

1 **Short Research Communications**

2

3 **PTPN1 deficiency modulates BMPR2 signaling and induces endothelial dysfunction in**
4 **Pulmonary Arterial Hypertension**

5

6 Md Khadem Ali^{1,2}, Xuefei Tian^{1,2}, Lan Zhao^{1,2}, Katharina Schimmel^{1,2,3}, Christopher J. Rhodes⁴,
7 Martin R. Wilkins⁴, Mark R. Nicolls^{1,2}, Edda F. Spiekerkoetter^{1,2, *}

8

9 ¹Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford
10 University, Stanford, CA, USA

11 ²Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA,
12 USA

13 ³Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA

14 ⁴National Heart and Lung Institute, Hammersmith Campus, Imperial College London, London,
15 UK

16

17 *Corresponding author:
18 Edda Spiekerkoetter, MD
19 Associate Professor of Medicine

20 Division of Pulmonary, Allergy and Critical Care Medicine

21 Vera Moulton Wall Center for Pulmonary Vascular Disease

22 Stanford University

23 300 Pasteur Drive

24 Stanford, CA 94305, USA

25 Phone: +1 (650) 739-5031

26 Email: eddas@stanford.edu

27

28 Number of Figures: 04

29 Number of Words: 3443

30

31

32 **Abstract**

33 Bone morphogenic protein receptor 2 (BMPR2) expression and signaling are impaired in
34 pulmonary arterial hypertension (PAH). How BMPR2 signaling is decreased in PAH is poorly
35 understood. Protein tyrosine phosphatases (PTPs) play important roles in vascular remodeling in
36 PAH. To identify whether PTPs modify BMPR2 signaling we used a siRNA-mediated high
37 throughput screening of 22,124 murine genes in mouse myoblastoma reporter cells using ID1
38 expression as read-out for BMPR2 signaling. We further experimentally validated the top hit,
39 PTPN1 (PTP1B), in human healthy pulmonary arterial endothelial cells (PAECs) either silenced
40 by siRNA or exposed to hypoxia and confirmed its relevance to PAH by measuring PTPN1
41 levels in blood and PAECs collected from PAH patients. We identified PTPN1 as a novel
42 regulator of BMPR2 signaling in PAECs, which is downregulated in the blood of PAH patients
43 and documented that downregulation of PTPN1 is linked to endothelial dysfunction in PAECs.
44 These findings point to a potential involvement for PTPN1 in PAH and will aid in our
45 understanding of the molecular mechanisms involved in the disease.

46

47 **Keywords:** PTPN1, BMPR2 signaling, hypoxia, endothelial dysfunction, pulmonary
48 hypertension

49

50

51 **Introduction**

52 Pulmonary Arterial Hypertension (PAH) is an obliterative disease of the pulmonary arteries that
53 affects 50-100 individuals in 1 million people worldwide. The progressive increase in pulmonary
54 vascular resistance ultimately leads to right heart failure, responsible for the high mortality in
55 PAH. On a cellular level, pulmonary arterial endothelial cell (PAEC) dysfunction and apoptosis
56 along with abnormal growth of smooth muscle cells (SMC) leading to medial thickening and
57 neointima formation, causing the occlusive vasculopathy in PAH [1]. Understanding the
58 molecular mechanisms that regulate the remodeling process of the vasculature is an area of
59 intense study, yet no approved drug is available capable of reversing the remodeling, leaving
60 PAH without a cure. Deficiencies of bone morphogenetic protein receptor 2 (BMPR2)
61 expression and signaling are implicated in the development of PAH [2]. While BMPR2
62 mutations strongly predispose to PAH, only 20% of mutation carriers develop clinical disease,

63 indicating that in addition to gene mutations, additional factors might be involved in the
64 pathogenesis of PAH. Moreover, in many non-familial PAH forms, BMPR2 protein and
65 signaling levels are reduced [2], suggesting that defective BMPR2 expression and signaling is a
66 common phenomenon in different types of PAH. However, how the BMPR2 signaling is
67 precisely regulated is largely unknown, especially in the non-genetic forms of PAH. Human
68 clinical PAH features were observed in pulmonary endothelial-specific conditional BMPR2
69 knockout mice [3], SMC-specific BMPR2 dominant-negative mice [4, 5], and BMPR2
70 heterozygous mutant rats [6]. Furthermore, defective BMPR2 signaling was shown to be linked
71 with abnormal vascular cell phenotypes, such as abnormal proliferation, apoptosis, and
72 angiogenesis of PAECs, and hyperproliferation and apoptosis resistance of pulmonary arterial
73 smooth muscle cells (PASMCs) [2]. Increasing BMPR2 expression and signaling has therefore
74 been proposed as an attractive solution with therapeutic potential for PAH treatment [2]. Indeed,
75 our group has previously demonstrated that increasing BMPR2 signaling with Tacrolimus
76 (FK506) [7] and BMPR2 expression with Enzastaurin [8] improved pulmonary vascular
77 remodeling and PH in murine models of experimental PH. Most recently Sotatercept has been
78 shown to effectively re-balance TGFb/BMPR2 signaling in preclinical models of PH as well as
79 in a phase II PAH trial and was able to improve pulmonary vascular resistance in PAH patient on
80 background PAH therapy (NEJM 2021), validating the approach of restoring normal BMPR2
81 signaling as a therapeutic approach in PAH.

82
83 Based on a high-throughput (HTS) siRNA screen of ~24000 genes, using a BRE-reporter mouse
84 cell line with ID1 expression as readout for increased BMPR2 signaling, in combination with an
85 analysis of publicly available PAH RNA expression data, our group previously identified
86 clinically relevant novel BMPR2 signaling modifier genes namely fragile histidine triad (FHIT)
87 [8] and Lymphocyte Cell-Specific Protein-Tyrosine Kinase (LCK) [9]. Using the same siRNA
88 HTS data set as well as subsequent experimental validation *in vitro*, *in vivo*, and PAH clinical
89 samples, we identified another novel BMPR2 signaling modifier gene, protein tyrosine
90 phosphatase non-receptor type 1 (PTPN1) with potential relevance to PAH. In general, protein
91 tyrosine phosphatases (PTPs) are involved in regulating signal transduction pathways and
92 maintaining phospho-tyrosine levels in cells. Thereby they modulate a range of cellular
93 processes, such as proliferation, differentiation, and apoptosis by working in concert with

94 protein tyrosine kinases (PTKs)[10]. A recent study shows that the EYA3 tyrosine phosphatase
95 activity promotes pulmonary vascular remodeling in PAH[11].

