analysis of our data (Extended data Fig. 5b) and the two public
261 datasets annotated above (Extended data Fig. 4d) suggests separate pseudo-time states

262 for M0 and M2 clusters. In our data, M2.2 clusters, which express M2 markers, appear
263 close to M0, suggesting they may represent a transitional state between the two resident
264 compartments.

265 Overall, we conclude that in the healthy colon, resident macrophages are found in at
266 least two states. M2 macrophages could potentially originate from circulating
267 monocytes exposed to M-CSF in tissues, while the origin of M0 macrophages remains
268 unknown.

270 **Extended Data Figure 4. Intestinal Macrophages across studies.** **a**, UMAP representation of Smillie *et*
271 *al-* and Martin *et al-* macrophage subsets isolated *in silico*. **b**, Jaccard similarity index between scRNA-
272 seq data of Smillie *et al-* and Martin *et al-* macrophages and our scRNA-seq macrophage populations. **c**,
273 Projection of our intestinal macrophage clusters found in our study into the MoMac-VERSE UMAP data
274 (Mulder *et al.* 2021). **d**, Pseudo-time trajectory analysis of Smillie *et al-* and Martin *et al-* *in silico* isolated
275 colonic and ileal macrophages, respectively.

276 **Extended data Figure 5. Inflammation-dependent alternative (IDA) macrophages show a unique
277 signature compared to M2 and M1 macrophages.** **a**, UMAP showing monocyte, macrophage and
278 signature compared to M2 and M1 macrophages.

279 dendritic cell clusters identified using scRNA-seq analysis of HC, UC and CD colonic biopsies (left
280 panel). Representation of overlapping signatures (average expression score) of upregulated genes in *in*
281 *vitro* M-CSF derived macrophages (Cuevas VD *et al.*, 2022) on our macrophage cell UMAP (right panel).
282 **b**, Pseudo-time trajectory analysis of monocytes and macrophage populations in our scRNA-seq data. **c**,
283 Representation of overlapping signatures (average expression score) of *in vitro* **i**) GM-CSF-derived
284 macrophages (Cuevas VD *et al.*, 2022), **ii**) GM-CSF-derived macrophages stimulated with LPS (Cuevas
285 VD *et al.*, 2022), **iii**) M-CSF-derived macrophages stimulated with LPS (Cuevas VD *et al.*, 2022), **iv**)
286 upregulated genes of M-CSF-derived macrophages inhibited with MAF siRNA (Vega MA *et al.*, 2020)
287 and **v**) upregulated genes of M-CSF-derived macrophages stimulated with 5-HT (serotonin) (Nieto C *et*
288 *al.*, 2020; Domínguez-Soto Á *et al.*, 2017) in our macrophage cell UMAP. **d**, Venn diagram showing the
289 overlap between the top 200 markers of each macrophage population (IDA, M2 (M2 & M2.2) and M1
290 (M1 ACOD1 & M1 CXCL5) macrophages in the scRNA-seq cohort. **e**, Volcano plot showing
291 differentially expressed genes by scRNA-seq between IDA and M2 or M1 macrophages. Genes
292 upregulated in IDA macrophages are shown in dark (UUP, p value<0.05) or light red (UP, nominal p
293 value<0.05). Genes downregulated in IDA macrophages are shown in dark (DWW, FDR<0.05) or light
294 green (DW, p value<0.05). For each gene, the fold-change (FC) and -log10 (p value) are shown
295 (Supplementary Table 3 contains the complete lists of genes).

296

297 **Inflammation-associated macrophages, including M1 and novel Inflammation-
298 Dependent Alternative macrophages, show highly heterogeneous signatures among
299 patients**

300 Compared to HC, IBD patients showed a marked increase in the total number and
301 transcriptional heterogeneity of the macrophage population (Fig. 2a and Extended Data
302 Fig. 1). Apart from of M0 and M2, we found inflammatory/activated macrophages in at
303 least three different states: two transcriptionally different M1 populations (M1 ACOD1
304 and M1 CXCL5) and a newly identified IDA macrophage cluster, in addition to a
305 population of inflammatory monocytes. Comparison of these inflammation-associated
306 cell types to the MoMac VERSE data set¹⁷ is also shown in Extended data Fig. 4d.

307 In contrast to M0 and M2 macrophages, the similarities between inflammatory
308 macrophages in our cohort and those found in other intestinal datasets^{3,7} were weaker,
309 suggesting that activated macrophages may be found in highly patient/context-
310 dependent states (Jaccard Index <=0.14 Smillie et al, and Jaccard Index <=0.16 Martin
311 et al.; Extended data Fig. 4c).

312 As with M2 and M-CSF-derived macrophages, intestinal M1 CXCL5 cells showed high
313 similarity to the *in vitro* GM-CSF-derived macrophages, while the signature of M1
314 ACOD1 was shared by both M-CSF and GM-CSF-derived macrophages stimulated
315 with LPS¹⁸ (Extended data Fig. 5c). Remarkably, IDA macrophages showed the most
316 transcriptional similarity to M-CSF-derived macrophages treated with serotonin (5-HT)
317¹⁹(Extended data Fig. 5c).

318 Based on trajectory analysis, M1 subsets populated a different branch to those of
319 M2/M0 subsets in all 3 datasets (Extended data Fig. 4d and 5b), with inflammatory
320 monocytes exclusively transitioning towards the fully activated M1, state. IDA

321 macrophages instead appear to contain a heterogeneous population divided between the
322 M1 and the M2 branches, suggesting they may represent a transitional state between
323 those subsets. Analysis of overlapping markers between M1, M2 and IDA macrophages
324 reveals that the latter share about 16% and 10% of its top 200 marker genes with M2
325 and M1, respectively (Extended Data Fig. 5d).

326 Overall, we show that in the context of inflammation, macrophages can adopt diverse
327 transcriptional signatures, with high heterogeneity between patients. Our data also
328 suggests that intestinal macrophages could originate from monocytes activated under
329 different stimuli including GM-CSF, GM-CSF+LPS, M-CSF+LPS or M-CSF+5-HT,
330 highlighting the importance of the microenvironment in modulating their phenotypes.

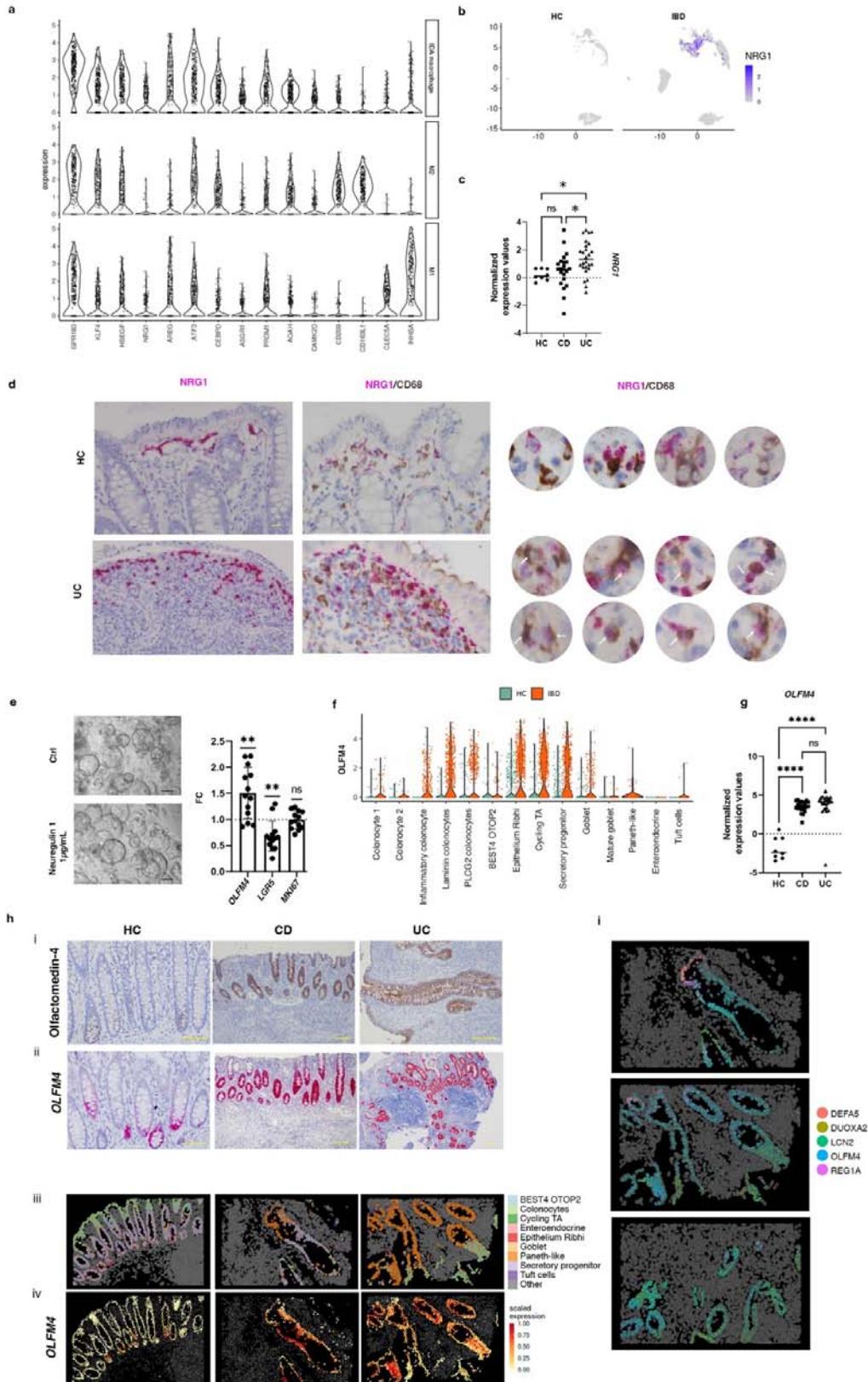
331 **Inflammation-dependent alternative macrophages express neuregulin 1**

332 Markers of IDA macrophages include epidermal growth factor receptor (*EGFR*) family
333 ligands like *AREG* and *HBEGF* and specifically *NRG1*, while showing lower
334 expression of M1 and M2 canonical markers (Fig. 3a and Supplementary Table 2).

