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Abstract

We introduce MSdb (https://www.msdb.org.cn), a database for visualization and integrated
analysis of next-generation sequencing data from human musculoskeletal system, along with
manually curated patient phenotype data. Systematic categorizing, standardized processing
and freely accessible knowledge enables the reuse of public data. MSdb provides various
types of analysis, including sample-level browsing of metadata information, gene/miRNA
expression, and single-cell RNA-seq dataset. In addition, MSdb also allows integrated
analysis for cross-samples and cross-omics analysis, including customized differentially-
expressed gene/microRNA analysis, microRNA-gene network, scRNA-seq cross-
sample/disease integration, and gene regulatory network analysis.

Main

The prevalence and burden of musculoskeletal (MSK) disorders are extremely high all over
the world"2. With the advancement of next-generation sequencing (NGS), a huge amount of
sequencing data has been generated, which accelerated the research of pathological
mechanisms and the development of novel therapeutic approaches for MSK disorders3-5.
However, dispersed distribution of relevant data sets among different repositories makes it
challenging to analyze and compare them in a uniform way. Therefore, we developed the
human musculoskeletal system database (MSdb), an integrated expression atlas specifically
for the human MSK system, containing 33 diseases, 126 projects, 3,398 transcriptomes and
microRNAomes at bulk level, as well as 2,833,779 transcriptomes at single-cell level (Fig. 1a
and Supplementary Fig. 1). MSdb incorporates cross-repository metadata into controlled
vocabulary and uniform format, enabling efficient retrieval of sample information
(Supplementary Table). MSdb provides multiple built-in data exploration and analysis
functionalities, including gene/microRNA expression browsing, customized differentially-
expressed genes/miRNAs analysis, integrated microRNA-gene interaction networks, as well
as integrated single-cell expression atlas and cell type-specific gene regulatory networks
analysis (Supplementary Fig. 2 and Supplementary Video). Furthermore, MSdb allows
downloading of processed data sets and publication-quality plots, offering wet lab scientists
powerful tools to browse and re-analyze the public datasets without technical barriers.

MSdb enables users to retrieve sample information via consistent and validated metadata
curated by orthopedists and bioinformatics scientists (Supplementary Table). Users can
search the database using multiple parameters like project identifier, diseases, and tissue
types in order to find data sets that match their interests (Supplementary Fig. 3a). In metadata,
four types of information are available: (i) data set and publication identifiers, (ii) patient
phenotypes, (iii) sample information and (iv) data pre-processing summary. These items
enable users to evaluate the biological meaning, clinical relevance and data quality of the
samples. Summary statistics of the metadata are also presented to show global patterns of
the studies (Supplementary Fig. 4).

At bulk level, MSdb integrates information at two aspects: (i) cross-tissue integration, (ii)
cross-omics integration. For cross-tissue integration, samples were initially integrated by
projects to generate gene or microRNA expression atlas, and then labelled by their tissue
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types, diseases, cell types, and tissue positions. Users may explore the expression of genes
or microRNAs by these labels (Supplementary Fig. 5 and Supplementary Fig. 6). In Fig. 1b,
¢, uniform manifold approximation and projection (UMAP) plots show the integrated
expression atlas of bulk RNA-seq or microRNA-seq data in MSdb, and samples are colored
by representative tissue types and diseases. Feature plots and violin plots show that COL3A1,
a connective tissue marker, was pervasively expressed in MSK tissues as expected (Fig. 1b
and Supplementary Fig.5). Cerebrospinal fluid from amyotrophic lateral sclerosis (ALS)
patients showed enrichment of the potential diagnostic marker miR-4649-5p (Fig. 1c and
Supplementary Fig.6)”. For cross-omics integration, MSdb enables users to analyze bulk
RNA-seq and microRNA-seq data side-by-side and integrate the results to predict disease-
related gene expression regulatory mechanisms. MSdb’s differential expression analysis
module allows users to choose two groups of samples for comparison (Supplementary Fig.
3b). An interactive volcano plot can be used to explore differentially expressed genes or
microRNAs between user-defined groups, and the expression level of a specific gene or
microRNA can be queried and will be displayed in the box plot (Supplementary Fig. 3b). By
integrating differentially expressed genes and microRNAs between normal and pathological
intervertebral disks, we constructed a microRNA-gene interaction network (Fig. 1d, e). The
network revealed previous reported (indicated by asterisk) and unanticipated disease-
associated microRNAs and their potential gene targets, which can be interactively explored
on our website (Fig. 1e). We demonstrated that the expression level of miR-146a-5p was
down-regulated, while its target SPP1 was up-regulated in degenerative intervertebral disks
when compared to healthy control (Fig. 1d, e). Since abnormal expression of SPP1 plays a
critical role in the pathological process of intervertebral disk degeneration (IDD)8, our analysis
indicated that targeting SPP1 with miR-146a-5p mimic might be a therapeutic method to
counteract disk degeneration. Collectively, MSdb offers users with integrated expression
atlas and useful data analysis functionalities to understand gene function and regulation in
homeostasis and diseases.

