

1 Multiscale Effects of Excitatory-Inhibitory Homeostasis in 2 Lesioned Cortical Networks: A Computational Study

3
4 **Francisco Páscoa dos Santos^{1,2*}, Jakub Vohryzek^{3,4}, Paul F.M.J. Verschure⁵**

5 ¹Eodyne Systems SL, Barcelona, Spain, ²Department of Information and Communication Technologies, Universitat
6 Pompeu Fabra (UPF), Barcelona, Spain, ³Centre for Brain and Cognition, Computational Neuroscience Group,
7 Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain, ⁴Centre for
8 Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK, ⁵Donders Institute for Brain, Cognition
9 and Behavior, Radboud University, Nijmegen, The Netherlands.

10 *Corresponding author: f.pascoadossantos@gmail.com

11 **Keywords:** stroke, diaschisis, cortical reorganization, functional connectivity, excitability, homeostatic plasticity,
12 excitatory-inhibitory balance, large-scale models

13 Abstract

14 Stroke-related disruptions in functional connectivity (FC) often spread beyond lesioned
15 areas and, given the localized nature of lesions, it is unclear how the recovery of FC is
16 orchestrated on a global scale. Since recovery is accompanied by long-term changes in
17 excitability, we propose excitatory-inhibitory (E-I) homeostasis as a driving mechanism.
18 We present a large-scale model of the neocortex, with synaptic scaling of local inhibition,
19 showing how E-I homeostasis can drive the post-lesion restoration of FC and linking it to
20 changes in excitability. We show that functional networks could reorganize to recover
21 disrupted modularity and small-worldness, but not network dynamics, suggesting the
22 need to consider forms of plasticity beyond synaptic scaling of inhibition. On average,
23 we observed widespread increases in excitability, with the emergence of complex lesion-
24 dependent patterns related to biomarkers of relevant side effects of stroke, such as
25 epilepsy, depression and chronic pain. In summary, our results show that the effects of
26 E-I homeostasis extend beyond local E-I balance, driving the restoration of global
27 properties of FC, and relating to post-stroke symptomatology. Therefore, we suggest the
28 framework of E-I homeostasis as a relevant theoretical foundation for the study of stroke
29 recovery and for understanding the emergence of meaningful features of FC from local
30 dynamics.

31 1. Introduction

32 Stroke, characterized by neural tissue necrosis (i.e. lesion) due to oxygen loss after
33 occlusion or hemorrhage of a vessel supplying blood to the brain, is one of the leading
34 causes of disability, with a significant negative impact on patient life quality (1) due to its
35 debilitating symptoms, ranging from motor deficits to impaired higher-order functions
36 such as attention and memory (1,2). Besides these symptoms, stroke patients tend to
37 develop long-term side effects such as seizures (in some cases evolving into epilepsy)
38 (3–5), chronic pain (6,7), depression (8–10) and chronic fatigue (11). This heterogeneity
39 in symptoms and side effects raises the need to better understand the mechanisms
40 through which these symptoms emerge, to better predict their occurrence and to inform
41 therapeutical approaches. This task is made difficult not only by the heterogeneity in
42 lesions, but also since their consequences on neural activity and connectivity often
43 spread beyond lesioned areas (Carrera and Tononi, 2014; Páscoa dos Santos and
44 Verschure, 2022). This phenomenon, first described by Konstantin von Monakow in 1914
45 (12), is known as diaschisis. Although its initial conception pertained to acute changes in
46 the excitability of regions distant from the lesion, today the concept has been expanded
47 to include global changes in connectivity (13). This might include a range of deficits in
48 functional connectivity (FC), from disconnection between particular areas (14–17) to
49 structural-functional decorrelation (18). However, it is considered that the most robust
50 disruptions, found to correlate with function, are decreased homotopic interhemispheric
51 functional connectivity and increased functional connectivity between regions that were
52 not previously connected (Corbetta et al., 2018), manifesting through a loss of modularity
53 (19). Modularity, a property of networks that have strong connectivity within node
54 communities, with sparser connections between them, has been observed in human
55 functional and structural networks and is considered to reflect an appropriate balance
56 between segregation and integration of networks, underlying functional specialization
57 (20,21). Importantly, modularity is significantly disrupted following a stroke and is
58 recovered in the following months, with the magnitude of recovery correlating with
59 improvement in higher-order functions such as attention and working memory (19).
60 Similarly, small-worldness, a property of networks where most nodes are not neighbors,
61 but can be reached through a short path through highly connected nodes (hubs) (22), is
62 lost after a stroke and subsequently recovered (19). Besides affecting structural and
63 functional connectivity, stroke lesions may have comparable effects on cortical network
64 dynamics. While empirical studies are lacking, modeling studies suggest significant post-

65 lesion effects on dynamical features such as metastability, quantifying the ability of a
66 network to flexibly switch between synchronous and asynchronous states (23) or
67 criticality, a property of brain networks underlying balanced propagation of activity (24).
68 Therefore, the post-stroke loss, and subsequent recovery, of global properties of FC (and
69 possibly network dynamics), raise the question of how the human cortex coordinates the
70 restoration of properties on a large scale.

71 Several studies have reported persistent increases in excitability in the period following
72 stroke, both in rodent models of the disease (25–27) and in human patients (28–30).
73 Such increases have been related to several factors, from increased glutamatergic
74 receptor density (31), prolonged excitatory postsynaptic potentials (25) or, more
75 importantly, decreased GABAergic signaling (27,32–34). Indeed, studies in stroke
76 patients indicate that not only is there a longitudinal decrease in the availability of
77 GABAergic neurotransmitters in the cortex (29), but that its magnitude correlates with
78 behavioral recovery (30). Therefore, as previously suggested (35–37), it is likely that
79 these changes play a significant role in stroke recovery and might result from
80 mechanisms intended to maintain excitatory-inhibitory (E-I) balance in cortical networks,
81 following a significant loss in excitation caused by gray-matter loss or disruption of white-
82 matter tracts.

83 Indeed, research supports E-I balance as a pivotal feature of cortical networks (38–41),
84 which maintain a close-knit balance between the levels of excitation and inhibition
85 arriving at individual pyramidal neurons (42–44). In addition, criticality, an emergent
86 signature of E-I balance, has been consistently observed in neural dynamics (45–48)
87 and is relevant for the optimization of functions ranging from high dynamic ranges to
88 information capacity and transmission (49–51). Given its relevance to neural function,
89 cortical neurons have mechanisms of homeostasis that maintain E-I balance (52), from
90 synaptic scaling of excitatory synapses to regulation of intrinsic excitability (53–57). Of
91 particular interest is the scaling of incoming inhibitory synapses by pyramidal neurons,
92 which has been shown to occur after perturbations such as sensory deprivation (56) and
93 to be a strong factor underlying sensory co-tuning, memory stability (40) or criticality in
94 cortical networks (58). Importantly, these processes work on long timescales of hours to
95 days in mice (52) or up to several weeks in monkeys, depending on the type of disruption
96 (59). Therefore, it is likely that such homeostatic mechanisms might participate in stroke
97 recovery (35–37) and underlie the long-term changes in excitability observed in patients
98 (29,30). In addition, it could be possible, as previously suggested (60), that homeostatic
99 plasticity mechanisms are not only responsible for restoring local E-I balance but also
100 contribute to recalibrating global properties of FC. Therefore, E-I homeostasis could

101 potentially explain the long-term local changes in excitability and the recovery of global
102 dynamics and FC properties simultaneously.

