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Abstract

While sensory representations in the brain depend on context, it remains unclear how such modulations are implemented
at the biophysical level, and how processing layers further in the hierarchy can extract useful features for each possible
contextual state. Here, we first demonstrate that thin dendritic branches are well suited to implementing contextual
modulation of feedforward processing. Such neuron-specific modulations exploit prior knowledge, encoded in stable
feedforward weights, to achieve transfer learning across contexts. In a network of biophysically realistic neuron
models with context-independent feedforward weights, we show that modulatory inputs to thin dendrites can solve
linearly non-separable learning problems with a Hebbian, error-modulated learning rule. Finally, we demonstrate
that local prediction of whether representations originate either from different inputs, or from different contextual
modulations of the same input, results in representation learning of hierarchical feedforward weights across processing

layers that accommodate a multitude of contexts.

Introduction

Sensory processing in the brain is commonly thought of as proceeding through an increasingly abstract and invariant
hierarchy of representations'-2. According to this view, neurons have a fixed tuning to specific stimuli: in early sensory
areas neurons identify basic features such as lines, gratings® or simple auditory waveforms*, whilst neurons further in
the processing stream are selective to faces>®, speakers’ or words®. Artificial neurons in feedforward network models
also exhibit such receptive field properties, and similarity between responses in these networks and in sensory brain
regions lends support to this view of sensory processing®'°. However, the activity of sensory neurons is not driven
purely by bottom-up inputs, but is also modulated by internal mental states!!. These modulating inputs, relayed by

top-down connections from various cortical areas (Fig 1A), communicate high-level information about behavioural

15-17 18-20 19,21,22 23,24

context!> !4 task demands , expectations , motor commands and memory

While it is attractive to assume that such top-down connections to sensory areas adapt feedforward processing to the
many contexts that may occur in natural environments, the computational utility of modulating neurons at all levels

in the processing stream remains poorly understood. Such modulations induce a dependence on the contextual state
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in sensory representations at any given processing layer. Consequently, the next processing layer in the hierarchy has
to be connected in such a way that it can extract useful features, not only for each possible sensory input, but also for
each possible contextual state. Most artificial neural network approaches that seek to implement multitask learning
avoid this complication by defining separate output networks for each task, on top of a common trunk that generates
a context-independent representation of the inputs>»2%. Nevertheless, the pervasiveness of contextual modulation in
sensory processing indicates that this adaptation is an important component of cortical computation, and reshapes the
el

functional mapping of sensory processing pathways (Fig 1B)“’. While some authors have explored modulations to

early processing layers?$-30

, their networks were trained through error backpropagation in a purely supervised fashion.
Unsupervised, representation-based learning is considered more biologically plausible’!=3, but has not been applied

to context-modulated representations.

Biophysically, the way in which modulations to sensory neurons are implemented remains unknown. A probable
constraint is that contextual modulations have a longer time-scale than rapid feedforward processing, where volleys
of action potentials propagate upwards through the processing hierarchy*33, their trajectories modulated by the
contextual inputs. Two candidate mechanisms appear well adapted to implement neuron-specific modulations with
long time scales. One possibility is that fast-spiking inhibitory interneurons target the somata of pyramidal cells
(PCs)3®, effectively opening quasi-tonic conductances in the membrane that decrease input resistance and render it
harder for the neuron to emit action potentials (Fig 1C)*7-38. Another possibility is that modulating inputs target thin
dendritic branches®*3*40 opening N-Methyl-D-Aspartate (NMDA) channels and eliciting NMDA-spikes*'*4?. These
43,44

events, whose duration of 50-100 ms outlasts the duration of action potentials by one to two orders of magnitude

can also implement a sustained modulation of the neuronal output (Fig 1C).

Here, we study the modulation of feedforward processing in networks of biophysically realistic neurons. By assessing
effective membrane conductance changes, we find that NMDA-spikes are the more likely candidate to modulate the
neuronal input-output (IO) relation. We then study the computational features of neuron-specific modulations in
abstract feedforward network models, and show that these modulations allow networks without task-specific readout

components to solve multiple tasks. We find that feedforward weights that extract useful information from modulated
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layers can indeed be learned, because multitask performance increases with network depth. This in turn allows the
network to learn new tasks by adapting solely the modulating synapses, and inspired us to ask whether unsupervised
learning principles exist for feedforward weights that support multitask learning through neuron-specific modulations.
While the contextual modulations in abstract models are trained through gradient descent on a classification loss, we
show that our approach translates to biologically realistic spiking models equipped with a Hebbian, error-modulated
learning rule for the contextual synapses. Finally, we show that context-modulated representations promote self-supervised
learning across a hierarchy of processing layers, by providing a form of data augmentation for contrastive learning
that allows deeper processing layers to extract general, high-level features, without the need for error backpropagation
across layers. Thus, instead of being a complication, such modulations could constitute an integral feature of cortical

learning.

Results

Biophysical implementation of neuron-specific modulations

To understand how sustained modulations of individual neurons can be implemented in cortical networks, we simulate

modulatory afferents of varying strengths to a biophysically realistic layer 5 (L5) PC model*. We compare two
possible candidate mechanisms: one where fast-spiking interneurons target the peri-somatic region of PCs, providing
shunting inhibition, and another where excitatory afferents target the dendritic tips of the basal and apical oblique

dendrites, eliciting NMDA-spikes (Fig 1C).

In both cases, we implement feedforward inputs as short Gaussian bursts, with a width of 6 ms, and examine conditions
where, for identical bursts of feedforward input, the modulatory afferents change the number of somatic outputs
between zero and two spikes. Since the first mechanism is inhibitory, we tune the number of feedforward inputs per
burst so that two output spikes are emitted without modulatory input (175 feedforward inputs), and increase the number
of shunt inputs until all output spikes are prevented (Fig 1D, E). Conversely, as the second mechanism is excitatory,
we tune the number of feedforward inputs per burst so that no output spikes are emitted without modulatory input (40

feedforward inputs), and increase the number of inputs eliciting dendritic NMDA-spikes until two output spikes are
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Figure 1. Contextual modulation of neurons in sensory processing pathways. A: Top-down connections from
prefrontal and motor areas relay high-level information to early sensory processing neurons (adapted from Gilbert et
al.'"). B: We hypothesize that high-level information from prefrontal and motor areas modulates the activity of early
sensory neurons, enhancing response properties of neurons with task-relevant receptive fields. These modulations
induce a task-dependent functional remapping of sensory processing pathways built on fixed, task-agnostic
feedforward connectivity. C: At the biophysical level, we investigate two plausible candidate mechanisms that could
implement quasi-tonic neuron-specific modulations: somatic shunting inhibition and dendritic NMDA spikes. D: L5
PC model configuration to investigate somatic shunting: feedforward and shunting (orange) inputs target the somatic
compartment (teal). E: The somatic response to identical feedforward inputs (top, green, Gaussian burst of 175 inputs),
for three modulation levels resulting in zero, one or two output spikes. F: L5 PC model configuration to investigate
dendritic modulation: modulatory inputs target up to 20 dendritic compartments (blue), whereas feedforward inputs
target the somatic compartment (teal). G: Somatic responses (left, teal) to identical feedforward inputs (top, green,
Gaussian burst of 40 inputs), for three different levels of dendritic modulation (right, blue) resulting in zero, one or
two output spikes. H: Comparison of effective conductance changes, as measured at the soma, between shunt and
NMDA modulation for the three modulation levels shown in E and G.
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emitted (Fig 1F, G).

An experimentally testable measure that distinguishes between the candidate mechanisms is the change in effective
conductance of the neuron. The time course of this conductance can be measured in voltage clamp by repeating
the same input pattern at different holding potentials, and is given by the slope of the current-voltage relationship
at all time points*®. Experimental studies estimate effective conductance changes of 1 to 10 nS**#’. In the case of
somatic modulations through shunting inhibition, our simulations show that the effective conductance change required
to modulate the output firing from two to zero spikes is between 100 and 150 nS, values far outside the experimentally
measured range (Fig 1H). Conversely, the effective conductance change for modulating output firing from zero to two
spikes with dendritic NMDA-spikes is between 1 and 10 nS. This demonstrates that dendritic NMDA-spikes are a
biologically plausible candidate to implement neuron-specific modulations (Fig 1H), on which we will focus in the

remainder of this work.

