

1 **Title:** *retro-Tango enables versatile retrograde circuit tracing in Drosophila*

2

3 **Authors:** Altar Sorkaç^{1,2}, Rareş A Moşneanu^{1,2}, Anthony M Crown^{1,2}, Doruk Savaş^{1,2},

4 Angel M Okoro^{1,2}, Mustafa Talay^{1,2,3}, Gilad Barnea^{1,2*}

5

6 **Affiliations:**

7 1 Department of Neuroscience, Brown University, Providence, RI 02912, USA

8 2 Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA

9 3 Current Address: Howard Hughes Medical Institute, Department of Molecular and

10 Cellular Biology, Harvard University, Cambridge, MA, 02138, USA

11 * Correspondence to: gilad_barnea@brown.edu

12

13 **Abstract:**

14

15 Transsynaptic tracing methods are crucial tools in studying neural circuits. Although

16 a couple of anterograde tracing methods and a targeted retrograde tool have been

17 developed in *Drosophila melanogaster*, there is still need for an unbiased, user-friendly,

18 and flexible retrograde tracing system. Here we describe *retro-Tango*, a method for

19 transsynaptic, retrograde circuit tracing and manipulation in *Drosophila*. In this genetically

20 encoded system, a ligand-receptor interaction at the synapse triggers an intracellular

21 signaling cascade that results in reporter gene expression in presynaptic neurons.

22 Importantly, panneuronal expression of the elements of the cascade renders this method

23 versatile, enabling its use not only to test hypotheses but also to generate them. We
24 validate *retro-Tango* in various circuits and benchmark it by comparing our findings with
25 the electron microscopy reconstruction of the *Drosophila* hemibrain. Our experiments
26 establish *retro-Tango* as a key method for circuit tracing in neuroscience research.

27

28 **Main text:**

29

30 INTRODUCTION

31

32 The Turkish poet Nazım Hikmet wrote:

33 *To live, like a tree one and free*

34 *And like a forest, sisterly* (Hikmet, 2002).

35 This also holds true to the function of the nervous system. Like forests, neural circuits
36 have evolved as congruous networks of individual units: neurons. These networks
37 integrate external stimuli with the internal state of the animal and generate the proper
38 behavioral responses to the changing environment. Therefore, understanding the
39 individual neuron is invaluable for deciphering animal behavior; yet the study of circuits is
40 an indispensable complement to it.

41

42 The study of neural circuits encompasses a variety of approaches of which the analysis
43 of connectivity between neurons is fundamental. In this respect, the complete electron
44 microscopy (EM) reconstruction of the *Caenorhabditis elegans* nervous system in the

45 1980s (White et al., 1986) and the ongoing efforts to complete the *Drosophila*
46 *melanogaster* connectome (Bates, Schlegel, et al., 2020; Eichler et al., 2017; Engert et
47 al., 2022; Fushiki et al., 2016; Horne et al., 2018; Hulse et al., 2021; Marin et al., 2020;
48 Ohyama et al., 2015; Scheffer et al., 2020; Takemura, Aso, et al., 2017; Takemura, Nern,
49 et al., 2017; Zheng et al., 2018) provide the gold standard for the analysis of neural
50 circuits. These endeavors open new paths for the study of nervous systems. However,
51 like all methods, they come with their own shortcomings.

52

53 The EM reconstruction of the *C. elegans* nervous system was originally performed with a
54 single hermaphrodite reared at specific laboratory conditions. Further, it was not until 30
55 years later that the nervous system of a second animal, a male, was reconstructed (Cook
56 et al., 2019). As to *D. melanogaster*, the brain of a single female is still being
57 reconstructed. These time-consuming and labor-intensive aspects of EM reconstructions
58 preclude the study of individual differences that might arise from variances such as sex,
59 genetics, epigenetics, rearing conditions, and past experiences. Hence, transsynaptic
60 tracing techniques remain valuable even in the age of EM connectomics.

61

62 In *D. melanogaster*, techniques such as photoactivatable GFP (PA-GFP) (Datta et al.,
63 2008; Patterson & Lippincott-Schwartz, 2002) and GFP-reconstitution across synaptic
64 partners (GRASP) (Fan et al., 2013; Feinberg et al., 2008; Gordon & Scott, 2009;
65 Macpherson et al., 2015; Shearin et al., 2018) have been instrumental in studying neural
66 circuits and connectivity. Recently, two methods, *trans*-Tango (Talay et al., 2017) and

67 TRACT (Huang et al., 2017), were developed for anterograde transsynaptic tracing. In
68 addition, a retrograde transsynaptic tracing method, termed BAcTrace, was devised
69 (Cachero et al., 2020). All three techniques differ from the aforementioned PA-GFP and
70 GRASP in that they provide genetic access to synaptic partners of a set of neurons,
71 enabling their use in not only tracing but also monitoring and manipulation of neural
72 circuits (Snell et al., 2022). Furthermore, *trans*-Tango and TRACT do not necessitate
73 hypotheses prior to experimentation, since all neurons are capable of revealing the
74 postsynaptic signal should the cascades be triggered by their presynaptic partners. In
75 contrast, BAcTrace, by design, relies on the expression of the presynaptic components
76 of the cascade solely in candidate neurons. Therefore, it requires a hypothesis to be
77 tested, rendering this technique inherently biased. In addition, BAcTrace experiments are
78 constrained by the availability of drivers in candidate neurons because the presynaptic
79 components are expressed under a LexA driver. Hence, there is still a need for a versatile
80 retrograde tracing method that can be used as a hypothesis tester, and, more importantly,
81 as a hypothesis generator.

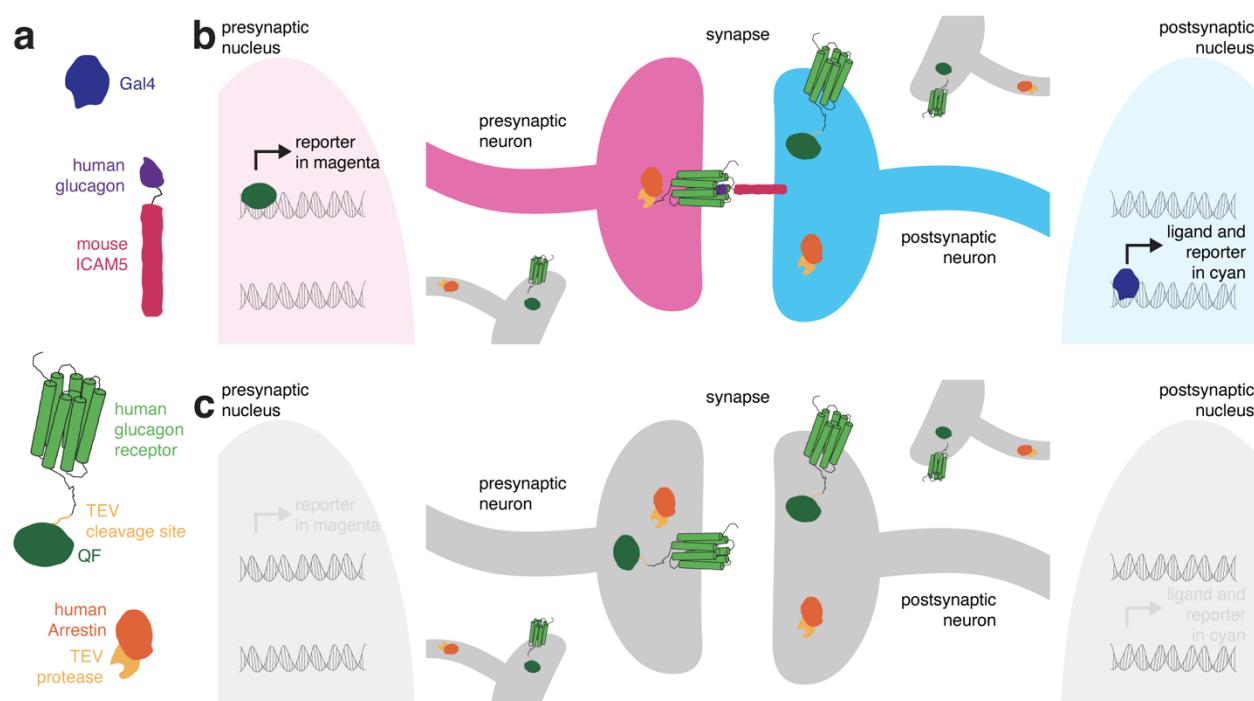
82
83 To fill this gap, here we present *retro*-Tango, a retrograde version of *trans*-Tango, as a
84 user-friendly, versatile retrograde transsynaptic tracing technique for use in *D.*
85 *melanogaster*. Like *trans*-Tango, *retro*-Tango functions through a signaling cascade
86 initiated by a ligand-receptor interaction at the synapse and resulting in reporter
87 expression in synaptic partners. To target the reporter expression to presynaptic neurons,
88 we devised a ligand tethered to a protein that localizes to dendrites in the starter neurons.

89 In order to benchmark the system, we used it in various known circuits. First, we revealed
90 the presynaptic partners of the giant fiber from the escape circuit and compared our
91 results to the EM reconstruction. Second, to demonstrate the versatility of *retro-Tango*,
92 we implemented it in the central complex. Third, we tested the specificity of the system
93 by using it in a sexually dimorphic circuit where the presynaptic partners of a set of
94 neurons differ between males and females. Lastly, we used *retro-Tango* in the sex
95 peptide circuit and in the olfactory system where we traced connections from the central
96 nervous system (CNS) to the periphery and vice versa. Our study establishes *retro-Tango*
97 as a prime method for neuroscience research in fruit flies.

