

Optimal implementation of genomic selection in clone breeding programs - exemplified in potato: I. Effect of selection strategy, implementation stage, and selection intensity on short-term genetic gain

Po-Ya Wu¹, Benjamin Stich^{1,2,3}, Juliane Renner⁴, Katja Muders⁵, Vanessa Prigge⁶, and Delphine van Inghelandt^{1,*}

¹Institute of Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany

²Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany

³Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany

⁴Böhm-Nordkartoffel Agrarproduktion GmbH & Co. OHG, 17111 Hohenmocker, Germany

⁵NORIKA GmbH, 18190 Sanitz, Germany

⁶SaKa Pflanzenzucht GmbH & Co. KG, 24340 Windeby, Germany

*Corresponding author: Delphine van Inghelandt, inghelan@hhu.de

November 25, 2022

Keywords: Clone breeding, Genetic gain, Genomic selection, Optimum allocation, Potato, Selection strategy

ABSTRACT

Genomic selection (GS) is used in many animal and plant breeding programs to enhance genetic gain for complex traits. However, its optimal integration in clone breeding programs that up to now relied on phenotypic selection (PS) requires further research. The objectives of this study were to (i) investigate under a fixed budget how the weight of GS relative to PS, the stage of implementing GS, the correlation between an auxiliary trait assessed in early generations and the target trait, the variance components, and the prediction accuracy affect the genetic gain of the target trait of GS compared to PS, (ii) determine the optimal allocation of resources maximizing the genetic gain of the target trait in each selection strategy and for varying cost scenarios, and (iii) make recommendations to breeders how to implement GS in clone and especially potato breeding programs. In our simulation results, any selection strategy involving GS had a higher short-term genetic gain for the target trait than Standard-PS. In addition, we show that implementing GS in consecutive selection stages can largely enhance short-term genetic gain and recommend the breeders to implement GS at single hills and A clone stages. Furthermore, we observed for selection strategies involving GS that the optimal allocation of resources maximizing the genetic gain of the target trait differed considerably from those typically used in potato breeding programs. Therefore, our study provides new insight for breeders regarding how to optimally implement GS in a commercial potato breeding program to improve the short-term genetic gain for their target trait.

INTRODUCTION

1 Potato (*Solanum tuberosum* L.) is with respect to the production volume one of the
2 most important food crops in the world after sugarcane, maize, wheat, and rice (FAO-
3 STAT (2020), <http://www.fao.org/faostat/en/>). However, in contrast to other
4 crops, only a low genetic gain was observed for yield in the past decades (Stokstad,
5 2019; Ortiz et al., 2022). The selection gain is, compared to the one in homozygous
6 diploid species, limited by the high heterozygosity and tetraploidy of potato. (Lind-
7 hout et al., 2011; Jansky et al., 2016). In addition, potato has a low multiplication
8 coefficient (Grüneberg et al., 2009), which leads to the availability of only one or
9 few tubers per genotype for phenotypic evaluation at early stages in the breeding
10 program (Gopal, 2006). This delays the evaluation of traits related to productivity
11 (such as tuber yield) or quality, as they rely on multi-location field trials and/or
12 destructive assessment, and these can only be performed after one to several multi-
13 plication steps. As a consequence, only traits which can be assessed based on a low
14 number of plants can be considered in the early stages of potato breeding programs.
15 In contrast, target traits whose evaluation requires many plants and/or environments
16 can only be selected for in later stages of the breeding program. However, the corre-
17 lation between the early measured and target traits is variable and can be very low.
18 Furthermore, the evaluation of target traits in potato is more expensive compared to
19 their evaluation in non-clonal crops as a considerably lower level of mechanization is
20 currently possible. Therefore, clone and especially potato breeding programs would
21 highly benefit from the possibility to select for target traits at early stages of the
22 breeding program e.g. with the implementation of genomic selection (GS).
23 GS proved to enhance genetic gain for complex traits in both animal and plant

24 breeding programs (Meuwissen et al., 2001; Desta and Ortiz, 2014). This is because
25 GS allows to predict the performance of target traits without phenotypic evaluation
26 in early stages. The selection on target traits at early stages using estimated genetic
27 values (EGV) avoids discarding those individuals with desirable alleles for the trait,
28 which will increase the genetic gain per year. In addition, the performance prediction
29 of target traits without phenotypic evaluation in early stages has the potential to re-
30 duce the length of the breeding cycle. One parameter that influences the potential
31 of GS is the prediction accuracy.

32 Several empirical studies have explored the potential of implementing GS in
33 potato breeding for different traits by determining the prediction accuracy (Slater
34 et al., 2016; Sverrisdóttir et al., 2017; Enciso-Rodriguez et al., 2018; Endelman et al.,
35 2018; Stich and Van Inghelandt, 2018; Sverrisdóttir et al., 2018; Caruana et al., 2019;
36 Byrne et al., 2020; Gemenet et al., 2020; Sood et al., 2020; Wilson et al., 2021). Differ-
37 ent degrees of prediction accuracies from low to high depending on the studied traits
38 have been reported, which could be caused by the different genetic architectures, pre-
39 diction models, but also the considered genetic material. However, only few studies
40 evaluated the effect of GS on the genetic gain for the studied traits. One of them was
41 Slater et al. (2016), who estimated that the genetic gain after implementing GS for
42 complex traits was higher than that of PS. The results of Stich and Van Inghelandt
43 (2018) suggested that for some traits GS leads to a higher gain of selection than PS
44 even without reducing the cycle length. However, no earlier study considered directly
45 the aspect that PS and GS need to be compared at a fixed budget. Furthermore,
46 when implementing GS in a clone breeding program, the selected proportion of PS
47 on the early trait will be partially shifted to GS on the target trait. This shift can be
48 realized to different degrees and the resulting selected proportion for PS or GS might

49 influence the efficiency of the selection strategy. Therefore, for the implementation
50 of GS in clone breeding programs not only the prediction accuracy of the GS model
51 but also its relative weight to PS has to be examined. Furthermore, these aspects
52 are influenced by the correlation between the early and the target trait and also the
53 variance components of the considered trait have an influence on the genetic gain.
54 However, the influences of these parameters and their interaction on the genetic gain
55 in clone breeding programs have not been investigated until now.

56 Werner et al. (2020) investigated different strategies to implement GS in clone
57 breeding programs exemplarily with genome parameters of strawberry. They eval-
58 uated the performance of a breeding program that introduced GS in the first clonal
59 stage and mainly focused on how to select parents for the next crosses and drive
60 population improvement to enhance long-term genetic gain. However, in a classical
61 clone breeding program, there are several stages where GS could be implemented and
62 their effect on the gain of selection have not been studied so far.

63 Another aspect that needs to be decided during the implementation of GS in
64 clone or potato breeding programs is the number of stages in which GS is applied.
65 Once the clones are genotyped for the first GS application, the possibility of re-using
66 the same EGV to perform GS in two or more stages is given. A similar idea was
67 proposed by Spindel et al. (2015) for a rice breeding program but has neither been
68 assessed by theoretical considerations nor by computer simulations nor any empirical
69 experiments. To the best of our knowledge, no earlier study has investigated at which
70 stage and in how many selection stages GS should be implemented in clonal crops to
71 maximize the short-term genetic gain under a given budget.

72 Optimum allocation of resources under a given budget is essential to improve
73 the efficiency of breeding programs (Longin et al., 2006). However, most studies on

74 the implementation of GS in breeding programs neglected this effect. Longin et al.
75 (2015) and Marulanda et al. (2016) assessed this point for cereal breeding programs.
76 However, to the best of our knowledge, no earlier study is available about the effect
77 of the implementation of GS on the optimum allocation of resources in clone breeding
78 programs.

79 The objectives of this study were to (i) investigate under a fixed budget how
80 the weight of GS relative to PS, the stage of implementation of GS, the correla-
81 tion between traits (auxiliary trait assessed in early generations and target trait),
82 the variance components, and the prediction accuracy affect the short-term genetic
83 gain of the target trait in potato breeding programs compared to PS, (ii) determine
84 the optimal allocation of resources maximizing the short-term genetic gain of the
85 target trait in each selection strategy and for varying cost scenarios, and (iii) make
86 recommendations to breeders how to implement GS in clone breeding programs.

MATERIALS AND METHODS

87 **Empirical basis of the computer simulations**

88 Our simulations were based on an empirical genomic dataset of tetraploid potato.
89 This empirical genomic dataset comprised 19,649,193 sequence variants revealed in
90 a diversity panel of 100 tetraploid potato clones (Baig et al. in preparation). The
91 unphased sequence variants included single nucleotide polymorphism (SNP) and in-
92 sertion/deletion (InDel) polymorphisms. Sequence variants with a minor allele fre-
93 quency < 0.05 and missing rate > 0.1 were removed. The 100 clones were used as
94 parents of the simulated progenies and will be called parental clones hereafter.

95 The progenies were simulated using AlphaSimR (Gaynor et al., 2021). For this,
96 the genetic map information of all genomic variants was estimated using a Marey map
97 (for details see Method S1 and Figure S1). Subsequently, the genomic information
98 for each variant served as input for the simulations.

99 **Simulation of initial population**

100 To stick to the size of commercial breeding programs (Breeders personal communi-
101 cation, Table 1) an initial population of 300,000 clones was simulated like described
102 here under. From all possible crosses in the half-diallel among the 100 parental
103 clones, 300 were randomly selected. For each of these 300 crosses, 1,000 F1 progenies
104 were simulated using AlphaSimR. The two steps of this procedure (the random se-
105 lection of 300 crosses and the simulation of their progenies) was repeated 1,000 times
106 independently.

