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ABSTRACT

Genomic selection (GS) is used in many animal and plant breeding programs to

enhance genetic gain for complex traits. However, its optimal integration in clone

breeding programs that up to now relied on phenotypic selection (PS) requires further

research. The objectives of this study were to (i) investigate under a fixed budget

how the weight of GS relative to PS , the stage of implementing GS, the correlation

between an auxiliary trait assessed in early generations and the target trait, the vari-

ance components, and the prediction accuracy affect the genetic gain of the target

trait of GS compared to PS, (ii) determine the optimal allocation of resources maxi-

mizing the genetic gain of the target trait in each selection strategy and for varying

cost scenarios, and (iii) make recommendations to breeders how to implement GS in

clone and especially potato breeding programs. In our simulation results, any selec-

tion strategy involving GS had a higher short-term genetic gain for the target trait

than Standard-PS. In addition, we show that implementing GS in consecutive selec-

tion stages can largely enhance short-term genetic gain and recommend the breeders

to implement GS at single hills and A clone stages. Furthermore, we observed for

selection strategies involving GS that the optimal allocation of resources maximizing

the genetic gain of the target trait differed considerably from those typically used in

potato breeding programs. Therefore, our study provides new insight for breeders

regarding how to optimally implement GS in a commercial potato breeding program

to improve the short-term genetic gain for their target trait.
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INTRODUCTION

Potato (Solanum tuberosum L.) is with respect to the production volume one of the1

most important food crops in the world after sugarcane, maize, wheat, and rice (FAO-2

STAT (2020), http://www.fao.org/faostat/en/). However, in contrast to other3

crops, only a low genetic gain was observed for yield in the past decades (Stokstad,4

2019; Ortiz et al., 2022). The selection gain is, compared to the one in homozygous5

diploid species, limited by the high heterozygosity and tetraploidy of potato. (Lind-6

hout et al., 2011; Jansky et al., 2016). In addition, potato has a low multiplication7

coefficient (Grüneberg et al., 2009), which leads to the availability of only one or8

few tubers per genotype for phenotypic evaluation at early stages in the breeding9

program (Gopal, 2006). This delays the evaluation of traits related to productivity10

(such as tuber yield) or quality, as they rely on multi-location field trials and/or11

destructive assessment, and these can only be performed after one to several multi-12

plication steps. As a consequence, only traits which can be assessed based on a low13

number of plants can be considered in the early stages of potato breeding programs.14

In contrast, target traits whose evaluation requires many plants and/or environments15

can only be selected for in later stages of the breeding program. However, the corre-16

lation between the early measured and target traits is variable and can be very low.17

Furthermore, the evaluation of target traits in potato is more expensive compared to18

their evaluation in non-clonal crops as a considerably lower level of mechanization is19

currently possible. Therefore, clone and especially potato breeding programs would20

highly benefit from the possibility to select for target traits at early stages of the21

breeding program e.g. with the implementation of genomic selection (GS).22

GS proved to enhance genetic gain for complex traits in both animal and plant23
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breeding programs (Meuwissen et al., 2001; Desta and Ortiz, 2014). This is because24

GS allows to predict the performance of target traits without phenotypic evaluation25

in early stages. The selection on target traits at early stages using estimated genetic26

values (EGV) avoids discarding those individuals with desirable alleles for the trait,27

which will increase the genetic gain per year. In addition, the performance prediction28

of target traits without phenotypic evaluation in early stages has the potential to re-29

duce the length of the breeding cycle. One parameter that influences the potential30

of GS is the prediction accuracy.31

Several empirical studies have explored the potential of implementing GS in32

potato breeding for different traits by determining the prediction accuracy (Slater33

et al., 2016; Sverrisdóttir et al., 2017; Enciso-Rodriguez et al., 2018; Endelman et al.,34

2018; Stich and Van Inghelandt, 2018; Sverrisdóttir et al., 2018; Caruana et al., 2019;35

Byrne et al., 2020; Gemenet et al., 2020; Sood et al., 2020; Wilson et al., 2021). Differ-36

ent degrees of prediction accuracies from low to high depending on the studied traits37

have been reported, which could be caused by the different genetic architectures, pre-38

diction models, but also the considered genetic material. However, only few studies39

evaluated the effect of GS on the genetic gain for the studied traits. One of them was40

Slater et al. (2016), who estimated that the genetic gain after implementing GS for41

complex traits was higher than that of PS. The results of Stich and Van Inghelandt42

(2018) suggested that for some traits GS leads to a higher gain of selection than PS43

even without reducing the cycle length. However, no earlier study considered directly44

the aspect that PS and GS need to be compared at a fixed budget. Furthermore,45

when implementing GS in a clone breeding program, the selected proportion of PS46

on the early trait will be partially shifted to GS on the target trait. This shift can be47

realized to different degrees and the resulting selected proportion for PS or GS might48
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influence the efficiency of the selection strategy. Therefore, for the implementation49

of GS in clone breeding programs not only the prediction accuracy of the GS model50

but also its relative weight to PS has to be examined. Furthermore, these aspects51

are influenced by the correlation between the early and the target trait and also the52

variance components of the considered trait have an influence on the genetic gain.53

However, the influences of these parameters and their interaction on the genetic gain54

in clone breeding programs have not been investigated until now.55

Werner et al. (2020) investigated different strategies to implement GS in clone56

breeding programs exemplarily with genome parameters of strawberry. They evalu-57

ated the performance of a breeding program that introduced GS in the first clonal58

stage and mainly focused on how to select parents for the next crosses and drive59

population improvement to enhance long-term genetic gain. However, in a classical60

clone breeding program, there are several stages where GS could be implemented and61

their effect on the gain of selection have not been studied so far.62

Another aspect that needs to be decided during the implementation of GS in63

clone or potato breeding programs is the number of stages in which GS is applied.64

Once the clones are genotyped for the first GS application, the possibility of re-using65

the same EGV to perform GS in two or more stages is given. A similar idea was66

proposed by Spindel et al. (2015) for a rice breeding program but has neither been67

assessed by theoretical considerations nor by computer simulations nor any empirical68

experiments. To the best of our knowledge, no earlier study has investigated at which69

stage and in how many selection stages GS should be implemented in clonal crops to70

maximize the short-term genetic gain under a given budget.71

Optimum allocation of resources under a given budget is essential to improve72

the efficiency of breeding programs (Longin et al., 2006). However, most studies on73
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the implementation of GS in breeding programs neglected this effect. Longin et al.74

