

1 **Identifying transcriptomic downstream targets of genes commonly mutated in**
2 **Hereditary Hemorrhagic Telangiectasia**

3

4 Md Khadem Ali^{1,2}, Yu Liu^{3,4}, Katharina Schimmel^{1,2,3}, Nicholas H. Juul⁵, Courtney A.
5 Stockman⁵, Joseph C. Wu^{3,4,6}, Edda F. Spiekerkoetter^{1,2, *}

6

7 ¹Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine,
8 Stanford University, Stanford, CA, USA

9 ²Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford,
10 CA, USA

11 ³Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA,
12 USA

13 ⁴Division of Cardiovascular Medicine, Department of Medicine, Stanford University School
14 of Medicine, Stanford, CA, USA

15 ⁵Institute for Stem Cell Biology and Regenerative Medicine, Division of Pulmonary Allergy
16 and Critical Care Medicine

17 ⁶Molecular Imaging Program at Stanford, Department of Radiology, Stanford University
18 School of Medicine, Stanford, CA, USA

19

20 *Corresponding author:

21 Edda Spiekerkoetter, MD

22 Associate Professor of Medicine

23 Division of Pulmonary, Allergy and Critical Care Medicine

24 Vera Moulton Wall Center for Pulmonary Vascular Disease

25 Stanford University

26 300 Pasteur Drive

27 Stanford, CA 94305, USA

28 Phone: +1 (650) 739-5031

29 Email: eddas@stanford.edu

30

31

32

33

34

35 **Abstract**

36 Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant disease that causes
37 arteriovenous vascular malformations (AVMs) in different organs, including the lung. Three
38 genes, ENG (endoglin), ACVRL1 (ALK1) and SMAD4, all members of the TGF- β /BMPR2
39 signaling pathway, are responsible for over 85% of all HHT cases. However, how these loss-
40 of-function gene mutations lead to AVMs formation and what common downstream
41 signaling they target is unknown. Here, using a combination of siRNA-mediated gene
42 silencing, whole transcriptomic RNA sequencing, bioinformatic analysis, transcriptomic-
43 based drug discovery, endothelial cells functional assays and VEGF signaling analysis, and
44 *ex vivo* precision cut lung slice (PCLS) cultures approach, we uncovered common
45 downstream transcriptomic gene signatures of HHT-causing genes and identified promising
46 drug for HHT. We found the commonly used BMPR2-signaling downstream target ID1 is not
47 a common downstream target of all the three HHT genes knockdown in human pulmonary
48 microvascular endothelial cells (PMVECs). We identified novel common downstream targets
49 of all the three HHT-causing genes that were enriched for HHT-related biological process
50 and signaling pathways. Among those downstream genes, LYVE1, GPNMB, and MC5R
51 were strong downstream targets that could serve as a better common downstream target than
52 ID1. Furthermore, using the common downstream upregulated genes (HHT disease signature)
53 following HHT gene knockdown, we identified a small molecule drug, Brivanib, that
54 reversed the HHT disease signature, and inhibited VEGF-induced ERK1/2 phosphorylation,
55 proliferation, and angiogenesis in PMVECs and inhibited some of the upregulated HHT
56 disease genes in PCLS. Our findings suggest that Brivanib could be an emerging new drug
57 for HHT.

58

59 **Keywords:** Pulmonary arteriovenous malformation, hereditary hemorrhagic telangiectasia,
60 pulmonary microvascular endothelial cells, angiogenesis, drug repurposing

61

62

63 **Introduction**

64 Hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber syndrome,
65 is a complex genetic disease that causes abnormalities of blood vessel formation in the liver,
66 lung, brain, skin, nasal mucosa, and gastrointestinal tract [1]. HHT is a rare disease, affecting
67 approximately 1 in 5000-10000 people worldwide [2]. The key cardinal clinical
68 manifestations of the disease include epistaxis (nose bleeding, present in 90% of cases),

69 gastrointestinal hemorrhage, mucocutaneous telangiectasias (blood vessel dilations), and
70 visceral arteriovenous malformations (AVMs). Clinically, HHT is generally diagnosed based
71 on the four established Curacao Criteria; recurrent epistaxis, telangiectasia, family history,
72 and visceral AVMs [3]. The diagnosis of HHT is confirmed when three or more criteria are
73 met, while it is suspected if just two criteria are fulfilled. AVMs are large abnormal
74 connections between arteries and veins bypassing the capillaries and result in severe bleeding
75 when present in the nose, GI tract, and brain or cause paradoxical emboli and stroke when
76 present in the lungs. AVMs in the lung (15-45%) and liver (>70%) are most common, while
77 brain AVMs develop in 10-23% of HHT patients [4]. Currently, HHT therapies aim to lessen
78 the disease's symptoms. However, there is currently no mechanism-based targeted therapy
79 available.

80

81 The majority (about >85%) of the HHT patients have loss of function mutations in either
82 ENG (HHT type 1) or ACVRL1 (ALK1) (HHT type 2), but a small percentage of them
83 (approximately <1%) have mutations in SMAD4 causing the combined juvenile
84 polyposis/HHT syndrome. Interestingly, all three HHT-causing genes encode proteins
85 belonging to the same TGF β superfamily of proteins. All three HHT gene products function
86 in SMAD-dependent signaling pathways in which the activated Smad complex enters the cell
87 nucleus and regulates transcriptional programs. Previous *in vivo* studies showed that any of
88 the three HHT gene mutations could cause vascular malformations since knockout alleles for
89 ENG, ACVRL1, and SMAD4 all result in HHT-like phenotypes in mice [1]. Mechanistically,
90 in addition to the TGF β /BMP pathway, several other pathways, such as VEGF, mTOR, and
91 PI3K/AKT signaling pathways, are associated with AVM formation and HHT pathogenesis
92 [1]. Recently, pharmacologically combined treatment with Sirolimus and Nintedanib has
93 been shown to correct Smad1/5/8 reduction and mTOR and VEGFR2 activation. This
94 combination drug treatment reversed and prevented vascular abnormalities, bleeding and
95 associated anemia in two experimental HHT mouse models (BMP9/10i antibody-, and the
96 inducible ALK1 knock out mouse model of HHT) [5].

97

98 One of the known downstream targets of BMPR2/ALK1 signaling are the inhibitors of DNA-
99 binding/differentiation proteins (IDs). ID proteins are thought to inhibit differentiation and
100 promote cell cycle progression, to be involved in venous, arterial, and lymphatic endothelial
101 cell identify and, therefore, when dysregulated, could possibly explain the aberrant
102 proliferation observed during AVM pathogenesis in HHT[6]. In support of this, mice with a

103 combined loss of both *Id1* and *Id3* display cranial hemorrhage secondary to the formation of
104 an anastomosing network of dilated capillaries in the brain[7], suggesting that ID1/3 may
105 play a role in AVM formation. Our group has previously identified the repurposed drugs
106 Tacrolimus (FK506) and Enzastaurin as "ID1-increasing" drugs, which improved endothelial
107 function *in vitro* [8, 9] as well as prevented and reversed the occlusive vasculopathy in
108 pulmonary hypertension, a second rare disease characterized by haploinsufficiency in the
109 BMPR2/ALK1 signaling pathway. FK506 was identified in a High Throughput Screen (HTS)
110 of FDA-approved drugs using *Id1* expression as a readout, whereas Enzastaurin was
111 identified in a combined approach, using an siRNA screen (HTS) as well as *in silico* drug
112 prediction of candidates that reverse the "transcriptomic disease signature" derived from
113 blood cells from patients with pulmonary arterial hypertension (PAH). FK506 was used in an
114 early proof of concept trial initiated at Stanford University [10] in stable PAH patients and
115 improved outcomes when used as compassionate therapy in end-stage PAH patients [11].

116

117 Furthermore, low-dose FK506 attenuated nose bleeding in patients with HHT and PAH [12].
118 It was able to block the retinal pathology characterized by robust hypervascularization and
119 AVM development in animal models of HHT[13]. While FK506 (and potentially
120 Enzastaurin) might be beneficial in reducing AVM complications in HHT, we are proposing,
121 that ID1 might not be the most specific readout for the dysfunctional ALK1/ENG/SMAD
122 signaling in HHT, and therefore not the best target for drug repurposing efforts in HHT. The
123 phenotypes of HHT (enlarged vascular malformations) and PAH (occlusive vasculopathy) are
124 quite different, suggesting a different "gene expression signature" in HHT and PAH.
125 Furthermore, given the complexity of the BMPR2/ALK1 pathway, including receptor
126 heterodimerization, finely orchestrated ligand binding as well as interactions with other
127 signaling pathways, mutations in BMPR2, as observed in PAH, likely do not result in the
128 exact same signaling disturbances as mutations in ENG, ALK1 or SMAD4.

129

130 Since the three HHT-causing genes (ENG, ALK1, SMAD4) are responsible for the same
131 phenotype, AVM formations, albeit with a different frequency and location in visceral organs
132 depending on the specific mutation, it would be very important to identify downstream
133 signaling abnormalities that are common to all three loss-of function mutations. The ultimate
134 goal would be to identify ways to restore normal signaling and improve AVMs. Current
135 therapies for large visceral AVMs in HHT are limited and consist of catheter-directed
136 embolization or surgery, but no treatment exists that restores normal signaling. Drugs applied

137 systemically that could restore normal signaling might prevent the development and growth
138 of existing AVMs, an approach particularly important for children with HHT whose small
139 AVMs grow with age. Furthermore, this approach might benefit patients with multiple
140 smaller AVMs (in the lungs, nose, GI tract) and severe hypoxia, bleeding, and subsequent
141 anemia, whose AVMs are not amenable to embolization because of their size and number but
142 might respond to medical therapy, as has been shown with anti-angiogenic therapies
143 including the use of VEGF inhibitors such as Bevacizumab for severe anemia[14]. Our study
144 has two aims: *First*, to identify common downstream genes and signaling pathways of the
145 three known HHT-causing gene mutations (ALK1, ENG, SMAD4) using siRNA mediated
146 gene downregulation, thereby mimicking complete local loss of function as seen in AVMs in
147 HHT patients [15]. *Second*, to identify repurposed/novel drugs that reverse the dysfunctional
148 transcriptomic gene expression signature and normalize downstream signaling. We found that
149 ID1 is not a common downstream target of all the three HHT gene mutations in PMVECs,
150 and identified LYVE1, GPNMB, MC5R, and PLXDC2 as downstream targets of all three
151 HHT genes. Importantly, we discovered a small molecule drug, Brivanib, that can activate
152 downstream targets of ALK1/ENG/SMAD4 signaling, inhibit VEGF signaling pathways, and
153 improve PMVECs functions.

154

155

156 **Methods:**

157 **Cell culture:** Human healthy control pulmonary microvascular endothelial cells (PMVECs)
158 (Cat # C12281, PromoCell GmbH, Heidelberg, Germany) were cultured in microvascular
159 endothelial cell basal media (Cat # C-22120; PromoCell GmbH) supplemented with growth
160 factors (Growth Medium MV SupplementPack, Cat # C-39220, PromoCell GmbH) and 100
161 U/mL Penicillin-Streptomycin Solution (Gibco) and used between passages 4 to 8. PMVECs
162 were cultured under standard conditions (37°C, 5% CO₂, 21% O₂, 90% humidity).

163

164 **RNAi.** Human pulmonary microvascular endothelial cells of passages 4-6 were seeded at
165 150K cells/well onto 6-well plates and incubated at 37°C in a humidified 5% CO₂
166 atmosphere. The next day, cells were washed with PBS and transfected with 50nM siRNAs
167 against non-target controls, ACVRL1 (ALK1), ENG, SMAD4, LYVE1, GPNMB or MC5R
168 (Thermo Fisher Scientific, Waltham, MA), and 2ul of Lipofectamine RNAiMAX in a total
169 1ml of OPTIMEM media. After 5 hrs of transfection, the medium was replaced with regular
170 complete growth media. The following day, a starvation medium (0.2% FCS media) was

171 added and incubated for 16 hrs. Cells were then stimulated with 20ng/ml of BMP9 for 2 or 24
172 hrs, harvested for RNA isolation, and performed RNAseq analysis.

173

174 **RNA sequencing (RNAseq).** RNA was isolated using RNeasy Plus Kits (Qiagen,
175 Gaithersburg, MD) as per the manufacturer's instructions. RNA samples were sent to the
176 Novogene Corporation (Sacramento, CA), where the following steps were carried out:

177 **Quality control:** Quality and integrity of total RNA were controlled on Agilent Technologies
178 2100 Bioanalyzer (Agilent Technologies; Waldbronn, Germany). The RIN values of all
179 samples were in the ranges between 9.9-10. **Library construction:** The RNA sequencing
180 library was constructed using NEBNext® Ultra II RNA Library Prep Kit (New England
181 Biolabs) according to the manufacturer's protocols. **Library quality control:** Library
182 concentration was quantified using a Qubit 2.0 fluorometer (Life Technologies) and then
183 diluted to 1ng/ul before checking insert size on an Agilent Technologies 2100 Bioanalyzer
184 (Agilent Technologies; Waldbronn, Germany). The library was then quantified to greater
185 accuracy by quantitative PCR (qPCR). **Sequencing:** 30 million paired reads for each sample
186 were acquired with the Illumina NovaSeq 6000 system (Q20% (97-98%), Q30% (94-96%),
187 GC content % (50-52%). **Data analysis.** The quality of the RNA-seq data was examined by
188 base sequence quality plots using FastQC. TrimGalore was used to trim the sequence reads.
189 Then, the RNA-seq reads were aligned to the human genome (hg19) using the STAR
190 software, and a gene database was constructed from Genecode v19. Differentially expressed
191 genes (DEG) between groups were quantified using the DESeq2 R package.