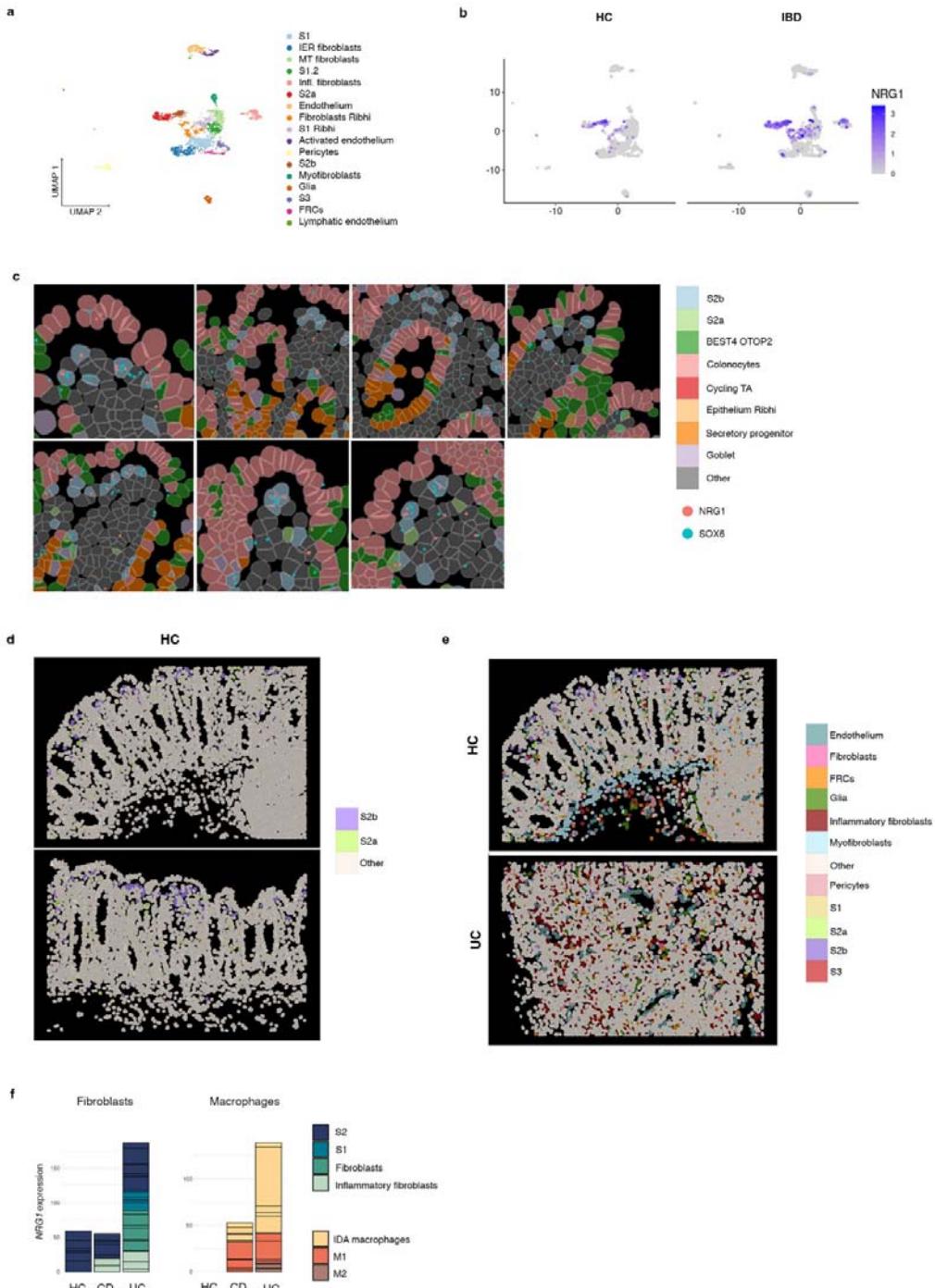
335 In agreement with scRNA-seq data (Fig. 3b), *NRG1* was significantly increased in bulk
336 RNA-seq analysis of UC colonic mucosa compared to HC and CD (Fig. 3c), suggesting
337 the potential involvement of neuregulin 1 in these patients. *In situ* hybridization of
338 *NRG1* mRNA confirmed its expression on abundant CD68⁺ macrophages in IBD (Fig.
339 3d). In contrast, *NRG1* expression in HC was more specific to a population underlying
340 the surface epithelium, with no or little colocalization within CD68⁺ macrophages (Fig.
341 3d). Indeed, our scRNA-seq and CosMx SMI analysis showed that in HC mucosa, S2b
342 (*SOX6*⁺) (localized at the most apical area), but not S2a pericycral fibroblasts
343 (Extended data Fig. 6d and 6e), also express *NRG1* (Extended Data Fig. 6a, 6b and 6c).

344 In addition, fibroblast-expression of *NRG1* was also markedly increased in UC
345 (Extended data Fig. 6b and 6f).

346 Neuregulin 1 binds to ErbB receptors²⁰ and can promote epithelial differentiation to
347 secretory lineages in human²¹ and stem cell proliferation and regeneration in mice²².

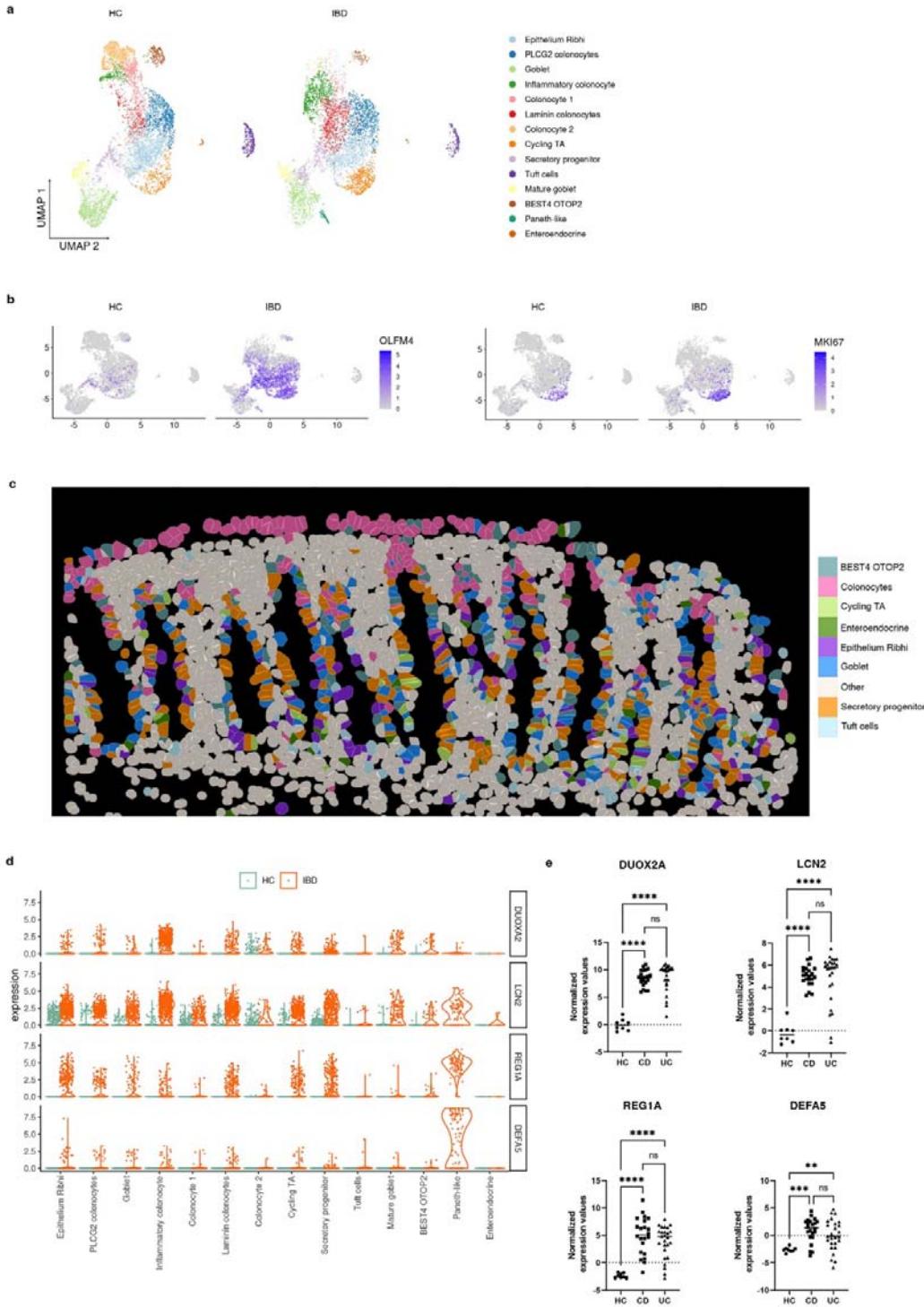

348 Using intestinal epithelial stem cell-enriched organoids, we found that neuregulin 1
349 significantly decreased expression of the stem cell marker *LRG5* and upregulated
350 *OLFM4*, despite inducing no changes in the proliferation marker *MKI67*(Fig. 3e).

