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Abstract 
 
Modern multi-omic technologies can generate deep multi-scale profiles. However, differences in 
data modalities, multicollinearity of the data, and large numbers of irrelevant features make the 
analyses and integration of high-dimensional omic datasets challenging. Here, we present 
Significant Latent factor Interaction Discovery and Exploration (SLIDE), a first-in-class 
interpretable machine learning technique for identifying significant interacting latent factors 
underlying outcomes of interest from high-dimensional omic datasets. SLIDE makes no 
assumptions regarding data-generating mechanisms, comes with theoretical guarantees 
regarding identifiability of the latent factors/corresponding inference, outperforms/performs at 
least as well as state-of-the-art approaches in terms of prediction, and provides inference 
beyond prediction. Using SLIDE on scRNA-seq data from systemic sclerosis (SSc) patients, we 
first uncovered significant interacting latent factors underlying SSc pathogenesis. In addition to 
accurately predicting SSc severity and outperforming existing benchmarks, SLIDE uncovered 
significant factors that included well-elucidated altered transcriptomic states in myeloid cells and 
fibroblasts, an intriguing keratinocyte-centric signature validated by protein staining, and a novel 
mechanism involving altered HLA signaling in myeloid cells, that has support in genetic data. 
SLIDE also worked well on spatial transcriptomic data and was able to accurately identify 
significant interacting latent factors underlying immune cell partitioning by 3D location within 
lymph nodes. Finally, SLIDE leveraged paired scRNA-seq and TCR-seq data to elucidate latent 
factors underlying extents of clonal expansion of CD4 T cells in a nonobese diabetic model of 
T1D. The latent factors uncovered by SLIDE included well-known activation markers, inhibitory 
receptors and intracellular regulators of receptor signaling, but also honed in on several novel 
naïve and memory states that standard analyses missed. Overall, SLIDE is a versatile engine 
for biological discovery from modern multi-omic datasets.   
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Introduction 
 
Modern multi-omic technologies can generate deep multi-scale profiles. However, differences in 
data modalities, multicollinearity of the data, and large numbers of irrelevant features make the 
analyses and integration of high-dimensional omic datasets challenging. For example, 
multicollinearity can increase the variance of regression coefficients and lead to deflation of 
corresponding P values1. This is a significant barrier to meaningful inference in a regression 
setting for high-dimensional multi-collinear data. Further, human biological systems are 
complex, multi-factorial and organized hierarchically, with complex interaction rules at each 
hierarchy. A linear model is often inadequate at capturing relevant higher-order relationships in 
such a system. Finally, while recent methods developed by us2-7 and others8-10 have harnessed 
these high-dimensional multi-scale multi-modal datasets to predict different outcomes/groups of 
interest, they do not provide meaningful inference beyond prediction. In fact, approaches that do 
provide insights into the underlying mechanistic bases of outcome are tailored primarily for low-
dimensional datasets, and often trade predictive power for inference11. 
 
To address these, we present SLIDE, a novel data-distribution-free approach to analyze high-
dimensional multi-omic datasets and uncover latent factors that drive the outcome of interest 
(Fig. 1a). SLIDE makes no assumptions regarding the distribution of the underlying data as it 
builds on a unique latent-factor regression framework developed by us12, 13. It takes into account 
an extremely large search space of relationships to converge on a very small subset of 
biologically relevant and actionable latent factors. Critically, SLIDE incorporates both linear and 
non-linear relationships, including complex hierarchical structures. It uncovers significant 
interacting latent factors in diverse contexts that span scales of organization from 
cellular/molecular phenotypes (e.g., extent of clonal expansion of CD4 T cells) to organismal 
phenotypes (e.g., disease severity of patients with diffuse systemic sclerosis). The discovery of 
these relationships is also coupled to rigorous FDR control, something that is extremely difficult 
to do in a large search space of non-linear/hierarchical relationships. Here, this is made possible 
using our unique analytical framework that creatively adapts ultra-modern methods for FDR 
control14. SLIDE comes with provable statistical guarantees regarding identifiability of the latent 
factors, corresponding inference of significant interacting latent factors. This is fundamentally 
different from several methods that have been published recently that rely on clever heuristics 
but do not have formal statistical guarantees or work only when strong biological priors are 
available. SLIDE has rigorous statistical guarantees, recapitulates known biological 
mechanisms and helps uncover novel biological mechanisms. 
 
We tested the predictive performance of SLIDE on a range of datasets, and it outperformed 
several state-of-the-art approaches. Further, it provided novel inference not afforded by any 
existing approaches, thus being one of the only methods that simultaneously provides 
meaningful inference for high-dimensional data without compromising on predictive power. 
When analyzing datasets from SSc patients to elucidate the basis of SSc pathogenesis, SLIDE 
recovered altered transcriptomic states in myeloid cells and fibroblasts, a well elucidated basis 
of SSc disease severity15-20. But it also identified an unexplored keratinocyte-centric signature 
(validated by protein staining), and a novel mechanism involving an interaction between the 
altered transcriptomic states in myeloid cells and fibroblasts with HLA signaling in macrophages. 
This mechanism has strong support in recent genetic association analyses21. In the 
characterization of latent factors underlying clonal expansion of CD4 T cells, SLIDE 
recapitulated well known inhibitory receptors and markers of activation/exhaustion including 
Lag3, Pdcd1 (Pd1), Tigit and Cd20022 that standard differential expression (DE) analyses would 
have picked up. However, it also identified several novel markers that standard DE analyses 
would have missed. This includes novel gene sets and functional modules that have both 
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significant linear and non-linear relationships to clonal expansion. Overall, SLIDE is a first-in-
class approach for the discovery of significant interacting latent factors from high-dimensional 
multi-modal datasets that help infer novel biological mechanisms. It is an engine for biological 
discovery from modern multi-omic datasets. 
 
 
The SLIDE framework 

SLIDE is an interpretable latent factor regression approach (Fig. 1b) that seeks to identify 
significant latent factors that capture linear and nonlinear relationships (up to pairwise 
interactions) between observed data (X, typically high-dimensional, multi-collinear) and the 
response/group/outcome of interest (Y) as presented in equations 1 and 2.  

 � � �� � �                   (1) 

 � � ��� � 	 
������

���

� � 
                            (2) 

Given that ���� is a matrix of observables, where n and p represent the number of samples and 
features, respectively. The initial step (Fig. 1c) is to use our previously described LOVE 
approach13, to decompose the observable X into its constituent components of ���	 and �	��, 
with an error term of �. Here, A is the allocation matrix and represents the membership of each 
feature to a latent factor. The � 
 �	 �� and 
�� is the interaction effect between two latent 
variables of �� and ��. This approach comes with identifiability guarantees regarding inference 
of the latent factors without making any assumptions regarding data-generating mechanisms13. 