192

193 **Biological process, pathway enrichment, and protein-protein network analysis:**
194 Differentially expressed downstream genes of HHT knock-down (KD) conditions at 2 and
195 24h of BMP9 stimulations were uploaded on the ShinyGO 0.76
196 (<http://bioinformatics.sdsstate.edu/go/>) platform to analyze GO biological process enrichment.
197 The same data gene signatures were uploaded separately onto the DAVID Bioinformatics
198 Resources 6.8 server (<https://david.ncifcrf.gov/summary.jsp>) for GO pathway enrichment
199 analysis. The identifier was set to gene symbol, and *Homo sapiens* was selected to limit
200 annotations in the gene list and background list. A significant value of $p < 0.05$ was set as the
201 cutoff criterion. STRING Network analysis was performed using the SinyGO 0.76 platform.

202

203 **In silico Drug prediction:** Following knockdown of the HHT-causing genes (ALK1, ENG,
204 SMAD4) in PMVECs, we performed RNAseq and defined gene expression changes common

205 to silencing of the three HHT-causing genes as “disease signature”. We then used the
206 common downstream gene signature of all **up**-regulated genes 117 and 112 following HHT
207 gene knockdown and at 2 and 24 h of BMP9 stimulation for drug prediction. Using the Broad
208 Institute’s Clue.io query app <https://clue.io/query>, we identified compounds that reverse the
209 common HHT disease signature of up-regulated genes. The list of up-regulated genes 117
210 (2h) and 112 (24h) genes following RNAseq was uploaded separately on the app
211 <https://clue.io/query>, selecting with the gene expression L1000 query parameter. This web-
212 based clue.io query app finds perturbagens that give rise to similar (or opposing) expression
213 signatures. After running this query, we identified compounds that either mimic the
214 transcriptional disease signature (compounds that could potentially worsen disease) or mimic
215 the anti-signature (compounds that could potentially improve disease) in different cell lines.
216 We only focused on findings from the human umbilical vein endothelial cells (HUVECs)
217 data sets as this was the only dataset performed in endothelial cells, which are the critical cell
218 type for AVM formation[16]. Top-ranked 5 CMAP compounds/drugs induced transcriptome
219 alterations oppositional to (indicated by negative similarity mean) or overlapping with
220 (indicated by positive similarity mean) caused by HHT causing gene knockdowns. Rank was
221 determined by samples n>=3, tas value >=0.20, normalized connectivity score, and FDR
222 value. Next, we narrowed down the top scoring drug list based on their relevance to VEGF
223 inhibition as VEGF signaling is overactivated in HHT.

224

225 **Cell proliferation, apoptosis, and tube formation assay.** MTT assay (Cat # V13154,
226 Invitrogen, Waltham, MA), and caspase-3/7 assay (Cat # G8090, Promega, Madison, WI)
227 were performed using commercially available kits as per the instructions to assess
228 proliferation and apoptosis, respectively.

229

230 **Matrigel tube formation assay.** The bottom of a 96-well plate was coated with 50ul per well
231 of Matrigel and incubated at 37°C for 1 h. PMVECs (1×10⁴ cells/100μl per well)
232 suspended in a starvation medium were added to the Matrigel and cultured at 37°C and 5%
233 CO₂ for 5 h. Vessel tube-like structures were observed and photographed under a
234 microscope with a digital imaging system. The data were analyzed using ImageJ with an
235 angiogenesis analyzer tool.

236

237 **RNA isolation, RT-PCR, and qRT-PCR:** Total RNA was isolated from cells using a
238 commercially available RNeasy® Plus Mini Kit (Cat # 74134, Qiagen, Hilden, Germany).

239 For precision cut lung slices (PCLS), total RNA was extracted and purified using the TRizol
240 RNA extraction protocol, as described previously [17]. The total RNAs were then converted
241 to cDNA using a commercially available high-capacity cDNA Reverse Transcription Kit (Cat
242 # 4368813, Applied Biosystems™, Foster City, CA) according to the manufacturer's
243 instructions. The expression levels of mRNAs were quantified using TaqMan™ 2x Universal
244 PCR Master Mix (Cat # 4304437) and targeted Taqman probes (ALK1, ENG, SMAD4,
245 GAPDH, Hs02786624_g1; ID1, Hs03676575_s1; HS3ST2, Hs00428644_m1; GPNMB,
246 Hs01095679_m1; ANKRD33, Hs05002807_s1; RRAGD, Hs00222001_m1; LYVE1,
247 Hs00272659_m1; CPA4, Hs01040939_g1; SLC25A47, Hs01584239_m1; SHISA9,
248 Hs04188640_m1; HIST1H2BE, Hs00543841_s1; MC5R, Hs00271882_s1; FGF19,
249 Hs00192780_m1; FRG2C, Hs01695863_sH; PLXDC2, Hs00262350_m1; KCNK5,
250 Hs01123564_m1; and CACNA1G, Hs00367969_m1, Thermo Fisher Scientific, Waltham,
251 MA) and normalized to a housekeeping control GAPDH.

252

253 **Western blot.** Western blotting was carried out as described previously[8, 18]. The following
254 antibodies were used: P-Smad1/5/9 (Cat # CST13820S, 1:1000), p44/42 MAPK (Erk1/2)
255 (137F5) (ERK1/2 MAPK) (Cat # CST4695S, 1:1000), phosphorylated ERK1/2 (Phospho-
256 p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (E10), Cat # CST9106S, 1:1000), Id1 (sc133104,
257 monoclonal, Santa Cruz Biotechnology, 1:100) and an HRP-conjugated secondary antibodies
258 (Cat # ab205719 and ab6721, Abcam, 1:5000). The western blot band densitometric analysis
259 was performed with ImageJ.

260

261 **Precision-cut lung slices (PCLS) culture.** Lung tissue pieces were obtained from a healthy
262 donor collected from the Donor Network West, San Ramon, CA. First, the tissue pieces were
263 inflated with 2% low melting agarose prepared in 1x PBS, and kept on ice for 15mins. Then
264 the solidified pieces were placed onto a petri dish plate and 8mm punch biopsies were
265 carefully made, creating cylinders of lung tissue. 6% agarose was poured into the compress
266 tome mold and the cylinder of lung tissue was quickly placed into the mold, ensuring that 6%
267 agarose surrounded the cylinder on all sides. After being solidified, the tissue pieces were
268 sliced using the compress tome at 400 μ m thick slices. The lung slices were then cultured in
269 1x DMEM GlutaMAX medium containing 10% fetal calf serum, penicillin/streptomycin
270 (1%), and amphotericin B (0.1%) in the presence and absence of Brivanib at 10 or 50 μ M in
271 1mL of media in a 12-well tissue culture plate. After 24 hrs, the slices were washed with 1x
272 PBS two times and then harvested for RNA isolation.

273

274 **Statistics analysis.** All data analyses were performed using GraphPad Prism V9. All data are
275 represented as the mean \pm standard error of the mean. An unpaired Student's *t*-test was
276 used to compare two groups, and one-way ANOVA was performed for comparing data with
277 more than two groups, followed by an appropriate post-hoc test for multiple comparisons.
278 Brivanib validation data in HHT gene knockdown cells were analysed using two-way
279 repeated measures ANOVA with a Bonferroni post-hoc test. The statistically significant
280 differences were considered at $p < 0.05$.

281

282

283 **Results**

284 **Identifying common downstream gene signatures of HHT-causing genes mutations in 285 human PMVECs**

286 As loss of function mutations in ALK1, ENG and SMAD4 are causative of HHT, and as all
287 three genes belong to the TGF β /BMPR2 super family signaling pathway (**Figure 1A**), we
288 sought to identify common downstream signatures of all three HHT-causing gene mutations
289 in PMVECs by RNAseq following siRNA-mediated silencing of the three genes. We used
290 pulmonary microvascular endothelial cells, PMVECs, as endothelial cells are believed to be
291 the critical cell type for AVM formation, and pulmonary cells, as pulmonary AVMs are one
292 of the most common visceral manifestations in HHT. We first confirmed that following
293 adding BMP ligand, BMP9, BMP signaling is activated in PMVECs, as evidenced by
294 increased pSMAD1/5/9 and Id1 levels measured by western blot (**Figure 1B**). Next, we
295 silenced ALK1, ENG, and SMAD4 with siRNA in PMVECs. As seen in **Figures 1C-E**, we
296 achieved a knockdown of over 80% for all three genes, ALK1, ENG, and SMAD4, measured
297 by qRT-PCR. We activated the pathway with 20ng/mL BMP9 for 2 and 24 hrs in the HHT
298 genes knocked down cells. Stimulation with the ligand BMP9 had no effect on the expression
299 of ALK1, ENG, and SMAD4 (**Figures 1C-E**). We then looked at one of the known
300 downstream targets of the BMPR2/ALK1/ENG/SMAD4 pathway, Id1 (**Figure 1F and G**),
301 and whether the expression of Id1 is reduced by knocking down all three HHT genes.
302 Interestingly, while BMP9-induced Id1 expression is decreased by knocking down ALK1 and
303 SMAD4, a knock-down of ENG did not affect BMP9-induced Id1 expression. In fact, Id1
304 expression was rather slightly increased after ENG knockdown compared to the NT siRNA
305 condition. These findings indicated that Id1 is not a common downstream target of all three

306 HHT genes but is specific for ALK1 and SMAD4 mediated signaling. This is a very
307 important finding when it comes to identifying common downstream targets and
308 subsequently predicting repurposed drugs that might increase the signaling for all three gene
309 mutations.

310

311 Next, we carried out experiments to understand how knocking down ALK1, ENG, and
312 SMAD4 effected the function of PMVECs *in vitro*. We assessed proliferation, apoptosis, and
313 tube formation following the silencing of the three HHT genes with siRNA. The MTT assay
314 showed that knockdown of the HHT genes did not significantly change cell proliferation
315 (**Figure E1A**). Silencing of ENG induced apoptosis as evidenced by increased caspase 3/7
316 activity and decreased angiogenesis, as evidenced by reduced numbers of nodes, junctions
317 and tube length compared to controls at baseline (**Figures E1B and C**). ALK1 and SMAD4
318 knockdown had no significant effect on apoptosis and tube formation. These results
319 suggested that while ALK1, ENG, and SMAD4 deficiency are linked with HHT, at baseline,
320 only ENG deficiency induced PMVECs dysfunction *in vitro*.

321

322 Since HHT1 and HHT2 patients show similar clinical symptoms, a previous study had
323 identified 277 downregulated and 62 upregulated common downstream targets genes in blood
324 outgrowth endothelial cells isolated from HHT patients carrying ENG (HHT1), ALK1
325 missense or ALK1 non-sense mutations (HHT2) compared to healthy endothelial cells, which
326 they called a “gene expression fingerprinting of HHT”[19]. However, to date, no studies have
327 identified common downstream genes of the three key HHT genes in PMVECs. Thus, we
328 performed RNA sequencing of PMVECs silenced to either ALK1, ENG, or SMAD4 and
329 treated with BMP9 20ng/mL for 2 or 24 hrs. The list of significant differentially expressed
330 genes was identified by employing the criteria of changes in gene expression of log2-fold
331 changes value =>2 and *p* adjusted value =<0.05 between the groups. We identified 117
332 upregulated and 125 downregulated common genes 2hrs after BMP9 stimulation in PMVECs
333 silenced for all three HHT genes (**Figures 2A and C**) and 112 upregulated and 132
334 downregulated common downstream genes 24 hrs after BMP9 stimulation in PMVECs
335 silenced for all three HHT genes (**Figures 2B and C**). Consistent with previously identified
336 genes associated with AVM/HHT[20, 21], we found a significant upregulation of ANGPT2
337 and APLN and downregulation of TMEM100 after 2hrs and 24hrs BMP9 stimulation in
338 PMVECs knockdown cells (KD), respectively, along with other important vascular
339 dysfunction related gene signature changes (**Figures 2A-C**).