Neuron-specific modulations as bias and/or gain changes

Conceptually, neuron-specific modulations can be thought of as changing the slope and/or threshold of the neuronal
IO relationship. In abstract neuron models of the form

y=0(gwx+b), ey

this can be implemented through modulations of gain g and bias b, with g primarily affecting the slope and b
exclusively affecting the threshold. Here, y represents the neuronal activation, ¢ the activation function, w the
feedforward weight vector, and x the feedforward input vector. Note that although y typically stands for the average
neuronal firing rate, here we interpret it rather as the average number of somatic output spikes in response to a short
burst of feedforward inputs. In this case, the ReLU activation function ¢(x) = max(x,0) is a reasonable choice

(Fig 2A,C).

‘We maintain the same input configuration to the L5 PC model as before (Fig 1F), and construct IO curves for different
levels of modulation by varying the number of feedforward inputs. We then model the effect of modulation on the 10

dependency either as gain or bias adaptation. To fit these curves, we retain the thresholds — computed as the points
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Figure 2. Conceptualizing neuron-specific modulations in abstract neuron models. A: Number of output spikes,
averaged over ten trials, for two example levels of modulation (determined by the number of compartments with
NMDA spikes). The x-axis shows the number of excitatory feedforward inputs (> 0) or inhibitory feedforward
inputs (< 0). The thresholds (blue) where the number of emitted spikes increases are taken as the points where
the linear interpolation crosses the mid-point between discrete values. We use these thresholds as fit points for the
ReLU characterizing the neuronal IO relationship (dashed lines show these fits, performed here for each modulation
level separately for illustrative purposes). B: ReLU fits to obtained threshold values (as explained in B) for eight
modulation levels with a curve-specific gain and shared bias (left), a curve-specific bias and shared gain (middle) and
a curve-specific gain, shared bias and additionally a shared x-shift (right). Note that two of the modulation levels had
nearly overlapping thresholds, so that only seven levels are visible. C, D: Same as A, B, but for modulation through
somatic shunting. E: Residual summed over the eight modulation levels for the three cases shown in B (blue) and
D (orange). F: Proposed conceptual model of a neuron participating in sensory feedforward processing: perisomatic
feedforward inputs (green) are modulated by dendritic subunits (blue), resulting in a concerted change of slope and
threshold of the neuronal IO curve.
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where the interpolation line crosses the mid-point between discrete values — as the fit points (Fig 2A). We then fit all
obtained curves together, either with a curve-specific gain and shared bias (Fig 2B, left) or with a curve-specific bias
and shared gain (Fig 2B, middle). We found that the bias-modulated fits were more accurate than the gain-modulated
fits (Fig 2E), but the large residual indicated that there nonetheless appeared to be a significant change in 1O slope. We

therefore introduced a constant xghif; parameter

y = 0(g (WX — Xghife) +b)
2

= o(gwx+ (b — gxsifr)),

resulting in concerted additive and multiplicative modulation by gain changes. This fit produced the most accurate
representation of the modulatory effect (Fig 2B, right, Fig 2E). Together, these considerations suggest a conceptual
picture of sensory neurons where peri-somatic feed-forward inputs are modulated by top-down inputs impinging onto
dendritic subunits (Fig 2F). These modulatory inputs increase IO slope and decrease 10 threshold. For completeness,
we note that somatic modulation through shunting inhibition is better fitted by pure gain modulation than bias modulation
(Fig 2C-E, configuration as in Fig 1D), in agreement with prior work®’, and that introducing a constant x-shift

parameter also decreased the residual markedly.

Multitask learning with task-dependent modulations to individual neurons

In feedforward neural network architectures, implementing task switching by providing neuron-specific modulations to
the neurons in the hidden layers (Fig 3A) is a departure from the standard approach, in which task-specific output units
are trained on top of a shared trunk network?>2°, We therefore first assess whether multitask learning in this manner
is even computationally feasible, and learn task-specific gains to the individual neurons in feedforward networks
together with feedforward weights, x-shifts, and biases that are shared across tasks. All parameters are optimized

through supervised error backpropagation.

To demonstrate that neuron-specific modulations can successfully change the functional mapping of feedforward
processing pathways, we train networks with one or four hidden layers to solve 48 binary classification tasks on
two-dimensional inputs. These networks, each with a single set of feedforward weights, but task- and neuron-specific

gains, solved all 48 tasks, demonstrating that such modulations achieve multitask learning (Fig 3B, S1A). The deeper
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network was more accurate (less black area in Fig 3B, S1A), indicating that multilayer architectures with neuron-specific

modulations are computationally useful.

To more thoroughly test neuron-specific modulations on a dataset that is both sufficiently rich in tasks and sufficiently
simple to subsequently combine with biophysical models, we convert the EMNIST dataset*® into a multitask learning
problem (multitask EMNIST) by defining a one-vs-all classification task for every class in the original dataset (47
tasks, Fig 3C). We find that implementing neuron-specific modulations through independent gain and bias changes
achieves the same performance as a task-specific readout, and that combined gain and bias changes through a constant
x-shift result in a slightly reduced performance (Fig 3D, E). Qualitatively, the same behaviour is observed for both
investigated forms of neuron-specific modulations: performance increases with network depth (Fig 3D), and performance
increases strongly with layer size (Fig 3E). Hyperparameters, such as learning rates, are optimized for each method and
architecture separately (Fig S1B). Note that we have also implemented other neuron-specific modulations Fig S1C),
but the minute differences between modulation types could not be decoupled fully from choices such as network

architecture, task design and training method.

In the brain, mounting evidence suggests that top-down inputs dynamically select salient features from a stable
feedforward connectivity?*. We therefore test whether our framework with neuron-specific modulations is efficient at
making use of prior knowledge, encoded in the learned feedforward weights. We train shared parameters on a subset
of the 47 tasks, and learn the remaining tasks by exclusively adapting the task-specific parameters. For networks with
one hidden layer, we found that all approaches achieve similar transfer learning. For networks with more than one
hidden layer, our approach transferred much better to the remaining tasks than networks with task-specific readouts
(Fig 3F). Presuming that with more hidden layers, networks become increasingly adept at filtering out task-irrelevant
information, we hypothesize that task-specific readouts for new tasks have no access to information that was not
relevant for the original tasks. Conversely, neuron-specific modulations to early layers could recover such information,

leading to improved transfer learning.
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Figure 3. Adaptation of feedforward processing through neuron-specific modulations. A: Our network setup learns
task-specific gains to each hidden neuron, together with a common x-shift, common bias and common feedforward
weights, to implement large sets of tasks. B: 15 (out of 48, Fig S1A) exemplars of a two-dimensional classification
multitask dataset solved with neuron-specific modulations. Correctly classifed samples are plotted in blue and
orange, while incorrectly classifed samples are plotted in black. The network architecture contains one hidden
layer (left) or four hidden layers (right) with 50 neurons per layer, followed by a single output unit. C: EMNIST
is converted to a multitask learning problem by defining a one-vs-all classification task for every class in the original
dataset. D: Performance of networks with a task-specific readout and no neuron-specific modulations (red, triangle),
independently learnable task-specific gain and bias (green, square) and task-specific gain together with a shared x-shift
and bias (blue, circle) as a function of the number of hidden layers (25 neurons per layer). Performance is measured by
averaging over all tasks, and by additionally averaging over five initialization seeds (error bars show standard deviation
of task-performance across seeds, averaged over all tasks). E: Same as in D but for a varying number of units per layer
in networks with two hidden layers. F: Transfer learning performance. Networks are multitask trained on a subset of
tasks (dashed line, small marker size), and performance is evaluated by training task-specific parameters on the other
tasks while freezing shared parameters (averages and standard deviations computed across 128 seeds, dotted line, large
marker size). Each hidden layer consists of 100 units, and multitask performances of the equivalent architecture on all
tasks are shown on the right. Colors and markers as in D.
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Unsupervised weight matrices for networks with neuron-specific modulations

So far our supervised results have demonstrated that a network with a single set of feedforward weights, and contextual
modulations to individual neurons, can solve many tasks. However, much of the learning in the brain is thought to
proceed in an unsupervised fashion*>>3°. While unsupervised learning has been studied thoroughly in combination with

a supervised readout on the hidden representation3%>!