96

97 The PTPN1 encodes for PTP1b was the first discovered PTP. In a case-control study, PTP1b
98 Single Nucleotide Polymorphisms (SNPs) were shown to contribute to hypertension [12].
99 Chronic insulin-mediated inhibition of PTPN1 function was found to upregulate platelet-derived
100 growth factor (PDGF) signaling and to promote neointima formation in the balloon-injured rat
101 artery [13]. PTPN1 knockout mice had increased mean arterial pressures[14]. Endothelial
102 specific PTP1b inhibition was shown to promote neointima formation in obese mice[15].
103 Adenoviral mediated overexpression of dominant negative PTPN1 increased neointima
104 formation in injured rat carotid arteries [16]. Furthermore, following vascular injury, mice
105 deficient to PTPN1 in SMCs developed perivascular fibrosis in carotid arteries[17]. Using
106 hypoxic PASMCs and hypoxia-induced PH mouse models, Freyhaus *et al.*, demonstrated that
107 hypoxia promoted PDGFRB pathway signaling through inhibiting PTPs, such as SHP-2, TC-
108 PTP, DEP-1, and PTPN1 [18]. PTPN1 knockout mice showed exacerbated inflammation and
109 leukocyte trafficking following ovalbumin challenge [19]. These findings suggested that PTP1b
110 might play a significant role in pulmonary vascular remodeling and PAH.

111

112 As endothelial dysfunction plays an important role in PH pathogenesis and as the BMPR2
113 receptor is highly expressed in endothelial cells, we aimed to investigate the role of PTPN1 in
114 modulating BMPR2 signaling and its effect on PAEC function in PAH. We found that PTPN1
115 silencing with siRNA decreases BMPR2 signaling, which was associated with impaired
116 proliferation, angiogenesis, and induced apoptosis in PAECs. We also find that PTPN1 RNA
117 expression is downregulated in hypoxic PAECs, lung tissues of Sugen5416-hypoxia PH rat
118 models and in whole blood samples of PAH patients by RNA sequencing. These findings point
119 to a potential involvement for PTPN1 in endothelial dysfunction in PAH and will aid in our
120 understanding of the molecular mechanisms involved in the disease.

121

122 **Methods**

123 **High Throughput siRNA Screen (HTS):** To identify novel BMPR2 signaling modifiers, a high
124 throughput siRNA screen of > 22,124 genes was performed in an Id1-BRE luciferase containing

125 C2C12 mouse myoblastoma reporter cell line treated with or without BMP4, as previously
126 described [8, 9]. Following knockdown of the genes, viability of cells was assessed in cells
127 stained with tryptan-blue staining. Changes in ID1 expression and cell viability after knockdown
128 of the genes with siRNAs were calculated compared with non-targeting siRNA-treated cells.

129

130 **Cell culture:** Human healthy primary pulmonary arterial endothelial cells (PAECs) were
131 purchased from PromoCell GmbH, Heidelberg, Germany (Cat # C12281). Cells were grown in
132 standard endothelial growth medium (Cat # C-22120; PromoCell GmbH) with growth factors
133 supplementation and 100 U/mL Penicillin-Streptomycin Solution (Gibco) under standard
134 conditions (37°C, 5% CO₂, 21% O₂, 90% humidity). Cells were sub-cultured at 1:4 ratio and
135 passages between 4 and 6 were used for all PAECs experiments.

136

137 **RNAi.** Knockdown of PTPN1 and BMPR2 was performed in PAECs. Briefly, PAECs (1.5 x
138 10⁵/well) were seeded onto 6-well plates and incubated at 37°C in a humidified 5% CO₂
139 atmosphere. Next day, cells were transfected with 50nM siRNAs against PTPN1 (Cat # 4390824,
140 ThermoFisher), BMPR2 (Cat # 4390824) and non-target (NT) controls (Cat # 4390843,
141 Invitrogen), with 2ul of Lipofectamine RNAiMax (Cat # 13778-1.5, Invitrogen) in a total 1ml of
142 OPTIMEM media. Six hours after transfection, the medium was changed to complete growth
143 medium. After 48 hours, knockdown efficiency was assessed by qRT-PCR.

144

145 **Cell proliferation, apoptosis, and angiogenesis:** Cell viability was assessed by MTT assay (Cat
146 # V13154, Invitrogen, Waltham, MA), as described previously [8]. Apoptosis was assessed by
147 commercially available caspase 3/7 assay (Cat # G8090, Promega, Madison, WI) as per the
148 manufacturer's instructions. Matrigel Tube formation assay was performed to assess
149 angiogenesis, as described previously [9].

150

151 **Hypoxia induction:** PAECs were grown under 1% O₂ condition in a hypoxia chamber, as
152 described previously[20]. Hypoxia induction was verified by measuring expression of hypoxia
153 responsive gene, VEGFA mRNA expression by qRT-PCR.

154

155 **Sugen5416-Hypoxia-induced PH rat models:** Ptpn1 mRNA and protein expression in the lung
156 of Sugen5416-Hypoxia-induced PH experimental rat models was measured by qRT-PCR and
157 western blotting, respectively. Pulmonary vascular remodeling and hemodynamic parameters of
158 the rat samples chosen were previously reported in Dannewitz Prosseda et al., [8].

159

160 **Gene expression quantification:** Total RNA from PAECs was extracted and purified with
161 commercially available RNeasy® Plus Mini Kit (Cat # 74134, Qiagen, Hilden, Germany). Total
162 RNA from rat's lung tissues was isolated using Trizol extraction method as described
163 previously[21]. Total RNA was then converted to cDNA using high-capacity cDNA Reverse
164 Transcription Kit (Cat # 4368813, Applied Biosystems™, Foster City, CA) and gene expression
165 was assessed by TaqMan qRT-PCR with targeted TaqMan assay probes, human PTPN1
166 (Hs00942477), GAPDH (Hs01786624_g1), 18S (Hs99999901_s1), BMPR2 (Hs00176148_m1),
167 ID1 (Hs03676575_s1), rat Ptpn1 (Rn01423685_m1), rat Gapdh (Rn01775763_g1) and
168 TaqMan™ 2x Universal PCR Master Mix (Cat # 4304437).

169

170 **RNAseq analysis of whole blood and PAECs from PAH patients and healthy controls:** To
171 determine whether PTPN1 expression was downregulated in the blood and PAECs from PAH
172 patients, we analyzed a large RNAseq data of whole blood of patients with idiopathic, heritable,
173 and drug-induced PAH (n=359) compared to age- and sex-matched healthy controls (n=72) [22]
174 and a publicly available RNAseq data set comprising 9 healthy and 9 PAH PAECs (GSE126262,
175 [23]).

176

177 **Western blotting:** Western blotting was performed as described previously [9], with primary
178 antibodies PTP1b (Cat # CST5311, Cell Signaling, 1:1000), BMPR2 (Cat # MA5-15827,
179 Invitrogen, 1:800), pSMAD1/5/9 (Cat # 13820S, Cell Signaling, 1:1000), ID1 (Cat # sc-133104,
180 Santa Cruz, 1:100), b-Actin (Cat # SC4778, Santa Cruz, 1:600) and secondary antibodies goat
181 anti-rabbit IgG H&L HRP (Cat # ab6721, Abcam, 1:5000) and goat anti-mouse IgG H&L HRP
182 (Cat # ab205719, Abcam, 1:5000).