107

Simulation of true genetic and phenotypic values

108 Target trait (T_t)

109 In our study, a genetically complex target trait representing the weighted sum of all
110 market relevant quantitative traits was considered and will be named T_t hereafter.
111 A random set of 2,000 sequence variants were considered as quantitative trait loci
112 (QTL) for T_t . The true additive effects of the 2,000 QTL were drawn from a gamma
113 distribution (cf. Hayes and Goddard, 2001) with $k = 2$ and $\theta = 0.2$, where k and θ
114 are shape and scale parameter, respectively. To control the degree of dominance δ be-
115 tween 0 and 1 for each QTL, the ratios of dominance to additive effect were produced
116 from a beta distribution with the two shape parameters $a = 2$ and $b = 2$. The true
117 dominance effect at each QTL was then calculated by multiplying the true additive
118 effect by the QTL specific δ (Figure S2). For each QTL, all possible genotype classes
119 were AAAA, AAAB, AABB, and BBBB, which were respectively coded from 0, 1,
120 2, 3, and 4 for additive effect; and 0, 1, 1, 1, and 0 for dominance effect. Finally, the
121 true genetic value for T_t (TGV_{T_t}) was calculated for each clone by summing up the
122 true additive and dominance effects at the 2,000 QTL.

123 In order to simulate phenotypic values, two ratios of variance components (VC)
124 were assumed for T_t : $\sigma_G^2 : \sigma_{G \times L}^2 : \sigma_\epsilon^2 = 1 : 1 : 0.5$ (VC1) and $1 : 0.5 : 0.5$ (VC2),
125 where σ_G^2 denoted the genotypic variance, $\sigma_{G \times L}^2$ the variance of interaction between
126 genotype and location, and σ_ϵ^2 the error variance. The genotypic variance was esti-
127 mated by the sample variance of TGV_{T_t} in the initial population. The phenotypic
128 value for the target trait was then calculated as $P_{T_t} = TGV_{T_t} + \epsilon_{T_t}$, where ϵ_{T_t} was
129 the non-genetic value following a normal distribution $N(0, \sigma_{\epsilon_{T_t}}^2)$, with

$$\sigma_{\epsilon_{T_t}}^2 = \frac{\sigma_G^2 \times L}{L_j} + \frac{\sigma_\epsilon^2}{L_j R_j} \quad [1]$$

representing the non-genetic variance, in which L_j was the number of locations at stage j , and R_j the number of repetitions at stage j . We set the number of replications to one ($R_j = 1$) in each location (cf. Melchinger et al., 2005).

133 Phenotypic trait assessed in early generations of the breeding program
134 (T_a)

135 The weighted sum of the auxiliary traits measured in the first three generations of
136 the breeding program will be referred to as T_a hereafter. To control the genetic
137 correlations between T_a and T_t (r), the true genetic values for T_a were generated by
138 $TGV_{T_a} = TGV_{T_t} + \epsilon_r$, where ϵ_r was the residual value following a normal distribution
139 $N(0, \sigma_{\epsilon_r}^2)$, with

$$\sigma_{\epsilon_r}^2 = \frac{1}{n-2} \frac{1-r^2}{r^2} \sum_{i=1}^n (TGV_{T_t(i)} - \bar{TGV}_{T_t})^2 \quad [2]$$

140 determined by the degree of r , where n was the number of clones for the initial
141 population, $TGV_{T_t(i)}$ the TGV for T_t of the i^{th} clone, and \bar{TGV}_{T_t} the average of
142 TGV_{T_t} in the initial population. Then, the phenotypic value for T_a was calculated
143 as $P_{T_a} = TGV_{T_a} + \epsilon_{T_a}$, where ϵ_{T_a} was a non-genetic value following a normal distri-
144 bution $N(0, \frac{1-H_{T_a}^2}{H_{T_a}^2} \sigma_{G_{T_a}}^2)$, in which $H_{T_a}^2$ was the broad-sense heritability for T_a , and
145 $\sigma_{G_{T_a}}^2$ the genetic variance of T_a and estimated by the sample variance of TGV_{T_a} in
146 the initial population. In this study, $H_{T_a}^2$ was set as 0.6.

147

Simulation of estimated genetic values

148 In this study, we assumed that a GS model for T_t with a prediction accuracy of PA
149 was available. The estimated genetic values of T_t obtained from the GS model were
150 estimated by $EGV_{T_t} = TGV_{T_t} + \epsilon_{PA}$, where ϵ_{PA} was the residual value following a
151 normal distribution $N(0, \sigma_{\epsilon_{PA}}^2)$, with

$$\sigma_{\epsilon_{PA}}^2 = \frac{1}{n-2} \frac{1 - PA^2}{PA^2} \sum_{i=1}^{n'} (TGV_{T_t(i)} - \overline{TGV}_{T_t})^2 \quad [3]$$

152 determined by the level of PA, where n' was the number of genotyped clones ($= N_{GS}$),
153 $TGV_{T_t(i)}$ the TGV of the target trait at the i^{th} genotyped clone, and \overline{TGV}_{T_t} the
154 average of TGV_{T_t} on all N_{GS} genotyped clones.

155

Selection strategies

156 Standard breeding program

157 A standard potato breeding program relying exclusively on PS (Standard-PS) was
158 considered as benchmark (Figure 1). To simplify the comparison between PS and
159 GS strategies, we considered in this study six testing stages in the potato breeding
160 program. The six testing stages were seedling, single hills, and A, B, C, and D clone
161 stages, abbreviated in the following as SL, SH, A, B, C, and D, respectively. The
162 number of tested clones (N) and locations (L) for each testing stage are shown in
163 Table 1. The selected proportions from SL to SH (p_1), SH to A (p_2), A to B (p_3),
164 B to C (p_4), and C to D (p_5) were set to $\frac{1}{3}$, 0.1, 0.15, 0.2, and 0.2, respectively,
165 as estimates from typical commercial potato breeding programs (Breeders personal
166 communication). The selection in the early stages (SL, SH, and A) was based on the

167 phenotypic value of the auxiliary trait P_{T_a} , and for the late stages (B, C, and D) on
168 the phenotypic value of the target trait P_{T_t} (Figure 1).

169 **Breeding programs involving genomic selection**

170 Three GS strategies were evaluated in which GS was implemented at the (1) seedling,
171 (2) single hills, and (3) A clone stage, abbreviated as GS-SL, GS-SH, and GS-A,
172 respectively. All selection steps of the GS strategies were similar to those of the
173 standard breeding program except the following modifications (Figure 2). Here, the
174 strategy GS-SL will be taken as an example for the description. In the seedling
175 stage, N_1 clones were evaluated for P_{T_a} . From these N_1 clones, the N_{GS} ones with a
176 higher P_{T_a} were genotyped. α_1 was defined as ratio of N_{GS} to N_1 , i.e. the proportion
177 of clones selected by PS to be genotyped. Then, N_2 clones were selected based on
178 the EGV_{T_t} in the N_{GS} genotyped clones for the single hills stage. Afterwards, the
179 selection process in the following stages were the same as Standard-PS. For the other
180 two GS strategies, GS-SH and GS-A, the selection was performed accordingly. For
181 each stage k in which GS was applied, the corresponding α_k was larger than p_k ,
182 where p_k ($= \frac{N_k}{N_{k+1}}$) was the selected proportion between the two stages to which GS
183 was applied. k was set to 1, 2, and 3 for the strategies (1) GS-SL, (2) GS-SH, and
184 (3) GS-A, respectively (Figure 2).

185 To evaluate whether adopting the same GS model for selection on T_t in several
186 stages improves the short-term genetic gain compared to using GS only once, we
187 evaluated three additional strategies (Figure 2):

188 (4) GS-SL:SH – GS was applied not only at seedling stage but also at single hills
189 stage;
190 (5) GS-SH:A – GS was applied not only at single hills stage but also at A clone stage;

191 and

192 (6) GS-SL:SH:A – GS was applied at seedling, single hills and A clone stages.

193 For these three GS strategies, genotyping of N_{GS} clones only took place when GS was

194 used for the first time. When GS was used a second or third time, the same EGV_{T_t}

195 for the tested clones from the initial GS model were used for the selection.

196 **Economic settings and additional quantitative genetic parameters**

197 In this study, the costs for phenotypic evaluation of T_a and T_t in one environment

198 were assumed to be 1.4 and 25 €, respectively. The costs for genotypic evaluation

199 per clone were assumed as 25 € (Table 1). To compare the short-term genetic

200 gain of T_t (ΔG) between Standard-PS and several GS strategies, the budget across

201 different selection strategies was fixed to 677,500 €. Therefore, the number of tested

202 clones in seedling stage (N_1) must be adjusted/reduced when introducing GS into

203 a breeding program to compensate for the additional genotyping cost. In the first

204 part of the simulations, the selected proportions were fixed to those of Standard-PS.

205 This was realized in our study by randomly sampling the reduced N_1 from the initial

206 population with an equal sample size for each cross population.