340

341 To determine whether the commonly identified downstream targets (“UP and Down genes”)
342 of the HHT genes after 2hrs or 24hrs BMP9 stimulation could potentially associate with
343 biological processes and signaling pathways relevant to HHT, we carried out an *in silico*
344 analysis of the common downstream genes using the GO biological process enrichment
345 analysis tool, the DAVID panther pathway analysis tool, and the STRING protein-protein
346 interaction database [22]. GO enrichment analysis of the commonly dysregulated
347 downstream targets uncovered a significant enrichment of HHT-related biological processes,
348 including cell migration, adhesion, tube and vascular development and angiogenesis,
349 extracellular matrix organization, and ion transport after 2 and 24hrs of BMP9 stimulation
350 following HHT gene KD (**Figure 2D**). Moreover, we also observed enrichment of signaling
351 pathways that are thought to regulate AVM formation in HHT, including Wnt signaling,
352 cadherin signaling, integrin signaling, inflammation-mediated cytokines and chemokine
353 signaling, blood coagulation, angiogenesis and TGF β -signaling pathways (**Figure 2E**).
354 STRING network analysis identified some hub genes, such as PDGFRB, and VCAM that
355 could play roles in AVM/HHT (**Figures E2 A and B**).
356

356

357 Next, we identified the common persistently and consistently dysregulated gene signatures
358 after 2 and 24 hrs of BMP9 stimulation in the common HHT gene KD conditions. We found
359 5 upregulated genes (Heparan Sulfate-Glucosamine 3-Sulfotransferase 2 (HS3ST2),
360 Glycoprotein Nmb (GPNMB), Ankyrin Repeat Domain 33 (ANKRD33), Ras-related GTP-
361 binding protein D (RRAGD), Lymphatic Vessel Endothelial Hyaluronan Receptor (LYVE1))
362 and 7 downregulated (Carboxypeptidase A4 (CPA4), Solute Carrier Family 25 Member 47
363 (SLC25A47), Shisa Family Member 9 (SHISA9), Histone cluster 1 H2B family member e
364 (HIST1H2BE), Melanocortin 5 Receptor (MC5R), Fibroblast Growth Factor 19 (FGF19),
365 FSHD Region Gene 2 Family Member C (FRG2C)) genes (**Figure 3A**). qRT-PCR validation
366 of the common persistently dysregulated genes in PMVECs further confirmed upregulation
367 of GPNMB and LYVE1 and downregulation of MC5R in the common HHT KD conditions
368 after BMP9 stimulation. As further validation, those genes were regulated in the opposite
369 direction when stimulated with BMP9 alone (**Figures 3B and C and Figures E3 A-D**). We
370 therefore concentrated on MC5R, GPNMB, and LYVE1 to investigate further their known
371 importance related to HHT. LYVE1 expression was positively correlated with preoperative
372 edema in brain AVM [23], while the role of MC5R and GPNMB in AVM formation and

373 HHT is unknown. Our in vitro functional assays did not exhibit significant changes in cell
374 proliferation, apoptosis, and tube formation in PMVECs silenced to either MC5R, GPNMB
375 or LYVE1 at baseline (**Figures E3 E-G**).

376

377 **In silico screening of drugs that can reverse common downstream gene signatures of**
378 **HHT causing gene mutations**

379 We hypothesized that novel/re-purposed drugs could reverse the HHT/PAVM pathological
380 downstream targets/signaling and thereby reverse abnormal endothelial cell functions (tube
381 formation, migration, proliferation) in PMVECs. A powerful strategy to predict novel drugs
382 that might be beneficial in HHT is to use bioinformatics approaches to match in silico drug
383 gene expression profiles with disease or anti-disease signature profiles, as previously shown
384 by our group [8]. Here, we used the list of commonly upregulated genes that were
385 differentially expressed in PMVEC silenced to all three HHT genes and stimulated with
386 BMP9 for 2 and 24hrs, 117 and 112, respectively, which we labelled as "HHT disease
387 signature". This transcriptomic gene expression signature served as blueprint for predicting
388 potentially beneficial drugs that mimic the complementary "anti-signature" using the Broad
389 Institute's Clue.io query app <https://clue.io/query>. We uploaded the genes on the web-based
390 application database and selected with the gene expression L1000 query parameter. This
391 web-based clue query app allows queries with external gene sets to identify compounds that
392 either mimic our gene sets' transcriptional signatures or reverse the signature (anti-signatures)
393 in different cell lines. We narrowed down the drug list based on the findings from the
394 HUVECs data sets as this is the closest cell line to our data sets acquired in PMVECs. The
395 drugs were ranked following the criteria of samples ≥ 3 , tas values ≥ 0.20 , normalized
396 connectivity score, and FDR values on the query app. Top scoring 5 HHT and anti-HHT
397 drugs are shown in **Figure 4B**. From the top anti-HHT drug candidates (negative values)
398 (24h), we concentrated on Brivanib as it is well-known for its anti-FGF/VEGF activities [24].
399 We hypothesized that Brivanib would on the one hand, reverse the dysfunctional downstream
400 targets related to BMP signaling and on the other hand could inhibit the overactivated VEGF
401 pathway in HHT. To test the effect Brivanib had on restoring members of dysfunctional BMP
402 signaling, we determined whether Brivanib reversed the 5 upregulated (LYVE1, GPNMB,
403 RRAGD, ANKRD33, HS3ST2) and 7 downregulated (MC5R, SLC25A47, FGF19, SHISA9,
404 FRG2C, HIST1H2BE, CPA4) genes, we had previously defined a being consistently
405 dysregulated after silencing of all three HHT genes and stimulation with BMP9 for 2 and
406 24hrs. Importantly, we observed that Brivanib inhibited the expression of LYVE1, GPNMB,

407 RRAGD, and ANKRD33 induced in HHT gene KD conditions (**Figures 4C-F and E4 A-C**).
408 Furthermore, Brivanib rescued the expression of the MC5R, SLC25A47, FGF19, SHISA9,
409 and FRG2C that were downregulated in HHT gene KD conditions (**Figures 4G-K and E4 A-**
410 **C**). These results demonstrated that Brivanib could improve the dysfunctional
411 ALK1/ENG/SMAD4 signaling in HHT.

412

413 **Brivanib inhibited the commonly upregulated downstream gene expression signatures**
414 **of HHT-causing genes in ex vivo PCLS**

415 To investigate whether Brivanib also inhibited the commonly upregulated signatures of HHT-
416 causing genes in human lung tissue, we measured expression of LYVE1, GPNMB, HS3ST2,
417 RRAGD, and ANKRD33 using qRT-PCR in human PCLS treated with Brivanib for 24 hrs.
418 PCLS were prepared from a healthy human donor obtained from Donor Network West,
419 California. PCLS were treated with 50 uM Brivanib or DMSO for 24 hrs and then harvested
420 for RNA isolation (**Figure 5A**). Brivanib inhibited mRNA expression of LYVE1, GPNMB,
421 and HS3ST2 in PCLS (**Figures 5B-F**). This inhibition in GPNMB, LYVE1and HS3ST2
422 expression *ex vivo* was similar to the inhibition of those genes in PMVECs after HHT gene
423 knockout and Brivanib treatment *in vitro*. Brivanib did not change expression of RRAGD and
424 ANKRD33 in PCLS.

425

426 **Brivanib inhibited VEGF-induced ERK1/2 MAPK, -VEGF-induced PMVECs**
427 **proliferation and tube formation *in vitro***

428 As over-activation of pro-angiogenic pathways, such as VEGF signaling, is strongly linked
429 with the development of vascular dysfunction in HHT, and as Brivanib was previously shown
430 to exhibit anti-VEGF effects both *in vitro* and *in vivo* in cancer and liver fibrosis studies [24-
431 26], we carried out cell culture experiments to determine whether Brivanib can also inhibit
432 the VEGF signaling pathway in PMVECs. PMVECs were cultured in the presence and
433 absence of 10 μ M Brivanib or DMSO in serum starvation media (0.2% FCS) for 24 hrs and
434 then stimulated with 40 ng/mL VEGF for 10 mins. We measured phospho-ERK1/2 MAPK,
435 total ERK1/2 MAPK (a downstream target of VEGF signaling) levels by western blotting.
436 Notably, our results showed that Brivanib completely blocked VEGF-induced phospho-
437 ERK1/2 levels in PMVECs (**Figure 6A**).

438

439 We next assessed functional properties and endothelial behaviors with regards to tube
440 formation and proliferation with and without Brivanib treatment. To determine whether

441 Brivanib inhibits the VEGF-induced proliferation of PMVECs, we performed an MTT assay
442 to measure the viability of PMVECs treated with VEGF (20 ng/mL) in the presence and
443 absence of Brivanib (10 μ M) in serum-starved media (0.2% FCS). As expected, VEGF
444 treatment significantly increased PMVECs proliferation (**Figure 6B**). Importantly, Brivanib
445 completely blocked the VEGF-induced proliferation of PMVECs (**Figure 6B**). Brivanib
446 alone, without ligand stimulation, did not change proliferation of PMVECs. These findings
447 suggested that Brivanib attenuated VEGF-induced PMVECs proliferation *in vitro*. To further
448 explore the anti-angiogenic role of Brivanib on PMVECs *in vitro*, a matrigel based tube
449 formation assay was performed. Results revealed that Brivanib inhibited tube formation in
450 PMVECs as evidenced by the decreased number of junctions and total tube lengths compared
451 to DMSO-treated control cells (**Figure 6C**).
452

453 **Discussion**

454 In this study, we identified common downstream targets/pathways of the three HHT-causing
455 genes, ALK1, ENG, and SMAD4 using whole genome RNAseq following knock down of the
456 HHT genes in PMVECs *in vitro*. We also investigated whether we could identify a drug that
457 can reverse the dysregulated downstream gene signatures and improve the common
458 downstream dysfunctional pathways and HHT-related dysfunction of cellular phenotypes.
459 Here, we found that ID1, a major downstream target of the TGF β /BMP signaling pathway, is
460 not a common downstream target of all the HHT gene knockdown (ALK1, ENG, or SMAD4)
461 conditions, while other downstream targets, such as LYVE1, GPNMB, PLXDC2, and MC5R,
462 are downstream of all three HHT genes. Furthermore, we identified a small molecule drug,
463 Brivanib, that could, on the one hand, reverse the downstream gene signatures following
464 knockdown of all three HHT genes and, on the other hand, inhibit the VEGF signaling
465 pathway, improve proliferation and tube formation in PMVECs. These findings suggest that
466 Brivanib might be effective in treating AVMs and HHT by normalizing dysfunctional
467 downstream signaling.
468

469 ID1 has been used as a downstream readout of BMPR2 signaling, and increasing ID1 as a
470 therapeutic approach has been shown to be effective in PAH [8, 10]. HHT and PAH are both
471 related rare genetic diseases, characterized by haploinsufficiency in members of the
472 TGF β /BMPR2 signaling pathway. Mutations in BMPR2 cause PAH in up to 20% of patients,
473 whereas mutations in ALK1, ENG and SMAD4 cause HHT in over 85% of patients.

474 Furthermore, there is an overlap between both diseases, as up to up to 10% of HHT patients
475 show elevated pulmonary arterial pressures that indicate either the presence of Group 1 PAH
476 (1% of HHT patients) or Group 2 PH associated with high output failure due to liver AVMs
477 (more common, 10%) [27, 28]. Our group previously discovered BMPR2 signaling inhibitors
478 FHIT [8] and LCK [18], and BMPR2 signaling activating drugs FK506 [9] and Enzastaurin
479 [8] by performing a high throughput screen (HTS) of siRNAs as well as FDA approved drugs
480 to identify modifier genes and drugs that activate the BMPR2 pathway. Both screens were
481 performed using the myoblastoma reporter cell line in which the BMP response element
482 (BRE) from the ID1 promotor was linked to Luciferase (BRE-Luc). The BMPR2 signaling
483 downstream target ID1 was the readout to measure activation of BMPR2 signaling in these
484 HTS. As BMPR2 is the co-receptor of ALK1/ENG signaling we therefore first determined
485 whether ID1 could be used as a common readout in HHT as well. We found that ID1
486 expression was not decreased by ENG knockdown, in contrast to ALK1 or SMAD4
487 knockdown, which inhibited BMP9 induced ID1 expression in PMVECs. While being a valid
488 readout for ALK1 and SMAD4 mediated signaling, ID1 was not a readout for ENG signaling.
489 In order to predict drugs that would normalize downstream signaling of all three HHT genes,
490 we had to identify novel common downstream targets.

491
492 We used siRNA mediated, >80% knockdown of ENG, ALK1 or SMAD4 in PMVECs to
493 mimic the proposed complete loss-of function of the above genes in endothelial cells of
494 AVMs *in vivo*. While germline mutations in ALK1, ENG, or SMAD4 lead to
495 haploinsufficiency and are required for AVM formation, several studies have suggested that
496 they are not sufficient and that additional genetic and environmental factors are required to
497 generate AVMs [29]. As an example, in order to establish skin and brain AVMs in adult mice
498 lacking ALK1, the creation of a wound or stimulation with VEGF, two angiogenic triggers,
499 were required for AVM formation [30-33]. It is proposed that these triggers might lead to a
500 complete loss of function and signaling downstream of the HHT genes. This concept is
501 further supported by the recent identification of somatic mutations in addition to germline
502 mutations in endothelial cells of AVM lesions resulting in a bi-allelic loss of ENG or
503 ALK1[15]. While the siRNA mediated complete loss of ENG, ALK1 or SMAD4 in PMVECs
504 therefore mimics the *in vivo* loss of function, silencing of ENG, ALK1 or SMAD4 had no
505 effect on PMVEC proliferation. Of interest ENG silencing decreased angiogenesis and
506 induced apoptosis in PMVECs at baseline. Therefore the *in vitro* phenotype, without the use

507 of additional stimuli such as VEGF (**Figure 6**) is not an adequate surrogate for the
508 endothelial behavior after HHT KD *in vivo*.