The next step in SLIDE (Fig. 1c) is identifying significant latent factors using a multi-stage 
adaptation of an ultra-modern framework for FDR-controlled variable selection – knockoffs14. 
This approach is based on differences or lack thereof between true and fake (knockoff) 
variables. These knockoff variables should be orthogonal to the response variable. And these 
variables preserve the covariance structure (Σ�. These variables are also approximately 
orthogonal to their original variables with deviation magnitude of 1-s. This means that the 
correlation between the original variable �� and the knockoff variable ��  �is 1-s, while the desired 
value is zero with s=1. 

 ��  � � Σ                 (3) 

 ����� � Σ                 (4) 

                ���� � Σ-diag(s)                 (5) 

While knockoffs have typically been used on observed variables, we used it on the latent 
factors. Here, the variable ��  is statistically significant if it considerably outperforms its knockoff 
��� based on test statistics. In this study we used Wj as the test statistic of interest:  
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Here max #�� , �

�) is defined as the maximum value of the L1 regularization hyperparameter & 

corresponding to which the actual variable (Mj) and its corresponding knockoff (��
�) are 

incorporated into the corresponding generalized linear model. A higher value of the 
hyperparameter & indicates higher variable importance i.e., even with more stringent 
regularization the feature stays on in the model. Thus, Wj (higher scores) will select for 
important latent factors with matched unimportant knockoffs. 

Further, our adaptation of the knockoff approach is a multi-stage stage procedure (Fig. 1c). In 
stage 1, the latent factors are divided into smaller sets and the knockoff technique applied to 
each of these sets. This initial selection procedure helps shortlist putative significant latent 
factors for the entire dataset. In stage 2, these putative significant latent factors from each set 
undergo another round of selection via the Knockoff algorithm to converge on a set of 
standalone significant latent factors. We repeat these 2 stages multiple times to identify a set of 
stable standalone significant latent factors (Methods and Supplementary Methods). 

In stage 3, we use hierarchical OR logic to identify significant interactors of the standalone 
significant latent factors i.e., each interaction term has at least one standalone significant latent 
factor. For each of the standalone significant latent factors, the interaction terms are identified 
by pairing it with the rest of the latent factors. The knockoff procedure is applied again to extract 
the significant interaction terms. In high dimensional datasets, where the number of features is 
much greater than the number of samples, the number of selected linear and non-linear latent 
factors might easily outnumber the number of observations. To account for this, we calculate the 
embedding of each significant latent variable and its subsequent interaction terms to a vector. 
Hierarchical information of the latent variable and its interactions is potentially preserved in 
these vectors. Therefore, the overall model quality can be attained by regressing the embedded 
features on the response variable with a smaller number of features than observables through 
cross-validation (Supplementary Methods). 

First, using simulations (Methods), we compared the performance of SLIDE was compared to 
that of the state-of-the-art methods including ER12, LASSO23, Partial Least Squares Regression 
(PLSR)24, and Principal Components Regression (PCR)25 with and without interactions terms 
(Figs. 1d and 1e). SLIDE performs as well as state-of-the-art approaches when there are no 
interaction terms present (Figs. 1d and 1e). In the presence of interaction terms, it consistently 
outperforms these methods (Figs. 1d and 1e). Importantly, all approaches other than SLIDE and 
LASSO, use the full model (all features/clusters) for prediction. However, SLIDE only uses a 
small number of prioritized latent factors for prediction and yet achieves the same predictive 
power. It also provides inference not afforded by any other method including LASSO.  

 
SLIDE uncovers novel interacting latent factors that explain SSc pathogenesis  
 
Using SLIDE, we first sought to discover interacting latent factors underlying SSc disease 
severity. We analyzed scRNA-seq data from 24 SSc subjects15, 26 across the severity spectrum 
(Fig. 2a), where disease severity was quantified using the Modified Rodnan Skin Score (MRSS). 
ScRNA-seq data from 24 SSc patients all using the same V2 chemistry was processed using a 
standard analytic pipeline. This consisted of alignment via cellranger and dimensionality 
reduction and clustering using Seurat (Methods). We identified 35 unique clusters (Fig. 2b). For 
downstream analyses, we filtered out clusters that contained less than 20 cells in any of the 24 
subjects (Fig. 2b). For each of the retained clusters, we tried a range of feature engineering 
approaches and converged on a cell-type-specific pseudo-bulk average of the most variable 
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genes, where variance was calculated in an unsupervised fashion without using the disease 
severity labels in any form (Methods). Next, we applied SLIDE on these cell-type-specific 
transcript abundances to predict SSc severity and infer corresponding significant interacting 
latent factors of outcome (Figs. S1a and S1b). SLIDE was able to accurately predict SSc 
severity and outperformed or 3/5 of our benchmarks – PLS24,, PCR25 and Phate-Regression 
(linear regression coupled to PHATE27) in terms of prediction accuracy (Figs. 2c and S1c). 
LASSO23 and ER12 (developed by us) were the only methods with comparable prediction 
performance (Fig. 2c). However, LASSO only identified a small set of predictive biomarkers that 
were uninformative of the actual molecular basis underlying SSc pathogenesis. On the other 
hand, SLIDE identified 9 significant latent factors that could be used to infer the mechanistic 
basis of SSc pathogenesis. Further, while the performance of SLIDE and ER were comparable, 
ER used the entire set of latent factors to predict outcome, while SLIDE only used 9. Thus, 
SLIDE provides the same predictive power as ER but stronger inference with fewer latent 
factors. Further, as a reference, if we used only the 9 most significant latent factors from ER 
(chosen based on the linear regression coefficients) for prediction, it would significantly 
underperform SLIDE (Fig S1d).  
 