103 On this subject, not only have previous modeling studies shown the importance of E-I
104 homeostasis to accurately reproduce cortical dynamics (61) and functional connectivity
105 (62–64), but also that it might be involved in stroke recovery. The study of Vattikonda
106 and colleagues (60) showed that the restoration of E-I balance, through inhibitory
107 synaptic scaling, further helped with the recovery of FC in a lesion-dependent manner.
108 In addition, models fitted to FC from stroke patients showed reduced local inhibition
109 compared to healthy controls (65). Such approaches, however, lack a detailed
110 exploration of what E-I homeostasis entails regarding which changes in excitability are
111 driving this process how they are distributed across the brain. This understanding is
112 relevant not only to better link the action of E-I homeostasis to current knowledge on
113 post-stroke changes in excitability (27,29,30) but also to elucidate the etiology of stroke
114 symptomatology, such as post-stroke seizures (3), depression (10) and chronic pain (7),
115 which have been tied to changes in excitability. E-I homeostasis could then explain why
116 stroke patients display an increased propensity to develop such symptoms, framing them
117 as side-effects of homeostatic plasticity attempting to restore local E-I balance.

118 Therefore, we hypothesize that E-I homeostasis not only plays an important role in the
119 maintenance of E-I balance at the mesoscale but also in the recovery of macroscale
120 properties of FC (i.e. modularity and small-worldness). In this modeling study, we aim to
121 explore the involvement of E-I homeostasis in recovery from localized lesion in large-
122 scale networks of interacting nodes and the subsequent changes in excitability it entails.
123 To that end, we simulate gray-matter lesions in a network model constrained by the
124 structural connectome of the human cortex, including local E-I homeostasis
125 mechanisms. Our main goal is then to study the long-term changes in excitability
126 observed in lesioned brain networks through the lens of homeostatic plasticity, tying them
127 to the global recovery of FC and suggesting a novel process participating in the
128 emergence of late-onset side effects of stroke previously related to altered cortical
129 excitability, such as epilepsy, depression and chronic pain.

130 **2. Methods**

131 **2.1. Empirical data**

132 **2.1.1. Structural Connectivity**

133 In order to derive structural connectivity matrices of 78x78 dimensions, we used a
134 probabilistic tractography-based normative connectome from the leadDBS toolbox
135 (<https://www.lead-dbs.org/>). This normative connectome comes from 32 healthy
136 participants (mean age 31.5 years old \pm 8.6, 14 females) generated as part of the Human
137 Connectome Project (HCP - <https://www.humanconnectome.org>) from diffusion-
138 weighted and T2-weighted Magnetic Resonance Imaging data recorded for 89 minutes
139 on a specially set up MRI scanner with more powerful gradients to the standard models.
140 The HCP data acquisition details can be found in the Image & Data Archive
141 (<https://ida.loni.usc.edu/>). For the diffusion imaging, DSI studio ([http://dsi-
142 studio.labsolver.org](http://dsi-studio.labsolver.org)) with a generalized q-sampling imaging algorithm was used.
143 Furthermore, a white-matter mask, derived from the segmentation of the T2-weighted
144 anatomical images was applied to co-register the images to the b0 image of the diffusion
145 data using the SPM 12 toolbox (<https://www.fil.ion.ucl.ac.uk/spm/software/spm12/>).
146 Then, each participant was sampled with 200 000 most probable tracts. The tracts were
147 transformed to the standard space (MNI space) by applying a nonlinear deformation field,
148 derived from the T2-weighted images via a diffeomorphic registration algorithm (66). The
149 individual tractograms were then aggregated into a joint dataset in MNI standard space
150 resulting in a normative tractogram representative of a healthy young adult population
151 and made available in the leadDBS toolbox (67). Finally, to obtain structural
152 connectomes from the normative connectome in our desired parcellation – the Anatomic
153 Automatic Labeling (AAL) atlas (68) -, we calculated the mean tracts between the voxels
154 belonging to each pair of brain regions.

155 **2.1.2. BOLD fMRI Time Series**

156 The data from healthy controls used to fit the model were obtained from the public
157 database of the Human Connectome Project (HCP), WU-Minn Consortium (Principal
158 Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16
159 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research;
160 and by the McDonnell Center for Systems Neuroscience at Washington University. (69).

161 The specific data used in this project was obtained from 100 unrelated subjects from the
162 HCP database (mean age 29.5 years old, 55% females). Each subject underwent four
163 resting-state fMRI sessions of about 14.5 minutes on a 3-T connectome Skyra scanner
164 (Siemens) with the following parameters: TR = 0.72 s, echo time = 33.1 ms, field of view
165 = 208x180mm, flip angle = 52°, multiband factor = 8, echo time = 33.1 with 2x2x2
166 isotropic voxels with 72 slices and alternated LR/RL phase encoding. For further details
167 on the data acquisition and standard processing pipeline, please consult (70) and
168 <https://www.humanconnectome.org/study/hcp-young-adult/data-releases>. In this work,
169 we used the data from the first session of the first day of scanning.

170 The AAL atlas was further used to parcellate the voxel-based data into 90 anatomically
171 distinct cortical and subcortical regions, excluding the cerebellum. For this work, we then
172 exclude the 12 subcortical regions, given that our modeling approach is focused on
173 cortical dynamics (see section 2.2). Therefore, after averaging BOLD signals associated
174 with each of the 78 cortical regions, data was reduced to size 78 areas X 1200 TR.

175 2.2. Neural Mass Model

176 To model the activity of individual cortical regions we make use of the Wilson-Cowan
177 model of coupled excitatory and inhibitory populations (62,71) (Fig. 1a). As a mean-field
178 approach, the Wilson-Cowan model is based on the assumption that the neural activity
179 of a determined population of neurons can be described by its mean at a given instant
180 in time (72). Shortly, the equations describing the firing-rate dynamics of coupled
181 excitatory (r^E) and inhibitory (r^I) populations, adapted from (62), can be written as:

$$182 \tau_E \frac{dr_i^E(t)}{dt} = -r_i^E(t) + F \left[c_{EE} r_i^E(t) - c_{EI,i}(t) r_i^I(t) + C \sum_{j=1}^N W_{ij} r_j^E(t - \tau_{ij}) + \xi(t) + P \right],$$

$$183 \tau_I \frac{dr_i^I(t)}{dt} = -r_i^I(t) + F [c_{IE} r_i^E(t) + \xi(t)], \quad (1)$$

184 where c_{xy} represents the coupling from population y to x , C is a scaling factor for
185 structural connectivity, formally called global coupling, and ξ is additive $N(0,0.01)$
186 Gaussian noise. W_{ij} represents the structural connections between nodes in the large-
187 scale network and is constrained by human structural connectivity data (see section
188 2.1.1). τ_{ij} , in turn, represents the conduction delay between regions i and j and is
189 determined according to empirical white-matter tract length, by dividing tract lengths by
190 a given conduction speed. Long-range connections are only implemented between
191 excitatory neural masses, given the evidence that long-range white matter projections

192 are nearly exclusively excitatory (73), and following the state-of-the-art in large-scale
193 modeling (61,62,64,74). $F(x)$ is a sigmoid function representing the F-I curve of a
194 population of neurons, given by:

195

$$F(x) = \frac{1}{1 + e^{-\frac{x-\mu}{\sigma}}}, \quad (2)$$

196 where μ and σ can be understood, respectively, as the excitability threshold and
197 sensitivity of the neural mass response to external input.

198 The values of the remaining parameters were adapted from (62) and can be consulted
199 in Table 1.

200 For the given parameters, the local neural mass model behaves as a Hopf-Bifurcation
201 (Fig. S1), switching from a steady state of low activity to oscillations, depending on the
202 level of external input. The frequency of oscillation is controlled by the parameters τ_E
203 and τ_I . Given that local cortical networks are thought to intrinsically generate gamma
204 oscillations through the interaction between pyramidal cells and fast-spiking inhibitory
205 interneurons (75,76), we chose τ_E and τ_I so that isolated neural masses generate
206 oscillations with an intrinsic frequency in the gamma range (~40 Hz) (Fig. S1). The level
207 of input required for the phase transition to occur is, in turn, controlled by μ . Therefore,
208 we chose μ so that an isolated neural mass, with no external input, is poised near the
209 critical bifurcation point and oscillations emerge only through the coupling between
210 nodes.