351 Expression of *OLFM4* is mostly restricted to a progenitor cell type in healthy tissues
352 (Epithelium Ribhi, Secretory Progenitors) (Fig. 3f; Extended Data Fig. 7a, 7b and 7c),


353 while it is dramatically increased in UC and CD, as shown by scRNASeq (Fig. 3f), bulk
354 RNA analysis (Fig. 3g), immunostaining, *in situ* hybridization, and CosMxTM SMI of
355 colonic tissue (Fig. 3h), in agreement with previous data²³. Epithelial cell populations
356 by CosMx SMI in a HC Field of View (FoV) are shown in Extended Data Fig.7c

357 Besides *OLFM4*, through SMI we observed other changes that occur in the intestinal
358 epithelium of IBD patients, including the upregulation of anti-microbial mechanisms
359 such as the expression of defensins (*DEFA5*), lipocalins (*LCN2*) and enzymes involved
360 in producing reactive oxygen species (*DUOXA2*) (Fig. 3i; Extended Data Fig. 7d and
361 7e).

362 In summary, we show that IDA macrophages and S2b fibroblasts overexpress *NRG1* in
363 IBD, particularly UC patients. Neuregulin 1, among other roles, promotes the expansion
364 of the transit-amplifying epithelial compartment, which could play a role in the
365 regeneration of the epithelium.


367 **Figure 3. Neuregulin 1 expression and function in colonic mucosa.** **a**, Violin plot showing the
368 expression of marker genes of IDA, M2 and M1 macrophages from pooled HC, CD and UC scRNA-seq
369 data. **b**, UMAP showing *NRG1* expression in the myeloid compartment of HC and IBD (CD and UC)
370 data. **c**, *NRG1* expression from bulk biopsy RNA-seq data in HC (n=8), and active CD (n=22) and UC
371 (n=26) patients. Ordinary one-way ANOVA corrected (p<0,05(*), ns>0,01). **d**, Double *In situ*
372 hybridization of *NRG1* and immunohistochemistry for CD68 in HC and active UC tissue. CD68⁺NRG1⁻,
373 CD68⁺ NRG1⁺ and CD68⁻NRG1⁺ cells are shown. White arrows show NRG1⁺ CD68⁺ cells in UC
374 patients (Scale bar= 10 μ m) **e**, Representative pictures of human-derived epithelial organoids under
375 vehicle (Ctrl) or Neuregulin 1 (1 μ g/mL) for 48h. Scale bars= 100 μ m. mRNA expression of *OLFM4*,
376 *LGR5* and *MKI67* was determined by RT-qPCR (n=13). Data is shown as fold change (FC) relative to the
377 vehicle treated condition. Bars represent mean \pm standard deviation (SD). p<0,05(*), p<0,01 (**),
378 p<0,001(***), ns: not significant. **f**, Violin plot showing *OLFM4* expression (y-axis) in all epithelial cell
379 subsets (x-axis) in HC (green) and IBD (orange) samples by scRNA-seq data. **g**, *OLFM4* expression by
380 bulk RNA-seq of biopsy samples from HC (n=8), active CD (n=22) and active UC (n=26) patients.
381 p<0,05(*), p<0,01 (**), p<0,001(***), p<0,0001(****), ns: not significant. **h**, (i) Olfactomedin 4
382 immunostaining and (ii) *OLFM4* *in situ* hybridization in HC, active CD and active UC colon. Scale bars=
383 100 μ m. (iii) CosMxTM SMI visualization and localization of the different epithelial cell subsets described
384 by scRNA-seq, from left to right in a HC and two UC representative Fields of View (FoVs) and (iv) mean
385 expression of *OLFM4* in each of those cells analyzed by CosMxTM SMI **i**, Expression of *DEFA5*, *LCN2*,
386 *DUOX2A*, *REGIA*, and *OLFM4* within epithelium of representative FoVs of a UC patient analyzed by
387 CosMxTM SMI. Dots represents mRNA molecules.

388

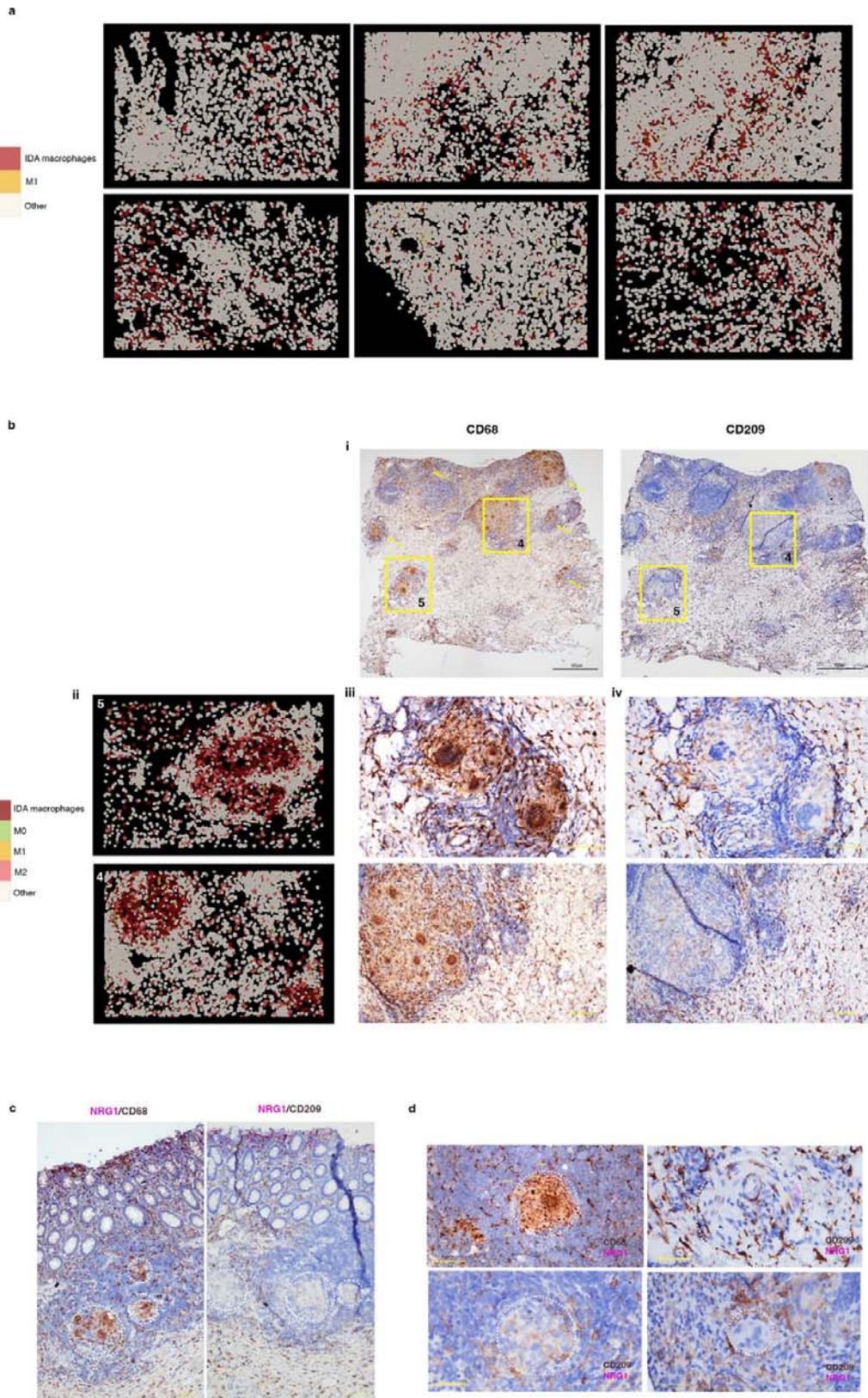
389 **Extended Figure 6. Stromal cell populations analyzed by single-cell RNA-seq (scRNA-seq) and**
 390 **Spatial Molecular Imaging (SMI).** **a**, UMAP of stromal clusters observed by scRNA-seq cohort
 391 samples. **b**, *NRG1* expression in healthy and IBD stromal subsets in scRNA-seq data. **c**, CosMx™ SMI
 392 spatial analysis of S2a and S2b pericytial fibroblasts showing expression of *NRG1* and *SOX6* (S2

393 marker) in representative images of a healthy colon. S2b localize at the most apical area. **d**, S2a and S2b
394 differential spatial distribution showed by CosMxTM SMI in 2 representative FoVs from healthy colon. **e**,
395 Spatial localization of stromal cells observed by CosMxTM SMI in representative healthy and inflamed
396 UC colonic mucosa. **f**, *NRG1* expression in the fibroblast and macrophage compartments in HC and IBD
397 colonic tissues according to scRNA-seq data.

