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ABSTRACT

Genomic selection (GS) is used in many animal and plant breeding programs to
enhance genetic gain for complex traits. However, its optimal integration in clone
breeding programs that up to now relied on phenotypic selection (PS) requires further
research. The objectives of this study were to (i) investigate under a fixed budget
how the weight of GS relative to PS | the stage of implementing GS, the correlation
between an auxiliary trait assessed in early generations and the target trait, the vari-
ance components, and the prediction accuracy affect the genetic gain of the target
trait of GS compared to PS, (ii) determine the optimal allocation of resources maxi-
mizing the genetic gain of the target trait in each selection strategy and for varying
cost scenarios, and (iii) make recommendations to breeders how to implement GS in
clone and especially potato breeding programs. In our simulation results, any selec-
tion strategy involving GS had a higher short-term genetic gain for the target trait
than Standard-PS. In addition, we show that implementing GS in consecutive selec-
tion stages can largely enhance short-term genetic gain and recommend the breeders
to implement GS at single hills and A clone stages. Furthermore, we observed for
selection strategies involving GS that the optimal allocation of resources maximizing
the genetic gain of the target trait differed considerably from those typically used in
potato breeding programs. Therefore, our study provides new insight for breeders
regarding how to optimally implement GS in a commercial potato breeding program

to improve the short-term genetic gain for their target trait.
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INTRODUCTION

1 Potato (Solanum tuberosum L.) is with respect to the production volume one of the
> most important food crops in the world after sugarcane, maize, wheat, and rice (FAO-
s STAT (2020), http://www.fao.org/faostat/en/). However, in contrast to other
4 crops, only a low genetic gain was observed for yield in the past decades (Stokstad,
s 2019; Ortiz et al., 2022). The selection gain is, compared to the one in homozygous
¢ diploid species, limited by the high heterozygosity and tetraploidy of potato. (Lind-
7 hout et al., 2011; Jansky et al., 2016). In addition, potato has a low multiplication
s coefficient (Griineberg et al., 2009), which leads to the availability of only one or
o few tubers per genotype for phenotypic evaluation at early stages in the breeding
10 program (Gopal, 2006). This delays the evaluation of traits related to productivity
1 (such as tuber yield) or quality, as they rely on multi-location field trials and/or
12 destructive assessment, and these can only be performed after one to several multi-
13 plication steps. As a consequence, only traits which can be assessed based on a low
12 number of plants can be considered in the early stages of potato breeding programs.
15 In contrast, target traits whose evaluation requires many plants and/or environments
16 can only be selected for in later stages of the breeding program. However, the corre-
17 lation between the early measured and target traits is variable and can be very low.
18 Furthermore, the evaluation of target traits in potato is more expensive compared to
19 their evaluation in non-clonal crops as a considerably lower level of mechanization is
20 currently possible. Therefore, clone and especially potato breeding programs would
a1 highly benefit from the possibility to select for target traits at early stages of the
22 breeding program e.g. with the implementation of genomic selection (GS).

23 GS proved to enhance genetic gain for complex traits in both animal and plant
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2 breeding programs (Meuwissen et al., 2001; Desta and Ortiz, 2014). This is because
25 GS allows to predict the performance of target traits without phenotypic evaluation
2% in early stages. The selection on target traits at early stages using estimated genetic
27 values (EGV) avoids discarding those individuals with desirable alleles for the trait,
23 which will increase the genetic gain per year. In addition, the performance prediction
20 of target traits without phenotypic evaluation in early stages has the potential to re-
30 duce the length of the breeding cycle. One parameter that influences the potential
s1 of GS is the prediction accuracy.

32 Several empirical studies have explored the potential of implementing GS in
33 potato breeding for different traits by determining the prediction accuracy (Slater
s et al., 2016; Sverrisdéttir et al., 2017; Enciso-Rodriguez et al., 2018; Endelman et al.,
35 2018; Stich and Van Inghelandt, 2018; Sverrisdottir et al., 2018; Caruana et al., 2019;
s Byrne et al., 2020; Gemenet et al., 2020; Sood et al., 2020; Wilson et al., 2021). Differ-
37 ent degrees of prediction accuracies from low to high depending on the studied traits
33 have been reported, which could be caused by the different genetic architectures, pre-
30 diction models, but also the considered genetic material. However, only few studies
20 evaluated the effect of GS on the genetic gain for the studied traits. One of them was
a1 Slater et al. (2016), who estimated that the genetic gain after implementing GS for
2 complex traits was higher than that of PS. The results of Stich and Van Inghelandt
13 (2018) suggested that for some traits GS leads to a higher gain of selection than PS
42 even without reducing the cycle length. However, no earlier study considered directly
45 the aspect that PS and GS need to be compared at a fixed budget. Furthermore,
46 when implementing GS in a clone breeding program, the selected proportion of PS
47 on the early trait will be partially shifted to GS on the target trait. This shift can be

48 realized to different degrees and the resulting selected proportion for PS or GS might
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20 influence the efficiency of the selection strategy. Therefore, for the implementation
so of GS in clone breeding programs not only the prediction accuracy of the GS model
si but also its relative weight to PS has to be examined. Furthermore, these aspects
52 are influenced by the correlation between the early and the target trait and also the
s variance components of the considered trait have an influence on the genetic gain.
s«  However, the influences of these parameters and their interaction on the genetic gain
55 in clone breeding programs have not been investigated until now.

56 Werner et al. (2020) investigated different strategies to implement GS in clone
57 breeding programs exemplarily with genome parameters of strawberry. They evalu-
ss  ated the performance of a breeding program that introduced GS in the first clonal
so stage and mainly focused on how to select parents for the next crosses and drive
60 population improvement to enhance long-term genetic gain. However, in a classical
61 clone breeding program, there are several stages where GS could be implemented and
62 their effect on the gain of selection have not been studied so far.