(2015) and Marulanda et al. (2016) assessed this point for cereal breeding programs.75

However, to the best of our knowledge, no earlier study is available about the effect76

of the implementation of GS on the optimum allocation of resources in clone breeding77

programs.78

The objectives of this study were to (i) investigate under a fixed budget how79

the weight of GS relative to PS, the stage of implementation of GS, the correla-80

tion between traits (auxiliary trait assessed in early generations and target trait),81

the variance components, and the prediction accuracy affect the short-term genetic82

gain of the target trait in potato breeding programs compared to PS, (ii) determine83

the optimal allocation of resources maximizing the short-term genetic gain of the84

target trait in each selection strategy and for varying cost scenarios, and (iii) make85

recommendations to breeders how to implement GS in clone breeding programs.86
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MATERIALS AND METHODS

Empirical basis of the computer simulations87

Our simulations were based on an empirical genomic dataset of tetraploid potato.88

This empirical genomic dataset comprised 19,649,193 sequence variants revealed in89

a diversity panel of 100 tetraploid potato clones (Baig et al. in preparation). The90

unphased sequence variants included single nucleotide polymorphism (SNP) and in-91

sertion/deletion (InDel) polymorphisms. Sequence variants with a minor allele fre-92

quency < 0.05 and missing rate > 0.1 were removed. The 100 clones were used as93

parents of the simulated progenies and will be called parental clones hereafter.94

The progenies were simulated using AlphaSimR (Gaynor et al., 2021). For this,95

the genetic map information of all genomic variants was estimated using a Marey map96

(for details see Method S1 and Figure S1). Subsequently, the genomic information97

for each variant served as input for the simulations.98

Simulation of initial population99

To stick to the size of commercial breeding programs (Breeders personal communi-100

cation, Table 1) an initial population of 300,000 clones was simulated like described101

here under. From all possible crosses in the half-diallel among the 100 parental102

clones, 300 were randomly selected. For each of these 300 crosses, 1,000 F1 progenies103

were simulated using AlphaSimR. The two steps of this procedure (the random se-104

lection of 300 crosses and the simulation of their progenies) was repeated 1,000 times105

independently.106
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Simulation of true genetic and phenotypic values107

Target trait (Tt)108

In our study, a genetically complex target trait representing the weighted sum of all109

market relevant quantitative traits was considered and will be named Tt hereafter.110

A random set of 2,000 sequence variants were considered as quantitative trait loci111

(QTL) for Tt. The true additive effects of the 2,000 QTL were drawn from a gamma112

distribution (cf. Hayes and Goddard, 2001) with k = 2 and θ = 0.2, where k and θ113

are shape and scale parameter, respectively. To control the degree of dominance δ be-114

tween 0 and 1 for each QTL, the ratios of dominance to additive effect were produced115

from a beta distribution with the two shape parameters a = 2 and b = 2. The true116

dominance effect at each QTL was then calculated by multiplying the true additive117

effect by the QTL specific δ (Figure S2). For each QTL, all possible genotype classes118

were AAAA, AAAB, AABB, and BBBB, which were respectively coded from 0, 1,119

2, 3, and 4 for additive effect; and 0, 1, 1, 1, and 0 for dominance effect. Finally, the120

true genetic value for Tt (TGVTt) was calculated for each clone by summing up the121

true additive and dominance effects at the 2,000 QTL.122

In order to simulate phenotypic values, two ratios of variance components (VC)123

were assumed for Tt: σ
2
G : σ2G×L : σ2ε = 1 : 1 : 0.5 (VC1) and 1 : 0.5 : 0.5 (VC2),124

where σ2G denoted the genotypic variance, σ2G×L the variance of interaction between125

genotype and location, and σ2ε the error variance. The genotypic variance was esti-126

mated by the sample variance of TGVTt in the initial population. The phenotypic127

value for the target trait was then calculated as PTt = TGVTt + εTt , where εTt was128

the non-genetic value following a normal distribution N(0, σ2εTt
), with129
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σ2εTt
=
σ2G×L

Lj
+

σ2ε
LjRj

[1]

representing the non-genetic variance, in which Lj was the number of locations at130

stage j, and Rj the number of repetitions at stage j. We set the number of replications131

to one (Rj = 1) in each location (cf. Melchinger et al., 2005).132

Phenotypic trait assessed in early generations of the breeding program133

(Ta)134

The weighted sum of the auxiliary traits measured in the first three generations of135

the breeding program will be referred to as Ta hereafter. To control the genetic136

correlations between Ta and Tt (r), the true genetic values for Ta were generated by137

TGVTa = TGVTt + εr, where εr was the residual value following a normal distribution138

N(0, σ2εr), with139

σ2εr =
1

n− 2

1− r2

r2

n∑
i=1

(TGVTt(i) − TGVTt)
2 [2]

determined by the degree of r, where n was the number of clones for the initial140

population, TGVTt(i) the TGV for Tt of the ith clone, and TGVTt the average of141

TGVTt in the initial population. Then, the phenotypic value for Ta was calculated142

as PTa = TGVTa + εTa , where εTa was a non-genetic value following a normal distri-143

bution N(0,
1−H2

Ta

H2
Ta

σ2GTa
), in which H2

Ta
was the broad-sense heritability for Ta, and144

σ2GTa
the genetic variance of Ta and estimated by the sample variance of TGVTa in145

the initial population. In this study, H2
Ta

was set as 0.6.146
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Simulation of estimated genetic values147

In this study, we assumed that a GS model for Tt with a prediction accuracy of PA148

was available. The estimated genetic values of Tt obtained from the GS model were149

estimated by EGVTt = TGVTt + εPA, where εPA was the residual value following a150

normal distribution N(0, σ2εPA
), with151

σ2εPA
=

1

n− 2

1− PA2

PA2

n′∑
i=1

(TGVTt(i) − TGVTt)
2 [3]

determined by the level of PA, where n′ was the number of genotyped clones (= NGS),152

TGVTt(i) the TGV of the target trait at the ith genotyped clone, and TGVTt the153

average of TGVTt on all NGS genotyped clones.154

Selection strategies155

Standard breeding program156

A standard potato breeding program relying exclusively on PS (Standard-PS) was157

considered as benchmark (Figure 1). To simplify the comparison between PS and158

GS strategies, we considered in this study six testing stages in the potato breeding159

program. The six testing stages were seedling, single hills, and A, B, C, and D clone160

stages, abbreviated in the following as SL, SH, A, B, C, and D, respectively. The161

number of tested clones (N) and locations (L) for each testing stage are shown in162