The 9 latent factors uncovered by SLIDE spanned a range of cell-intrinsic and cell-extrinsic 
circuits (Fig. 2d). These factors encompassed altered transcriptomic states that have been 
characterized and are widely recognized to be critical in SSc pathogenesis. These states 
include modulated inflammatory states/signaling in myeloid cells and fibroblasts, including 
SFRP2 fibroblasts, well-known bases of SSc pathogenesis (Fig. 2d) 15-20. Other canonical 
mechanisms recapitulated by our model includes cross-talk between interferon signaling and 
myeloid inflammatory signaling (Fig. 2d)15-20. Key genes that contribute to these altered 
transcriptomic states include cytokines and chemokines (e.g., CCL19), signaling molecules 
(e.g., WIF1), interferon signaling genes (e.g., IGFBP5), components of mechano-transduction 
(e.g., THBS1) and alarmins/damage sensing molecules (e.g., S100A9). These agree well with 
previous studies by us and others15-20. However, in addition to recovering well-known 
mechanisms, we converged on several novel mechanisms. The first involves a previously 
unelucidated role of keratinocytes in SSc pathogenesis (Fig. 2d). We have recently validated 
this keratinocyte functional signature by protein staining (in a separate manuscript in revision). 
We also converged on another novel mechanism involving interactions (a key innovation of 
SLIDE) between altered myeloid/endothelial cell inflammation and keratinocyte-fibroblast-
endothelial cell crosstalk. A key component of this interaction is the relationship between altered 
HLA signaling and modulated cytokine/chemokine/interferon signaling (Fig. 2d). While our study 
is the first to study this at the transcriptomic level, there is evidence for this mechanism in recent 
genetic studies21. 
 
Interestingly, while we had 5 standalone significant latent factors, the 4 interacting latent factors 
provided additional information that was not encapsulated in the standalone factors. To formally 
test how relevant this information is, we first analyzed the predictive power of a size-matched 
set of random latent factors (Figs. 2e and S1e). The actual latent factors performed significantly 
better than the random size-matched set of latent factors (Figs. 2e and S1e). Next, we 
evaluated the quality of the interactors themselves by keeping the two actual standalone latent 
factors fixed but shuffling the interactors (i.e., choosing a size-matched set of random 
interactors for the actual standalone latent factors). Again, the performance of this model was 
significantly lower than the performance of the actual model (Figs. 2e and S1e). This is an 
especially stringent test as the standalone factors are highly informative themselves. Yet, not 
having the correct interacting latent factors would decrease the prediction and corresponding 
inference of mechanisms underlying SSc pathogenesis. 
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To further dissect these 9 significant latent factors (standalone and interacting), we tested the 
nature of relationships between the genes in these latent factors with MRSS. Interestingly, we 
observed that while some well-described/canonical markers of SSc severity such as CCL19, 
IGFBP5, WIF1, SAA1 and THBS115-20, primarily in the SFPR2 fibroblasts and myeloid 
compartments, had significant high linear correlations (quantified using Spearman correlations) 
with MRSS, but almost no non-linear relationships with MRSS (Figs. 2f-2h). Further, several 
other genes such as APOE, S100A9 have both significant linear and non-linear relationships 
with MRSS (Figs. 2f-2h). Some of these are entirely novel, and others that have begun to be 
characterized in SSc15-20. Finally, several have only non-linear relationships with MRSS (Fig. 2f-
2h). Most of these have been missed by previous approaches. Further, we evaluated the 
relationships of each of the 9 latent factors with MRSS (Fig. 2i) and found significant 
relationships between most individual latent factors and MRSS. This analysis suggests that 
SLIDE captures true context-specific biological group structure i.e., beyond the overall 
multivariate model, each individual context-specific group (latent factor) has meaningful 
information (both in terms of prediction and inference) regarding SSc pathogenesis (Fig. 2i). 
Canonical approaches focused on gene lists do not have group information at all, while 
pathway-centric approaches have group information that is context-independent and hence 
often irrelevant in specific scenarios. 
 
To more rigorously test the actual causal nature of these identified latent factors, we moved to a 
“human perturbation experiment” made possible by the fact that 10 of these 24 subjects had 
recently been in a recent clinical trial with tofacitinib (tofa) (Fig. 2j)28. Tofa is a IL6/JAK inhibitor29 
that led to a reduction in SSc severity of some patients but not others (Fig 2j). We used SLIDE 
to identify significant interacting latent factors that underlie the reduction in disease severity 
(change in MRSS from pre- to post). We hypothesized that if the identified latent factors were 
indeed causal, it would capture relevant tofa-centric mechanisms that led to a reduction in SSc 
severity (Fig. 2j). Further, we only had SSc scRNA-seq signatures 6 weeks post treatment i.e., it 
was an early snapshot. However, the measured change in disease severity was 24 weeks post 
treatment i.e., it reflected true response to outcome (Fig. 2j). SLIDE identified 3 significant 
interacting latent factors underlying the response to tofa. These included an IL6-centric 
cytokine-chemokine signaling latent factor in myeloid and fibroblasts and response to stress. 
Remarkably, despite not incorporating any biological priors, SLIDE very accurately honed in on 
the exact IL6-centric molecular mechanism28 (from thousands of transcriptomic features) 
underlying tofa treatment, demonstrating its power in identifying true causal mechanisms from 
complex high-dimensional datasets (Fig. 2j). And it was able to do so even at an early timepoint, 
demonstrating the sensitivity of SLIDE in capturing subtle changes in the course of treatment. 
 
 
SLIDE uncovers latent factors underlying immune cell partitioning by 3D localization 
 
We then applied SLIDE to spatial transcriptomic datasets aiming to uncover latent factors 
underlying 3D spatial partitioning of immune cells. Spatial RNA-seq using 10X Visium was 
performed in a murine house dust mite model for studying allergy30, 31. Specifically, animals 
were treated intranasally with house dust mite for three consecutive days and mediastinal lymph 
nodes were isolated from these animals followed by spatial RNA-seq (Fig. 3a, Methods). We 
overlayed the clustering of the spatial regions with fluorescence microscopy images to 
designate spatial labels of border, central and intermediate zones (Fig. 3b). We also observed 
that the border regions were enriched for B-cells (blue) and the central regions for CD4 T cells 
(green) and dendritic cells (pink, DCs) (Fig. 3b). Since SLIDE does not make any assumptions 
regarding data-generating mechanisms, this tests the power of SLIDE on analyzing datasets 
generated using ultra-modern technologies. 
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SLIDE was able to accurately predict spatial labels, and outperformed PLS, PCR in terms of 
prediction accuracy (Figs. 3c and S2a-2c). LASSO, PhateRegression and ER had comparable 
prediction performance (Figs. 3c and S2c). However, LASSO and PhateRegression did not 
provide any insights into the nature of immune cell partitioning by spatial region. SLIDE 
identified 7 significant latent factors that could be used to infer the mechanistic basis of spatial 
partitioning of the immune cells. Further, while the performance of SLIDE and ER were 
comparable, ER used the entire set of latent factors to predict outcome, while SLIDE only used 
7. Thus, SLIDE provides the same predictive power as ER but stronger inference with fewer 
latent factors. Further, as a reference, if we used only the 7 most significant latent factors, 
chosen by the highest linear regression coefficient, from ER for prediction, it would significantly 
underperform SLIDE (Fig. S2d).  
 