207 We were interested in how different values of r , PA , VC , and L influence ΔG .

208 Therefore, three different levels of r (-0.15, 0.15 and 0.3), PA (0.3, 0.5 and 0.7), and

209 two different ratios of VC for T_t (see above) were examined in our simulations. The

210 selection of clones based on T_t that was assessed in field experiments in more than one

211 location happened at B and C clone stages. Thus, we varied the number of locations

212 from 2 to 4 and 3 to 6 in increments of 1 for B and C clone stages, respectively, and

213 designated them as L_4 and L_5 . Furthermore, to investigate how different levels of α_k

214 affect ΔG , we varied α_k from 0.4 to 0.9 in increments of 0.1 for the strategies GS-SL,

215 GS-SL:SH, and GS-SL:SH:A, and from 0.2 to 0.9 in increments of 0.1 for the other
216 strategies. ΔG was calculated as the difference in mean genetic values of T_t between
217 the D clone and the seedling stage (cf. Longin et al., 2015; Marulanda et al., 2016).

218 **Optimum allocation of resources**

219 In the below described simulations, we relaxed the restrictions of the above described
220 simulations that the selected proportions were fixed to those of Standard-PS. To
221 determine the optimum allocation of resources maximizing ΔG under a given budget,
222 a general linear cost function to aggregate all costs across all stages in the breeding
223 program was created:

$$\begin{aligned} \text{Budget} &= \sum_{j=1}^6 N_j \times \text{cost}_{\text{pheno}(j)} \times L_j + N_{\text{GS}} \times \text{cost}_{\text{geno}} \\ &= \sum_{j=1}^5 \frac{N_6}{\prod_{k=j}^5 p_k} \text{cost}_{\text{pheno}(j)} L_j + N_6 \text{cost}_{\text{pheno}(6)} L_6 + \frac{N_6 \text{cost}_{\text{geno}} \alpha_m}{\prod_{k=m}^5 p_k}, \end{aligned} \quad [4]$$

224 where N_j was the number of clones at stage j , $\text{cost}_{\text{pheno}(j)}$ the cost for phenotypic
225 evaluation at stage j , N_{GS} the number of genotyped clones, and $\text{cost}_{\text{geno}}$ the geno-
226 typing cost (for details see Method S2). In addition, p_k was the selected proportion
227 from stage $j(m)$ to stage $j(m) + 1$, where m was the stage in which GS was applied
228 first. For more details, $m = 1$ referred to GS-SL, GS-SL:SH and GS-SL:SH:A; $m = 2$
229 for GS-SH and GS-SH:A; and $m = 3$ for GS-A. The GS strategies with optimum
230 allocation of resources will be named Optimal-GS hereafter.

231 The optimum allocation was determined by a grid search across the permissible
232 space of p_2 to p_5 and α_k for a set of given input parameters. The latter included
233 the number of tested clones at D clone stage (N_6), the GS strategy, the phenotyping
234 and genotyping costs, L , r , VC of T_t , $H_{T_a}^2$, and the total budget. We set N_6 to 60.

235 In the grid search, any p_k varied between 0.1 and 0.5 in increments of 0.05 to avoid
236 too strong/weak selections. α_k was chosen as described above. Consequently, in
237 each permissible allocation, p_1 was completely determined by equation [4] under the
238 constrained budget and the given input parameters. Subsequently, the mean genetic
239 gain across 1,000 simulation runs was calculated for each permissible allocation of
240 the grid search. To obtain reliable estimates of the optimal allocation of resources,
241 we performed a least significant difference (LSD) test on ΔG across all permissible
242 allocations of the grid search within a specific scenario. We selected the significant
243 group showing the maximum ΔG among all permissible sets and then considered the
244 average of the allocations as optimal result.

245 The above described simulations required for some grid search sets (those with
246 low p_1 to p_3 but high p_4 and p_5) with more than 300,000 clones in the seedling stage.
247 Thus, the size of the initial population was increased to 900,000 clones.

248 To investigate whether an increase of phenotyping cost of T_a and the genotyping
249 cost have an influence on the optimal allocation of resources, we considered three dif-
250 ferent phenotyping costs for T_a (0.7, 1.05, and 1.4 €), and three different genotyping
251 costs (15, 25, and 40 €).

RESULTS

252 The mean genetic gain (ΔG) and genetic variance (σ_G^2) of the target trait at D clone
253 were assessed considering different values of r , PA , α_k , as well as different selection
254 strategies. To easily compare among the examined strategies, the budget, the se-
255 lection proportion between stages p1-p5 and the number of test locations were fixed
256 according to those of the Standard-PS strategy.

257 Increasing r and PA either individually or simultaneously led to a higher ΔG
258 (Figure 3 and S4). Regardless of PA and r , any selection strategy incorporating
259 GS was superior to the Standard-PS strategy with respect to ΔG (Figure 3). Low
260 or negative values for r and high PA increased this tendency even more. The least
261 improvement of ΔG relative to Standard-PS was observed across all scenarios for
262 the strategy GS-SL. The strategies GS-A and GS-SH resulted in considerably higher
263 values for ΔG relative to PS and under the scenarios with low r but high PA , the
264 latter strategy was significantly superior to the former.

265 Implementing GS in successive stages (i.e. GS-SL:SH, GS-SH:A, and GS-SL:SH:A)
266 had an advantage over the strategies using GS one time, except for the scenario with
267 the lowest PA ($=0.3$) but the highest r ($=0.3$). The ranking of performance among
268 these strategies was GS-SL:SH:A $>$ GS-SH:A $>$ GS-SL:SH. The difference among
269 these strategies was lower, if r increased or PA decreased.

270 For all GS strategies, higher α_k values led to reductions in the number of clones
271 available in the seedling stage (Figure S3), but increased ΔG (Figure 3). For all
272 except eight scenarios, the highest ΔG was observed if α_k was at its maximum (0.9).
273 The remaining scenarios in which the maximum ΔG were observed for $\alpha_k=0.7$ or
274 0.8 instead of 0.9, however, showed ΔG values that were not significantly different

275 from the ΔG values observed for $\alpha_k=0.9$ (data not shown). Only for GS-SL:SH:A an
276 exception was observed from this trend, namely that the maximal ΔG was observed
277 for $\alpha_k=0.5$ for the scenario with $r=0.3$ and $PA=0.3$. In accordance to the above
278 described observations regarding the differences among selection strategies, also the
279 differences among ΔG for the different levels of α_k were low for the scenarios with
280 high r and/or low PA .

281 In all the above described simulations of the selection strategies that exploit GS
282 in several stages, α_k was the same for each stage in which GS was applied. However,
283 for these strategies, we also evaluated whether varying α_k had an influence on ΔG .
284 For the strategies GS-SL:SH and GS-SH:A, we observed that an increase of both α_k
285 values (i.e. α_1 and α_2 or α_2 and α_3) a higher ΔG was observed (Figure S5). The
286 combination of two α_k values that resulted in the highest ΔG was 0.84 and 0.79 or
287 0.86 and 0.86 for the respective strategies. A similar trend was observed for GS-
288 SL:SH:A (Figure S6). However, for the scenarios with high r ($=0.3$), intermediate
289 values of α_1 were sufficient to result with high values of α_2 and α_3 in the maximal
290 values of ΔG of 0.4-0.5 (Table S1).

291 The effect of variation of selection strategies, α_k , r , and PA on the genetic vari-
292 ance were opposite to their effect on genetic gain (Figure 3). The scenarios with a
293 higher genetic gain showed a lower genetic variance.

294 We also investigated the effects of different ratios of variance components (VC1
295 and VC2) and number of locations for phenotypic evaluation (L_4 and L_5) on ΔG .
296 The ranking of the selection strategies with respect to ΔG was not affected by the
297 studied ratios of VC (Figure 3 and S7). When $\sigma_{G \times L}^2$ was halved (i.e. VC2 vs. VC1),
298 ΔG increased from 3% to 8% depending on the selection strategies, PA , r , and α_k
299 (Figure S8). Although increasing L caused a decrease in the number of clones that

300 are available at the seedling stage to compensate for additional phenotyping costs,
301 ΔG significantly increased with increasing number of locations that were used for
302 the evaluation of B and C clones (Figure 4). This trend was independent of selection
303 strategies, PA, r, and α_k . In all scenarios, the highest ΔG was observed with the
304 highest number of locations in the B and C clone stages, i.e., $L_4 = 4$ and $L_5 = 6$. In
305 these cases, ΔG was increased by 8% compared to Standard-PS with $(L_4, L_5) = (2, 3)$.

306 The optimal allocation of resources was assessed via a grid search across $p_1 - p_5$
307 and $\alpha_k, k \in [1, 3]$ in a scenario with VC1, budget, L, and N_6 like in the Standard-PS
308 scenario. The optimum allocation of resources led also for the PS to an increase of
309 ΔG (Optimal-PS) compared with the Standard-PS (Figure 5). On average across all
310 evaluated scenarios, the strategy GS-SL had the worst performance out of the strate-
311 gies incorporating GS. In a scenario with $r < 0$ and $PA > 0.5$, any selection strategy
312 with GS revealed a higher ΔG than the Optimal-PS. The strategy GS-SL:SH:A only
313 outperformed the other selection strategies if $r = -0.15$. In contrast, the strategy GS-
314 SH:A or GS-A resulted in the highest ΔG if r was > -0.15 . On average across all the
315 examined scenarios, the strategy GS-SH:A resulted in the highest and most stable
316 ΔG values.