, it has yet to be combined with neuron-specific modulations.
We therefor investigate how to find unsupervised feedforward weight matrices that facilitate the construction of

task-specific decision boundaries through supervised learning of the neuronal gains.

To explain our approach, we note that the decision of any given neuron in the feedforward pathway to become
active represents a decision boundary on the sensory input space. Locally, this boundary is characterized by its
normal vector (methods), which captures the input features that the neuron uses to make a decision about whether
to become active, and is always a linear combination of the input weight vectors to the network (Fig 4A). A necessary
condition to be able to construct a given decision boundary is that its normal vectors can all be constructed with the
feedforward weight matrices (Fig 4B). Our rationale, thus, is that neuron-specific modulations select a concatenation
of decision boundary segments with constructible normal vectors that optimally approximates the desired decision
boundary. By consequence, input weight vectors are preferentially constrained to the subspace of the data, so that
all constructible normal vectors also lie within this subspace (Fig 4C). When there is no a priori information on the
decision boundaries that might be drawn through the data, a reasonable heuristic for the constructible normal vectors
is that they approximate the set of difference vectors between data samples. In turn, decision boundaries can be seen
as a concatenation of segments with normal vectors that are close to difference vectors between nearby, but differently
classified data samples (Fig 4D). Consequently, by aligning the set of constructible normal vectors of the network to
the set of difference vectors between data samples, we ensure that constructible normal vectors lie within the data

subspace, and that they constitute useful putative decision boundary directions.

To achieve such alignment, we minimize the residual min, ||Ax —cW||, between any given difference Ax and its

optimal reconstruction as a linear combination of input weight vectors (the rows of the input weight matrix W, Fig 4E)

11
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Figure 4. Properties of feedforward weights for networks to perform well in concert with neuron-specific modulations.
A: The normal vectors associated with segments of the decision boundary capture the local features that the network
uses to make decisions about data sample identities (note that with ReLU units, the decision boundary consists of
linear sections). In any network architecture (here, a single hidden layer, inset), these normal vectors are weighted
sums of the input weight vectors to the first layer neurons. B: To learn a multitude of tasks with the same feedforward
weights, task-relevant normal vectors to the decision boundaries must be constructible with the network. C: Normal
vectors to decision boundaries must be constrained to the subspace of the input data. Normal vectors outside
this subspace have components orthogonal to it, which do not add useful directions for decision boundaries. D:
Generic decision boundaries can be constructed by concatenating segments with normal vectors close to difference
vectors between close, but differently classified data points. E: Combining considerations A-D, we investigate
loss functions that minimize the difference between, on the one hand, difference vectors between data points and,
on the other hand, their projections on the subspace spanned by the weight vectors to the first layer neurons. F:
Performance on multitask EMNIST (averaged over five initialization seeds) as a function of layer size for networks
with neuron-specific modulations and feedforward weights given by APMD (purple diamonds), ASD (grey circles),
APCA (blue triangles), and random projections (RP, red circles). G: Train loss (top), validation performance (together
with APMD test performance as in F for comparison, middle) and reconstruction loss (ming¢ [[AX — CW/||, bottom)
during fully supervised learning (as in Fig 3) of the input weight matrix W, for an architecture with one hidden layer
of 100 units, and for task-specific networks (grey) and neuron-specific modulations (blue, dashed). The reconstruction
loss was evaluated on W during supervised training, and compared with the case were W was given by APMD (purple,
dash-dotted).
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with respect to W for a representative set of differences

argmin [|[AX —CW||,. 3)
CW

In this reconstruction loss, AX is a matrix with as rows the difference vectors and C the matrix with as rows the
optimal coefficients ¢. We minimize (3) in three different ways (Table S1, Fig S2A). First, the optimum of (3) without
regularizer or constraint (for lower hidden layer dimensionality k than input dimensionality n) is given by the principal
components of AX (APCA), and this problem can be solved in a biologically plausible manner through Hebbian
learning rules®'. Second, to encourage alignment between input weight vectors and difference vectors, we ask that
any given Ax can be expressed with few weight vectors. We achieve this by adding an L1-regularization term A ||C||
to (3). Thus (3) becomes the canonical sparse dictionary learning problem (ASD)*>33, which can also be solved by
neural networks with biologically plausible Hebbian learning rules®?. Finally, we encourage input weight vectors to
capture local pixel correlations. We achieve this by placing an L1 constraint on Hw i H | < € on the rows of W, next to
an L1 constraint ch JH 1 < 0 for the columns of C. This doubly constrained minimization is known as the penalized

matrix decomposition (APMD)>.

We then embed the obtained feedforward weight matrices W in a network architecture with a single hidden layer
of gain-modulated neurons, with shared x-shift and bias. The hidden neurons target a single gain-modulated output
unit through identical feedforward weights. We find that solving (3) for differences between data samples instead
of the data samples themselves generally results in a performance increase when combined with neuron-specific
modulations to solve multitask EMNIST (Fig S2B). Assessing the relationship between input dimensionality (n = 784)
and dimensionality of the hidden layer (number of hidden neurons k), we find that APCA performs well for low
numbers of hidden neurons, but that task performance saturates quickly and decreases for k > 100 (Fig 4F, blue). This
result is in agreement with our theoretical considerations: when the effective dimensionality of the data is reached,
further orthogonal components do not contribute usefully to the decision boundary, as they lie outside of the subspace
of the input data. In contrast, using random projections (RP) in W by sampling from a Gaussian distribution results in
performances that increase strongly with k (Fig 4G, red). This can be understood by considering that with increasing

numbers of random vectors, it becomes more likely that their linear combinations can approximate difference vectors
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between data points. Finally, we find that APMD reached the highest performances for all k£ (Fig 4G, purple).
These weight vectors being sparse likely facilitates learning performant sets of neuron-specific modulations, as up- or
down-regulating a specific hidden neuron influences only a localized area of the input space. By consequence, neurons
with receptive fields in other areas of the input space do not need re-adjustment, whereas neurons with non-local
receptive fields would need to be re-adjusted. In these optimizations, the shared x-shift and bias, as well as the

learning rate, were optimized through an evolutionary algorithm for each configuration separately (Fig S2C).

Finally, we investigate whether the supervised approach trained purely on the classification loss (as in Fig 3) also
minimizes (3), to understand the extend to which supervised training adapts the input weight matrix to the subspace of
the data, and how that depends on the task set. To that end, we compare the value of the residual minc ||AX — CW|| of
the reconstruction loss (3) during training of W in a fully supervised fashion (as in Fig 3), with the reconstruction loss
when W was given by APMD. We assess the case where the entire network was task-specific (feedforward weights
included) and the gain-modulated case, and find that the sharp initial reduction in train loss (i.e. the classification loss)
is associated with a sharp reduction in reconstruction loss (Fig 4H). The reconstruction loss for the gain-modulated
network, where a single feedforward weight matrix has to contribute to solving a multitude of tasks, decreased to a
value much closer to the APMD optimum than the task-specific network average, where the feedforward weight matrix
only has to solve a single task. Thus, supervised training forgets the initialization by adapting feedforward weights
to the data subspace, and then fine tunes to the specific set of tasks, as validation performance during the later phase
increases from the unsupervised value (obtained with APMD) to its maximum. The unsupervised approach on the
other hand is generalist, and admits any task that might be defined post hoc, at the cost of forgoing task-specific fine

tuning.

Spiking networks with biophysically realistic dendritic branches learn task switching online

To investigate whether our biologically inspired learning strategy holds with biophysically realistic neurons, we
implement a spiking network of cortical pyramidal cell models (Fig 5A). We simplify the L5 PC model using the

method developed in our previous work®>, obtaining a model that was computationally sufficiently inexpensive to
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permit the network to be run over long timescales, thus allowing us to present a large amount of inputs. The
output neuron is a single compartment model, obtained by only fitting the soma of the full L5 PC model, whereas
the hidden layer consists of 100 neurons, each equipped with 20 dendritic compartments where context-modulating
AMPA+NMDA synapses impinge (Fig 5A, blue). Feedforward weights to the hidden neurons are given by either

APMD, ASD, PCA or RP, whereas all feedforward weights to the output neuron have the same value.

