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Abstract

Modern multi-omic technologies can generate deep multi-scale profiles. However, differences in
data modalities, multicollinearity of the data, and large numbers of irrelevant features make the
analyses and integration of high-dimensional omic datasets challenging. Here, we present
Significant Latent factor Interaction Discovery and Exploration (SLIDE), a first-in-class
interpretable machine learning technique for identifying significant interacting latent factors
underlying outcomes of interest from high-dimensional omic datasets. SLIDE makes no
assumptions regarding data-generating mechanisms, comes with theoretical guarantees
regarding identifiability of the latent factors/corresponding inference, outperforms/performs at
least as well as state-of-the-art approaches in terms of prediction, and provides inference
beyond prediction. Using SLIDE on scRNA-seq data from systemic sclerosis (SSc) patients, we
first uncovered significant interacting latent factors underlying SSc pathogenesis. In addition to
accurately predicting SSc severity and outperforming existing benchmarks, SLIDE uncovered
significant factors that included well-elucidated altered transcriptomic states in myeloid cells and
fibroblasts, an intriguing keratinocyte-centric signature validated by protein staining, and a novel
mechanism involving altered HLA signaling in myeloid cells, that has support in genetic data.
SLIDE also worked well on spatial transcriptomic data and was able to accurately identify
significant interacting latent factors underlying immune cell partitioning by 3D location within
lymph nodes. Finally, SLIDE leveraged paired scRNA-seq and TCR-seq data to elucidate latent
factors underlying extents of clonal expansion of CD4 T cells in a nonobese diabetic model of
T1D. The latent factors uncovered by SLIDE included well-known activation markers, inhibitory
receptors and intracellular regulators of receptor signaling, but also honed in on several novel
naive and memory states that standard analyses missed. Overall, SLIDE is a versatile engine
for biological discovery from modern multi-omic datasets.
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Introduction

Modern multi-omic technologies can generate deep multi-scale profiles. However, differences in
data modalities, multicollinearity of the data, and large numbers of irrelevant features make the
analyses and integration of high-dimensional omic datasets challenging. For example,
multicollinearity can increase the variance of regression coefficients and lead to deflation of
corresponding P values®. This is a significant barrier to meaningful inference in a regression
setting for high-dimensional multi-collinear data. Further, human biological systems are
complex, multi-factorial and organized hierarchically, with complex interaction rules at each
hierarchy. A linear model is often inadequate at capturing relevant higher-order relationships in
such a system. Finally, while recent methods developed by us*’ and others®*° have harnessed
these high-dimensional multi-scale multi-modal datasets to predict different outcomes/groups of
interest, they do not provide meaningful inference beyond prediction. In fact, approaches that do
provide insights into the underlying mechanistic bases of outcome are tailored primarily for low-
dimensional datasets, and often trade predictive power for inference®”.

To address these, we present SLIDE, a novel data-distribution-free approach to analyze high-
dimensional multi-omic datasets and uncover latent factors that drive the outcome of interest
(Fig. 1a). SLIDE makes no assumptions regarding the distribution of the underlying data as it
builds on a unique latent-factor regression framework developed by us'® 2. It takes into account
an extremely large search space of relationships to converge on a very small subset of
biologically relevant and actionable latent factors. Critically, SLIDE incorporates both linear and
non-linear relationships, including complex hierarchical structures. It uncovers significant
interacting latent factors in diverse contexts that span scales of organization from
cellular/molecular phenotypes (e.g., extent of clonal expansion of CD4 T cells) to organismal
phenotypes (e.g., disease severity of patients with diffuse systemic sclerosis). The discovery of
these relationships is also coupled to rigorous FDR control, something that is extremely difficult
to do in a large search space of non-linear/hierarchical relationships. Here, this is made possible
using our unique analytical framework that creatively adapts ultra-modern methods for FDR
control*. SLIDE comes with provable statistical guarantees regarding identifiability of the latent
factors, corresponding inference of significant interacting latent factors. This is fundamentally
different from several methods that have been published recently that rely on clever heuristics
but do not have formal statistical guarantees or work only when strong biological priors are
available. SLIDE has rigorous statistical guarantees, recapitulates known biological
mechanisms and helps uncover novel biological mechanisms.

We tested the predictive performance of SLIDE on a range of datasets, and it outperformed
several state-of-the-art approaches. Further, it provided novel inference not afforded by any
existing approaches, thus being one of the only methods that simultaneously provides
meaningful inference for high-dimensional data without compromising on predictive power.
When analyzing datasets from SSc patients to elucidate the basis of SSc pathogenesis, SLIDE
recovered altered transcriptomic states in myeloid cells and fibroblasts, a well elucidated basis
of SSc disease severity">?°. But it also identified an unexplored keratinocyte-centric signature
(validated by protein staining), and a novel mechanism involving an interaction between the
altered transcriptomic states in myeloid cells and fibroblasts with HLA signaling in macrophages.
This mechanism has strong support in recent genetic association analyses®’. In the
characterization of latent factors underlying clonal expansion of CD4 T cells, SLIDE
recapitulated well known inhibitory receptors and markers of activation/exhaustion including
Lag3, Pdcdl (Pd1), Tigit and Cd200?% that standard differential expression (DE) analyses would
have picked up. However, it also identified several novel markers that standard DE analyses
would have missed. This includes novel gene sets and functional modules that have both
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significant linear and non-linear relationships to clonal expansion. Overall, SLIDE is a first-in-
class approach for the discovery of significant interacting latent factors from high-dimensional
multi-modal datasets that help infer novel biological mechanisms. It is an engine for biological
discovery from modern multi-omic datasets.

The SLIDE framework

SLIDE is an interpretable latent factor regression approach (Fig. 1b) that seeks to identify
significant latent factors that capture linear and nonlinear relationships (up to pairwise
interactions) between observed data (X, typically high-dimensional, multi-collinear) and the
response/group/outcome of interest (Y) as presented in equations 1 and 2.

X=AZ+E (1)
y=2"f+ z CiZiZ; + € (@)
i<

Given that X,,,,, is @ matrix of observables, where n and p represent the number of samples and
features, respectively. The initial step (Fig. 1c) is to use our previously described LOVE
approach®®, to decompose the observable X into its constituent components of Apyx and Zgy,,
with an error term of E. Here, A is the allocation matrix and represents the membership of each
feature to a latent factor. The g € R¥*! and Cijis the interaction effect between two latent
variables of Zi and Zj. This approach comes with identifiability guarantees regarding inference
of the latent factors without making any assumptions regarding data-generating mechanisms*®.