Table 1. The selected proportions from SL to SH (p1), SH to A (p2), A to B (p3),163

B to C (p4), and C to D (p5) were set to 1
3 , 0.1, 0.15, 0.2, and 0.2, respectively,164

as estimates from typical commercial potato breeding programs (Breeders personal165

communication). The selection in the early stages (SL, SH, and A) was based on the166
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phenotypic value of the auxiliary trait PTa , and for the late stages (B, C, and D) on167

the phenotypic value of the target trait PTt (Figure 1).168

Breeding programs involving genomic selection169

Three GS strategies were evaluated in which GS was implemented at the (1) seedling,170

(2) single hills, and (3) A clone stage, abbreviated as GS-SL, GS-SH, and GS-A,171

respectively. All selection steps of the GS strategies were similar to those of the172

standard breeding program except the following modifications (Figure 2). Here, the173

strategy GS-SL will be taken as an example for the description. In the seedling174

stage, N1 clones were evaluated for PTa . From these N1 clones, the NGS ones with a175

higher PTa were genotyped. α1 was defined as ratio of NGS to N1, i.e. the proportion176

of clones selected by PS to be genotyped. Then, N2 clones were selected based on177

the EGVTt in the NGS genotyped clones for the single hills stage. Afterwards, the178

selection process in the following stages were the same as Standard-PS. For the other179

two GS strategies, GS-SH and GS-A, the selection was performed accordingly. For180

each stage k in which GS was applied, the corresponding αk was larger than pk,181

where pk (= Nk
Nk+1

) was the selected proportion between the two stages to which GS182

was applied. k was set to 1, 2, and 3 for the strategies (1) GS-SL, (2) GS-SH, and183

(3) GS-A, respectively (Figure 2).184

To evaluate whether adopting the same GS model for selection on Tt in several185

stages improves the short-term genetic gain compared to using GS only once, we186

evaluated three additional strategies (Figure 2):187

(4) GS-SL:SH – GS was applied not only at seedling stage but also at single hills188

stage;189

(5) GS-SH:A – GS was applied not only at single hills stage but also at A clone stage;190
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and191

(6) GS-SL:SH:A – GS was applied at seedling, single hills and A clone stages.192

For these three GS strategies, genotyping of NGS clones only took place when GS was193

used for the first time. When GS was used a second or third time, the same EGVTt194

for the tested clones from the initial GS model were used for the selection.195

Economic settings and additional quantitative genetic parameters196

In this study, the costs for phenotypic evaluation of Ta and Tt in one environment197

were assumed to be 1.4 and 25 e, respectively. The costs for genotypic evaluation198

per clone were assumed as 25 e (Table 1). To compare the short-term genetic199

gain of Tt (∆G) between Standard-PS and several GS strategies, the budget across200

different selection strategies was fixed to 677,500 e. Therefore, the number of tested201

clones in seedling stage (N1) must be adjusted/reduced when introducing GS into202

a breeding program to compensate for the additional genotyping cost. In the first203

part of the simulations, the selected proportions were fixed to those of Standard-PS.204

This was realized in our study by randomly sampling the reduced N1 from the initial205

population with an equal sample size for each cross population.206

We were interested in how different values of r, PA, VC, and L influence ∆G.207

Therefore, three different levels of r (-0.15, 0.15 and 0.3), PA (0.3, 0.5 and 0.7), and208

two different ratios of VC for Tt (see above) were examined in our simulations. The209

selection of clones based on Tt that was assessed in field experiments in more than one210

location happened at B and C clone stages. Thus, we varied the number of locations211

from 2 to 4 and 3 to 6 in increments of 1 for B and C clone stages, respectively, and212

designated them as L4 and L5. Furthermore, to investigate how different levels of αk213

affect ∆G, we varied αk from 0.4 to 0.9 in increments of 0.1 for the strategies GS-SL,214
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GS-SL:SH, and GS-SL:SH:A, and from 0.2 to 0.9 in increments of 0.1 for the other215

strategies. ∆G was calculated as the difference in mean genetic values of Tt between216

the D clone and the seedling stage (cf. Longin et al., 2015; Marulanda et al., 2016).217

Optimum allocation of resources218

In the below described simulations, we relaxed the restrictions of the above described219

simulations that the selected proportions were fixed to those of Standard-PS. To220

determine the optimum allocation of resources maximizing ∆G under a given budget,221

a general linear cost function to aggregate all costs across all stages in the breeding222

program was created:223

Budget =

6∑
j=1

Nj × costpheno(j) × Lj + NGS × costgeno

=
5∑
j=1

N6

Π5
k=jpk

costpheno(j)Lj + N6costpheno(6)L6 +
N6costgenoαm

Π5
k=mpk

,

[4]

where Nj was the number of clones at stage j, costpheno(j) the cost for phenotypic224

evaluation at stage j, NGS the number of genotyped clones, and costgeno the geno-225

typing cost (for details see Method S2). In addition, pk was the selected proportion226

from stage j(m) to stage j(m) + 1, where m was the stage in which GS was applied227

first. For more details, m = 1 referred to GS-SL, GS-SL:SH and GS-SL:SH:A; m = 2228

for GS-SH and GS-SH:A; and m = 3 for GS-A. The GS strategies with optimum229

allocation of resources will be named Optimal-GS hereafter.230

The optimum allocation was determined by a grid search across the permissible231

space of p2 to p5 and αk for a set of given input parameters. The latter included232

the number of tested clones at D clone stage (N6), the GS strategy, the phenotyping233

and genotyping costs, L, r, VC of Tt, H
2
Ta

, and the total budget. We set N6 to 60.234
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In the grid search, any pk varied between 0.1 and 0.5 in increments of 0.05 to avoid235

too strong/weak selections. αk was chosen as described above. Consequently, in236

each permissible allocation, p1 was completely determined by equation [4] under the237

constrained budget and the given input parameters. Subsequently, the mean genetic238

gain across 1,000 simulation runs was calculated for each permissible allocation of239

the grid search. To obtain reliable estimates of the optimal allocation of resources,240

we performed a least significant difference (LSD) test on ∆G across all permissible241

allocations of the grid search within a specific scenario. We selected the significant242

group showing the maximum ∆G among all permissible sets and then considered the243

average of the allocations as optimal result.244

The above described simulations required for some grid search sets (those with245

low p1 to p3 but high p4 and p5) with more than 300,000 clones in the seedling stage.246