Learning at the dendritic synapses was orchestrated by an online error-weighted Hebbian plasticity rule during a
continuous stream of inputs (Fig 5B). Because of our choice of architecture, with identical weights from all hidden
neurons to the output neuron, this learning rule approximately follows the error gradient of the classification loss
(methods). For each data sample, the pixel intensities are converted into short, Gaussian bursts of spikes (width of
6 ms), with spike numbers proportional to pixel intensity. These spikes are fed into feedforward synapses whose
weights were scaled according to the matrices computed in the previous section. Conversely, the task context is
encoded by a wide Gaussian burst (width of 20 ms), consisting of on average 60 spikes if the context is active and zero
spikes otherwise. The first of the feedforward spikes opens a 50 ms window in which the output neuron should either
generate an output spike — in response to a random sample — or generate no output spike — in response to a sample from
the class to be recognized. In case of erroneous firing, a global error signal (Fig 5B, red) is relayed to the dendritic
synapses of the hidden neurons. This error signal is then multiplied by a low-pass filter of the somatic spike output
(Fig 5B, green), a low-pass filter of the presynaptic spike input (Fig 5B, blue), and a learning rate modulation (Fig 5B,

purple) based on a low-pass filter of the local dendritic voltage (Fig 5B, black).

This network architecture solves multitask EMNIST, and tasks that are demonstrably not linearly separable, such as
XOR (Fig S3). Initially, the output neuron fires indiscriminately, but learns to spike correctly during the target intervals
(Fig 5C, Fig S3C,D, shaded boxes). Assessing network performances averaged over all 47 tasks (Fig 5D), we find
that performance differences observed between alternative feedforward matrices for the artificial network architecture
(Fig 4F,G) are exacerbated, with RP performing barely better than chance level. Thus, in the noisy and imprecise
spiking system, it is all the more important that the feedforward weight matrix consists of localized receptive fields,

well-adapted to the input data. Our APMD matrix achieves this for multitask EMNIST. Finally, we assess the somatic
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Figure 5. Dendritic branches learn to solve multitask EMNIST through a biologically plausible learning rule. A: To
simulate a feedforward network consisting of neurons with biophysically realistic dendritic subunits for a sufficiently
long time, we reduce the L5 PC and synapse configuration shown in Fig 1F>3. We then connect these neurons to an
output neuron — implemented as a single-compartment reduction of the same model — that learns to spike in response
to a random sample and remain silent in response to a sample from the class to be recognised. B: Weight changes of
dendritic synapses (brown, bottom) are computed as the product of a global error signal (red), a low-pass filter of the
post-synaptic spikes (green), a low-pass filter of the pre-synaptic spikes (blue) and a voltage-dependent learning rate
modulation (purple). C: Voltage trace of the output neuron before learning (top) and after learning (bottom), for the
network with the APMD feedforward weight matrix, during an examplar one-vs-all task (not spiking in response to
‘two’). D: Performance on multitask EMNIST of the resulting model for the different feedforward weight matrices,
labels as in Fig 4F,G. E: Somatic voltage (teal) and a subset of dendritic voltages (blue) in a representative hidden
neuron, for the same feedforward input (i.e the inner product of the input weight vector [top, left] and a randomly
chosen data sample [top, right]) and five example tasks (left to right).
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and dendritic activity after learning in the same hidden neuron, for the same feedforward input, across different tasks
(Fig SE, in the APMD-network). We find that between zero and three output spikes are emitted, depending on the
precise dendritic state. Thus, this network successfully learns multitask EMNIST by expressing a different dendritic
state for each task. These learned dendritic states modulate rapid feedforward processing to solve a multitude of tasks,

supporting our central hypothesis.

Task-modulated contrastive learning for stacking processing layers

Sensory processing in the brain is thought to proceed in a hierarchical manner through a number of processing

layers® 19,

Deep artificial networks also implement hierarchical processing through a stack of layers, the learning
of which is orchestrated by error backprogagation®®>7. Nevertheless, the question of whether this algorithm could
plausibly be implemented in the brain is still a matter of debate®, in contrast to representation learning approaches
such as PCA3! or SD*, which have biologically plausible implementations. These representation learning approaches,
however, do not extract higher-order features when stacked in a deep network>!. Furthermore, by introducing neuron-specific

modulations to the hidden processing layers, the representation learning problem becomes even more complex, as now

the hidden representations depend on task modulation.

Here, we propose a representation learning algorithm that does not rely on error backpropagation between layers, and
where the task dependence of the hidden representations is an integral feature that improves generalization. As we have
shown above, sparse feedforward connectivity is beneficial in concert with neuron-specific modulations. We therefore
apply our algorithm to a convolutional architecture (Fig 6A), which by design features localized receptive fields
adapted for visual processing>®. Our representation learning approach takes inspiration from a successful contrastive
learning (CL) algorithm®. In this algorithm, augmentations (e.g. occlusions, rotations, scalings and combinations
thereof) are applied to the input data and the convolutional feedforward network creates hidden representations
thereof. A multi-layer perceptron (CL-MLP) — applied to these hidden representations — is trained in concert with the
convolutional feedforward weights to maximize similarity between representations if they originate from augmentations

of the same input sample; conversely to maximize contrast if they originate from different input samples. In the original
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Figure 6. Hierarchical stacking of task-modulated convolutional layers. A: We train a stack of gain-modulated
convolutional layers on multitask CIFAR-10 using a contrastive learning (CL) objective. Each layer consists of
a CL multi-layer perceptron (CL-MLP, yellow) to implement the CL objective, a set of convolutional feedforward
weights (purple), and an output unit (blue) to learn the task-specific gains. In this task-modulated contrastive learning
(TMCL) paradigm, no error gradients flow back between layers. B: To learn the convolutional feedforward weights
to the next layer (orange arrow), the CL-MLP maximizes contrast between representations in the last learnt layer
that originate from different data samples, and similarity between representation that originate from augmentations
(occlusions, scalings, rotations and combinations thereof) of the same data sample to which, additionally, different
task-modulations are applied (green arrows represent the feedforward pathway up until the last learnt layer). C:
Validation (left) and test (right) performances on multitask CIFAR-10 (averaged over five initialisation seeds) for the
gain-modulated networks (with shared x-shift), with filters trained by: error backpropagation (red), TMCL (blue),
contrastive learning without similarity prediction across task-modulations (green), given by random projections (RP,
black), or RP stacked on top of a TMCL layer (grey). D: Validation (left) and test (right) performances of TMCL
for networks with four layers, where during the TMCL phase the augmentations where fed to a subset of the
task-modulations (ten random but distinct subsets where evaluated for each number of tasks). Median performance,
orange; box denotes [Q1,Q3] over the ten subsets, whiskers [min,max]. E: UMAP projections of the hidden,
task-modulated representations for the TMCL-trained network. Color code as in the legend, except that the class
to be recognized is black (‘dog’ for task 5 and ‘truck’ for task 9). F: UMAP projections of the hidden, task-modulated
representations for the TMCL without task-modulation. Color code as in E.
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formulation®, the CL-MLP is applied once at the end of the feedforward pathway, and weight changes are orchestrated
across layers by error backpropagation of the CL loss. Here, we construct our networks layer by layer by applying this
algorithm in a layer-wise fashion. Hence, a local CL-MLP minimizes the CL loss to learn the feedforward weights
between the previous and the current layer, and no error gradients propagate across layers (Fig 6A, see methods
for details). After this CL phase, we learn task-specific gains for the hidden neurons in the current layer through a
task-independent output unit (OU) that maximises classification performance in a supervised manner (Fig 6A, blue).
To train feedforward weights to the next layer in the next CL phase, the task-modulations learned in the previous layers

are treated as additional data augmentations, across which similarity has to be maximized (Fig 6B).

