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Abstract 23 

We introduce MSdb (https://www.msdb.org.cn), a database for visualization and integrated 24 
analysis of next-generation sequencing data from human musculoskeletal system, along with 25 
manually curated patient phenotype data. Systematic categorizing, standardized processing 26 
and freely accessible knowledge enables the reuse of public data. MSdb provides various 27 
types of analysis, including sample-level browsing of metadata information, gene/miRNA 28 
expression, and single-cell RNA-seq dataset. In addition, MSdb also allows integrated 29 
analysis for cross-samples and cross-omics analysis, including customized differentially-30 
expressed gene/microRNA analysis, microRNA-gene network, scRNA-seq cross-31 
sample/disease integration, and gene regulatory network analysis.  32 
 33 

Main 34 

The prevalence and burden of musculoskeletal (MSK) disorders are extremely high all over 35 
the world1,2. With the advancement of next-generation sequencing (NGS), a huge amount of 36 
sequencing data has been generated, which accelerated the research of pathological 37 
mechanisms and the development of novel therapeutic approaches for MSK disorders3-6. 38 
However, dispersed distribution of relevant data sets among different repositories makes it 39 
challenging to analyze and compare them in a uniform way. Therefore, we developed the 40 
human musculoskeletal system database (MSdb), an integrated expression atlas specifically 41 
for the human MSK system, containing 33 diseases, 126 projects, 3,398 transcriptomes and 42 
microRNAomes at bulk level, as well as 2,833,779 transcriptomes at single-cell level (Fig. 1a 43 
and Supplementary Fig. 1). MSdb incorporates cross-repository metadata into controlled 44 
vocabulary and uniform format, enabling efficient retrieval of sample information 45 
(Supplementary Table). MSdb provides multiple built-in data exploration and analysis 46 
functionalities, including gene/microRNA expression browsing, customized differentially-47 
expressed genes/miRNAs analysis, integrated microRNA-gene interaction networks, as well 48 
as integrated single-cell expression atlas and cell type-specific gene regulatory networks 49 
analysis (Supplementary Fig. 2 and Supplementary Video). Furthermore, MSdb allows 50 
downloading of processed data sets and publication-quality plots, offering wet lab scientists 51 
powerful tools to browse and re-analyze the public datasets without technical barriers. 52 

MSdb enables users to retrieve sample information via consistent and validated metadata 53 
curated by orthopedists and bioinformatics scientists (Supplementary Table). Users can 54 
search the database using multiple parameters like project identifier, diseases, and tissue 55 
types in order to find data sets that match their interests (Supplementary Fig. 3a). In metadata, 56 
four types of information are available: (i) data set and publication identifiers, (ii) patient 57 
phenotypes, (iii) sample information and (iv) data pre-processing summary. These items 58 
enable users to evaluate the biological meaning, clinical relevance and data quality of the 59 
samples. Summary statistics of the metadata are also presented to show global patterns of 60 
the studies (Supplementary Fig. 4).  61 

At bulk level, MSdb integrates information at two aspects: (i) cross-tissue integration, (ii) 62 
cross-omics integration. For cross-tissue integration, samples were initially integrated by 63 
projects to generate gene or microRNA expression atlas, and then labelled by their tissue 64 
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types, diseases, cell types, and tissue positions. Users may explore the expression of genes 65 
or microRNAs by these labels (Supplementary Fig. 5 and Supplementary Fig. 6). In Fig. 1b, 66 
c, uniform manifold approximation and projection (UMAP) plots show the integrated 67 
expression atlas of bulk RNA-seq or microRNA-seq data in MSdb, and samples are colored 68 
by representative tissue types and diseases. Feature plots and violin plots show that COL3A1, 69 
a connective tissue marker, was pervasively expressed in MSK tissues as expected (Fig. 1b 70 
and Supplementary Fig.5). Cerebrospinal fluid from amyotrophic lateral sclerosis (ALS) 71 
patients showed enrichment of the potential diagnostic marker miR-4649-5p (Fig. 1c and 72 
Supplementary Fig.6)7. For cross-omics integration, MSdb enables users to analyze bulk 73 
RNA-seq and microRNA-seq data side-by-side and integrate the results to predict disease-74 
related gene expression regulatory mechanisms. MSdb’s differential expression analysis 75 
module allows users to choose two groups of samples for comparison (Supplementary Fig. 76 
3b). An interactive volcano plot can be used to explore differentially expressed genes or 77 
microRNAs between user-defined groups, and the expression level of a specific gene or 78 
microRNA can be queried and will be displayed in the box plot (Supplementary Fig. 3b). By 79 
integrating differentially expressed genes and microRNAs between normal and pathological 80 
intervertebral disks, we constructed a microRNA-gene interaction network (Fig. 1d, e). The 81 
network revealed previous reported (indicated by asterisk) and unanticipated disease-82 
associated microRNAs and their potential gene targets, which can be interactively explored 83 
on our website (Fig. 1e). We demonstrated that the expression level of miR-146a-5p was 84 
down-regulated, while its target SPP1 was up-regulated in degenerative intervertebral disks 85 
when compared to healthy control (Fig. 1d, e). Since abnormal expression of SPP1 plays a 86 
critical role in the pathological process of intervertebral disk degeneration (IDD)8, our analysis 87 
indicated that targeting SPP1 with miR-146a-5p mimic might be a therapeutic method to 88 
counteract disk degeneration. Collectively, MSdb offers users with integrated expression 89 
atlas and useful data analysis functionalities to understand gene function and regulation in 90 
homeostasis and diseases. 91 