98

99 RESULTS

100


101 **Design of *retro-Tango***

102

103 *retro-Tango* is the retrograde counterpart of the transsynaptic tracing technique *trans-*
104 *Tango* (Talay et al., 2017), and both are based on the Tango assay for G-protein coupled
105 receptors (GPCRs) (Barnea et al., 2008). In the Tango assay, activation of a GPCR by
106 its ligand is monitored via a signaling cascade that eventually results in reporter gene
107 expression. This signaling cascade comprises two fusion proteins. The first is a GPCR
108 tethered to a transcriptional activator via a cleavage site recognized by the tobacco etch
109 virus N1a protease (TEV). The second is the human β -arrestin2 protein fused to TEV
110 (Arr::TEV). A third component is a reporter gene under control of the transcriptional

111 activator. Upon binding of the ligand to the receptor, arrestin is recruited to the activated
112 receptor bringing TEV in close proximity to its recognition site. TEV-mediated cleavage
113 then releases the transcriptional activator that in turn translocates to the nucleus to initiate
114 transcription of the reporter gene. These components are conserved in both transsynaptic
115 tracing techniques, *trans*-Tango (Talay et al., 2017) and *retro*-Tango. The novelty in both
116 methods is in the tethering of the ligand to a transmembrane protein to localize it to pre-
117 (*trans*-Tango), or post- (*retro*-Tango) synaptic sites. In this manner, the ligand activates
118 its receptor only across the synaptic cleft and initiates the signaling cascade in synaptic
119 partners. In both methods, the human glucagon (GCG) and the human glucagon receptor
120 (GCGR) are used as the ligand-receptor pair, and the GCGR is tethered to the
121 transcriptional activator QF (GCGR::TEVcs::QF) (Figure 1a).

122

123
124

125 Figure 1 The design of *retro*-Tango

126 **(a)** The components of *retro-Tango*. **(b)** In *retro-Tango*, all neurons express two of the components of
127 the signaling cascade: human glucagon receptor::TEV cleavage site::QF and human β-arrestin2::TEV
128 protease. They also carry the gene encoding the presynaptic mtdTomato reporter (magenta) under
129 the control of QF. Therefore, all neurons are capable of expressing the reporter. In starter neurons
130 expressing Gal4, the ligand (human glucagon::mouse ICAM5) is expressed along with the GFP
131 reporter (cyan) marking the postsynaptic starter neurons. The mICAM5 fusion localizes the ligand to
132 the postsynaptic sites such that the ligand activates its receptor only across the synapse. Upon
133 activation of the receptor in the presynaptic neuron, the Arrestin-TEV fusion is recruited. TEV-mediated
134 proteolytic cleavage then releases the transcription factor QF from the receptor. QF in turn translocates
135 to the nucleus and initiates transcription of the presynaptic magenta reporter. In neurons that are not
136 presynaptic to the starter neurons, the reporter is not expressed. **(c)** In the absence of a Gal4 driver,
137 the ligand is not expressed, and the signaling cascade is not triggered, resulting in no expression of
138 the reporters.

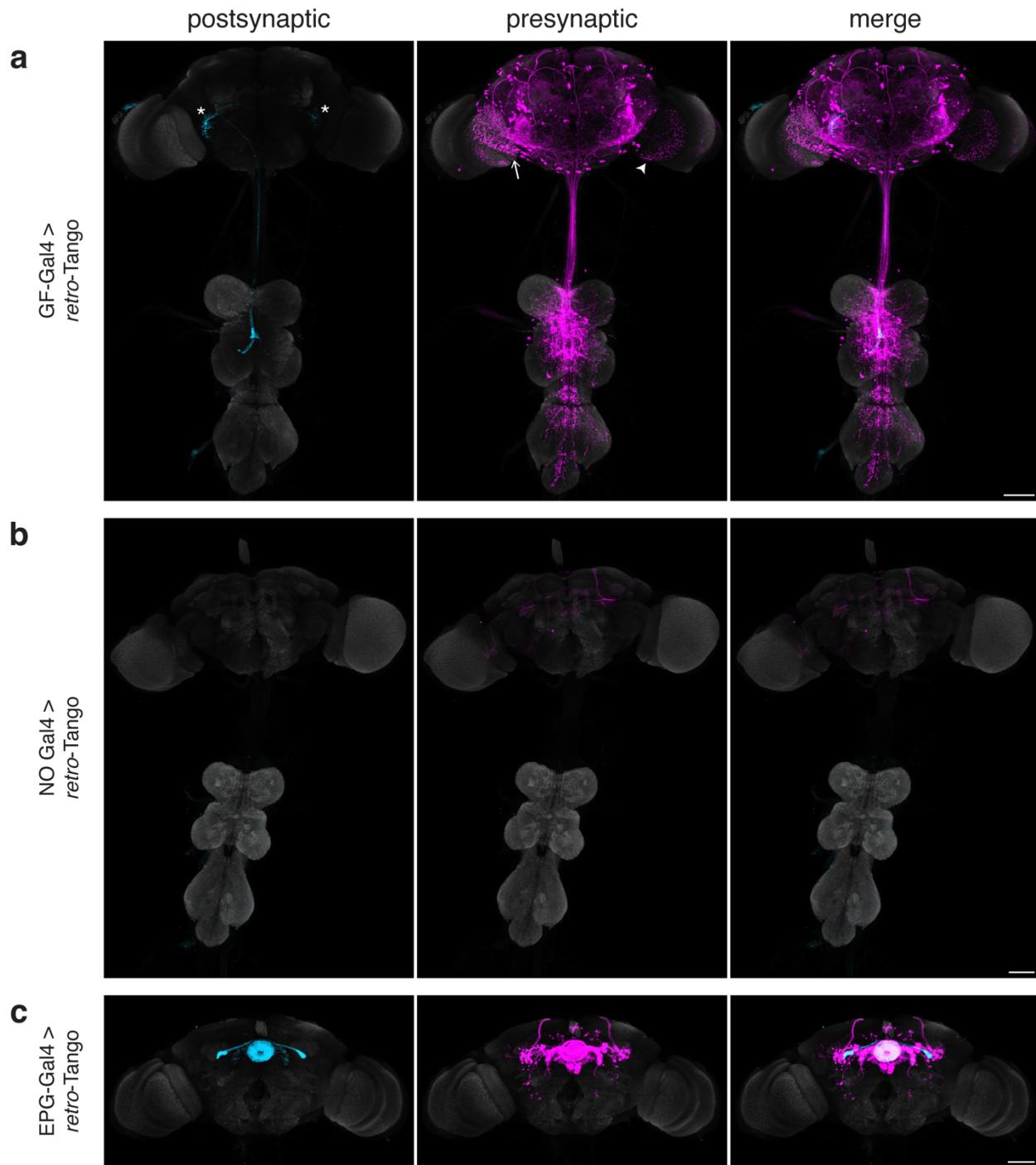
139

140 In *retro-Tango* the targeting of glucagon to postsynaptic sites is achieved via the mouse
141 intercellular adhesion molecule ICAM5 (Figure 1a). In *Drosophila* neurons, this protein is
142 present at low levels in cell bodies and mainly localizes to the dendrites but not the axons,
143 enabling its use as a dendritic marker (Nicolai et al., 2010). The ligand and the
144 postsynaptic reporter farnesylated GFP are stoichiometrically expressed under the
145 control of the Gal4/UAS system using the self-cleaving P2A peptide (Daniels et al., 2014)
146 (Figure 1–figure supplement 1). In this manner, the presence of the ligand is coupled with
147 the GFP signal, eliminating any discrepancy that might arise from differentially expressing
148 them from two separate genomic sites. Both the GCGR::TEVcs::QF and the Arr::TEV
149 fusion proteins are expressed panneuronally, and the expression of the presynaptic
150 reporter mtdTomato is controlled by the QF/QUAS binary system (Potter et al., 2010)
151 (Figure 1–figure supplement 1). In postsynaptic starter cells, Gal4 drives the expression
152 of both GFP and the ligand (Figure 1b). The interaction of the ligand with its receptor on
153 the presynaptic partners triggers the *retro-Tango* cascade that culminates in mtdTomato
154 expression in these neurons. By contrast, the ligand is not expressed in the absence of a

155 Gal4 driver. Therefore, the cascade is not triggered, and no presynaptic signal is
156 observed (Figure 1c). Since the presynaptic components of the pathway are expressed
157 panneuronally, all neurons have the capacity to reveal the presynaptic signal when the
158 ligand is expressed by their postsynaptic partners. Thus, the design of *retro-Tango* is not
159 inherently biased.

160

161 **Validation of *retro-Tango***


162

163 For the initial validation of *retro-Tango* we chose the giant fibers (GFs) of the escape
164 circuit. The GFs are descending command interneurons that respond to neural pathways
165 sensing looming stimuli, such as from a predator. They then relay this information to
166 downstream neurons for the fly to initiate the take-off response (Fotowat et al., 2009; von
167 Reyn et al., 2014). The GFs receive direct input from two types of visual projection
168 neurons: lobula columnar type 4 (LC4) (von Reyn et al., 2017) and lobula plate/lobula
169 columnar type 2 (LPLC2) (Ache et al., 2019). They then integrate this information and
170 convey it to the tergotrochanteral motor neurons (TTMNs) and the peripherally synapsing
171 interneurons (PSIs) in the ventral nerve cord (VNC). The GFs form chemical and electrical
172 synapses with both of these types of neurons (Allen et al., 2006). All of these neurons are
173 easily identifiable based on their morphology in the optic lobes or the VNC, rendering the
174 GF system attractive for validating *retro-Tango*. In addition, there is a specific driver line
175 that expresses only in the GFs (von Reyn et al., 2014). Further, the GFs are clearly

176 annotated in the EM reconstruction of the hemibrain (Zheng et al., 2018), allowing for the
177 comparison of the *retro*-Tango results with the annotated connectome.

