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Abstract: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed millions of lives 
worldwide, not to mention innumerable losses in the global economy and disruptions 
in social relationships. Unfortunately, state-of-the-art treatments still lag behind the fast 
emergence of new variants of concern. The key to resolve this issue is to develop broad-
spectrum antivirals with innovative antiviral mechanisms in which coronaviruses are 
deactivated regardless of their variant development. Herein, we report a new antiviral 
strategy involving extracellular disintegration of viral proteins that are indispensable 
for viral infection with hyperanion-grafted enediyne molecules. The sulfate groups 
ensure low cellular permeability and rather low cytotoxicity of the molecules, while the 
core enediyne generates reactive radical species and causes significant damage to the 
spike (S) protein of coronavirus. The enediyne compounds exhibit antiviral activity at 
micromolar to nanomolar concentrations, and the selectivity index of up to 20,000 
against four kinds of human coronaviruses, including the SARS-CoV-2 omicron variant, 
suggesting the high potential of this new strategy in combating the COVID-19 
pandemic. 
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The ongoing coronavirus disease 2019 (COVID-19) pandemic has caused serious 
damage to human health, social relationships, and the global economy. Since its first 
identification in early 2020(1, 2), the culprit severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) has accumulated thousands of mutations(3). The World 
Health Organization (WHO) has listed a series of variants of concern (VOCs) in the 
last two years, including the predominant alpha, delta and omicron variants that caused 
significant infection waves worldwide. The rapid mutation of SARS-CoV-2 and fast 
emergence of new VOCs constitute a great challenge to the colony immune defense by 
widespread vaccination and antiviral developments, as most of them are designed in the 
“one bug-one drug” approach. Developing broad-spectrum antivirals, ideally with an 
innovative antiviral mechanism, is therefore of essential importance to combat the 
current COVID-19 and future “disease X”(4) likely caused by other zoonotic viruses as 
the confronting of the previously distinct ecological niches becomes more frequent(5). 

SARS-CoV-2 and six other known human coronaviruses are enveloped viruses. 
They are composed of lipid bilayers and four structural proteins, namely, spike (S), 
membrane (M), envelope (E) and nucleocapsid (N) proteins, with which the viral 
genome (approximately 30 kb) is safely wrapped. The S proteins are responsible for the 
interaction with the receptors on the cell surface to penetrate the host cells and further 
hijack the cellular reproduction machinery(6). Significant efforts have been devoted to 
developing antivirals against SARS-CoV-2 by blocking the cell entry process using 
engineered small molecules, proteins, adaptors, and extracellular vesicles to interrupt 
the binding of S protein to angiotensin converting enzyme 2 (ACE 2) cell receptor(3, 
7-12). As the glycocalyx on the cell surface is negatively charged(13, 14), the 
electrostatic interaction between glycans and the positively charged receptor binding 
domains (RBD) and additional binding sites in the S proteins provides localization of 
the virus for their cellular binding(15, 16). To this end, synthetic glycan analogs have 
been developed as broad-spectrum antivirals. For example, a variety of materials with 
multiple sulfate (or sulfonate) groups showed prominent results in treating with SARS-
CoV-2(17-19). Unfortunately, polyanionic systems are anticoagulant in nature, which 
may increase the risk of off-target adverse effects. Meanwhile, their inhibitory effect 
toward virus particles might be lost upon dilution in body fluid, resulting in revival of 
virus infection. 