Interestingly, although SLIDE was only given spatial region labels, the identified latent factors 
consisted of genes that mark B cells, CD4 T cells and DCs. This agrees well with the spatial 
partitioning of immune cells that the fluorescence microscopy images provide us (Fig. 3d), 
suggesting that SLIDE provides meaningful inference of the basis of immune cell partitioning by 
spatial regions in lymph nodes. The 7 latent factors uncovered by SLIDE included markers that 
represent multiple canonical functions including broad adaptive immune responses, antigen 
processing and presentation and specific humoral responses (Fig. 3d). As described earlier, we 
also analyzed the predictive power of a size-matched set of random latent factors (Figs. 3e and 
S2e). The actual latent factors performed significantly better than the random size-matched set 
of latent factors (Fig. 3e). We then evaluated the quality of the interactors themselves by 
keeping the two actual standalone latent factors fixed but shuffling the interactors (i.e., choosing 
a size-matched set of random interactors for the actual standalone latent factors). Again, the 
performance of this model was significantly lower than the performance of the actual model 
(Figs. 3e and S2e). Here too, not having the correct interacting latent factors would decrease 
the prediction and corresponding inference of mechanisms underlying clonal expansion.  
 
While a number of genes in the significant latent factors of spatial partitioning had significant 
linear relationships with spatial label (Figs. 3f and S2f), several others had only non-linear 
relationships which would have been missed by traditional regression methods (Figs. 3f and 
S2f). The incorporation of these relationships strengthens corresponding inference. Next, we 
evaluated the relationships of each of the 7 latent factors with spatial region label (Fig. 3g) and 
found significant relationships between most individual latent factors and spatial region label 
(Fig. 3g). This provides additional support to our hypothesis that SLIDE captures true context-
specific biological group structure i.e., beyond the overall multivariate model, each individual 
context-specific group (latent factor) has meaningful information (both in terms of prediction and 
inference) regarding the spatial region label of interest. 
 
 
SLIDE elucidates novel interacting latent factors underlying clonal expansion in T1D 
 
Finally, we sought to analyze paired multi-omic datasets using SLIDE and uncover interacting 
latent factors underlying clonal expansion in T1D. Using paired scRNA-seq and TCR-seq data 
on islet-derived CD4 T cells in a non-obese diabetic (NOD) mouse model (Zdinak et al, 
accompanying manuscript), we labeled cells (Fig. 4a) based on the extent of their clonal 
expansion – single (1 clone), low (2-10 clones) or medium/high (>10 clones). This analysis has 
three additional facets in evaluating the capabilities of SLIDE beyond what the previous 
examples afford. First, it helps test the performance of SLIDE on paired multi-omic data 
(scRNA-seq and TCR-seq data) drawn from different distributions and with varying degree of 
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sparsity. Second, we use a high-resolution cellular phenotype i.e., the clonality of individual CD4 
T cells as the outcome labels of interest. This is different from the prior examples where we 
used organismal phenotypes (SSc severity) or 3D spatial location as the outcomes of interest. 
Third, it demonstrates the power of SLIDE in identifying interacting latent factors at a per-cell 
resolution in a disease model. 
 
Interestingly, while there were some differences in transcriptomic profiles between cells at 
different stages of clonal expansion (Fig. 4b), there is significant heterogeneity in the profiles of 
individual cells at the same stage of clonal expansion (Fig. 4b). This necessitates the use of an 
approach like SLIDE that can converge on specific components of transcriptomic profiles that 
transcend intra-group heterogeneity and focus only on differences across cells at different 
stages of clonal expansion. SLIDE was able to accurately predict and infer extent of clonal 
expansion, and outperformed several benchmarks including PLS, PFR and Phate-Regression in 
terms of prediction accuracy (Figs. 4c and S3a-3c). LASSO and ER were the only methods with 
comparable prediction performance (Figs. 4c and S3c). However, LASSO only identified a small 
set of predictive biomarkers that were uninformative of the actual molecular basis for difference 
in clonal expansion across the different cells. On the other hand, SLIDE identified 4 significant 
latent factors that could be used to infer the mechanistic basis of differences in clonal 
expansion. Further, while the performance of SLIDE and ER were comparable, ER used the 
entire set of latent factors to predict outcome, while SLIDE only used 4. Thus, SLIDE provides 
the same predictive power as ER but stronger inference with fewer latent factors. It also 
identified non-linear relationships underlying clonal expansion (Fig. 4d). Further, as a reference, 
if we used only the 4 most significant latent factors, chosen by the highest linear regression 
coefficient, from ER for prediction, it would significantly underperform SLIDE (Fig S3d). The 4 
latent factors uncovered by SLIDE included a) markers of Naive CD4 T cells, b) activation 
markers and inhibitory receptors, c) a latent factor that captured intracellular regulation of 
receptor signaling and d) ribosomal proteins (Fig. 4d). As earlier, we tested if the interactions of 
(a) with (c) and (b) with (d) provided better prediction and additional inference that (a) and (b) 
alone wouldn’t provide. Consistent with what we had observed in the earlier analyses, the actual 
latent factors performed significantly better than the random size-matched set of latent factors 
(Figs. 4e and S3e). Next, we evaluated the quality of the interactors themselves by keeping the 
two actual standalone latent factors fixed but shuffling the interactors (i.e., choosing a size-
matched set of random interactors for the actual standalone latent factors). Again, the 
performance of this model was significantly lower than the performance of the actual model 
(Figs. 4e and S3e). In this case too, not having the correct interacting latent factors would 
decrease the prediction and corresponding inference of mechanisms underlying clonal 
expansion.  
 
Importantly, the 4 significant latent factors included well-known inhibitory receptors and markers 
of clonal expansion/exhaustion including Lag3, Pdcd1 (Pd1), and Tigit22 that standard 
differential expression (DE) analyses would have picked up (Fig. 4f). As expected, SLIDE 
grouped these inhibitory receptors in one latent factor, suggesting potential convergent 
mechanisms. Interestingly, the intracellular signaling regulation latent factor (c) also contained 
Ndfip132, which was shown to induce apoptosis in self-reactive T cells. The association of other 
potential mediators of apoptosis such as Anxa533, suggests a different pathway of action than 
the inhibitory receptor latent factor. A traditional DE analysis simply returned a list of DEGs, but 
SLIDE’s grouping of genes with convergent functions led to the identification of inhibitory 
receptors and intracellular restriction on proliferation as two parallel mechanisms at work in 
clonally expanded T cells. 
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However, it also identified several novel markers that standard DE analyses would have missed. 
This includes genes that have both significant linear and non-linear relationships (at the 
univariate level) to clonal expansion.  While the standard DE analyses would have picked up 
only the linear relationships, SLIDE can identify both (Fig. 4g). Of particular interest, is Ccr7, 
which is elevated in naïve T cells, as well as memory T cells. Co-expression of Ccr7 with Sell 
and Lef1 are hallmarks of naïve T cells34, confirming that unexpanded CD4+ T cells are naïve in 
their phenotype. Overall, the significant interacting latent factors are far better at capturing the 
molecular basis of clonal expansion than individual canonical markers previously reported in the 
literature (Figs. 4h and i). While the individual markers all recapitulate well-known trends (Lag3, 
Tigit, Pdcd1 and Cd200 are higher in expanded cells while Sell and Ccr7 are lower in 
unexpanded cells), the individual univariate relationships are weak (Fig. 4h).  However, the 
significant latent factors correctly encapsulate additive effects and provide clear stratification by 
extent of clonal expansion. This analysis too provides support to our hypothesis that SLIDE 
captures true context-specific biological group structure i.e., beyond the overall multivariate 
model, each individual context-specific group (latent factor) has meaningful information (both in 
terms of prediction and inference) regarding the extent of clonal expansion. 
 