The next step in SLIDE (Fig. 1c) is identifying significant latent factors using a multi-stage
adaptation of an ultra-modern framework for FDR-controlled variable selection — knockoffs™.
This approach is based on differences or lack thereof between true and fake (knockoff)
variables. These knockoff variables should be orthogonal to the response variable. And these
variables preserve the covariance structure (X). These variables are also approximately
orthogonal to their original variables with deviation magnitude of 1-s. This means that the
correlation between the original variable Z; and the knockoff variable Z, is 1-s, while the desired
value is zero with s=1.
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While knockoffs have typically been used on observed variables, we used it on the latent
factors. Here, the variable z; is statistically significant if it considerably outperforms its knockoff
Z; based on test statistics. In this study we used W, as the test statistic of interest:

W; = max(Mj,ﬁ]).sgn(Mj — I\'/T]) (6)
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Here max (M,-,I\'?I;) is defined as the maximum value of the L1 regularization hyperparameter A

corresponding to which the actual variable (M) and its corresponding knockoff (ﬁ]) are

incorporated into the corresponding generalized linear model. A higher value of the
hyperparameter A indicates higher variable importance i.e., even with more stringent
regularization the feature stays on in the model. Thus, W; (higher scores) will select for
important latent factors with matched unimportant knockoffs.

Further, our adaptation of the knockoff approach is a multi-stage stage procedure (Fig. 1c). In
stage 1, the latent factors are divided into smaller sets and the knockoff technique applied to
each of these sets. This initial selection procedure helps shortlist putative significant latent
factors for the entire dataset. In stage 2, these putative significant latent factors from each set
undergo another round of selection via the Knockoff algorithm to converge on a set of
standalone significant latent factors. We repeat these 2 stages multiple times to identify a set of
stable standalone significant latent factors (Methods and Supplementary Methods).

In stage 3, we use hierarchical OR logic to identify significant interactors of the standalone
significant latent factors i.e., each interaction term has at least one standalone significant latent
factor. For each of the standalone significant latent factors, the interaction terms are identified
by pairing it with the rest of the latent factors. The knockoff procedure is applied again to extract
the significant interaction terms. In high dimensional datasets, where the number of features is
much greater than the number of samples, the number of selected linear and non-linear latent
factors might easily outnumber the number of observations. To account for this, we calculate the
embedding of each significant latent variable and its subsequent interaction terms to a vector.
Hierarchical information of the latent variable and its interactions is potentially preserved in
these vectors. Therefore, the overall model quality can be attained by regressing the embedded
features on the response variable with a smaller number of features than observables through
cross-validation (Supplementary Methods).

First, using simulations (Methods), we compared the performance of SLIDE was compared to
that of the state-of-the-art methods including ER'?, LASSO?, Partial Least Squares Regression
(PLSR)**, and Principal Components Regression (PCR)?* with and without interactions terms
(Figs. 1d and 1le). SLIDE performs as well as state-of-the-art approaches when there are no
interaction terms present (Figs. 1d and 1e). In the presence of interaction terms, it consistently
outperforms these methods (Figs. 1d and 1e). Importantly, all approaches other than SLIDE and
LASSO, use the full model (all features/clusters) for prediction. However, SLIDE only uses a
small number of prioritized latent factors for prediction and yet achieves the same predictive
power. It also provides inference not afforded by any other method including LASSO.

SLIDE uncovers novel interacting latent factors that explain SSc pathogenesis

Using SLIDE, we first sought to discover interacting latent factors underlying SSc disease
severity. We analyzed scRNA-seq data from 24 SSc subjects™ %° across the severity spectrum
(Fig. 2a), where disease severity was quantified using the Modified Rodnan Skin Score (MRSS).
ScRNA-seq data from 24 SSc patients all using the same V2 chemistry was processed using a
standard analytic pipeline. This consisted of alignment via cellranger and dimensionality
reduction and clustering using Seurat (Methods). We identified 35 unique clusters (Fig. 2b). For
downstream analyses, we filtered out clusters that contained less than 20 cells in any of the 24
subjects (Fig. 2b). For each of the retained clusters, we tried a range of feature engineering
approaches and converged on a cell-type-specific pseudo-bulk average of the most variable
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genes, where variance was calculated in an unsupervised fashion without using the disease
severity labels in any form (Methods). Next, we applied SLIDE on these cell-type-specific
transcript abundances to predict SSc severity and infer corresponding significant interacting
latent factors of outcome (Figs. Sla and S1b). SLIDE was able to accurately predict SSc
severity and outperformed or 3/5 of our benchmarks — PLS?*,, PCR? and Phate-Regression
(linear regression coupled to PHATE?") in terms of prediction accuracy (Figs. 2c and Sic).
LASSO? and ER' (developed by us) were the only methods with comparable prediction
performance (Fig. 2c). However, LASSO only identified a small set of predictive biomarkers that
were uninformative of the actual molecular basis underlying SSc pathogenesis. On the other
hand, SLIDE identified 9 significant latent factors that could be used to infer the mechanistic
basis of SSc pathogenesis. Further, while the performance of SLIDE and ER were comparable,
ER used the entire set of latent factors to predict outcome, while SLIDE only used 9. Thus,
SLIDE provides the same predictive power as ER but stronger inference with fewer latent
factors. Further, as a reference, if we used only the 9 most significant latent factors from ER
(chosen based on the linear regression coefficients) for prediction, it would significantly
underperform SLIDE (Fig S1d).

The 9 latent factors uncovered by SLIDE spanned a range of cell-intrinsic and cell-extrinsic
circuits (Fig. 2d). These factors encompassed altered transcriptomic states that have been
characterized and are widely recognized to be critical in SSc pathogenesis. These states
include modulated inflammatory states/signaling in myeloid cells and fibroblasts, including
SFRP2 fibroblasts, well-known bases of SSc pathogenesis (Fig. 2d) *%. Other canonical
mechanisms recapitulated by our model includes cross-talk between interferon signaling and
myeloid inflammatory signaling (Fig. 2d)**%®. Key genes that contribute to these altered
transcriptomic states include cytokines and chemokines (e.g., CCL19), signaling molecules
(e.g., WIF1), interferon signaling genes (e.g., IGFBP5), components of mechano-transduction
(e.g., THBS1) and alarmins/damage sensing molecules (e.g., S100A9). These agree well with
previous studies by us and others™?°. However, in addition to recovering well-known
mechanisms, we converged on several novel mechanisms. The first involves a previously
unelucidated role of keratinocytes in SSc pathogenesis (Fig. 2d). We have recently validated
this keratinocyte functional signature by protein staining (in a separate manuscript in revision).
We also converged on another novel mechanism involving interactions (a key innovation of
SLIDE) between altered myeloid/endothelial cell inflammation and keratinocyte-fibroblast-
endothelial cell crosstalk. A key component of this interaction is the relationship between altered
HLA signaling and modulated cytokine/chemokine/interferon signaling (Fig. 2d). While our study
is the first to study this at the transcriptomic level, there is evidence for this mechanism in recent
genetic studies®.