63 Another aspect that needs to be decided during the implementation of GS in
64 clone or potato breeding programs is the number of stages in which GS is applied.
65 Once the clones are genotyped for the first GS application, the possibility of re-using
66 the same EGV to perform GS in two or more stages is given. A similar idea was
&7 proposed by Spindel et al. (2015) for a rice breeding program but has neither been
6s assessed by theoretical considerations nor by computer simulations nor any empirical
60 experiments. To the best of our knowledge, no earlier study has investigated at which
70 stage and in how many selection stages GS should be implemented in clonal crops to
71 maximize the short-term genetic gain under a given budget.

7 Optimum allocation of resources under a given budget is essential to improve

73 the efficiency of breeding programs (Longin et al., 2006). However, most studies on
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74 the implementation of GS in breeding programs neglected this effect. Longin et al.
75 (2015) and Marulanda et al. (2016) assessed this point for cereal breeding programs.
76 However, to the best of our knowledge, no earlier study is available about the effect
77 of the implementation of GS on the optimum allocation of resources in clone breeding
78 programs.

79 The objectives of this study were to (i) investigate under a fixed budget how
g0 the weight of GS relative to PS, the stage of implementation of GS, the correla-
s1  tion between traits (auxiliary trait assessed in early generations and target trait),
82 the variance components, and the prediction accuracy affect the short-term genetic
g3 gain of the target trait in potato breeding programs compared to PS, (ii) determine
s« the optimal allocation of resources maximizing the short-term genetic gain of the
s target trait in each selection strategy and for varying cost scenarios, and (iii) make

s recommendations to breeders how to implement GS in clone breeding programs.
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MATERIALS AND METHODS
87 Empirical basis of the computer simulations

ss  Our simulations were based on an empirical genomic dataset of tetraploid potato.
g0 This empirical genomic dataset comprised 19,649,193 sequence variants revealed in
o a diversity panel of 100 tetraploid potato clones (Baig et al. in preparation). The
o1 unphased sequence variants included single nucleotide polymorphism (SNP) and in-
o2 sertion/deletion (InDel) polymorphisms. Sequence variants with a minor allele fre-
o3 quency < 0.05 and missing rate > 0.1 were removed. The 100 clones were used as
o¢ parents of the simulated progenies and will be called parental clones hereafter.

05 The progenies were simulated using AlphaSimR (Gaynor et al., 2021). For this,
96 the genetic map information of all genomic variants was estimated using a Marey map
o7 (for details see Method S1 and Figure S1). Subsequently, the genomic information

o8 for each variant served as input for the simulations.

99 Simulation of initial population

wo To stick to the size of commercial breeding programs (Breeders personal communi-
w1 cation, Table 1) an initial population of 300,000 clones was simulated like described
102 here under. From all possible crosses in the half-diallel among the 100 parental
103 clones, 300 were randomly selected. For each of these 300 crosses, 1,000 F1 progenies
104 were simulated using AlphaSimR. The two steps of this procedure (the random se-
105 lection of 300 crosses and the simulation of their progenies) was repeated 1,000 times

106 independently.
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107 Simulation of true genetic and phenotypic values
s Target trait (T)

100 In our study, a genetically complex target trait representing the weighted sum of all
1o market relevant quantitative traits was considered and will be named T hereafter.
1 A random set of 2,000 sequence variants were considered as quantitative trait loci
12 (QTL) for T¢. The true additive effects of the 2,000 QTL were drawn from a gamma
us distribution (cf. Hayes and Goddard, 2001) with £ = 2 and 6 = 0.2, where k and 0
us are shape and scale parameter, respectively. To control the degree of dominance § be-
us  tween 0 and 1 for each QTL, the ratios of dominance to additive effect were produced
16 from a beta distribution with the two shape parameters a = 2 and b = 2. The true
117 dominance effect at each QTL was then calculated by multiplying the true additive
us effect by the QTL specific § (Figure S2). For each QTL, all possible genotype classes
1o were AAAA, AAAB, AABB, and BBBB, which were respectively coded from 0, 1,
10 2, 3, and 4 for additive effect; and 0, 1, 1, 1, and 0 for dominance effect. Finally, the
121 true genetic value for Ty (TGVr,) was calculated for each clone by summing up the
122 true additive and dominance effects at the 2,000 QTL.

123 In order to simulate phenotypic values, two ratios of variance components (VC)
12s were assumed for Ty: 02 : 0%, 102 =1:1:05 (VCl) and 1:0.5: 0.5 (VC2),
125 where O'é denoted the genotypic variance, U%X ;, the variance of interaction between
16  genotype and location, and 0'52 the error variance. The genotypic variance was esti-
17 mated by the sample variance of TGV, in the initial population. The phenotypic
s value for the target trait was then calculated as Pp, = TGV, + e, , where e1, was

120 the non-genetic value following a normal distribution N (0, U?Tt), with
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130 representing the non-genetic variance, in which L; was the number of locations at
13 stage j, and R; the number of repetitions at stage j. We set the number of replications

12 to one (R; = 1) in each location (cf. Melchinger et al., 2005).