211 **Table 1** – Fixed model parameters and ranges of variation of free parameters (C , mean delay and ρ).

Parameter	Value	Units
τ_E	2.5	ms
τ_I	5	ms
C_{EE}	3.5	-
C_{IE}	3.75	-
P	0.31	-

μ	1	-
σ	0.25	-
τ_{homeo}	2500	ms
C	[0.1, 14]	-
Mean Delay	[0, 15]	ms
ρ	[0.05, 0.3]	-

212

213 2.3. Homeostatic Plasticity

214 We implemented homeostatic plasticity as synaptic scaling of inhibitory synapses
215 (40,56), as it has been shown to take an important part in cortical circuit function and
216 homeostasis (40,58) and has been previously applied in the context of large-scale
217 modeling (60–62,64). Shortly, local inhibitory weights adapt to maintain excitatory activity
218 (r^E) close to a given target firing rate (ρ). Therefore, the dynamics of local inhibitory
219 couplings $c_{EI,i}$ are described by the following equation, following (40):

220
$$\tau_{homeo} \frac{dc_{EI,i}}{dt} = r_i^I (r_i^E - \rho) \quad (3)$$

221 where τ_{homeo} is the time constant of plasticity. Such homeostatic plasticity mechanisms
222 are known to operate in slow timescales of hours to days (52) or even weeks in primates
223 (59). Here, to keep simulations computationally tractable, we chose τ_{homeo} to be 2.5s. In
224 fact, since the magnitude of τ_{homeo} solely controls how fast c_{EI} weights evolve towards
225 a steady-state, provided that τ_{homeo} is sufficiently slow for plasticity to be decoupled from
226 the fast dynamics of local oscillations, c_{EI} weights will stabilize to nearly exactly the same
227 values (Fig. S2).

228 2.4. Hemodynamic Model

229 From the raw model activity, we extracted simulated BOLD signals by using a forward
230 hemodynamic model (77), as described in (78). In short, the hemodynamic model
231 describes the coupling between the firing rate of excitatory populations (r^E) and blood
232 vessel diameter, which in turn affects blood flow, inducing changes in blood volume and

233 deoxyhemoglobin content, thought to underlie the BOLD signals measured through
234 fMRI. A detailed description of the system, explaining the hemodynamic changes in node
235 i , is given by:

236
$$\frac{\delta s_i(t)}{\delta t} = r_i - k_i s_i - \gamma_i (f_i - 1)$$

237
$$\frac{\delta f_i(t)}{\delta t} = s_i$$

238
$$\tau_h \frac{\delta v_i(t)}{\delta t} = f_i - v_i^{1/\alpha}$$

239
$$\tau_h \frac{\delta q_i(t)}{\delta t} = \frac{f_i (1 - (1 - \rho_h)^{1/f_i})}{\rho_h} - \frac{v_i^{1/\alpha} q_i}{v_i}$$

240
$$y_i = V_0 \left(7\rho_i(1 - q_i) + 2 \left(1 - \frac{q_i}{v_i} \right) + (2\rho_i - 0.2)(1 - v_i) \right), \quad (4)$$

241 where y_i represents the BOLD signal from node i . The parameters were taken from (78).
242 After passing model activity through the hemodynamic model, the output is
243 downsampled to a sampling period of 0.72s to equate modeled signals to the empirical
244 data obtained from human controls used for model optimization.

245 2.5. Model Optimization

246 Model optimization was performed by considering the global coupling (C), mean delay
247 and target firing rate (ρ) as free parameters. Similarly to previous studies (62), we
248 represent conduction speeds through the mean of the correspondent conduction delays
249 (τ_{ij}). The range of variation for each of the free parameters is described in Table 1. Within
250 the respective ranges, we selected 25 logarithmically spaced values for C , 26 values for
251 ρ in steps of 0.01 and 16 mean delays in steps of 1 ms. During simulations, we record
252 c_{EI} weights every 10s due to their slow evolution and to avoid dealing with large datasets.
253 To ensure that c_{EI} reached a stable or quasi-stable steady state, we ran models for 500
254 minutes of simulation time or until local inhibitory weights had converged to a steady
255 state, through the test condition described in the supplementary material (Fig. S3). After
256 this stabilization period, homeostatic plasticity was disabled and model activity was
257 recorded for 30 minutes. Similarly to (62), we disable plasticity during the recording of
258 signals to ensure that our final measure of activity is not affected by changes in local
259 synaptic weights, although the slow dynamics of plasticity are unlikely to interfere with
260 the fast dynamics of neural activity.

261 To evaluate model performance against empirical data, we make use of the following
262 properties of FC, following (74) (Fig. 1b):

- 263 • **Static FC:** 78×78 matrix of correlations between BOLD time series across all
264 network nodes. Modeled FC matrices were compared with group-averaged
265 empirical FC by computing the correlation coefficient and mean squared error
266 between their upper-triangular elements.
- 267 • **FC Dynamics (FCD):** matrix of correlations between the upper-triangular part of
268 FC matrices computed in windows of 80 samples with 80% overlap. Model results
269 are compared to empirical data by performing a Kolmogorov-Smirnov test
270 between the distributions of values in the respective FCD matrixes.

271 2.6. Stroke Simulation Protocol

272 To compare cortical activity and networks pre-stroke, post-stroke acute and post-stroke
273 chronic, we implement the following protocol (Figure 1a,ii). First, we initialize the model
274 with optimized hyper-parameters (C , ρ and mean delay) and without homeostatic
275 plasticity. We fix the c_{EI} weights to the steady-state values corresponding to that
276 combination of parameters, as obtained from the model optimization procedure, and
277 record 30 minutes of pre-lesion baseline activity (T0). Then, we simulate cortical gray-
278 matter lesions by removing all the connections to and from a single node in the network,
279 similar to previous approaches (60,79). Without turning homeostatic plasticity on, we
280 extract 30 minutes of simulated activity to represent cortical activity during the acute post-
281 stroke period (T1). Given the slow timescales of homeostatic plasticity in the cortex of
282 primates (59), it is unlikely that the human cortex is able to fully adapt to the post-stroke
283 loss in excitation during the acute period. Therefore, we argue that it is reasonable to
284 simulate it by measuring activity in a lesioned model without homeostatic compensation.
285 We then allow equation (3) to change c_{EI} weights and simulate a maximum of 500 extra
286 minutes of simulated time or until c_{EI} weights reach a new steady state, using the method
287 described in the supplementary material (Fig. S3). Plasticity is then disabled and 30
288 minutes of simulated activity are extracted to represent the chronic period of stroke
289 recovery.

290 In all simulations, equations (1) and (2) were solved numerically, using the Euler method
291 with an integration time step of 0.2ms (5kHz). Model simulations and subsequent
292 analysis were implemented in Python using in-house scripts, accessible in
293 <https://gitlab.com/francpsantos/stroke-e-i-homeostasis>.

294 2.7. Analysis of Network Dynamics

295 2.7.1. Synchrony and Metastability

296 To evaluate the effect of stroke on the network dynamics of our model we measured
297 synchrony and metastability (Fig. 1b). To do that, we first compute the Kuramoto order
298 parameter (KOP) (80,81), which represents the degree of synchrony among a set of
299 coupled oscillators at a given point in time. The KOP can be calculated as:

300
$$Z(t) = R(t)e^{i\Phi(t)} = \frac{1}{N} \sum_{n=1}^N e^{i\theta_n(t)}, \quad (5)$$

301 where $\theta_n(t)$ represents the instantaneous Hilbert phase of a given node n at time t .
302 Synchrony and metastability are defined as the mean and standard deviation of $R(t)$
303 over time, respectively. Therefore, while synchrony represents the degree of phase
304 coupling between nodes in the network, metastability represents the level of flexible
305 switching between a state of synchrony and asynchrony (81).