We test our task-modulated contrastive learning (TMCL) algorithm on multitask CIFAR-10°!, and find that network
performance, averaged over all tasks, increases with the number of layers (Fig 6C, blue). To establish a performance
envelope, we test equivalent network architectures trained in a fully supervised manner through end-to-end error
backpropagation (Fig 6C, red). The performance of networks with RP starts at lower values, and does not increase
as much, or even decreases, across layers (Fig 6C, black). Similarly, stacking RP layers on top of a TMCL layer
does not increase performance across multiple layers (Fig 6C, grey). Removing similarity maximization across task
representations from TMCL also abolishes the performance increase with stacking (Fig 6C, green). We furthermore
assess network performance while using different numbers of tasks during the TMCL phase. For each number of
tasks, we select ten random but distinct subsets containing that amount of tasks, and use only those tasks as hidden
augmentations. We then evaluate network performance across all tasks, and find that performance increases with

subset size (Fig 6D), indicating that using representations with many tasks improves generalization.

Finally, we visualize how the network constructs and modulates hidden representations, to investigate whether high-level
information is extracted across layers. We apply the uniform manifold approximation and projection (UMAP®?),
a non-linear visualisation method, to TMCL-generated hidden representations. In the first layer, at most a general
distinction between manmade objects (red shades) and animals (blue shades) can be observed, while in the fourth
layer individual classes appear in a localized pattern (Fig 6F). Such localized patterns cannot be distinguished for CL

without task-modulations (Fig 6F) or for RP (Fig S4).
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Discussion

In this work, we have laid out a biophysical theory of how contextual modulations can be achieved in the brain.
We have shown that the dendritic trees of neurons are ideally suited to integrate contextual inputs, resulting in
concerted gain and threshold modulations to the IO relationship of individual neurons. We have then demonstrated
that such task-modulations achieve performant transfer learning. Furthermore, the architecture of our models, with
task-modulations that are applied prior to the non-linear activation —i.e. the spiking output in networks of biophysically
realistic neurons — and identical feedforward weights to the output neuron, allows a Hebbian plasticity rule modulated
by a global error signal to learn non-linear task-specific decision boundaries. Finally, we have shown that task-modulations
to hidden layers augment sensory representations, facilitating the extraction of high-level features through contrastive

learning.

While the component of our task-modulated contrastive learning approach that learns task-modulations can be implemented
in a biologically plausible fashion, as shown through our network model with realistic dendritic subunits, the contrastive
learning step in our study relies on precise error backpropagation through the CL-MLP. However, a contrastive
learning algorithm has recently been proposed in the context of predictive coding that relies solely on Hebbian learning
rules®. This algorithm shows that contrastive learning could be implemented in a self-supervised manner, by neurons
connecting locally to principal feedforward cells (L5 PCs), and using gaze information to assess whether similarity or

contrast have to be maximised.

63.64 and later also in early sensory regions®%7, is that the

A puzzling observation, first discovered in high-level areas
participation of a neuron in the representation of a sensory stimulus changes over time. This representational drift
raises questions about the framework of classical representation learning, and about how stable perception can be
achieved®®%. As we show, changes to the sensory representation could help in extracting high level information in

further processing layers. The drift itself could be a manifestation of changes in the internal mental state — encoded on

dendritic trees and thus invisible in most imaging experiments.

Feedforward processing needs to be rapid, for instance to initiate evasive action when a threat is identified, while
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contextual modulation likely proceeds on a slower time scale, for instance to bias the feedforward pathway towards
detection of relevant threats given an environment. We have linked this difference in time scales to the underlying
biophysical processes: the short duration of somatic spikes (1-5 ms) and by extension the whole feedforward pathway
(100-150 ms)**3> in comparison to the duration of dendritic spikes (50-100 ms, or possibly longer*>**). These
temporal scales match the frequency bands associated with feedforward processing (gamma, 60-80 Hz) and top-down

processing (alpha-beta, 10-20 Hz) observed across a large range of tasks and stimuli’®7>.

In the brain, the contextual signal to a neuron is likely a rich combination of cross-modal information, recurrent
information about the recent past, and top-down signals about high-level goals, behavioral state and environment
characteristics. That these signals impinge on dendritic branches, which function as semi-independent feature detectors’®,
has the added benefit of suppressing noise by preventing spurious activations by random subsets of dendritic inputs’’.
Furthermore, distinct contextual pathways may target distinct loci on the dendritic tree. Local recurrent connections,
e.g. L5 PC to L5 PC or L5 PC to L2/3 PC to L5 PC’8, target basal and proximal apical dendrites’®, and may relay
information about the recent past as a context for the present. Axons carrying top-down signals target L5 and L6,
where they generate NMDA spikes in basal dendrites of L5 PCs, as well as L18, where they generate Ca®* spikes in
the apical dendrites of L5 PCs*>8!. Whereas we have focused on NMDA-spikes in this work, Ca>* also provide gain
modulation over long time-scales and are thus suited for implementing contextual adaptation®?. Note furthermore that
top-down signals targetting L1 need not remain constrained to the apical dendrites of L5 PCs. These signals also target
GABAergic somatostatin-expressing (SST) and vasoactive intestinal peptide-expressing (VIP) interneurons®’, which
in turn provide inhibition and disinhibition, respectively, to the basal dendrites of L5 PCs*®, and powerfully regulate

NMDA-spike genesis and duration®84,

Taken together, our work reframes feedforward processing in the brain as a fundamentally adaptable process, steered
dynamically by contextual inputs that modify the dendritic state. Our theory matches environmental constraints to the
underlying biophysical layout, and may help to explain diverse observations, such as the frequency bands associated

with feedforward and top-down processing, and the apparent instability of sensory representations.
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Methods

Biophysical modelling

The morphology, ion channels and physiological parameters for the L5 PC model were taken from Hay et al.*> and
implemented in the NEURON simulator®®. Contextual and background synapses were conductance based, either
containing AMPA+NMDA (excitatory) or GABA (inhibitory) receptors. AMPA and GABA receptors were implemented

as the product of a double exponential conductance profile®® g with a driving force:

isyn = g (€, — V). 4)

AMPA rise resp. decay times were 7, = 0.2 ms, T; = 3 ms and AMPA reversal potential was ¢ = 0 mV. For GABA,

we set T, = 0.2 ms, 7y = 10 ms and e = —80 mV. N-methyl-D-aspartate (NMDA) currents®’ were implemented as:

isyn =80(v) (e—v) (5)

with rise resp. decay time 7, = 0.2 ms, T; = 43 ms, and ¢ = 0 mV, while ¢ (v) — the channel’s magnesium block — had

the form®3:

1

o) = T gze0mv

(6)

The weight of a synapse signifies the maximum value of its conductance profile. For an AMPA+NMDA synapse, the
weight is the maximal value of the AMPA conductance profile, and the maximal value of the NMDA profice is twice
that of the AMPA window (NMDA ratio of 2). Feedforward synapses where current based, with a dual exponential
current profile with 7, = 0.2 ms and 7; = 3 ms. The excitatory synaptic weight corresponded to the maximal value of
the current profile. For inhibitory feedforward synapses, the weight was negative and corresponded to the minimum

value.

For dendritic modulation, we identified 20 dendritic compartments suited for semi-independent NMDA-spike generation
(e.g. avoiding compartments on sister branches, Fig 1F) and equipped each of these compartments with an AMPA+NMDA
synapse. Both the feedforward and shunt inputs targeted the somatic compartment. The 20 dendritic compartments

as well as the soma were also equipped with an AMPA and GABA background synapse. All parameters for the

simulations are shown in Table 1.
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Dendritic modulation Somatic modulation
Weight exc (inh) feedforward synapses 0.06 (-0.06) nA 0.06 (-0.06) nA
Feedforward inputs burst width 6 ms 6 ms
No. of AMPA+NMDA inputs 60
High AMPA+NMDA weight 0.08 nS
Low AMPA+NMDA weight 0.001 nS
No. of comps with NMDA spike {0,3,6,9,11, 14, 17, 20}
Shunt weight 5nS
No. of shunt inputs {0, 20, 40, 60, 80, 100, 120}
Contextual inputs burst width 20 ms 40 ms
Soma comp AMPA (GABA) background rate 100 (200) Hz 100 (200) Hz
Dend comps AMPA (GABA) background rate 60 (120) Hz 60 (120) Hz
Weight AMPA (GABA) background synapses 1(1)nS 1(1)nS

Table 1. Simulation-specific parameters to investigate somatic and dendritic modulation (Fig 1,2). Note that for
dendritic modulation, we set the number of compartments with NMDA-spikes n, by targetting n. compartments with
an AMPA+NMDA synapse of high weight and 20 — n, compartments with an AMPA+NMDA synapse of low weight,
and delivered the same amount of input spikes in each case. For somatic modulation, the weight of the shunt synapses
remained the same, but the number of input spikes was modified. Note that the burst width for somatic modulation was
enlarged to account for the shorter time-scale of the GABA conductance window compared to the NMDA conductance
window.