In recent years, the emergence of single-cell technology permits researchers to discover 92 
new and possibly unexpected biological findings relative to bulk-level profiling. Intriguingly, 93 
MSdb contains a wealth of single-cell RNA sequencing (scRNA-seq) data and provides a suit 94 
of functionalities for users to explore gene expression at single-cell level. For each scRNA-95 
seq dataset, we provide textual and graphical representations for sample information, quality 96 
control metrics, unsupervised cell clustering, reference-based cell subtype prediction, as well 97 
as marker genes for each cell type (Supplementary Fig. 7). In a single-cell profiling of synovial 98 
tissue from a female patient with rheumatoid arthritis, major cell types, such as fibroblasts, 99 
macrophages, T cells and monocytes were identified and the specific CD68 expression in the 100 
predicted macrophages (cluster 2) indicated the reliability of cell clustering and automated 101 
cell type prediction (Supplementary Fig. 7a-h). For more sophisticated cell type clustering 102 
and annotation, users can adjust leiden resolution for cell clustering and change reference 103 
dataset for cell type prediction (Supplementary Fig. 7i). To help with manual annotation, a 104 
heatmap and a table of marker genes are displayed and available for download. 105 
(Supplementary Fig. 7j, k). 106 

We also implemented an in-house variational autoencoder (VAE) based deep-learning 107 
framework to facilitate the integrative analysis for scRNA-seq data sets from different studies. 108 
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Fig. 2 displays the result of integrated analysis of single-cell gene expression data from 109 
healthy, osteoarthritis (OA), rheumatic arthritis (RA) and undifferentiated arthritis (UA) 110 
patients. Using the VAE model, we were able to remove batch differences and integrate 111 
heterogeneous data from different studies (Fig. 2b). The cell types could be identified by the 112 
known marker genes, whose expression patterns support that our integration method 113 
appropriately aligned gene expression for each cell types (Fig. 2a, c). Interestingly, we 114 
observed a distinct distribution pattern of fibroblasts from OA and RA patients (Fig. 2b). 115 
Differential expression analysis revealed that IGFBP3 and LOX were more enriched in OA-116 
derived fibroblast when compared to RA-derived fibroblast (Fig. 2d). IGFBP3 and LOX were 117 
involved in extracellular matrix remodeling, which may determine synovial fibrosis and may 118 
be associated with the clinical symptoms of pain, hyperalgesia, and stiffness in osteoarthritis9. 119 
It was also noted that CD74 and HLA-DRA were specifically expressed in RA fibroblasts, 120 
demonstrating an inflammatory state of fibroblasts that have been reported to be a major 121 
source of pro-inflammatory cytokines and highlighted as a potential therapeutic target in RA 122 
(Fig. 2d)10,11. Moreover, we inferred gene regulatory networks (GRNs) using a previously 123 
published deep regenerative model for each cell types12. Users may interactively visualize 124 
the GRNs in our database to explore the complicated molecular interactions governing 125 
potential cell identity (Supplementary Fig. 8). 126 

Overall, MSdb is a resource created for the MSK research community and aims to fulfill 127 
the findability, accessibility, interoperability, and reusability (FAIR) principles of scholarly 128 
data13. The uniformity of sample information in MSdb enables metadata-based and database-129 
scale analysis. MSdb’s utility will continue to grow as public NGS data sets of human 130 
musculoskeletal system expand. We envision that it will broaden the use of human MSK data 131 
sets and will be invaluable to researchers in the MSK field. 132 
 133 
 134 