509

510 To determine the common downstream targets of HHT-causing genes, we profiled gene
511 expression by RNAseq following silencing of either ALK1, ENG, or SMAD4 in PMVECs.
512 Our RNAseq analysis revealed, in addition to novel common downstream targets, several
513 genes, such as ANGPT2, APLN, and TMEM100 (**Figure 2C**) that have previously been
514 reported to be involved in AVM formation and HHT pathogenesis [20, 21]. This indicates
515 that the list of common downstream genes could mimic AVM and HHT gene signatures.
516 *Angpt2* encodes for angiopoietin 2, an antagonistic ligand for TEK (TEK receptor tyrosine
517 kinase, an EC surface receptor). Through RNAseq analysis Crist et al. found that *Angpt2* was
518 upregulated whereas *Tek* levels were downregulated in ECs isolated from the retina of
519 *Smad4*-iECKO mice, a hereditary HHT mouse model. EC-specific *Smad4* knockout resulted
520 in an increase in *Angpt2* transcription in those ECs that caused AVM formation in the retina
521 [20]. Targeting *Angpt2* with anti-ANGPT2 antibodies (LC-10) was shown to protect and
522 rescue AVM formation of *Smad4*-iECKO mice, further supporting the role of ANGPT2 as a
523 crucial TGF β -downstream mediator of AVM development in the retina [20]. The same
524 research team also found an upregulation of *Apln* (Apelin) in isolated lung ECs and retinas of
525 *Smad4*-iECKO mice [34]. *Apln* is a ligand for the APJ receptor (also known as APLNR)
526 which is a G-protein-coupled receptor. Previous studies showed a significant reduction of
527 ECs proliferation and vascular outgrowth, abnormal arterial-venous alignment, and narrow
528 blood vessels of mice and frog embryos deficient in either APLN or APLNR [35-41].
529 Hypoxia-induced APLN expression, and exogenous apelin treatment increased proliferation,
530 migration, and inhibited apoptosis in mouse brain ECs *in vitro* [35]. APLN mRNA
531 expression was also found to be downregulated by BMP signaling in human dermal
532 microvascular ECs, and the BMP-APLN/APLNR signaling axis was crucial for hypoxia-
533 induced ECs growth [42]. The APLN/APLNR pathway plays a significant role in various
534 diseases, including pulmonary hypertension, and there is a strong relationship between BMP
535 and APLN/APLNR in vascular signaling. However, the causal involvement of
536 APLN/APLNR in AVM and HHT remains to be investigated. TMEM100 (encodes
537 transmembrane protein 100) been shown to be enriched in arterial endothelium and activated
538 by the BMP9/BMP10/ALK1 signaling axis [21, 43]. Intriguingly, mice lacking TMEM100
539 show substantial arterial specific abnormalities, embryonic lethality, and AVM formations,
540 similar phenotypes seen in *Alk1* constitutive KO mice [43, 44], suggesting that TMEM100

541 plays a significant role for arterial endothelium differentiation and vascular morphogenesis.
542 Although Moon et al., claimed that TMEM100 is necessary for maintaining vascular integrity
543 and angiogenesis, even though it is not the primary mechanism behind HHT pathogenesis,
544 TMEM deficiency may contribute to the onset of HHT by weakening vascular integrity [21].
545 While there are no studies available that identify gene expression profiles of the HHT genes
546 in PMVECs, three studies profiled genes expression in BOECs [19], HUVECs [45] and nasal
547 telangiectasia tissue [46] of HHT patients. We compared our common gene list with the
548 reported gene expression list of BOECs from HHT1 and HHT2 patients and found that 15
549 gene that were described to be dysregulated were common with our data set (PRCP,
550 SLC40A1, MYO5C KCNH4, MGP, CPA4, MMP1, ANGPT2, ENG, APLN, HHIP, FABP4,
551 AKR1C3, IGFBP3, and ESM1) [19]. Interestingly, among the 15 dysregulated genes, we
552 only ENG and ESM1 (endothelial cell specific molecule 1) were changed in the same
553 direction (upregulation) in the HHT BOECs when compared to our dataset. However MGP,
554 MMP1, and TNFRS4 were upregulated and COL3A1 was downregulated in HUVECs of
555 HHT1 and HHT2 patients as well as in our dataset [45]. The differences in altered gene
556 expression profiles between our studies and the above-mentioned gene expression profiling
557 studies could be explained by the fact that the authors used BOECs derived from HHT
558 patients, which potentially were only haplo-insufficient for the specific gene mutation,
559 whereas we used HHT gene-deficient PMVECs (80% knockdown). Together these findings
560 suggest that the common downstream targets of the completely silenced HHT genes, we
561 identified through RNAseq could potentially serve as a common HHT disease gene signature.
562
563 Furthermore, the top biological processes of the list of the common genes were significantly
564 enriched for angiogenesis, blood vessels morphogenesis and development, vasculature
565 development, tube morphogenesis and development, cell adhesion and migration, organ
566 morphogenesis and development, regulation of signal transductions, and ECM organization
567 (**Figure 2D**), all processes that are relevant to AVM formation and HHT pathogenesis [47].
568 The top signaling pathways enriched by the common genes list include Wnt, Cadherin,
569 Integrin, TGF β , chemokines and cytokines mediated inflammatory and angiogenesis
570 pathways. While the involvement of TGF β , inflammatory mediated signaling and angiogenic
571 pathways in HHT is already known, the role of the Wnt signaling pathway in HHT still needs
572 to be explored.
573

574 Next, by comparing two conditions, 2 and 24 hrs after BMP9 stimulation following silencing
575 of the three HHT genes, we identified commonly altered gene signatures that were
576 persistently dysregulated, LYVE1, GPNMB, MC5R and PLXDC2. We narrowed down the
577 list of common persistent gene signatures by choosing those genes that showed an opposite
578 direction of gene expression when stimulated with BMP9 for 2h and 24hrs versus when
579 stimulated after complete gene knockdown. LYVE1 is expressed in lymphatic ECs but is also
580 in developing blood vessels and macrophages. A previous study found increased expression
581 of LYVE1 in human brain AVMs and the expression of LYVE1 was found to be positively
582 associated with preoperative edema [23]. Glycoprotein non-metastatic melanoma protein B
583 (GPNMB), a transmembrane protein, was shown to be linked with increased endothelial
584 recruitment in a breast cancer study [48]. The activation of melanocortin receptors (MC1R
585 and MC5R) in a mouse model of diabetic retinopathy improved retinal damage, prevented
586 changes to the blood retinal barrier, and reduced local pro-inflammatory and pro-angiogenic
587 factors, such as cytokines, chemokines, and VEGF [49]. PLXDC2, also known as tumor
588 endothelial marker 7-related protein, TEM7R, is highly expressed in breast cancer and colon
589 cancer tissues [50, 51]. These studies suggest that LYVE1, GPNMB, MC5R and PLXDC2
590 might play an important role in endothelial and vascular homeostasis in health and disease.
591 Further studies are needed to confirm their causative role in AVM formation and HHT.
592

593 Currently, treatment options for HHT are limited. Several promising HHT drugs have been
594 tested in clinical and preclinical settings. Bevacizumab (Avastin, anti-VEGF monoclonal
595 antibody) [14, 52], Tacrolimus (FK506, a BMP signaling activator) [12, 53, 54], Pazopanib
596 (TKI) [55], and Thalidomide (increases expression of PDGFB) [56] all have been shown to
597 decrease epistaxis in HHT patients. In the genetically induced animal models of HHT, several
598 drugs, such as Wortmannin, Pictilisib (a PI3K inhibitor) [57, 58], DC101 (an anti-VEGFR2
599 antibody)[59], SU5416 (a VEGFR2 inhibitor)[58], LC10 (a ANGPT2 inhibitor)[20], and
600 G6.31 (a anti-VEGFA antibody) [32] have been shown to prevent or reduce retinal,
601 peripheral or skin AVMs in neonate or adult mice. Recently, correcting multiple signaling
602 pathways associated with AVM/HHT simultaneously, such as SMAD1/5/9, VEGFR2, and
603 AKT/PI3K with combined treatment of drugs that target the above signaling (Sirolimus and
604 Nintedanib) has also been shown to be effective in reducing and reversing retinal AVMs in
605 the anti-BMP9/10 monoclonal antibody-induced HHT model in neonate and adult mice.
606 While these drugs show promising findings in preclinical and clinical studies, several
607 obstacles need to be addresses before a successful translation into the clinic can be made. As

608 an example, FK506, an immunosuppressive drug, was demonstrated to improve vascular
609 pathology in animal models [13], yet had minimal effects on epistaxis in a RCT HHT clinical
610 trial when used as a topical ointment[53], while demonstration some efficacy yet also adverse
611 effects when taken orally[54]. Further larger clinical studies are needed to confirm these
612 findings. Furthermore, FK506 was discovered using ID1 as readout in the mouse
613 myoblastoma BRE-Luc reporter cell line. As we found that ID1 is a common downstream
614 target of ALK1 and SMAD4, but not necessarily ENG, this would suggest that FK506 may
615 not be the optimal treatment for ENG-mutant HHT patients. In addition, while several
616 clinical and animal studies document that anti-VEGF antibodies or VEGF inhibitors are
617 effective to reduce bleeding events and anemia, the VEGF/VEGFR2 signaling pathway is
618 complex and involves many downstream signaling pathway[60]. It is unclear which pathway
619 (or combination of pathways) needs to be targeted precisely to facilitate regression of AVMs.
620 Moreover, the understanding of the crosstalk between VEGF and BMP signaling is still
621 limited, and how the two signaling pathways are disrupted in HHT is not completely known.
622

623 Our strategy to identify beneficial drugs for HHT is different from previous approaches. We
624 predicted drugs based on their ability to reverse common downstream targets of HHT-causing
625 genes and narrowed down the top candidates by introducing a second selection criterium: the
626 drug should have in addition anti-VEGF properties. Using this approach, we selected three
627 top-scoring potential HHT drugs (Brivanib, Cediranib, and Glesatinib). Among these drugs,
628 we found that Brivanib can improve the dysfunctional common downstream gene signatures
629 in PMVECs subjected to silencing of either ALK1, ENG or SMAD4 or in the *ex vivo* PCLS
630 system. Brivanib also reversed VEGF-induced downstream signaling pathways and improved
631 endothelial function *in vitro*. Although our findings all stem from *in vitro* or *ex vivo* studies,
632 in the context of the drug discovery based on signaling pathways, our findings are
633 comparable to the findings of a previously reported study in which the authors used a
634 combined drug treatment to correct SMAD1/5/9, VEGF and mTOR signaling. We, on the
635 other hand, identified Brivanib which was capable of correcting the downstream HHT as well
636 as VEGF signaling simultaneously. Brivanib is a well-known VEGF signaling inhibitor [25,
637 61-63]. Our study suggests that Brivanib could be effective in HHT by correcting
638 downstream targets of HHT causing gene signatures as well as VEGF signaling to positively
639 influence AVM formation and growth (**Figure 6D**).
640

641 In summary, the present study used a RNAseq high throughput approach following loss of
642 function mutations of the HHT causing genes to identify the common downstream gene
643 signatures. Drugs were predicted based on their capability to mimic downstream HHT gene
644 signatures as well as their anti-VEGF properties. Our findings suggest that ID1 is not a
645 common downstream target of ENG but is specific for ALK1 and SMAD4 in PMVECs. We
646 also revealed that Brivanib is superior to the use of a VEGF inhibition alone, as it restores
647 normal HHT downstream signaling and thereby could be tested to prevent, halt or reverse
648 AVMs. As all our findings of Brivanib are based on *in vitro* and *ex vivo* studies, Brivanib
649 would need to be tested in *in vivo* HHT animal models and in clinical studies to further
650 confirm these findings.

651

652

653 **Support statement**

654 This research was supported by funding from the National Institutes of Health (R01
655 HL128734), Stanford Vera Moulton Wall Center for Pulmonary Vascular Diseases, and the
656 U.S. Department of Defence (PR161256).

657

658 **Author contributions**

659 Conceptualization: M.K.A., E.S.; Methodology: M.K.A; Data curation: M.K.A., Y.L., N.H.J.,
660 C.A.S., Z., M.; Writing - original draft: M.K.A.; Writing - review & editing: M.K.A., E.S.,
661 K.S.; Supervision: E.S., Funding acquisition: E.S.

662

663 **Acknowledgement**

664 The authors are thankful to Dr. Adam M. Andruska, Division of Pulmonary, Allergy and
665 Critical Care Medicine, Stanford University, for his critical comments and constructive
666 suggestions to improve this manuscript.

667

668 **Conflict of Interest statement:**

669 The authors declare no competing or financial interests.

670 A patent application for the use of Brivanib in HHT is currently filed by Stanford University.

671

672 **References**

- 673 1. Schimmel, K., et al., *Arteriovenous Malformations-Current Understanding of the*
674 *Pathogenesis with Implications for Treatment*. *Int J Mol Sci*, 2021. **22**(16).

675 2. Angel, C.M., *Hereditary Hemorrhagic Telangiectasia: Diagnosis and Management*. J
676 Clin Med, 2022. **11**(16).