In recent years, the emergence of single-cell technology permits researchers to discover
new and possibly unexpected biological findings relative to bulk-level profiling. Intriguingly,
MSdb contains a wealth of single-cell RNA sequencing (scRNA-seq) data and provides a suit
of functionalities for users to explore gene expression at single-cell level. For each scRNA-
seq dataset, we provide textual and graphical representations for sample information, quality
control metrics, unsupervised cell clustering, reference-based cell subtype prediction, as well
as marker genes for each cell type (Supplementary Fig. 7). In a single-cell profiling of synovial
tissue from a female patient with rheumatoid arthritis, major cell types, such as fibroblasts,
macrophages, T cells and monocytes were identified and the specific CD68 expression in the
predicted macrophages (cluster 2) indicated the reliability of cell clustering and automated
cell type prediction (Supplementary Fig. 7a-h). For more sophisticated cell type clustering
and annotation, users can adjust leiden resolution for cell clustering and change reference
dataset for cell type prediction (Supplementary Fig. 7i). To help with manual annotation, a
heatmap and a table of marker genes are displayed and available for download.
(Supplementary Fig. 7j, k).

We also implemented an in-house variational autoencoder (VAE) based deep-learning
framework to facilitate the integrative analysis for scRNA-seq data sets from different studies.
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Fig. 2 displays the result of integrated analysis of single-cell gene expression data from
healthy, osteoarthritis (OA), rheumatic arthritis (RA) and undifferentiated arthritis (UA)
patients. Using the VAE model, we were able to remove batch differences and integrate
heterogeneous data from different studies (Fig. 2b). The cell types could be identified by the
known marker genes, whose expression patterns support that our integration method
appropriately aligned gene expression for each cell types (Fig. 2a, c). Interestingly, we
observed a distinct distribution pattern of fibroblasts from OA and RA patients (Fig. 2b).
Differential expression analysis revealed that IGFBP3 and LOX were more enriched in OA-
derived fibroblast when compared to RA-derived fibroblast (Fig. 2d). IGFBP3 and LOX were
involved in extracellular matrix remodeling, which may determine synovial fibrosis and may
be associated with the clinical symptoms of pain, hyperalgesia, and stiffness in osteoarthritis®.
It was also noted that CD74 and HLA-DRA were specifically expressed in RA fibroblasts,
demonstrating an inflammatory state of fibroblasts that have been reported to be a major
source of pro-inflammatory cytokines and highlighted as a potential therapeutic target in RA
(Fig. 2d)'%"". Moreover, we inferred gene regulatory networks (GRNs) using a previously
published deep regenerative model for each cell types'?. Users may interactively visualize
the GRNs in our database to explore the complicated molecular interactions governing
potential cell identity (Supplementary Fig. 8).

Overall, MSdb is a resource created for the MSK research community and aims to fulfill
the findability, accessibility, interoperability, and reusability (FAIR) principles of scholarly
data'®. The uniformity of sample information in MSdb enables metadata-based and database-
scale analysis. MSdb’s utility will continue to grow as public NGS data sets of human
musculoskeletal system expand. We envision that it will broaden the use of human MSK data
sets and will be invaluable to researchers in the MSK field.