Thus, the size of the initial population was increased to 900,000 clones.247

To investigate whether an increase of phenotyping cost of Ta and the genotyping248

cost have an influence on the optimal allocation of resources, we considered three dif-249

ferent phenotyping costs for Ta (0.7, 1.05, and 1.4 e), and three different genotyping250

costs (15, 25, and 40 e).251
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RESULTS

The mean genetic gain (∆G) and genetic variance (σ2G) of the target trait at D clone252

were assessed considering different values of r, PA, αk, as well as different selection253

strategies. To easily compare among the examined strategies, the budget, the se-254

lection proportion between stages p1-p5 and the number of test locations were fixed255

according to those of the Standard-PS strategy.256

Increasing r and PA either individually or simultaneously led to a higher ∆G257

(Figure 3 and S4). Regardless of PA and r, any selection strategy incorporating258

GS was superior to the Standard-PS strategy with respect to ∆G (Figure 3). Low259

or negative values for r and high PA increased this tendency even more. The least260

improvement of ∆G relative to Standard-PS was observed across all scenarios for261

the strategy GS-SL. The strategies GS-A and GS-SH resulted in considerably higher262

values for ∆G relative to PS and under the scenarios with low r but high PA, the263

latter strategy was significantly superior to the former.264

Implementing GS in successive stages (i.e. GS-SL:SH, GS-SH:A, and GS-SL:SH:A)265

had an advantage over the strategies using GS one time, except for the scenario with266

the lowest PA (=0.3) but the highest r (=0.3). The ranking of performance among267

these strategies was GS-SL:SH:A > GS-SH:A > GS-SL:SH. The difference among268

these strategies was lower, if r increased or PA decreased.269

For all GS strategies, higher αk values led to reductions in the number of clones270

available in the seedling stage (Figure S3), but increased ∆G (Figure 3). For all271

except eight scenarios, the highest ∆G was observed if αk was at its maximum (0.9).272

The remaining scenarios in which the maximum ∆G were observed for αk=0.7 or273

0.8 instead of 0.9, however, showed ∆G values that were not significantly different274

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2022. ; https://doi.org/10.1101/2022.11.25.517496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517496
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

from the ∆G values observed for αk=0.9 (data not shown). Only for GS-SL:SH:A an275

exception was observed from this trend, namely that the maximal ∆G was observed276

for αk=0.5 for the scenario with r=0.3 and PA=0.3. In accordance to the above277

described observations regarding the differences among selection strategies, also the278

differences among ∆G for the different levels of αk were low for the scenarios with279

high r and/or low PA.280

In all the above described simulations of the selection strategies that exploit GS281

in several stages, αk was the same for each stage in which GS was applied. However,282

for these strategies, we also evaluated whether varying αk had an influence on ∆G.283

For the strategies GS-SL:SH and GS-SH:A, we observed that an increase of both αk284

values (i.e. α1 and α2 or α2 and α3) a higher ∆G was observed (Figure S5). The285

combination of two αk values that resulted in the highest ∆G was 0.84 and 0.79 or286

0.86 and 0.86 for the respective strategies. A similar trend was observed for GS-287

SL:SH:A (Figure S6). However, for the scenarios with high r (=0.3), intermediate288

values of α1 were sufficient to result with high values of α2 and α3 in the maximal289

values of ∆G of 0.4-0.5 (Table S1).290

The effect of variation of selection strategies, αk, r, and PA on the genetic vari-291

ance were opposite to their effect on genetic gain (Figure 3). The scenarios with a292

higher genetic gain showed a lower genetic variance.293

We also investigated the effects of different ratios of variance components (VC1294

and VC2) and number of locations for phenotypic evaluation (L4 and L5) on ∆G.295

The ranking of the selection strategies with respect to ∆G was not affected by the296

studied ratios of VC (Figure 3 and S7). When σ2G×L was halved (i.e. VC2 vs. VC1),297

∆G increased from 3% to 8% depending on the selection strategies, PA, r, and αk298

(Figure S8). Although increasing L caused a decrease in the number of clones that299

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2022. ; https://doi.org/10.1101/2022.11.25.517496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517496
http://creativecommons.org/licenses/by-nc-nd/4.0/


17

are available at the seedling stage to compensate for additional phenotyping costs,300

∆G significantly increased with increasing number of locations that were used for301

the evaluation of B and C clones (Figure 4). This trend was independent of selection302

strategies, PA, r, and αk. In all scenarios, the highest ∆G was observed with the303

highest number of locations in the B and C clone stages, i.e., L4 = 4 and L5 = 6. In304

these cases, ∆G was increased by 8% compared to Standard-PS with (L4,L5) = (2, 3).305

The optimal allocation of resources was assessed via a grid search across p1 - p5306

and αk, k ∈ [1, 3] in a scenario with VC1, budget, L, and N6 like in the Standard-PS307

scenario. The optimum allocation of resources led also for the PS to an increase of308

∆G (Optimal-PS) compared with the Standard-PS (Figure 5). On average across all309

evaluated scenarios, the strategy GS-SL had the worst performance out of the strate-310

gies incorporating GS. In a scenario with r < 0 and PA > 0.5, any selection strategy311

with GS revealed a higher ∆G than the Optimal-PS. The strategy GS-SL:SH:A only312

outperformed the other selection strategies if r=-0.15. In contrast, the strategy GS-313

SH:A or GS-A resulted in the highest ∆G if r was > -0.15. On average across all the314

examined scenarios, the strategy GS-SH:A resulted in the highest and most stable315

∆G values.316

With the exception of one specific scenario, a high αk was required for each selec-317

tion strategy to reach the maximal ∆G value (Table 2, S2 and S3). This exception318

was the strategy GS-SL in case of a positive r for which αk ranging from 0.21 to319

0.61 resulted in the maximal ∆G values. Furthermore, to achieve maximum ∆G320

values, the selected proportions for the last two stages (i.e. p4 and p5) were low321

(0.17) on average across all scenarios. The level of the optimal pk was influenced by322

the level of r as well as by the stage in which GS was implemented. In general, high323

optimal p1 values were observed with a negative correlation in comparison with the324
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scenarios with a positive correlation. Furthermore, we observed for all strategies with325

implementation of GS that the selection proportion for that stage in which GS was326

applied was lower than the one observed at the same stage in the other strategies.327

This trend was more pronounced for scenarios with high PA. For instance, p2 (p3)328

for the strategy GS-SH (GS-A) was on average across all scenarios about 0.25 (0.21)329

lower than the one for the strategies excluding GS-SH (GS-A) with 0.42 (0.45).330