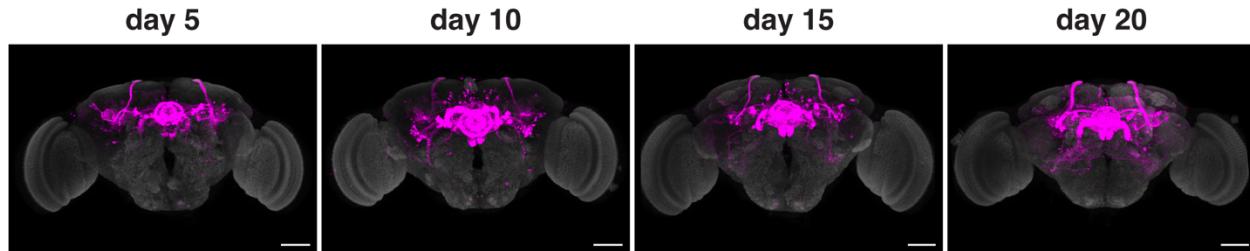
178

179 When we initiated *retro*-Tango from the GFs in adult males, we observed strong
180 presynaptic signal in cells with dense arborizations in the brain and sparse processes in
181 the VNC (Figure 2a). Upon close examination, we noticed few cell bodies in the VNC,
182 suggesting that the VNC signal originates mostly from descending neurons with somata
183 in the brain. As expected, we did not observe *retro*-Tango signal in the TTMns and PSIs,
184 known postsynaptic partners of the GFs. Importantly, we could identify neurons in the
185 optic lobes with the characteristic dendritic arborizations of the LC4s and the LPLC2s,
186 established presynaptic partners of the GFs. It is noteworthy that we observed sporadic
187 asymmetrical signal in the postsynaptic starter neurons, a phenomenon we notice when
188 we use some split-Gal4 drivers. Likewise, we observe asymmetry in the *retro*-Tango
189 signal in the presynaptic neurons. The stronger signals in the postsynaptic and the
190 presynaptic neurons are in the same hemisphere, likely reflecting higher ligand
191 expression in the starter neurons. Such differences in signal intensity may lead to
192 qualitative differences in presynaptic neurons revealed in each hemisphere. For example,
193 the LC4 neurons (marked by the arrow) are visible only in one hemisphere (Figure 2a).
194 Nonetheless, we conclude that *retro*-Tango yields strong signal and labels the expected
195 presynaptic partners of the GFs. Further, it does not exhibit false positive signal in the
196 postsynaptic targets of the GFs. These results indicate that *retro*-Tango is indeed
197 selective to the retrograde direction.

207 of the central complex leads to *retro-Tango* signal in their known presynaptic partners: PEN, PFR and
208 $\Delta 7$ neurons. The signal in these neurons can be easily discerned from the background noise.
209 Postsynaptic GFP (cyan), presynaptic mtdTomato (magenta) and neuropil (grey). Scale bars, 50 μ m.
210

211 It is noteworthy that we do not observe strong background noise with *retro-Tango* in the
212 absence of a Gal4 driver where the ligand is not expressed (Figure 2b). There is, however,
213 faint background noise in some of the Kenyon cells of the mushroom body as well as in
214 the fan-shaped body and noduli of the central complex. In addition, we occasionally
215 observe sporadic noise in a few neurons in the VNC. This background noise might be
216 due to leaky expression of the ligand, albeit in low levels as reflected by the absence of
217 the GFP signal. Alternatively, it might be due to leaky expression of the postsynaptic
218 reporter mtdTomato itself.

219


220 In view of the faint background noise that we observed in some brain regions, we decided
221 to examine whether *retro-Tango* can be used in one of these regions, the central complex.
222 The central complex is a series of interconnected neuropil structures that are thought to
223 act as the major navigation center of the fly brain. The flow of information through the
224 central complex indicates that it dynamically integrates various sensory cues with the
225 animal's internal state for goal-directed locomotion (Hulse et al., 2021). In the central
226 complex circuitry, ellipsoid body-protocerebral bridge-gall (EPG) neurons have dendrites
227 in the ellipsoid body (EB) and axons in the protocerebral bridge as well as in the lateral
228 accessory lobes. EPGs are the postsynaptic targets of the ring neurons of the EB. They
229 also form reciprocal connections with protocerebral bridge-ellipsoid body-noduli (PEN)
230 neurons, protocerebral bridge-fan shaped body-round body (PFR) neurons and $\Delta 7$

231 interneurons(Hulse et al., 2021; Seelig & Jayaraman, 2013; Sun et al., 2017). When we
232 initiated *retro-Tango* from the EPGs, we observed presynaptic signal in the predicted
233 presynaptic partners (Figure 2c). Moreover, this signal was much stronger than the noise
234 we observed in the absence of a driver, indicating that *retro-Tango* can indeed be used
235 in brain regions with background noise. Further, the absence of labelling in any
236 unexpected neuronal processes near the EPG cell bodies suggests that *retro-Tango* does
237 not lead to false positive signal due to the presence of its ligand in neuronal somata
238 (Figure 2–figure supplement 1). Finally, we do not observe presynaptic signal in starter
239 neurons, indicating that expression of the *retro-Tango* ligand in a starter neuron does not
240 activate the signaling pathway in the same cell (Figure 2–figure supplement 1).

241

242 We next sought to test the age-dependence of the presynaptic signal in *retro-Tango*. We
243 initiated *retro-Tango* from the EPGs and examined the signal in adults at days 5, 10, 15,
244 and 20 post-eclosion (Figure 3). We noticed that the signal accumulates and reaches
245 saturation around day 10 post-eclosion. However, a similar analysis with GFs as the
246 starter neurons indicated that the *retro-Tango* signal saturates later, around day 15
247 (Figure 3–figure supplement 1). Therefore, we concluded that the accumulation of the
248 *retro-Tango* signal depends on the circuit of interest, and possibly, on the strength of the
249 driver line being used. To be prudent, we examined adult flies 15 days post-eclosion for
250 the remainder of the study.

251

252
253

254 **Figure 3 Age dependence of retro-Tango**

255 The *retro-Tango* signal is observed in 5-day intervals upon ligand expression in the EPGs. The signal
256 accumulates with time and saturates around day 10 post-eclosion. Presynaptic mtdTomato (magenta)
257 and neuropil (grey). Scale bars, 50 μ m.

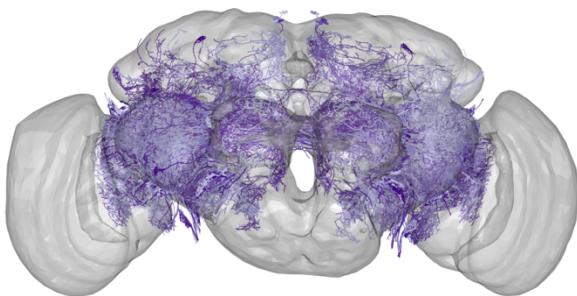
258

259 **Comparison of retro-Tango with the EM reconstruction of the female hemibrain**

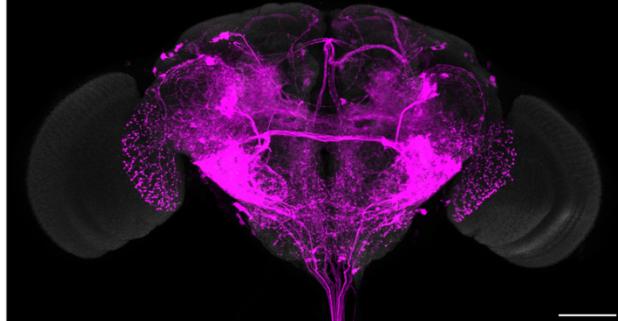
260

261 Having established the system in the GF and EPG circuits, we wished to benchmark it by
262 comparing the presynaptic signal of *retro-Tango* with the EM reconstruction of the female
263 hemibrain. In the connectome, we found 1101 neurons to be presynaptic to the giant fiber
264 (Figure 4-figure supplement 1a). We observed fewer presynaptic neurons with *retro-*
265 *Tango* (Figure 2a). Based on the EM reconstruction, the number of synapses that these
266 1101 neurons form with the GF ranges from 1 to 380. We, therefore, reasoned that the
267 number of synapses that a given presynaptic neuron forms with the starter neuron affects
268 whether it is labelled by *retro-Tango*. In other words, there is a threshold in the number of
269 synapses that a presynaptic neuron makes with a starter neuron under which it cannot
270 be labelled with *retro-Tango*. Neurons with fewer synapses than this threshold likely
271 constitute the false negatives of *retro-Tango*. This threshold is probably affected by the
272 circuit of interest and by the strength of the driver line.

273


274 To determine this threshold, we decided to count the presynaptic neurons of the GF
275 revealed by *retro-Tango* using a nuclear reporter. In these experiments, we counted the
276 neurons in each half of the brain focusing on the area that is covered by the connectome
277 (Figure 4–figure supplement 1b, c). We counted five experimental GF *retro-Tango* brains
278 and observed an average of 191(± 42) neurons in this area. In six control brains from flies
279 not carrying Gal4, we counted an average of 26(± 11) neurons. We concluded that in this
280 area, *retro-Tango* correctly labels approximately 165 neurons when initiated from the GF.
281 Of the 1101 neurons that the connectome reveals as presynaptic to the GF, 341 have cell
282 bodies in the area covered by the EM reconstruction. Therefore, *retro-Tango* identifies
283 approximately half of these neurons. We analyzed the connectome data for these 341
284 neurons and found that 168 of them have each 17 synapses or more with the GF. Given
285 that *retro-Tango* reveals approximately 165 neurons, we concluded that the threshold for
286 *retro-Tango* to identify the presynaptic partners of the GF is 17 synapses (Figure 4–figure
287 supplement 1a).