Finally, to further validate and contextualize discoveries made by SLIDE, we analyzed scRNA-
seq data from an independent recent study35 that had identified cell-specific markers of disease 
progression in T1D. Several key markers indeed followed the same trend (Fig. 4j) in the other 
study, confirming the robustness of our findings. However, importantly, not all relationships were 
the same as our markers reflect the extent of clonal expansion (a cellular phenotype) while the 
study identified markers of T1D disease progression (a related but different organismal 
phenotype). Overall, SLIDE is able to identify highly context-specific markers of clonal 
expansion of CD4 T cells in a NOD model of T1D. 
 
 
Discussion 
 
With the rapid growth of technologies for deep profiling, there has been a deluge of high-
dimensional datasets quantifying different facets of multi-scale multi-modal biological 
responses. There has been a significant investment in the development and application of 
statistical techniques for these high-dimensional datasets, but most of the methods have 
focused solely on prediction. Methods such as black-box deep learning approaches or 
classification/regression techniques based on higher-order embeddings are often highly 
accurate but are typically uninterpretable. Thus, they are useful in contexts such as clinical 
decision making (e.g., predicting disease severity/outcome), but provide very little or no insights 
into actual mechanisms of complex molecular, cellular or organismal phenotypes.  
 
To address these key challenges, here we present SLIDE, an interpretable latent factor 
regression-based machine learning approach for ubiquitous biological discovery from high-
dimensional multi-omic datasets. Unlike recent approaches that employ clever heuristics but 
lack statistical guarantees, SLIDE comes with rigorous guarantees regarding identifiability of the 
latent factors and corresponding inference. SLIDE can take into account complex non-linear and 
hierarchical relationships. The identifiability guarantees of SLIDE given it a significant edge over 
other modern techniques (e.g., variational autoencoders) that incorporate non-linear 
relationships, but are very sensitive to parameter initialization1.  Further, most current state-of-
the-art methods attempt to control FDR primarily through cross-validation and permutation 
testing. In addition to employing cross-validation and permutation testing, SLIDE creatively 
adapts knockoffs, an ultra-modern method for FDR control to identify significant standalone and 
interacting latent variables and their corresponding interactors. Also, to handle the complexity of 
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high-dimensional datasets, SLIDE uses a multi-stage adaptation of knockoffs that includes 
runtime optimization feature space partitioning. SLIDE is also compatible with all pre-processing 
and batch-effect correction methods and/or technological-platform-specific analysis tools, 
because it makes no assumptions regarding data-generating mechanisms. Finally, SLIDE 
provides prediction better than or comparable to several state-of-the-art approaches, and 
inference that none of these techniques provide. Thus, unlike most methods, SLIDE provides 
inference in addition to, and not at the cost of predictive performance.  
 
In addition to the wide array of conceptual and methodological innovation, SLIE also uncovers 
several novel biological mechanisms. In the analyses of transcriptomic datasets from SSc 
patients, in addition to recapitulating previously published markers15-20, we discovered several 
novel functional states underlying SSc pathogenesis. These include a previously unappreciated 
role of keratinocytes and a novel HLA-centric latent factor and its cross talk to myeloid and 
fibroblast cells. In the analyses of latent factors underlying clonal expansion of CD4 T cells in 
T1D, SLIDE recapitulated well-known activation markers and inhibitory receptors22, but 
converged on several novel signatures of naïve and memory states. Critically, the inference is 
multi-scale – both at the level of the overall model and individual context-specific groups (latent 
factors). Canonical approaches focused on gene lists do not have group information at all, while 
pathway-centric approaches have group information that is context-independent and hence 
often irrelevant in specific scenarios. This strengthens the interpretability of the model and 
provides more accurate guidance for potential downstream analyses and experimentation. 
Thus, SLIDE is truly a first-in-class interpretable machine learning framework for biological 
discovery. 
 
 

Methods 

Initial Latent Factor Discovery (LFD) Framework 
 
The same LFD framework is employed for all three analyses presented in this work considering 
all linear relationship between latent factors and the corresponding dependent variable. The 
selection of significant standalone and interacting latent factors for each dataset using SLIDE is 
described in detail below. We first perform FDR thresholding on the covariance matrix, followed 
by the optimization of two key hyperparameters (delta and lambda) using k fold cross validation. 
The delta parameter controls the number of latent factors, while the lambda parameter has an 
impact on the sparsity of allocation matrix of latent factors. Considering the large and 
continuous search space of delta and lambda, we perform the search in multiple steps and 
ranges. The first step of the framework performs a coarse grid search of delta in four different 
numerical ranges: 0 – 0.001, 0.001 – 0.01, 0.01 – 0.1 and 0.1 – 1. The subsequent models 
utilize the most optimal delta within each range and identify the final delta using cross-validation 
and permutation testing. Once an optimal delta has been identified, lambda is tuned using a 
coarse grid search coupled to cross-validation and permutation testing.  
 
Simulations 
 
The simulation aimed to evaluate model performance on different values of feature size (p) and 
sample size (n) with and without interaction terms.  The numbers of latent variables (K), 
significant standalone and significant interacting latent variables were set 100, 2 and 5 
respectively. For the models with no interactions, the number of interacting latent factors was 
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set to 0. For varying features, we fixed the number of observations at 300. For simulations that 
have a varying n, we fixed the number of features to 1,000. To generate the simulated data, R 
package mvnorm was utilized to randomly generate datapoints K times, where K represents the 
number of latent factors. 
For the model with interaction terms, the dependent variable is generated using equation 2 with 
coefficients generated randomly from standard normal distributions. 
 