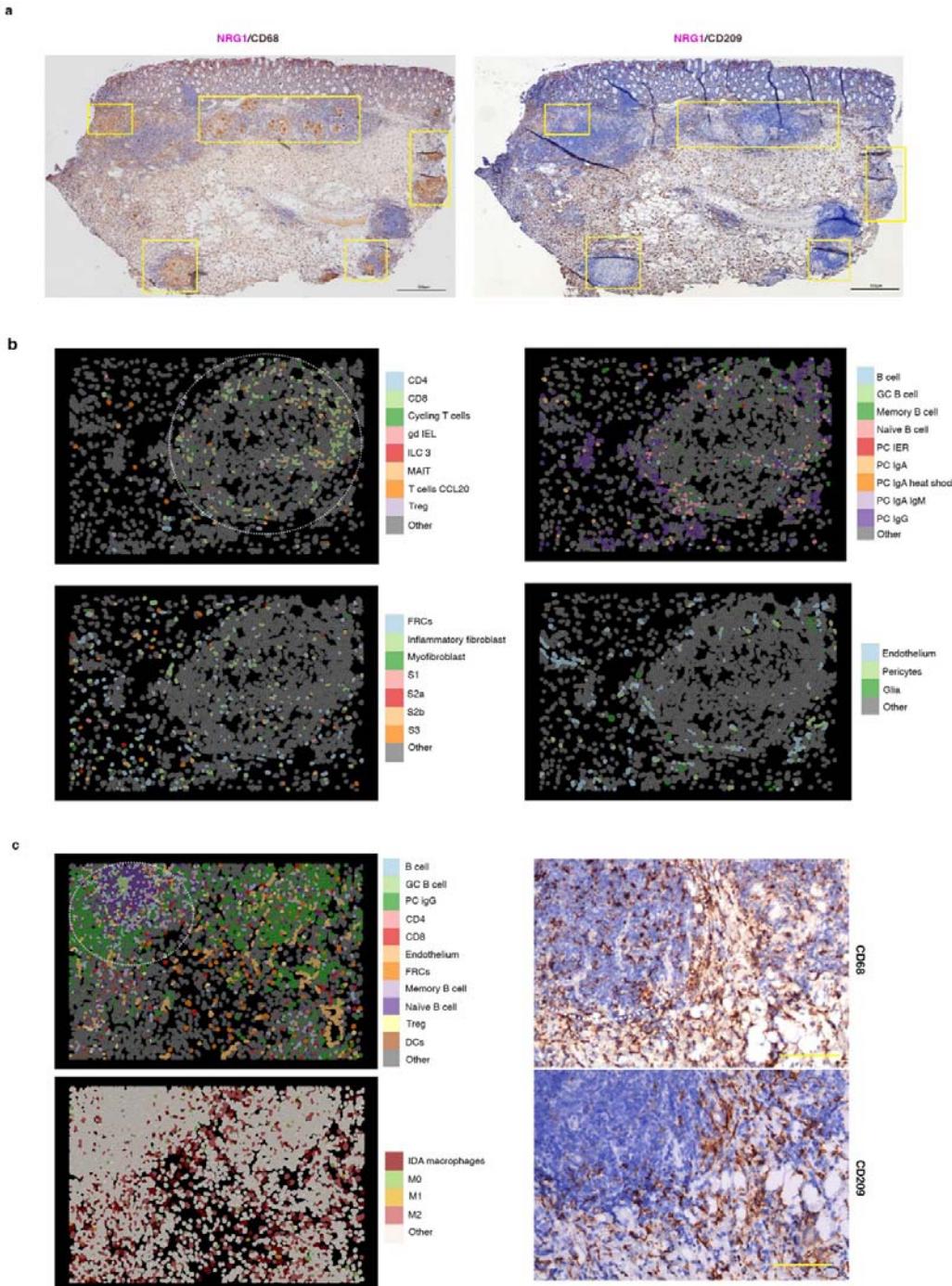
398

399 **Extended Data Figure 7. Epithelial cell populations analyzed by single-cell RNA-seq (scRNA-seq)**
400 **and Spatial Molecular Imaging (SMI).** **a**, UMAP of colonic epithelial clusters observed by scRNA-seq
401 in healthy and IBD mucosa (cohort 1). **b**, UMAP showing the expression of *OLFM4* and *MKI67* in the

402 epithelial compartment from healthy control (HC) and IBD tissues (UC and CD) by scRNA-seq. **c**,
403 CosMxTM SMI image of a representative Field of View (FoV) of an HC showing epithelial subsets
404 annotated based on scRNA-seq data. **d**, Violin plots showing the expression (y-axis) of inflammatory
405 markers in epithelial clusters (x-axis) from HC and IBD colons. **e**, Expression of specific inflammatory
406 epithelial cell markers in HC (n=8), active CD (n=22) and active UC (n=26) patients using bulk biopsy
407 RNA-seq data. p<0,05(*), p<0,01 (**), p<0,001(***), p<0,0001(****), ns: not significant.


408

409 **CosMx Spatial Molecular Imaging analysis confirms the expansion of**
410 **Inflammation-Dependent Alternative macrophages and reveals their tissue**
411 **distribution in inflammatory bowel disease colon**


412 CosMx SMI analysis localized abundant IDA macrophages scattered throughout the
413 inflamed (UC and CD) colon, representing the most expanded inflammation-dependent
414 macrophage state (Fig. 4a), while M1 macrophages were less abundant in the lamina
415 propria and submucosa, but predominated within surface ulcers (Fig. 2g). Of note, in
416 one CD patient we found abundant granulomas (Fig. 4b and Extended Data Fig. 8a),
417 which are aggregates of macrophages, including multiploid macrophages, which
418 develop in response to persistent inflammation and that are a pathological feature found
419 in about one-fourth of CD patients²⁴. IDA macrophages, together with some M2, and a
420 few M0 and M1 macrophages, were the predominant macrophage state within
421 granulomas (Fig. 4b), which were surrounded by diverse lymphoid subsets (Extended
422 data Fig. 8b). The cellular composition of a non-granuloma lymphoid aggregate in the
423 same patient is shown for comparison (Extended data Fig. 8c).

424 In agreement with the CosMx SMI results, immunostaining showed low and scattered
425 staining of the M2 (CD209) markers within CD68⁺ cells in granuloma (Fig. 4b, 4c and
426 Extended data Fig. 8a). Compared to lamina propria macrophages, *NRG1* expression
427 within the granulomas was low (Fig. 4c).