To measure the membrane conductance change induced by the contextual inputs (Fig 1H), we follow Haider et al.*¢ and
measure the time-dependent electrode current in voltage clamp (i(#; vy, ), with vy, the holding potential) for two different
holding potentials: v;,; = —80 mV and v;; = 0 mV. Following the Ohmic relationship g(7) (v, — vo) = i5(#;vy,), with

vo the equilibrium potential, we find the membrane conductance as

_i(tvp) —i(tvm)
8t) = ——————.
Vil —Vi2

)

To visualize g(¢) as in Fig 1H, we subtract the pre-stimulus baseline and plot the min-max envelope obtained over 10
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trial runs.

10 curve parameter fitting

To obtain the IO curves, we change the number of feedforward inputs in each burst (weights as in Table 1), and either
have only excitatory inputs (no. of feedforward inputs > 0) or inhibitory inputs (no. of feedforward inputs < 0). For
each number of inputs, we present ten independently sampled bursts featuring that number of inputs, and measure the

average number of output spikes generated in response.

To fit the IO curves (Fig 2), we a use linear least squares fit (argmin,, ||[Au — y||,) both for the shared gain and shared
bias cases, but construct the feature matrix A and parameter vector u differently. On the domain where y > 0, the IO

curve is

y=gmung+b for gain modulation
and 3

y=gng+b, forbias modulation,

with ng the number of feedforward inputs. For M modulation levels, we have parameter vectors u = (g, 82, . ..,8m,b)

for gain modulation and u = (g,b1,b,,. . ,byr) for bias modulation, and corresponding feature matrices
N1 | 0 .. 0 1
N2 |t 0 . 0 1
0 ety - 0 1
A=1 0  nmlp, - 0 1 ©)
0 0 v a1
I 0 0 R vy 1_
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for gain modulation and

-nm|m:1 1 0 .. 0_
nol,, 1 0 ... 0
ngil,, 0 1 ... 0
A= lnpl,, 0 1 ... 0 (10)
et |y 0 0 ..o 1
_nff2|m:M 0 0 ... 1_

for bias modulation, with ng |, corresponding to the number of feedforward inputs where the output transitioned from
0to 1 spikes and ny |, from 1 to 2 spikes, given a modulation level m. The output vectory = (0.5,1.5,0.5,1.5,...,0.5,1.5)
was identical in both cases. To extend gain modulation with a shared x-shift, we modified the entries in the gain
modulation feature matrix A from ngl,, to ngil,, — Xshire ( = 1,2, m = 1,...,M) and minimized the fit residual

miny ||A(Xsi) W —y||, over the xgif values.

Supervised learning in the fully connected networks

The fully connected network architectures with neuron-specific modulations consisted of a fixed number of layers of
equal size, the final layer connected to a single output unit. The neuron-specific modulations were implemented in
an abstract fashion, as task-specific parameters, although it is straightforward to extend the network architecture to
implement the modulations as synaptic inputs. The networks were trained through end-to-end error backpropagation.
For the networks with task-specific outputs, the hidden units had unit gain (fixed) and a trained bias shared across tasks,
and as many output units as there were tasks. The hidden layer neurons had ReLU transfer functions and the output
unit a tanh(-) transfer function. The networks were implemented in PyTorch®, trained on batches of size 1000 using
Adam®® and we computed the mean squared error between target and network output as loss. The targets were defined
as either —1 or +1, and a custom sampler assured batches consisted of an equal number of samples from each task and
task-class. The training was interrupted with an early stopping criterion with a patience of 5 epochs on the validation

performance evaluated after each epoch on a validation set of 47932 samples, or after 50 epochs, whichever came first.
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Independent learning rates for shared and task-specific parameters were optimized for each form of multitask leaning
separately with an iterative grid search (Fig S1C). Performances are measured by averaging over all tasks, and by
additionally averaging over twenty initialization seeds (error bars show standard deviation of task-performance across

seeds, averaged over all tasks).

Decision boundary normal vectors

To explain our approach, we consider the pre-activation a : R” — R : x — a(x) of a neuron in a feedforward network
as a function of the sensory input x (the activation y being given by y(x) = o(a(x))). Biophysically, this quantity
most closely corresponds with the somatic voltage under Na™-channel blockage; it is the aggregate of all inputs and
when it crosses a threshold, the neuron would emit a spike if the non-linear activation function (the Na™-channels)
were applied. The neuron may be active (a(x) > 0) or inactive (a(x) < 0), and its decision boundary on the input
domain is given by the set D = {xp € R" | a(xp) = 0}. In a small enough region around a point xp € D, a(x) can be

approximated as being linear:

a(x) = w, (x—xp), (11)

and w, = dfj(;‘) is the local normal vector of the decision boundary. This normal vector is always a linear sum
X=XD

of the input weight vectors w; to the first layer neurons (j = 1,...,k, with k the number of neurons in the first layer),

and is perpendicular to the local decision boundary (see methods), thus capturing the local input features that a uses

to make a decision about whether to become active close to xp (Fig 4A).

First, we note that for input x € D on the decision boundary D close enough to xp, a(x) = 0, and thus, following (11):

w, (x—xp) = 0. (12)

By consequence, w is perpendicular to the local decision boundary and indeed its normal vector.

Second, we compute w | explicitly, and to that purpose write the preactivation a of a neuron in layer K of the network

as:

xshift

a=g® (wy<1<71> _ ) FIACY)
(13)

v = o (g<i> © (Wu) YD) _Xyghm) +b<i>) ;=1 K—1,y? =x,
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with y() the neural activations in layer i, ¢ : R — R the neural activation function applied element-wise to its inputs,
W the weight matrix from layer i — 1 to layer i, g(i), xf(:;]ltz resp. b the gains, x-shifts resp. biases in layer i, w the

weight vector to the neuron and g, xxsphife resp. b its gain, x-shift and bias. w is then found as

Wil =g T RO )
X=Xp
with dy(®) /dy(—1) the Jacobian matrix of y(!) with respect to y(~1). This Jacobian is given by
dy® /dyl=) = pO @ pl) — diag ((gm o0 (ga) o (Wm gD _ Xg&jﬁ) T b(z‘)) )) ‘ (15)
Thus, we find for (14):
wi (xp) = g®wl pE-DwE=-1 ... p@ w2 ph)y) (16)
By rearranging this matrix product, we obtain
W, (x) = f [T DD ) pC gl i)
"~ ¢j(xp) (17)
- Y et
=1

a linear weighted sum of the inputs weight vectors (with wg-}) the j’th row of W) and d:(}) the j’th column of D),

Unsupervised learning of weights combined with supervised gain modulation

The unsupervised optimization problems for PCA, APCA, SC, SD, and ASD are solved using Scikit-learn®!, and for
PMD and APMD we use a custom implementation. The networks consisted of a single hidden layer, with weights
resulting from optimising the loss functions in Table 2 (for RP, weights were drawn from a Gaussian distribution
and then normalized so that HWEI) H2 = 1). Weights to the output unit were uniform, and also normalized to have
unit Buclidean norm (w°* = (1,...,1)/ Vk, with k the dimensionality of the hidden layer). Activation functions,
target outputs, the optimizer and the way in which performance was measured were identical to the fully supervised

networks.