677 3. Shovlin, C.L., et al., *Diagnostic criteria for hereditary hemorrhagic telangiectasia*
678 (*Rendu-Osler-Weber syndrome*). Am J Med Genet, 2000. **91**(1): p. 66-7.

679 4. Robert, F., et al., *Future treatments for hereditary hemorrhagic telangiectasia*.
680 Orphanet J Rare Dis, 2020. **15**(1): p. 4.

681 5. Ruiz, S., et al., *Correcting Smad1/5/8, mTOR, and VEGFR2 treats pathology in*
682 *hereditary hemorrhagic telangiectasia models*. J Clin Invest, 2020. **130**(2): p. 942-
683 957.

684 6. Goumans, M.J., et al., *Bone Morphogenetic Proteins in Vascular Homeostasis and*
685 *Disease*. Cold Spring Harb Perspect Biol, 2018. **10**(2).

686 7. Lyden, D., et al., *Id1 and Id3 are required for neurogenesis, angiogenesis and*
687 *vascularization of tumour xenografts*. Nature, 1999. **401**(6754): p. 670-7.

688 8. Dannowitz Prosseda, S., et al., *FHIT, a Novel Modifier Gene in Pulmonary Arterial*
689 *Hypertension*. Am J Respir Crit Care Med, 2019. **199**(1): p. 83-98.

690 9. Spiekerkoetter, E., et al., *FK506 activates BMPR2, rescues endothelial dysfunction,*
691 *and reverses pulmonary hypertension*. J Clin Invest, 2013. **123**(8): p. 3600-13.

692 10. Spiekerkoetter, E., et al., *Randomised placebo-controlled safety and tolerability trial*
693 *of FK506 (tacrolimus) for pulmonary arterial hypertension*. Eur Respir J, 2017. **50**(3).

694 11. Spiekerkoetter, E., et al., *Low-Dose FK506 (Tacrolimus) in End-Stage Pulmonary*
695 *Arterial Hypertension*. Am J Respir Crit Care Med, 2015. **192**(2): p. 254-7.

696 12. Sommer, N., et al., *Treatment with low-dose tacrolimus inhibits bleeding*
697 *complications in a patient with hereditary hemorrhagic telangiectasia and pulmonary*
698 *arterial hypertension*. Pulm Circ, 2019. **9**(2): p. 2045894018805406.

699 13. Ruiz, S., et al., *Tacrolimus rescues the signaling and gene expression signature of*
700 *endothelial ALK1 loss-of-function and improves HHT vascular pathology*. Hum Mol
701 Genet, 2017. **26**(24): p. 4786-4798.

702 14. Al-Samkari, H., et al., *An international, multicenter study of intravenous bevacizumab*
703 *for bleeding in hereditary hemorrhagic telangiectasia: the InHIBIT-Bleed study*.
704 Haematologica, 2021. **106**(8): p. 2161-2169.

705 15. Snellings, D.A., et al., *Somatic Mutations in Vascular Malformations of Hereditary*
706 *Hemorrhagic Telangiectasia Result in Bi-allelic Loss of ENG or ACVRL1*. Am J Hum
707 Genet, 2019. **105**(5): p. 894-906.

708 16. Tual-Chalot, S., S.P. Oh, and H.M. Arthur, *Mouse models of hereditary hemorrhagic telangiectasia: recent advances and future challenges*. Front Genet, 2015. **6**: p. 25.

709 17. Ali, M.K., et al., *Crucial role for lung iron level and regulation in the pathogenesis and severity of asthma*. Eur Respir J, 2020. **55**(4).

710 18. Andruska, A.M., et al., *Selective Src-Family B Kinase Inhibition Promotes Pulmonary Artery Endothelial Cell Dysfunction*. bioRxiv, 2021: p. 2021.09.27.462034.

711 19. Fernandez, L.A., et al., *Gene expression fingerprinting for human hereditary hemorrhagic telangiectasia*. Hum Mol Genet, 2007. **16**(13): p. 1515-33.

712 20. Crist, A.M., et al., *Angiopoietin-2 Inhibition Rescues Arteriovenous Malformation in a Smad4 Hereditary Hemorrhagic Telangiectasia Mouse Model*. Circulation, 2019. **139**(17): p. 2049-2063.

713 21. Moon, E.H., et al., *Essential role for TMEM100 in vascular integrity but limited contributions to the pathogenesis of hereditary haemorrhagic telangiectasia*. Cardiovasc Res, 2015. **105**(3): p. 353-60.

714 22. Szklarczyk, D., et al., *STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets*. Nucleic Acids Res, 2019. **47**(D1): p. D607-D613.

715 23. Shoemaker, L.D., et al., *Human brain arteriovenous malformations express lymphatic-associated genes*. Ann Clin Transl Neurol, 2014. **1**(12): p. 982-95.

716 24. Dempke, W.C. and R. Zippel, *Brivanib, a novel dual VEGF-R2/bFGF-R inhibitor*. Anticancer Res, 2010. **30**(11): p. 4477-83.

717 25. Nakamura, I., et al., *Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling*. PLoS One, 2014. **9**(4): p. e92273.

718 26. Huynh, H., et al., *Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma*. Clin Cancer Res, 2008. **14**(19): p. 6146-53.

719 27. Abston, E., et al., *Treatment of pulmonary hypertension in patients with Hereditary Hemorrhagic Telangiectasia - A case series and systematic review*. Pulm Pharmacol Ther, 2021. **68**: p. 102033.

720 28. Vorselaars, V., et al., *Pulmonary Hypertension in a Large Cohort with Hereditary Hemorrhagic Telangiectasia*. Respiration, 2017. **94**(3): p. 242-250.

741 29. Bernabeu, C., et al., *Potential Second-Hits in Hereditary Hemorrhagic*
742 *Telangiectasia*. *J Clin Med*, 2020. **9**(11).

743 30. Park, S.O., et al., *Real-time imaging of de novo arteriovenous malformation in a*
744 *mouse model of hereditary hemorrhagic telangiectasia*. *J Clin Invest*, 2009. **119**(11):
745 p. 3487-96.

746 31. Garrido-Martin, E.M., et al., *Common and distinctive pathogenetic features of*
747 *arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and*
748 *hereditary hemorrhagic telangiectasia 2 animal models--brief report*. *Arterioscler*
749 *Thromb Vasc Biol*, 2014. **34**(10): p. 2232-6.

750 32. Han, C., et al., *VEGF neutralization can prevent and normalize arteriovenous*
751 *malformations in an animal model for hereditary hemorrhagic telangiectasia 2*.
752 *Angiogenesis*, 2014. **17**(4): p. 823-830.

753 33. Walker, E.J., et al., *Arteriovenous malformation in the adult mouse brain resembling*
754 *the human disease*. *Ann Neurol*, 2011. **69**(6): p. 954-62.

755 34. Crist, A.M., et al., *Vascular deficiency of Smad4 causes arteriovenous malformations:*
756 *a mouse model of Hereditary Hemorrhagic Telangiectasia*. *Angiogenesis*, 2018.
757 **21**(2): p. 363-380.

758 35. Cox, C.M., et al., *Apelin, the ligand for the endothelial G-protein-coupled receptor,*
759 *APJ, is a potent angiogenic factor required for normal vascular development of the*
760 *frog embryo*. *Dev Biol*, 2006. **296**(1): p. 177-89.

761 36. Kalin, R.E., et al., *Paracrine and autocrine mechanisms of apelin signaling govern*
762 *embryonic and tumor angiogenesis*. *Dev Biol*, 2007. **305**(2): p. 599-614.

763 37. Papangeli, I., et al., *MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during*
764 *vascular maturation*. *Nat Commun*, 2016. **7**: p. 11268.

765 38. Kidoya, H., et al., *Spatial and temporal role of the apelin/APJ system in the caliber*
766 *size regulation of blood vessels during angiogenesis*. *EMBO J*, 2008. **27**(3): p. 522-
767 34.

768 39. del Toro, R., et al., *Identification and functional analysis of endothelial tip cell-*
769 *enriched genes*. *Blood*, 2010. **116**(19): p. 4025-33.

770 40. Kidoya, H., H. Naito, and N. Takakura, *Apelin induces enlarged and nonleaky blood*
771 *vessels for functional recovery from ischemia*. *Blood*, 2010. **115**(15): p. 3166-74.

772 41. Kidoya, H., et al., *APJ Regulates Parallel Alignment of Arteries and Veins in the Skin*.
773 *Dev Cell*, 2015. **33**(3): p. 247-59.

774 42. Poirier, O., et al., *Inhibition of apelin expression by BMP signaling in endothelial*
775 *cells.* Am J Physiol Cell Physiol, 2012. **303**(11): p. C1139-45.

776 43. Somekawa, S., et al., *Tmem100, an ALK1 receptor signaling-dependent gene essential*
777 *for arterial endothelium differentiation and vascular morphogenesis.* Proc Natl Acad

778 *Sci U S A, 2012. **109**(30): p. 12064-9.*

779 44. Urness, L.D., L.K. Sorensen, and D.Y. Li, *Arteriovenous malformations in mice*
780 *lacking activin receptor-like kinase-1.* Nat Genet, 2000. **26**(3): p. 328-31.

781 45. Thomas, B., et al., *Altered endothelial gene expression associated with hereditary*
782 *haemorrhagic telangiectasia.* Eur J Clin Invest, 2007. **37**(7): p. 580-8.

783 46. Torring, P.M., et al., *Global gene expression profiling of telangiectasial tissue from*
784 *patients with hereditary hemorrhagic telangiectasia.* Microvasc Res, 2015. **99**: p.

785 *118-26.*

786 47. Locke, T., J. Gollamudi, and P. Chen, *Hereditary Hemorrhagic Telangiectasia*
787 *(HHT), in StatPearls.* 2022: Treasure Island (FL).

788 48. Rose, A.A., et al., *ADAM10 releases a soluble form of the GPNMB/Osteoactivin*
789 *extracellular domain with angiogenic properties.* PLoS One, 2010. **5**(8): p. e12093.

790 49. Gesualdo, C., et al., *Fingolimod and Diabetic Retinopathy: A Drug Repurposing*
791 *Study.* Front Pharmacol, 2021. **12**: p. 718902.

792 50. Rmali, K.A., M.C. Puntis, and W.G. Jiang, *Prognostic values of tumor endothelial*
793 *markers in patients with colorectal cancer.* World J Gastroenterol, 2005. **11**(9): p.

794 *1283-6.*

795 51. Davies, G., et al., *Levels of expression of endothelial markers specific to tumour-*
796 *associated endothelial cells and their correlation with prognosis in patients with*
797 *breast cancer.* Clin Exp Metastasis, 2004. **21**(1): p. 31-7.

798 52. Dupuis-Girod, S., et al., *Bevacizumab in patients with hereditary hemorrhagic*
799 *telangiectasia and severe hepatic vascular malformations and high cardiac output.*

800 *JAMA, 2012. **307**(9): p. 948-55.*

801 53. Dupuis-Girod, S., et al., *Efficacy and Safety of a 0.1% Tacrolimus Nasal Ointment as*
802 *a Treatment for Epistaxis in Hereditary Hemorrhagic Telangiectasia: A Double-*
803 *Blind, Randomized, Placebo-Controlled, Multicenter Trial.* J Clin Med, 2020. **9**(5).

804 54. Hessels, J., et al., *Efficacy and Safety of Tacrolimus as Treatment for Bleeding*
805 *Caused by Hereditary Hemorrhagic Telangiectasia: An Open-Label, Pilot Study.* J

806 *Clin Med, 2022. **11**(18).*

807 55. Faughnan, M.E., et al., *Pazopanib may reduce bleeding in hereditary hemorrhagic*
808 *telangiectasia*. *Angiogenesis*, 2019. **22**(1): p. 145-155.

809 56. Lebrin, F., et al., *Thalidomide stimulates vessel maturation and reduces epistaxis in*
810 *individuals with hereditary hemorrhagic telangiectasia*. *Nat Med*, 2010. **16**(4): p.
811 420-8.

812 57. Ola, R., et al., *PI3 kinase inhibition improves vascular malformations in mouse*
813 *models of hereditary haemorrhagic telangiectasia*. *Nat Commun*, 2016. **7**: p. 13650.

814 58. Jin, Y., et al., *Endoglin prevents vascular malformation by regulating flow-induced*
815 *cell migration and specification through VEGFR2 signalling*. *Nat Cell Biol*, 2017.
816 **19**(6): p. 639-652.

817 59. Tual-Chalot, S., et al., *Loss of Endothelial Endoglin Promotes High-Output Heart*
818 *Failure Through Peripheral Arteriovenous Shunting Driven by VEGF Signaling*. *Circ*
819 *Res*, 2020. **126**(2): p. 243-257.

820 60. Abhinand, C.S., et al., *VEGF-A/VEGFR2 signaling network in endothelial cells*
821 *relevant to angiogenesis*. *J Cell Commun Signal*, 2016. **10**(4): p. 347-354.

822 61. Allen, E., I.B. Walters, and D. Hanahan, *Brivanib, a dual FGF/VEGF inhibitor, is*
823 *active both first and second line against mouse pancreatic neuroendocrine tumors*
824 *developing adaptive/evasive resistance to VEGF inhibition*. *Clin Cancer Res*, 2011.
825 **17**(16): p. 5299-310.