317 With the exception of one specific scenario, a high α_k was required for each selec-
318 tion strategy to reach the maximal ΔG value (Table 2, S2 and S3). This exception
319 was the strategy GS-SL in case of a positive r for which α_k ranging from 0.21 to
320 0.61 resulted in the maximal ΔG values. Furthermore, to achieve maximum ΔG
321 values, the selected proportions for the last two stages (i.e. p_4 and p_5) were low
322 (0.17) on average across all scenarios. The level of the optimal p_k was influenced by
323 the level of r as well as by the stage in which GS was implemented. In general, high
324 optimal p_1 values were observed with a negative correlation in comparison with the

325 scenarios with a positive correlation. Furthermore, we observed for all strategies with
326 implementation of GS that the selection proportion for that stage in which GS was
327 applied was lower than the one observed at the same stage in the other strategies.

328 This trend was more pronounced for scenarios with high PA. For instance, p_2 (p_3)
329 for the strategy GS-SH (GS-A) was on average across all scenarios about 0.25 (0.21)
330 lower than the one for the strategies excluding GS-SH (GS-A) with 0.42 (0.45).

331 The effects of different phenotyping and genotyping costs on the maximum ΔG
332 were assessed exemplarily for strategy GS-SH:A and for intermediate levels of PA
333 ($=0.5$) and r ($=0.15$) (Table 3). ΔG increased by 1%, if the costs of phenotyping T_a
334 reduced from 1.4 to 0.7 €. An increase of ΔG of 4 % was observed if the genotyping
335 costs were reduced from 40 to 15 €.

DISCUSSION

336 GS has been implemented in many commercial crop breeding programs nowadays
337 (Krishnappa et al., 2021). However, implementation of GS in clonally propagated
338 species is lagging behind, despite the expected advantages. This might be on one
339 side because genomic resources are less developed in clonally propagated species
340 compared to species bred as hybrids or inbred lines. Furthermore, a lower number of
341 breeding methodological studies is dedicated to clonally propagated crops compared
342 to inbred or hybrid species. Therefore, we evaluated the prospects to integrate GS
343 into commercial potato breeding programs and assessed which parameters are crucial
344 for its implementation.

345 **Comparison of selection strategies**

346 We have studied the implementation of GS in a standard clone breeding program
347 with minimal changes of the breeding program. This procedure was chosen as we
348 expect that this will be the way how commercial clone breeding programs will deal
349 with this possibility or challenge. However, we are aware that GS might result in
350 even higher gains of selection if applied in a less conservative setting where the pos-
351 sibilities of reducing the length of breeding cycles are exploited. These aspects will
352 be considered in a companion study.

353 In this study, all evaluated selection strategies that make use of GS resulted in
354 higher ΔG compared to the Standard-PS strategy if other parameters such as budget,
355 variance components and selected proportions were held constant (Figure 3). This is
356 in accordance with the theory about indirect selection response. This theory suggests
357 that GS strategies should be superior to the Standard-PS if $PA > r \cdot H_{T_a}$, keeping the

358 intensity of selection for GS ($i_{EGV_{T_t}}$) and PS (i_{T_a}) equal. Furthermore, the theory
359 suggests that this trend should be even more pronounced, if $i_{T_a} < i_{EGV_{T_t}}$. This is
360 what we have observed in our simulations, namely that the difference between ΔG
361 of GS and PS was increased, if α_k increases.

362 Among the examined strategies using GS in only one stage, the ranking with
363 respect to maximum ΔG was GS-SH > GS-A > GS-SL, independently of PA, r, and
364 α_k (Figure 3). The observation that GS-SH resulted in a higher ΔG than GS-A can
365 be explained by superiority of early selection on T_t because thereby one can avoid
366 discarding clones with top performance for T_t in the early stages. Our observation
367 of an increased advantage of GS-SH over GS-A if r decreased confirmed this expla-
368 nation.

369 Following this argumentation, one could have expected GS-SL to be the strategy
370 with the highest ΔG , especially if r is negative. This is because a direct selection of
371 seedlings for EGV_{T_t} should be more efficient than selecting them based on P_{T_a} that
372 negatively correlated with TGV_{T_t} . Therefore, the observation of GS-SL as the most
373 disadvantageous GS method (Figure 3) was surprising at a first glance. However,
374 in this strategy after one step of GS all further selection steps are exclusively made
375 based on P_{T_a} and this hampers the selection of those individuals with beneficial al-
376 leles for T_t . Thus, the individuals with the highest TGV_{T_t} that were selected by
377 GS in the seedling stage are probably discarded in the following selection steps from
378 single hills to B clone stages. Another explanation for the observation of GS-SL as
379 the most disadvantageous GS method is that the selection of the seedling stage based
380 on GS leads to a dramatic reduction of population size in the seedling stage to keep
381 the budget constant despite the burden of high genotyping costs (Figure S3). Our
382 observations suggest that alternative prediction and selection methods to GS need

383 to be developed for the first stage of clone breeding programs that result in a much
384 lower cost per clone in order to exploit the potential of predictive breeding.

385 Among all examined selection strategies, those that applied GS several times are
386 for all combinations of α_k , VC, and L superior to the ones using GS in only one stage
387 of the breeding program (Figure 3), even without recalibrating the GS model. This
388 superiority is most probably due to the possibility to select several times on EGV_{T_t}
389 without having extra genotyping costs.

390 Among the strategies that used GS multiple times, the highest ΔG was observed
391 for the strategies GS-SL:SH:A and GS-SH:A (Figure 3). The ranking of these two
392 strategies was influenced by the genetic situation. GS-SL:SH:A outperformed GS-
393 SH:A under low r and high PA. Therefore, we advice using GS-SL:SH:A in a very
394 favorable GS environment (high PA and low r), and GS-SH:A in a favorable PS en-
395 vironment (low PA and high r).

396 In the scenario discussed in the previous paragraph, the selection intensities of
397 the individual stages were kept equal to those of the Standard-PS strategy. However,
398 theoretical considerations suggest that the implementation of GS requires an adap-
399 tation of the selection intensities as well as the phenotyping intensities. These are
400 discussed in the next paragraph.

401 **Optimal allocation of resources**

402 We observed a significantly higher ΔG for the Optimal-PS compared to the Standard-
403 PS strategy (Figure 5). Smaller values for p_4 and p_5 (i.e., higher selection intensities)
404 in Optimal-PS (0.10) were observed compared to those in Standard-PS (0.20) (Table
405 2, S2 and S3). This can be explained by the fact that at the B and C clone stages, the
406 selection is exclusively based on P_{T_t} in a direct selection. Therefore, when increasing

407 the selection intensities in these stages, ΔG is increasing as well.

408 The correlation between T_a and T_t also influences the optimal selection intensity.

409 We observed a higher p_1 , i.e. a lower selection intensity, when $r=-0.15$ compared to

410 the scenario with positive values for r (Table 2, S2 and S3). This can be interpreted

411 such that in cases of a negative r , i_{T_a} needs to be reduced to avoid discarding too

412 many clones based on P_{T_a} that have a high TGV_{T_t} .

413 Furthermore, we observed for those stages of the breeding program at which GS

414 was applied a lower selected proportion p_k compared to the same stage in a selection

415 strategy without GS (Table 2, S2 and S3). The explanation for this observation can

416 be that a low number of clones are enough to identify those with the best TGV_{T_t}

417 if the more precise GS is applied. This finding illustrates that either an increased

418 prediction accuracy or $i_{EGV_{T_t}}$ or both simultaneously can enhance ΔG .

419 We observed for most considered simulation scenarios no significant difference

420 of ΔG between the Optimal-GS strategies and Standard-GS strategies (Figure 3

421 and 5). However, to make this comparison was not the purpose of our simulations.

422 The simulations with varying selection intensities required to fix the final number

423 of clones (N_6). We have decided to fix N_6 to that of the Standard-PS in order to

424 allow a fair comparison of ΔG . In contrast, the purpose of the simulations of the

425 standard strategies (PS but also GS) was based on keeping the selection intensities

426 fixed between PS and GS strategies. The latter, however, results in considerably

427 lower numbers of clones at the D clone stage (N_6) which increases ΔG (cf. Longin

428 et al., 2006).

429 The ranking of the optimized selection strategies with respect to ΔG was with

430 the exception of GS-SH and GS-A identical to the one observed for the Standard-

431 GS strategies (Figure 5). One explanation for the rank change of GS-SH and GS-A

432 might be the stronger selection applied at A clone stage in GS-A compared to GS-SH
433 (Table 2, S2 and S3). This indicates that a higher selection intensity in a later stage
434 can improve ΔG more than an earlier selection on EGV_{T_t} .

435 **Impact of novel technical developments in the field of genomics or**
436 **phenomics on the selection strategy**

437 Another possibility to increase the selection intensity for improvement of short-term
438 genetic gain is to generate more selection candidates while keeping the number of
439 selected individuals constant (Cobb et al., 2019). Under a fixed budget, a reduction
440 of either genotyping or phenotyping costs could increase the population size. With
441 the development of high-throughput phenotyping and genotyping techniques, both
442 their costs could gradually decrease (Araus and Cairns, 2014; Ragoussis, 2009). Con-
443 sequently, we considered three different levels of phenotyping and genotyping costs
444 and investigated how they affect the genetic gain in the context of optimal allocation
445 of resources with the strategy GS-SH:A. The reduction of cost increased the popu-
446 lation size at the seedling stage as well as enhanced the selection intensities p_2 and
447 p_3 (when implementing GS), and p_4 and p_5 (direct selection on T_t). The increasing
448 ΔG value observed in our study with a decrease in either genotyping or phenotyping
449 cost (Table 3) confirmed this hypothesis. Furthermore, our findings are in line with
450 a former study in wheat (Marulanda et al., 2016), who showed an increased ΔG and
451 a higher number of test candidates as the cost for hybrid seed production or double
452 haploids decreased. In summary, changes in correlation between the two selected
453 traits, prediction accuracy, stage of implementation, and costs for genotyping and
454 phenotyping have a crucial influence on the optimal allocation of resources to maxi-
455 mize the short-term genetic gain, accentuating the necessity for clone and especially

456 potato breeders to regularly and carefully re-adjust their selection strategy.