183

184 **Statistical analysis:** All data were analysed using GraphPad prism version 9.0. Data are
185 represented as mean \pm standard error mean. Data comparing between two groups, non-parametric

186 student t-test was performed. P values <0.05 were considered as significantly changes. Number
187 of samples for each experimental conditions are presented in each figure and legend.

188 **Results**

189 **PTPN1, a novel BMPR2 signaling modifiers**

190 To identify novel modulators of BMPR2 signaling, we previously performed an unbiased
191 siRNA-mediated HTS of 22,124 genes in a BRE-ID1-LUC reporter C2C12 mouse myoblastoma
192 cell line. The screened hits were cross-validated in publicly available gene expression data sets
193 of PBMC and lung tissues of PAH patients. These screening approaches identified three
194 important BMPR2 modifying genes FHIT [8], LCK [8, 9] and Fyn [9], which play an important
195 role in PAH. LCK and Fyn are PTKs. The phosphorylation of protein tyrosine is crucial to
196 cellular signaling pathways. The level of protein tyrosine phosphorylation is regulated by PTKs
197 and PTPs [24]. Several human diseases, such as cancers, are linked to aberrant tyrosine
198 phosphorylation, and are associated with a dysbalance between PTK and PTP activity [24]. Here
199 we focused on the role of PTPs on BMPR2 signaling modulation. We assessed the select PTPs
200 included in the HTS of 22,124 siRNAs, for their potential to modulate ID1 expression (**Figure**
201 **1A-B**). There are over 100 of PTPs in humans [25], we here focused on the receptor and non-
202 receptor type PTPs, phosphatase of regenerating liver PTPs, Map kinase phosphatases and
203 atypical dual-specificity phosphatases PTPs, and Myotubularins PTPs, CDC14s and class III
204 PTPs in the HTS screening data set. Knockdown of the select PTPs showed inhibition of ID1
205 by several PTPs, such as Ptpn1, Pptn11, and Ptpru, while several PTPs, such as Pptprs and
206 Ptpn20 showed increased expression of ID1 (**Figure 1B**). After re-testing of those PTPs that
207 inhibited ID1 when knocked down (= ID1 stabilizing/activating PTPs) Ptpn1 knockdown had the
208 strongest effect on ID1 inhibition (**Figure 1C**). We then concentrated on Ptpn1 on BMPR2
209 signaling modulation and validated these findings in PAECs. We found that PTPN1 knockdown
210 with siRNA resulted in downregulation of BMPR2 and ID1 expression in PAECs after 48 hours
211 (**Figures 1D-H**). To determine whether PTPN1 was the upstream of BMPR2 signaling, we
212 silenced BMPR2 with siRNA and found that PTPN1 expression was not altered (**Figure 1I and**
213 **J**). This indicated that PTPN1 was upstream of the BMPR2 signaling. Together, these findings
214 suggested that PTPN1 regulated BMPR2 expression and signaling in PAECs, as measured by
215 ID1.

216

217 **PTPN1 inhibition induces endothelial dysfunction in hPAECs *in vitro***

218 Abnormal proliferation, apoptosis, and tube formation of PAECs is strongly linked with the
219 pathogenesis of PAH [1, 2]. We investigated whether PTPN1 regulates endothelial function in
220 PAECs. We found that knockdown of PTPN1 with siRNA decreased cell viability, as measured
221 by MTT assay and hemocytometer cell counts (**Figure 2A**). Compared to non-target siRNA
222 controls, PTPN1 siRNA-mediated knockdown induced apoptosis, as confirmed by increased
223 level of caspase3/7 activity (**Figure 2B**). We also observed that siRNA-mediated knockdown of
224 PTPN1 reduced tube formation 6 hours after cells were seeded in a Matrigel tube formation
225 assay compared with cells treated with control non-target siRNA (**Figure 2C**). These data
226 suggest that PTPN1 deficiency may lead to endothelial dysfunction in PAH.

227

228 **PTPN1 is downregulated in hypoxic hPAECs and in the lung of the
229 Sugen5416/hypoxia/normoxia rat model**

230 Hypoxia is considered one of the contributing factors to Group 3 PH (PH linked with hypoxia
231 and lung disease) and is used as an insult to produce experimental PH in rodents. Furthermore, a
232 previous study described the regulation of PTP by hypoxia[18]. We therefore asked whether
233 hypoxia exposure altered expression of PTPN1 in PAECs. PAECs were exposed to hypoxia for
234 72 hours and PTPN1 expression was measured by qRT-PCR. Consistent with the previous
235 findings in PASMCs [18], we here found that hypoxia downregulated PTPN1 expression in
236 PAECs (**Figure 3A**). Furthermore, we also measured Ptpn1 mRNA and protein expression in the
237 lungs of a sugen5416/hypoxia/normoxia induced PH rat model by qRT-PCR and western blot,
238 respectively. PH was induced in the rats that received a single subcutaneous dose of Sugen5416
239 (a VEGF receptor tyrosine kinase inhibitor), followed by exposure to chronic hypoxia (10% O₂)
240 for 3 weeks and normoxia for 5 weeks (21% O₂). The PH model was confirmed by measuring
241 RVSP, RV hypertrophy (Fulton Index: weight ratio of the RV/ left ventricle (LV) and septum
242 (LV + S) (Please see the data in [8]). We found a trend towards lower Ptpn1 mRNA and protein
243 expression in the lung of sugen5416-hypoxia (SuHx) treated rats compared to normoxia treated
244 rats (**Figures 3B and C**), with a high variability between samples. Together, these findings
245 suggest that Ptpn1 deficiency may be associated with experimental, hypoxia associated PH.

246

247 **PTPN1 is downregulated in the blood of PAH patients**

248 To determine whether PTPN1 expression was reduced in clinical PAH, first we measured
249 PTPN1 expression in whole blood of patients with idiopathic, heritable, and drug-induced PAH
250 (n=359) compared to age- and sex-matched healthy controls (n=72) by RNAseq. We observed a
251 significantly downregulated PTPN1 expression in PAH patients compared to healthy controls.
252 (Figure 4A, for subject characteristics, please see in [22]). Next, to determined whether PTPN1
253 expression was decreased in PAECs from PAH patients, we re-analyzed a publicly available
254 RNAseq data set comprising 9 healthy and 9 PAH PAECs (GSE126262, [23]). Although we did
255 not observe changes in PTPN1 expression between PAH and healthy control PAECs, we found a
256 significant correlation of PTPN1 expression with BMPR2, SMAD5 and SMAD9 expression
257 (Figures 4C-G), suggesting the link of PTPN1 with BMPR2 signaling in PAH.