826 62. Bhide, R.S., et al., *The antiangiogenic activity in xenograft models of brivanib, a dual*
827 *inhibitor of vascular endothelial growth factor receptor-2 and fibroblast growth*
828 *factor receptor-1 kinases*. *Mol Cancer Ther*, 2010. **9**(2): p. 369-78.

829 63. Marathe, P.H., et al., *Preclinical pharmacokinetics and in vitro metabolism of*
830 *brivanib (BMS-540215), a potent VEGFR2 inhibitor and its alanine ester prodrug*
831 *brivanib alaninate*. *Cancer Chemother Pharmacol*, 2009. **65**(1): p. 55-66.

832
833
834 **Figure legends**

835
836 **Figure 1. ID1 is not a common downstream target of ENG in PMVECs.** A) Cartoon of
837 BMP9 signaling in HHT. B) Western blot verification of BMP9 in PMVECs. C-E) siRNA-
838 mediated knockdown verification of ALK1, ENG, and SMAD4 by qPCR. F and G)
839 Validation of BMP9 signaling in ALK1, ENG, and SMAD4 knockdown conditions in
840 PMVECs by qPCR (read out ID1).

841

842 **Figure 2. Common downstream gene signatures of ALK1, ENG and SMAD4 mutations**
843 **enriched for AVM and HHT related biological processes and cell signaling pathways. A**
844 **and B)** Venn diagram of common upregulated or downregulated genes following knockdown
845 of ALK1, ENG and SMAD4 in PMVECs stimulated with BMP9 (20ng/ml) for 2 or 24hrs
846 (RNAseq). C) Heatmap of the common upregulated and downregulated genes following
847 knockdown of ALK1, ENG and SMAD4 in PMVECs stimulated with BMP9 for 2 and 24hrs.
848 D) SinyGo biological processes analysis of the common upregulated and downregulated
849 genes following knockdown of ALK1, ENG and SMAD4 in PMVECs stimulated with BMP9
850 for 2 and 24hrs. E) Panther pathway analysis of the common upregulated and downregulated
851 genes following knockdown of ALK1, ENG and SMAD4 in PMVECs stimulated BMP9 for
852 2 and 24hrs.

853

854 **Figure 3. Identifying common persistently dysregulated downstream gene signatures of**
855 **the HHT gene knockdowns in PMVECs. A)** Venn diagram of the common persistent
856 upregulated and downregulated downstream gene signatures between 2 and 24 hrs of BMP9
857 stimulation following HHT gene knockdown. B) qRT-PCR validation of the common
858 persistent upregulated and downregulated downstream gene signatures at 2 hrs of BMP9
859 stimulation following HHT gene knockdown. C) qRT-PCR validation of the common
860 persistent upregulated and downregulated downstream gene signatures at 24 hrs of BMP9
861 stimulation following HHT gene knockdown.

862

863 **Figure 4. Drug prediction based on the common upregulated downstream targets after ALK1,**
864 **ENG and SMAD4 knockdown and experimental validation in PMVECs. A)** Experimental
865 strategy: the common upregulated genes 117 (2h) and 112 (24h) after knockdown of the three
866 HHT genes and stimulation with BMP9 for 2 and 24hrs (HHT disease signature) were
867 uploaded separately on the Clue query app. The criteria of the drugs rank include samples
868 ≥ 3 , normalized connectivity score, tas value ≥ 0.20 , and FDR value. B) top scoring 5 HHT
869 (positive values) and anti-HHT drugs (negative values, indicated by brown color) are
870 represented. (C-K) Effect of Brivanib on the expression of the common persistent
871 downstream targets (LYVE1, GPNMB, RRAGD, ANKRD33, HS3ST2, MC5R, SLC25A47,
872 FGF19, SHISA9, FRG2C, HIST1H2BE, and CPA4) after ALK1, ENG and SMAD4
873 knockdown was assessed by qRT-PCR in PMVECs. MOA, mode of action; cs, connectivity
874 score; tas, transcriptional activity score. Data are represented as mean \pm standard error mean

875 (n=3). Two-way repeated measures ANOVA with a Bonferroni post-hoc test, * $P=<0.5$,
876 ** $P=<0.01$, *** $P=<0.001$, **** $P=<0.0001$.

877

878 **Figure 5. Effect of Brivanib on expression of upregulated disease signature genes in**
879 **HHT in *ex vivo* healthy human PCLS.** A) PCLS protocol. B) Expression of LYVE1,
880 GPNMB, HS3ST2, RRAGD and ANKRD33 were measured by qRT-PCR following 24hrs
881 treatment of Brivanib in PCLS (B-F). Data are represented as mean \pm standard error mean
882 (n=3). Unpaired Student's *t*-test, * $P=<0.5$.

883

884 **Figure 6. Brivanib inhibits VEGF-induced pERK1/2, -proliferation, and angiogenesis in**
885 **PMVECs.** A) PMVECs were treated with 10uM Brivanib or DMSO for 24 hrs followed by
886 20ng/mL VEGF or PBS for 10 mins. Protein was harvested and the effect of Brivanib on
887 VEGF-induced phosphorylation of ERK1/2 was assessed in PMVECs by western blotting. B)
888 The effect of Brivanib on VEGF-induced cell proliferation was assessed by MTT assay in
889 PMVECs. C) Angiogenesis was assessed in a Matrigel tube formation assay using PMVECs
890 treated with either Brivanib 1, 10, 50 uM or DMSO. D) Proposed model for the mechanism
891 by which Brivanib might influence AVM and HHT pathogenesis.

892

893 **Figure E1.** Functional consequence of ALK1, ENG, and SMAD4 knockdown in PMVECs
894 (proliferation, apoptosis and tube formation).

895

896 **Figure E2.** STRING network analysis of the common upregulated and downregulated genes
897 following knockdown of ALK1, ENG and SMAD4 in PMVECs stimulated with 2h and 24h
898 of BMP9.

899

900 **Figure E3.** Validation of common upregulated or downregulated genes signatures with
901 BMP9 stimulation at 2 (A and B) or 24 hrs (C and D) and functional consequences of the
902 knockdown of LYVE1, GPNMB and MC5R in PMVECs. After 72 hrs knockdown of
903 LYVE1, MC5R, and GPNMB PMVECs proliferation (E), apoptosis (F), tube formation (G)
904 were assessed.

905

906 **Figure E4.** Effect of Brivanib on the expression of the common persistent downstream
907 targets after ALK1, ENG and SMAD4 knockdown were assessed by qRT-PCR in PMVECs
908 (A-C).