288
289 We subsequently used this newly determined threshold to sort the 1101 neurons revealed
290 by the connectome as presynaptic to the GF and identified 265 neurons. We then plotted
291 the skeletonizations of the EM segmentations of these 265 neurons (Figure 4a). When
292 we initiated *retro-Tango* from the GF in females, we revealed a strikingly similar pattern
293 (Figure 4b). It is noteworthy that we observe some differences in the *retro-Tango* signal
294 between males and females. Based on the connectome, LPLC2s form an average of 13
295 synapses per neuron with the giant fiber (Ache et al., 2019). This is below the threshold,


296 and indeed, we do not observe LPLC2s in females with *retro-Tango* (Figure 4b). By
297 contrast, we do observe them in males (Figure 2a). This discrepancy could be explained
298 by the location of the presynaptic mtdTomato reporter on the X-chromosome.
299 Accordingly, the reporter expression level in males is higher compared to heterozygous
300 females due to X-chromosome upregulation for dosage compensation(Gorchakov et al.,
301 2009). Thus, the threshold in hemizygous males is significantly lower than in
302 heterozygous females.

303

a GF presynaptic partners

b GF-Gal4 > retro-Tango

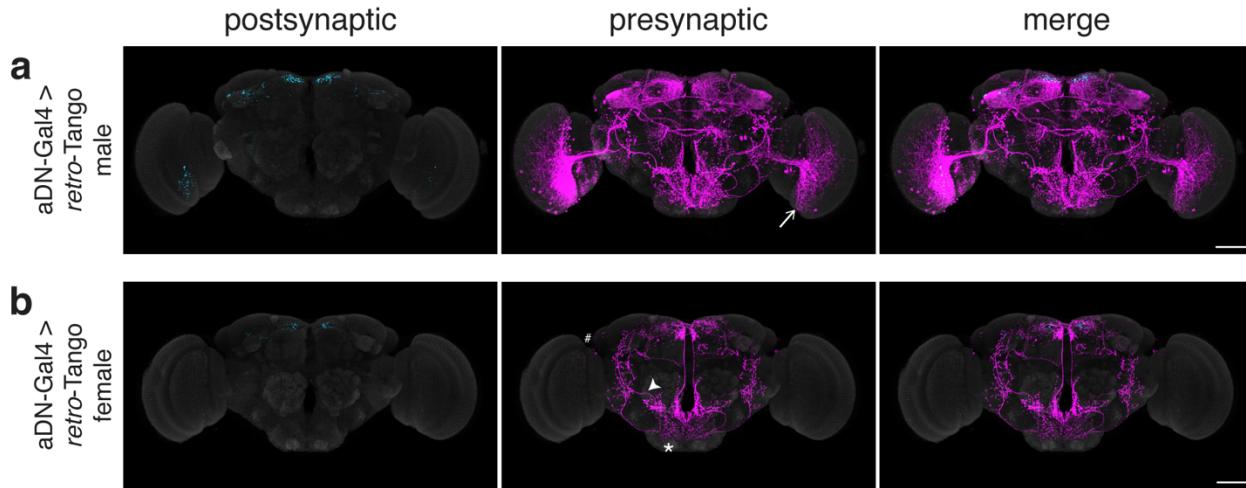
304

305

306 **Figure 4 Comparison of the *retro-Tango* signal with the EM reconstruction of the female**
307 **hemibrain**

308 **(a)** Plotting of the skeletonizations of the EM segmentations of presynaptic partners that connect with
309 the GF via 17 synapses or more. **(b)** Presynaptic partners of the GFs in a female fly as revealed by
310 *retro-Tango*. Presynaptic mtdTomato (magenta) and neuropil (grey). Scale bar, 50 μ m. Note the high
311 similarity between the patterns in both panels.

312


313 Specificity of *retro-Tango*

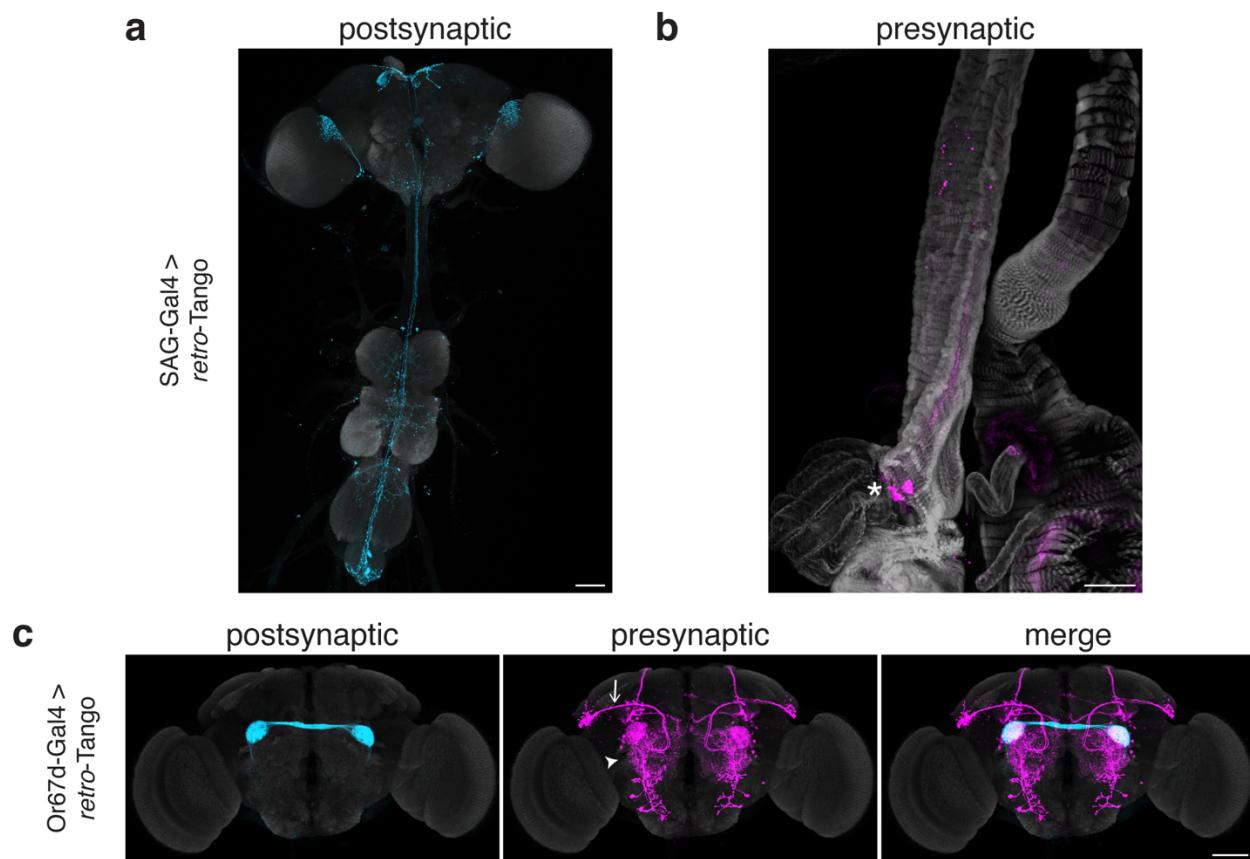
314

315 Having benchmarked *retro-Tango* in tracing various connections, we sought to determine
316 its specificity and reasoned that sexually dimorphic circuits would be apposite for this

317 analysis. One such circuit involves the anterior dorsal neurons (aDNs), a pair of neurons
318 in each hemisphere that receive inputs from distinct sensory systems in the two sexes. In
319 males, the aDNs receive visual input, whereas in females, the input instead comes from
320 the olfactory and thermo/hygrosensory systems (Nojima et al., 2021). Thus, we decided
321 to use the sexual dimorphism in the inputs to aDNs for testing the specificity of *retro-*
322 *Tango*. When we initiated *retro-Tango* from aDNs in males, we observed strong
323 presynaptic signal in the central brain, and more importantly, in the visual system (Figure
324 5a). However, we did not observe presynaptic signal in LC10 neurons as would be
325 predicted from this study (Nojima et al., 2021). A possible explanation for the absence of
326 labeling in LC10s could be that the strength of connections between LC10s and aDNs is
327 below the detection threshold of *retro-Tango*. Alternatively, LC10s may not be directly
328 presynaptic to aDNs as the connections between these neurons were revealed by a non-
329 synaptic version of GRASP (Gordon & Scott, 2009; Nojima et al., 2021). By contrast, in
330 females, we observed two neurons in the lateral antennal lobe tracts, few neurons in the
331 lateral horns (LHs), and neuronal processes in the suboesophageal zone (SEZ) as
332 previously reported (Figure 5b). However, the signal in females is low, likely because they
333 are heterozygous for the presynaptic reporter. Indeed, it seems that *retro-Tango* does not
334 identify all the presynaptic neurons reported in females (Nojima et al., 2021).
335 Nonetheless, the difference in the signal pattern between male and female brains
336 demonstrates the specificity of *retro-Tango*.

337

340 Figure 5 Revealing the specificity of *retro-Tango* in a sexually dimorphic circuit


341 (a) Initiating *retro-Tango* in aDNs in male flies reveals visual projection neurons (arrow) as presynaptic
342 partners. (b) Initiating *retro-Tango* in aDNs in females results in presynaptic reporter expression in the
343 lateral antennal lobe tract (arrowhead), the SEZ (asterisk), and the LH (hash). Postsynaptic GFP
344 (cyan), presynaptic mtdTomato (magenta) and neuropil (grey). Scale bars, 50 μ m.

346 Using *retro-Tango* to trace connections between the CNS and the periphery

347
348 Our experiments in the giant fiber, the central complex circuits and the aDNs established
349 *retro-Tango* for tracing connections within the CNS. Next, we wished to examine whether
350 *retro-Tango* can be used to trace connections between the CNS and the periphery. To
351 achieve this, we turned to two well-characterized circuits: the sex peptide (SP) circuit and
352 the olfactory circuit.