Methods

Data collection and meta information curation

Bulk RNA-seq, microRNAs-seq and single-cell RNA-seq data of human musculoskeletal
system were originated from NCBI Gene Expression Omnibus (GEO) and EMBL's European
Bioinformatics Institute (EMBL-EBI)'*'5. We manually curated both GEO and EMBL-EBI-
derived sample information to provide a coherent and standardized metadata. The resulting
collection offers the following information for each dataset. ‘SampleName’ contains the
sample’s identification code in GEO (e.g. GSM2112324) or EMBL-EBI (e.g. ERS1034560).
‘ProjectID’ contains the sample’s project identification code in GEO (e.g. GSE80072) or
EMBL-EBI (e.g. E-MTAB-4304). ‘Publication_DOI’ contains the digital object identifier of the
original publication. ‘Category’ indicates the MSK tissues that the datasets are related to.
‘AssayType’ indicates which sequencing types were implemented on the samples.
‘LibraryLayout’ refers to pair-end sequencing or single-end sequencing. ‘Disease’ contains
the information about the diseases or health status. ‘SourceTissue_type’ indicates tissue
sources of the biological materials used for sequencing. ‘Sourcetissue_condition’ indicates
whether the tissues are pathological or normal. ‘SourceTissue_position’ refers to a more
specific anatomical location of the ‘SourceTissue_type’. ‘SourceTissue_celltype’ indicates
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whether whole tissue or a specific cell type in the tissue was used for sequencing. ‘Otherinfo’
contains other information that can help users to evaluate the biological or clinical relevance
of the data, such as whether the patients were response to treatment. ‘Age’, ‘AgeGroup’ and
‘Gender’ of the patients are also presented, if available. To assist evaluating the quality of
the datasets, we also provide the following information related to data quality assessment
along with metadata: sequencing library preparation kit (‘LibraryPrepKit’), average spot length
(‘AvgSpotLen), sequencing instrument (‘Instrument’), total reads (‘TotalReads’), uniquely
mapped reads (‘UniquelyMappedReads’), percentage of uniquely mapped reads
(‘UniquelyMappedReads%’), percentage of multiple mapped loci (‘MultipleLoci%’).

Bulk RNA-seq and microRNA-seq processing and data analysis

Quality control (QC) of raw sequencing reads for each project was performed by FastQC
(v0.11.9)'6. Cutadapt (v3.7) was used to find and remove adapter sequences, primers, low
quality sequence and other types of unmated sequences'’. For bulk RNA-seq, the trimmed
reads were mapped to the reference index built on human genome assembly GRCh38 (hg38,
http://ensembl.org/Homo_sapiens/) using STAR (v2.7.9a) and counts were summarized to
the genomic protein coding genes by featureCounts (v2.0.3)'®'°. For microRNA-seq, trimmed
reads were mapped to the reference index built on miRbase hairpins and Samtools (v1.14)
was used to report alignment summary statistics and calculate the microRNA counts?°. Batch
effect between different studies was estimated and adjusted by ComBat-seqg?'. Then, all bulk
RNA-seq gene counts and microRNA-seq counts were merged, respectively. To show
sample correlation, Scanpy (1.9.1) was used to reduce dimension and generate uniform
manifold approximation and projection (UMAP)?2. To perform differential expression analysis,
a t-test was applied to the normalized RPKM or RPM data and a false discovery rate (FDR)
adjusted p-value was canulated using Benjamini—-Hochberg method.

The MSdb’s online differential expression analysis tool (https://www.msdb.org.cn/browse/)
was used to obtain differentially expressed mRNAs and miRNAs (FDR < 0.01 and fold
change > 2). Down-regulated microRNAs and up-regulated genes in degenerative
intervertebral disks were used for further analysis. CyTargetLinker (v4.1.0) was used to
predict and construct the miRNA-gene interaction network with miRTarBase Homo sapiens
release 8.0 linksets was used as a reference?>24, Cytoscape software (v3.9.1) was used for
miRNA-mRNA regulatory network visualization?®.