909

910

911

912

913

914

915

916

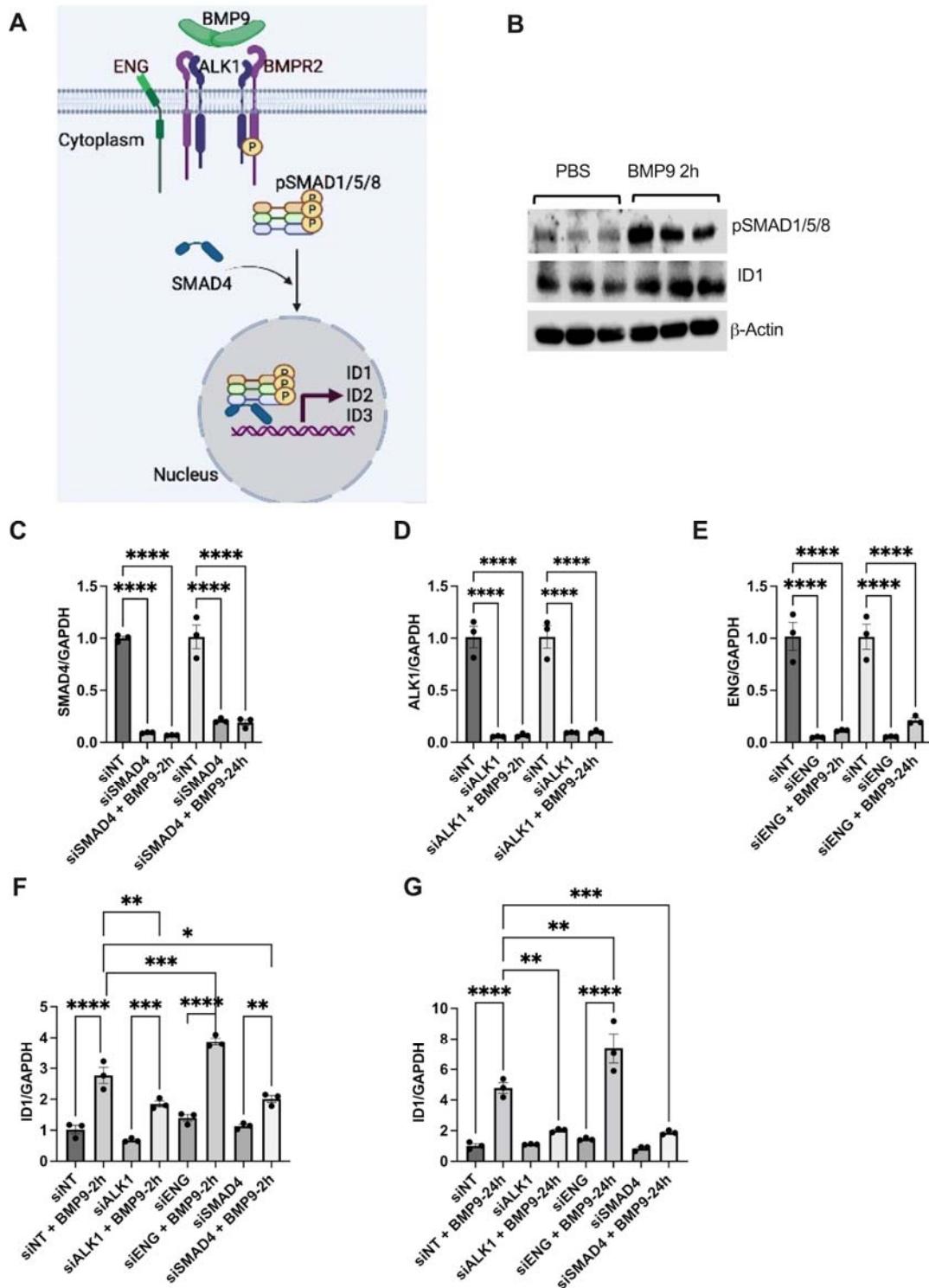
917

918

919

920

921

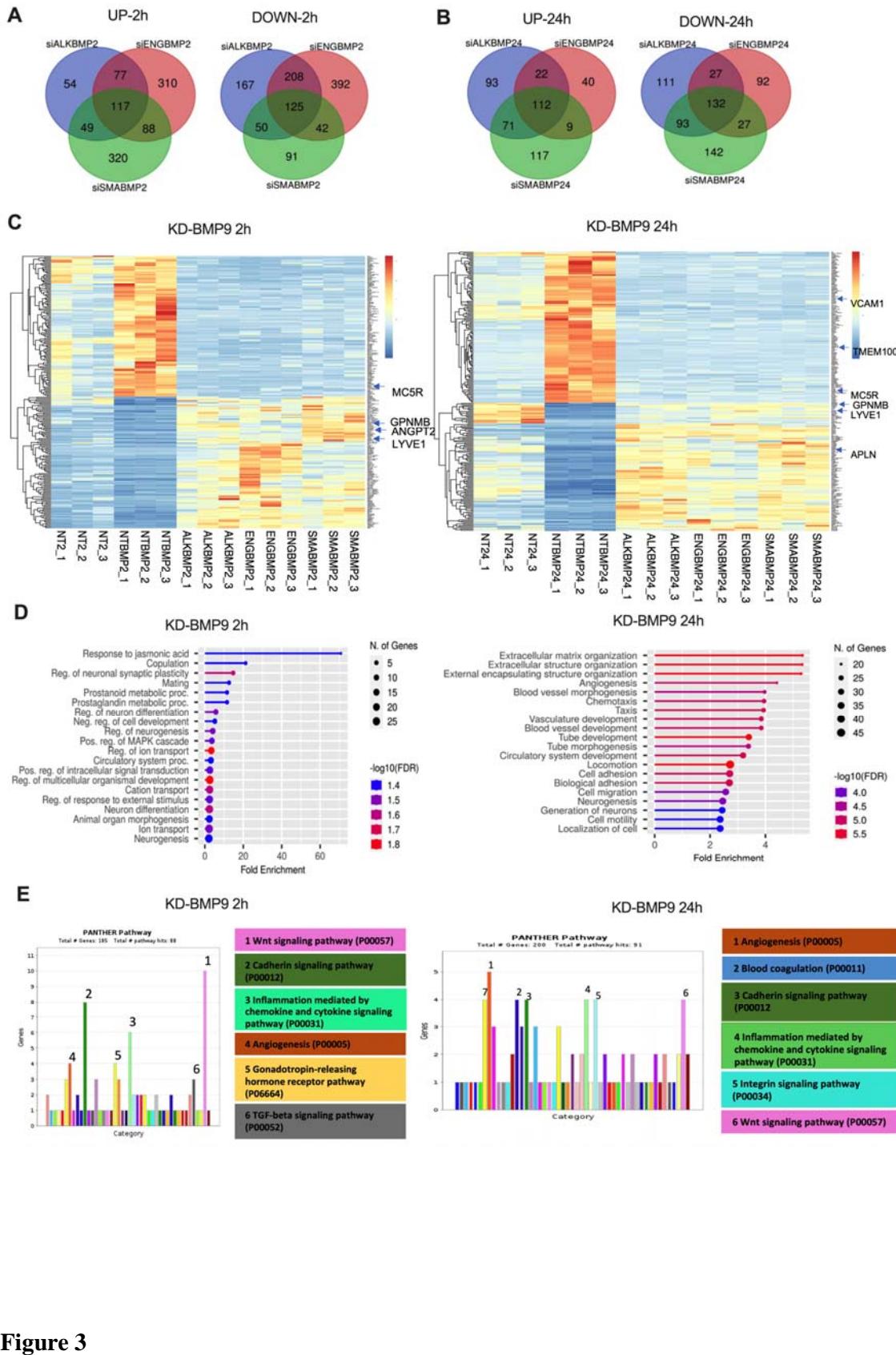

922

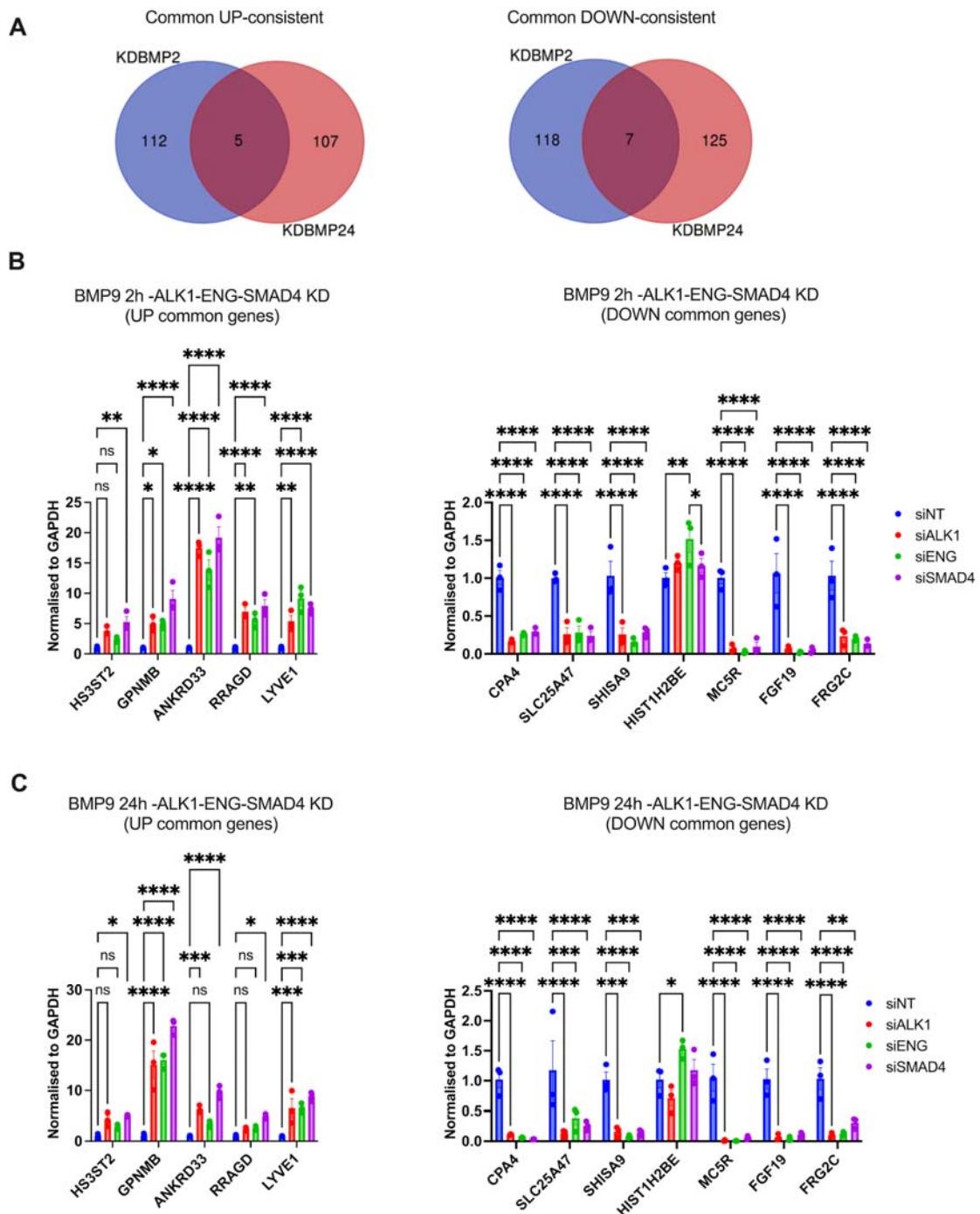
923

924

925

926 **Figure 1**


927


928

929

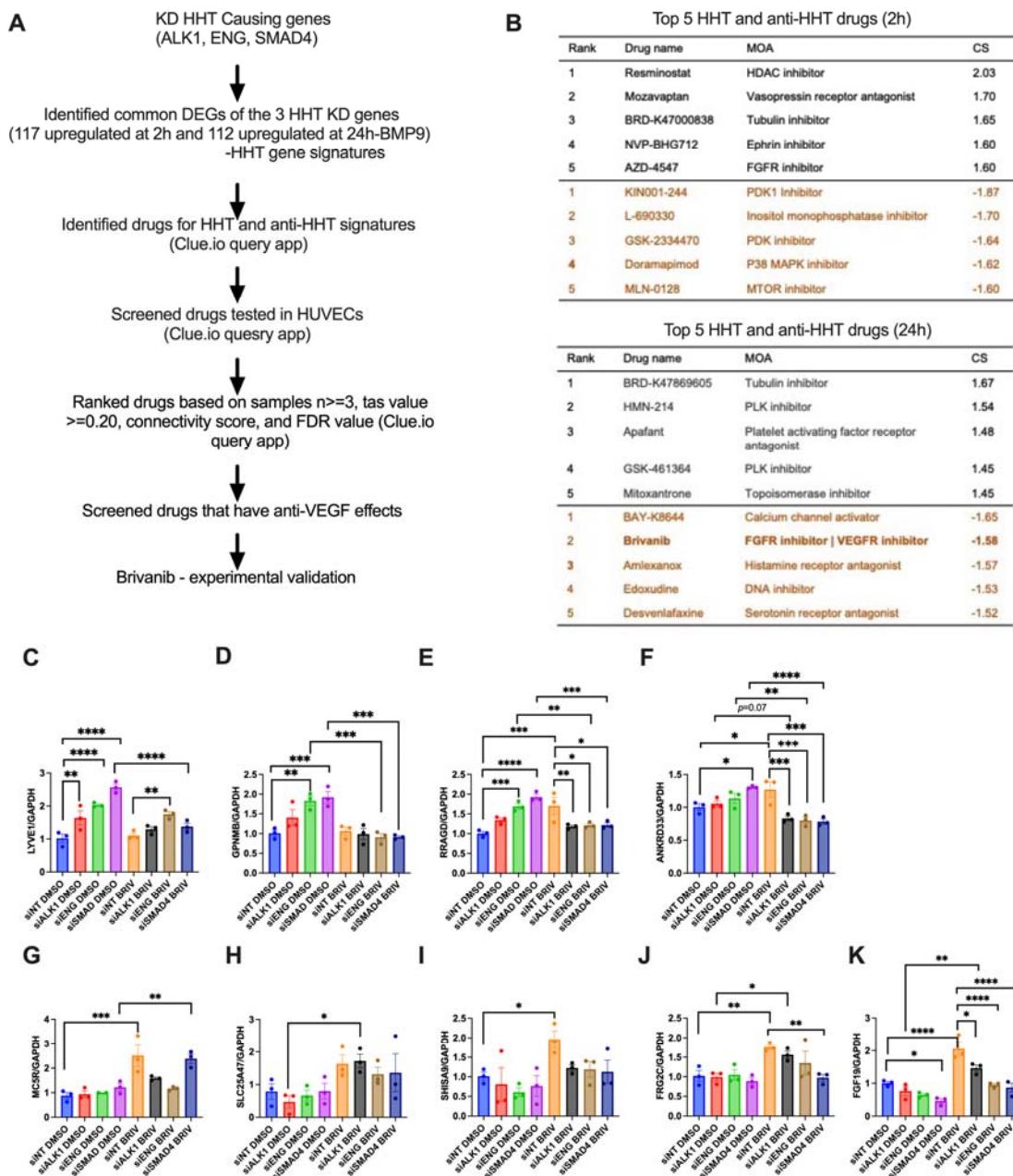
930

931 **Figure 2**

938

939

940


941

942

943

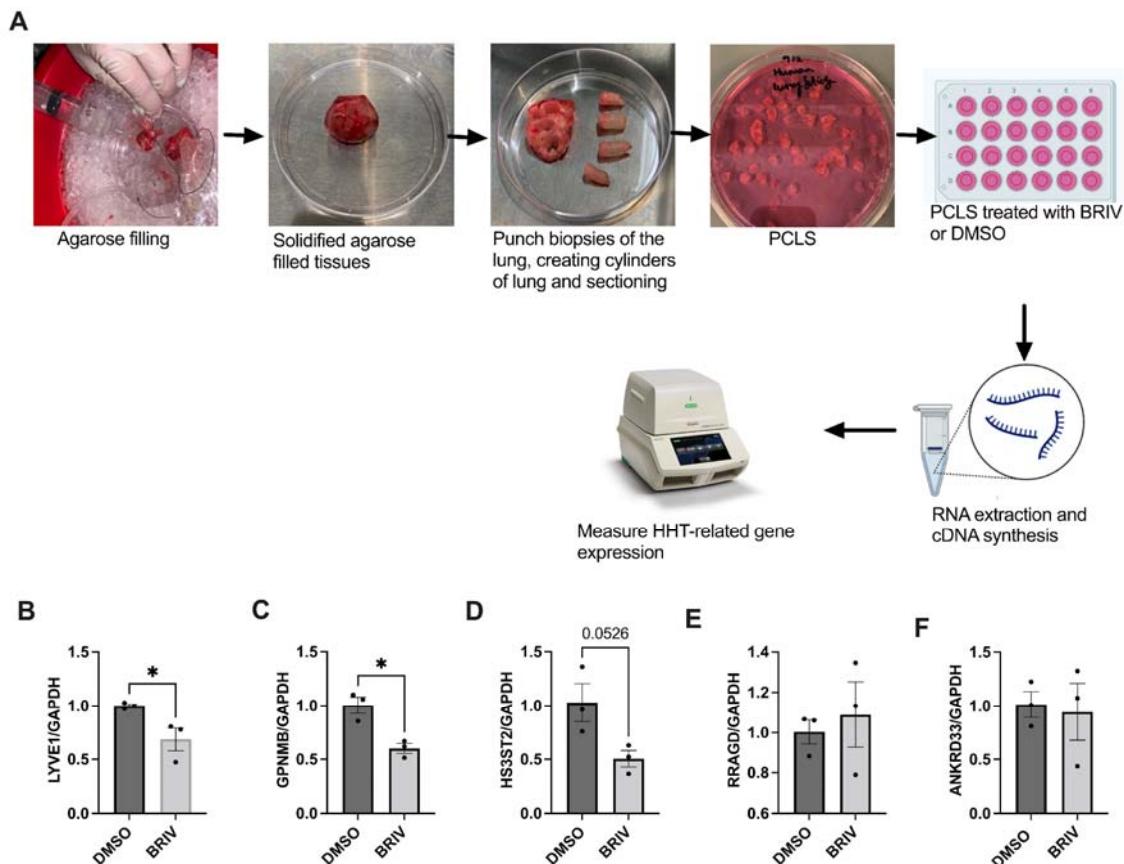
944 **Figure 4**

945

946

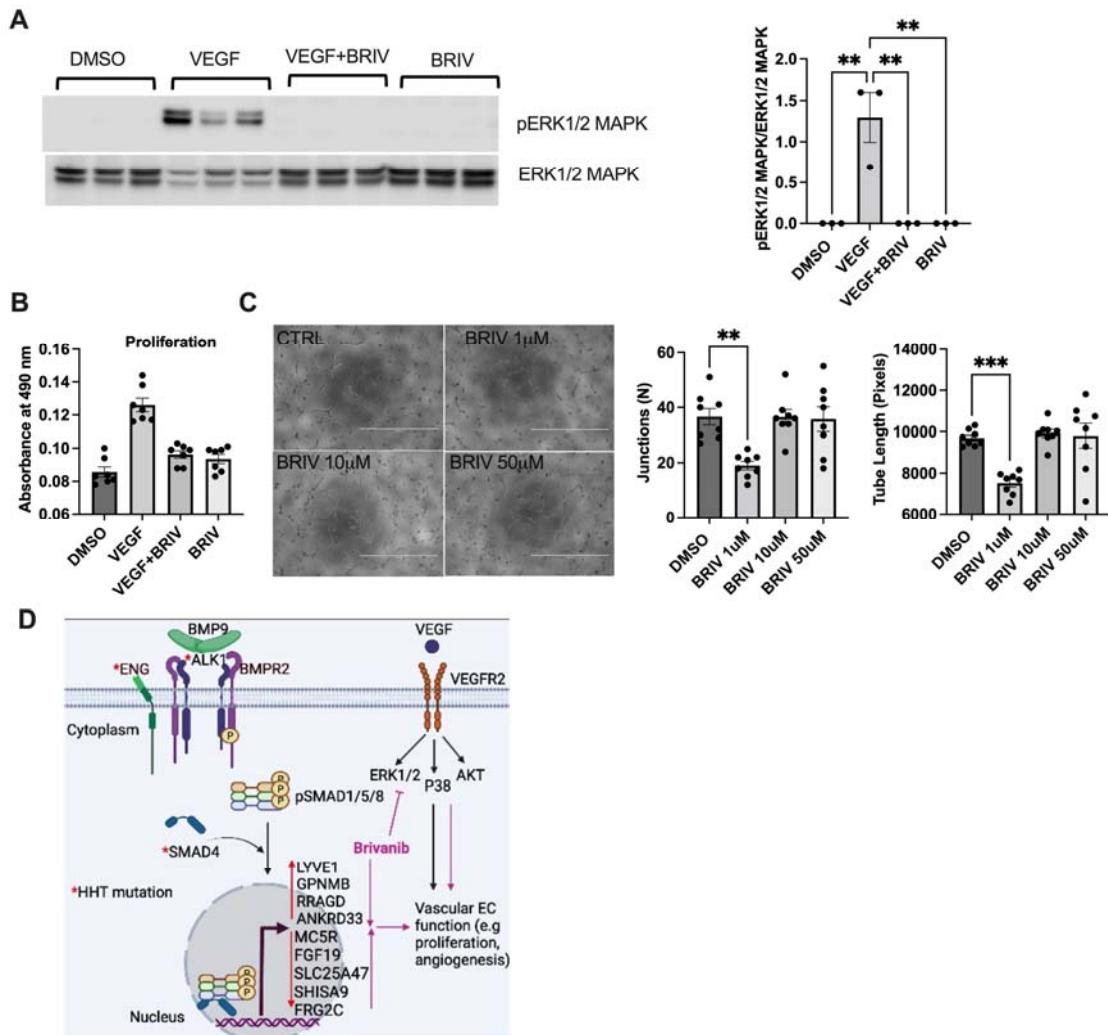
947

948


949

950

951


952

953 **Figure 5**

954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

970 **Figure 6**

971