306 2.7.2. Criticality

307 In critical systems, the size of population events will follow a power-law distribution. In
308 neural systems, such events have been related to neuronal avalanches, where the
309 activation of one of the network elements triggers a response of other elements, until
310 activity dies out. It has been shown that the size and duration of such neuronal
311 avalanches follow a power-law distribution with exponent -1.5 (46,82), at various levels,
312 from local networks to large-scale activity (46,83). Importantly, it is thought that neural
313 systems may operate at this point of criticality to optimize several network functions, from
314 dynamic ranges to information storage and transmission (49–51,84,85).

315 To detect neural avalanches in our data, we employ the method from (61). After time-
316 series from each excitatory node are Z-scored ($E_i(t) = \frac{1}{\sigma(E_i)}(E_i - \bar{E}_i)$), we detect
317 incursions beyond a threshold of ± 2.3 , thus identifying events that are distinct from noise
318 with a probability of $p < 0.01$. Then, we define events as the time points where the signal
319 first crossed the threshold and avalanches as continuous periods of time where events
320 occurred in the network. Subsequently, to measure criticality, we employ the method
321 developed by (51), comparing the distribution of avalanche sizes in neural data with a
322 truncated power-law with exponent -1.5. Shortly, we computed the measure k using:

323
$$k = 1 + \frac{1}{m} \sum_{n=1}^m (F^{NA}(\beta_n) - F^{PL}(\beta_n)), \quad (6)$$

324 where $m = 10$ is the number of logarithmically spaced points β_n between the minimum
325 and maximum avalanche sizes, F^{PL} is the cumulative distribution of a -1.5 exponent
326 power-law, truncated so that the maximum avalanche size is the number of nodes in our
327 model ($N = 78$), and F^{NA} is the cumulative distribution of avalanche sizes in the model
328 data. Therefore, a score of k close to 1 means that the system is close to criticality, while
329 scores below and above 1 are characteristic of sub and supercritical systems,
330 respectively.

331 2.8. Analysis of Functional Connectivity Properties

332 2.8.1 FC Distance

333 To measure the dissimilarity between FC matrices at T0, T1 and T2, we make use of a
334 metric we call FC distance, following (60), defined as the Frobenius norm of the
335 difference between two matrices.

$$336 \quad \text{distance}(\text{FC}_1, \text{FC}_2) = \sqrt{\sum_i \sum_j (\text{FC}_2 - \text{FC}_1)_{ij}^2} \quad (7)$$

337 2.8.2 Correlation between FC and SC

338 Given the results of (18), showing a decoupling between functional and structural
339 connectivity in stroke patients, correlated with motor function, we test this biomarker at
340 T0, T1 and T2 by computing the Pearson's correlation coefficient between the upper
341 triangles of FC and SC matrices.

342 2.8.3 Modularity

343 Modularity measures the degree to which a network follows a community structure, with
344 dense connections within modules and sparser ones between them. Modularity (Q) was
345 calculated using the formula defined in (19):

$$346 \quad Q = \sum_{u \in M} \left[e_{uu} - \left(\sum_{v \in M} e_{uv} \right)^2 \right], \quad (8)$$

347 where M is a set of non-overlapping modules (groups of nodes) in the network and e_{uv}
348 is the proportion of edges in the network than connect nodes in module u with nodes in
349 module v . Similarly to (19), we chose network modules *a priori* to avoid biasing the
350 modularity measure by directly using a clustering algorithm that optimizes community
351 structure in data and also to avoid the problem of varying numbers of modules when

352 using community detection algorithms in data from different time points in the simulation
353 protocol. In our analysis, instead of relying on a pre-defined set of communities, we
354 extract our modules from the empirical FC data, by using a clustering algorithm to detect
355 resting state networks (86). Shortly, we applied k-means clustering (k=6) 200 times on
356 the empirical averaged FC matrix and recorded the number of runs each pair of nodes
357 were grouped together in an association matrix. Afterward, we applied k-means
358 clustering (k=6) to the association matrix to detect modules that could be equated to
359 known resting state networks (Fig. S4). Those networks were then used as modules for
360 the calculation of modularity. Different clustering algorithms were applied, leading to
361 qualitatively similar results (Fig. S4, Fig. S5). The same was observed for different
362 number of clusters (Fig. S5). Since the formula used for modularity relies on the
363 assumption that graphs are undirected and unweighted, FC matrices were transformed
364 into unweighted graphs by applying a density threshold, through which only a percentage
365 of strongest connections are kept and considered edges of the unweighted FC graph
366 (Fig. 1b). Lesioned regions were removed from the network before computing modularity,
367 similarly to (19).

368 2.8.4. Small World Coefficient

369 The small-world (SW) coefficient measures the degree to which a given graph has small-
370 world properties, i.e. its small-worldness. In SW networks, most nodes are not connected
371 but can be reached from any starting point through a small number of edges. SW
372 coefficients were calculated using the following equation (19,87):

$$373 \quad SW = \frac{C/C_{rand}}{L/L_{rand}} \quad (9)$$

374 where C is the average clustering coefficient of a given graph and L is its characteristic
375 path length. Clustering coefficients measure the degree to which the neighbors of a node
376 are interconnected, and the characteristic path length represents the average of shortest
377 path lengths between all nodes in a graph. Both metrics were computed using the
378 *networkx* module in Python (88). While C and L represent the values from our simulated
379 data, C_{rand} and L_{rand} represent the same metrics taken from a random unweighted and
380 undirected graph with the same edge density as the FC graphs from simulated data. To
381 account for the intrinsic stochasticity in the process, for each simulated FC matrix, SW
382 was calculated 100 times for different generated random networks and the results were
383 averaged to obtain the final SW value. Similarly to modularity, SW was calculated after
384 applying a density threshold to FC matrices and lesioned nodes were removed before
385 the calculation.

386 Here, both for modularity and small-world coefficients, instead of performing analysis for
387 edge density thresholds between 4 and 20%, following (19), the range was extended to
388 40%. This is due to the smaller size of our network (78 vs. 324 brain regions), often
389 leading to unconnected graphs when applying thresholds lower than 20%. While this
390 would not affect the calculation of modularity, the computation of small-world coefficients
391 requires graphs to be connected to calculate average shortest-path lengths.
392 Nonetheless, modularity results are qualitatively similar when performing analysis within
393 the 2-20% range (Fig. S5).