258

259 **Discussion**

260 Previously several PTPs have been shown to be linked to the pathogenesis of PAH. For instance,
261 pharmacological inhibition of Shp2, also known as PTPN11, ameliorated monocrotaline-induced
262 PH related hemodynamic parameters (mPAP, RVSP, and RVH) and improved pulmonary
263 vascular remodeling in rats [26]. Xu *et al.*, showed that inhibition of PTPRD in human PASMCs
264 and rats resulted in PH through promoting PASMCs migration via the PDGFRB/PLC γ 1 axis
265 [27]. DUSP5-mediated inhibition of PASMCs proliferation suppressed PH and RVH [28]. Here,
266 through a combined approach of HTS, in vitro validation and analysis of a large cohort of PAH
267 clinical samples, we identified another PTP that is associated with PAH. We found PTPN1 as a
268 novel modifier of BMPR2 signaling and showed that PTPN1 is decreased in the blood of PAH
269 patients and PTPN1 deficiency is associated with induction of markers of endothelial
270 dysfunction.

271

272 Loss of function mutation in BMPR2 occurs in 60-80% of familial cases of PAH patients, but the
273 disease penetrance rate is low [29, 30], suggesting that in addition to the gene mutations, other
274 unidentified genetic, epigenetic, or environmental factors may contribute to the pathogenesis of
275 PAH. Importantly, defective BMPR2 signaling is also a common phenomenon in PAH patients
276 regardless of their etiologies of the disease. However, the molecular mechanism of how BMPR2
277 signaling is precisely regulated remains unclear. Through a siRNA mediated HTS and further
278 experimental validation, we identified PTPN1 as a novel regulator of BMPR2 signaling.

279 However, it remains unknown how PTPN1 regulates BMPR2 signaling. While we did not find
280 relevant studies linking PTPN1 to BMP-SMAD signaling, a previous study performed in
281 hepatocytes from PTPN1 knockout mice showed that those cells were resistant to TGF β -induced
282 downregulation of cell viability, and -upregulation of apoptosis [31]. The authors also revealed
283 that PTPN1 deficient hepatocytes were less responsive to TGFb as a significant decrease of
284 Smad2/3 phosphorylation and increased NF- κ B pathway activation in Ptpn1 knockout
285 hepatocytes was observed upon TGF β treatment [31]. Matulka et al., showed that PTPN1 was
286 involved in the Activin/ALK4 signaling to modulate p-ERK1/2 signaling, which represents a
287 noncanonical Activin pathway in embryonic stem cells [32]. While these studies support the role
288 of PTPN1 in TGF β signaling, the precise mechanism by which PTPN1 might facilitate the
289 TGFb/BMPR2 disbalance observed in PAH needs to be explored in future studies.

290

291 We found a significant downregulation of PTPN1 in whole blood of a large cohort of PAH
292 patients by RNAseq analysis, yet the precise cell type or tissue responsible for the observed
293 PTPN1 downregulation is not known. Previous reports describe a link between PTPN1 SNPs and
294 systemic hypertension [12, 33]. Hypoxia downregulates select PTPs including PTPN1 in
295 PASMCs exposed to hypoxia and in the lung of hypoxia-induced PH mice [18]. Given that
296 BMPR2 is highly expressed in endothelial cells, we herein investigated the role of PTPN1 in
297 PAECs. In line with a previous report [18], we demonstrated a decreased expression of PTPN1
298 in PAECs exposed to hypoxia. While we observed a trend towards lower PTPN1 levels in the
299 lung of *sugen5416*/hypoxia/normoxia treated rats with PH, the results were not significant, most
300 likely due to the high variability of PTPN1 expressions in the lung samples. While hypoxia is
301 used as an injurious stimulus in experimental PH, hypoxemia is usually not observed in PAH
302 patients - in contrast to Group 3 PH patients. While the cause of PTPN1 downregulation remains
303 to be determined, its effect on BMPR2 signaling and endothelial health could be an important
304 contributor to PAH. We find that PTPN1 deficiency induces endothelial dysfunction by
305 reducing proliferation, causing apoptosis and reducing tube formation of PAECs, all features
306 linked to the development of PAH. Berdnikovs et al. furthermore demonstrated that PTP1B was
307 involved in inflammation as inducible endothelial cell-specific deletion of PTP1B showed a
308 significant increase in accumulation of eosinophils bound to the luminal surface of the
309 endothelium in the lung vasculature and had a decrease in leukocyte recruitment into the lung

310 tissue during ovalbumin-induced allergic lung inflammation[34]. Furthermore, in response to
311 arterial injury, vascular smooth muscle cells deficient for PTPN1 promoted perivascular fibrosis
312 [17]. During respiratory syncytial viral-induced exacerbation of chronic obstructive pulmonary
313 disease, PTPN1 deficiency was shown to promote disease symptoms partly through enhancing
314 S100A9 levels, a damage-associated molecular pattern molecule [35]. In contrast to these
315 findings, several other lung studies show that PTP1b deficiency protected against lung
316 inflammation. For instance, using polysaccharides (LPS)-induced acute lung injury (ARDS)
317 models, Song et al., showed PTP1b inhibition protected against lung injury potentially regulating
318 through the CXCR4/PI3K γ /AKT/mTOR signaling axis [36]. Whether PTPN1 deficiency protects
319 or exacerbates lung remodeling is likely dependent on the context and animal disease model. As
320 endothelial dysfunction and perivascular inflammation are key players in PAH pathobiology[37],
321 maintaining adequate PTPN1 levels could be significant for pulmonary vascular remodeling in
322 PAH.

323

324 While we observe a significant downregulation of PTPN1 expression in the whole blood of PAH
325 patients, we did not find these changes in PAECs of PAH patients. This could be due to the fact
326 of relatively low expression of PTPN1 and variation in PAECs than the blood cells. Further
327 larger studies would require confirming these findings in PAECs of PAH patients. However, we
328 found a signification correlation between PTPN1 and BMPR2 signaling marker gene expression
329 in the data set (**Figures 4B-G**), indicating again the involvement of PTPN1 in BMPR2 signaling
330 in PAH.

331

332 This study has several limitations. First, we demonstrated that inhibition of PTPN1 decreases
333 BMPR2 expression and signaling, and induces endothelial dysfunction, however, it would be
334 important to the see whether opposite is true as well: Whether overexpression of PTPN1
335 activates BMPR2 signaling and reverses abnormal endothelial cell behaviors. Second, this study
336 lacks the direct causal link between PTPN1 and PAH *in vivo*. Further studies need to characterize
337 whether global or cell specific deletion of (PTPN1) causes experimental PH or alternatively
338 predisposes to a more severe PH phenotype in response to injurious agents used to induce
339 experimental PH such as hypoxia alone, sugen5416/hypoxia, or monocrotaline. Third, we were
340 not able to validate in this pilot study the PTPN1 PAH blood RNAseq expression data in a

341 second sample cohort. Fourth, mechanisms of how PTPN1 regulates BMPR2 signaling in PAH
342 remains to be explored.