Interestingly, while we had 5 standalone significant latent factors, the 4 interacting latent factors
provided additional information that was not encapsulated in the standalone factors. To formally
test how relevant this information is, we first analyzed the predictive power of a size-matched
set of random latent factors (Figs. 2e and Sle). The actual latent factors performed significantly
better than the random size-matched set of latent factors (Figs. 2e and Sle). Next, we
evaluated the quality of the interactors themselves by keeping the two actual standalone latent
factors fixed but shuffling the interactors (i.e., choosing a size-matched set of random
interactors for the actual standalone latent factors). Again, the performance of this model was
significantly lower than the performance of the actual model (Figs. 2e and Sle). This is an
especially stringent test as the standalone factors are highly informative themselves. Yet, not
having the correct interacting latent factors would decrease the prediction and corresponding
inference of mechanisms underlying SSc pathogenesis.
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To further dissect these 9 significant latent factors (standalone and interacting), we tested the
nature of relationships between the genes in these latent factors with MRSS. Interestingly, we
observed that while some well-described/canonical markers of SSc severity such as CCL19,
IGFBP5, WIF1, SAA1 and THBS1™? primarily in the SFPR2 fibroblasts and myeloid
compartments, had significant high linear correlations (quantified using Spearman correlations)
with MRSS, but almost no non-linear relationships with MRSS (Figs. 2f-2h). Further, several
other genes such as APOE, S100A9 have both significant linear and non-linear relationships
with MRSS (Figs. 2f-2h). Some of these are entirely novel, and others that have begun to be
characterized in SSc*>?. Finally, several have only non-linear relationships with MRSS (Fig. 2f-
2h). Most of these have been missed by previous approaches. Further, we evaluated the
relationships of each of the 9 latent factors with MRSS (Fig. 2i) and found significant
relationships between most individual latent factors and MRSS. This analysis suggests that
SLIDE captures true context-specific biological group structure i.e., beyond the overall
multivariate model, each individual context-specific group (latent factor) has meaningful
information (both in terms of prediction and inference) regarding SSc pathogenesis (Fig. 2i).
Canonical approaches focused on gene lists do not have group information at all, while
pathway-centric approaches have group information that is context-independent and hence
often irrelevant in specific scenarios.

To more rigorously test the actual causal nature of these identified latent factors, we moved to a
“human perturbation experiment” made possible by the fact that 10 of these 24 subjects had
recently been in a recent clinical trial with tofacitinib (tofa) (Fig. 2j)*®. Tofa is a IL6/JAK inhibitor®®
that led to a reduction in SSc severity of some patients but not others (Fig 2j). We used SLIDE
to identify significant interacting latent factors that underlie the reduction in disease severity
(change in MRSS from pre- to post). We hypothesized that if the identified latent factors were
indeed causal, it would capture relevant tofa-centric mechanisms that led to a reduction in SSc
severity (Fig. 2j). Further, we only had SSc scRNA-seq signatures 6 weeks post treatment i.e., it
was an early snapshot. However, the measured change in disease severity was 24 weeks post
treatment i.e., it reflected true response to outcome (Fig. 2j). SLIDE identified 3 significant
interacting latent factors underlying the response to tofa. These included an IL6-centric
cytokine-chemokine signaling latent factor in myeloid and fibroblasts and response to stress.
Remarkably, despite not incorporating any biological priors, SLIDE very accurately honed in on
the exact IL6-centric molecular mechanism?® (from thousands of transcriptomic features)
underlying tofa treatment, demonstrating its power in identifying true causal mechanisms from
complex high-dimensional datasets (Fig. 2j). And it was able to do so even at an early timepoint,
demonstrating the sensitivity of SLIDE in capturing subtle changes in the course of treatment.

SLIDE uncovers latent factors underlying immune cell partitioning by 3D localization

We then applied SLIDE to spatial transcriptomic datasets aiming to uncover latent factors
underlying 3D spatial partitioning of immune cells. Spatial RNA-seq using 10X Visium was
performed in a murine house dust mite model for studying allergy®® *. Specifically, animals
were treated intranasally with house dust mite for three consecutive days and mediastinal lymph
nodes were isolated from these animals followed by spatial RNA-seq (Fig. 3a, Methods). We
overlayed the clustering of the spatial regions with fluorescence microscopy images to
designate spatial labels of border, central and intermediate zones (Fig. 3b). We also observed
that the border regions were enriched for B-cells (blue) and the central regions for CD4 T cells
(green) and dendritic cells (pink, DCs) (Fig. 3b). Since SLIDE does not make any assumptions
regarding data-generating mechanisms, this tests the power of SLIDE on analyzing datasets
generated using ultra-modern technologies.


https://doi.org/10.1101/2022.11.25.518001
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.25.518001; this version posted November 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

SLIDE was able to accurately predict spatial labels, and outperformed PLS, PCR in terms of
prediction accuracy (Figs. 3c and S2a-2c). LASSO, PhateRegression and ER had comparable
prediction performance (Figs. 3c and S2c). However, LASSO and PhateRegression did not
provide any insights into the nature of immune cell partitioning by spatial region. SLIDE
identified 7 significant latent factors that could be used to infer the mechanistic basis of spatial
partitioning of the immune cells. Further, while the performance of SLIDE and ER were
comparable, ER used the entire set of latent factors to predict outcome, while SLIDE only used
7. Thus, SLIDE provides the same predictive power as ER but stronger inference with fewer
latent factors. Further, as a reference, if we used only the 7 most significant latent factors,
chosen by the highest linear regression coefficient, from ER for prediction, it would significantly
underperform SLIDE (Fig. S2d).