394

395

396

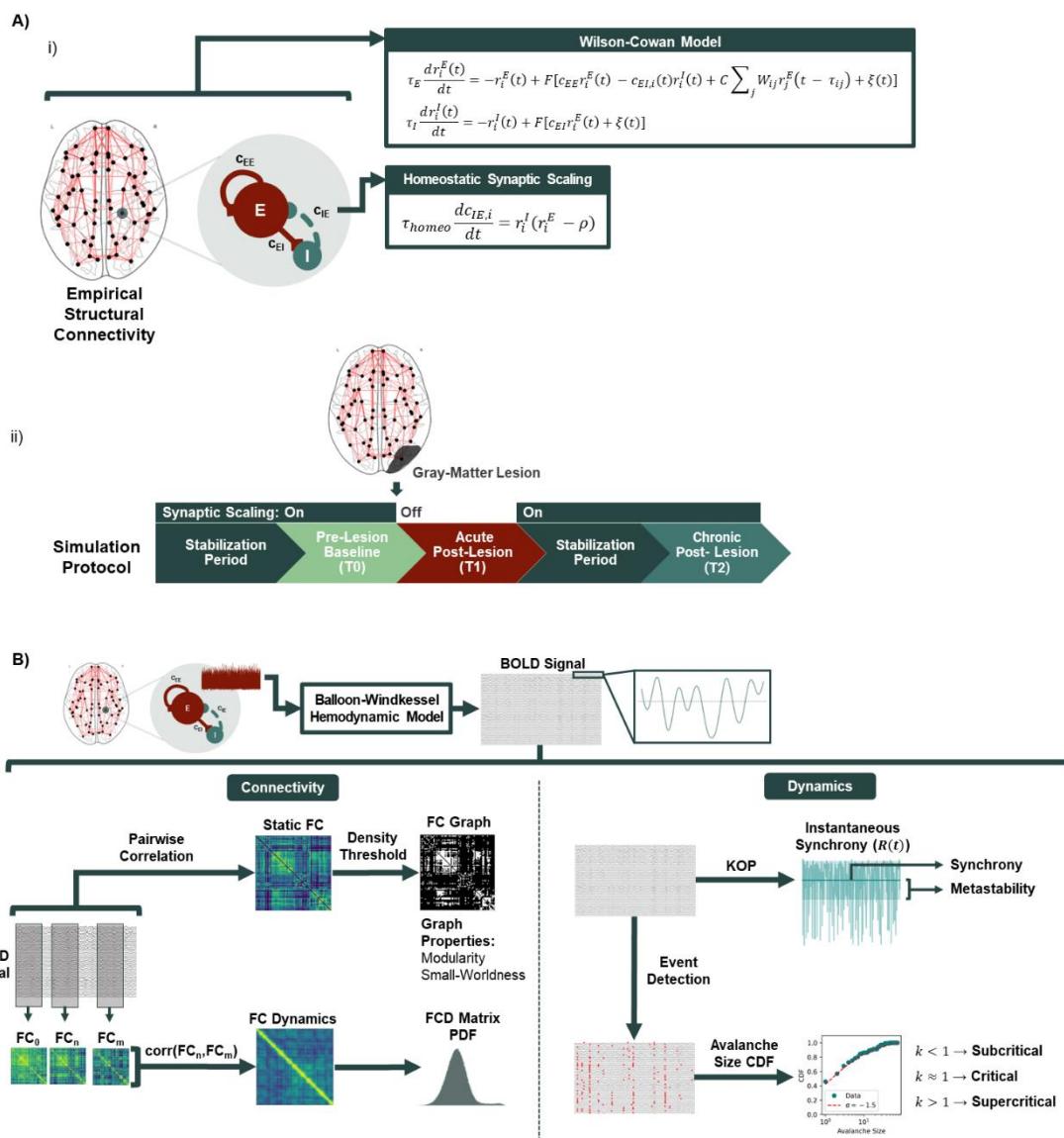
397

398

399

400

401



402

403 **Figure 1 - Computational Model and Data Analysis.**

404 *A) Model Architecture and simulation protocol. i) Cortical dynamics were modeled using a system of neural*
 405 *masses connected through long-range excitatory connections derived from DTI from healthy subjects. Local*
 406 *activity was simulated using the Wilson-Cowan model of coupled excitatory and inhibitory populations, with*
 407 *the addition of homeostatic plasticity regulating inhibitory synapses, with the goal of maintaining excitatory*
 408 *firing rates at a target level (ρ). ii) To study the effects of stroke on functional connectivity, the model is first*
 409 *run until a steady state is reached in terms of local inhibitory weights, after which a lesion is applied by*
 410 *removing all connections from the lesioned area in the structural connectivity matrix. Acute activity is then*
 411 *extracted before plasticity is allowed to adjust inhibitory connections and, subsequently, plasticity is enabled,*
 412 *when local inhibition reaches a new steady state, we extract activity again to simulate the chronic period of*
 413 *stroke recovery.*

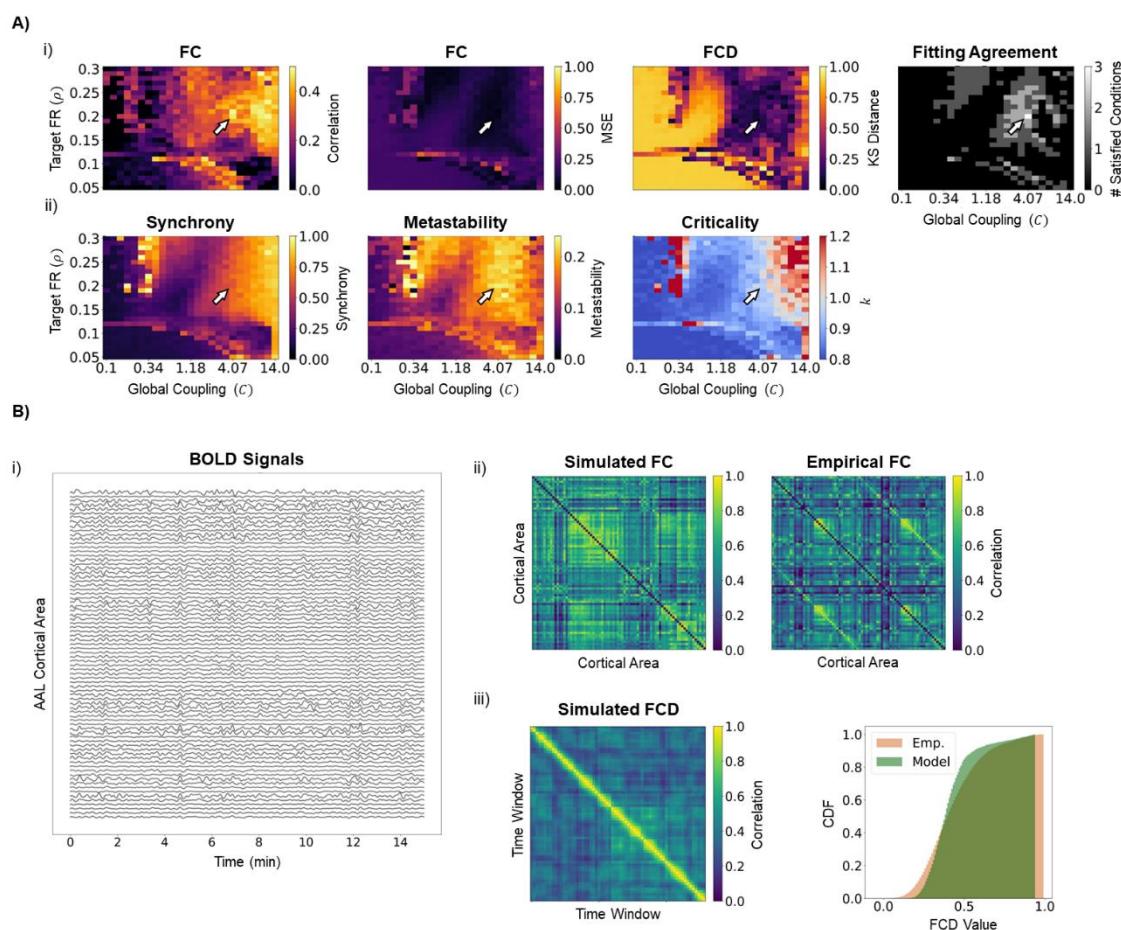
414 *B) Analysis of modeled data. To accurately represent BOLD signals, model activity from the excitatory*
 415 *populations is passed through a hemodynamic model that mechanistically couples neural activity to the*
 416 *changes in blood oxygenation measured by BOLD fMRI. BOLD signals are then filtered and used to compute*
 417 *measures of connectivity and dynamics.*

418 3. Results

419 3.1. Model Results Capture Healthy FC Data in Parameter 420 Region Corresponding to Rich Network Dynamics