353
354 The SP circuit mediates the response of females to the presence of SP in the seminal
355 fluid upon mating. SP is detected by the SP sensory neurons (SPSNs) located in the
356 lower reproductive tract of females (Yapici et al., 2008). SPSNs project to the SP
357 abdominal ganglion (SAG) neurons in the CNS to initiate the post-mating switch, a set of

358 programs that alter the internal state of the female (Feng et al., 2014). Accordingly,
359 initiating *retro-Tango* from SAG neurons reveals presynaptic signal in a pair of neurons
360 in the lower reproductive tract, consistent with SPSNs (Figure 6a). This result confirms
361 that *retro-Tango* can be used to reveal connections between the CNS and the periphery.
362

363
364
365 **Figure 6 Tracing connections between the periphery and the CNS with *retro-Tango***
366 **(a)** Expression of the *retro-Tango* ligand in SAG neurons reveals **(b)** SPSNs (asterisk) as presynaptic
367 partners. **(c)** When *retro-Tango* is initiated from Or67d-expressing ORNs, PNs (arrow) and LNs
368 (arrowhead) are revealed as their presynaptic partners. Postsynaptic GFP (cyan), presynaptic
369 mtdTomato (magenta) and neuropil **(a, c)**, or phalloidin **(b)** (grey). Scale bars, 50 μ m.
370
371 In the olfactory circuit, olfactory receptor neurons (ORNs) located in the antennae and the
372 maxillary palps, the two olfactory sensory organs, project their axons to the antennal lobe,

373 a brain region consisting of multiple neuropil structures called glomeruli. The ORNs that
374 express the same olfactory receptor converge on the same glomerulus where they form
375 synapses with lateral interneurons (LNs) and olfactory projection neurons (PNs). The
376 PNs, in turn, relay the information to higher brain areas, primarily the mushroom body
377 (MB) and the LH. Thus, in a simplistic model, the flow of sensory information is from the
378 ORNs to the PNs while LNs form synapses with both neuronal types. However, all three
379 neuronal types are interconnected via reciprocal synapses (Horne et al., 2018).
380 Therefore, in this circuit, if we initiate *retro*-Tango in the ORNs, we expect to see
381 presynaptic signal in the PNs and LNs. We, hence, sought to test *retro*-Tango in these
382 reciprocal synapses. To this end, we initiated *retro*-Tango from a subset of ORNs that
383 express the olfactory receptor Or67d and project to the DA1 glomeruli. We, indeed,
384 observed presynaptic signal in PNs and LNs (Figure 6b). Together, these results confirm
385 that *retro*-Tango can be used to reveal synaptic connections between the CNS and the
386 periphery irrespective of the direction of information flow.

387

388 DISCUSSION

389

390 In this study, we presented *retro*-Tango, a new method for retrograde transsynaptic
391 tracing in *Drosophila*. *retro*-Tango is a versatile retrograde tracing method that can be
392 used both as a hypothesis tester and a hypothesis generator. It shares many of its
393 components with *trans*-Tango (Talay et al., 2017) and differs from it in the transmembrane
394 protein with which the ligand is delivered. In *trans*-Tango a dNeurexin1-hICAM1 chimeric

395 protein localizes the ligand to presynaptic sites such that it activates its receptor only in
396 postsynaptic neurons across the synaptic cleft (Talay et al., 2017). By contrast, in *retro-*
397 *Tango* the ligand is attached to mICAM5, a dendritic marker in *Drosophila* (Nicolai et al.,
398 2010). Thus, driving the *retro-Tango* ligand in starter neurons activates the receptor in
399 their presynaptic partners. This, in turn, triggers the signaling cascade culminating in
400 reporter gene expression in the presynaptic neurons.

401

402 We used the GF circuit to validate *retro-Tango* since some of the known synaptic partners
403 of the GFs can be easily identified. These experiments confirmed that *retro-Tango*
404 correctly labels the expected presynaptic partners. In addition, we did not observe signal
405 in the postsynaptic partners of the GFs, indicating that *retro-Tango* does not falsely label
406 in an anterograde fashion. Further, driving ligand expression results in strong signal in
407 the presynaptic neurons, while without a driver, the background noise is weak. We
408 observed noise mainly in the MBs and the central complex with sporadic labelling in the
409 VNC. To assess the utility of *retro-Tango* in these areas, we implemented it in the central
410 complex. These experiments revealed presynaptic signal that can be easily discerned
411 from the noise. That said, users should be cautious in drawing strong conclusions from
412 *retro-Tango* experiments in these areas. As in *trans-Tango* (Talay et al., 2017), the
413 panneuronal components are inserted at the attP40 docking site in the genome. It is
414 noteworthy that the attP40 docking site that has recently been shown to cause problems
415 in the nervous system, especially when homozygous (Duan et al., 2022; Groen et al.,
416 2022; van der Graaf et al., 2022). Therefore, we advise against using the panneuronal

417 components in a homozygous configuration. Likewise, users should be cautious when
418 using Gal4 or split Gal4 lines inserted at the attP40 site.

419
420 The expression of mICAM5 is not entirely restricted to dendrites. Rather, it is also
421 expressed in the somata, albeit at low levels (Nicolai et al., 2010). Hence, we were
422 concerned that this would lead to labelling in neighboring neurons that are not true
423 synaptic partners. However, our experiments in the central complex indicated that this is
424 not the case. Nevertheless, caution should be taken especially when using strong drivers.
425 It is also worth mentioning that we do not observe presynaptic labelling in the starter
426 neurons, indicating that *retro*-Tango only works in *trans*.

427
428 Unlike *trans*-Tango(Talay et al., 2017), *retro*-Tango yields strong signal at 25°C. This
429 feature of *retro*-Tango is especially important as a recent study showed that the number
430 of synaptic partners of a neuron and the number of connections with each partner are
431 inversely correlated with rearing temperature (Kiral et al., 2021). Therefore, using *retro*-
432 Tango at 25°C prevents inconsistencies with other experiments run at this temperature.
433 In addition, while like in *trans*-Tango (Talay et al., 2017) the signal in *retro*-Tango
434 correlates with age, it accumulates faster. In some circuits, such as GF, the signal
435 saturates at around day 15 post-eclosion, while in others, such as EPG, it only takes 10
436 days to saturate. The difference in saturation times could be due to the strength of the
437 drivers or reflect the specific characteristics of the circuits. Therefore, users should
438 determine the optimal age for analysis depending on the circuit studied and driver used.

439

440 The availability of the annotated connectome data for the female hemibrain (Zheng et al.,
441 2018) enabled us to benchmark the results obtained with *retro-Tango* and assess its
442 sensitivity. To this end, we compared our results in the GF circuit to the annotated female
443 hemibrain connectome (Zheng et al., 2018) (Figure 4). Our initial analysis indicated that
444 *retro-Tango* falls short of revealing all the GF synaptic partners predicted by the
445 connectome. Notably, some of these partners form single or few synapses with the GF.
446 Therefore, it is possible that *retro-Tango* is not sensitive enough to reveal these weak
447 connections. In our comparison, we determined the threshold for the number of synapses
448 required for *retro-Tango* to correctly reveal a connection in the GF circuit. We applied this
449 threshold to sort the presynaptic partners of the GF in the hemibrain connectome. When
450 we plotted the neurons forming more synapses than the threshold, we observed a similar
451 pattern to that revealed by *retro-Tango*.

452

453 One of the features that *retro-Tango* shares with *trans-Tango* is its modular design. In
454 *retro-Tango*, this design provides genetic access to the presynaptic neurons. Therefore,
455 the reporter can be readily swapped with an effector that allows for monitoring (Snell et
456 al., 2022), activation, or inhibition of the presynaptic neurons. In addition, the modular
457 design facilitates the adaptation of *retro-Tango* to other organisms. Notably, since using
458 *retro-Tango* does not rely on a prior hypothesis regarding the identity of the presynaptic
459 partners; it is flexible and general, and it can be used as a hypothesis generator.
460 Presynaptic partners identified via *retro-Tango* can then be verified using orthogonal

461 techniques. Therefore, *retro-Tango* is a significant addition to the toolkit for studying
462 neural circuits that can open new avenues for circuit analyses.

463

464 MATERIALS AND METHODS

465

466 **Fly Strains**

467

468 Fly lines used in this study were maintained in humidity-controlled 25°C incubators under
469 standard 12h light/12h dark cycle. Flies were reared on standard cornmeal/agar/molasses
470 media. Fly lines used in this study are: GF-split-Gal4 (von Reyn et al., 2014); *Or67d*^{Gal4}
471 (Kurtovic et al., 2007); ss00090-Gal4 (Wolff & Rubin, 2018); SAG-split-Gal4 (ss51118)
472 (Wang et al., 2021); aDN-split-Gal4 (Nojima et al., 2021); QUAS-nls-DsRed (Snell et al.,
473 2022); QUAS-mtdTomato(3xHA) (this study); *retro-Tango*(panneuronal) (this study);
474 *retro-Tango*(ligand) (this study).

475

476 **Generation of Transgenic Fly Lines**

477

478 HiFi DNA Assembly (New England Biolabs #2621) was used to generate the plasmids
479 used in this study. The plasmids were then incorporated into su(Hw)attP8, attP40 or attP2
480 loci using the Φ C31 system.

481

482 QUAS-mtdTomato(3xHA)

483 The QUAS-mtdTomato(3xHA) was amplified from UAS-myrGFP, QUAS-
484 mtdTomato(3xHA) from the original *trans*-Tango study (Talay et al., 2017) using the
485 following primers:
486 cacggcggcatgtcgacactagtGTTTAAACCCAAGCTGGATCCGGGTAATCGC and
487 aactaggctagcggccggcctaattaaACTAGTGGATCTAACGAGTTTTAAGC. First, the
488 plasmid pUASTattB (Bischof et al., 2007) was digested with Spel and the whole mix was
489 ligated in order to reverse the orientation of the attB site. The resultant plasmid was
490 digested with BamHI and Nhel and the PCR product was cloned into the plasmid via HiFi
491 DNA Assembly. The final plasmid was incorporated into su(Hw)attP8.

492

493 retro-Tango(panneuronal)

494 The *retro*-Tango(panneuronal) plasmid was generated using the *trans*-Tango plasmid
495 (Talay et al., 2017). The *trans*-Tango plasmid was digested with Pmel and Ascl to remove
496 the ligand and subsequently ligated to a dsDNA oligo mix containing
497 AACtaaGGCCGGCCcagGG and CGCGCCctgGGCCGGCCttaGTTT. The final plasmid
498 was incorporated into attP40.