The effects of different phenotyping and genotyping costs on the maximum ∆G331

were assessed exemplarily for strategy GS-SH:A and for intermediate levels of PA332

(=0.5) and r (=0.15) (Table 3). ∆G increased by 1%, if the costs of phenotyping Ta333

reduced from 1.4 to 0.7 e. An increase of ∆G of 4 % was observed if the genotyping334

costs were reduced from 40 to 15 e.335
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DISCUSSION

GS has been implemented in many commercial crop breeding programs nowadays336

(Krishnappa et al., 2021). However, implementation of GS in clonally propagated337

species is lagging behind, despite the expected advantages. This might be on one338

side because genomic resources are less developed in clonally propagated species339

compared to species bred as hybrids or inbred lines. Furthermore, a lower number of340

breeding methodological studies is dedicated to clonally propagated crops compared341

to inbred or hybrid species. Therefore, we evaluated the prospects to integrate GS342

into commercial potato breeding programs and assessed which parameters are crucial343

for its implementation.344

Comparison of selection strategies345

We have studied the implementation of GS in a standard clone breeding program346

with minimal changes of the breeding program. This procedure was chosen as we347

expect that this will be the way how commercial clone breeding programs will deal348

with this possibility or challenge. However, we are aware that GS might result in349

even higher gains of selection if applied in a less conservative setting where the pos-350

sibilities of reducing the length of breeding cycles are exploited. These aspects will351

be considered in a companion study.352

In this study, all evaluated selection strategies that make use of GS resulted in353

higher ∆G compared to the Standard-PS strategy if other parameters such as budget,354

variance components and selected proportions were held constant (Figure 3). This is355

in accordance with the theory about indirect selection response. This theory suggests356

that GS strategies should be superior to the Standard-PS if PA > r ·HTa , keeping the357
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intensity of selection for GS (iEGVTt
) and PS (iTa) equal. Furthermore, the theory358

suggests that this trend should be even more pronounced, if iTa < iEGVTt
. This is359

what we have observed in our simulations, namely that the difference between ∆G360

of GS and PS was increased, if αk increases.361

Among the examined strategies using GS in only one stage, the ranking with362

respect to maximum ∆G was GS-SH > GS-A > GS-SL, independently of PA, r, and363

αk (Figure 3). The observation that GS-SH resulted in a higher ∆G than GS-A can364

be explained by superiority of early selection on Tt because thereby one can avoid365

discarding clones with top performance for Tt in the early stages. Our observation366

of an increased advantage of GS-SH over GS-A if r decreased confirmed this expla-367

nation.368

Following this argumentation, one could have expected GS-SL to be the strategy369

with the highest ∆G, especially if r is negative. This is because a direct selection of370

seedlings for EGVTt should be more efficient than selecting them based on PTa that371

negatively correlated with TGVTt . Therefore, the observation of GS-SL as the most372

disadvantageous GS method (Figure 3) was surprising at a first glance. However,373

in this strategy after one step of GS all further selection steps are exclusively made374

based on PTa and this hampers the selection of those individuals with beneficial al-375

leles for Tt. Thus, the individuals with the highest TGVTt that were selected by376

GS in the seedling stage are probably discarded in the following selection steps from377

single hills to B clone stages. Another explanation for the observation of GS-SL as378

the most disadvantageous GS method is that the selection of the seedling stage based379

on GS leads to a dramatic reduction of population size in the seedling stage to keep380

the budget constant despite the burden of high genotyping costs (Figure S3). Our381

observations suggest that alternative prediction and selection methods to GS need382
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to be developed for the first stage of clone breeding programs that result in a much383

lower cost per clone in order to exploit the potential of predictive breeding.384

Among all examined selection strategies, those that applied GS several times are385

for all combinations of αk, VC, and L superior to the ones using GS in only one stage386

of the breeding program (Figure 3), even without recalibrating the GS model. This387

superiority is most probably due to the possibility to select several times on EGVTt388

without having extra genotyping costs.389

Among the strategies that used GS multiple times, the highest ∆G was observed390

for the strategies GS-SL:SH:A and GS-SH:A (Figure 3). The ranking of these two391

strategies was influenced by the genetic situation. GS-SL:SH:A outperformed GS-392

SH:A under low r and high PA. Therefore, we advice using GS-SL:SH:A in a very393

favorable GS environment (high PA and low r), and GS-SH:A in a favorable PS en-394

vironment (low PA and high r).395

In the scenario discussed in the previous paragraph, the selection intensities of396

the individual stages were kept equal to those of the Standard-PS strategy. However,397

theoretical considerations suggest that the implementation of GS requires an adap-398

tation of the selection intensities as well as the phenotyping intensities. These are399

discussed in the next paragraph.400

Optimal allocation of resources401

We observed a significantly higher ∆G for the Optimal-PS compared to the Standard-402

PS strategy (Figure 5). Smaller values for p4 and p5 (i.e., higher selection intensities)403

in Optimal-PS (0.10) were observed compared to those in Standard-PS (0.20) (Table404

2, S2 and S3). This can be explained by the fact that at the B and C clone stages, the405

selection is exclusively based on PTt in a direct selection. Therefore, when increasing406
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the selection intensities in these stages, ∆G is increasing as well.407

The correlation between Ta and Tt also influences the optimal selection intensity.408

We observed a higher p1, i.e. a lower selection intensity, when r=-0.15 compared to409

the scenario with positive values for r (Table 2, S2 and S3). This can be interpreted410

such that in cases of a negative r, iTa needs to be reduced to avoid discarding too411

many clones based on PTa that have a high TGVTt .412

Furthermore, we observed for those stages of the breeding program at which GS413

was applied a lower selected proportion pk compared to the same stage in a selection414

strategy without GS (Table 2, S2 and S3). The explanation for this observation can415

be that a low number of clones are enough to identify those with the best TGVTt416

if the more precise GS is applied. This finding illustrates that either an increased417

prediction accuracy or iEGVTt
or both simultaneously can enhance ∆G.418

We observed for most considered simulation scenarios no significant difference419

of ∆G between the Optimal-GS strategies and Standard-GS strategies (Figure 3420

and 5). However, to make this comparison was not the purpose of our simulations.421

The simulations with varying selection intensities required to fix the final number422

of clones (N6). We have decided to fix N6 to that of the Standard-PS in order to423

allow a fair comparison of ∆G. In contrast, the purpose of the simulations of the424

standard strategies (PS but also GS) was based on keeping the selection intensities425

fixed between PS and GS strategies. The latter, however, results in considerably426

lower numbers of clones at the D clone stage (N6) which increases ∆G (cf. Longin427

et al., 2006).428

The ranking of the optimized selection strategies with respect to ∆G was with429

the exception of GS-SH and GS-A identical to the one observed for the Standard-430