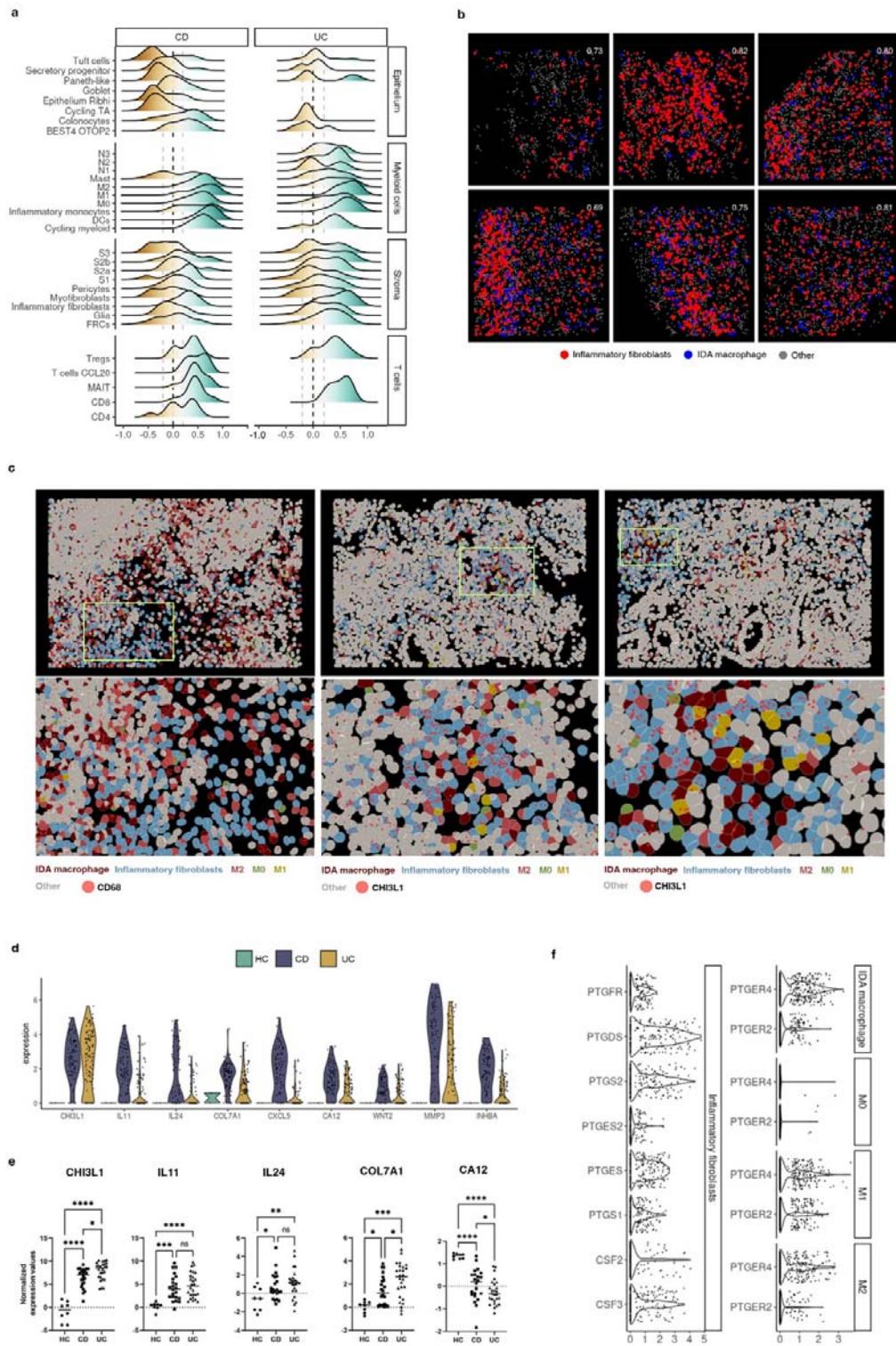
428 Thus, IDA macrophages abundantly present in the inflamed colon display differential
429 *NRG1* expression depending on their tissue location. While *NRG1*^{hi} IDA macrophages
430 localize to the most apical subepithelial compartment of the mucosa, *NRG1*^{low}
431 alternatively activated macrophages accumulate within granulomas in CD and in the
432 submucosa of both UC and CD patients, suggesting independent functions.

434 **Figure 4. Inflammation-Dependent Alternative (IDA) macrophages are widely distributed in**
435 **ulcerative colitis (UC) and present in Crohn's disease (CD) granulomas. a, CosMxTM SMI**
436 **distribution of IDA and M1 macrophages in IBD colonic samples. b, CD colonic sample with multiple**
437 **granulomas (CD b patient). (i) Field of Views (FoVs) 4 and 5 from this tissue section are indicated by**
438 **squares and other granulomas found in the same sample by yellow arrows. (ii) Macrophages within**
439 **granulomas are shown by CosMxTM SMI in FoVs 4 and 5 and protein expression of (iii) CD68 and (iv)**
440 **CD209 is shown by immunohistochemistry on the same tissue sections (scale bars= 100 μ m). c, Double**
441 **NRG1 *in situ* hybridization and CD68 or CD209 immunostaining in tissue sections from the CD patient**
442 **(CD b) containing abundant granulomas. *In situ* hybridization of NRG1 shows an increasing gradient of**
443 **expression towards the apical mucosa. Granulomas are indicated by dotted circles (scale bars 100 μ m). d,**
444 **Magnified pictures of representative granulomas of the same CD tissue stained for NRG1 using *in situ***
445 **hybridization and CD68 or CD209 immunostaining. Granulomas are indicated by dotted circles and**
446 **NRG1 positive cells are shown by arrows (scale bars 100 μ m).**

447

448 **Extended Data Figure 8. Cellular annotation of all cell types present in Crohn's disease (CD)-**
449 **associated granuloma.** **a**, Colonic tissue of a CD patient (CD b) containing multiple granulomas
450 indicated by yellow squares. Tissue is stained by *in situ* hybridization for *NRG1* combined with
451 immunostaining for CD68 or CD209. **b**, CosMxTM SMI images showing diverse cell types (stroma cells,
452 T cells, B and plasma cells) present in the granulomas and surrounding area of the analyzed sample.

453 Granuloma is shown by a dotted circle. **c**, Left panels show cell labelling by CosMxTM SMI of a section
454 containing a lymphoid aggregate from the same CD patient. The right panels show expression of CD68
455 and CD209 by immunohistochemistry in sequential sections (Scale bar= 100 μ m). The lymphoid
456 aggregate is shown by dotted circle and is mainly constituted by B cells, abundant plasma cells and some
457 macrophages (M0, M2, M1 and IDA macrophages) are found within the granuloma and more abundantly
458 in the surrounding area.

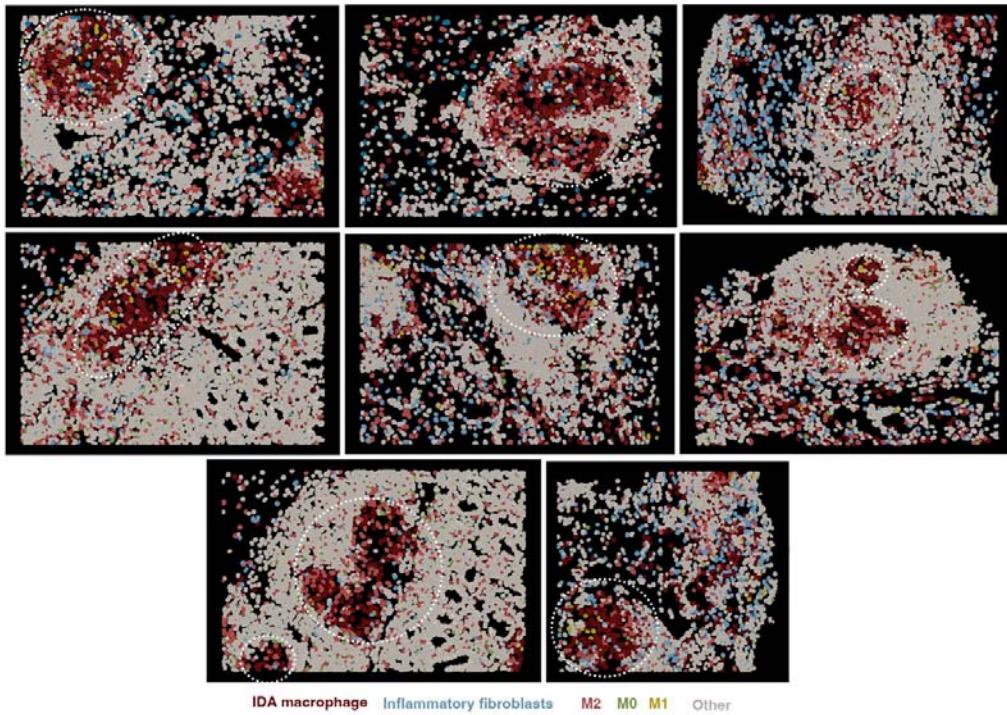

459

460 **Inflammatory fibroblasts co-localize with Inflammation-Dependent Alternative
461 macrophages in inflammatory bowel disease**

462 Given the abundant number and heterogeneity in distribution patterns of IDA
463 macrophages in UC and CD patients, we leveraged the multiplexed spatial data to
464 identify the cell types that were most frequently found in their proximity. IDA
465 macrophages tended to localize near to other macrophage subsets (M0, M2 and M1),
466 some stromal cells, and T cells, particularly CD8⁺ T cells, Tregs and T cells CCL20
467 (Fig. 5a). Within the stromal compartment, IDA macrophages presented high spatial
468 correlation with inflammatory fibroblasts in both UC and CD (Fig. 5b and 5c),
469 including within granulomas (Extended data Fig 9). Inflammatory fibroblasts were
470 described in UC⁵ and found here in colonic CD (Fig. 5d), as confirmed by biopsy bulk
471 RNAseq (Fig. 5e). Importantly, inflammatory fibroblasts expressed *CSF2* and *CSF3*,
472 encoding for GM-CSF and G-CSF, respectively, and prostaglandin-producing enzymes
473 *PTGS1*, *PTGES*, *PTGS2* (Fig 5f). In fact, a recent study²⁵ showed that prostaglandins
474 are produced by activated fibroblasts and drive the differentiation of IDA-like
475 macrophages expressing *HBEGF* and *EREG*, but not *NRG1*, in the synovium of
476 rheumatoid arthritis patients.

477 Thus, we argue that a crosstalk between inflammatory fibroblasts and macrophages may
478 take place in IBD via specific ligand-receptor interactions.