499

500 retro-Tango(ligand)

501 The *retro*-Tango(ligand) plasmid was generated using multiple components.

502

503 The 10xUAS to flexible linker sequence from the *trans*-Tango plasmid was amplified using
504 ttgatttttttttaagttggtaccCTCGAGCCTTAATTAACTGAAGTAAAG and
505 cccagaaaggttcACTAGTATTCCCGTTACCATTG.

506
507 The mICAM5 sequence was amplified from fly lysates (Bloomington #33062 (Nicolai et
508 al., 2010)) in two pieces using cgggaaatactagtGAACCTTCTGGGCGGACC &
509 acagccatggaccGCCACGCGCACTGTGAT and
510 agtgcgcgtggccGGTCCATGGCTGTGGTC &
511 agttggtggcgccGGAAGATGTCAGCTGGATAGCGAAAACC.

512
513 The P2A sequence and the farnesylated GFP (GFPfar from addgene #73014) sequence
514 was codon optimized and synthesized by ThermoFisher. It was, then, amplified using
515 gctgacatcttccGGCGCCACCAACTTCTCC and
516 ttatttaaaaacgattcatttaattaaTCAGGAGAGCACACACTTG primers.

517
518 The p10 sequence was amplified from the *trans*-Tango plasmid using
519 tgtgctctcctgattaattaaATGAATCGTTTTAAAATAACAAATCAATTGTTTATAATATCG
520 TACG and acatcgctgacactagtggatccggcgccGTTAACTCGAATCGCTATCCAAGC.

521
522 All five PCR products were then cloned into pUASTattB¹¹ digested with BamHI and NheI.
523 The final plasmid was incorporated into attP2.

524

525 **Immunohistochemistry, Imaging, and Image Processing**

526

527 Dissection of adult brains, immunohistochemistry, and imaging were performed as
528 described in the *trans*-Tango article (Talay et al., 2017) with modifications to
529 accommodate for the clearing protocol. Unless otherwise stated adult male fly brains were
530 dissected 15 days post-eclosion. Flies were cold anesthetized on ice and dissected in
531 0.05% PBST. Samples were fixed in 4%PFA/0.5% PBST for 30min, washed four times in
532 0.5% PBST, blocked in heat inactivated donkey serum (5% in 0.5% PBST) for 30min at
533 room temperature. Samples were then treated with the primary antibody solution at 4°C
534 for two overnights. After four washes in 0.5% PBST at room temperature, samples were
535 treated with secondary antibody solution at 4°C for two overnights. After four washes in
536 0.5% PBST, samples were cleared following a previously published protocol(Aso et al.,
537 2014). Reproductive system dissections were not subjected to the clearing protocol and
538 were directly mounted on a slide (Fisherbrand Superfrost Plus, 12-550-15) using
539 Fluoromount-G mounting medium (SouthernBiotech, 0100-01). Images were taken using
540 confocal microscopy (Zeiss, LSM800) and were processed using the ZEN software from
541 Zeiss. For nuclei counting, Imaris (version 9.1.2 Bitplane) was used. In all images,
542 maximum projections are shown unless otherwise stated. The antibodies used in this
543 study are as follows: anti-GFP chicken (Gift from Susan Brenner-Morton, Columbia
544 University, 1:5,000), anti-RFP guinea pig (Gift from Susan Brenner-Morton, Columbia
545 University, 1:10,000), anti-Brp mouse (nc82; DSHB; 1:50), donkey anti-chicken Alexa

546 Fluor 488 (1:1000), donkey anti-guinea pig Alexa Fluor 555 (1:1000), donkey anti-mouse

547 Alexa Fluor 647 (1:1000), Alexa Fluor 647 Phalloidin (Thermo Fisher A22287, 1:1000).

548

549 **Comparisons to the *Drosophila* Connectome**

550

551 Data from the full adult fly brain (FAFB) electron microscopy (EM) volume (Zheng et al.,

552 2018) was analyzed via the hemibrain connectome (Scheffer et al., 2020) using the

553 natverse suite for neuroanatomical analyses in R (Bates, Manton, et al., 2020). The

554 neuprintr package (Bates et al., 2022) was used to query the relevant cell types that we

555 used as the starting populations for our *retro*-Tango experiments, as well as the identity

556 of their presynaptic partners. Synaptic strength was determined as the total number of

557 identified synaptic connections between the starting neuron and its presynaptic partner.

558 Neurons in which the cell bodies were not traced as part of the hemibrain connectome

559 were excluded from our counting experiments. To plot presynaptic cells, we used

560 neuprintr to retrieve skeletonizations of their respective EM segmentations. Since the

561 hemibrain connectome contains only segmentations of neurons from one side of the

562 brain, we used natverse tools for bridging registrations to mirror the presynaptic neurons

563 across the sagittal plane to the opposite hemisphere. Briefly, skeletonizations were

564 translated from the FAFB space to the JFRC2 template (Jenett et al., 2012), which

565 contains information for translating coordinates across sagittal hemispheres. Mirrored

566 skeletonizations were then translated back to the FAFB space and plotted alongside the

567 unmirrored data.

568

569 REFERENCES

570

571 Ache, J. M., Polsky, J., Alghailani, S., Parekh, R., Breads, P., Peek, M. Y., Bock, D. D.,
572 von Reyn, C. R., & Card, G. M. (2019). Neural Basis for Looming Size and
573 Velocity Encoding in the Drosophila Giant Fiber Escape Pathway. *Curr Biol*,
574 29(6), 1073-1081 e1074. <https://doi.org/10.1016/j.cub.2019.01.079>

575 Allen, M. J., Godenschwege, T. A., Tanouye, M. A., & Phelan, P. (2006). Making an
576 escape: development and function of the Drosophila giant fibre system. *Semin
577 Cell Dev Biol*, 17(1), 31-41. <https://doi.org/10.1016/j.semcdcb.2005.11.011>

578 Aso, Y., Hattori, D., Yu, Y., Johnston, R. M., Iyer, N. A., Ngo, T. T., Dionne, H., Abbott,
579 L. F., Axel, R., Tanimoto, H., & Rubin, G. M. (2014). The neuronal architecture of
580 the mushroom body provides a logic for associative learning. *eLife*, 3, e04577.
581 <https://doi.org/10.7554/eLife.04577>

582 Barnea, G., Strapps, W., Herrada, G., Berman, Y., Ong, J., Kloss, B., Axel, R., & Lee, K.
583 J. (2008). The genetic design of signaling cascades to record receptor activation.
584 *Proc Natl Acad Sci U S A*, 105(1), 64-69.
585 <https://doi.org/10.1073/pnas.0710487105>

586 Bates, A. S., Manton, J. D., Jagannathan, S. R., Costa, M., Schlegel, P., Rohlfing, T., &
587 Jefferis, G. S. (2020). The natverse, a versatile toolbox for combining and
588 analysing neuroanatomical data. *eLife*, 9. <https://doi.org/10.7554/eLife.53350>

589 Bates, A. S., Schlegel, P., Roberts, R. J. V., Drummond, N., Tamimi, I. F. M., Turnbull,
590 R., Zhao, X., Marin, E. C., Popovici, P. D., Dhawan, S., Jamasb, A., Javier, A.,
591 Serratosa Capdevila, L., Li, F., Rubin, G. M., Waddell, S., Bock, D. D., Costa, M.,
592 & Jefferis, G. (2020). Complete Connectomic Reconstruction of Olfactory
593 Projection Neurons in the Fly Brain. *Curr Biol*, 30(16), 3183-3199 e3186.
594 <https://doi.org/10.1016/j.cub.2020.06.042>

595 Bates A, Jefferis G, Franconville R (2022). neuprintr: R Client Utilities for Interacting
596 with the neuPrint Connectome Analysis Service. <https://natverse.org/neuprintr>,
597 <https://github.com/natverse/neuprintr>.

598 Bischof, J., Maeda, R. K., Hediger, M., Karch, F., & Basler, K. (2007). An optimized
599 transgenesis system for Drosophila using germ-line-specific phiC31 integrases.
600 *Proc Natl Acad Sci U S A*, 104(9), 3312-3317.
601 <https://doi.org/10.1073/pnas.0611511104>

602 Cachero, S., Gkantia, M., Bates, A. S., Frechter, S., Blackie, L., McCarthy, A., Sutcliffe,
603 B., Strano, A., Aso, Y., & Jefferis, G. (2020). BAcTrace, a tool for retrograde
604 tracing of neuronal circuits in Drosophila. *Nat Methods*, 17(12), 1254-1261.
605 <https://doi.org/10.1038/s41592-020-00989-1>

606 Cook, S. J., Jarrell, T. A., Brittin, C. A., Wang, Y., Bloniarz, A. E., Yakovlev, M. A.,
607 Nguyen, K. C. Q., Tang, L. T., Bayer, E. A., Duerr, J. S., Bulow, H. E., Hobert, O.,
608 Hall, D. H., & Emmons, S. W. (2019). Whole-animal connectomes of both
609 *Caenorhabditis elegans* sexes. *Nature*, 571(7763), 63-71.
610 <https://doi.org/10.1038/s41586-019-1352-7>

611 Daniels, R. W., Rossano, A. J., Macleod, G. T., & Ganetzky, B. (2014). Expression of
612 multiple transgenes from a single construct using viral 2A peptides in *Drosophila*.
613 *PLoS One*, 9(6), e100637. <https://doi.org/10.1371/journal.pone.0100637>

614 Datta, S. R., Vasconcelos, M. L., Ruta, V., Luo, S., Wong, A., Demir, E., Flores, J.,
615 Balonze, K., Dickson, B. J., & Axel, R. (2008). The *Drosophila* pheromone cVA
616 activates a sexually dimorphic neural circuit. *Nature*, 452(7186), 473-477.
617 <https://doi.org/10.1038/nature06808>