GS strategies (Figure 5). One explanation for the rank change of GS-SH and GS-A431
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might be the stronger selection applied at A clone stage in GS-A compared to GS-SH432

(Table 2, S2 and S3). This indicates that a higher selection intensity in a later stage433

can improve ∆G more than an earlier selection on EGVTt .434

Impact of novel technical developments in the field of genomics or435

phenomics on the selection strategy436

Another possibility to increase the selection intensity for improvement of short-term437

genetic gain is to generate more selection candidates while keeping the number of438

selected individuals constant (Cobb et al., 2019). Under a fixed budget, a reduction439

of either genotyping or phenotyping costs could increase the population size. With440

the development of high-throughput phenotyping and genotyping techniques, both441

their costs could gradually decrease (Araus and Cairns, 2014; Ragoussis, 2009). Con-442

sequently, we considered three different levels of phenotyping and genotyping costs443

and investigated how they affect the genetic gain in the context of optimal allocation444

of resources with the strategy GS-SH:A. The reduction of cost increased the popu-445

lation size at the seedling stage as well as enhanced the selection intensities p2 and446

p3 (when implementing GS), and p4 and p5 (direct selection on Tt). The increasing447

∆G value observed in our study with a decrease in either genotyping or phenotyping448

cost (Table 3) confirmed this hypothesis. Furthermore, our findings are in line with449

a former study in wheat (Marulanda et al., 2016), who showed an increased ∆G and450

a higher number of test candidates as the cost for hybrid seed production or double451

haploids decreased. In summary, changes in correlation between the two selected452

traits, prediction accuracy, stage of implementation, and costs for genotyping and453

phenotyping have a crucial influence on the optimal allocation of resources to maxi-454

mize the short-term genetic gain, accentuating the necessity for clone and especially455
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potato breeders to regularly and carefully re-adjust their selection strategy.456

Impact of GS on genetic variance457

Not only the genetic gain is important for the evaluation of the GS strategy, but also458

the genetic variance reduction of Tt. As expected, all the selection strategies showed459

a decrease in the genetic variance after selection (Figure S9). This tendency increased460

when GS was implemented. This is in accordance with former studies (Gaynor et al.,461

2017; Muleta et al., 2019) who showed a greater loss of genetic variance over time462

using GS compared to PS. In our study, the genetic variance decreased particularly at463

the stage of implementation (k), but not to the same extent for all strategies (Figure464

3 and S9). This trend can be explained by the Bulmer effect (Bulmer, 1971), which465

reduces the proportion of genetic variance due to linkage disequilibrium between466

trait coding polymorphisms (Van Grevenhof et al., 2012). This is in accordance467

with results of Jannink (2010), who showed that GS can accelerate the fixation of468

favorable alleles for Tt compared to PS resulting in a loss of genetic variance for469

the trait. The reduction of genetic variance, however, limits the ∆G for long-term470

improvement. Therefore, maintaining diversity of the population in the breeding471

materials is one possibility to slow down this drawback to improve long-term genetic472

gain in breeding programs (Gorjanc et al., 2018). However, for commercial breeding473

programs a balance between short and long-term gain of selection is required, which474

needs further research.475

Conclusions476

The present study demonstrated that implementing GS in a typical clone breeding477

program improves the gain of selection even without exploiting the possibilities to478
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reduce the length of the breeding cycles. Furthermore, we showed that the integration479

of GS in consecutive selection stages can largely enhance the gain from selection480

compared to the use in only one stage. In detail, the strategy GS-SL:SH:A is highly481

recommended if the correlation between Ta and Tt is negative. Otherwise, GS-SH:A482

can be the most efficient strategy. Furthermore, we observed that the implementation483

of GS in potato breeding programs requires the adjustment of the selection intensities484

as well as the phenotyping intensities compared to those typically used in breeding485

programs exploiting exclusively PS. Finally, we outlined how to adjust the selection486

intensities in potato breeding programs after implementing GS.487

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2022. ; https://doi.org/10.1101/2022.11.25.517496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517496
http://creativecommons.org/licenses/by-nc-nd/4.0/


26

DECLARATIONS

Funding488

This study was funded by the Federal Ministry of Food and Agriculture/Fachagentur489

Nachwachsende Rohstoffe (grantID 22011818, PotatoTools). The funders had no490

influence on study design, the collection, analysis and interpretation of data, the491

writing of the manuscript, and the decision to submit the manuscript for publication.492

Competing interests493

The authors declare no conflict of interest.494

Author contributions495

BS and DVI designed and coordinated the project; PYW performed the analyses; JR,496

KM, and VP provided details about breeding schemes; PYW, BS, and DVI wrote497

the manuscript. All authors read and approved the final manuscript.498

Acknowledgements499

Computational infrastructure and support were provided by the Centre for Informa-500

tion and Media Technology (ZIM) at Heinrich Heine University Düsseldorf.501

Data availability502

The sequence variant information and the scripts are available from the authors upon503

reasonable request.504

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2022. ; https://doi.org/10.1101/2022.11.25.517496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517496
http://creativecommons.org/licenses/by-nc-nd/4.0/


27

REFERENCES

Stokstad E. The new potato. Science 363 (2019) 574–577. doi:10.1126/SCIENCE.505

363.6427.574/ASSET/834729B8-0645-4669-B58E-DF08B3CFBFB0/ASSETS/506

GRAPHIC/363 574 F4.JPEG.507

Ortiz R, Reslow F, Cuevas J, Crossa J. Genetic gains in potato breeding as508

measured by field testing of cultivars released during the last 200 years in the509

Nordic Region of Europe. The Journal of Agricultural Science (2022) 1–7. doi:510

10.1017/S002185962200034X.511

Lindhout P, Meijer D, Schotte T, Hutten RC, Visser RG, van Eck HJ. Towards F512

1 hybrid seed potato breeding. Potato Research 54 (2011) 301–312. doi:10.1007/513

S11540-011-9196-Z/FIGURES/4.514

Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C, Bethke PC, et al.515

Reinventing potato as a diploid inbred line–based Crop. Crop Science 56 (2016)516