133 Phenotypic trait assessed in early generations of the breeding program

s (Ty)

135 The weighted sum of the auxiliary traits measured in the first three generations of
136 the breeding program will be referred to as T, hereafter. To control the genetic
137 correlations between T, and Ty (r), the true genetic values for T, were generated by
s TGVy, = TGVT, + €, where ¢, was the residual value following a normal distribution

130 N(O,U?r), with

1 1-12 ¢ —
o2 = =Y (TGVy, ) — TGVr,)? [2]

o pn—2 12
i=1

1o determined by the degree of r, where n was the number of clones for the initial
11 population, TGV, ) the TGV for Ty of the it" clone, and TGV, the average of
12 TGV, in the initial population. Then, the phenotypic value for T, was calculated

13 as Pp, = TGV, + er,, where e7, was a non-genetic value following a normal distri-

2
17HTa 0_2
H%a G,

s bution N (0, ), in which H%a was the broad-sense heritability for T, and

145 O'%;T the genetic variance of T, and estimated by the sample variance of TGV, in

us the initial population. In this study, H%a was set as 0.6.
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147 Simulation of estimated genetic values

us In this study, we assumed that a GS model for T; with a prediction accuracy of PA
1o was available. The estimated genetic values of Ty obtained from the GS model were
1o estimated by EGVy, = TGV, + epa, where epp was the residual value following a

151 normal distribution N (0,02, ), with

1 1-PA2 —
Odop = W2 PAZ > (TGVr, 3 — TGVr,) (3]
1=1

152 determined by the level of PA, where n’ was the number of genotyped clones (= Ngg),
155 TGV, () the TGV of the target trait at the it" genotyped clone, and TGV, the

15« average of TGV, on all Ngg genotyped clones.

155 Selection strategies
156 Standard breeding program

157 A standard potato breeding program relying exclusively on PS (Standard-PS) was
155 considered as benchmark (Figure 1). To simplify the comparison between PS and
150 GS strategies, we considered in this study six testing stages in the potato breeding
10 program. The six testing stages were seedling, single hills, and A, B, C, and D clone
161 stages, abbreviated in the following as SL, SH, A, B, C, and D, respectively. The
12 number of tested clones (N) and locations (L) for each testing stage are shown in
163 Table 1. The selected proportions from SL to SH (p;1), SH to A (p2), A to B (p3),
164 B to C (p4), and C to D (ps) were set to %, 0.1, 0.15, 0.2, and 0.2, respectively,
165 as estimates from typical commercial potato breeding programs (Breeders personal

166 communication). The selection in the early stages (SL, SH, and A) was based on the
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17 phenotypic value of the auxiliary trait Pr,, and for the late stages (B, C, and D) on

165 the phenotypic value of the target trait P, (Figure 1).

160 Breeding programs involving genomic selection

170 Three GS strategies were evaluated in which GS was implemented at the (1) seedling,
i1 (2) single hills, and (3) A clone stage, abbreviated as GS-SL, GS-SH, and GS-A,
172 respectively. All selection steps of the GS strategies were similar to those of the
1713 standard breeding program except the following modifications (Figure 2). Here, the
172 strategy GS-SL will be taken as an example for the description. In the seedling
15 stage, Ny clones were evaluated for Pr,. From these N; clones, the Ngg ones with a
176 higher P, were genotyped. oy was defined as ratio of Ngg to Ny, i.e. the proportion
177 of clones selected by PS to be genotyped. Then, Ny clones were selected based on
17s the EGVr, in the Ngg genotyped clones for the single hills stage. Afterwards, the
179 selection process in the following stages were the same as Standard-PS. For the other
180 two GS strategies, GS-SH and GS-A, the selection was performed accordingly. For

181 each stage k in which GS was applied, the corresponding «j was larger than py,

122 where py (= NIZi 1) was the selected proportion between the two stages to which GS
183 was applied. k was set to 1, 2, and 3 for the strategies (1) GS-SL, (2) GS-SH, and
184 (3) GS-A, respectively (Figure 2).

185 To evaluate whether adopting the same GS model for selection on Ty in several
186 stages improves the short-term genetic gain compared to using GS only once, we
17 evaluated three additional strategies (Figure 2):

188 (4) GS-SL:SH — GS was applied not only at seedling stage but also at single hills

189 stage;

o (5) GS-SH:A — GS was applied not only at single hills stage but also at A clone stage;
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101 and

12 (6) GS-SL:SH:A — GS was applied at seedling, single hills and A clone stages.

103 For these three GS strategies, genotyping of Ngg clones only took place when GS was
14 used for the first time. When GS was used a second or third time, the same EGVr,

105 for the tested clones from the initial GS model were used for the selection.

196 Economic settings and additional quantitative genetic parameters

197 In this study, the costs for phenotypic evaluation of T, and T} in one environment
18 were assumed to be 1.4 and 25 €, respectively. The costs for genotypic evaluation
199 per clone were assumed as 25 € (Table 1). To compare the short-term genetic
200 gain of Ty (AG) between Standard-PS and several GS strategies, the budget across
201 different selection strategies was fixed to 677,500 €. Therefore, the number of tested
22 clones in seedling stage (N7) must be adjusted/reduced when introducing GS into
203 a breeding program to compensate for the additional genotyping cost. In the first
204 part of the simulations, the selected proportions were fixed to those of Standard-PS.
205 This was realized in our study by randomly sampling the reduced Ny from the initial
206 population with an equal sample size for each cross population.

207 We were interested in how different values of r, PA, VC, and L influence AG.
28  Therefore, three different levels of r (-0.15, 0.15 and 0.3), PA (0.3, 0.5 and 0.7), and
200 two different ratios of VC for T (see above) were examined in our simulations. The
210 selection of clones based on T that was assessed in field experiments in more than one
a1 location happened at B and C clone stages. Thus, we varied the number of locations
212 from 2 to 4 and 3 to 6 in increments of 1 for B and C clone stages, respectively, and
213 designated them as Ly and Ls. Furthermore, to investigate how different levels of oy

ae  affect AG, we varied ay from 0.4 to 0.9 in increments of 0.1 for the strategies GS-SL,
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a5 GS-SL:SH, and GS-SL:SH:A, and from 0.2 to 0.9 in increments of 0.1 for the other
a6 strategies. AG was calculated as the difference in mean genetic values of Ty between

217 the D clone and the seedling stage (cf. Longin et al., 2015; Marulanda et al., 2016).