421 To find the optimal working point of our model that best represents empirical FC and
422 FCD, we ran simulations for all the combinations of global coupling (C), mean delay and
423 target firing rate (ρ) described in the methods section. In Fig.2a, we represent the results
424 of model optimization for mean delay = 4 ms, for simplicity of representation. The results
425 of optimization for the remaining combinations of parameters can be consulted in Fig.
426 S6. From these, it can be visualized that 4ms is generally the optimal mean delay, in
427 particular regarding an accurate representation of empirical FCD. Furthermore, 4ms
428 mean delay corresponds to a conduction speed of ≈ 39 m/s which is within a reasonable
429 physiological range for myelinated axons (89). Focusing on FC, it can be observed from
430 Fig.2a that the improved fitting is achieved for high couplings and a target firing rate close
431 to 0.2. In addition, the model captures the overall structure of empirical FC (as measured
432 through the correlation coefficient) as well as the magnitude of connectivity (as measured
433 through the MSE) (Fig 2a and b). Regarding FCD, there is a wide region in the parameter
434 space where the distribution of modeled FCD matrices matches empirical results. Since
435 the same wide parameter region is not observed for other mean delays (Fig. S6), results
436 suggest that axonal conduction velocity has a significant influence on the accurate
437 representation of FCD in our model. Furthermore, there is a narrow parameter region
438 where we can simultaneously optimize the representation of both FC and its dynamics
439 (Fig 2a,i). In this parameter region, BOLD signals show rich dynamics, characterized by
440 transient co-activation of groups of nodes in the network (Fig. 2b), as is characteristic of
441 resting-state cortical signals (90). Importantly, and following previous studies (91), the
442 optimal region lies in the transition between low and high synchrony, corresponding to a
443 region of optimal metastability (Fig. 2a,ii). In addition, this parameter region further
444 corresponds to global dynamics that are close to criticality, following previous studies
445 showing that criticality is a property of large-scale cortical networks (83), also observed
446 in models with similar homeostatic mechanisms (61). Therefore, the model can
447 reproduce, to some level, the structure of FC and its transient dynamics, and is in
448 accordance with the current knowledge of the dynamic features of brain activity. Given
449 these results we choose the following hyperparameter values for the simulations in the

450 subsequent sections, $C = 4.07$, $\rho = 0.2$, mean delay = 4 ms, as indicated by the white
 451 arrows in Fig. 2a.



452

453 **Figure 2 - Model Optimization and Dynamics**

454 A) Model fit and dynamics over parameter space. i) Model fit to empirical FC data. The plots represent the
 455 results of a grid search over the parameters of global coupling (C) and target firing rate (FR) (ρ), with the
 456 mean delay fixed at 4ms. Model performance was evaluated by the following metrics: (first) Pearson's
 457 correlation between the upper triangle of simulated and empirical FC matrices, (second) mean squared error
 458 (MSE) between simulated and empirical FC matrices and (third) Kolmogorov-Smirnov (KS) distance
 459 between the distribution of values in simulated and empirical FCD matrices. The rightmost plot shows the
 460 result of applying the following thresholds: correlation coefficient ≥ 0.45 , MSE ≤ 0.1 , KS distance ≤ 0.15 .
 461 Arrows show the model working point used in the simulations ($C=4.07$; $\rho=0.2$; mean delay=4ms), which
 462 satisfies the thresholds for all fitting metrics (correlation coefficient = 0.487, MSE = 0.046, KS distance =
 463 0.138). ii) Model dynamics over parameter space. The plots represent relevant dynamic features of model
 464 activity over the explored parameter space: (first) synchrony and (second) metastability representing,
 465 respectively, the mean and standard deviation of the KOP over time, and (third) global criticality. Note that
 466 the chosen working point is poised in a region of transition between low and high synchrony (synchrony =
 467 0.606), high metastability (metastability = 0.230) and transition between sub and supercriticality ($k = 0.960$).
 468 B) Model behavior at the chosen working point. i) Example of 15 minutes of model activity. Note the
 469 emergence of transient patterns of co-activation between different areas in the network. ii) Simulated (left)
 470 and empirical (right) FC matrices. While generally overestimating connectivity, the model is able to capture

471 empirical FC patterns. iii) Simulated FCD matrix (left) and its cumulative distribution function, compared to
472 the one from empirical data (right).

473 **3.2. Excitatory-Inhibitory Homeostasis Contributes to**
474 **the Recovery of Static Properties of FC**

475 To evaluate the acute effects of lesions in cortical FC and the putative role of E-I
476 homeostasis on its long-term recovery, we simulated cortical lesions by removing all the
477 connections to and from a single node. This was done individually for all the nodes in the
478 network and FC was extracted pre-lesion (T0), immediately after lesion application, an
479 equivalent of the acute period (T1), and after local inhibitory weights reach a new steady
480 state through local E-I homeostasis, which we equate to the chronic period of stroke
481 recovery (T2) (Fig 1a,ii).

482 When looking at the differences in FC between T1 and T2 (Fig 3a), it can be first
483 observed that, similarly to what occurs in stroke patients, different lesions have highly
484 heterogeneous acute effects. In Fig 3a we represent the strongest 10% changes in FC
485 for lesions in nodes with different strengths (i.e. sum of incoming structural connectivity
486 weights): the right superior frontal gyrus (strength = 6.23), left precentral gyrus (strength
487 = 3.23) and left parahippocampal gyrus (strength = 0.42). Some qualitative conclusions
488 can be drawn from looking at the observation of acute effects of such lesions. First, while
489 there seems to be a general effect of global disconnection (Fig. 3a,i and iii), also evident
490 in the median changes over lesions (Fig. 3b,i), certain lesions can lead to
491 hypersynchrony (Fig. 3a,ii), as previously reported in lesioned brain networks (23,92).
492 Second, lesions to high degree nodes (Fig. 3a,i and ii) have stronger acute effects than
493 lesions to low degree nodes (Fig. 3a,iii). Third, different lesions show different levels of
494 recovery in the chronic period (T2), as evidenced by the ipsilesional hypersynchrony
495 observed after lesion in the left precentral gyrus, which was not diminished significantly
496 at T2 in our simulations (Fig. 3a,ii). Fourth, regarding the median effects over lesions
497 (Fig. 3b,i), we observed a widespread increase in functional connectivity, compared to
498 pre-lesion levels, in a process that could be understood as a global cortical
499 reorganization. More specifically, it is likely that, given the inability to recover connectivity
500 between certain brain areas, new functional connections are formed (or previous ones
501 strengthened) to maintain relevant graph properties of FC. More specifically, the effects
502 of lesion can be summarized, in a more general way, as follows: a strong acute
503 disconnection, stronger in the ipsilesional size, but extending to the contralesional cortex,
504 as is characteristic of diaschisis (13), and a chronic increase in connectivity, spread

505 across both hemispheres, likely related to the functional reorganization of cortical
506 networks.

507 To measure lesion effects more quantitatively, we measured the distance between FC
508 matrices at T1 and T2 versus T0 across lesions (Fig 3b,ii). It can be observed that there
509 is a strong departure from pre-lesion FC at T1 (FC distance, 10.202 ± 5.838), significantly
510 reduced at T2 (6.664 ± 5.838 , $p < 0.001$, Mann Whitney U-test), thus showing a recovery
511 of FC towards pre-lesion patterns. Nonetheless, a difference remains at T2, compared
512 to T0, likely resulting from functional reorganization. Similarly to the results of (60), we
513 found a correlation between graph properties of lesioned nodes and FC distance (Fig.
514 S7), emphasizing the point that lesions in high degree nodes, or structural hubs, cause
515 larger disruptions on FC.

516 In addition, a decoupling between functional and structural connectivity has been
517 observed in stroke patients and shown to correlate with motor function (18). Our results
518 replicate this finding in the acute period (Fig.3b,iii) where the average correlation
519 significantly dropped from 0.381 ± 0.013 at T0 to 0.334 ± 0.060 at T1 ($p < 0.001$, Mann-
520 Whitney U-test). Furthermore, similarly to FC distance, we found a correlation between
521 the magnitude of this change and the lesion properties (Fig. S7). Importantly, structural-
522 functional coupling was recovered to pre-lesion levels at T2 (0.376 ± 0.028 , T0 vs T2
523 $p < 0.001$, Mann-Whitney U-test), further indicating the ability of E-I homeostasis to
524 participate in the recovery of FC.