457 **Impact of GS on genetic variance**

458 Not only the genetic gain is important for the evaluation of the GS strategy, but also
459 the genetic variance reduction of T_t . As expected, all the selection strategies showed
460 a decrease in the genetic variance after selection (Figure S9). This tendency increased
461 when GS was implemented. This is in accordance with former studies (Gaynor et al.,
462 2017; Muleta et al., 2019) who showed a greater loss of genetic variance over time
463 using GS compared to PS. In our study, the genetic variance decreased particularly at
464 the stage of implementation (k), but not to the same extent for all strategies (Figure
465 3 and S9). This trend can be explained by the Bulmer effect (Bulmer, 1971), which
466 reduces the proportion of genetic variance due to linkage disequilibrium between
467 trait coding polymorphisms (Van Grevenhof et al., 2012). This is in accordance
468 with results of Jannink (2010), who showed that GS can accelerate the fixation of
469 favorable alleles for T_t compared to PS resulting in a loss of genetic variance for
470 the trait. The reduction of genetic variance, however, limits the ΔG for long-term
471 improvement. Therefore, maintaining diversity of the population in the breeding
472 materials is one possibility to slow down this drawback to improve long-term genetic
473 gain in breeding programs (Gorjanc et al., 2018). However, for commercial breeding
474 programs a balance between short and long-term gain of selection is required, which
475 needs further research.

476 **Conclusions**

477 The present study demonstrated that implementing GS in a typical clone breeding
478 program improves the gain of selection even without exploiting the possibilities to

479 reduce the length of the breeding cycles. Furthermore, we showed that the integration
480 of GS in consecutive selection stages can largely enhance the gain from selection
481 compared to the use in only one stage. In detail, the strategy GS-SL:SH:A is highly
482 recommended if the correlation between T_a and T_t is negative. Otherwise, GS-SH:A
483 can be the most efficient strategy. Furthermore, we observed that the implementation
484 of GS in potato breeding programs requires the adjustment of the selection intensities
485 as well as the phenotyping intensities compared to those typically used in breeding
486 programs exploiting exclusively PS. Finally, we outlined how to adjust the selection
487 intensities in potato breeding programs after implementing GS.

DECLARATIONS

488

Funding

489 This study was funded by the Federal Ministry of Food and Agriculture/Fachagentur
490 Nachwachsende Rohstoffe (grantID 22011818, PotatoTools). The funders had no
491 influence on study design, the collection, analysis and interpretation of data, the
492 writing of the manuscript, and the decision to submit the manuscript for publication.

493

Competing interests

494 The authors declare no conflict of interest.

495

Author contributions

496 BS and DVI designed and coordinated the project; PYW performed the analyses; JR,
497 KM, and VP provided details about breeding schemes; PYW, BS, and DVI wrote
498 the manuscript. All authors read and approved the final manuscript.

499

Acknowledgements

500 Computational infrastructure and support were provided by the Centre for Informa-
501 tion and Media Technology (ZIM) at Heinrich Heine University Düsseldorf.

502

Data availability

503 The sequence variant information and the scripts are available from the authors upon
504 reasonable request.

REFERENCES

505 Stokstad E. The new potato. *Science* **363** (2019) 574–577. doi:10.1126/SCIENCE.
506 363.6427.574/ASSET/834729B8-0645-4669-B58E-DF08B3CFBFB0/ASSETS/
507 GRAPHIC/363_574_F4.JPG.
508 Ortiz R, Reslow F, Cuevas J, Crossa J. Genetic gains in potato breeding as
509 measured by field testing of cultivars released during the last 200 years in the
510 Nordic Region of Europe. *The Journal of Agricultural Science* (2022) 1–7. doi:
511 10.1017/S002185962200034X.
512 Lindhout P, Meijer D, Schotte T, Hutten RC, Visser RG, van Eck HJ. Towards F
513 1 hybrid seed potato breeding. *Potato Research* **54** (2011) 301–312. doi:10.1007/
514 S11540-011-9196-Z/FIGURES/4.
515 Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C, Bethke PC, et al.
516 Reinventing potato as a diploid inbred line-based Crop. *Crop Science* **56** (2016)
517 1412–1422. doi:10.2135/CROPSCI2015.12.0740.
518 Grüneberg W, Mwanga R, Andrade M, Espinoza J. Selection methods. Part 5: breed-
519 ing clonally propagated crops. Ceccarelli S, Guimarães EP, Weltzien E, editors,
520 *Plant Breeding and Farmer Participation* (Food and Agriculture Organization of
521 the United Nations (FAO)) (2009), 275–322.
522 Gopal J. Considerations for successful breeding. Gopal J, Khurana SMP, editors,
523 *Handbook of Potato Production, Improvement, and Postharvest Management* (CRC
524 Press). 1st edn. (2006), 77–108. doi:10.1201/9780429246623-3.
525 Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using
526 genome-wide dense marker maps. *Genetics* **157** (2001) 1819–1829.

527 Desta ZA, Ortiz R. Genomic selection: genome-wide prediction in plant improvement.

528 *Trends in Plant Science* **19** (2014) 592–601. doi:10.1016/j.tplants.2014.05.006.

529 Slater AT, Cogan NO, Forster JW, Hayes BJ, Daetwyler HD. Improving genetic gain

530 with genomic selection in autotetraploid potato. *The Plant Genome* **9** (2016) 0.

531 doi:10.3835/plantgenome2016.02.0021.

532 Sverrisdóttir E, Byrne S, Sundmark EHR, Johnsen HØ, Kirk HG, Asp T, et al. Ge-

533 nomic prediction of starch content and chipping quality in tetraploid potato using

534 genotyping-by-sequencing. *Theoretical and Applied Genetics* **130** (2017) 2091–

535 2108. doi:10.1007/S00122-017-2944-Y/FIGURES/5.

536 Enciso-Rodriguez F, Douches D, Lopez-Cruz M, Coombs J, de los Campos G. Ge-

537 nomic selection for late blight and common scab resistance in tetraploid potato

538 (*Solanum tuberosum*). *G3: Genes—Genomes—Genetics* **8** (2018) 2471. doi:

539 10.1534/G3.118.200273.

540 Endelman JB, Carley CA, Bethke PC, Coombs JJ, Clough ME, da Silva WL,

541 et al. Genetic variance partitioning and genome-wide prediction with allele

542 dosage information in autotetraploid potato. *Genetics* **209** (2018) 77–87. doi:

543 10.1534/genetics.118.300685.

544 Stich B, Van Inghelandt D. Prospects and potential uses of genomic prediction of

545 key performance traits in tetraploid potato. *Frontiers in Plant Science* **9** (2018)

546 159. doi:10.3389/fpls.2018.00159.

547 Sverrisdóttir E, Sundmark EHR, Johnsen HØ, Kirk HG, Asp T, Janss L, et al. The

548 value of expanding the training population to improve genomic selection models in

549 tetraploid potato. *Frontiers in Plant Science* **9** (2018) 1118. doi:10.3389/FPLS.
550 2018.01118/PDF.

551 Caruana BM, Pembleton LW, Constable F, Rodoni B, Slater AT, Cogan NO. Validation
552 of genotyping by sequencing using transcriptomics for diversity and application
553 of genomic selection in tetraploid potato. *Frontiers in Plant Science* **10** (2019) 670.
554 doi:10.3389/FPLS.2019.00670/BIBTEX.

555 Byrne S, Meade F, Mesiti F, Griffin D, Kennedy C, Milbourne D. Genome-wide
556 association and genomic prediction for fry color in potato. *Agronomy* **10** (2020)
557 90. doi:10.3390/AGRONOMY10010090.

558 Gemenet DC, Lindqvist-Kreuze H, De Boeck B, da Silva Pereira G, Mollinari
559 M, Zeng ZB, et al. Sequencing depth and genotype quality: accuracy and
560 breeding operation considerations for genomic selection applications in autopoly-
561 ploid crops. *Theoretical and Applied Genetics* **133** (2020) 3345–3363. doi:
562 10.1007/S00122-020-03673-2/FIGURES/7.

563 Sood S, Lin Z, Caruana B, Slater AT, Daetwyler HD. Making the most of all data:
564 combining non-genotyped and genotyped potato individuals with HBLUP. *Plant
565 Genome* **13** (2020) 1–12. doi:10.1002/tpg2.20056.

566 Wilson S, Zheng C, Maliepaard C, Mulder HA, Visser RG, van der Burgt A, et al. Un-
567 derstanding the effectiveness of genomic prediction in tetraploid potato. *Frontiers
568 in Plant Science* **12** (2021) 1634. doi:10.3389/FPLS.2021.672417/BIBTEX.