1412–1422. doi:10.2135/CROPSCI2015.12.0740.517
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Longin CFH, Mi X, Würschum T. Genomic selection in wheat: optimum allo-581

cation of test resources and comparison of breeding strategies for line and hy-582

brid breeding. Theoretical and Applied Genetics 128 (2015) 1297–1306. doi:583

10.1007/S00122-015-2505-1.584

Marulanda JJ, Mi X, Melchinger AE, Xu JL, Würschum T, Longin CFH. Optimum585

breeding strategies using genomic selection for hybrid breeding in wheat, maize,586

rye, barley, rice and triticale. Theoretical and Applied Genetics 129 (2016) 1901–587

1913. doi:10.1007/s00122-016-2748-5.588

Gaynor RC, Gorjanc G, Hickey JM. AlphaSimR: an R package for breeding pro-589

gram simulations. G3: Genes—Genomes—Genetics 11 (2021). doi:10.1093/590

G3JOURNAL/JKAA017.591

Hayes B, Goddard ME. The distribution of the effects of genes affecting quantitative592

traits in livestock. Genetics Selection Evolution 33 (2001) 209–229.593

Melchinger AE, Longin CF, Utz HF, Reif JC. Hybrid maize breeding with doubled594

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2022. ; https://doi.org/10.1101/2022.11.25.517496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517496
http://creativecommons.org/licenses/by-nc-nd/4.0/


31

haploid lines: quantitative genetic and selection theory for optimum allocation of595

resources. Proceedings of the 41st annual Illinois corn breeders school (2005), 8–21.596

Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S, et al. In-597

tegrated genomic selection for rapid improvement of crops. Genomics 113 (2021)598

1070–1086. doi:10.1016/J.YGENO.2021.02.007.599

Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G, et al. Enhancing600

the rate of genetic gain in public-sector plant breeding programs: lessons from601

the breeder’s equation. Theoretical and Applied Genetics 132 (2019) 627–645.602

doi:10.1007/S00122-019-03317-0/FIGURES/5.603

Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding604

frontier. Trends in Plant Science 19 (2014) 52–61. doi:10.1016/J.TPLANTS.2013.605

09.008.606

Ragoussis J. Genotyping technologies for genetic research. Annual Re-607

view of Genomics and Human Genetics 10 (2009) 117–133. doi:10.1146/608

ANNUREV-GENOM-082908-150116.609

Gaynor RC, Gorjanc G, Bentley AR, Ober ES, Howell P, Jackson R, et al. A two-610

part strategy for using genomic selection to develop inbred lines. Crop Science 57611

(2017) 2372–2386. doi:10.2135/cropsci2016.09.0742.612

Muleta KT, Pressoir G, Morris GP. Optimizing genomic selection for a sorghum613

breeding program in Haiti: a simulation study. G3: Genes—Genomes—Genetics614

9 (2019) 391–401. doi:10.1534/g3.118.200932.615

Bulmer MG. The effect of selection on genetic variability. The American Naturalist616

105 (1971) 201–211.617

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2022. ; https://doi.org/10.1101/2022.11.25.517496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517496
http://creativecommons.org/licenses/by-nc-nd/4.0/


32

Van Grevenhof EM, Van Arendonk JA, Bijma P. Response to genomic selection: the618

Bulmer effect and the potential of genomic selection when the number of phenotypic619

records is limiting. Genetics Selection Evolution 44 (2012) 1–10. doi:10.1186/620

1297-9686-44-26/FIGURES/3.621

Jannink JL. Dynamics of long-term genomic selection. Genetics Selection Evolution622

42 (2010) 1–11. doi:10.1186/1297-9686-42-35/FIGURES/3.623

Gorjanc G, Gaynor RC, Hickey JM. Optimal cross selection for long-term genetic624

gain in two-part programs with rapid recurrent genomic selection. Theoretical and625

Applied Genetics 131 (2018) 1953–1966. doi:10.1007/s00122-018-3125-3.626

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2022. ; https://doi.org/10.1101/2022.11.25.517496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.25.517496
http://creativecommons.org/licenses/by-nc-nd/4.0/


33

Year 1 

Year 2 

Year 3 

Year 4 

Year 5 

Year 6 

Year 7 

Year 8 

Year 9-10

Year 11 

𝖭𝟣 = 𝟥𝟢𝟢, 𝟢𝟢𝟢

𝖭𝟤 = 𝟣𝟢𝟢, 𝟢𝟢𝟢

𝖭𝟥 = 𝟣𝟢, 𝟢𝟢𝟢

𝖭𝟦 = 𝟣, 𝟧𝟢𝟢

𝖭𝟧 = 𝟥𝟢𝟢

𝖭𝟨 = 𝟨𝟢

𝖭𝟩 = 𝟤𝟢

𝖭𝟪 = 𝟧

𝗉𝟣 = 𝟣/𝟥

𝗉𝟤 = 𝟢 . 𝟣

𝗉𝟥 = 𝟢 . 𝟣𝟧

𝗉𝟦 = 𝟢 . 𝟤

𝗉𝟧 = 𝟢 . 𝟤

Ta

Ta

Ta

Tt

Tt

Cross 

Seedling (SL)

Single hills (SH)

B clone (B)

A clone (A)

C clone (C)

D clone (D)

E clone

Official testing

Variety release

single location

multi-location

few

number 
of tubers 
per clone

many

Figure 1: The standard clone breeding program examined in this study that relies

exclusively on phenotypic selection. p1-p5 are the selected proportions from SL to

SH, SH to A, A to B, B to C, and C to D, respectively, where SL, SH, A, B, C, and

D represent the stages of seedling, single hills, A, B, C, and D clones. Ta represented

the integral of early measured traits and Tt the integral of the target traits. The

yellow marked stages are those that were examined in our study.
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Figure 2: Graphical illustration of the standard as well as the six selection strategies that include genomic selection that

were examined in our study. p1-p5 are the selected proportions from SL to SH, SH to A, A to B, B to C, and C to D,

respectively, where SL, SH, A, B, C, and D represent the stages of seedling, single hills, A, B, C, and D clones. αk the

proportion of clones selected by PS to be genotyped in stage k and Nk is the number of clones of the respective stage.
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Figure 3: Genetic gain (∆G, left) and genetic variance (σ2G, right) for the target trait on average across 1,000 simulation runs at

D clone stage for different weights of genomic selection (GS) relative to phenotypic selection (αk), different selection strategies,

different correlations between the traits (r=-0.15, 0.15, and 0.3), prediction accuracies (PA=0.3, 0.5, and 0.7), and for the ratio of

variance components VC1 (σ2G : σ2G×L : σ2ε = 1 : 1 : 0.5). The details regarding the selection strategies are shown in Figure 2.
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Figure 4: Genetic gain for the target trait (∆G) on average across 1,000 simulation runs at the D clone stage for six

different selection strategies with genomic selection (GS) for varying numbers of locations in the B and C clone stages (L4

and L5) and different weights of genomic selection (GS) relative to phenotypic selection (αk) when the correlation between

the two traits was set to 0.15 and prediction accuracy was set to 0.5.
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Figure 5: Genetic gain of the target trait (∆G) after optimally allocated resources for different

correlations between the traits (r=-0.15, 0.15, and 0.3) and different prediction accuracies

(PA=0.3, 0.5, and 0.7). The presented ∆G values are the average of the genetic gains from

the grid search sets that revealed no significant (P < 0.05) difference compared to the set with

maximum genetic gain.
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Table 1: Dimensioning of a standard potato breeding program that exclusively relies on phenotypic

selection.