We optimized gains for each task separately by performing gradient descent with batches of 100 samples, and performed
an evolutionary meta-parameter optimization using DEAP®? to find optimal values for x-shift, bias, and learning rate

by maximizing validation performance on a subset of 10 tasks (Fig S4C).
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Abbr.  Unsupervised loss function Constraints Parameter values
PMD X—C<1>W<1>H2 Hc(})H1 gé,’wﬁ.})Hl <e|wl| =1 8=s5vke=3vn
APMD  [[ax —cOw | [P <8 W] <e W], =1 8=5vke=3ya
SD X—c<1>W<'>H2+7L HCWH1 wi| =1 A=.1
asp [ax—cOw| +allc| wil | =1 A=

Table 2. The unsupervised loss functions with their constraints and parameter values. cW is commonly referred to as
the sparse code (SC) and WO as the sparse dictionary (SD). Note that AX, X € Rkxn,

To construct Fig 4G, we evaluate the residual minc ||[AX —CW/|| of the reconstruction loss (3) during supervised
training without regularizer or constraint (i.e. the least mean squares optimum with respect to C) on matrices AX

containing 1000 differences.

Loss gradient with respect to task gains as a Hebbian learning rule with global error modulation

Here, we show that in the network architecture described in the previous section, the error gradient with respect
to the task-dependent gains can be expressed as a Hebbian learning rule modulated by a global error signal. We
interpret task-dependent gains to the hidden neurons with activity y; (i = 1,...,k) as synaptic inputs originating from
task-encoding neurons. With g;, the weight of the connection to neuron i associated with task ¢, and z; € {0,1} the
activity of the associated task-encoding neuron (1 if the task is active and O otherwise), the total gainis g =Y, gi;z.

The structure of these networks then becomes

yi=0 ((Zgi,zZz) (WiX—xshift)+b> , i=1,..k
t

Yivi )
o = tanh 0 +b, (18)
o = tanh (L 020 222

1 ~ 2
Li=—500—Yos)",
2
with y, the activity of the output neuron, b, its bias and g, ; the weight of the task-gain connection to the output neuron.

You € —1,1 is the task-dependent target value for a given input sample. Computing the gradient of the task-loss .Z;
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with respect to the task-gains in the hidden layer yields

az _
dgis

—(Yo — Jo.) tanh’ <go,t Z\}? + bo) f;]é 0'(gis (WiX — Xghife) +b) (WiX — Xehife) 2t - (19)

post pre

€
One crucial observation here is that since the feedforward weights to the output unit are all identical, they do not
modify the error signal in a neuron-specific manner. By consequence, the error signal to the hidden layer is global,
i.e. identical for all hidden neurons. A second crucial observation is that while it may seem as if the post factor could

change the sign of the gradient, if

Wi X — Xshife < 0, (20)

this is actually impossible with the ReLU activation function (which results in ¢’ € {0,1}), and positive gains together
with negative bias, as obtained from the L5 PC model. Indeed, for the neuron to be active (¢’ = 1), the inputs need to

be sufficiently strong, so that

it (WiX — Xgpig) +b >0,
(21)

b
= W; X — Xghift > —— > 0,
8it
where the second inequality holds because we have negative bias and positive gains. Thus, whenever (20) is satisfied,
the neuron is inactive (6’ = 0) and w; X — xg,;f; does not influence the update of git- We will leverage this fact in the

spiking neural network, where we replace the post factor by a low pass filter of the somatic output spikes to obtain a

learning rule that follows the approximate gradient.

Spiking network

In order to simulate the network model, which consisted of one hidden layer with 100 neurons, over sufficiently long
time scales to allow significant learning, we reduced the L5 PC model by retaining only the dendritic compartments and
the soma (Fig 5A), using the method proposed by Wybo et al.’> to conserve dendro-somatic response properties. We
then equip each dendritic compartment with an AMPA+NMDA synapse for each context — 47 in multitask EMNIST

(Fig 5) and 14 for the boolean tasks (Fig S3) — whose weight evolved according to

W = T]dend Upre Upost € (22)
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with TNgenq a learning rate dependent on a low-pass filter ugenq of the local dendritic voltage Vaend, Upre a low pass filter
of the input spikes to the contextual synapse, upos a low pass filter of the output spikes and € a global error signal,
implemented as the low pass filter of an error pulse whose amplitude a, was proportional to the difference between the
number of generated output spikes in the ‘reward window’ and the expected number (i.e. 0 or 1). This 50 ms reward
window opened upon the arrival of the first feedforward input spike associated with a data sample. A delta pulse with
amplitude a, was then injected into € at the closure time #, of this reward window. Summarizing the above, we had

the following:
_ Udend (t) — Vdend (t)

Udend (t ) = Tdend
en

Mo for ugend (I) <6

Tdend (1) = n for 6y < Mdend(t) <6

M2 for 6 < ugena(r) (23)

t
upost(l) = _Mth() + Z CpostS(l—ts>

Tpost sEpost
R E(t
&(t) = 0} +) a8t —1.).
Tg e
Note that T)gend, Udend, Upre and upose are all specific to the synapse, whereas € is global and shared across all synapses.

Model parameters are summarized in Table 3.

To ensure that the combined feedforward post-synaptic potential (PSP) varied within a reasonable dynamic range, we
took the feedforwards weights derived previously (APMD, ASD, PCA, and RP to the hidden layer, and (1,...,1)/ Vk
to the output neuron) and applied a scale factor

Vo
Sy = (24)
[Winll1 Zin 7in

to the input weight vector wj, of each neuron, with z;, the somatic input resistance of the L5 PC, viange a voltage
range parameter and n;, the number of feedforward inputs (n = 784 for a neuron in the hidden layer and k = 100 for
the output neuron in multitask EMNIST, and n = 2 and k = {4, 10} for the boolean tasks). Vrange 1S @ parameter that

allowed us to fine tune the dynamic range of the combined feedforward PSPs. For the hidden neurons, vrange Was set
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heuristically to 120 mV on multitask EMNIST and 60 mV on the boolean tasks, and for the output neuron, vyange Was
set to 450 mV on multitask EMNIST and 600 mV on the boolean tasks. Together with z;,, this yielded feedforward

weights in nA.

Plasiticity rule parameter

Parameter value

Tdend

Mo, M1, M2
6o, 61
Tprea Tpost
Cpre Cpost

Te

25 ms

1073 nS/ms, 10~* nS/ms, 5 x 107% nS/ms
-50 mV, -10 mV

25 ms, 10 ms

1/60, 1

15 ms

Network parameter

Parameter value

No. of feedforward inputs per burst
Feedforward inputs burst width

No. of AMPA+NMDA inputs per burst

Max AMPA+NMDA weight

Min AMPA+NMDA weight

Contextual inputs burst width

Soma comp AMPA (GABA) background rate
Dend comps AMPA (GABA) background rate

Weight AMPA (GABA) background synapses

0-10 depending on pixel intensity
6 ms

60 for active context, 0 otherwise
0.2 nS

0.01 nS

20 ms

100 (200) Hz

60 (120) Hz

1(1)nS

Table 3. Parameters used in the network model with biophysically realistic neurons.

To train this system, we presented 600000 samples for each task in multitask EMNIST (balanced across task-classes,

so repetition of the same sample may occur) by converting them to Gaussian input spike bursts (the number of input
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spikes in a burst varied between 0 and 10 and was proportional to pixel intensity), and injecting these burst in the
network at 150 ms intervals. We then froze the plasticity rule and tested performance on 500 samples for each task

taken from the EMNIST test set (again balanced across task-classes).

Task-modulated contrastive learning

Hyperparameter Contrastive Learning phase Task-specific modulation learning phase
batch size 4096 8192
number of epochs 100 80
learning rate {0.1, 0.01, 0.001} {0.1, 0.01, 0.001}
gain initialization {Constant(1), Rademacher, Rademacher+KaimingUniform, KaimingUniform}

checkpoint selection lowest loss on train set lowest loss on validation set
temperature 0.5 N/A

Table 4. Hyper-parameters used in our simulations. Sets denote that the hyper-parameter is part of a grid search with

the given values.

For TMCL (Fig 6), we convert CIFAR-10°! into a multitask learning problem (multitask CIFAR-10) as before, by
defining 10 1-vs-all classification tasks, and sampled data in a balanced manner across tasks and task-classes. We kept

9000 samples as validation set. Each color channel was centered, then normalized to unit variance.