218 Optimum allocation of resources

210 In the below described simulations, we relaxed the restrictions of the above described
20 simulations that the selected proportions were fixed to those of Standard-PS. To
21 determine the optimum allocation of resources maximizing AG under a given budget,
222 a general linear cost function to aggregate all costs across all stages in the breeding

23 program was created:

6
Budget = Z Nj X costpheno(j) X Lij + Nag X costgeno
j=1

[4]

Ngcostgenotm
5
Hk:mpk:

5
= Z I&CCOStphenO(j)Lj + Ngcostpheno(6) L6 +
j=1""k=J

24 where N; was the number of clones at stage j, costppeno(;) the cost for phenotypic
25 evaluation at stage j, Ngg the number of genotyped clones, and costgeno the geno-
26 typing cost (for details see Method S2). In addition, py was the selected proportion
27 from stage j(m) to stage j(m) + 1, where m was the stage in which GS was applied
28 first. For more details, m = 1 referred to GS-SL, GS-SL:SH and GS-SL:SH:A; m = 2
29 for GS-SH and GS-SH:A; and m = 3 for GS-A. The GS strategies with optimum
230 allocation of resources will be named Optimal-GS hereafter.
231 The optimum allocation was determined by a grid search across the permissible
232 space of py to ps and ay for a set of given input parameters. The latter included

233 the number of tested clones at D clone stage (Ng), the GS strategy, the phenotyping

234 and genotyping costs, L, r, VC of T, H%a, and the total budget. We set Ng to 60.
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235 In the grid search, any py varied between 0.1 and 0.5 in increments of 0.05 to avoid
236 too strong/weak selections. «j was chosen as described above. Consequently, in
237 each permissible allocation, p; was completely determined by equation [4] under the
238 constrained budget and the given input parameters. Subsequently, the mean genetic
230 gain across 1,000 simulation runs was calculated for each permissible allocation of
20 the grid search. To obtain reliable estimates of the optimal allocation of resources,
21 we performed a least significant difference (LSD) test on AG across all permissible
22 allocations of the grid search within a specific scenario. We selected the significant
23 group showing the maximum AG among all permissible sets and then considered the
2aa  average of the allocations as optimal result.

245 The above described simulations required for some grid search sets (those with
26 low pp to pg but high py and ps) with more than 300,000 clones in the seedling stage.
27 Thus, the size of the initial population was increased to 900,000 clones.

248 To investigate whether an increase of phenotyping cost of T, and the genotyping
200 cost have an influence on the optimal allocation of resources, we considered three dif-
250 ferent phenotyping costs for T, (0.7, 1.05, and 1.4 €), and three different genotyping

251 costs (15, 25, and 40 €).
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RESULTS

22 The mean genetic gain (AG) and genetic variance (07) of the target trait at D clone
53 were assessed considering different values of r, PA, oz, as well as different selection
x4 strategies. To easily compare among the examined strategies, the budget, the se-
255 lection proportion between stages pi-ps and the number of test locations were fixed
56 according to those of the Standard-PS strategy.

257 Increasing r and PA either individually or simultaneously led to a higher AG
s (Figure 3 and S4). Regardless of PA and r, any selection strategy incorporating
250 GS was superior to the Standard-PS strategy with respect to AG (Figure 3). Low
%60 or negative values for r and high PA increased this tendency even more. The least
61 improvement of AG relative to Standard-PS was observed across all scenarios for
262 the strategy GS-SL. The strategies GS-A and GS-SH resulted in considerably higher
263 values for AG relative to PS and under the scenarios with low r but high PA, the
4 latter strategy was significantly superior to the former.

265 Implementing GS in successive stages (i.e. GS-SL:SH, GS-SH:A, and GS-SL:SH:A)
266 had an advantage over the strategies using GS one time, except for the scenario with
267 the lowest PA (=0.3) but the highest r (=0.3). The ranking of performance among
s these strategies was GS-SL:SH:A > GS-SH:A > GS-SL:SH. The difference among
29 these strategies was lower, if r increased or PA decreased.

270 For all GS strategies, higher ay, values led to reductions in the number of clones
on available in the seedling stage (Figure S3), but increased AG (Figure 3). For all
212 except eight scenarios, the highest AG was observed if oy, was at its maximum (0.9).
273 The remaining scenarios in which the maximum AG were observed for a;=0.7 or

o7a 0.8 instead of 0.9, however, showed AG values that were not significantly different
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275 from the AG values observed for a;=0.9 (data not shown). Only for GS-SL:SH:A an
76 exception was observed from this trend, namely that the maximal AG was observed
a7 for ap=0.5 for the scenario with r=0.3 and PA=0.3. In accordance to the above
o7s  described observations regarding the differences among selection strategies, also the
270 differences among AG for the different levels of ay, were low for the scenarios with
280 high r and/or low PA.