569 Werner CR, Gaynor RC, Sargent DJ, Lillo A, Gorjanc G, Hickey JM. Genomic
570 selection strategies for clonally propagated crops. *bioRxiv* (2020) 1–54. doi:10.
571 1101/2020.06.15.152017.

572 Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, et al. Genomic
573 selection and association mapping in rice (*Oryza sativa*): effect of trait genetic ar-
574 chitecture, training population composition, marker number and statistical model
575 on accuracy of rice genomic selection in elite, tropical rice breeding lines. *PLOS*
576 *Genetics* **11** (2015) e1004982. doi:10.1371/JOURNAL.PGEN.1004982.

577 Longin CFH, Utz HF, Reif JC, Schipprack W, Melchinger AE. Hybrid maize breed-
578 ing with doubled haploids: I. one-stage versus two-stage selection for testcross
579 performance. *Theoretical and Applied Genetics* **112** (2006) 903–912. doi:10.1007/
580 s00122-005-0192-z.

581 Longin CFH, Mi X, Würschum T. Genomic selection in wheat: optimum allo-
582 cation of test resources and comparison of breeding strategies for line and hy-
583 brid breeding. *Theoretical and Applied Genetics* **128** (2015) 1297–1306. doi:
584 10.1007/S00122-015-2505-1.

585 Marulanda JJ, Mi X, Melchinger AE, Xu JL, Würschum T, Longin CFH. Optimum
586 breeding strategies using genomic selection for hybrid breeding in wheat, maize,
587 rye, barley, rice and triticale. *Theoretical and Applied Genetics* **129** (2016) 1901–
588 1913. doi:10.1007/s00122-016-2748-5.

589 Gaynor RC, Gorjanc G, Hickey JM. AlphaSimR: an R package for breeding pro-
590 gram simulations. *G3: Genes—Genomes—Genetics* **11** (2021). doi:10.1093/
591 G3JOURNAL/JKAA017.

592 Hayes B, Goddard ME. The distribution of the effects of genes affecting quantitative
593 traits in livestock. *Genetics Selection Evolution* **33** (2001) 209–229.

594 Melchinger AE, Longin CF, Utz HF, Reif JC. Hybrid maize breeding with doubled

595 haploid lines: quantitative genetic and selection theory for optimum allocation of
596 resources. *Proceedings of the 41st annual Illinois corn breeders school* (2005), 8–21.

597 Krishnappa G, Savadi S, Tyagi BS, Singh SK, Mamrutha HM, Kumar S, et al. In-
598 tegrated genomic selection for rapid improvement of crops. *Genomics* **113** (2021)
599 1070–1086. doi:10.1016/J.YGENO.2021.02.007.

600 Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G, et al. Enhancing
601 the rate of genetic gain in public-sector plant breeding programs: lessons from
602 the breeder's equation. *Theoretical and Applied Genetics* **132** (2019) 627–645.
603 doi:10.1007/S00122-019-03317-0/FIGURES/5.

604 Araus JL, Cairns JE. Field high-throughput phenotyping: the new crop breeding
605 frontier. *Trends in Plant Science* **19** (2014) 52–61. doi:10.1016/J.TPLANTS.2013.
606 09.008.

607 Ragoussis J. Genotyping technologies for genetic research. *Annual Re-
608 view of Genomics and Human Genetics* **10** (2009) 117–133. doi:10.1146/
609 ANNREV-GENOM-082908-150116.

610 Gaynor RC, Gorjanc G, Bentley AR, Ober ES, Howell P, Jackson R, et al. A two-
611 part strategy for using genomic selection to develop inbred lines. *Crop Science* **57**
612 (2017) 2372–2386. doi:10.2135/cropsci2016.09.0742.

613 Muleta KT, Pressoir G, Morris GP. Optimizing genomic selection for a sorghum
614 breeding program in Haiti: a simulation study. *G3: Genes—Genomes—Genetics*
615 **9** (2019) 391–401. doi:10.1534/g3.118.200932.

616 Bulmer MG. The effect of selection on genetic variability. *The American Naturalist*
617 **105** (1971) 201–211.

618 Van Grevenhof EM, Van Arendonk JA, Bijma P. Response to genomic selection: the
619 Bulmer effect and the potential of genomic selection when the number of phenotypic
620 records is limiting. *Genetics Selection Evolution* **44** (2012) 1–10. doi:10.1186/
621 1297-9686-44-26/FIGURES/3.

622 Jannink JL. Dynamics of long-term genomic selection. *Genetics Selection Evolution*
623 **42** (2010) 1–11. doi:10.1186/1297-9686-42-35/FIGURES/3.

624 Gorjanc G, Gaynor RC, Hickey JM. Optimal cross selection for long-term genetic
625 gain in two-part programs with rapid recurrent genomic selection. *Theoretical and
626 Applied Genetics* **131** (2018) 1953–1966. doi:10.1007/s00122-018-3125-3.

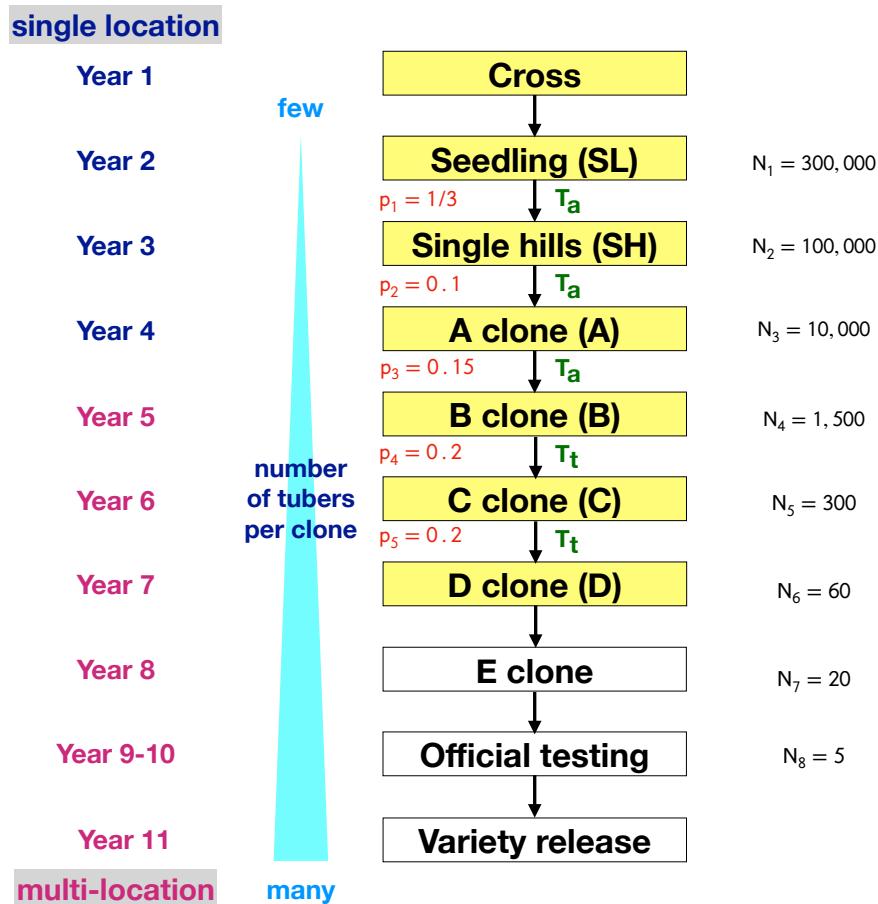


Figure 1: The standard clone breeding program examined in this study that relies exclusively on phenotypic selection. p_1-p_5 are the selected proportions from SL to SH, SH to A, A to B, B to C, and C to D, respectively, where SL, SH, A, B, C, and D represent the stages of seedling, single hills, A, B, C, and D clones. T_a represented the integral of early measured traits and T_t the integral of the target traits. The yellow marked stages are those that were examined in our study.