Interestingly, although SLIDE was only given spatial region labels, the identified latent factors
consisted of genes that mark B cells, CD4 T cells and DCs. This agrees well with the spatial
partitioning of immune cells that the fluorescence microscopy images provide us (Fig. 3d),
suggesting that SLIDE provides meaningful inference of the basis of immune cell partitioning by
spatial regions in lymph nodes. The 7 latent factors uncovered by SLIDE included markers that
represent multiple canonical functions including broad adaptive immune responses, antigen
processing and presentation and specific humoral responses (Fig. 3d). As described earlier, we
also analyzed the predictive power of a size-matched set of random latent factors (Figs. 3e and
S2e). The actual latent factors performed significantly better than the random size-matched set
of latent factors (Fig. 3e). We then evaluated the quality of the interactors themselves by
keeping the two actual standalone latent factors fixed but shuffling the interactors (i.e., choosing
a size-matched set of random interactors for the actual standalone latent factors). Again, the
performance of this model was significantly lower than the performance of the actual model
(Figs. 3e and S2e). Here too, not having the correct interacting latent factors would decrease
the prediction and corresponding inference of mechanisms underlying clonal expansion.

While a number of genes in the significant latent factors of spatial partitioning had significant
linear relationships with spatial label (Figs. 3f and S2f), several others had only non-linear
relationships which would have been missed by traditional regression methods (Figs. 3f and
S2f). The incorporation of these relationships strengthens corresponding inference. Next, we
evaluated the relationships of each of the 7 latent factors with spatial region label (Fig. 3g) and
found significant relationships between most individual latent factors and spatial region label
(Fig. 3g). This provides additional support to our hypothesis that SLIDE captures true context-
specific biological group structure i.e., beyond the overall multivariate model, each individual
context-specific group (latent factor) has meaningful information (both in terms of prediction and
inference) regarding the spatial region label of interest.

SLIDE elucidates novel interacting latent factors underlying clonal expansion in T1D

Finally, we sought to analyze paired multi-omic datasets using SLIDE and uncover interacting
latent factors underlying clonal expansion in T1D. Using paired scRNA-seq and TCR-seq data
on islet-derived CD4 T cells in a non-obese diabetic (NOD) mouse model (Zdinak et al,
accompanying manuscript), we labeled cells (Fig. 4a) based on the extent of their clonal
expansion — single (1 clone), low (2-10 clones) or medium/high (>10 clones). This analysis has
three additional facets in evaluating the capabilities of SLIDE beyond what the previous
examples afford. First, it helps test the performance of SLIDE on paired multi-omic data
(scRNA-seq and TCR-seq data) drawn from different distributions and with varying degree of
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sparsity. Second, we use a high-resolution cellular phenotype i.e., the clonality of individual CD4
T cells as the outcome labels of interest. This is different from the prior examples where we
used organismal phenotypes (SSc severity) or 3D spatial location as the outcomes of interest.
Third, it demonstrates the power of SLIDE in identifying interacting latent factors at a per-cell
resolution in a disease model.

Interestingly, while there were some differences in transcriptomic profiles between cells at
different stages of clonal expansion (Fig. 4b), there is significant heterogeneity in the profiles of
individual cells at the same stage of clonal expansion (Fig. 4b). This necessitates the use of an
approach like SLIDE that can converge on specific components of transcriptomic profiles that
transcend intra-group heterogeneity and focus only on differences across cells at different
stages of clonal expansion. SLIDE was able to accurately predict and infer extent of clonal
expansion, and outperformed several benchmarks including PLS, PFR and Phate-Regression in
terms of prediction accuracy (Figs. 4c and S3a-3c). LASSO and ER were the only methods with
comparable prediction performance (Figs. 4c and S3c). However, LASSO only identified a small
set of predictive biomarkers that were uninformative of the actual molecular basis for difference
in clonal expansion across the different cells. On the other hand, SLIDE identified 4 significant
latent factors that could be used to infer the mechanistic basis of differences in clonal
expansion. Further, while the performance of SLIDE and ER were comparable, ER used the
entire set of latent factors to predict outcome, while SLIDE only used 4. Thus, SLIDE provides
the same predictive power as ER but stronger inference with fewer latent factors. It also
identified non-linear relationships underlying clonal expansion (Fig. 4d). Further, as a reference,
if we used only the 4 most significant latent factors, chosen by the highest linear regression
coefficient, from ER for prediction, it would significantly underperform SLIDE (Fig S3d). The 4
latent factors uncovered by SLIDE included a) markers of Naive CD4 T cells, b) activation
markers and inhibitory receptors, c) a latent factor that captured intracellular regulation of
receptor signaling and d) ribosomal proteins (Fig. 4d). As earlier, we tested if the interactions of
(a) with (c) and (b) with (d) provided better prediction and additional inference that (a) and (b)
alone wouldn't provide. Consistent with what we had observed in the earlier analyses, the actual
latent factors performed significantly better than the random size-matched set of latent factors
(Figs. 4e and S3e). Next, we evaluated the quality of the interactors themselves by keeping the
two actual standalone latent factors fixed but shuffling the interactors (i.e., choosing a size-
matched set of random interactors for the actual standalone latent factors). Again, the
performance of this model was significantly lower than the performance of the actual model
(Figs. 4e and S3e). In this case too, not having the correct interacting latent factors would
decrease the prediction and corresponding inference of mechanisms underlying clonal
expansion.

Importantly, the 4 significant latent factors included well-known inhibitory receptors and markers
of clonal expansion/exhaustion including Lag3, Pdcdl (Pdl), and Tigit*® that standard
differential expression (DE) analyses would have picked up (Fig. 4f). As expected, SLIDE
grouped these inhibitory receptors in one latent factor, suggesting potential convergent
mechanisms. Interestingly, the intracellular signaling regulation latent factor (c) also contained
Ndfip1%, which was shown to induce apoptosis in self-reactive T cells. The association of other
potential mediators of apoptosis such as Anxa5, suggests a different pathway of action than
the inhibitory receptor latent factor. A traditional DE analysis simply returned a list of DEGs, but
SLIDE's grouping of genes with convergent functions led to the identification of inhibitory
receptors and intracellular restriction on proliferation as two parallel mechanisms at work in
clonally expanded T cells.
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However, it also identified several novel markers that standard DE analyses would have missed.
This includes genes that have both significant linear and non-linear relationships (at the
univariate level) to clonal expansion. While the standard DE analyses would have picked up
only the linear relationships, SLIDE can identify both (Fig. 4g). Of particular interest, is Ccr7,
which is elevated in naive T cells, as well as memory T cells. Co-expression of Ccr7 with Sell
and Lefl are hallmarks of naive T cells*, confirming that unexpanded CD4+ T cells are naive in
their phenotype. Overall, the significant interacting latent factors are far better at capturing the
molecular basis of clonal expansion than individual canonical markers previously reported in the
literature (Figs. 4h and i). While the individual markers all recapitulate well-known trends (Lag3,
Tigit, Pdcdl and Cd200 are higher in expanded cells while Sell and Ccr7 are lower in
unexpanded cells), the individual univariate relationships are weak (Fig. 4h). However, the
significant latent factors correctly encapsulate additive effects and provide clear stratification by
extent of clonal expansion. This analysis too provides support to our hypothesis that SLIDE
captures true context-specific biological group structure i.e., beyond the overall multivariate
model, each individual context-specific group (latent factor) has meaningful information (both in
terms of prediction and inference) regarding the extent of clonal expansion.