281 In all the above described simulations of the selection strategies that exploit GS
232 in several stages, ay was the same for each stage in which GS was applied. However,
253 for these strategies, we also evaluated whether varying oy had an influence on AG.
o8¢ For the strategies GS-SL:SH and GS-SH:A, we observed that an increase of both ay,
265 values (i.e. ag and ag or ag and ag) a higher AG was observed (Figure S5). The
286 combination of two «ay values that resulted in the highest AG was 0.84 and 0.79 or
257 0.86 and 0.86 for the respective strategies. A similar trend was observed for GS-
268 SL:SH:A (Figure S6). However, for the scenarios with high r (=0.3), intermediate
280 values of oy were sufficient to result with high values of as and ag in the maximal
200 values of AG of 0.4-0.5 (Table S1).

201 The effect of variation of selection strategies, ay, r, and PA on the genetic vari-
202 ance were opposite to their effect on genetic gain (Figure 3). The scenarios with a
203 higher genetic gain showed a lower genetic variance.

204 We also investigated the effects of different ratios of variance components (VC1
205 and VC2) and number of locations for phenotypic evaluation (Ly and Ls) on AG.
206 The ranking of the selection strategies with respect to AG was not affected by the
207 studied ratios of VC (Figure 3 and S7). When o2, ; was halved (i.e. VO2 vs. VC1),
28 AG increased from 3% to 8% depending on the selection strategies, PA, r, and ay,

200 (Figure S8). Although increasing L caused a decrease in the number of clones that
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s0 are available at the seedling stage to compensate for additional phenotyping costs,
s AG significantly increased with increasing number of locations that were used for
sz the evaluation of B and C clones (Figure 4). This trend was independent of selection
303 strategies, PA, r, and ag. In all scenarios, the highest AG was observed with the
s0¢ highest number of locations in the B and C clone stages, i.e., Ly =4 and Ls = 6. In
305 these cases, AG was increased by 8% compared to Standard-PS with (L4, Ls) = (2, 3).
306 The optimal allocation of resources was assessed via a grid search across p1 - ps
s and ag, k € [1,3] in a scenario with VC1, budget, L, and Ng like in the Standard-PS
s08  scenario. The optimum allocation of resources led also for the PS to an increase of
300 AG (Optimal-PS) compared with the Standard-PS (Figure 5). On average across all
si0 evaluated scenarios, the strategy GS-SL had the worst performance out of the strate-
s gies incorporating GS. In a scenario with r < 0 and PA > 0.5, any selection strategy
312 with GS revealed a higher AG than the Optimal-PS. The strategy GS-SL:SH:A only
si3  outperformed the other selection strategies if r=-0.15. In contrast, the strategy GS-
sia. SH:A or GS-A resulted in the highest AG if r was > -0.15. On average across all the
a5 examined scenarios, the strategy GS-SH:A resulted in the highest and most stable
s AG values.

317 With the exception of one specific scenario, a high oy was required for each selec-
318 tion strategy to reach the maximal AG value (Table 2, S2 and S3). This exception
s was the strategy GS-SL in case of a positive r for which ay ranging from 0.21 to
320 0.61 resulted in the maximal AG values. Furthermore, to achieve maximum AG
;21 values, the selected proportions for the last two stages (i.e. ps and ps) were low
322 (0.17) on average across all scenarios. The level of the optimal p; was influenced by
323 the level of r as well as by the stage in which GS was implemented. In general, high

324 optimal p; values were observed with a negative correlation in comparison with the
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325 scenarios with a positive correlation. Furthermore, we observed for all strategies with
326 implementation of GS that the selection proportion for that stage in which GS was
327 applied was lower than the one observed at the same stage in the other strategies.
s This trend was more pronounced for scenarios with high PA. For instance, pa (p3)
29 for the strategy GS-SH (GS-A) was on average across all scenarios about 0.25 (0.21)
330 lower than the one for the strategies excluding GS-SH (GS-A) with 0.42 (0.45).

331 The effects of different phenotyping and genotyping costs on the maximum AG
32 were assessed exemplarily for strategy GS-SH:A and for intermediate levels of PA
33 (=0.5) and r (=0.15) (Table 3). AG increased by 1%, if the costs of phenotyping T,
s reduced from 1.4 to 0.7 €. An increase of AG of 4 % was observed if the genotyping

335 costs were reduced from 40 to 15 €.
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DISCUSSION

335 (GS has been implemented in many commercial crop breeding programs nowadays
ss7 (Krishnappa et al., 2021). However, implementation of GS in clonally propagated
338 species is lagging behind, despite the expected advantages. This might be on one
339 side because genomic resources are less developed in clonally propagated species
30 compared to species bred as hybrids or inbred lines. Furthermore, a lower number of
sa1 breeding methodological studies is dedicated to clonally propagated crops compared
32 to inbred or hybrid species. Therefore, we evaluated the prospects to integrate GS
33 into commercial potato breeding programs and assessed which parameters are crucial

344 for its implementation.

345 Comparison of selection strategies

6 We have studied the implementation of GS in a standard clone breeding program
37 with minimal changes of the breeding program. This procedure was chosen as we
s expect that this will be the way how commercial clone breeding programs will deal
a9 with this possibility or challenge. However, we are aware that GS might result in
350 even higher gains of selection if applied in a less conservative setting where the pos-
351 sibilities of reducing the length of breeding cycles are exploited. These aspects will
352 be considered in a companion study.

353 In this study, all evaluated selection strategies that make use of GS resulted in
3¢ higher AG compared to the Standard-PS strategy if other parameters such as budget,
35 variance components and selected proportions were held constant (Figure 3). This is
356 in accordance with the theory about indirect selection response. This theory suggests

357 that GS strategies should be superior to the Standard-PS if PA > r -Hr_, keeping the
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s  intensity of selection for GS (iggvy,) and PS (it,) equal. Furthermore, the theory
350 suggests that this trend should be even more pronounced, if it, < IBGVr, - This is
360 what we have observed in our simulations, namely that the difference between AG
61 of GS and PS was increased, if oy increases.