972

973

974

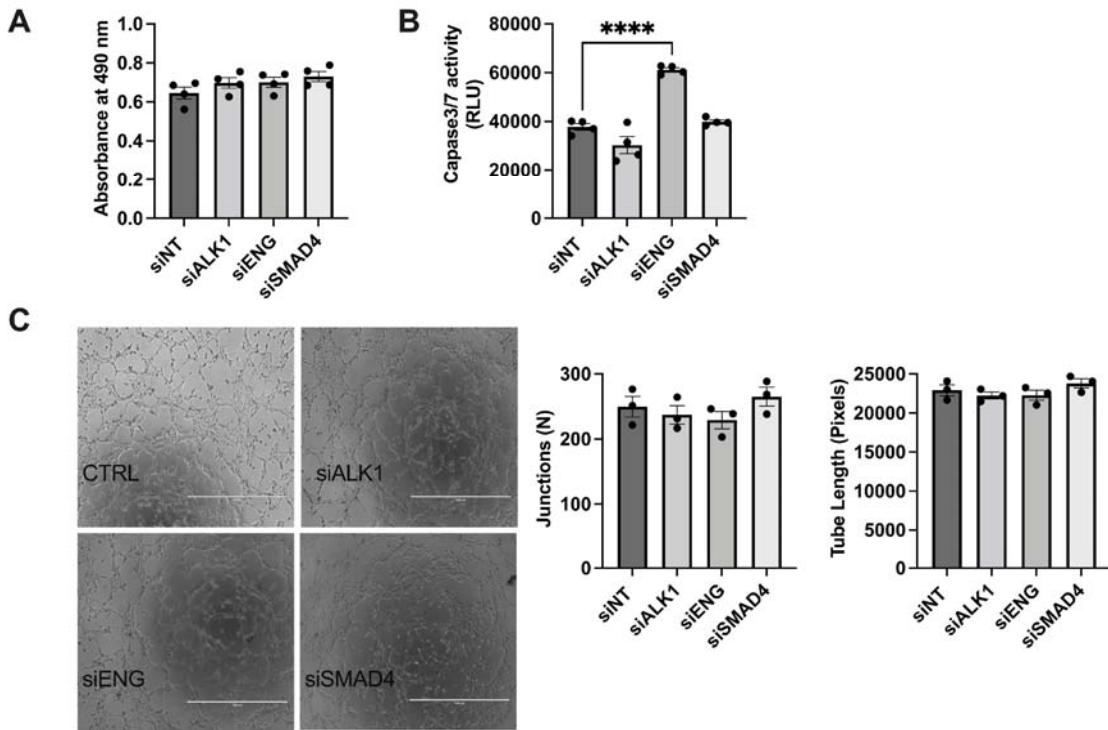
975

976

977

978

979

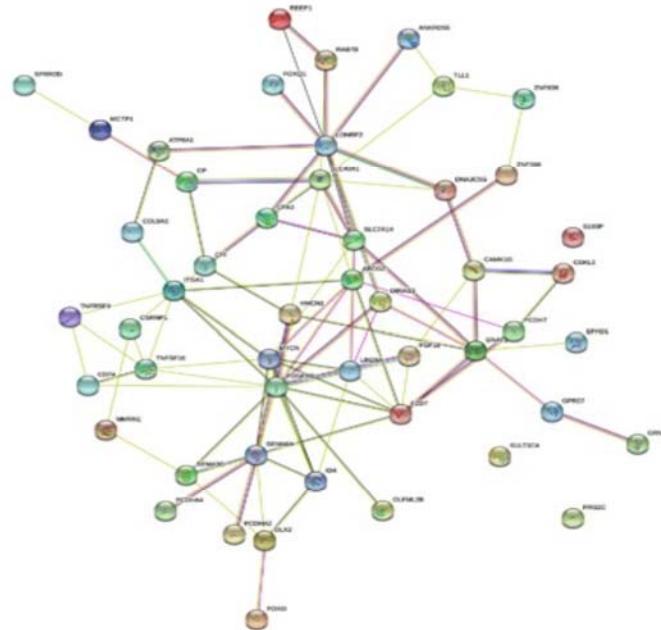

980

981

982

983

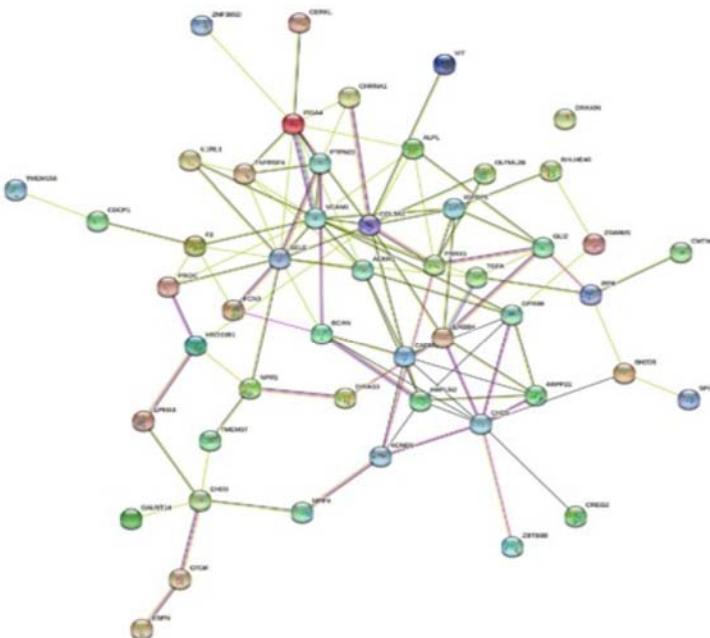
984 **Figure E1**


1004 **Figure E2**

A

STRING Network analysis

KD BMP9 2h


proteins: 50
interactions: 93
expected interactions: 60 (p-value: 5.08e-05)

B

KD BMP9 24h

proteins: 50
interactions: 110
expected interactions: 54 (p-value: 1.49e-11)

1005

1006

1007 **Figure E3**

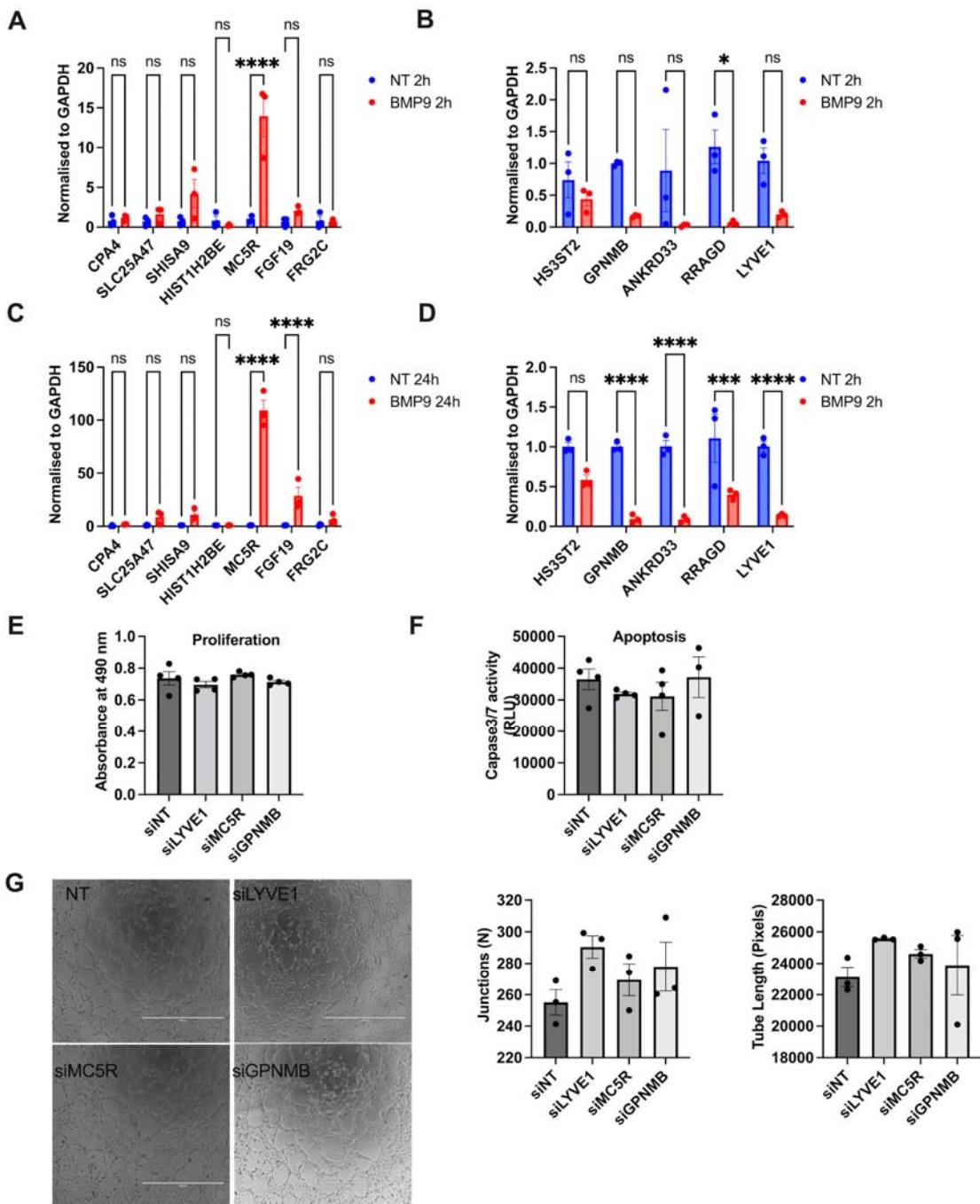
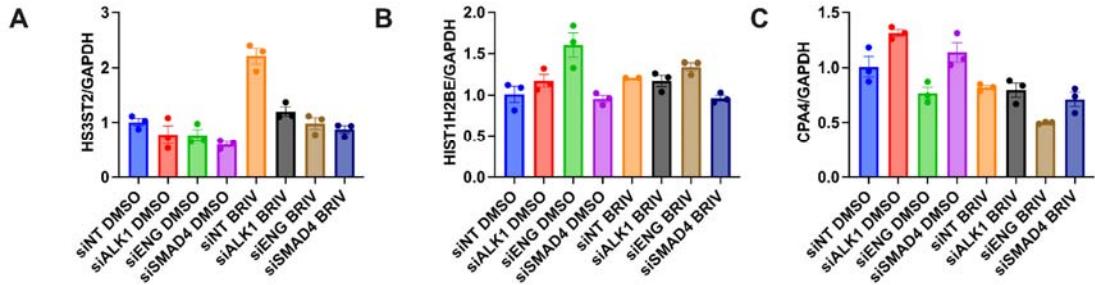



Figure E4

1016
1017
1018