Enediynes, a family of compounds with a (Z)-hexa-3-en-1,5-diyne core structure, 
first discovered in the 1960s from the culture filtrates of Streptomyces(20), exert 
profound biological activity through a hitherto unseen mode of action. After a special 
triggering mechanism, the activated enediynes undergo Bergman cyclization or Myers-
Saito cyclization to generate highly reactive radical species, which further abstract H-
atoms from DNA or proteins and show catastrophic effects on tumor cell 
proliferation(21). While natural enediynes are rather scarce and difficult to 
synthesize(22), we recently uncovered a new mechanism, namely, maleimide-assisted 
rearrangement and cycloaromatization (MARACA, Fig. 1A), enabling the structurally 
much simpler synthetic enediyne to generate radical species in a physiological 
environment and exhibit remarkable antitumor activity(23). Herein, we report a new 
strategy for developing broad-spectrum antivirals by installing multiple anionic groups 
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(sulfate groups in this work) onto enediynes. The anionic groups are beneficial for 
directing the enediyne “warhead” to the S protein of coronavirus through electrostatic 
interactions. Meanwhile, polyanionic compounds are cell impermeable(24), which 
ensures rather low cytotoxicity to normally functioning cells and the extracellular 
disintegration of the viral proteins by the radical species generated through MARACA. 

Figure 1B shows the chemical structures of the sulfated enediynes (EDY-A ~ 
EDY-E), and the detailed synthetic procedures and structural characterizations for 
these compounds can be found in the supplementary material. Starting from 
commercially available reagents, these enediynes were synthesized in the longest linear 
sequence (LLS) of no more than five steps, suggesting their ready scaling-up for future 
mass production. The first two steps for the preparation of 3,4-diiodomaleimide (2) 
were well documented in our previous work(25). The core enediyne structures were 
constructed in the third step through a Sonogashira coupling reaction between 2 and 
terminal alkynes, which are either commercially available or synthesized in less than 
three steps. The enediynes with 1, 2, 4, and 6 hydroxy groups were then hypersulfated 
in N,N-dimethylformamide (DMF) with excess SO3-DMF and neutralized with cold 
sodium bicarbonate solution followed by removal of inorganic salts and lyophilization 
to give EDY-A ~ EDY-E in high yields. For the synthesis of EDY-D and EDY-E, an 
extra step was needed to remove the ketal protection groups before hypersulfation. 

 
Figure 1. A) Schematic illustration of the radical generation mechanism of maleimide-
based enediyne compounds. B) Chemical structures of enediyne antivirals reported in 
this work. 
 

The radical-generating property of the enediynes was characterized with electron 
paramagnetic resonance (EPR) spectroscopy by exploiting a radical trapping strategy. 
Taking EDY-A and EDY-B as examples, the appearance of triplet doublet signals in 
the EPR spectra (Fig. 2A) suggests the generation of radical species from enediynes 
followed by trapping with N-tert-butyl--phenylnitrone (PBN)(23, 25, 26). It is 
noteworthy that under the same conditions, the peaks shown in the EPR spectrum of 
EDY-A are more profound than those for EDY-B. We recently confirmed that the 
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introduction of an oxygen atom at the propargyl position of one alkynyl arm of enediyne 
compounds (such as the one in EDY-A) leads to a much faster reaction due to the 
facilitation of a cascade rearrangement and cycloaromatization with an approximately 
6 kcal/mol lower energy barrier(27).  

 

Figure 2. A) EPR spectra of EDY-A and EDY-B after treatment with the spin trapping 
agent PBN. B) and C) Western blot analysis results of the SARS-CoV-2 S protein after 
incubation with EDY-A or EDY-B, respectively. The lines marked with “0 h” indicate 
the standard S protein samples. 
 

The highly reactive radicals generated from enediynes abstract hydrogen atoms 
from the protein backbone and lead to oxidative disintegration of protein structure and 
functionality(28). To test the ability of enediynes to destroy viral structural proteins, 
the S protein of SARS-CoV-2 was incubated at 37°C with gradient concentrations of 
enediynes. Western blot analysis results (Fig. 2B) indicate that the disintegration of S 
protein is concentration and time dependent. At a concentration of 0.25 mM, EDY-A 
led to significant degradation of the S protein within 2 h of incubation, and further 
degradation of the S protein was observed at longer incubation time. In comparison, 
EDY-B shows a lower protein disintegration ability at the same time interval, which is 
in line with its slower radical generation rate, as mentioned above. The protein 
disintegration results of EDY-C~EDY-E exhibited a similar trend and are shown in the 
supplementary material (Fig. S1). To further confirm the radical nature of the 
disintegration of viral protein by enediyne, S protein was coincubated with EDY-D (5 
mM) and serial dilutions of a radical scavenger vitamin C(29). At a high concentration 
of the radical scavenger, the S protein remained intact after incubation at 37℃ for 12 
h. When the concentration of the radical scavenger was comparable to or lower than 
that of EDY-D, the breakdown or even complete disintegration of the S protein was 
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clearly observed (Fig. S2). The structural integrity of the S protein is essential for viral 
infection(30, 31). Therefore, disintegrating the S protein of coronavirus with enediyne 
compounds provides a straightforward way to diminish infectivity and eventually 
deactivate viral particles. 