479


480

481 **Figure 5. Inflammation-Dependent Associated (IDA) macrophages co-localize with inflammatory**
 482 **fibroblasts. a, Ridge plot of co-localization analysis of IDA macrophages and epithelial, other myeloid,**

483 stromal and T lymphocytes by CosMx™ SMI. Correlation for cell positions was calculated per cell type
484 (0 indicates no correlation, >1 indicates co-localization with 1 being cells sharing the same position; <1
485 indicates negative correlation between the indicated cell types). **b**, Representative Fields of View (FoVs)
486 of co-localization analysis between IDA macrophages and inflammatory fibroblasts in inflamed UC
487 tissue. Co-localization scores are indicated in white for each FoV. **c**, Representative FoVs of IBD
488 inflamed tissues containing IDA macrophages and inflammatory fibroblasts. Expression of *CD68*
489 (macrophages) or *CHI3L1* (inflammatory fibroblasts) is shown as red dots. Each dot represents a single
490 mRNA molecule. **d**, Violin plots showing expression (y-axis) of marker genes (x-axis) of inflammatory
491 fibroblasts in HC, active CD and active UC determined by scRNA-seq. **e**, Expression of markers of
492 inflammatory fibroblasts in HC (n=8), and active CD (n=22) and UC (n=26) patients in bulk biopsy
493 RNA-seq data. p<0,05(*), p<0,01 (**), p<0,001(***), p<0,0001(****), ns: not significant. **f**, Violin plot
494 visualizing scRNAseq-based expression (y-axis) of prostaglandin-related genes in inflammatory
495 fibroblasts, IDA macrophage, M2 (M2 & M2.2) and M1 (M1 ACOD1 & M1 CXCL5) in pooled data of
496 HC, CD and UC. Expression of CSF3 and CSF2 in inflammatory fibroblasts has been also included.

497

498

499

500 **Extended Data Figure 9. Spatial visualization of inflammatory fibroblasts in inflammatory bowel**
501 **disease (IBD). a, CosMx SMI visualization of inflammatory fibroblasts within granulomas and the**
502 **surrounding areas in the CD patient that contained multiple granulomas (CD b). Granulomas are indicated**
503 **by dotted circles. As shown in Figure 4, granulomas contain abundant IDA macrophages. Inflammatory**
504 **fibroblasts (light blue) can be found within granulomas and in other adjacent areas.**

505

506 **Single-cell RNA sequencing reveals a marked heterogeneity of tissue neutrophils in**
507 **inflammatory bowel disease colonic mucosa**

508 Finally, in addition to the heterogeneity within macrophages in IBD, we also found
509 diverse populations of intestinal granulocytes using scRNA-seq (Fig.2a). Granulocytes,
510 including eosinophils and neutrophils, increased in IBD (Extended Data Fig 10a, 10b
511 and 10c) and expressed distinct membrane protein markers (*CD62L*, *CD193*, *CD69*)
512 compared to their peripheral counterparts, indicating different states of activation
513 (Extended Data Fig 10d). Specific eosinophil markers included *CLC*, *MS4A3*, *CCR3*
514 and the “Th2” cytokines *IL4* and *IL13* (Supplementary Table 2, Extended Data Fig. 3a),
515 while the *HCAR3*, *FCGR3B* (CD16b), *CMTM2* and *PROK2* were specific neutrophil
516 markers (Fig. 2b). Supporting their increase in UC and CD, the expression of most
517 eosinophil and neutrophil markers was significantly increased in bulk biopsy RNAseq
518 (Extended data Fig 10e).

519 Intestinal neutrophils were found in 3 unique states (annotated as N1, N2 and N3)
520 whose relative abundance varied on individual patients and disease type (Fig. 6a).
521 Compared to N1 and N3, N2 neutrophils, instead expressed higher levels of *CCL3*,
522 *LGALS3* and *CXCR4* (Fig. 6b and c), while N3 neutrophils displayed a marked IFN-
523 response signature (e.g. *GBPI*, *IRF1* and *FCGR1A*)).

524 Compared to public scRNA-seq datasets from peripheral neutrophils, N1 and N3
525 neutrophils showed the highest similarity to both bone marrow mature neutrophils (BM
526 matureN)²⁶ and to umbilical cord blood neutrophils (UCB)²⁷ (Fig. 6c). In contrast, N2
527 neutrophils showed little overlap with peripheral neutrophils and instead expressed
528 genes suggestive of different tissular locations (e.g., chemokines and receptors, as
529 mentioned above) and different activation states/functions (*CD83*, *CD63*, *FTH1*,

530 *VEGFA*). Protein expression of two of these N2 markers (CXCR4 and CD63) was also
531 confirmed for 10% and 61% of tissue neutrophils compared to 0.26% and 14% of blood
532 neutrophils, respectively (Extended Data Fig. 10d).

533 All 3 neutrophil subsets were found using CosMx SMI and showed scattered
534 distribution throughout inflamed lamina propria, with predominant localization in crypt
535 abscesses and ulcerated areas (Fig. 6d).

536

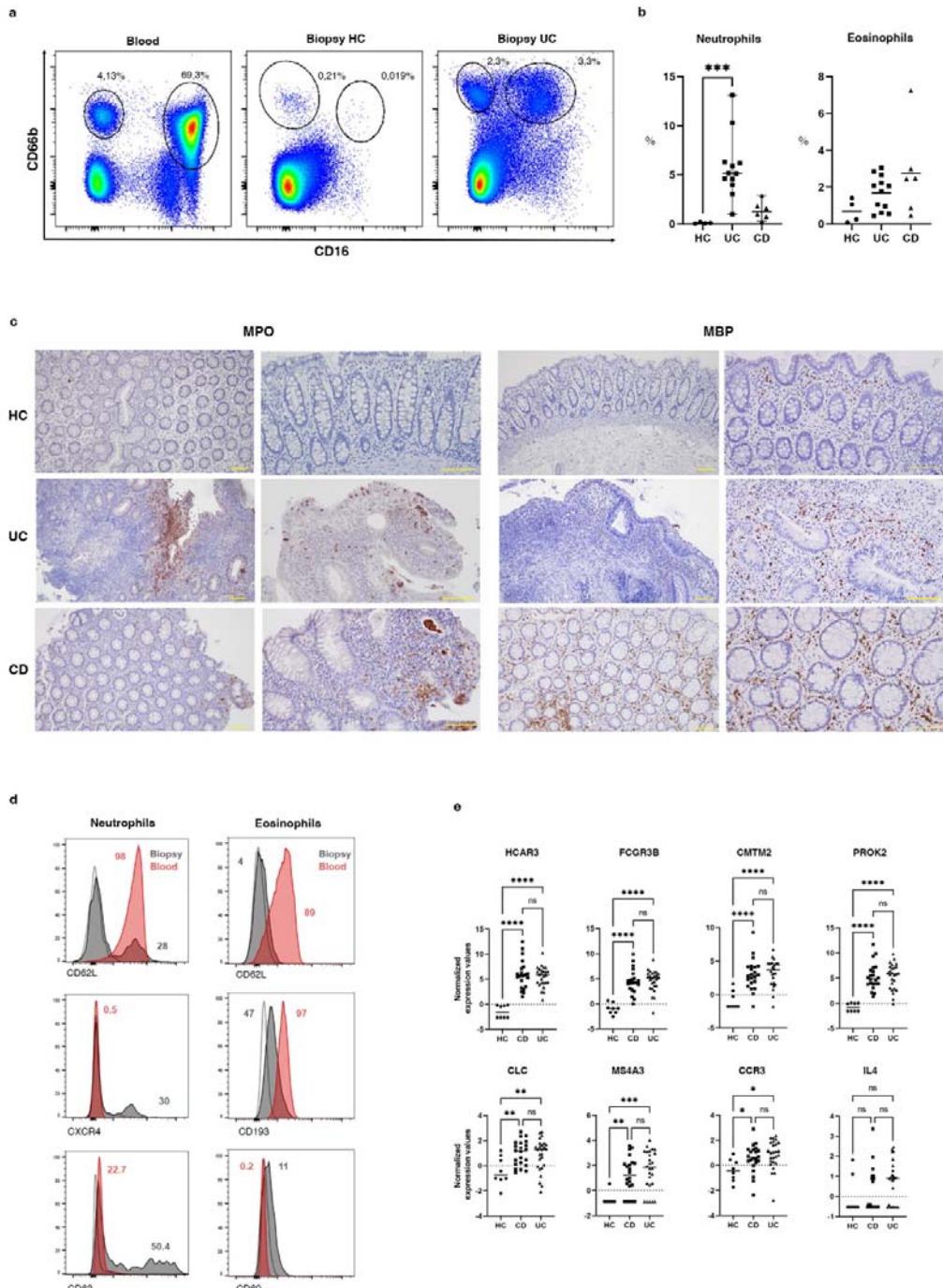
537 **Figure 6. Analysis of the heterogeneity of neutrophil populations in inflammatory bowel disease**

538 **(IBD) colonic mucosa.** **a**, UMAP showing the three neutrophil subsets/states (N1, N2, N3) observed in

539 IBD samples by scRNA-seq analysis. Barplot representing the proportions of each neutrophil subset

540 across health and IBD. **b**, Violin plots visualizing the expression (x-axis) of marker genes common and

541 specific for all three neutrophil populations (y-axis). **c**, Heat map showing the average normalized and


542 scaled expression of differentially expressed genes in all three neutrophil subsets. Average expression of

543 these genes on neutrophils from cord blood and bone marrow mature neutrophils is shown on the far right

544 (Xie, X., *et al* 2021, Zhao, Y., *et al* 2019). **d**, Representative CosMx SMI images of IBD inflamed tissue

545 showing the spatial location of N1, N2 and N3 neutrophil subsets. Circle shows the surface of an ulcer,

546 and a square shape is used to indicate a crypt abscess.