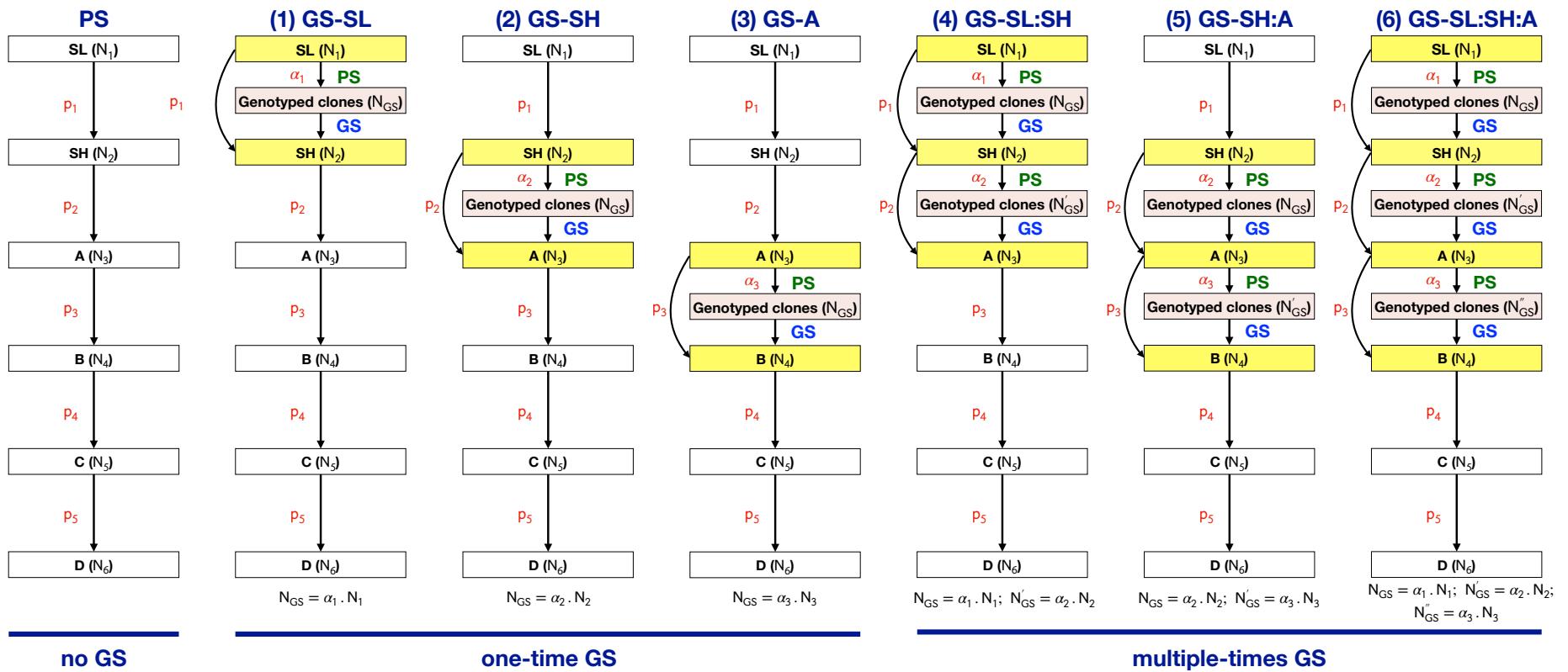


Figure 2: Graphical illustration of the standard as well as the six selection strategies that include genomic selection that were examined in our study. p_1-p_5 are the selected proportions from SL to SH, SH to A, A to B, B to C, and C to D, respectively, where SL, SH, A, B, C, and D represent the stages of seedling, single hills, A, B, C, and D clones. α_k the proportion of clones selected by PS to be genotyped in stage k and N_k is the number of clones of the respective stage.

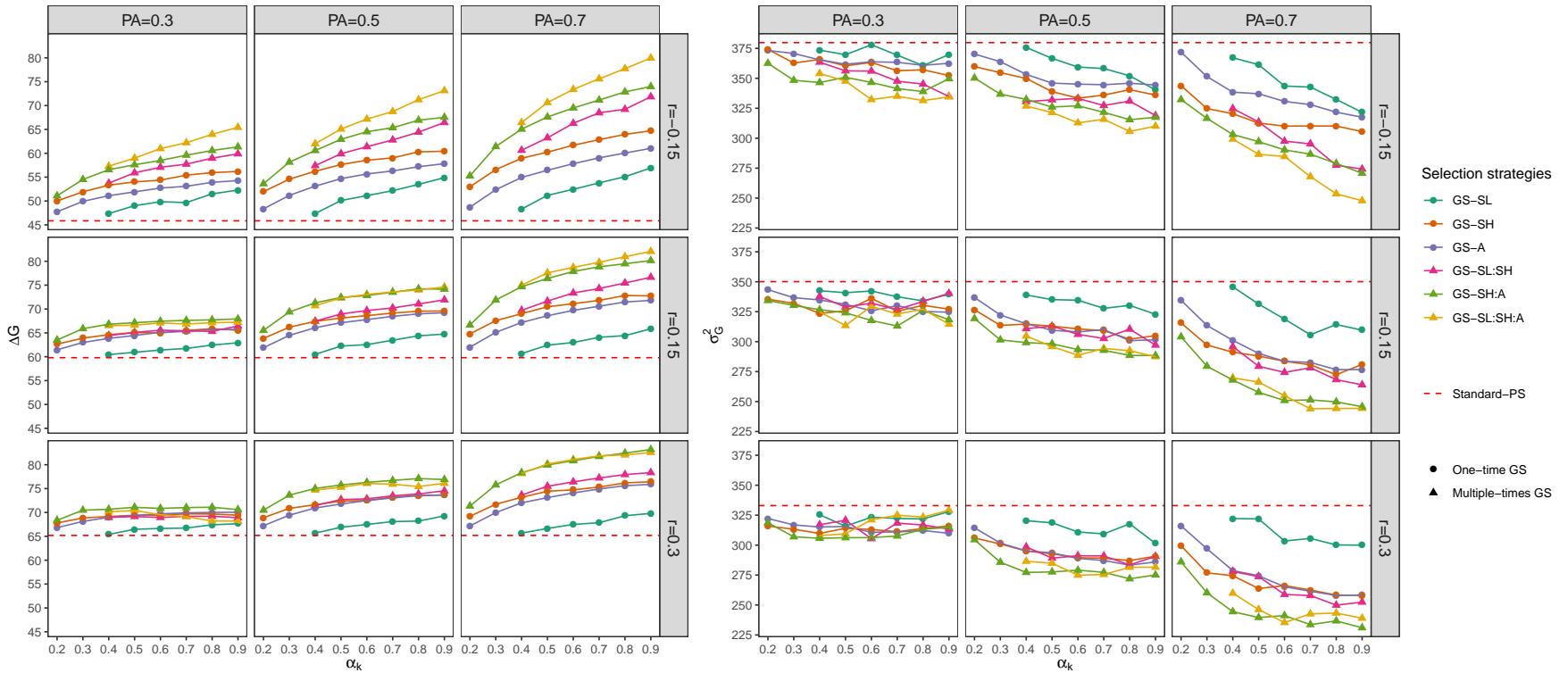


Figure 3: Genetic gain (ΔG , left) and genetic variance (σ_G^2 , right) for the target trait on average across 1,000 simulation runs at D clone stage for different weights of genomic selection (GS) relative to phenotypic selection (α_k), different selection strategies, different correlations between the traits ($r=-0.15, 0.15$, and 0.3), prediction accuracies ($PA=0.3, 0.5$, and 0.7), and for the ratio of variance components $VC1$ ($\sigma_G^2 : \sigma_{G \times L}^2 : \sigma_\epsilon^2 = 1 : 1 : 0.5$). The details regarding the selection strategies are shown in Figure 2.

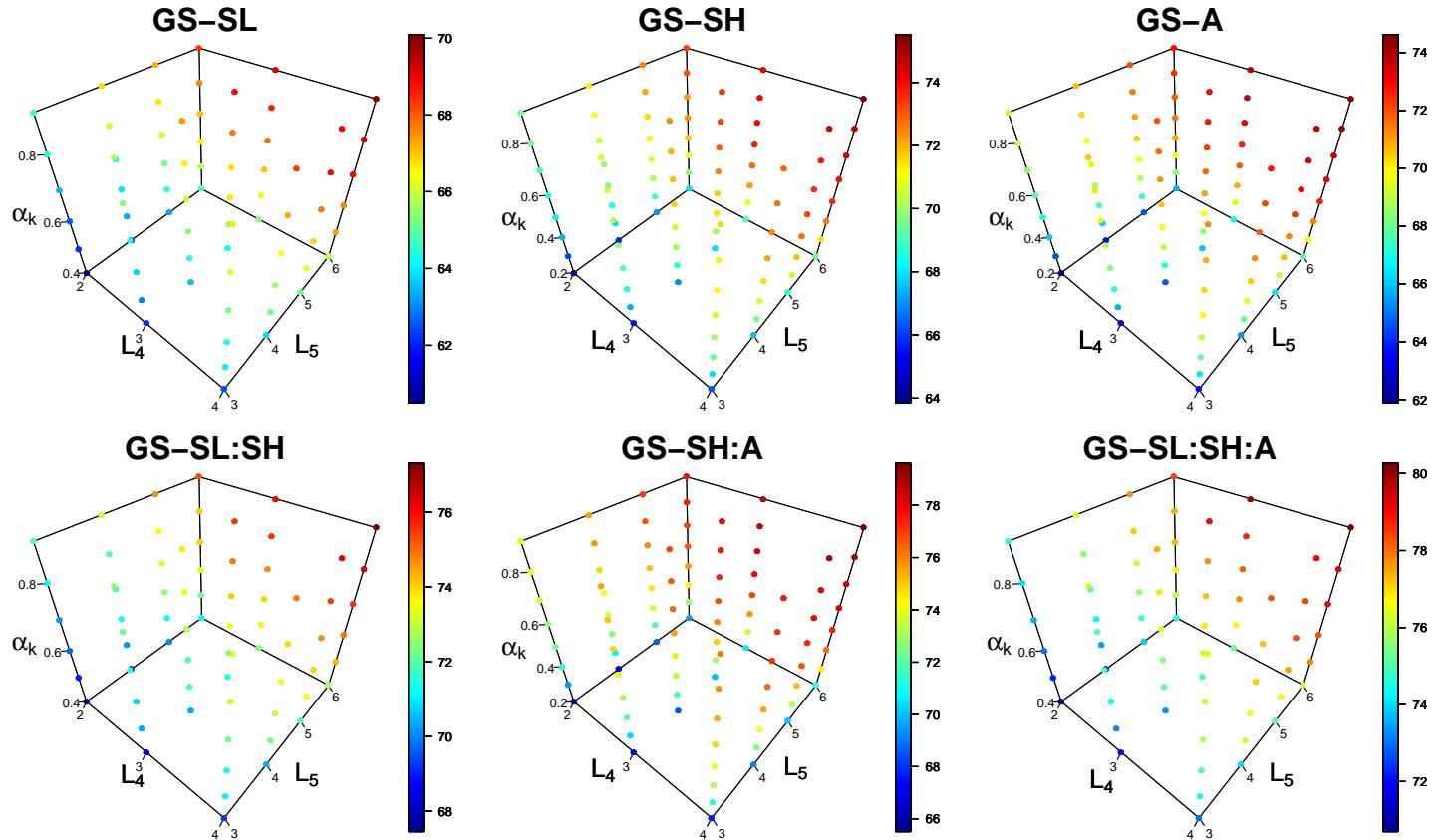


Figure 4: Genetic gain for the target trait (ΔG) on average across 1,000 simulation runs at the D clone stage for six different selection strategies with genomic selection (GS) for varying numbers of locations in the B and C clone stages (L_4 and L_5) and different weights of genomic selection (GS) relative to phenotypic selection (α_k) when the correlation between the two traits was set to 0.15 and prediction accuracy was set to 0.5.