362 Among the examined strategies using GS in only one stage, the ranking with
363 respect to maximum AG was GS-SH > GS-A > GS-SL, independently of PA, r, and
sea a (Figure 3). The observation that GS-SH resulted in a higher AG than GS-A can
365 be explained by superiority of early selection on Ty because thereby one can avoid
366 discarding clones with top performance for T in the early stages. Our observation
67 of an increased advantage of GS-SH over GS-A if r decreased confirmed this expla-
368 nation.

369 Following this argumentation, one could have expected GS-SL to be the strategy
30 with the highest AG, especially if r is negative. This is because a direct selection of
snn seedlings for EGVr, should be more efficient than selecting them based on P, that
sz negatively correlated with TGVy,. Therefore, the observation of GS-SL as the most
si3  disadvantageous GS method (Figure 3) was surprising at a first glance. However,
374 in this strategy after one step of GS all further selection steps are exclusively made
a5 based on P, and this hampers the selection of those individuals with beneficial al-
sre  leles for T¢. Thus, the individuals with the highest TGVr, that were selected by
377 GS in the seedling stage are probably discarded in the following selection steps from
srs single hills to B clone stages. Another explanation for the observation of GS-SL as
379 the most disadvantageous GS method is that the selection of the seedling stage based
0 on GS leads to a dramatic reduction of population size in the seedling stage to keep
st the budget constant despite the burden of high genotyping costs (Figure S3). Our

32 observations suggest that alternative prediction and selection methods to GS need
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;83 to be developed for the first stage of clone breeding programs that result in a much
s34 lower cost per clone in order to exploit the potential of predictive breeding.

385 Among all examined selection strategies, those that applied GS several times are
sss  for all combinations of o, VC, and L superior to the ones using GS in only one stage
ss7  of the breeding program (Figure 3), even without recalibrating the GS model. This
se8  superiority is most probably due to the possibility to select several times on EGVr,
380 without having extra genotyping costs.

300 Among the strategies that used GS multiple times, the highest AG was observed
so1  for the strategies GS-SL:SH:A and GS-SH:A (Figure 3). The ranking of these two
302 strategies was influenced by the genetic situation. GS-SL:SH:A outperformed GS-
303 SH:A under low r and high PA. Therefore, we advice using GS-SL:SH:A in a very
s« favorable GS environment (high PA and low r), and GS-SH:A in a favorable PS en-
305 vironment (low PA and high r).

396 In the scenario discussed in the previous paragraph, the selection intensities of
307 the individual stages were kept equal to those of the Standard-PS strategy. However,
308 theoretical considerations suggest that the implementation of GS requires an adap-
390 tation of the selection intensities as well as the phenotyping intensities. These are

200 discussed in the next paragraph.

401 Optimal allocation of resources

a2 We observed a significantly higher AG for the Optimal-PS compared to the Standard-
w03 PS strategy (Figure 5). Smaller values for py and ps (i.e., higher selection intensities)
s+ in Optimal-PS (0.10) were observed compared to those in Standard-PS (0.20) (Table
a5 2, S2 and S3). This can be explained by the fact that at the B and C clone stages, the

a6 selection is exclusively based on P, in a direct selection. Therefore, when increasing
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a7 the selection intensities in these stages, AG is increasing as well.

408 The correlation between T, and T} also influences the optimal selection intensity.
a0  We observed a higher pj, i.e. a lower selection intensity, when r=-0.15 compared to
a0 the scenario with positive values for r (Table 2, S2 and S3). This can be interpreted
a1 such that in cases of a negative r, i1, needs to be reduced to avoid discarding too
a2 many clones based on Pr, that have a high TGV, .

413 Furthermore, we observed for those stages of the breeding program at which GS
a4 was applied a lower selected proportion p; compared to the same stage in a selection
a5 strategy without GS (Table 2, S2 and S3). The explanation for this observation can
a6 be that a low number of clones are enough to identify those with the best TGV,
a7 if the more precise GS is applied. This finding illustrates that either an increased
as prediction accuracy or IEGVy, OF both simultaneously can enhance AG.

419 We observed for most considered simulation scenarios no significant difference
20 of AG between the Optimal-GS strategies and Standard-GS strategies (Figure 3
21 and 5). However, to make this comparison was not the purpose of our simulations.
a2 The simulations with varying selection intensities required to fix the final number
223 of clones (Ng). We have decided to fix Ng to that of the Standard-PS in order to
a4 allow a fair comparison of AG. In contrast, the purpose of the simulations of the
w25 standard strategies (PS but also GS) was based on keeping the selection intensities
26 fixed between PS and GS strategies. The latter, however, results in considerably
227 lower numbers of clones at the D clone stage (Ng) which increases AG (cf. Longin
w28 et al., 2006).

429 The ranking of the optimized selection strategies with respect to AG was with
a0 the exception of GS-SH and GS-A identical to the one observed for the Standard-

a1 GS strategies (Figure 5). One explanation for the rank change of GS-SH and GS-A


https://doi.org/10.1101/2022.11.25.517496
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.25.517496; this version posted November 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

23

422 might be the stronger selection applied at A clone stage in GS-A compared to GS-SH
a3 (Table 2, S2 and S3). This indicates that a higher selection intensity in a later stage

s+ can improve AG more than an earlier selection on EGVr,.