618 Duan, Q., Estrella, R., Carson, A., Chen, Y., & Volkan, P. C. (2022). *Drosophila*
619 *attP40* background alters glomerular organization of the olfactory receptor
620 neuron terminals. *bioRxiv*, 2022.2006.2016.496338.
621 <https://doi.org/10.1101/2022.06.16.496338>

622 Eichler, K., Li, F., Litwin-Kumar, A., Park, Y., Andrade, I., Schneider-Mizell, C. M.,
623 Saumweber, T., Huser, A., Eschbach, C., Gerber, B., Fetter, R. D., Truman, J.
624 W., Priebe, C. E., Abbott, L. F., Thum, A. S., Zlatic, M., & Cardona, A. (2017).
625 The complete connectome of a learning and memory centre in an insect brain.
626 *Nature*, 548(7666), 175-182. <https://doi.org/10.1038/nature23455>

627 Engert, S., Sterne, G. R., Bock, D. D., & Scott, K. (2022). *Drosophila* gustatory
628 projections are segregated by taste modality and connectivity. *eLife*, 11.
629 <https://doi.org/10.7554/eLife.78110>

630 Fan, P., Manoli, D. S., Ahmed, O. M., Chen, Y., Agarwal, N., Kwong, S., Cai, A. G.,
631 Neitz, J., Renslo, A., Baker, B. S., & Shah, N. M. (2013). Genetic and neural
632 mechanisms that inhibit *Drosophila* from mating with other species. *Cell*, 154(1),
633 89-102. <https://doi.org/10.1016/j.cell.2013.06.008>

634 Feinberg, E. H., Vanhoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K., &
635 Bargmann, C. I. (2008). GFP Reconstitution Across Synaptic Partners (GRASP)
636 defines cell contacts and synapses in living nervous systems. *Neuron*, 57(3),
637 353-363. <https://doi.org/10.1016/j.neuron.2007.11.030>

638 Feng, K., Palfreyman, M. T., Hasemeyer, M., Talsma, A., & Dickson, B. J. (2014).
639 Ascending SAG neurons control sexual receptivity of *Drosophila* females.
640 *Neuron*, 83(1), 135-148. <https://doi.org/10.1016/j.neuron.2014.05.017>

641 Fotowat, H., Fayyazuddin, A., Bellen, H. J., & Gabbiani, F. (2009). A novel neuronal
642 pathway for visually guided escape in *Drosophila melanogaster*. *J Neurophysiol*,
643 102(2), 875-885. <https://doi.org/10.1152/jn.00073.2009>

644 Fushiki, A., Zwart, M. F., Kohsaka, H., Fetter, R. D., Cardona, A., & Nose, A. (2016). A
645 circuit mechanism for the propagation of waves of muscle contraction in
646 *Drosophila*. *eLife*, 5. <https://doi.org/10.7554/eLife.13253>

647 Gorchakov, A. A., Alekseyenko, A. A., Kharchenko, P., Park, P. J., & Kuroda, M. I.
648 (2009). Long-range spreading of dosage compensation in *Drosophila* captures
649 transcribed autosomal genes inserted on X. *Genes Dev*, 23(19), 2266-2271.
650 <https://doi.org/10.1101/gad.1840409>

651 Gordon, M. D., & Scott, K. (2009). Motor control in a *Drosophila* taste circuit. *Neuron*,
652 61(3), 373-384. <https://doi.org/10.1016/j.neuron.2008.12.033>

653 Groen, C. M., Podratz, J. L., Pathoulas, J., Staff, N., & Windebank, A. J. (2022). Genetic
654 Reduction of Mitochondria Complex I Subunits is Protective against Cisplatin-

655 Induced Neurotoxicity in *Drosophila*. *J Neurosci*, 42(5), 922-937.
656 <https://doi.org/10.1523/JNEUROSCI.1479-20.2021>

657 Hikmet, N. (2002). *Kuvâyi Millîye*. Yapı Kredi Yayınları, İstanbul.

658 Horne, J. A., Langille, C., McLin, S., Wiederman, M., Lu, Z., Xu, C. S., Plaza, S. M.,
659 Scheffer, L. K., Hess, H. F., & Meinertzhagen, I. A. (2018). A resource for the
660 *Drosophila* antennal lobe provided by the connectome of glomerulus VA1v. *eLife*,
661 7. <https://doi.org/10.7554/eLife.37550>

662 Huang, T. H., Niesman, P., Arasu, D., Lee, D., De La Cruz, A. L., Callejas, A., Hong, E.
663 J., & Lois, C. (2017). Tracing neuronal circuits in transgenic animals by
664 transneuronal control of transcription (TRACT). *eLife*, 6.
665 <https://doi.org/10.7554/eLife.32027>

666 Hulse, B. K., Haberkern, H., Franconville, R., Turner-Evans, D. B., Takemura, S. Y.,
667 Wolff, T., Noorman, M., Dreher, M., Dan, C., Parekh, R., Hermundstad, A. M.,
668 Rubin, G. M., & Jayaraman, V. (2021). A connectome of the *Drosophila* central
669 complex reveals network motifs suitable for flexible navigation and context-
670 dependent action selection. *eLife*, 10. <https://doi.org/10.7554/eLife.66039>

671 Jenett, A., Rubin, G. M., Ngo, T. T., Shepherd, D., Murphy, C., Dionne, H., Pfeiffer, B.
672 D., Cavallaro, A., Hall, D., Jeter, J., Iyer, N., Fetter, D., Hausenfluck, J. H., Peng,
673 H., Trautman, E. T., Svirskas, R. R., Myers, E. W., Iwinski, Z. R., Aso, Y.,
674 DePasquale, G. M., Enos, A., Hulamm, P., Lam, S. C., Li, H. H., Laverty, T. R.,
675 Long, F., Qu, L., Murphy, S. D., Rokicki, K., Safford, T., Shaw, K., Simpson, J.
676 H., Sowell, A., Tae, S., Yu, Y., & Zugates, C. T. (2012). A GAL4-driver line
677 resource for *Drosophila* neurobiology. *Cell Rep*, 2(4), 991-1001.
678 <https://doi.org/10.1016/j.celrep.2012.09.011>

679 Kiral, F. R., Dutta, S. B., Linneweber, G. A., Hilgert, S., Poppa, C., Duch, C., von Kleist,
680 M., Hassan, B. A., & Hiesinger, P. R. (2021). Brain connectivity inversely scales
681 with developmental temperature in *Drosophila*. *Cell Rep*, 37(12), 110145.
682 <https://doi.org/10.1016/j.celrep.2021.110145>

683 Kurtovic, A., Widmer, A., & Dickson, B. J. (2007). A single class of olfactory neurons
684 mediates behavioural responses to a *Drosophila* sex pheromone. *Nature*,
685 446(7135), 542-546. <https://doi.org/10.1038/nature05672>

686 Macpherson, L. J., Zaharieva, E. E., Kearney, P. J., Alpert, M. H., Lin, T. Y., Turan, Z.,
687 Lee, C. H., & Gallio, M. (2015). Dynamic labelling of neural connections in
688 multiple colours by trans-synaptic fluorescence complementation. *Nat Commun*,
689 6, 10024. <https://doi.org/10.1038/ncomms10024>

690 Marin, E. C., Buld, L., Theiss, M., Sarkissian, T., Roberts, R. J. V., Turnbull, R., Tamimi,
691 I. F. M., Pleijzier, M. W., Laursen, W. J., Drummond, N., Schlegel, P., Bates, A.
692 S., Li, F., Landgraf, M., Costa, M., Bock, D. D., Garrity, P. A., & Jefferis, G.
693 (2020). Connectomics Analysis Reveals First-, Second-, and Third-Order
694 Thermosensory and Hygrosensory Neurons in the Adult *Drosophila* Brain. *Curr
695 Biol*, 30(16), 3167-3182 e3164. <https://doi.org/10.1016/j.cub.2020.06.028>

696 Nicolai, L. J., Ramaekers, A., Raemaekers, T., Drozdzecki, A., Mauss, A. S., Yan, J.,
697 Landgraf, M., Annaert, W., & Hassan, B. A. (2010). Genetically encoded dendritic

698 marker sheds light on neuronal connectivity in *Drosophila*. *Proc Natl Acad Sci U*
699 *S A*, 107(47), 20553-20558. <https://doi.org/10.1073/pnas.1010198107>

700 Nojima, T., Rings, A., Allen, A. M., Otto, N., Verschut, T. A., Billeter, J. C., Neville, M.
701 C., & Goodwin, S. F. (2021). A sex-specific switch between visual and olfactory
702 inputs underlies adaptive sex differences in behavior. *Curr Biol*, 31(6), 1175-1191
703 e1176. <https://doi.org/10.1016/j.cub.2020.12.047>

704 Ohyama, T., Schneider-Mizell, C. M., Fetter, R. D., Aleman, J. V., Franconville, R.,
705 Rivera-Alba, M., Mensh, B. D., Branson, K. M., Simpson, J. H., Truman, J. W.,
706 Cardona, A., & Zlatic, M. (2015). A multilevel multimodal circuit enhances action
707 selection in *Drosophila*. *Nature*, 520(7549), 633-639.
708 <https://doi.org/10.1038/nature14297>

709 Patterson, G. H., & Lippincott-Schwartz, J. (2002). A photoactivatable GFP for selective
710 photolabeling of proteins and cells. *Science*, 297(5588), 1873-1877.
711 <https://doi.org/10.1126/science.1074952>

712 Potter, C. J., Tasic, B., Russler, E. V., Liang, L., & Luo, L. (2010). The Q system: a
713 repressible binary system for transgene expression, lineage tracing, and mosaic
714 analysis. *Cell*, 141(3), 536-548. <https://doi.org/10.1016/j.cell.2010.02.025>