The extremely high cytotoxicity has been the hallmark of enediyne antitumor 
antibiotics since their early discovery and development. Indeed, two kinds of antibody 
drug conjugates have been approved for the clinical treatment of leukemia with 
enediynes as the “warheads”(32). The cytotoxicity of enediynes originates from the 
intercalation of enediyne into the minor groove of DNA, followed by the generation of 
radical species, abstraction of hydrogen atoms from DNA, and dysfunction of DNA, 
which leads to cellular apoptosis. On the other hand, to utilize enediynes as the 
“warheads” for viral protein disintegration, the cellular entrance process of enediynes 
must be suppressed to make them benign to normally functioning cells. To this end, the 
cellular uptake of enediynes with or without sulfate group(s) was studied by confocal 
laser scanning microscopy (CLSM). As shown in Fig. 3, after grafting with one sulfate 
group, the internalization of enediyne by HeLa cells was significantly inhibited. For 
EDY-B with two sulfate groups, no cellular uptake was observed. For EDY-C~EDY-
E with more sulfate groups, no cellular internalization of the enediynes was found (Fig. 
S3), suggesting no harmful effect of these enediynes to cells. 

 

 

Figure 3. Comparison of the cellular entrance behavior of sulfated enediynes (EDY-A 
and EDY-B) with their counterparts (EDY-1 and EDY-2) with confocal laser scanning 
microscopy. HeLa cells are stained with propidium iodide (PI), showing red 
fluorescence, while maleimide-based enediynes show intrinsic blue fluorescence(23). 
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With all the information for the extracellular dysfunction of coronavirus in hand, 
the sulfated enediynes were then evaluated for their ability against human seasonal 
coronavirus (hCoV-229E, hCoV-NL63 and hCoV-OC43) infections by plaque 
reduction assay (supplementary materials) in sensitive cell lines (Huh-7, hACE2/Caco2 
and RD, respectively). All of the sulfated enediynes showed obvious inhibitory effects 
with a median effective concentration (EC50) value of 3.86 μM~137.2 μM (Fig. 4). 
Interestingly, enediynes with oxygen atoms at the propargyl position (EDY-A, EDY-
D and EDY-E) showed high antiviral activities of inhibiting seasonal coronavirus 
growth with an EC50 of approximately 10 μM, while the enediynes (EDY-B and EDY-
C) without this kind of activating functionality(27) exhibited an order of magnitude 
lower antiviral activity, correlating with their relatively slower radical generating rate 
and weaker viral protein disintegration ability, as discussed above. 

 
Fig. 4. Antiviral activity of enediynes against four kinds of human coronaviruses by 
plaque reduction assays. Sensitive cell lines were selected for the corresponding 
coronavirus. The cytotoxicity of these enediynes to different cell lines was measured 
by CCK-8 assays. The left and right Y-axes of the graphs represent the mean cell 
variability and inhibition of viral infection in the presence of the enediynes, respectively. 
A table summarizing all the CC50, EC50 and SI data can be found in the supplementary 
materials (Table S1) 
 