Single cell RNA-seq processing and data analysis

The genome reference used in sScRNA-seq analysis is GRCh38. For droplet-based scRNA-
seq, the raw data were processed using Cell Ranger (v7.0.0) or Drop-seq_tools with standard
pipeline and default parameters to obtain gene expression matrix?627. For full-length scRNA-
seq, the data were mapped using STAR (v2.7.9a) and quantified using featureCounts (v2.0.3).
To perform downstream analysis, the gene expression matrix containing UMI counts was
read into an AnnData object by Scanpy (v1.9.1) in Python3 (v3.9.12)?2. Cells with unique
gene counts less than 200 or genes that are detected in less than 3 cells were removed. To
perform unsupervised cell clustering analysis, the UMI counts were normalized to counts per
million (CPM) with scanpy.pp.normalize_total function, followed by log-transformation and
principal component analysis (PCA) using scanpy.pp.log1p and scanpy.tl.pca functions. The
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neighborhood graph was calculated based on the PCA results using
scanpy.pp.neighbors function and the Leiden algorithm was used to perform unsupervised
cell clustering (scanpy.tl.leiden)?®. Marker genes for each cell cluster were identified by
sc.tl.rank_genes_groups function. To perform reference-based cell subtype prediction, the
filtered count matrix was loaded into Seurat (v4.1.1) in R (v4.2.0)?°. The annotation of cell
subtype was performed by SingleR (v1.10.0) R-package using different references, including
the BlueprintEncodeData and the HumanPrimaryCellAtlasData3°. Marker genes for each
annotated cell types were identified by FindAlIMarkers in Seurat package. UMAP was used
for the data visualization of unsupervised cell clustering, cell type prediction and marker gene
expression.

We built a single-cell atlas of the synovium containing 101,610 cells from 3 studies and
34 samples. We have implemented a probabilistic model based on a variational autoencoder
to integrate single-cell RNA-seq datasets and remove batch effects, accepting raw count
matrix as input. The variational distribution adopts the log-normal distribution with scalar
mean and variance output from the encoder, regularized by the Kullback—Leibler divergence.
The decoder takes categorical encoding of the sample name to reflect biological variance
and remove batch effects. The count data is modelled by the zero-inflated binomial
distribution. The dimension of the latent embedding of the variational autoencoder was
chosen to be 10. The top 3,000 highly variable genes were selected using Scanpy (v1.9.1)
for the model to learn the latent embeddings??. The model was trained on NVIDIA GeForce
RTX 3090 addressing 24 GB RAM. Cell annotations for the integrated datasets were based
on unsupervised clustering result and prior knowledge of marker gene expression of major
cell types including B cells, T/NK cells, macrophages, monocytes, fibroblasts, endothelial
cells and smooth muscle cells. The final representation of the dataset was projected to 2-
dimensional space using the UMAP algorithm.