Finally, to further validate and contextualize discoveries made by SLIDE, we analyzed scRNA-
seq data from an independent recent study® that had identified cell-specific markers of disease
progression in T1D. Several key markers indeed followed the same trend (Fig. 4j) in the other
study, confirming the robustness of our findings. However, importantly, not all relationships were
the same as our markers reflect the extent of clonal expansion (a cellular phenotype) while the
study identified markers of T1D disease progression (a related but different organismal
phenotype). Overall, SLIDE is able to identify highly context-specific markers of clonal
expansion of CD4 T cells in a NOD model of T1D.

Discussion

With the rapid growth of technologies for deep profiling, there has been a deluge of high-
dimensional datasets quantifying different facets of multi-scale multi-modal biological
responses. There has been a significant investment in the development and application of
statistical techniques for these high-dimensional datasets, but most of the methods have
focused solely on prediction. Methods such as black-box deep learning approaches or
classification/regression techniques based on higher-order embeddings are often highly
accurate but are typically uninterpretable. Thus, they are useful in contexts such as clinical
decision making (e.g., predicting disease severity/outcome), but provide very little or no insights
into actual mechanisms of complex molecular, cellular or organismal phenotypes.

To address these key challenges, here we present SLIDE, an interpretable latent factor
regression-based machine learning approach for ubiquitous biological discovery from high-
dimensional multi-omic datasets. Unlike recent approaches that employ clever heuristics but
lack statistical guarantees, SLIDE comes with rigorous guarantees regarding identifiability of the
latent factors and corresponding inference. SLIDE can take into account complex non-linear and
hierarchical relationships. The identifiability guarantees of SLIDE given it a significant edge over
other modern techniques (e.g., variational autoencoders) that incorporate non-linear
relationships, but are very sensitive to parameter initialization*. Further, most current state-of-
the-art methods attempt to control FDR primarily through cross-validation and permutation
testing. In addition to employing cross-validation and permutation testing, SLIDE creatively
adapts knockoffs, an ultra-modern method for FDR control to identify significant standalone and
interacting latent variables and their corresponding interactors. Also, to handle the complexity of
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high-dimensional datasets, SLIDE uses a multi-stage adaptation of knockoffs that includes
runtime optimization feature space partitioning. SLIDE is also compatible with all pre-processing
and batch-effect correction methods and/or technological-platform-specific analysis tools,
because it makes no assumptions regarding data-generating mechanisms. Finally, SLIDE
provides prediction better than or comparable to several state-of-the-art approaches, and
inference that none of these techniques provide. Thus, unlike most methods, SLIDE provides
inference in addition to, and not at the cost of predictive performance.

In addition to the wide array of conceptual and methodological innovation, SLIE also uncovers
several novel biological mechanisms. In the analyses of transcriptomic datasets from SSc
patients, in addition to recapitulating previously published markers®?°, we discovered several
novel functional states underlying SSc pathogenesis. These include a previously unappreciated
role of keratinocytes and a novel HLA-centric latent factor and its cross talk to myeloid and
fibroblast cells. In the analyses of latent factors underlying clonal expansion of CD4 T cells in
T1D, SLIDE recapitulated well-known activation markers and inhibitory receptors?®, but
converged on several novel signatures of naive and memory states. Critically, the inference is
multi-scale — both at the level of the overall model and individual context-specific groups (latent
factors). Canonical approaches focused on gene lists do not have group information at all, while
pathway-centric approaches have group information that is context-independent and hence
often irrelevant in specific scenarios. This strengthens the interpretability of the model and
provides more accurate guidance for potential downstream analyses and experimentation.
Thus, SLIDE is truly a first-in-class interpretable machine learning framework for biological
discovery.

Methods
Initial Latent Factor Discovery (LFD) Framework

The same LFD framework is employed for all three analyses presented in this work considering
all linear relationship between latent factors and the corresponding dependent variable. The
selection of significant standalone and interacting latent factors for each dataset using SLIDE is
described in detail below. We first perform FDR thresholding on the covariance matrix, followed
by the optimization of two key hyperparameters (delta and lambda) using k fold cross validation.
The delta parameter controls the number of latent factors, while the lambda parameter has an
impact on the sparsity of allocation matrix of latent factors. Considering the large and
continuous search space of delta and lambda, we perform the search in multiple steps and
ranges. The first step of the framework performs a coarse grid search of delta in four different
numerical ranges: 0 — 0.001, 0.001 — 0.01, 0.01 — 0.1 and 0.1 — 1. The subsequent models
utilize the most optimal delta within each range and identify the final delta using cross-validation
and permutation testing. Once an optimal delta has been identified, lambda is tuned using a
coarse grid search coupled to cross-validation and permutation testing.

Simulations

The simulation aimed to evaluate model performance on different values of feature size (p) and
sample size (n) with and without interaction terms. The numbers of latent variables (K),
significant standalone and significant interacting latent variables were set 100, 2 and 5
respectively. For the models with no interactions, the number of interacting latent factors was
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set to 0. For varying features, we fixed the number of observations at 300. For simulations that
have a varying n, we fixed the number of features to 1,000. To generate the simulated data, R
package mvnorm was utilized to randomly generate datapoints K times, where K represents the
number of latent factors.

For the model with interaction terms, the dependent variable is generated using equation 2 with
coefficients generated randomly from standard normal distributions.