343

344 In summary, we find PTPN1 expression is downregulated in whole blood of PAH patients and
345 PAECs exposed to hypoxia and that PTPN1 downregulation is associated with endothelial
346 dysfunction in PAECs. Furthermore, we discovered that PTPN1 is a novel modulator of the
347 BMPR2 signaling pathway. These findings will help investigate the precise role of PTPN1 in
348 PAH.

349

350 **Acknowledgment**

351 The authors gratefully acknowledge the participation of patients recruited to the the UK PAH
352 Cohort Study consortium.

353

354 **Support statement**

355 This research was supported by funding from the National Institutes of Health (R01 HL128734),
356 Stanford Vera Moulton Wall Center for Pulmonary Vascular Diseases, and the U.S. Department
357 of Defence (PR161256).

358

359 **Author contributions**

360 Conceptualization: M.K.A., E.S.; Methodology: M.K.A; Data curation: M.K.A., X.T., A.A.,
361 L.Z., C.J.R.; Writing - original draft: M.K.A.; Writing - review & editing: M.K.A., E.S., K.S.;
362 C.J.R., M.R.W., M.R.N., Supervision: E.S., Funding acquisition: E.S.

363

364 **Conflict of Interest statement:**

365 The authors declare no competing or financial interests.

366

367 **References**

- 368 1. Ali, M.K., K. Ichimura, and E. Spiekerkoetter, *Promising therapeutic approaches in*
369 *pulmonary arterial hypertension*. Curr Opin Pharmacol, 2021. **59**: p. 127-139.
- 370 2. Dannewitz Prosseda, S., M.K. Ali, and E. Spiekerkoetter, *Novel Advances in Modifying*
371 *BMPR2 Signaling in PAH*. Genes (Basel), 2020. **12**(1).

372 3. Hong, K.H., et al., *Genetic ablation of the BMPR2 gene in pulmonary endothelium is*
373 *sufficient to predispose to pulmonary arterial hypertension.* Circulation, 2008. **118**(7): p.
374 722-30.

375 4. West, J., et al., *Pulmonary hypertension in transgenic mice expressing a dominant-*
376 *negative BMPRII gene in smooth muscle.* Circ Res, 2004. **94**(8): p. 1109-14.

377 5. West, J., et al., *Mice expressing BMPR2R899X transgene in smooth muscle develop*
378 *pulmonary vascular lesions.* Am J Physiol Lung Cell Mol Physiol, 2008. **295**(5): p.
379 L744-55.

380 6. Hautefort, A., et al., *Bmpr2 Mutant Rats Develop Pulmonary and Cardiac*
381 *Characteristics of Pulmonary Arterial Hypertension.* Circulation, 2019. **139**(7): p. 932-
382 948.

383 7. Spiekerkoetter, E., et al., *FK506 activates BMPR2, rescues endothelial dysfunction, and*
384 *reverses pulmonary hypertension.* J Clin Invest, 2013. **123**(8): p. 3600-13.

385 8. Dannowitz Prosseda, S., et al., *FHIT, a Novel Modifier Gene in Pulmonary Arterial*
386 *Hypertension.* Am J Respir Crit Care Med, 2019. **199**(1): p. 83-98.

387 9. Andruska, A.M., et al., *Selective Src-Family B Kinase Inhibition Promotes Pulmonary*
388 *Artery Endothelial Cell Dysfunction.* bioRxiv, 2021: p. 2021.09.27.462034.

389 10. Tonks, N.K., *Protein tyrosine phosphatases: from genes, to function, to disease.* Nat Rev
390 Mol Cell Biol, 2006. **7**(11): p. 833-46.

391 11. Wang, Y., et al., *The EYA3 tyrosine phosphatase activity promotes pulmonary vascular*
392 *remodeling in pulmonary arterial hypertension.* Nat Commun, 2019. **10**(1): p. 4143.

393 12. Gu, P., et al., *Protein tyrosine phosphatase 1B gene polymorphisms and essential*
394 *hypertension: a case-control study in Chinese population.* J Endocrinol Invest, 2010.
395 **33**(7): p. 483-8.

396 13. Pu, Q., et al., *Chronic insulin treatment suppresses PTP1B function, induces increased*
397 *PDGF signaling, and amplifies neointima formation in the balloon-injured rat artery.*
398 Am J Physiol Heart Circ Physiol, 2009. **296**(1): p. H132-9.

399 14. Belin de Chantemele, E.J., et al., *Protein tyrosine phosphatase 1B, a major regulator of*
400 *leptin-mediated control of cardiovascular function.* Circulation, 2009. **120**(9): p. 753-63.

401 15. Jager, M., et al., *Inducible Knockdown of Endothelial Protein Tyrosine Phosphatase-1B*
402 *Promotes Neointima Formation in Obese Mice by Enhancing Endothelial Senescence.*
403 *Antioxid Redox Signal*, 2019. **30**(7): p. 927-944.

404 16. Chang, Y., et al., *Counter-regulatory function of protein tyrosine phosphatase 1B in*
405 *platelet-derived growth factor- or fibroblast growth factor-induced motility and*
406 *proliferation of cultured smooth muscle cells and in neointima formation*. *Arterioscler*
407 *Thromb Vasc Biol*, 2006. **26**(3): p. 501-7.

408 17. Gogiraju, R., et al., *Protein Tyrosine Phosphatase 1B Deficiency in Vascular Smooth*
409 *Muscle Cells Promotes Perivascular Fibrosis following Arterial Injury*. *Thromb*
410 *Haemost*, 2022. **122**(10): p. 1814-1826.

411 18. ten Freyhaus, H., et al., *Hypoxia enhances platelet-derived growth factor signaling in the*
412 *pulmonary vasculature by down-regulation of protein tyrosine phosphatases*. *Am J*
413 *Respir Crit Care Med*, 2011. **183**(8): p. 1092-102.

414 19. Berdnikovs, S., et al., *PTP1B deficiency exacerbates inflammation and accelerates*
415 *leukocyte trafficking in vivo*. *J Immunol*, 2012. **188**(2): p. 874-84.

416 20. Ali, M.K., et al., *Long non-coding RNA RGMB-AS1 as a novel modulator of Bone*
417 *Morphogenetic Protein Receptor 2 signaling in pulmonary arterial hypertension*.
418 *bioRxiv*, 2022: p. 2022.08.27.505495.

419 21. Ali, M.K., et al., *Crucial role for lung iron level and regulation in the pathogenesis and*
420 *severity of asthma*. *Eur Respir J*, 2020. **55**(4).