Analyses of transcriptomic profiles in SSc patients 
 
We analyzed scRNA-seq data from 24 previously described SSc patients where 10 of these 
patients were treated with Tofacitnib for 24 weeks. Standard 10X Genomics sequencing pipeline 
was used including cellranger. The aligned samples were then normalized and clustered with 
Seurat. We used R (version 4.00) for the data analysis. The Seurat (R package version 3.2.2) 
was adopted for cell population identification and visualization. To transform the 24 scRNA-seq 
samples into the pseudobulk fashion, we utilized the “Average Expression Function” to reduce 
the cell dimension by calculating the average expression of each gene across all cells in each 
cell-type specific cluster per patient. Clusters with fewer than 20 cells on average across all 
patients were excluded. 18 clusters passed the filtration process and the top 50 highest 
variance genes across patients of each cluster were chosen in an unsupervised manner as 
features for the subsequent analysis.  
 
Post pre-processing, for the 24 untreated samples, the input data for the analysis is a sample by 
gene matrix with dimensions of 24 by 804. Using the LFD framework with 10-fold CV and 20 
replicates, optimal delta and lambda values were identified (Figs S1a and S1b). With optimal 
parameter values set at 0.6 and 1 for delta and lambda respectively, the final model produced 
120 latent factors. We then used SLIDE to identify the significant standalone latent factors using 
the iterative knockoff procedure as described above. Corresponding parameters of SPEC (a 
frequency-based parameter to quantify the stability of stages 1-2 of the multi-stage knockoff 
approach), FDR, F (feature split size) are set to 0.3, 0.1 and 100, respectively. The analysis 
resulted in 5 significant standalone factors and 4 significant interacting latent factors. 5-fold 
cross-validation with 50 replicates was used to compare the predictive power SLIDE with ER, 
LASSO, PHATE, PLSR, and PCR. Since PHATE is an unsupervised approach, we coupled it to 
a standard regression model (i.e., we ran Regression on PHATE1 and PHATE2). Glmnet and 
PhateR packages were used to build the LASSO and PHATE models, respectively. The PLS 
package was employed for PCR and PLSR model construction.   
 
To assess linear and non-linear relationships of genes in the significant latent factors with 
MRSS, we used Spearman correlation and maximal information coefficient (MIC) respectively. 
 
For the tofa-treated SSc analysis, post quality control, normalization and clustering using 
Seurat, we matched the cluster identities to the untreated samples. To transform the scRNA-seq 
dataset to the pseudo-bulk fashion, we used the same averaging calculation mentioned above 
and feature matched with the untreated analysis resulted in the input sample by gene matrix 
with dimensions of 10 and 728. Using the LFD framework, and LOOCV, a delta of 0.009 (175 
latent factors) and a Lamba of 1 were identified as optimal hyperparameters. SLIDE was then 
applied to identify significant standalone and interacting latent factors. The SLIDE parameters of 
SPEC, FDR, and F were set to 0.3, 0.1 and 100 respectively. The final SLIDE model produced 1 
significant standalone latent factor and 3 significant interacting latent factors.  
 
Analyses of spatial RNA-seq data in lymph nodes 
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25 µg of LPS-low HDM (Stallergenes-Greer Pharmaceuticals) in 25 µl of sterile 1X PBS was 
delivered intranasally under anesthesia to C57BL/6 mice (Jax Laboratory) daily for 3 days. 
Mediastinal lymph nodes (mLN) were isolated on day 4, snap frozen and embedded in chilled 
optimal cutting temperature (OCT) compound (Tissue-Tek) on dry ice, and stored at -80 °C. 
MLN samples were cryosectioned (10 µm) at -20 °C on a cryostat (Leica) and mounted directly 
onto the 6.5 x 6.5 mm capture areas of a single Visium Spatial Gene Expression slide (10X 
Genomics). The slides were sealed in individual 50 ml Falcon tube at -80 °C until further 
processing according to the manufacturer’s protocol (10x Genomics). The Visium Spatial Tissue 
Optimization Slide & Reagent kit (10x Genomics) was used to determine optimal 
permeabilization timing of 18 min. Immunofluorescence staining was done using “Methanol 
Fixation, Immunofluorescence Staining & Imaging for Visium Spatial Protocols (CG000312)”. 
Slides were stained with anti-B220 eFluor 450 (RA3-6B2, eBioscience), anti-CD4 Alexa Fluor 
488 (G.K.1.5, Biolegend) and anti-CD11c Biotin (N418, Biolegend) followed by secondary 
detection with streptavidin Alexa Fluor-647. Images were acquired using EVOS™ M7000 
Imaging System (AMF7000) under the Visium assay mode. Tissue sections were then 
permeabilized, and mRNA molecules within cells captured by poly (dT) sequence on the slide 
surface, followed by on slide reverse transcription to generate cDNA. cDNA is amplified and 
further processed into sequencing libraries according to the manufacturer’s protocol (10X 
Genomics).  Libraries were sequenced on an Illumina Nextseq2000 at 50,000 read pairs per 
spot covered by tissue. Sequencing results were initially processed by spaceranger (10X 
Genomics) to align sequencing data with the image. Sequencing results were initially processed 
by spaceranger (10X Genomics) to align sequencing data with the image. Here, we filtered the 
genes more than 900 zeros threshold which resulted in matrix of 1932 genes by 3779 regions.   
 
Seurat was employed for the quality control, normalization and clustering analyses. By 
overlaying the UMAP clusters and the fluorescent microscopy plot (Fig 3b), the UMAP clusters 
were assigned to the three different cell types: B-Cells, Boundary Cells and CD4/DCs. The 
regions that belong to the same cell types were pooled across the technical replicates. Genes 
that are not expressed in at least 900 regions were filtered to control the sparsity. Using the LFD 
framework with 10-fold cross-validation and 20 replications the optimal value for delta parameter 
was obtained as 0.049 with 21 latent variables (Fig. S2a). As described previously, 10-fold 
cross-validation with 20 replications was performed for optimal parameter tuning (Figs. S2a and 
S2b). SLIDE was applied to identify factors underline immune cell partitioning by spatial 
localization. We set an FDR threshold at 0.1 for each knockoff replicate and F = 21 for this 
dataset. 2 significant standalone latent factors and 5 significant interacting latent factors were 
identified.  