Methods 135 

Data collection and meta information curation 136 
Bulk RNA-seq, microRNAs-seq and single-cell RNA-seq data of human musculoskeletal 137 
system were originated from NCBI Gene Expression Omnibus (GEO) and EMBL's European 138 
Bioinformatics Institute (EMBL-EBI)14,15. We manually curated both GEO and EMBL-EBI- 139 
derived sample information to provide a coherent and standardized metadata. The resulting 140 
collection offers the following information for each dataset. ‘SampleName’ contains the 141 
sample’s identification code in GEO (e.g. GSM2112324) or EMBL-EBI (e.g. ERS1034560). 142 
‘ProjectID’ contains the sample’s project identification code in GEO (e.g. GSE80072) or 143 
EMBL-EBI (e.g. E-MTAB-4304). ‘Publication_DOI’ contains the digital object identifier of the 144 
original publication. ‘Category’ indicates the MSK tissues that the datasets are related to.  145 
‘AssayType’ indicates which sequencing types were implemented on the samples. 146 
‘LibraryLayout’ refers to pair-end sequencing or single-end sequencing. ‘Disease’ contains 147 
the information about the diseases or health status. ‘SourceTissue_type’ indicates tissue 148 
sources of the biological materials used for sequencing. ‘Sourcetissue_condition’ indicates 149 
whether the tissues are pathological or normal. ‘SourceTissue_position’ refers to a more 150 
specific anatomical location of the ‘SourceTissue_type’. ‘SourceTissue_celltype’ indicates 151 
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whether whole tissue or a specific cell type in the tissue was used for sequencing. ‘OtherInfo’ 152 
contains other information that can help users to evaluate the biological or clinical relevance 153 
of the data, such as whether the patients were response to treatment. ‘Age’, ‘AgeGroup’ and 154 
‘Gender’ of the patients are also presented, if available. To assist evaluating the quality of 155 
the datasets, we also provide the following information related to data quality assessment 156 
along with metadata: sequencing library preparation kit (‘LibraryPrepKit’), average spot length 157 
(‘AvgSpotLen), sequencing instrument (‘Instrument’), total reads (‘TotalReads’), uniquely 158 
mapped reads (‘UniquelyMappedReads’), percentage of uniquely mapped reads 159 
(‘UniquelyMappedReads%’), percentage of multiple mapped loci (‘MultipleLoci%’). 160 
 161 
Bulk RNA-seq and microRNA-seq processing and data analysis 162 
Quality control (QC) of raw sequencing reads for each project was performed by FastQC 163 
(v0.11.9)16. Cutadapt (v3.7) was used to find and remove adapter sequences, primers, low 164 
quality sequence and other types of unmated sequences17. For bulk RNA-seq, the trimmed 165 
reads were mapped to the reference index built on human genome assembly GRCh38 (hg38, 166 
http://ensembl.org/Homo_sapiens/) using STAR (v2.7.9a) and counts were summarized to 167 
the genomic protein coding genes by featureCounts (v2.0.3)18,19. For microRNA-seq，trimmed 168 
reads were mapped to the reference index built on miRbase hairpins and Samtools (v1.14) 169 
was used to report alignment summary statistics and calculate the microRNA counts20. Batch 170 
effect between different studies was estimated and adjusted by ComBat-seq21. Then, all bulk 171 
RNA-seq gene counts and microRNA-seq counts were merged, respectively. To show 172 
sample correlation, Scanpy (1.9.1) was used to reduce dimension and generate uniform 173 
manifold approximation and projection (UMAP)22. To perform differential expression analysis, 174 
a t-test was applied to the normalized RPKM or RPM data and a false discovery rate (FDR) 175 
adjusted p-value was canulated using Benjamini–Hochberg method。 176 