We implement a visual geometry group-like (VGG) architecture following Illing et al.>* Precisely, we train a stack
of L convolutional layers with kernel size 3, stride 1 and 64 channels, and applied batch normalization®® to the
task-modulated convolution outputs before applying the ReLU activation function. Batch normalization renders the
task-independent bias b obsolete; it was not included in our simulations. By consequence, the output of a convolutional
unit was

ReLU (BatchNorm(g; (w *X — Xghit))) » 25)
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where x denotes the image patch, w refers to the respective convolutional filter, * denotes the convolution operation,

and g; the task-specific gain. Every second layer was succeeded by a MaxPool layer with stride 2x2.

Our approach learns a stack of convolutional layers iteratively, by adding the next layer on top of the previously learnt
ones. Each iteration consists of two distinct phases: first, feedforward filters to the next layer are learned through CL,

and subsequently we learn task- and neuron-specific gains for the new layer in a supervised manner.

For CL phase, we follow the SimCLR algorithm®. We use the same image augmentations that the authors used on

their CIFAR-10 experiments:

random_resized_crop (32, scale=(0.08, 1.0), ratio=(1l., 1.))
random_horizontal_flip(p=0.5)
color_jitter (brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8)

random_grayscale (p=0.2)

followed by standard score normalization according to the statistics of the original dataset. To train the filters from
layer [ — 1 to layer I (I = 1,...,L), we first generate batches of augmented hidden representations in layer / — 1. With
X1,...,Xxy a batch of input samples (see Table 4 for batch size), we generate an augmented batch X1, ..., %y of twice
the original size, with samples Xy, %y being positive pairs, i.e. generated through image augmentations from the
same source sample x;. We then propagate this augmented batch through the hierarchy to layer / — 1, while applying
task-gains from a random task to each augmented sample, to obtain a batch of task-modulated hidden representations
V1,...,y2n. Next, the convolutions with the to be learned filters from layer / — 1 to layer / are computed and the
ReLU is applied to obtain the representation that is fed into the CL-MLP. The CL-MLP consists of a hidden layer and
an output layer with dimension 64, and uses ReLU activation. The similarity s; ; between representations z; and z;

obtained from final layer of the CL-MLP is computed as their cosine similarity
Zi*Zj

. e — (26)
llzill» ||Zj||2

Si,j
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The loss was computed as

A 5o s
P — N Z [Tk In+k) + LFN+ies T)]s
k=1
with
o exp(Sk.n+k/T)
(i, Inak) = —log o—————, 0
Z?g eXp(Sk-,J'/T)
14k

and temperature T = 0.5. The error gradient of this loss is then used to train the filters from layer / — 1 to layer /. All
parameters, including convolutional filters, for layers < / — 1 remained frozen. For [ = 1, layer [/ — 1 is the input layer

and no task-modulation could be applied, so that y;, = .

To perform the classification for all one-vs-all tasks, we reduce the height and width axes by averaging, retaining a
64-dimensional vector with the per-channel averages. Finally, an output unit applies tanh(-) to the inner product of the
64-dimensional representation vector and a learned, task-independent weight vector w,,. Task-specific gains in layer
[ are then trained to minimize the classification loss (same as in our fully connected architectures) at the output unit
(test performance at this output unit is what is reported in Fig 6B,C), and the process is continued recursively at layer

[+1.

Except for the task-specific gains, all parameters (i.e. the CL-MLP parameters, convolutional filters, the x-shift and
the output unit) follow the Kaiming initialization, a standard approach in the VGG literature®*. For the task-specific

gains, we tested the following initialization strategies

* Constant(1): Initialize each entry to 1.
* Rademacher: Sample each entry from Uniform{—1,1}.

+ KaimingUniform: Each entry is sampled i.i.d. from Uniform(—7v,y) with y =2,/ ni and where nj;, is the

number of inputs targeting a given unit.

* Rademacher+KaimingUniform: Sample each entry from Rademacher, then add a sample from KaimingUniform

to each entry.
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The final performance numbers reported were selected from the grid search described in Table 4, according to the best
accuracy on the validation set. All experiments were implemented in PyTorch®® and training was performed using

Adam®.
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Figure S1. Supplementary results for the networks trained in a fully supervised fashion. A: Full set of binary
classification tasks (48), solved with a network with a single hidden layer (top) and four hidden layers (bottom)
through adaptation of the task-specific gains. Each hidden layer consisted of 50 units. Feedforward weights, x-shifts
and biases were shared across tasks. B: Performances on multitask EMNIST of task-specific networks (no parameters
shared across tasks, grey), task-specific readouts (red) and the various possible neuron-specific modulations for all
architectures (x-labels denote the number of hidden units in each layer). C: Results of learning rate scans for the three
multitask learning approaches shown in Fig 3, for all network architectures. For neuron-specific modulations (middle
and bottom rows) the optimal (green cross) modulation learning rate (y-axis) was generally larger than the weight
learning rate (x-axis).
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Figure S2. Supplementary results for the networks with unsupervised feedforward weights and supervised gain
adaptation. A: Weight vectors to the hidden units (k = 100) for the three unsupervised learning algorithms Fig 4, i.e.
principal component analysis (top), applied to data samples (PCA) or difference vectors (APCA), sparse dictionary
learning (middle) applied to data samples (SD) or differences (ASD), and penalized matrix decomposition (bottom)
applied to data samples (PMD) or differences (APMD). B: Comparison of performance of gain-modulated networks on
multitask EMNIST, between feedforward weights given by applying the respective unsupervised learning algorithms
to the data samples versus the difference vectors, as a function of layer size. For PCA and APCA, weight vectors
are very similar (A), resulting in similar performance for k < 100. For larger k, performance decreases as the extra
principal components are no longer useful for classification tasks. For SD and PMD applied to data samples vs.
differences, the distinct weight vectors (A) result in a performance increase for ASD resp. APMD vs. SD resp. PMD.
C: To combine the unsupervised weights with supervised gain modulation to learn the specific tasks, we performed
an evolutionary meta-parameter optimization on the shared bias, the shared x-shift, the gain learning rate and the
gain initialization. Note that shared parameters were not only shared across tasks, but also across neurons. Gain
initialization was Gaussian with optimized mean (gain init avg) and standard deviation (gain init stdev). Plots show
performance of a randomly chosen subset of ten tasks evaluated on the validation set for APMD with k£ = 100, for
all configurations tried by the evolutionary algorithm. The ten best metaparameter configurations are marked by red
crosses. The optimal metaparameter configuration was det®mined in this way for each input weight matrix and hidden
layer size shown in Fig 4F.
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Figure S3. Application of the biophysically realistic spiking network architecture to all non-trivial boolean functions.
A: Two network configurations were trained, one with 4 hidden neurons and one with 10 hidden neurons. The weight
vectors were distributed so as to allow construction of decision boundaries with normal vectors in any direction of
the two-dimensional input space. For 4 hidden neurons (top) we chose the centers of the 4 quadrants, whereas for 10
hidden neurons (bottom) we divided the unit circle in 10 equal parts and sampled a vector at random from each of
these parts. B: We learn the 14 possible non-trivial boolean classification tasks on inputs x,y € {0, 1}. 12 of these tasks
are linearly separable (left) and two are linearly non-separable (right). The output neuron of the network should learn
to spike in response to the blue crosses, and not spike in response to the red circles. C: Voltage response of the output
neuron (in the network with 10 hidden neurons) to inputs x,y € {0, 1}. Note that input values were sampled in such a
way that for each task the network received a balanced set of input combinations with + and o targets. Input values
{0,1} were converted to a Gaussian burst of 6 ms width containing 20 spikes in case of 1, and no spikes otherwise.
The output neuron spikes indiscriminately initially (left) but learns to spike correctly after learning (right), here shown

for the "and" (top) "xor" (bottom) task. D: Performance (best of 5 initialization seeds) for the networks with 4 and 10
hidden neurons.
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Figure S4. UMAP of the hidden representations, as in Fig 6F, but for the case of RP.
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