scRNA-seq and TCR-seq of islet infiltrating CD4 T cells 

NOD mice were euthanized by CO2 asphyxiation and immediately dissected for pancreas 
perfusion. Pancreas perfusion was performed under a dissecting Zeiss microscope. Pancreatic 
duct was clamped using surgical clamps and 3 ml of 600 U/ml Collagenase dissolved in HBSS 
was injected using a 30G needle. Perfused pancreata were harvested and incubated at 37°C for 
30 min. After the incubation, HBSS with R10 was added to quench collagenase. After washing 
twice with HBSS+R10, the tissue was plated on a 10 cm plate, individual islets were picked 
using a micropipettor. Islets were then incubated in dissociation buffer, centrifuged and, 
resuspended in the staining mix (1:500 dilution of anti-Thy1.2-BV605 + 1:500 dilution of 
Live/Dead-APC-Cy7, and 1:100 dilution of cell hashing anti-mCD45 TotalSeq-C antibodies 
(Biolegend)). After staining, the cells were resuspended in PBS+0.04% BSA and sorted on BD 
FACS Aria III sorter. After sorting the cells, they were counted and processed for scRNAseq. 
Cells were processing using 10x 5’ single cell gene expression kit v3 in a Chromium controller 
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according to the manufacturer’s protocols. V(D)J enrichment was done using the single cell 5’ 
VDJ enrichment kit according to the manufacturer’s protocols. Libraries were sequenced on 
HiSeq4000 (Novogene Inc) with a 70:20:10 mix for gene expression:VDJ:hashing libraries as 
explained in greater detail in accompanying manuscript (Zdinak et al).  

Sequence data were downloaded and aligned to the mouse genome (Mm10) using cellranger 
(10x Genomics Inc). TCR annotation was performed using cellranger vdj using mouse GRCm38 
assembly. All three timepoints were sequenced and processed separately. Cellranger and 
cellranger vdj output files were used as inputs in Seurat for normalization, scaling, and 
dimensionality reduction. The packaged scRepertoire was used for TCR clonotype calling and 
analyses. The data were normalized using NormalizeData and scaled using ScaleData 
functions in Seurat. The scRepertoire functions combineTCR and combineExpression were 
used to add TCR clonotypes to each cell. HTODemux function in Seurat was used to 
demultiplex cell hashes and assign the correct mouse identity to each cell. At this point, all three 
timepoints were merged in Seurat using the merge function. After merging, integration was done 
using FindIntegrationAnchors and IntegrateData functions. Principle component analysis was 
performed using RunPCA. Top 20 principal components were used for Uniform Manifold 
Approximation and Projection, followed by cluster identification using FindNeighbors and 
FindClusters. CD4+ T cells were subsetted using FeatureScatter and CellSelector functions, 
and reclustered. Cluster markers were defined by FindAllMarkers function. Clonotype data were 
sorted according to expansion and exported as a csv file. UMAP representations with 
clonotypes were generated using highlightClonotypes function in scRepertoire. Differentially 
expressed genes were identified using FindMarkers function using DESeq2 statistics and 
represented using EnhancedVolcano function. After obtaining scRNA-seq and TCR-seq data on 
islet-derived cells in a non-obese diabetic (NOD) mouse model and analyzed data through the 
standard 10X Genomics pipeline. We labeled cells based on their clonal expansion stages 
followed by the post processing of the scRNA-seq data in R (4.1.0) using Seurat (R package, 
version 3.2.2). The columns representing genes and rows representing cells are filtered based 
on 1200 threshold, meaning that if the sparsity exceeds 1200, the cell row or gene column will 
be removed. The SLIDE input matrix was finalized with 1776 genes and 2482 cells. 

The LFD framework is first utilized to discover latent factors. The input data is a cell by gene 
matrix, consisting of 2,484 cells and 1,776 genes. As described previously, 10-fold cross-
validation with 20 replications was performed for optimal parameter tuning (Figs. S2a and b). 
The final model constructed by the LFD framework using delta as 0.0912 and lambda as 1 
discovered 40 latent factors. We then performed SLIDE to identify significant interacting latent 
factors underlying differences in clonal expansion in CD4 T cells. We set the SLIDE parameter 
SPEC at 0.2, FDR at 0.1 and feature partition size at 40, resulting in the identification of two 
significant standalone and two significant interacting latent factors. 

Code and Data Availability 

All code and data supporting all analyses in the manuscript are available at 
https://github.com/jishnu-lab/SLIDEpre and at https://github.com/jishnu-lab/SLIDE. 

 

Figure Legends 
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Figure 1. SLIDE – a novel interpretable machine learning method for Significant Latent 
Factor Interaction Discovery and exploration 

a) Schematic illustrating the vast array of datasets on which SLIDE can be applied and the 
key advances over existing analytical frameworks for the analyses of these datasets 

b) Conceptual overview of the SLIDE algorithm. 
c) Schematic summarizing the implementation and different steps in SLIDE. 
d) Comparison of the predictive performance of ER, LASSO, PCR, PLSR and SLIDE on 

simulated datasets across a range of number of features without (left sub-panel) and 
with (right sub-panel) interaction terms. 

e) Comparison of the predictive performance of ER, LASSO, PCR, PLSR and SLIDE on 
simulated datasets across a range of sample sizes without (left sub-panel) and with 
(right sub-panel) interaction terms. 

Figure 2. SLIDE uncovers novel interacting latent factors that explain SSc pathogenesis.  

a) Schematic summarizing scRNA-seq data from SSc patients used to infer mechanisms of 
SSc pathogenesis MRSS. 

b) Identities of the cellular clusters used in the analyses as defined by the top cell-type-
specific DEGs.  

c) Spearman correlations between true MRSS and MRSS predicted using different 
methods – SLIDE (spec = 0.1), ER, LASSO, PLS, PCR and PHATE Regression. Model 
performance is measured in a k-fold cross-validation framework with permutation testing. 
** indicates P < 0.01. 

d) Significant interacting latent factors identified by SLIDE. Green boxes denote significant 
standalone latent factors, and purple boxes denote significant interacting latent factors. 
The color of the gene corresponds to the cell type. Genes on the left and right of the 
dashed line have negative and positive correlations with MRSS respectively. 

e) Performance of the real model relative to a) the distribution of the performance of 
models built using size-matched random latent factors (blue) and b) the distribution of 
the performance of models built using the actual significant standalone latent factors and 
size-matched random interacting latent factors (green). 

f) Linear Spearman correlations and non-linear relationships (quantified using MIC) 
between key components of the latent factors and MRSS. 

g) Scatter plot of MRSS and gene expression of select key markers of SSc severity that 
have a significant linear relationship alone with MRSS. 

h) Scatter plot of MRSS and gene expression of select key markers of SSc severity that 
have a significant linear as well as a significant non-linear relationship with MRSS. 

i) Scatter plot illustrating the relationships between each significant latent factor (from d) 
and MRSS.  

j) Schematic summarizing a recent clinical trial where SSc patients are treated with 
tofacitinib. scRNA-seq data and changes in MRSS on treatment are available for these 
patients. Significant standalone and interacting latent factors underlying changes in 
MRSS on treatment are inferred. 