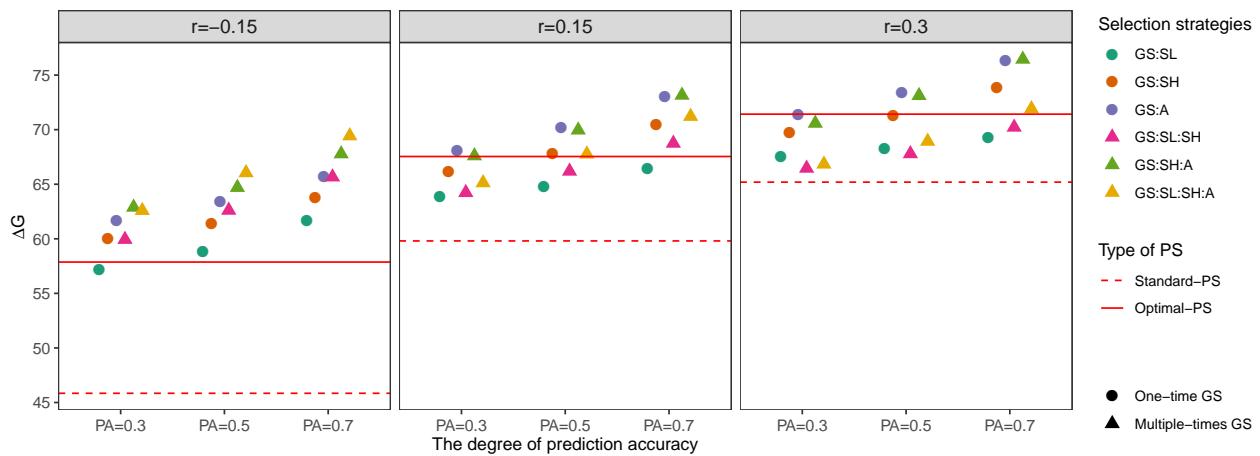


Figure 5: Genetic gain of the target trait (ΔG) after optimally allocated resources for different correlations between the traits ($r = -0.15$, 0.15 , and 0.3) and different prediction accuracies ($PA = 0.3$, 0.5 , and 0.7). The presented ΔG values are the average of the genetic gains from the grid search sets that revealed no significant ($P < 0.05$) difference compared to the set with maximum genetic gain.

Table 1: Dimensioning of a standard potato breeding program that exclusively relies on phenotypic selection.

Stage	Number of clones	Number of locations	Phenotyping cost per clone and plot (€)	Cost per stage (€)
Seedling	300,000	1	1.4	420,000
Single hills	100,000	1	1.4	140,000
A clone	10,000	1	1.4	14,000
B clone	1,500	2	25	75,000
C clone	300	3	25	22,500
D clone	60	4	25	6,000
Sum				677,500

Table 2: Optimum allocation of resources to maximize genetic gain of the target trait (ΔG) for the different selection strategies and correlations between the two traits ($r=-0.15$, 0.15 , and 0.3). The prediction accuracy was 0.5 and the phenotyping cost of early measured trait 1.4 € and genotyping cost 25 €. p_1 to p_5 , α_k , and N_1 are the selected proportion per stage, the weight of genomic selection relative to phenotypic selection, and the number of clones at the seedling stage, respectively. For description of selection strategies see text.

Correlations	Selection strategies	ΔG ¹	$SD_{\Delta G}$ ²	p_1	p_2	p_3	p_4	p_5	α_k	N_1
-0.15	PS	57.87 (g)	5.04	0.39	0.36	0.31	0.10	0.10	-	152,995.09
	GS-SL	58.86 (f)	5.18	0.30	0.50	0.50	0.16	0.23	0.87	23,709.50
	GS-SH	61.38 (e)	5.56	0.44	0.29	0.50	0.13	0.19	0.88	43,099.80
	GS-A	63.43 (c)	5.88	0.46	0.48	0.21	0.10	0.20	0.90	67,708.00
	GS-SL:SH	62.61 (d)	5.71	0.38	0.45	0.50	0.17	0.21	0.90	22,501.43
	GS-SH:A	64.70 (b)	6.03	0.48	0.38	0.37	0.14	0.19	0.90	40,018.33
	GS-SL:SH:A	66.05 (a)	6.22	0.43	0.47	0.47	0.16	0.20	0.90	21,914.47
0.15	PS	67.54 (b)	6.45	0.28	0.38	0.38	0.10	0.10	-	170,906.06
	GS-SL	64.82 (d)	6.06	0.16	0.50	0.50	0.16	0.21	0.40	50,256.67
	GS-SH	67.79 (b)	6.44	0.24	0.23	0.50	0.16	0.19	0.74	93,815.07
	GS-A	70.18 (a)	6.75	0.32	0.45	0.19	0.13	0.18	0.82	108,386.59
	GS-SL:SH	66.19 (c)	6.21	0.39	0.44	0.50	0.16	0.20	0.86	23,237.68
	GS-SH:A	69.96 (a)	6.76	0.19	0.38	0.39	0.16	0.18	0.89	95,290.54
	GS-SL:SH:A	67.76 (b)	6.50	0.41	0.46	0.46	0.16	0.21	0.86	23,206.52
0.3	PS	71.42 (b)	7.05	0.23	0.39	0.42	0.10	0.10	-	178,386.46
	GS-SL	68.24 (d)	6.54	0.13	0.49	0.49	0.17	0.20	0.28	65,661.65
	GS-SH	71.31 (b)	6.94	0.17	0.18	0.49	0.18	0.21	0.66	135,331.14
	GS-A	73.43 (a)	7.18	0.22	0.41	0.16	0.17	0.19	0.77	159,402.35
	GS-SL:SH	67.79 (d)	6.46	0.33	0.39	0.49	0.18	0.21	0.68	30,172.78
	GS-SH:A	73.12 (a)	7.15	0.13	0.37	0.37	0.17	0.19	0.86	123,779.24
	GS-SL:SH:A	68.93 (c)	6.62	0.40	0.44	0.44	0.16	0.20	0.75	26,376.25

¹ The letters in parentheses after ΔG represent the significance groups ($P < 0.05$) across these selection strategies within a specific correlation.

² $SD_{\Delta G}$ is the standard deviation of ΔG across 1,000 simulation runs.

Table 3: Optimum allocation of resources to maximize genetic gain of the target trait (ΔG) across different cost scenarios when genomic selection was applied in single hills and A clone stages (GS-SH:A). The correlation between the two traits was 0.15 and the prediction accuracy 0.5. p_1 to p_5 , α_k , and N_1 are the selected proportion per stage, the weight of genomic selection relative to phenotypic selection, and the number of clones at the seedling stage, respectively.

Cost _{T_a} ¹	Cost _{geno} ¹	ΔG ²	$SD_{\Delta G}$ ³	p_1	p_2	p_3	p_4	p_5	α_k	N_1
0.70	15	72.33 (a)	7.08	0.17	0.34	0.34	0.14	0.16	0.87	171,397.94
0.70	25	70.76 (c)	6.87	0.15	0.37	0.37	0.15	0.18	0.87	133,082.10
0.70	40	69.11 (e)	6.66	0.12	0.41	0.40	0.16	0.20	0.89	106,152.00
1.05	15	71.85 (ab)	7.00	0.20	0.35	0.36	0.14	0.17	0.88	135,898.99
1.05	25	70.39 (cd)	6.83	0.16	0.38	0.38	0.16	0.17	0.88	113,093.84
1.05	40	68.61 (ef)	6.57	0.15	0.40	0.41	0.18	0.19	0.87	87,752.05
1.40	15	71.39 (b)	6.95	0.23	0.35	0.37	0.14	0.17	0.88	110,223.57
1.40	25	69.96 (d)	6.76	0.19	0.38	0.39	0.16	0.18	0.89	95,290.54
1.40	40	68.41 (f)	6.52	0.17	0.41	0.41	0.16	0.21	0.90	76,796.40

¹ Cost_{T_a} is the phenotyping cost of early measured trait, and Cost_{geno} the genotyping cost per clone.

² The letters in parentheses after ΔG represent the significance groups ($P < 0.05$) across these cost scenarios.

³ $SD_{\Delta G}$ is the standard deviation of ΔG across 1,000 simulation runs.