435 Impact of novel technical developments in the field of genomics or

436 phenomics on the selection strategy

437 Another possibility to increase the selection intensity for improvement of short-term
438 genetic gain is to generate more selection candidates while keeping the number of
a0 selected individuals constant (Cobb et al., 2019). Under a fixed budget, a reduction
a0 of either genotyping or phenotyping costs could increase the population size. With
a1 the development of high-throughput phenotyping and genotyping techniques, both
a2 their costs could gradually decrease (Araus and Cairns, 2014; Ragoussis, 2009). Con-
a3 sequently, we considered three different levels of phenotyping and genotyping costs
a4 and investigated how they affect the genetic gain in the context of optimal allocation
a5 of resources with the strategy GS-SH:A. The reduction of cost increased the popu-
w6 lation size at the seedling stage as well as enhanced the selection intensities p2 and
a7 p3 (when implementing GS), and py and ps (direct selection on T). The increasing
as  AG value observed in our study with a decrease in either genotyping or phenotyping
so cost (Table 3) confirmed this hypothesis. Furthermore, our findings are in line with
a0 a former study in wheat (Marulanda et al., 2016), who showed an increased AG and
a5t a higher number of test candidates as the cost for hybrid seed production or double
42 haploids decreased. In summary, changes in correlation between the two selected
453 traits, prediction accuracy, stage of implementation, and costs for genotyping and
4ss phenotyping have a crucial influence on the optimal allocation of resources to maxi-

455 mize the short-term genetic gain, accentuating the necessity for clone and especially
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a6 potato breeders to regularly and carefully re-adjust their selection strategy.

457 Impact of GS on genetic variance

a8 Not only the genetic gain is important for the evaluation of the GS strategy, but also
a0 the genetic variance reduction of Ti. As expected, all the selection strategies showed
w0 a decrease in the genetic variance after selection (Figure S9). This tendency increased
i1 when GS was implemented. This is in accordance with former studies (Gaynor et al.,
w62 2017; Muleta et al., 2019) who showed a greater loss of genetic variance over time
a3 using GS compared to PS. In our study, the genetic variance decreased particularly at
s the stage of implementation (k), but not to the same extent for all strategies (Figure
a5 3 and S9). This trend can be explained by the Bulmer effect (Bulmer, 1971), which
a6 reduces the proportion of genetic variance due to linkage disequilibrium between
a7 trait coding polymorphisms (Van Grevenhof et al., 2012). This is in accordance
s with results of Jannink (2010), who showed that GS can accelerate the fixation of
w0 favorable alleles for Ty compared to PS resulting in a loss of genetic variance for
a0 the trait. The reduction of genetic variance, however, limits the AG for long-term
ann improvement. Therefore, maintaining diversity of the population in the breeding
472 materials is one possibility to slow down this drawback to improve long-term genetic
a3 gain in breeding programs (Gorjanc et al., 2018). However, for commercial breeding
a7+ programs a balance between short and long-term gain of selection is required, which

475 needs further research.

476 Conclusions

a7 The present study demonstrated that implementing GS in a typical clone breeding

473 program improves the gain of selection even without exploiting the possibilities to
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479 reduce the length of the breeding cycles. Furthermore, we showed that the integration
a0 of GS in consecutive selection stages can largely enhance the gain from selection
a1 compared to the use in only one stage. In detail, the strategy GS-SL:SH:A is highly
a2 recommended if the correlation between T, and Ty is negative. Otherwise, GS-SH:A
483 can be the most efficient strategy. Furthermore, we observed that the implementation
s8¢ of GS in potato breeding programs requires the adjustment of the selection intensities
45 as well as the phenotyping intensities compared to those typically used in breeding
a6 programs exploiting exclusively PS. Finally, we outlined how to adjust the selection

a7 intensities in potato breeding programs after implementing GS.
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Figure 1: The standard clone breeding program examined in this study that relies

exclusively on phenotypic selection. pi-ps are the selected proportions from SL to

SH, SH to A, A to B, B to C, and C to D, respectively, where SL, SH, A, B, C, and

D represent the stages of seedling, single hills, A, B, C, and D clones. T, represented

the integral of early measured traits and T the integral of the target traits. The

yellow marked stages are those that were examined in our study.
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Figure 2: Graphical illustration of the standard as well as the six selection strategies that include genomic selection that
were examined in our study. pi-ps are the selected proportions from SL to SH, SH to A, A to B, B to C, and C to D,
respectively, where SL, SH, A, B, C, and D represent the stages of seedling, single hills, A, B, C, and D clones. «y the
w
o~

proportion of clones selected by PS to be genotyped in stage k and Ny, is the number of clones of the respective stage.
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Figure 3: Genetic gain (AG, left) and genetic variance (Ué, right) for the target trait on average across 1,000 simulation runs at

D clone stage for different weights of genomic selection (GS) relative to phenotypic selection («y), different selection strategies,

different correlations between the traits (r=-0.15, 0.15, and 0.3), prediction accuracies (PA=0.3, 0.5, and 0.7), and for the ratio of

variance components VC1 (aé : aéx Lt 02 =1:1:0.5). The details regarding the selection strategies are shown in Figure 2.
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Figure 4: Genetic gain for the target trait (AG) on average across 1,000 simulation runs at the D clone stage for six
different selection strategies with genomic selection (GS) for varying numbers of locations in the B and C clone stages (L4 @

and Ls) and different weights of genomic selection (GS) relative to phenotypic selection (ay) when the correlation between

the two traits was set to 0.15 and prediction accuracy was set to 0.5.
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Figure 5: Genetic gain of the target trait (AG) after optimally allocated resources for different
correlations between the traits (r=-0.15, 0.15, and 0.3) and different prediction accuracies
(PA=0.3, 0.5, and 0.7). The presented AG values are the average of the genetic gains from
the grid search sets that revealed no significant (P < 0.05) difference compared to the set with

maximum genetic gain.
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Table 1: Dimensioning of a standard potato breeding program that exclusively relies on phenotypic

selection.
Stage Number of clones Number of locations Phenotyping cost per clone and plot (€) Cost per stage (€)
Seedling 300,000 1 14 420,000
Single hills 100,000 1 1.4 140,000
A clone 10,000 1 1.4 14,000
B clone 1,500 2 25 75,000
C clone 300 3 25 22,500
D clone 60 4 25 6,000
Sum 677,500



https://doi.org/10.1101/2022.11.25.517496
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.25.517496; this version posted November 27, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