Analyses of transcriptomic profiles in SSc patients

We analyzed scRNA-seq data from 24 previously described SSc patients where 10 of these
patients were treated with Tofacitnib for 24 weeks. Standard 10X Genomics sequencing pipeline
was used including cellranger. The aligned samples were then normalized and clustered with
Seurat. We used R (version 4.00) for the data analysis. The Seurat (R package version 3.2.2)
was adopted for cell population identification and visualization. To transform the 24 scRNA-seq
samples into the pseudobulk fashion, we utilized the “Average Expression Function” to reduce
the cell dimension by calculating the average expression of each gene across all cells in each
cell-type specific cluster per patient. Clusters with fewer than 20 cells on average across all
patients were excluded. 18 clusters passed the filtration process and the top 50 highest
variance genes across patients of each cluster were chosen in an unsupervised manner as
features for the subsequent analysis.

Post pre-processing, for the 24 untreated samples, the input data for the analysis is a sample by
gene matrix with dimensions of 24 by 804. Using the LFD framework with 10-fold CV and 20
replicates, optimal delta and lambda values were identified (Figs Sla and S1b). With optimal
parameter values set at 0.6 and 1 for delta and lambda respectively, the final model produced
120 latent factors. We then used SLIDE to identify the significant standalone latent factors using
the iterative knockoff procedure as described above. Corresponding parameters of SPEC (a
frequency-based parameter to quantify the stability of stages 1-2 of the multi-stage knockoff
approach), FDR, F (feature split size) are set to 0.3, 0.1 and 100, respectively. The analysis
resulted in 5 significant standalone factors and 4 significant interacting latent factors. 5-fold
cross-validation with 50 replicates was used to compare the predictive power SLIDE with ER,
LASSO, PHATE, PLSR, and PCR. Since PHATE is an unsupervised approach, we coupled it to
a standard regression model (i.e., we ran Regression on PHATE1 and PHATE?2). Glmnet and
PhateR packages were used to build the LASSO and PHATE models, respectively. The PLS
package was employed for PCR and PLSR model construction.

To assess linear and non-linear relationships of genes in the significant latent factors with
MRSS, we used Spearman correlation and maximal information coefficient (MIC) respectively.

For the tofa-treated SSc analysis, post quality control, normalization and clustering using
Seurat, we matched the cluster identities to the untreated samples. To transform the scRNA-seq
dataset to the pseudo-bulk fashion, we used the same averaging calculation mentioned above
and feature matched with the untreated analysis resulted in the input sample by gene matrix
with dimensions of 10 and 728. Using the LFD framework, and LOOCYV, a delta of 0.009 (175
latent factors) and a Lamba of 1 were identified as optimal hyperparameters. SLIDE was then
applied to identify significant standalone and interacting latent factors. The SLIDE parameters of
SPEC, FDR, and F were set to 0.3, 0.1 and 100 respectively. The final SLIDE model produced 1
significant standalone latent factor and 3 significant interacting latent factors.

Analyses of spatial RNA-seq data in lymph nodes
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25 pg of LPS-low HDM (Stallergenes-Greer Pharmaceuticals) in 25 ul of sterile 1X PBS was
delivered intranasally under anesthesia to C57BL/6 mice (Jax Laboratory) daily for 3 days.
Mediastinal lymph nodes (mLN) were isolated on day 4, snap frozen and embedded in chilled
optimal cutting temperature (OCT) compound (Tissue-Tek) on dry ice, and stored at -80 °C.
MLN samples were cryosectioned (10 um) at -20 °C on a cryostat (Leica) and mounted directly
onto the 6.5 x 6.5 mm capture areas of a single Visium Spatial Gene Expression slide (10X
Genomics). The slides were sealed in individual 50 ml Falcon tube at -80 °C until further
processing according to the manufacturer’s protocol (10x Genomics). The Visium Spatial Tissue
Optimization Slide & Reagent kit (10x Genomics) was used to determine optimal
permeabilization timing of 18 min. Immunofluorescence staining was done using “Methanol
Fixation, Immunofluorescence Staining & Imaging for Visium Spatial Protocols (CG000312)".
Slides were stained with anti-B220 eFluor 450 (RA3-6B2, eBioscience), anti-CD4 Alexa Fluor
488 (G.K.1l.5, Biolegend) and anti-CD11c Biotin (N418, Biolegend) followed by secondary
detection with streptavidin Alexa Fluor-647. Images were acquired using EVOS™ M7000
Imaging System (AMF7000) under the Visium assay mode. Tissue sections were then
permeabilized, and mRNA molecules within cells captured by poly (dT) sequence on the slide
surface, followed by on slide reverse transcription to generate cDNA. cDNA is amplified and
further processed into sequencing libraries according to the manufacturer's protocol (10X
Genomics). Libraries were sequenced on an lllumina Nextseq2000 at 50,000 read pairs per
spot covered by tissue. Sequencing results were initially processed by spaceranger (10X
Genomics) to align sequencing data with the image. Sequencing results were initially processed
by spaceranger (10X Genomics) to align sequencing data with the image. Here, we filtered the
genes more than 900 zeros threshold which resulted in matrix of 1932 genes by 3779 regions.

Seurat was employed for the quality control, normalization and clustering analyses. By
overlaying the UMAP clusters and the fluorescent microscopy plot (Fig 3b), the UMAP clusters
were assigned to the three different cell types: B-Cells, Boundary Cells and CD4/DCs. The
regions that belong to the same cell types were pooled across the technical replicates. Genes
that are not expressed in at least 900 regions were filtered to control the sparsity. Using the LFD
framework with 10-fold cross-validation and 20 replications the optimal value for delta parameter
was obtained as 0.049 with 21 latent variables (Fig. S2a). As described previously, 10-fold
cross-validation with 20 replications was performed for optimal parameter tuning (Figs. S2a and
S2b). SLIDE was applied to identify factors underline immune cell partitioning by spatial
localization. We set an FDR threshold at 0.1 for each knockoff replicate and F = 21 for this
dataset. 2 significant standalone latent factors and 5 significant interacting latent factors were
identified.