525 Beyond such metrics of damage to FC, it is relevant to measure changes in graph
526 properties that are relevant in human brain networks, such as modularity (21) and small-
527 worldness (22,87). More importantly, those were shown to be affected by stroke and, in
528 the case of modularity, to be a strong biomarker of performance in higher-order functions
529 (e.g. memory, attention) (19). Thus, in Fig. 3c,i, we present our results on modularity at
530 T1 and T2, normalized to T0 values, for different edge density thresholds. Note that, for
531 most of the density thresholds explored, we observed a decrease in modularity at T1,
532 further recovered towards pre-lesion levels at T2. When averaging the values over all
533 the thresholds for each lesion simulation (Fig. 3c,i right) we observed a significant
534 decrease in modularity at T1 (0.908 ± 0.120 , $p < 0.001$, Wilcoxon ranked-sum test), further
535 recovered towards baseline at T2 ($p < 0.001$, Mann-Whitney U-test), with no significant
536 difference from baseline found at this time point (0.992 ± 0.110 , $p = 0.500$, Wilcoxon
537 ranked-sum test). As opposed to FC distance and association with SC, disruptions in
538 modularity did not correlate significantly with the properties of lesioned nodes (Fig. S7).
539 Similarly to modularity, SW coefficients were significantly decreased at T1 (0.977 ± 0.043 ,

540 p<0.001, Wilcoxon ranked-sum test) and further increased from T1 to T2 (p=0.022,
541 Mann-Whitney U-test) (Fig. 3c,ii). However, in this case, a significant difference from
542 baseline could still be found at T2 (0.997 ± 0.041 , p = 0.007, Wilcoxon ranked-sum test).
543 Note that SW coefficients could only be systematically calculated across lesions for edge
544 density thresholds larger than 20%. Due to the small size of our network (78 nodes),
545 thresholding with smaller edge densities leads to disconnected graphs, on which is not
546 possible to calculate SW coefficients reliably. Nonetheless, besides replicating the acute
547 decreases in modularity and small-worldness found by (19), we further show that E-I
548 homeostasis participates in the recovery of these graph properties, offering a possible
549 explanation for the long-term recovery of such properties reported by the same authors.
550 To summarize, our results show the strong effect of stroke lesions on the static properties
551 of FC, and their further recovery through E-I homeostasis. While these effects were
552 heterogeneous across lesions, there was a tendency of cortical networks to experience
553 a loss in modularity and small-worldness, two relevant properties of cortical function
554 shown to be affected in stroke patients. Such metrics were, however, recovered in the
555 chronic period, likely through functional reorganization, showing the important role of E-
556 I homeostasis in their recovery.

557

558

559

560

561

562

563

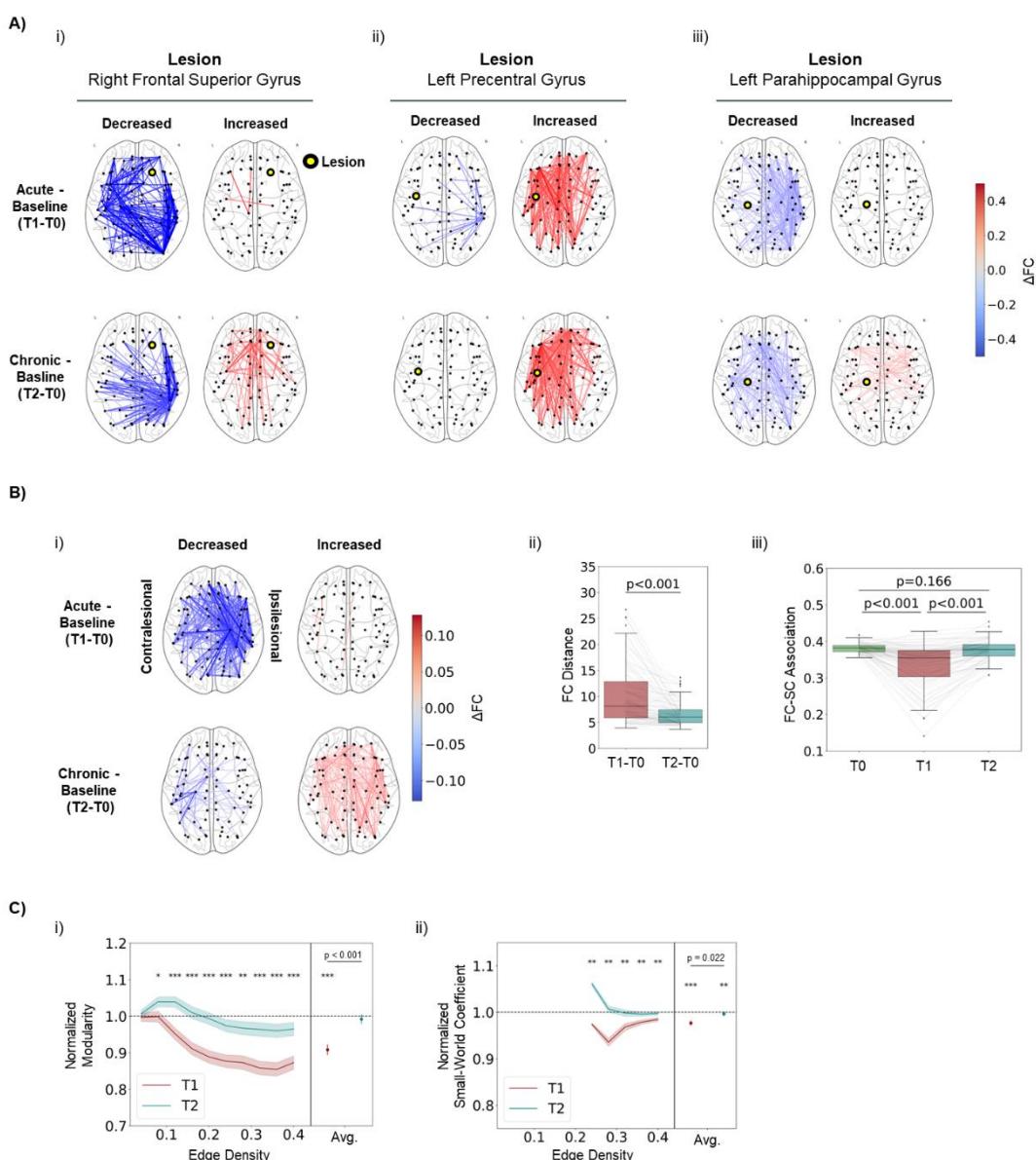
564

565

566

567

568



569

570 **Figure 3 - E-I Homeostasis Contributes to the Recovery of Static FC Properties**

571 A) Differences in FC following example lesions in the acute (T1-T0) and chronic (T2-T0) periods. Only the
572 10% strongest changes are shown. i) Effects of a lesion in the right frontal superior gyrus. ii) Effects of a
573 lesion in the left precentral gyrus iii) Effects of a lesion in the left parahippocampal gyrus

574 B) Effect of lesion in static properties of FC. i) Median differences in FC over lesions in the acute (T1-T0)
575 and chronic (T2-T0) periods. Data from left-side lesions was mirrored so that the right side was always
576 contralateral. Only the 10% strongest differences are shown in the plot. Note the general disconnection in
577 the acute period, stronger on the ipsilesional side, followed by a widespread increase in connectivity in the
578 chronic period. ii) Distance between FC matrices at T1 and T0, and T2 and T0. FC distance was significantly
579 decreased from the acute (10.202 ± 5.838) to the chronic period (6.664 ± 5.838) ($p < 0.001$, Mann-Whitney U-
580 test). iii) Pearson's correlation coefficient between the upper triangle of functional and structural connectivity
581 matrices at T0, T1 and T2. We observe a significant decrease from T0 to T1 ($p < 0.001$, Mann-Whitney U-
582 test) and a subsequent increase towards pre-lesion levels from T1 to T2 ($p < 0.001$, Mann-Whitney U-test).
583 Results at T0 and T2 were not significantly different ($p = 0.166$, Mann-Whitney U-test).