548 **Extended Data Figure 10. Analysis of neutrophils and eosinophils in inflammatory bowel disease**
549 **(IBD).** **a**, Flow cytometry gating strategy to detect eosinophils and neutrophils in IBD blood and colonic
550 biopsies. Numbers represent the percentages of neutrophils ($CD66b^+ CD16^+$) and eosinophils ($CD66b^+$
551 $CD16^-$) in the sample displayed as representative of all samples analyzed. **b**, Percentage of neutrophils

552 (CD66b⁺ CD16b⁺) and eosinophils (CD66b⁺ CD16b⁻) in colonic biopsies from healthy controls (HC,
553 n=4), active CD (n=6) and active UC (n=12) colonic samples analyzed by flow cytometry. **c**,
554 Immunostaining for myeloperoxidase (MPO, marker neutrophils) and myelin basic protein (MBP, marker
555 of eosinophils) in representative HC, active UC and active CD colonic tissues (scale bar = 100 μ m). **d**,
556 Protein expression detected by flow cytometry in neutrophils (one representative sample is shown from 12
557 colonic and 6 blood samples) and eosinophils (one representative sample shown from 15 colonic and 5
558 blood samples) from blood and biopsies of IBD patients. Numbers show the percentage of positive cells
559 for the protein in blood (red) and biopsy (grey) Histogram for the corresponding isotype control in the
560 biopsy sample is shown as a dashed line. **e**, Bulk colonic biopsy RNA-seq expression of neutrophil and
561 eosinophil-specific markers in HC (n=8), active CD (n=22) and UC (n=26) patients. p<0,05(*), p<0,01
562 (**), p<0,001(***), p<0,0001(****), ns: not significant.

563

564 DISCUSSION

565 ScRNA-seq has boosted the resolution at which complex tissues, including the inflamed
566 intestine, can be studied³⁻⁷. Nonetheless, available scRNA-seq datasets lack information
567 on tissue distribution and spatially relevant cell-to-cell interactions. To fill this critical
568 gap, highly multiplexed spatial technologies are rapidly evolving²⁸. Our study is the first
569 to provide combined scRNA-seq data with spatial transcriptomics at single-cell
570 resolution to start unraveling patient-dependent disease mechanisms.

571 We focused on the myeloid compartment, including both macrophage and neutrophil
572 subsets, as they showed the highest degree of variation within patient groups. We
573 argued that changes in these populations may explain disease heterogeneity.
574 Macrophages are well-known for their tissue plasticity. The origin, phenotype, and
575 function of intestinal macrophages, however, continues to be a subject of debate^{29,30}.
576 Nonetheless, resident macrophages are known to display heterogenous functions^{14,31}. In
577 the context of IBD, activated subsets have been described as having a proinflammatory
578 function^{12,32}. Cell classification, however, relies on surface markers that may not be
579 consistently used across studies, thus making standardization challenging. ScRNA-seq
580 provides instead unbiased whole transcriptome profiles of cell types, independently of
581 prior knowledge of marker expression. Using unsorted cells, we discovered at least two
582 unique resident macrophage states (M0 and M2) in healthy colonic mucosa. Both
583 subsets were still present in active patients, together with a variety of activated
584 inflammatory macrophages. Remarkably, the profiles of M0 and M2 macrophages were
585 consistently found in two independent datasets^{3,7} and localized by CosMx SMI to the
586 intestinal lamina propria. In contrast, the transcriptional signatures of inflammation-
587 associated macrophages varied markedly between patients and datasets. We argue that,
588 compared to canonically differentiated resident macrophages, inflammatory

589 macrophages adapt their phenotype to a variety of patient-dependent
590 microenvironments. Based on published data from *in vitro* differentiated macrophages
591 and pseudo-time analysis of scRNA-seq signatures, we also propose that both
592 infiltrating monocytes (found in inflamed samples) and resident M2 macrophages may
593 give rise to activated macrophages. Multiplexed spatial analysis confirmed the diversity
594 in the macrophage populations, and importantly showed that most inflammation-
595 dependent macrophages do not display the full characteristic M1-signature exhibiting
596 instead an alternative activation pattern characterized by the expression of EGFR
597 ligands, *NRG1* and *HBEGF*, and the C-type lectin receptors *CLEC10A* and *ASGR1*.
598 While an M1 signature can be reproduced *in vitro* by exposure of blood monocytes to
599 GM-CSF, GM-CSF/LPS or M-CSF/LPS, the origin of IDA macrophages remains
600 incompletely understood. We found that an endogenously produced factor, serotonin,
601 which is highly abundant in the gut, can induce a signature on M-CSF-derived
602 macrophages (M2-like) that resembles that of the IDA subset found in IBD. Previous
603 studies have shown that serotonin, primarily produced by enterochromaffin cells,
604 modulates macrophage cytokine secretion and its phenotype *in vitro* and that M2
605 macrophages, in contrast to M1 macrophages, express the serotonin receptors *HTR1D*,
606 *HTR2B* and *HTR7*³³. While release of platelet-stored serotonin, can happen via multiple
607 mechanisms at inflammatory sites, our data does not prove this to be a relevant
608 mechanism in patients, nor does it rule out the existence of other signals, including
609 fibroblast-derived prostaglandins²⁵, that could drive this alternative activation. To our
610 knowledge, macrophages expressing neuregulin 1 have only been described in a murine
611 model of myocardial infarction³⁴ and suggested to prevent the progression of fibrosis in
612 mouse hearts. The functional role of IDA macrophages in our patients, thus, remains
613 unclear. *NRG1*^{hi} IDA macrophages tended to localize to the most apical side of the

614 mucosa and could potentially play a role in epithelial regeneration based on their ability
615 to produce EGFR ligands, which can act on the intestinal epithelium and drive transition
616 towards a regenerative (*OLEM4*-expressing) phenotype. In contrast, *NRG1*^{low} IDA
617 macrophages were found within granulomas of a CD patients and in the submucosa of
618 inflamed patients, suggesting IDA macrophages may play different roles depending on
619 their environment.

620 Based on both scRNA-seq and SMI, we hypothesize that the interaction between M2 or
621 IDA macrophages and inflammatory fibroblasts could play a role in disease
622 pathophysiology. While there is abundant data in the literature to support the interaction
623 of macrophages and fibroblasts, particularly in the context of cancer and fibrosis³⁵, little
624 is known about their crosstalk in the context of chronic inflammation. Inflammatory
625 fibroblasts represent a disease-specific fibroblast subset characterized by the expression
626 of multiple cytokines including profibrotic IL11, IL24, IL8, IL6, TGF β 1, and tissue
627 remodeling metallopeptidases, making them attractive therapeutic targets to treat
628 inflammation and potentially, fibrosis, a common and difficult-to-treat complication of
629 chronic intestinal inflammation. Emphasizing their interaction with macrophages,
630 inflammatory fibroblasts express *CSF2* (GM-CSF), which promotes macrophage
631 activation, while activated macrophages can produce mediators (i.e., OSM, IL6, TNF,
632 etc) that can drive fibroblast activation. Furthermore, besides its role on epithelial
633 regeneration, EGFR signaling is a robust regulator of fibroblast motility³⁶ and may be
634 involved in cartilage and bone destruction in rheumatoid arthritis²⁵.

635 Beyond macrophages, recent scRNA-seq studies have explored the diversity and
636 plasticity of blood neutrophils^{37,38}. These short-lived cells, originally thought to exist in
637 fixed states, have more recently been shown to be transcriptionally dynamic, adopting
638 multiple transcriptional states depending on their maturation stage. Ours is the first

639 report to provide scRNA-seq data on intestinal neutrophils. Compared to available data
640 on periphery, intestinal neutrophils, including a subset that shows a signature of IFN-
641 inducible genes, express the maturation marker CXCR2³⁷. Remarkably, CXCR4
642 neutrophils (N2), which also expressed VEGFA (data not shown), were not found in
643 peripheral datasets. CXCR4, which is essential for bone marrow retention of immature
644 neutrophils, has been identified in mice to mark a subset of pro-angiogenic neutrophils
645 found both in lung and intestine³⁹, and to be expressed by neutrophils in inflamed
646 tissues^{40,41}. While evidence of angiogenic neutrophils in humans remains elusive, our
647 data points towards the presence of this neutrophil subset, at least in inflamed tissues.
648 Further analysis is required to fully understand the origin and function of these
649 neutrophils in the gut.

650 Despite the important information that can be drawn from our datasets, there are a few
651 limitations to our study that must be considered. First, the number of total
652 individuals/samples analyzed, especially given the high heterogeneity observed, is too
653 low for us to explore the relationship between the identified signatures and disease
654 behavior. Nonetheless, preliminary analysis of additional datasets, including 74 total
655 patients generated in our group, confirms the presence of heterogeneous resident and
656 inflammatory macrophages, as well as neutrophil subsets across patients. In addition,
657 the 1000-gene SMI panel used in our study, while sufficiently large to cover most cell
658 types, lacked important markers that may have limited our accuracy when assigning cell
659 identities. This may be especially true for cell subsets sharing most of their
660 transcriptomic signature (i.e., N1, N2 and N3 neutrophils).