Stage Number of clones Number of locations Phenotyping cost per clone and plot (e) Cost per stage (e)

Seedling 300,000 1 1.4 420,000

Single hills 100,000 1 1.4 140,000

A clone 10,000 1 1.4 14,000

B clone 1,500 2 25 75,000

C clone 300 3 25 22,500

D clone 60 4 25 6,000

Sum 677,500
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Table 2: Optimum allocation of resources to maximize genetic gain of the target trait (∆G) for the

different selection strategies and correlations between the two traits (r=-0.15, 0.15, and 0.3). The pre-

diction accuracy was 0.5 and the phenotyping cost of early measured trait 1.4 e and genotyping cost 25

e. p1 to p5 , αk, and N1 are the selected proportion per stage, the weight of genomic selection relative

to phenotypic selection, and the number of clones at the seedling stage, respectively. For description of

selection strategies see text.

Correlations Selection strategies ∆G 1 SD∆G
2 p1 p2 p3 p4 p5 αk N1

-0.15

PS 57.87 (g) 5.04 0.39 0.36 0.31 0.10 0.10 - 152,995.09

GS-SL 58.86 (f) 5.18 0.30 0.50 0.50 0.16 0.23 0.87 23,709.50

GS-SH 61.38 (e) 5.56 0.44 0.29 0.50 0.13 0.19 0.88 43,099.80

GS-A 63.43 (c) 5.88 0.46 0.48 0.21 0.10 0.20 0.90 67,708.00

GS-SL:SH 62.61 (d) 5.71 0.38 0.45 0.50 0.17 0.21 0.90 22,501.43

GS-SH:A 64.70 (b) 6.03 0.48 0.38 0.37 0.14 0.19 0.90 40,018.33

GS-SL:SH:A 66.05 (a) 6.22 0.43 0.47 0.47 0.16 0.20 0.90 21,914.47

0.15

PS 67.54 (b) 6.45 0.28 0.38 0.38 0.10 0.10 - 170,906.06

GS-SL 64.82 (d) 6.06 0.16 0.50 0.50 0.16 0.21 0.40 50,256.67

GS-SH 67.79 (b) 6.44 0.24 0.23 0.50 0.16 0.19 0.74 93,815.07

GS-A 70.18 (a) 6.75 0.32 0.45 0.19 0.13 0.18 0.82 108,386.59

GS-SL:SH 66.19 (c) 6.21 0.39 0.44 0.50 0.16 0.20 0.86 23,237.68

GS-SH:A 69.96 (a) 6.76 0.19 0.38 0.39 0.16 0.18 0.89 95,290.54

GS-SL:SH:A 67.76 (b) 6.50 0.41 0.46 0.46 0.16 0.21 0.86 23,206.52

0.3

PS 71.42 (b) 7.05 0.23 0.39 0.42 0.10 0.10 - 178,386.46

GS-SL 68.24 (d) 6.54 0.13 0.49 0.49 0.17 0.20 0.28 65,661.65

GS-SH 71.31 (b) 6.94 0.17 0.18 0.49 0.18 0.21 0.66 135,331.14

GS-A 73.43 (a) 7.18 0.22 0.41 0.16 0.17 0.19 0.77 159,402.35

GS-SL:SH 67.79 (d) 6.46 0.33 0.39 0.49 0.18 0.21 0.68 30,172.78

GS-SH:A 73.12 (a) 7.15 0.13 0.37 0.37 0.17 0.19 0.86 123,779.24

GS-SL:SH:A 68.93 (c) 6.62 0.40 0.44 0.44 0.16 0.20 0.75 26,376.25

1 The letters in parentheses after ∆G represent the significance groups (P < 0.05) across these selection

strategies within a specific correlation.

2 SD∆G is the standard deviation of ∆G across 1,000 simulation runs.
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Table 3: Optimum allocation of resources to maximize genetic gain of the target trait (∆G)

across different cost scenarios when genomic selection was applied in single hills and A clone

stages (GS-SH:A). The correlation between the two traits was 0.15 and the prediction accuracy

0.5. p1 to p5 , αk, and N1 are the selected proportion per stage, the weight of genomic selection

relative to phenotypic selection, and the number of clones at the seedling stage, respectively.

CostTa

1 Cost 1
geno ∆G 2 SD∆G

3 p1 p2 p3 p4 p5 αk N1

0.70 15 72.33 (a) 7.08 0.17 0.34 0.34 0.14 0.16 0.87 171,397.94

0.70 25 70.76 (c) 6.87 0.15 0.37 0.37 0.15 0.18 0.87 133,082.10

0.70 40 69.11 (e) 6.66 0.12 0.41 0.40 0.16 0.20 0.89 106,152.00

1.05 15 71.85 (ab) 7.00 0.20 0.35 0.36 0.14 0.17 0.88 135,898.99

1.05 25 70.39 (cd) 6.83 0.16 0.38 0.38 0.16 0.17 0.88 113,093.84

1.05 40 68.61 (ef) 6.57 0.15 0.40 0.41 0.18 0.19 0.87 87,752.05

1.40 15 71.39 (b) 6.95 0.23 0.35 0.37 0.14 0.17 0.88 110,223.57

1.40 25 69.96 (d) 6.76 0.19 0.38 0.39 0.16 0.18 0.89 95,290.54

1.40 40 68.41 (f) 6.52 0.17 0.41 0.41 0.16 0.21 0.90 76,796.40

1 CostTa
is the phenotyping cost of early measured trait, and Costgeno the genotyping cost per clone.

2 The letters in parentheses after ∆G represent the significance groups (P < 0.05) across these cost

scenarios.

3 SD∆G is the standard deviation of ∆G across 1,000 simulation runs.
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