39

Table 2: Optimum allocation of resources to maximize genetic gain of the target trait (AG) for the
different selection strategies and correlations between the two traits (r=-0.15, 0.15, and 0.3). The pre-
diction accuracy was 0.5 and the phenotyping cost of early measured trait 1.4 € and genotyping cost 25
€. p1 to p5 , ag, and N are the selected proportion per stage, the weight of genomic selection relative
to phenotypic selection, and the number of clones at the seedling stage, respectively. For description of

selection strategies see text.

Correlations ~ Selection strategies AG ! SDac® 1 P2 p3 P4 Ps ak N,
PS 57.87 (g) 5.04 039 0.36 031 0.10 0.10 - 152,995.09

GS-SL 58.86 (f) 5.18 0.30 0.50 0.50 0.16 0.23 0.87 23,709.50

GS-SH 61.38 (¢) 5.56 044 0.29 050 0.13 0.19 0.88 43,099.80

-0.15 GS-A 63.43 (¢) 5.88 046 0.48 0.21 0.10 0.20 0.90 67,708.00
GS-SL:SH 62.61 (d) 5.71 0.38 0.45 050 0.17 0.21 0.90 22,501.43

GS-SH:A 64.70 (b) 6.03 048 0.38 037 0.14 0.19 0.90 40,018.33
GS-SL:SH:A 66.05 (a) 6.22 0.43 047 047 0.16 0.20 0.90 21,914.47

PS 67.54 (b) 6.45 0.28 0.38 0.38 0.10 0.10 - 170,906.06

GS-SL 64.82 (d) 6.06 0.16 0.50 0.50 0.16 0.21 0.40 50,256.67

GS-SH 67.79 (b) 6.44 024 0.23 050 0.16 0.19 0.74 93,815.07

0.15 GS-A 70.18 (a) 6.75 032 045 0.19 0.13 0.18 0.82 108,386.59
GS-SL:SH 66.19 (¢) 6.21 039 0.44 050 0.16 0.20 0.86 23,237.68

GS-SH:A 69.96 (a) 6.76 0.19 038 039 0.16 0.18 0.89 95,290.54
GS-SL:SH:A 67.76 (b)  6.50 0.41 0.46 046 0.16 0.21 0.86 23,206.52

PS 71.42 (b) 7.05 0.23 0.39 042 0.10 0.10 - 178,386.46

GS-SL 68.24 (d) 6.54 0.13 0.49 049 0.17 0.20 0.28 65,661.65

GS-SH 71.31 (b) 6.94 0.17 0.18 049 0.18 0.21 0.66 135,331.14

0.3 GS-A 73.43 (a) 7.18 0.22 041 0.16 0.17 0.19 0.77 159,402.35
GS-SL:SH 67.79 (d) 6.46 033 0.39 049 0.18 0.21 0.68 30,172.78

GS-SH:A 73.12 (a) 7.15 0.13 0.37 037 0.17 0.19 0.86 123,779.24
GS-SL:SH:A 68.93 (¢) 6.62 0.40 0.44 044 0.16 0.20 0.75 26,376.25

! The letters in parentheses after AG represent the significance groups (P < 0.05) across these selection
strategies within a specific correlation.

2 §Dag¢ is the standard deviation of AG across 1,000 simulation runs.
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Table 3: Optimum allocation of resources to maximize genetic gain of the target trait (AG)
across different cost scenarios when genomic selection was applied in single hills and A clone
stages (GS-SH:A). The correlation between the two traits was 0.15 and the prediction accuracy
0.5. p1 to ps , ag, and Nj are the selected proportion per stage, the weight of genomic selection

relative to phenotypic selection, and the number of clones at the seedling stage, respectively.

Costp, ! Costyrn, AG? SDac® 1 P2 P3 P4 Ps o Ny
0.70 15 72.33 (a) 7.08 0.17 034 0.34 0.14 0.16 0.87 171,397.94
0.70 25 70.76 (c) 6.87 0.15 0.37 037 0.15 0.18 0.87 133,082.10
0.70 40 69.11 (e) 6.66 0.12 041 040 0.16 0.20 0.89 106,152.00
1.05 15 71.85 (ab) 7.00 0.20 0.35 0.36 0.14 0.17 0.88 135,898.99
1.05 25 70.39 (cd) 6.83 0.16 0.38 0.38 0.16 0.17 0.88 113,093.84
1.05 40 68.61 (ef) 6.57 0.15 0.40 041 0.18 0.19 0.87  87,752.05
1.40 15 71.39 (b) 6.95 0.23 035 037 0.14 0.17 0.88 110,223.57
1.40 25 69.96 (d) 6.76 0.19 038 0.39 0.16 0.18 0.89 95,290.54
1.40 40 68.41 (f) 6.52 0.17 041 041 0.16 0.21 0.90 76,796.40

! Costr, is the phenotyping cost of early measured trait, and Costgeno the genotyping cost per clone.
2 The letters in parentheses after AG represent the significance groups (P < 0.05) across these cost
scenarios.

3 8D is the standard deviation of AG across 1,000 simulation runs.
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