661 Overall, we provide evidence to support high patient-dependent heterogeneity within
662 the myeloid compartment in both UC and colonic CD. We argue that intestinal
663 macrophages, which sense changes in the microenvironment, could act as reliable

664 indicators of patient-specific molecular patterns and thus, promising targets.
665 Furthermore, we show that by combining scRNA-seq with SMI, cell subsets can be
666 assigned to likely interacting partners, thus providing crucial niche information. This
667 spatial resolution will be essential in understanding cellular function, and to faithfully
668 link biologically relevant interactions to specific cell types.

669

670 **REFERENCES**

- 671 1. Flynn, S. & Eisenstein, S. Inflammatory Bowel Disease Presentation and Diagnosis. *Surg*
672 *Clin North Am* **99**, 1051-1062 (2019).
- 673 2. Verstockt, B., Bressler, B., Martinez-Lozano, H., McGovern, D. & Silverberg, M.S. Time
674 to Revisit Disease Classification in Inflammatory Bowel Disease: Is the Current
675 Classification of Inflammatory Bowel Disease Good Enough for Optimal Clinical
676 Management? *Gastroenterology* **162**, 1370-1382 (2022).
- 677 3. Smillie, C.S., *et al.* Intra- and Inter-cellular Rewiring of the Human Colon during
678 Ulcerative Colitis. *Cell* **178**, 714-730 e722 (2019).
- 679 4. Parikh, K., *et al.* Colonic epithelial cell diversity in health and inflammatory bowel
680 disease. *Nature* **567**, 49-55 (2019).
- 681 5. Kinchen, J., *et al.* Structural Remodeling of the Human Colonic Mesenchyme in
682 Inflammatory Bowel Disease. *Cell* **175**, 372-386 e317 (2018).
- 683 6. Corridoni, D., *et al.* Single-cell atlas of colonic CD8(+) T cells in ulcerative colitis. *Nat*
684 *Med* **26**, 1480-1490 (2020).
- 685 7. Martin, J.C., *et al.* Single-Cell Analysis of Crohn's Disease Lesions Identifies a
686 Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. *Cell* **178**,
687 1493-1508 e1420 (2019).
- 688 8. Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J. & Hill, A.M. M-1/M-2 macrophages and
689 the Th1/Th2 paradigm. *J Immunol* **164**, 6166-6173 (2000).
- 690 9. Mantovani, A., *et al.* The chemokine system in diverse forms of macrophage activation
691 and polarization. *Trends in immunology* **25**, 677-686 (2004).
- 692 10. Verreck, F.A., *et al.* Human IL-23-producing type 1 macrophages promote but IL-10-
693 producing type 2 macrophages subvert immunity to (myco)bacteria. *Proc Natl Acad Sci*
694 *USA* **101**, 4560-4565 (2004).
- 695 11. Dominguez-Soto, A., *et al.* Dendritic cell-specific ICAM-3-grabbing nonintegrin
696 expression on M2-polarized and tumor-associated macrophages is macrophage-CSF
697 dependent and enhanced by tumor-derived IL-6 and IL-10. *J Immunol* **186**, 2192-2200
698 (2011).
- 699 12. Gonzalez-Dominguez, E., *et al.* CD163L1 and CLEC5A discriminate subsets of human
700 resident and inflammatory macrophages in vivo. *J Leukoc Biol* **98**, 453-466 (2015).
- 701 13. Martinez, F.O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time
702 for reassessment. *F1000Prime Rep* **6**, 13 (2014).
- 703 14. Delfini, M., Stakenborg, N., Viola, M.F. & Boeckxstaens, G. Macrophages in the gut:
704 Masters in multitasking. *Immunity* **55**, 1530-1548 (2022).
- 705 15. He, S., *et al.* High-plex imaging of RNA and proteins at subcellular resolution in fixed
706 tissue by spatial molecular imaging. *Nat Biotechnol* (2022).
- 707 16. Dann, E., Henderson, N.C., Teichmann, S.A., Morgan, M.D. & Marioni, J.C. Differential
708 abundance testing on single-cell data using k-nearest neighbor graphs. *Nat Biotechnol*
709 **40**, 245-253 (2022).
- 710 17. Mulder, K., *et al.* Cross-tissue single-cell landscape of human monocytes and
711 macrophages in health and disease. *Immunity* **54**, 1883-1900 e1885 (2021).
- 712 18. Cuevas, V.D., *et al.* The Gene Signature of Activated M-CSF-Primed Human Monocyte-
713 Derived Macrophages Is IL-10-Dependent. *J Innate Immun* **14**, 243-256 (2022).
- 714 19. Nieto, C., *et al.* Serotonin (5-HT) Shapes the Macrophage Gene Profile through the 5-
715 HT2B-Dependent Activation of the Aryl Hydrocarbon Receptor. *J Immunol* **204**, 2808-
716 2817 (2020).
- 717 20. Buonanno, A. & Fischbach, G.D. Neuregulin and ErbB receptor signaling pathways in
718 the nervous system. *Curr Opin Neurobiol* **11**, 287-296 (2001).

- 719 21. Holloway, E.M., *et al.* Mapping Development of the Human Intestinal Niche at Single-
720 Cell Resolution. *Cell stem cell* **28**, 568-580 e564 (2021).
- 721 22. Jarde, T., *et al.* Mesenchymal Niche-Derived Neuregulin-1 Drives Intestinal Stem Cell
722 Proliferation and Regeneration of Damaged Epithelium. *Cell stem cell* **27**, 646-662 e647
723 (2020).
- 724 23. Gersemann, M., *et al.* Olfactomedin-4 is a glycoprotein secreted into mucus in active
725 IBD. *Journal of Crohn's & colitis* **6**, 425-434 (2012).
- 726 24. Freeman, H.J. Granuloma-positive Crohn's disease. *Can J Gastroenterol* **21**, 583-587
727 (2007).
- 728 25. Kuo, D., *et al.* HBEGF(+) macrophages in rheumatoid arthritis induce fibroblast
729 invasiveness. *Science translational medicine* **11**(2019).
- 730 26. Xie, X., *et al.* Single-cell transcriptomic landscape of human blood cells. *Natl Sci Rev* **8**,
731 nwaa180 (2021).
- 732 27. Zhao, Y., *et al.* Single-cell transcriptomic landscape of nucleated cells in umbilical cord
733 blood. *Gigascience* **8**(2019).
- 734 28. Moffitt, J.R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling
735 technologies. *Nature reviews. Genetics* (2022).
- 736 29. Shaw, T.N., *et al.* Tissue-resident macrophages in the intestine are long lived and
737 defined by Tim-4 and CD4 expression. *J Exp Med* **215**, 1507-1518 (2018).
- 738 30. Bujko, A., *et al.* Transcriptional and functional profiling defines human small intestinal
739 macrophage subsets. *J Exp Med* **215**, 441-458 (2018).
- 740 31. Smythies, L.E., *et al.* Human intestinal macrophages display profound inflammatory
741 anergy despite avid phagocytic and bacteriocidal activity. *J.Clin.Invest* **115**, 66-75
742 (2005).
- 743 32. Dharmasiri, S., *et al.* Human Intestinal Macrophages Are Involved in the Pathology of
744 Both Ulcerative Colitis and Crohn Disease. *Inflamm Bowel Dis* **27**, 1641-1652 (2021).
- 745 33. de las Casas-Engel, M., *et al.* Serotonin skews human macrophage polarization through
746 HTR2B and HTR7. *J Immunol* **190**, 2301-2310 (2013).
- 747 34. Shiraishi, M., Yamaguchi, A. & Suzuki, K. Nrg1/ErbB signaling-mediated regulation of
748 fibrosis after myocardial infarction. *FASEB J* **36**, e22150 (2022).
- 749 35. Buechler, M.B., Fu, W. & Turley, S.J. Fibroblast-macrophage reciprocal interactions in
750 health, fibrosis, and cancer. *Immunity* **54**, 903-915 (2021).
- 751 36. Ware, M.F., Wells, A. & Lauffenburger, D.A. Epidermal growth factor alters fibroblast
752 migration speed and directional persistence reciprocally and in a matrix-dependent
753 manner. *Journal of cell science* **111** (Pt 16), 2423-2432 (1998).
- 754 37. Wigerblad, G., *et al.* Single-Cell Analysis Reveals the Range of Transcriptional States of
755 Circulating Human Neutrophils. *J Immunol* (2022).
- 756 38. Montaldo, E., *et al.* Cellular and transcriptional dynamics of human neutrophils at
757 steady state and upon stress. *Nature immunology* **23**, 1470-1483 (2022).
- 758 39. Ballesteros, I., *et al.* Co-option of Neutrophil Fates by Tissue Environments. *Cell* **183**,
759 1282-1297 e1218 (2020).
- 760 40. Isles, H.M., *et al.* The CXCL12/CXCR4 Signaling Axis Retains Neutrophils at
761 Inflammatory Sites in Zebrafish. *Frontiers in immunology* **10**, 1784 (2019).
- 762 41. Hartl, D., *et al.* Infiltrated neutrophils acquire novel chemokine receptor expression
763 and chemokine responsiveness in chronic inflammatory lung diseases. *J Immunol* **181**,
764 8053-8067 (2008).

765