The MSdb’s online differential expression analysis tool (https://www.msdb.org.cn/browse/) 177 
was used to obtain differentially expressed mRNAs and miRNAs (FDR < 0.01 and fold 178 
change > 2). Down-regulated microRNAs and up-regulated genes in degenerative 179 
intervertebral disks were used for further analysis. CyTargetLinker (v4.1.0) was used to 180 
predict and construct the miRNA-gene interaction network with miRTarBase Homo sapiens 181 
release 8.0 linksets was used as a reference23,24. Cytoscape software (v3.9.1) was used for 182 
miRNA-mRNA regulatory network visualization25. 183 
 184 
Single cell RNA-seq processing and data analysis 185 
The genome reference used in scRNA-seq analysis is GRCh38. For droplet-based scRNA-186 
seq, the raw data were processed using Cell Ranger (v7.0.0) or Drop-seq_tools with standard 187 
pipeline and default parameters to obtain gene expression matrix26,27. For full-length scRNA-188 
seq, the data were mapped using STAR (v2.7.9a) and quantified using featureCounts (v2.0.3). 189 
To perform downstream analysis, the gene expression matrix containing UMI counts was 190 
read into an AnnData object by Scanpy (v1.9.1) in Python3 (v3.9.12)22. Cells with unique 191 
gene counts less than 200 or genes that are detected in less than 3 cells were removed. To 192 
perform unsupervised cell clustering analysis, the UMI counts were normalized to counts per 193 
million (CPM) with scanpy.pp.normalize_total function, followed by log-transformation and 194 
principal component analysis (PCA) using scanpy.pp.log1p and scanpy.tl.pca functions. The 195 
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neighborhood graph was calculated based on the PCA results using 196 
scanpy.pp.neighbors function and the Leiden algorithm was used to perform unsupervised 197 
cell clustering (scanpy.tl.leiden)28. Marker genes for each cell cluster were identified by 198 
sc.tl.rank_genes_groups function. To perform reference-based cell subtype prediction, the 199 
filtered count matrix was loaded into Seurat (v4.1.1) in R (v4.2.0)29. The annotation of cell 200 
subtype was performed by SingleR (v1.10.0) R-package using different references, including 201 
the BlueprintEncodeData and the HumanPrimaryCellAtlasData30. Marker genes for each 202 
annotated cell types were identified by FindAllMarkers in Seurat package. UMAP was used 203 
for the data visualization of unsupervised cell clustering, cell type prediction and marker gene 204 
expression.  205 
 We built a single-cell atlas of the synovium containing 101,610 cells from 3 studies and 206 
34 samples. We have implemented a probabilistic model based on a variational autoencoder 207 
to integrate single-cell RNA-seq datasets and remove batch effects, accepting raw count 208 
matrix as input. The variational distribution adopts the log-normal distribution with scalar 209 
mean and variance output from the encoder, regularized by the Kullback–Leibler divergence. 210 
The decoder takes categorical encoding of the sample name to reflect biological variance 211 
and remove batch effects. The count data is modelled by the zero-inflated binomial 212 
distribution. The dimension of the latent embedding of the variational autoencoder was 213 
chosen to be 10. The top 3,000 highly variable genes were selected using Scanpy (v1.9.1) 214 
for the model to learn the latent embeddings22. The model was trained on NVIDIA GeForce 215 
RTX 3090 addressing 24 GB RAM. Cell annotations for the integrated datasets were based 216 
on unsupervised clustering result and prior knowledge of marker gene expression of major 217 
cell types including B cells, T/NK cells, macrophages, monocytes, fibroblasts, endothelial 218 
cells and smooth muscle cells. The final representation of the dataset was projected to 2-219 
dimensional space using the UMAP algorithm. 220 
 221 
Website development 222 
We developed a user-friendly web interface with advanced functions to present our uniformly 223 
curated metadata and NGS data. The front-end interface was developed with HTML5 and 224 
CSS3 languages, based on the BootStrap (v5.2.1) toolkit. All font-end tables were built 225 
through DataTables (v1.12.1), a plug-in for the jQuery Javascript library. All data 226 
visualizations were developed by D3.js (v7), a JavaScript library for document manipulation. 227 
All back-end data including the bulk RNA-seq and microRNA-seq gene count matrix, UMAP 228 
coordinate information, the scRNA-seq clusters, cell subtype annotation, marker genes for 229 
different clusters were maintained into PostgreSQL database management system (v14.5). 230 
The MSdb database is deployed with a Nginx web server (v1.18.0) on an Ubuntu Linux 231 
(v20.04.5 LTS) operating system. 232 
 233 
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Figures and legends 328 
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Fig. 1. MSdb framework and illustrative data analysis. a, Overview of MSdb. MSdb is a 330 
comprehensive database of next-generation sequencing data on human musculoskeletal system tissues 331 
and cells, enhanced with manually curated patient phenotypes, advanced analysis and visualization 332 
tools. b, c, UMAP plots showing gene (b) and microRNA (c) expression atlas in MSdb. All gene or 333 
microRNA expression data in MSdb were used for clustering, respectively. Samples are colored by tissue 334 
types (top), diseases (middle) and COL3A1/miR-4649-5p expression levels (bottom). d, Volcano plots 335 
and box plots showing dysregulated genes (top) or microRNAs (bottom) between healthy (n=3) and 336 
degenerative (n=3) intervertebral disks. RPKM: reads per kilobase per million mapped reads; RPM: 337 
reads per million mapped reads. *: FDR < 0.01. e, microRNA-gene interaction network built with down-338 
regulated microRNAs and up-regulated genes in degenerative intervertebral disks. Red dots represent 339 
the microRNAs and grey dots represent the genes. Complete and interactive plots of the network are 340 
available online on MSdb database. 341 
 342 
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 346 
Fig. 2. Integrated analysis of scRNA-seq data of synovial tissues-derived cells from OA, RA, UA 347 
and healthy patients. a, b, UMAP plots showing clustering of 101,610 cells from healthy, osteoarthritis, 348 
rheumatoid arthritis and undifferentiated arthritis patients. Cells are colored by cell types (a) and by 349 
diseases (b). c, Violin plots showing marker gene expression of each cell type. d, Scatter plot showing the 350 
expression level of genes specifically expressed in RA- or OA-derived fibroblasts. Cells are colored by the 351 
expression of the indicated genes. 352 
  353 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.517756doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517756
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary figures and legends 354 