scRNA-seq and TCR-seq of islet infiltrating CD4 T cells

NOD mice were euthanized by CO2 asphyxiation and immediately dissected for pancreas
perfusion. Pancreas perfusion was performed under a dissecting Zeiss microscope. Pancreatic
duct was clamped using surgical clamps and 3 ml of 600 U/ml Collagenase dissolved in HBSS
was injected using a 30G needle. Perfused pancreata were harvested and incubated at 37°C for
30 min. After the incubation, HBSS with R10 was added to quench collagenase. After washing
twice with HBSS+R10, the tissue was plated on a 10 cm plate, individual islets were picked
using a micropipettor. Islets were then incubated in dissociation buffer, centrifuged and,
resuspended in the staining mix (1:500 dilution of anti-Thyl.2-BV605 + 1:500 dilution of
Live/Dead-APC-Cy7, and 1:100 dilution of cell hashing anti-mCD45 TotalSeq-C antibodies
(Biolegend)). After staining, the cells were resuspended in PBS+0.04% BSA and sorted on BD
FACS Aria lll sorter. After sorting the cells, they were counted and processed for scRNAseq.
Cells were processing using 10x 5’ single cell gene expression kit v3 in a Chromium controller
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according to the manufacturer’s protocols. V(D)J enrichment was done using the single cell 5’
VDJ enrichment kit according to the manufacturer's protocols. Libraries were sequenced on
HiSeg4000 (Novogene Inc) with a 70:20:10 mix for gene expression:VDJ:hashing libraries as
explained in greater detail in accompanying manuscript (Zdinak et al).

Sequence data were downloaded and aligned to the mouse genome (Mm10) using cellranger
(10x Genomics Inc). TCR annotation was performed using cellranger vdj using mouse GRCm38
assembly. All three timepoints were sequenced and processed separately. Cellranger and
cellranger vdj output files were used as inputs in Seurat for normalization, scaling, and
dimensionality reduction. The packaged scRepertoire was used for TCR clonotype calling and
analyses. The data were normalized using NormalizeData and scaled using ScaleData
functions in Seurat. The scRepertoire functions combineTCR and combineExpression were
used to add TCR clonotypes to each cell. HTODemux function in Seurat was used to
demultiplex cell hashes and assign the correct mouse identity to each cell. At this point, all three
timepoints were merged in Seurat using the merge function. After merging, integration was done
using FindIntegrationAnchors and IntegrateData functions. Principle component analysis was
performed using RunPCA. Top 20 principal components were used for Uniform Manifold
Approximation and Projection, followed by cluster identification using FindNeighbors and
FindClusters. CD4+ T cells were subsetted using FeatureScatter and CellSelector functions,
and reclustered. Cluster markers were defined by FindAlIMarkers function. Clonotype data were
sorted according to expansion and exported as a csv file. UMAP representations with
clonotypes were generated using highlightClonotypes function in scRepertoire. Differentially
expressed genes were identified using FindMarkers function using DESeq2 statistics and
represented using EnhancedVolcano function. After obtaining scRNA-seq and TCR-seq data on
islet-derived cells in a non-obese diabetic (NOD) mouse model and analyzed data through the
standard 10X Genomics pipeline. We labeled cells based on their clonal expansion stages
followed by the post processing of the scRNA-seq data in R (4.1.0) using Seurat (R package,
version 3.2.2). The columns representing genes and rows representing cells are filtered based
on 1200 threshold, meaning that if the sparsity exceeds 1200, the cell row or gene column will
be removed. The SLIDE input matrix was finalized with 1776 genes and 2482 cells.

The LFD framework is first utilized to discover latent factors. The input data is a cell by gene
matrix, consisting of 2,484 cells and 1,776 genes. As described previously, 10-fold cross-
validation with 20 replications was performed for optimal parameter tuning (Figs. S2a and b).
The final model constructed by the LFD framework using delta as 0.0912 and lambda as 1
discovered 40 latent factors. We then performed SLIDE to identify significant interacting latent
factors underlying differences in clonal expansion in CD4 T cells. We set the SLIDE parameter
SPEC at 0.2, FDR at 0.1 and feature partition size at 40, resulting in the identification of two
significant standalone and two significant interacting latent factors.

Code and Data Availability

All code and data supporting all analyses in the manuscript are available at
https://github.com/jishnu-lab/SLIDEpre and at https://github.com/jishnu-lab/SLIDE.

Figure Legends
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Figure 1. SLIDE — a novel interpretable machine learning method for Significant Latent
Factor Interaction Discovery and exploration

a) Schematic illustrating the vast array of datasets on which SLIDE can be applied and the
key advances over existing analytical frameworks for the analyses of these datasets

b) Conceptual overview of the SLIDE algorithm.

c) Schematic summarizing the implementation and different steps in SLIDE.

d) Comparison of the predictive performance of ER, LASSO, PCR, PLSR and SLIDE on
simulated datasets across a range of number of features without (left sub-panel) and
with (right sub-panel) interaction terms.

e) Comparison of the predictive performance of ER, LASSO, PCR, PLSR and SLIDE on
simulated datasets across a range of sample sizes without (left sub-panel) and with
(right sub-panel) interaction terms.

Figure 2. SLIDE uncovers novel interacting latent factors that explain SSc pathogenesis.

a) Schematic summarizing scRNA-seq data from SSc patients used to infer mechanisms of
SSc pathogenesis MRSS.

b) Identities of the cellular clusters used in the analyses as defined by the top cell-type-
specific DEGs.

c) Spearman correlations between true MRSS and MRSS predicted using different
methods — SLIDE (spec = 0.1), ER, LASSO, PLS, PCR and PHATE Regression. Model
performance is measured in a k-fold cross-validation framework with permutation testing.
** indicates P < 0.01.

d) Significant interacting latent factors identified by SLIDE. Green boxes denote significant
standalone latent factors, and purple boxes denote significant interacting latent factors.
The color of the gene corresponds to the cell type. Genes on the left and right of the
dashed line have negative and positive correlations with MRSS respectively.

e) Performance of the real model relative to a) the distribution of the performance of
models built using size-matched random latent factors (blue) and b) the distribution of
the performance of models built using the actual significant standalone latent factors and
size-matched random interacting latent factors (green).

f) Linear Spearman correlations and non-linear relationships (quantified using MIC)
between key components of the latent factors and MRSS.

g) Scatter plot of MRSS and gene expression of select key markers of SSc severity that
have a significant linear relationship alone with MRSS.

h) Scatter plot of MRSS and gene expression of select key markers of SSc severity that
have a significant linear as well as a significant non-linear relationship with MRSS.

i) Scatter plot illustrating the relationships between each significant latent factor (from d)
and MRSS.

j) Schematic summarizing a recent clinical trial where SSc patients are treated with
tofacitinib. scRNA-seq data and changes in MRSS on treatment are available for these
patients. Significant standalone and interacting latent factors underlying changes in
MRSS on treatment are inferred.