The cytotoxicity of enediynes was tested based on a CCK-8 cell counting kit. The 
Huh-7, hACE2/Caco-2 and RD cells were seeded separately into 96-well microplates 
(104 cells per well at 100 L) and cocultured with enediynes at 37 ℃ (supplementary 
materials). The good consistency of low cytotoxicity in different cell lines was shown 
as half cytotoxic concentration (CC50) values of approximately 1 mM in EDY-A, EDY-
B and EDY-D (Fig. 4). In addition, EDY-C did not exhibit any cytotoxicity even at the 
highest working concentration (1 mM), which probably benefited from the grafting of 
six sulfate groups that completely shut down drug entry into the cell to interact with 
host proteins (and/or DNA). Surprisingly, EDY-E showed an order of magnitude 
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higher cytotoxicity even though it is structurally almost the same as EDY-D. We 
speculate that the relatively labile ester linkage in EDY-E would lead to the 
serendipitous release of trace amounts of enediyne core and cause harm to cells due to 
the high cytotoxicity of the uncharged enediyne(23). Altogether, we conclude that the 
enediyne core is responsible for viral deactivation, while the sulfate groups are 
indispensable for low cytotoxicity. Both of these parts and the strong linkage between 
them are essential for antiviral molecular design. For example, EDY-D typically 
showed a high selectivity index (SI, defined as CC50/ EC50), suggesting a wide 
application window for potential antiviral treatment. 

Unlike human seasonal coronavirus, which typically infects the upper respiratory 
tract and causes mild symptoms, SARS-CoV-2 can replicate in the lower respiratory 
tract and is more dangerous, causing much higher morbidity and mortality. The 
emergence of the VOC omicron and its subvariants with extremely high transmissibility 
and immune evasion constitute a great challenge to all the current countermeasures(33-
35). To this end, we tested the performance of EDY-A~EDY-E for SARS-CoV-2 
omicron treatment. The cytotoxicity experiments of these enediynes to Vero E6 cells 
were performed regularly, while the antiviral experiments involving SARS-CoV-2 
omicron were executed in a biosafety level 3 (BSL-3) laboratory. Encouragingly, all 
the enediynes showed highly promising antiviral results (Fig. 4). The enediynes with a 
higher tendency to undergo MARACA and generate radical species typically showed 
higher antiviral activity. The enediyne with the best performance is EDY-D, exhibiting 
an EC50 of 56.19 nM (~50 ng/mL) and an SI value of over 20,000. The higher antiviral 
activity of these enediynes toward SARS-CoV-2 omicron than that for the human 
seasonal viruses is probably due to the enhanced electrostatic interaction between these 
(poly)sulfated enediynes with the omicron S protein. The omicron S protein shows a 
positively charged electrostatic surface mainly acquired through N440K, T478K, 
Q493R, Q498R and Y505H mutations(34). While the mutation of the S protein indeed 
promotes ACE2 recognition, facilitates the infection and transmission of SARS-CoV-
2 omicron and is probably responsible for immune evasion of the majority of 
neutralizing antibodies, when met with these polysulfated enediynes, it goes to the dead 
end. 

In conclusion, we developed an innovative antiviral strategy by employing 
hyperanion-grafted enediynes to deactivate coronavirus. The core enediyne generates 
reactive free radical species and causes significant damage to viral proteins and 
abolishes their function, which is similar to many free radical-generating sanitizing 
agents. Meanwhile, the anionic groups endow the molecules with rather low cellular 
permeability and low cytotoxicity and probably guide the enediyne moieties to the RBD 
region of the S protein, where the peptide chain is positively charged. Overall, this 
extracellular ultrasanitizing treatment allows disinfection of a broad spectrum of human 
coronaviruses, including SARS-CoV-2 omicron variants, down to nanomolar 
concentrations with a high selectivity index for safe use. As the disintegration of viral 
protein by enediyne is insensitive to the epitopes or subtle structural change of viral 
proteins, this strategy would also inspire the development of antivirals against other 
kinds of viruses to fill the huge demand-supply gap(36) and might serve as strategic 
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stockpile for combating future “disease X”. 
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