Figure 3. SLIDE uncovers latent factors underlying immune cell partitioning by 3D 
localization.  

a) Schematic summarizing scRNA-seq data from SSc patients used to infer mechanisms of 
SSc pathogenesis MRSS. 
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b) KNN clustering of the spatial regions overlayed with microscopic images of three 
technical replicates of murine lymph node. Blue dye represents B-cells. Green dye 
represents CD4 T-cells and dendritic cells. Boundaries are categorized as boundary 
cells.  

c) Spearman correlations between true spatial region and spatial region predicted using 
different methods – SLIDE (spec = 0.1), ER, LASSO, PLS, PCR and PHATE 
Regression. Model performance is measured in a k-fold cross-validation framework with 
permutation testing. ** indicates P < 0.01. 

d) Significant interacting latent factors identified by SLIDE. Green boxes denote significant 
standalone latent factors, and purple boxes denote significant interacting latent factors. 
The color of the gene corresponds to the cell type. Genes on the left and right of the 
dashed line have negative and positive correlations with spatial region respectively. 

e) Performance of the real model relative to a) the distribution of the performance of 
models built using size-matched random latent factors (blue) and b) the distribution of 
the performance of models built using the actual significant standalone latent factors and 
size-matched random interacting latent factors (green). 

f) Linear Spearman correlations and non-linear relationships (quantified using MIC) 
between key components of the latent factors and spatial region. 

g) Boxplots illustrating the distributions of each latent factor across spatial regions. 

Figure 4. SLIDE elucidates novel interacting latent factors underlying clonal expansion in 
T1D.  

a) Schematic summarizing scRNA-seq and TCR-seq data from NOD mice used to infer 
mechanisms underlying clonal expansion of CD4 T cells. 

b) UMAP visualization of the three stages of clonal expansion.  
c) Spearman correlations between true stage of clonal expansion and stage of clonal 

expansion predicted using different methods – SLIDE (spec = 0.1), ER, LASSO, PLS, 
PCR and PHATE Regression. Model performance is measured in a k-fold cross-
validation framework with permutation testing. ** indicates P < 0.01. 

d) Significant interacting latent factors identified by SLIDE. Green boxes denote significant 
standalone latent factors, and purple boxes denote significant interacting latent factors. 
The color of the gene corresponds to the cell type. Genes on the left and right of the 
dashed line have negative and positive correlations with extent of clonal expansion 
respectively. 

e) Performance of the real model relative to a) the distribution of the performance of 
models built using size-matched random latent factors (blue) and b) the distribution of 
the performance of models built using the actual significant standalone latent factors and 
size-matched random interacting latent factors (green). 

f) Volcano plots illustrating genes in the significant latent factors 
g) Linear Spearman correlations and non-linear relationships (quantified using MIC) 

between key components of the latent factors and extent of clonal expansion. 
h) Dot-plots illustrating frequency (circle size) and median expression (color intensity) of 

well-known markers of markers of T cell activation, exhaustion and inhibitory receptors 
at the 3 stages of clonal expansion. Frequency and expression calculated using data 
from our study.  

i) Boxplots illustrating the distributions of each latent factor across cells at the 3 different 
stages of clonal expansion. 

j) Dot-plots illustrating frequency (circle size) and median expression (color intensity) of 
well-known markers of markers of T cell activation, exhaustion and inhibitory receptors 
at the 3 stages of clonal expansion. Frequency and expression calculated using data 
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from Unanue and colleagues. Schematic also summarizes design of study from Unanue 
and colleagues. 

Supplementary Figure Legends 

Figure S1.  Accompanies Figure 2 

a) Spearman correlations between true MRSS and the predicted MRSS using different 
delta values in the LFD framework.  

b) Spearman correlations between true MRSS and the predicted MRSS using different 
lambda values in the LFD framework. 

c) Spearman correlations between true MRSS and MRSS predicted using different 
methods – SLIDE (spec = 0.3), ER, LASSO, PLS, PCR and PHATE Regression. Model 
performance is measured in a k-fold cross-validation framework with permutation testing. 
** indicates P < 0.01. 

d) Spearman correlations between true MRSS and MRSS predicted by ER (size-matched 
latent factors) and SLIDE.  

e) Performance of the real model relative to a) the distribution of the performance of 
models built using size-matched random latent factors (blue) and b) the distribution of 
the performance of models built using the actual significant standalone latent factors and 
size-matched random interacting latent factors (green). 

 

Figure S2. Accompanies Figure 3 

a) Spearman correlations between true cell type region partitioning and predicted cell type 
region partitioning using different delta values in the LFD framework.  

b) Spearman correlations between true cell type region partitioning and predicted cell type 
region partitioning different lambda values in the LFD framework.  

c) Spearman correlation between true cell type region partitioning and cell type region 
partitioning predicted using different methods – SLIDE (spec = 0.2), ER, LASSO, PLS, 
PCR and PHATE Regression. Model performance is measured in a k-fold cross-
validation framework with permutation testing. ** indicates P < 0.01 

d) Spearman correlations between true MRSS and MRSS predicted by ER (size-matched 
latent factors) and SLIDE.  

e) Performance of the real model relative to a) the distribution of the performance of 
models built using size-matched random latent factors (blue) and b) the distribution of 
the performance of models built using the actual significant standalone latent factors and 
size-matched random interacting latent factors (green). 

f) Linear Spearman correlations and non-linear relationships (quantified using MIC) 
between key components of the latent factors and spatial region.  

 

Figure S3. Accompanies Figure 4 

a) Spearman correlation between true CD4 clonal expansion and predicted CD4 clonal 
expansion using different delta values in the LFD framework.  
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b) Spearman correlation between true CD4 clonal expansion and predicted CD4 clonal 
expansion different lambda values in the LFD framework. 

c) Spearman correlation between true clonal expansion and clonal expansion predicted 
using different methods – SLIDE (spec = 0.3), ER, LASSO, PLS, PCR. Model 
performance is measured in a k-fold cross-validation framework with permutation testing. 
** indicates P < 0.01 

d) Spearman correlations between true MRSS and MRSS predicted by ER (size-matched 
latent factors) and SLIDE.  

e) Performance of the real model relative to a) the distribution of the performance of 
models built using size-matched random latent factors (blue) and b) the distribution of 
the performance of models built using the actual significant standalone latent factors and 
size-matched random interacting latent factors (green). 

f) Linear Spearman correlations and non-linear relationships (quantified using MIC) 
between key components of the latent factors and CD4 clonal expansion.  
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