421 22. Rhodes, C.J., et al., *Whole-Blood RNA Profiles Associated with Pulmonary Arterial*
422 *Hypertension and Clinical Outcome*. *Am J Respir Crit Care Med*, 2020. **202**(4): p. 586-
423 594.

424 23. Reyes-Palomares, A., et al., *Remodeling of active endothelial enhancers is associated*
425 *with aberrant gene-regulatory networks in pulmonary arterial hypertension*. *Nat*
426 *Commun*, 2020. **11**(1): p. 1673.

427 24. Jiang, Z.X. and Z.Y. Zhang, *Targeting PTPs with small molecule inhibitors in cancer*
428 *treatment*. *Cancer Metastasis Rev*, 2008. **27**(2): p. 263-72.

429 25. Tautz, L., D.A. Critton, and S. Grotewell, *Protein tyrosine phosphatases: structure,*
430 *function, and implication in human disease*. *Methods Mol Biol*, 2013. **1053**: p. 179-221.

431 26. Cheng, Y., et al., *Inhibition of Shp2 ameliorates monocrotaline-induced pulmonary*
432 *arterial hypertension in rats.* BMC Pulm Med, 2018. **18**(1): p. 130.

433 27. Xu, J., et al., *Methylation-mediated silencing of PTPRD induces pulmonary hypertension*
434 *by promoting pulmonary arterial smooth muscle cell migration via the*
435 *PDGFRB/PLC γ 1 axis.* J Hypertens, 2022. **40**(9): p. 1795-1807.

436 28. Ferguson, B.S., et al., *DUSP5-mediated inhibition of smooth muscle cell proliferation*
437 *suppresses pulmonary hypertension and right ventricular hypertrophy.* Am J Physiol
438 Heart Circ Physiol, 2021. **321**(2): p. H382-H389.

439 29. Morisaki, H., et al., *BMPR2 mutations found in Japanese patients with familial and*
440 *sporadic primary pulmonary hypertension.* Hum Mutat, 2004. **23**(6): p. 632.

441 30. Kabata, H., et al., *Bone morphogenetic protein receptor type 2 mutations, clinical*
442 *phenotypes and outcomes of Japanese patients with sporadic or familial pulmonary*
443 *hypertension.* Respirology, 2013. **18**(7): p. 1076-82.

444 31. Ortiz, C., et al., *Protein-tyrosine phosphatase 1B (PTP1B) deficiency confers resistance*
445 *to transforming growth factor-beta (TGF-beta)-induced suppressor effects in*
446 *hepatocytes.* J Biol Chem, 2012. **287**(19): p. 15263-74.

447 32. Matulka, K., et al., *PTP1B is an effector of activin signaling and regulates neural*
448 *specification of embryonic stem cells.* Cell Stem Cell, 2013. **13**(6): p. 706-19.

449 33. Olivier, M., et al., *Single nucleotide polymorphisms in protein tyrosine phosphatase*
450 *1beta (PTPN1) are associated with essential hypertension and obesity.* Hum Mol Genet,
451 2004. **13**(17): p. 1885-92.

452 34. Berdnikovs, S., H. Abdala-Valencia, and J.M. Cook-Mills, *Endothelial cell PTP1B*
453 *regulates leukocyte recruitment during allergic inflammation.* Am J Physiol Lung Cell
454 Mol Physiol, 2013. **304**(4): p. L240-9.

455 35. Foronjy, R.F., et al., *Protein tyrosine phosphatase 1B negatively regulates S100A9-*
456 *mediated lung damage during respiratory syncytial virus exacerbations.* Mucosal
457 Immunol, 2016. **9**(5): p. 1317-29.

458 36. Song, D., et al., *PTP1B inhibitors protect against acute lung injury and regulate CXCR4*
459 *signaling in neutrophils.* JCI Insight, 2022. **7**(14).

460 37. Steffes, L.C., et al., *A Notch3-Marked Subpopulation of Vascular Smooth Muscle Cells Is*
461 *the Cell of Origin for Occlusive Pulmonary Vascular Lesions*. Circulation, 2020. **142**(16):
462 p. 1545-1561.

463

464

465

466

467

468

469

470 **Figure legends**

471 **Figure 1. PTPN1 is a novel regulator of BMPR2 signaling pathway.** A siRNA-mediated HTS
472 (n=22,124) was performed to identify possible BMPR2 signaling modifiers in mouse
473 myoblastoma BRE-ID1-LUC incorporated reporter cells. After 48 hours knockdown of the
474 genes, cells were treated with BMP4 to activate the signaling for two hours and then measured
475 ID1-linked luciferase levels. A colorimetric tryptan-blue cell viability was also performed. A)
476 Changes in Id1-linked luciferin expression (n=22,124) (X-axis) versus cell viability (Y-axis)
477 were plotted. Red dots denote the pre-selected protein tyrosine kinases (PTPs) selected from all
478 major PTPs. B) Changes in Id1-linked luciferin expression of the selected PTPs (% changes from
479 NTi). C) Selected PTPs tested with individual siRNA (reconstructed from the secondary
480 screening data n=96 from [8]. Data represented as mean \pm SEM (n=2-3). D-J) PTPN1, BMPR2
481 and ID1 expression was measured by qRT-PCR in PAECs silenced to either PTPN1 or BMPR2
482 for 48 hours. Data represented as mean \pm SEM (n=3), student t-test. *P<0.05, **P<0.01,
483 ***P<0.001, ****P<0.0001.

484

485 **Figure 2. PTPN1 deficiency induced endothelial dysfunction in PAECs.** About 10,000 cells
486 were seeded on 96 well plates and next day PTPN1 siRNA 10nM were transfected with
487 RNAimax in 100ul of optimum media. After 5-6 hours, the media was replaced with fresh
488 complete media. After 48 hours, cell viability and apoptosis were measured by MTT assay and
489 caspase 3/7 assay. For Matrigel Tube formation assay, 96-well plates were coated with 50 μ l of
490 matrigel/well and after one hour, PTPN1 knock down and controls cells were seeded. After 6

491 hours incubation at 37°C incubator and images were taken on light microscope. Angiogenesis
492 was quantified in the images using ImageJ software.

493

494 **Figure 3. PTPN1 is downregulated in healthy human PAECs exposed to hypoxia and in the**
495 **lung sugen5416/hypoxia-induced PH rats.** A) 150,000 PAECs were seeded onto 6 well-plates
496 and exposure to 72 hours of hypoxia. After that, PTPN1 expression was measured by qRT-PCR.
497 Induction of hypoxia was verified by measuring VEGF expression by qRT-PCR[20]. B) PTPN1
498 mRNA and protein expression was also measured in the lung of sugen5416/hypoxia rate models
499 by qRT-PCR and western blotting (please see the PH model description and phenotypes data in
500 [8]). Data are represented as mean \pm standard error mean, n=3-5, student t-test was performed to
501 compare data between two samples. ****P<0.0001.