Website development

We developed a user-friendly web interface with advanced functions to present our uniformly
curated metadata and NGS data. The front-end interface was developed with HTML5 and
CSS3 languages, based on the BootStrap (v5.2.1) toolkit. All font-end tables were built
through DataTables (v1.12.1), a plug-in for the jQuery Javascript library. All data
visualizations were developed by D3.js (v7), a JavaScript library for document manipulation.
All back-end data including the bulk RNA-seq and microRNA-seq gene count matrix, UMAP
coordinate information, the scRNA-seq clusters, cell subtype annotation, marker genes for
different clusters were maintained into PostgreSQL database management system (v14.5).
The MSdb database is deployed with a Nginx web server (v1.18.0) on an Ubuntu Linux
(v20.04.5 LTS) operating system.
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Fig. 1. MSdb framework and illustrative data analysis. a, Overview of MSdb. MSdb is a
comprehensive database of next-generation sequencing data on human musculoskeletal system tissues
and cells, enhanced with manually curated patient phenotypes, advanced analysis and visualization
tools. b, ¢, UMAP plots showing gene (b) and microRNA (c) expression atlas in MSdb. All gene or
microRNA expression data in MSdb were used for clustering, respectively. Samples are colored by tissue
types (top), diseases (middle) and COL3A1/miR-4649-5p expression levels (bottom). d, Volcano plots
and box plots showing dysregulated genes (top) or microRNAs (bottom) between healthy (n=3) and
degenerative (n=3) intervertebral disks. RPKM: reads per kilobase per million mapped reads; RPM:
reads per million mapped reads. *: FDR < 0.01. e, microRNA-gene interaction network built with down-
regulated microRNAs and up-regulated genes in degenerative intervertebral disks. Red dots represent
the microRNAs and grey dots represent the genes. Complete and interactive plots of the network are
available online on MSdb database.
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diseases (b). ¢, Violin plots showing marker gene expression of each cell type. d, Scatter plot showing the
expression level of genes specifically expressed in RA- or OA-derived fibroblasts. Cells are colored by the
expression of the indicated genes.
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Supplementary figures and legends
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Supplementary Fig. 1. Overview of MSdb database construction. Publicly available data sets were
collected from NCBI and EMBL-EBI databases. Metadata was curated by clinician and bioinformatician.
Standardized data processing pipelines were built for bulk RNA-seq, microRNA-seq and single-cell RNA-
seq. All processed data were stored in PostgreSQL database, and can be accessed with a user-friendly
web interface.
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Supplementary Fig. 2. An illustration of the MSdb home page. a, The upper portion of the home page
showing site-wide menu choices and brief introduction of the database. b, The lower portion of the home
page showing tissue icons and links for quick access to each data type.
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Supplementary Fig. 3. An illustration of browse and differential expression analysis modules. a,
The selection boxes. Users can select data sets based on the project ID, tissue type, assay type, disease,
source tissue type, source tissue position or source tissue cell type. b, The differential expression analysis
module. Users may choose no more than 8 samples for each group. The differentially expressed genes
between the user-defined samples will be calculated and presented in a volcano plot. Users may query
the expression level of a specific gene or microRNA in the box plot.
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Supplementary Fig. 4. An illustration of data statistics on MSdb. a, The circular bar plots showing the
number of publications, projects and samples (left), as well as the number of diseases, tissue types,
positions and cell types (right) in MSdb. b, Pie charts showing the distribution of samples across tissue
types, tissue positions, cell types and diseases. Shown are the statistics of bulk RNA-seq, and the statistics
of other assay types can be found on our website. ¢, Sankey diagram displaying Tissue type - Tissue
position - Cell type - Disease relationships of the samples. Shown is the diagram of scRNA-seq, and the
diagrams of other assay types can be found on our website.
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Supplementary Fig. 5. Sample clustering and gene expression plots of bulk RNA-seq. UMAP plots
and violin plots showing sample clustering and COL3A1 expression by diseases (a), tissue types (b), cell
types (c) and tissue positions (d). The color code of UMAP in each panel are indicated by the colors of the
text below the violin plots.
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Supplementary Fig. 6. Sample clustering and microRNA expression plots of microRNA-seq. UMAP
plots and violin plots showing sample clustering and miR-4649-5p expression by diseases (a), tissue types
(b), cell types (c) and tissue positions (d). The color code of UMAP in each panel are indicated by the
colors of the text below the violin plots.
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Supplementary Fig. 7. An illustration of scRNA-seq expression atlas in MSdb. a, Metadata and
quality control metrics of the selected scRNA-seq dataset. b, ¢, UMAP plots showing unsupervised cell
clustering (b) and cell type prediction (c) results. On web interface, the name of the cell cluster or cell type
will be shown if one hovers the cursor on the dot. d, e, Cell number in each cell cluster (d) and predicted
cell type (e). f, UMAP plot showing expression level of CD68 gene in each single cell. g, h, Violin plots
showing expression level of CD68 gene in each cell cluster (g) and predicted cell type (h). i, Dropdown
boxes offering choice for Leiden resolution (left) and reference data sets (right) for cell clustering and cell
type prediction, respectively. j, k, The heatmap and table of marker genes for each cell cluster (j) and
predicted cell type (k). The table can be downloaded in CSV format.
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Supplementary Fig. 8. Gene regulatory networks inferred from scRNA-seq. Gene networks for each
cell types in Fig. 2a. Red dots represent genes. Core genes are highlighted. Complete and interactive plots
of these GRNs are available online on MSdb database.
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