Figure 3. SLIDE uncovers latent factors underlying immune cell partitioning by 3D
localization.

a) Schematic summarizing scRNA-seq data from SSc patients used to infer mechanisms of
SSc pathogenesis MRSS.
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b) KNN clustering of the spatial regions overlayed with microscopic images of three
technical replicates of murine lymph node. Blue dye represents B-cells. Green dye
represents CD4 T-cells and dendritic cells. Boundaries are categorized as boundary
cells.

c) Spearman correlations between true spatial region and spatial region predicted using
different methods — SLIDE (spec = 0.1), ER, LASSO, PLS, PCR and PHATE
Regression. Model performance is measured in a k-fold cross-validation framework with
permutation testing. ** indicates P < 0.01.

d) Significant interacting latent factors identified by SLIDE. Green boxes denote significant
standalone latent factors, and purple boxes denote significant interacting latent factors.
The color of the gene corresponds to the cell type. Genes on the left and right of the
dashed line have negative and positive correlations with spatial region respectively.

e) Performance of the real model relative to a) the distribution of the performance of
models built using size-matched random latent factors (blue) and b) the distribution of
the performance of models built using the actual significant standalone latent factors and
size-matched random interacting latent factors (green).

f) Linear Spearman correlations and non-linear relationships (quantified using MIC)
between key components of the latent factors and spatial region.

g) Boxplots illustrating the distributions of each latent factor across spatial regions.

Figure 4. SLIDE elucidates novel interacting latent factors underlying clonal expansion in
T1D.

a) Schematic summarizing scRNA-seq and TCR-seq data from NOD mice used to infer
mechanisms underlying clonal expansion of CD4 T cells.

b) UMAP visualization of the three stages of clonal expansion.

c) Spearman correlations between true stage of clonal expansion and stage of clonal
expansion predicted using different methods — SLIDE (spec = 0.1), ER, LASSO, PLS,
PCR and PHATE Regression. Model performance is measured in a k-fold cross-
validation framework with permutation testing. ** indicates P < 0.01.

d) Significant interacting latent factors identified by SLIDE. Green boxes denote significant
standalone latent factors, and purple boxes denote significant interacting latent factors.
The color of the gene corresponds to the cell type. Genes on the left and right of the
dashed line have negative and positive correlations with extent of clonal expansion
respectively.

e) Performance of the real model relative to a) the distribution of the performance of
models built using size-matched random latent factors (blue) and b) the distribution of
the performance of models built using the actual significant standalone latent factors and
size-matched random interacting latent factors (green).

f) Volcano plots illustrating genes in the significant latent factors

g) Linear Spearman correlations and non-linear relationships (quantified using MIC)
between key components of the latent factors and extent of clonal expansion.

h) Dot-plots illustrating frequency (circle size) and median expression (color intensity) of
well-known markers of markers of T cell activation, exhaustion and inhibitory receptors
at the 3 stages of clonal expansion. Frequency and expression calculated using data
from our study.

i) Boxplots illustrating the distributions of each latent factor across cells at the 3 different
stages of clonal expansion.

i) Dot-plots illustrating frequency (circle size) and median expression (color intensity) of
well-known markers of markers of T cell activation, exhaustion and inhibitory receptors
at the 3 stages of clonal expansion. Frequency and expression calculated using data
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from Unanue and colleagues. Schematic also summarizes design of study from Unanue
and colleagues.

Supplementary Figure Legends
Figure S1. Accompanies Figure 2

a) Spearman correlations between true MRSS and the predicted MRSS using different
delta values in the LFD framework.

b) Spearman correlations between true MRSS and the predicted MRSS using different
lambda values in the LFD framework.

c) Spearman correlations between true MRSS and MRSS predicted using different
methods — SLIDE (spec = 0.3), ER, LASSO, PLS, PCR and PHATE Regression. Model
performance is measured in a k-fold cross-validation framework with permutation testing.
** indicates P < 0.01.

d) Spearman correlations between true MRSS and MRSS predicted by ER (size-matched
latent factors) and SLIDE.

e) Performance of the real model relative to a) the distribution of the performance of
models built using size-matched random latent factors (blue) and b) the distribution of
the performance of models built using the actual significant standalone latent factors and
size-matched random interacting latent factors (green).

Figure S2. Accompanies Figure 3

a) Spearman correlations between true cell type region partitioning and predicted cell type
region partitioning using different delta values in the LFD framework.

b) Spearman correlations between true cell type region partitioning and predicted cell type
region partitioning different lambda values in the LFD framework.

c) Spearman correlation between true cell type region partitioning and cell type region
partitioning predicted using different methods — SLIDE (spec = 0.2), ER, LASSO, PLS,
PCR and PHATE Regression. Model performance is measured in a k-fold cross-
validation framework with permutation testing. ** indicates P < 0.01

d) Spearman correlations between true MRSS and MRSS predicted by ER (size-matched
latent factors) and SLIDE.

e) Performance of the real model relative to a) the distribution of the performance of
models built using size-matched random latent factors (blue) and b) the distribution of
the performance of models built using the actual significant standalone latent factors and
size-matched random interacting latent factors (green).

f) Linear Spearman correlations and non-linear relationships (quantified using MIC)
between key components of the latent factors and spatial region.

Figure S3. Accompanies Figure 4

a) Spearman correlation between true CD4 clonal expansion and predicted CD4 clonal
expansion using different delta values in the LFD framework.
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b) Spearman correlation between true CD4 clonal expansion and predicted CD4 clonal
expansion different lambda values in the LFD framework.

c) Spearman correlation between true clonal expansion and clonal expansion predicted
using different methods — SLIDE (spec = 0.3), ER, LASSO, PLS, PCR. Model
performance is measured in a k-fold cross-validation framework with permutation testing.
** indicates P < 0.01

d) Spearman correlations between true MRSS and MRSS predicted by ER (size-matched
latent factors) and SLIDE.

e) Performance of the real model relative to a) the distribution of the performance of
models built using size-matched random latent factors (blue) and b) the distribution of
the performance of models built using the actual significant standalone latent factors and
size-matched random interacting latent factors (green).

f) Linear Spearman correlations and non-linear relationships (quantified using MIC)
between key components of the latent factors and CD4 clonal expansion.

Supplementary Methods — Algorithmic overview of SLIDE
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