502 **Figure 4. PTPN1 is downregulated in the blood but not in the PAECs of PAH patients.** We
503 analysed RNAseq data of PTPN1 expression in the whole blood ((n=72 healthy and n=359
504 PAH), for subject characteristics, please see in [22]) (A) and in PAECs ((n=9/group,
505 (GSE0126262, [23])) of PAH patients (B). TPM values for PTPN1 expression was shown in the
506 graphs. PTPN1 was correlated with expression of BMPR2, ID1, SMAD1, SMAD5, and SMAD9
507 in healthy and PAH PAECs (GSE0126262) (C-G).

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

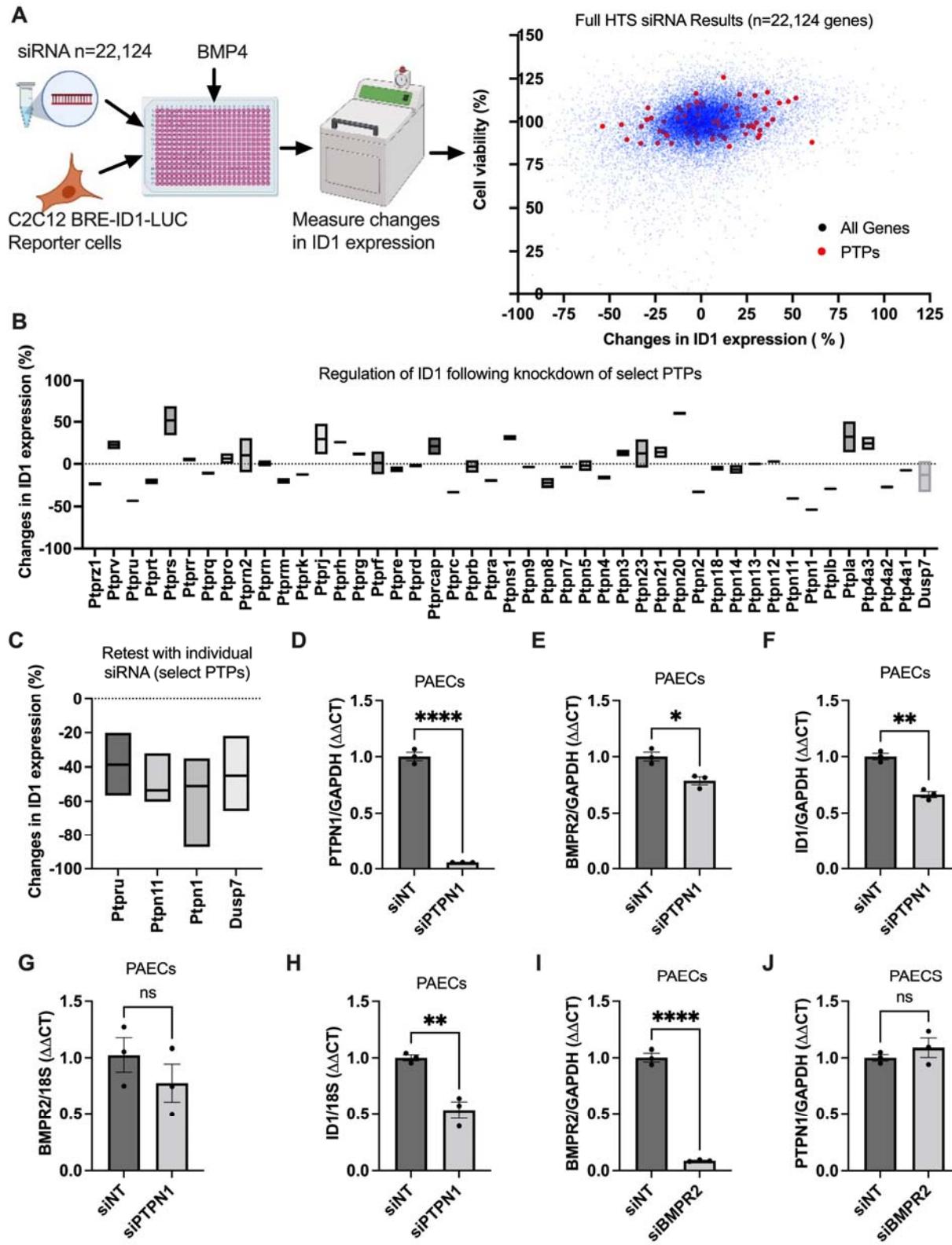
524

525

526

527

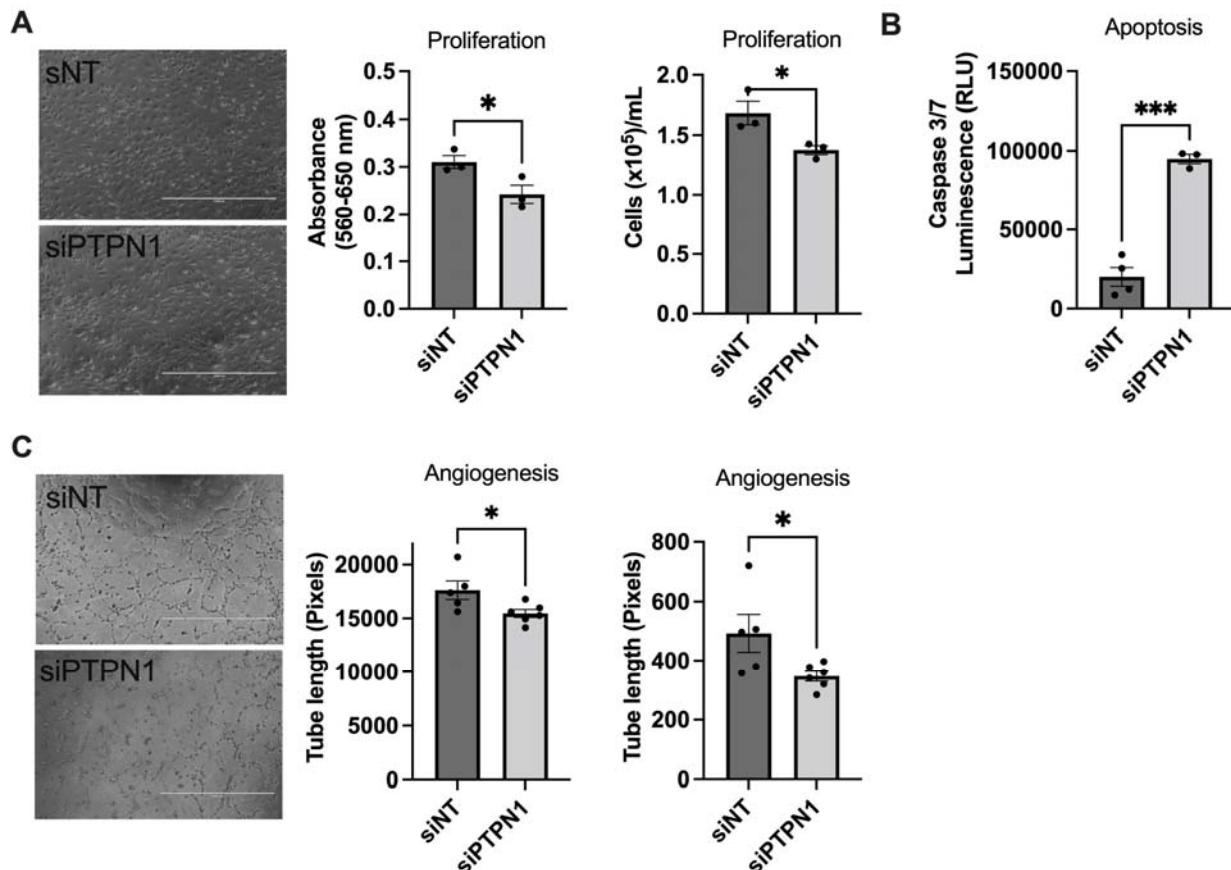
528


529

530

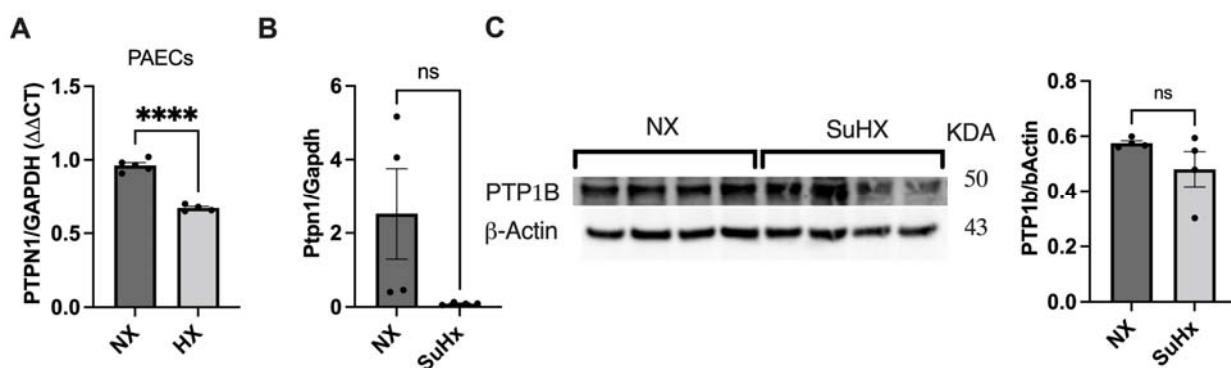
531

532


533 **Figure 1**

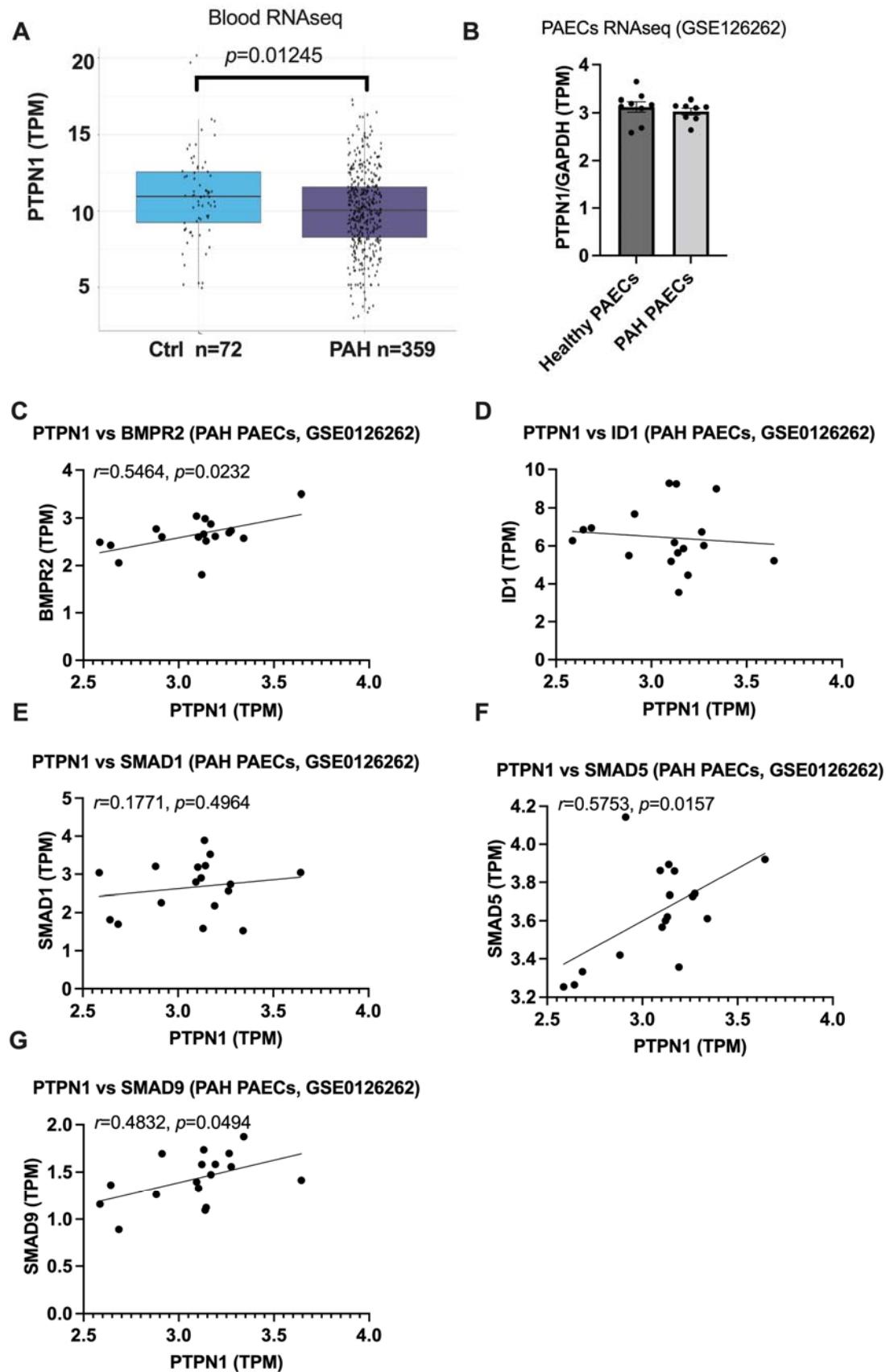
534

535


536 **Figure 2**

537

538


539 **Figure 3**

540

541

542 **Figure 4**