715 Scheffer, L. K., Xu, C. S., Januszewski, M., Lu, Z., Takemura, S. Y., Hayworth, K. J.,
716 Huang, G. B., Shinomiya, K., Maitlin-Shepard, J., Berg, S., Clements, J.,
717 Hubbard, P. M., Katz, W. T., Umayam, L., Zhao, T., Ackerman, D., Blakely, T.,
718 Bogovic, J., Dolafi, T., Kainmueller, D., Kawase, T., Khairy, K. A., Leavitt, L., Li,
719 P. H., Lindsey, L., Neubarth, N., Olbris, D. J., Otsuna, H., Trautman, E. T., Ito,
720 M., Bates, A. S., Goldammer, J., Wolff, T., Svirskas, R., Schlegel, P., Neace, E.,
721 Knecht, C. J., Alvarado, C. X., Bailey, D. A., Ballinger, S., Borycz, J. A., Canino,
722 B. S., Cheatham, N., Cook, M., Dreher, M., Duclos, O., Eubanks, B., Fairbanks,
723 K., Finley, S., Forknall, N., Francis, A., Hopkins, G. P., Joyce, E. M., Kim, S.,
724 Kirk, N. A., Kovalyak, J., Lauchie, S. A., Lohff, A., Maldonado, C., Manley, E. A.,
725 McLin, S., Mooney, C., Ndama, M., Ogundeyi, O., Okeoma, N., Ordish, C.,
726 Padilla, N., Patrick, C. M., Paterson, T., Phillips, E. E., Phillips, E. M., Rampally,
727 N., Ribeiro, C., Robertson, M. K., Rymer, J. T., Ryan, S. M., Sammons, M., Scott,
728 A. K., Scott, A. L., Shinomiya, A., Smith, C., Smith, K., Smith, N. L., Sobeski, M.
729 A., Suleiman, A., Swift, J., Takemura, S., Talebi, I., Tarnogorska, D., Tenshaw,
730 E., Tokhi, T., Walsh, J. J., Yang, T., Horne, J. A., Li, F., Parekh, R., Rivlin, P. K.,
731 Jayaraman, V., Costa, M., Jefferis, G. S., Ito, K., Saalfeld, S., George, R.,
732 Meinertzhagen, I. A., Rubin, G. M., Hess, H. F., Jain, V., & Plaza, S. M. (2020). A
733 connectome and analysis of the adult *Drosophila* central brain. *Elife*, 9.
734 <https://doi.org/10.7554/elife.57443>

735 Seelig, J. D., & Jayaraman, V. (2013). Feature detection and orientation tuning in the
736 *Drosophila* central complex. *Nature*, 503(7475), 262-266.
737 <https://doi.org/10.1038/nature12601>

738 Shearin, H. K., Quinn, C. D., Mackin, R. D., Macdonald, I. S., & Stowers, R. S. (2018). t-
739 GRASP, a targeted GRASP for assessing neuronal connectivity. *J Neurosci*
740 *Methods*, 306, 94-102. <https://doi.org/10.1016/j.jneumeth.2018.05.014>

741 Snell, N. J., Fisher, J. D., Hartmann, G. G., Zolyomi, B., Talay, M., & Barnea, G. (2022).
742 Complex representation of taste quality by second-order gustatory neurons in
743 *Drosophila*. *Curr Biol*, 32(17), 3758-3772 e3754.
744 <https://doi.org/10.1016/j.cub.2022.07.048>

745 Sun, Y., Nern, A., Franconville, R., Dana, H., Schreiter, E. R., Looger, L. L., Svoboda,
746 K., Kim, D. S., Hermundstad, A. M., & Jayaraman, V. (2017). Neural signatures
747 of dynamic stimulus selection in *Drosophila*. *Nat Neurosci*, 20(8), 1104-1113.
748 <https://doi.org/10.1038/nn.4581>

749 Takemura, S. Y., Aso, Y., Hige, T., Wong, A., Lu, Z., Xu, C. S., Rivlin, P. K., Hess, H.,
750 Zhao, T., Parag, T., Berg, S., Huang, G., Katz, W., Olbris, D. J., Plaza, S.,
751 Umayam, L., Aniceto, R., Chang, L. A., Lauchie, S., Ogundeyi, O., Ordish, C.,
752 Shinomiya, A., Sigmund, C., Takemura, S., Tran, J., Turner, G. C., Rubin, G. M.,
753 & Scheffer, L. K. (2017). A connectome of a learning and memory center in the
754 adult *Drosophila* brain. *eLife*, 6. <https://doi.org/10.7554/eLife.26975>

755 Takemura, S. Y., Nern, A., Chklovskii, D. B., Scheffer, L. K., Rubin, G. M., &
756 Meinertzhagen, I. A. (2017). The comprehensive connectome of a neural
757 substrate for 'ON' motion detection in *Drosophila*. *eLife*, 6.
758 <https://doi.org/10.7554/eLife.24394>

759 Talay, M., Richman, E. B., Snell, N. J., Hartmann, G. G., Fisher, J. D., Sorkac, A.,
760 Santoyo, J. F., Chou-Freed, C., Nair, N., Johnson, M., Szymanski, J. R., &
761 Barnea, G. (2017). Transsynaptic Mapping of Second-Order Taste Neurons in
762 Flies by trans-Tango. *Neuron*, 96(4), 783-795 e784.
763 <https://doi.org/10.1016/j.neuron.2017.10.011>

764 van der Graaf, K., Srivastav, S., Singh, P., McNew, J. A., & Stern, M. (2022). The
765 *Drosophila* attP40 docking site and derivatives are insertion
766 mutations of MSP300. *bioRxiv*, 2022.2005.2014.491875.
767 <https://doi.org/10.1101/2022.05.14.491875>

768 von Reyn, C. R., Breads, P., Peek, M. Y., Zheng, G. Z., Williamson, W. R., Yee, A. L.,
769 Leonardo, A., & Card, G. M. (2014). A spike-timing mechanism for action
770 selection. *Nat Neurosci*, 17(7), 962-970. <https://doi.org/10.1038/nn.3741>

771 von Reyn, C. R., Nern, A., Williamson, W. R., Breads, P., Wu, M., Namiki, S., & Card,
772 G. M. (2017). Feature Integration Drives Probabilistic Behavior in the *Drosophila*
773 Escape Response. *Neuron*, 94(6), 1190-1204 e1196.
774 <https://doi.org/10.1016/j.neuron.2017.05.036>

775 Wang, K., Wang, F., Forknall, N., Yang, T., Patrick, C., Parekh, R., & Dickson, B. J.
776 (2021). Neural circuit mechanisms of sexual receptivity in *Drosophila* females.
777 *Nature*, 589(7843), 577-581. <https://doi.org/10.1038/s41586-020-2972-7>

778 White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the
779 nervous system of the nematode *Caenorhabditis elegans*. *Philos Trans R Soc
780 Lond B Biol Sci*, 314(1165), 1-340. <https://doi.org/10.1098/rstb.1986.0056>

781 Wolff, T., & Rubin, G. M. (2018). Neuroarchitecture of the *Drosophila* central complex: A
782 catalog of nodulus and asymmetrical body neurons and a revision of the
783 protocerebral bridge catalog. *J Comp Neurol*, 526(16), 2585-2611.
784 <https://doi.org/10.1002/cne.24512>

785 Yapici, N., Kim, Y. J., Ribeiro, C., & Dickson, B. J. (2008). A receptor that mediates the
786 post-mating switch in *Drosophila* reproductive behaviour. *Nature*, 451(7174), 33-
787 37. <https://doi.org/10.1038/nature06483>
788 Zheng, Z., Lauritzen, J. S., Perlman, E., Robinson, C. G., Nichols, M., Milkie, D.,
789 Torrens, O., Price, J., Fisher, C. B., Sharifi, N., Calle-Schuler, S. A., Kmecova, L.,
790 Ali, I. J., Karsh, B., Trautman, E. T., Bogovic, J. A., Hanslovsky, P., Jefferis, G.,
791 Kazhdan, M., Khairy, K., Saalfeld, S., Fetter, R. D., & Bock, D. D. (2018). A
792 Complete Electron Microscopy Volume of the Brain of Adult *Drosophila*
793 *melanogaster*. *Cell*, 174(3), 730-743 e722.
794 <https://doi.org/10.1016/j.cell.2018.06.019>
795
796

797 **Acknowledgments:** We would like to acknowledge Dr. Cagney Coomer, Dr. Marnie
798 Halpern, Dr. Jennifer Li, Dr. Karla Kaun, Daria Naumova, Dr. Drew Robson, and Dr. Rahul
799 Trivedi for helpful discussions. We would like to thank Dr. Alexander Fleischmann and
800 the members of the Barnea Laboratory for critical reading of the manuscript. We are
801 grateful to Dr. Stephen Goodwin and Susan Morton for sharing reagents. This work was
802 supported by NIH Brain Initiative grant NIH RF1MH123213 (G.B.), Brown University
803 Carney Institute for Brain Science, Suna Kiraç Fund for Brain Science (D.S.), Brown
804 University Carney Institute for Brain Science, Graduate Award in Brain Science (D.S.)
805 and NIH/NIDCD award F31DC019540 (A.M.C.). Stocks obtained from the Bloomington
806 *Drosophila* Stock Center (NIH P40OD018537) were used in this study.
807

808 **Author contributions:**

809 A.S., R.A.M., A.M.C., D.S., A.M.O. and G.B. conceptualized the study. A.S., M.T. and
810 G.B. devised the methodology. A.S., R.A.M., A.M.C., D.S., and A.M.O. contributed to the
811 investigation and visualization of the results. A.S. and G.B. administered the project. A.S.,

812 R.A.M. and G.B. wrote the manuscript. The funding was obtained by, and the project was
813 supervised by G.B.

814

815 **Competing interests:** Authors declare that they have no competing interests.

816

817 **Additional information:** All new fly strains will be deposited to Bloomington *Drosophila*
818 Stock Center. Correspondence and requests for materials should be addressed to G.B.

819

820