 355 
 356 
Supplementary Fig. 1. Overview of MSdb database construction. Publicly available data sets were 357 
collected from NCBI and EMBL-EBI databases. Metadata was curated by clinician and bioinformatician. 358 
Standardized data processing pipelines were built for bulk RNA-seq, microRNA-seq and single-cell RNA-359 
seq. All processed data were stored in PostgreSQL database, and can be accessed with a user-friendly 360 
web interface. 361 
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 364 

 365 
Supplementary Fig. 2. An illustration of the MSdb home page. a, The upper portion of the home page 366 
showing site-wide menu choices and brief introduction of the database. b, The lower portion of the home 367 
page showing tissue icons and links for quick access to each data type. 368 
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Supplementary Fig. 3. An illustration of browse and differential expression analysis modules. a, 376 
The selection boxes. Users can select data sets based on the project ID, tissue type, assay type, disease, 377 
source tissue type, source tissue position or source tissue cell type. b, The differential expression analysis 378 
module. Users may choose no more than 8 samples for each group. The differentially expressed genes 379 
between the user-defined samples will be calculated and presented in a volcano plot. Users may query 380 
the expression level of a specific gene or microRNA in the box plot. 381 
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Supplementary Fig. 4. An illustration of data statistics on MSdb. a, The circular bar plots showing the 385 
number of publications, projects and samples (left), as well as the number of diseases, tissue types, 386 
positions and cell types (right) in MSdb. b, Pie charts showing the distribution of samples across tissue 387 
types, tissue positions, cell types and diseases. Shown are the statistics of bulk RNA-seq, and the statistics 388 
of other assay types can be found on our website. c, Sankey diagram displaying Tissue type - Tissue 389 
position - Cell type - Disease relationships of the samples. Shown is the diagram of scRNA-seq, and the 390 
diagrams of other assay types can be found on our website. 391 
 392 
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Supplementary Fig. 5. Sample clustering and gene expression plots of bulk RNA-seq. UMAP plots 396 
and violin plots showing sample clustering and COL3A1 expression by diseases (a), tissue types (b), cell 397 
types (c) and tissue positions (d). The color code of UMAP in each panel are indicated by the colors of the 398 
text below the violin plots.  399 
 400 
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Supplementary Fig. 6. Sample clustering and microRNA expression plots of microRNA-seq. UMAP 403 
plots and violin plots showing sample clustering and miR-4649-5p expression by diseases (a), tissue types 404 
(b), cell types (c) and tissue positions (d). The color code of UMAP in each panel are indicated by the 405 
colors of the text below the violin plots.  406 
 407 
 408 
 409 
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Supplementary Fig. 7. An illustration of scRNA-seq expression atlas in MSdb. a, Metadata and 413 
quality control metrics of the selected scRNA-seq dataset. b, c, UMAP plots showing unsupervised cell 414 
clustering (b) and cell type prediction (c) results. On web interface, the name of the cell cluster or cell type 415 
will be shown if one hovers the cursor on the dot. d, e, Cell number in each cell cluster (d) and predicted 416 
cell type (e). f, UMAP plot showing expression level of CD68 gene in each single cell. g, h, Violin plots 417 
showing expression level of CD68 gene in each cell cluster (g) and predicted cell type (h). i, Dropdown 418 
boxes offering choice for Leiden resolution (left) and reference data sets (right) for cell clustering and cell 419 
type prediction, respectively. j, k, The heatmap and table of marker genes for each cell cluster (j) and 420 
predicted cell type (k). The table can be downloaded in CSV format. 421 
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 424 
 425 

Supplementary Fig. 8. Gene regulatory networks inferred from scRNA-seq. Gene networks for each 426 
cell types in Fig. 2a. Red dots represent genes. Core genes are highlighted. Complete and interactive plots 427 
of these GRNs are available online on MSdb database. 428 
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