584 C) Effect of lesion in graph properties of FC. i) Modularity at T1 and T2, normalized to T0 values, for different
585 edge density thresholds. Lines represent the mean over lesions and shaded areas represent the standard
586 error of the mean. On the right side of each plot, we show results averaged over all edge density thresholds
587 for each lesion. We observed a significant decrease in modularity at T1 (0.908 ± 0.120 , $p < 0.001$, Wilcoxon
588 ranked-sum test), with a significant increase between T1 and T2 ($p < 0.001$, Mann-Whitney U-test).
589 Normalized modularity at T2 was not significantly different from baseline (0.992 ± 0.110 , $p = 0.500$, Wilcoxon
590 ranked-sum test). ii) Same, for small-world (SW) coefficients. Values show significantly decreased SW
591 coefficients at T1 (0.977 ± 0.043 , $p < 0.001$, Wilcoxon ranked-sum test), with a significant increase between
592 T1 and T2 ($p = 0.022$, Mann-Whitney U-test). In this case, although values at T2 were close to the baseline,
593 a significant difference could still be observed (0.997 ± 0.041 , $p = 0.007$, Wilcoxon ranked-sum test). In both
594 plots, asterisks represent the level of significance of a Mann-Whitney U-test. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.
595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

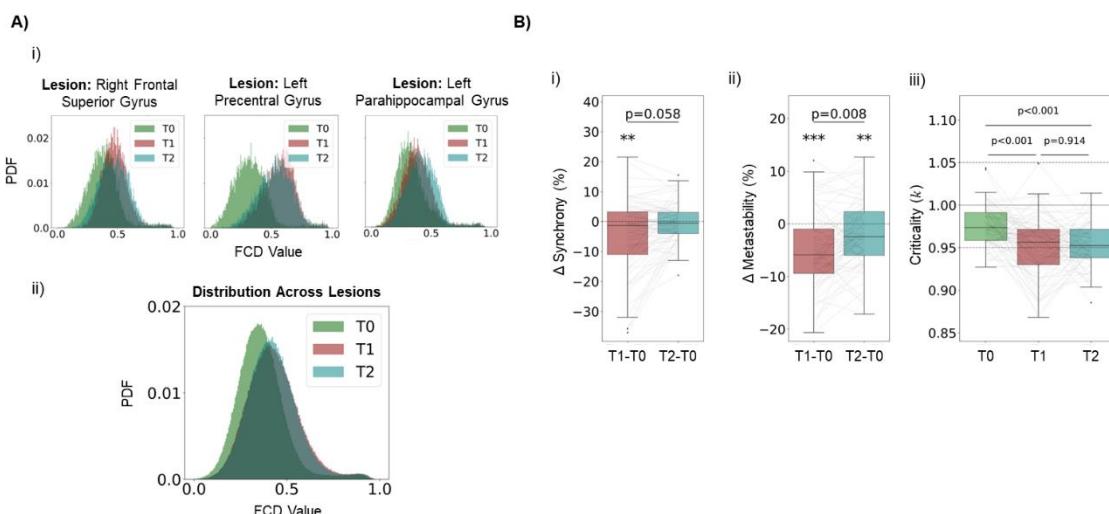
614

615 3.3. Excitatory-Inhibitory Homeostasis is Not Sufficient 616 For the Reinstatement of Rich Networks Dynamics

617 Beyond post-stroke disruptions in the static properties of functional connectivity, it is
618 relevant to analyze how it affects cortical dynamics. Healthy resting-state cortical activity
619 displays rich spatiotemporal dynamics, with transient activation of distributed networks,
620 jumps from asynchronous to synchronous states (91) and a scale-free distribution of
621 network events of co-activation (i.e. criticality) (61,83). Therefore, in this section, we
622 measure the acute effects of lesions on such dynamical properties and evaluate the
623 possible role of E-I homeostasis in the recovery of dynamical features that go beyond
624 static FC networks.

625 If Fig. 4a,i, we plot the distribution of FCD values at T0, T1 and T2 for the same example
626 lesions described in the previous section. Although some level of heterogeneity can be
627 found across lesions, the general effect, further visible in the distribution of FCD values
628 across lesions (Fig. 4a,ii), is a shift towards higher values at T1, which could not be
629 recovered at T2. Such a shift is difficult to interpret, due to the lack of similar analysis in
630 literature. However, given the definition of FCD values as the correlation between FC
631 taken from different time windows in the signal, a functional interpretation can be given.
632 Such a shift could mean that transient FC motifs were more similar across time, indicating
633 a more rigid spatiotemporal pattern of activation, likely due to a loss in the richness of
634 dynamics previously described. However, functional interpretations should be taken with
635 careful consideration, given the lack of empirical studies debating the effects of stroke in
636 FCD and its clinical correlates. Nonetheless, looking at other dynamical properties might
637 shed light on the issue. Regarding synchrony (Fig 4b,i), we observed highly
638 heterogeneous effects, similar to the previous modeling study of (23), where networks
639 can change to either increased or decreased synchrony, in line with the results of the
640 previous section (Fig. 3a,ii), showing hyperconnectivity in the acute period for selected
641 lesions. More importantly, we observed a significant decrease in metastability (Fig 4b,ii)
642 at T1 ($-4.932 \pm 7.211\%$, $p < 0.001$, Wilcoxon Ranked-Sum test) and, while there was a
643 significant shift towards baseline between T1 and T2 ($p = 0.008$, Mann-Whitney U-test),
644 metastability at T2 was still significantly lower than in the pre-lesion period ($-2.144 \pm 6.239\%$,
645 $p = 0.004$, Wilcoxon Ranked-Sum test). Since high metastability has
646 been associated with the ability of the brain to switch between FC states (91), this might
647 relate to the hypothesized rigidity of FCD patterns from Fig.4a,ii. Therefore, we suggest
648 a decreased flexibility of resting-state dynamics in stroke patients. In addition, while
649 dynamics at T0 were found to be close to criticality (Fig 4b,iii) ($k=0.972 \pm 0.022$), we

650 observed a significant shift towards sub-criticality at T1 ($k=0.948\pm0.034$, $p<0.001$, Mann-
 651 Whitney U-test). Importantly, dynamics were still significantly sub-critical compared to T0
 652 ($k=0.950\pm0.025$, $p<0.001$, Mann-Whitney U-test), with no significant recovery occurring
 653 between T1 and T2 ($p = 0.935$, Mann-Whitney U-test). Therefore, the overarching
 654 conclusion from the analysis of dynamics in our simulations is that stroke lesions have a
 655 strong effect on network dynamics and, more specifically, in metrics that can be
 656 understood as quantifying rich network dynamics, such as metastability (91) and
 657 criticality (83). More importantly, as opposed to the static properties of FC, the affected
 658 dynamics could not be recovered through the E-I homeostasis mechanism implemented
 659 in our model, showing a higher fragility of cortical dynamics to stroke, when compared to
 660 connectivity.



661

662 **Figure 4 - E-I Homeostasis is Not Sufficient to Recover Features of Rich Dynamics**

663 *A) Effects of lesion in FC dynamics. i) Distribution of values in FCD matrices for T0, T1 and T2 for lesions in*
 664 *Right Frontal Superior Gyrus (left), Left Precentral Gyrus (middle) and Left Parahippocampal Gyrus (right).*
 665 *ii) Distribution across lesions of values in FCD matrices for T0, T1 and T2. Note the shift towards higher*
 666 *values at T1 and the similar distribution at T2, denoting an inability of E-I homeostasis to return FC dynamics*
 667 *to pre-lesion levels.*

668 *B) Effects of lesion in network dynamics. i) Changes in synchrony, in percentage, at T1 and T2, compared*
 669 *to baseline (T0). While synchrony showed a significant decrease at T1, (-4.743±12.288%, $p = 0.007$,*
 670 *Wilcoxon Ranked-Sum test), there was no significant difference between values at T1 and T2 ($p = 0.058$,*
 671 *Mann-Whitney U-test). In addition, the difference in synchrony at T2 was not significantly different from 0 (-*
 672 *0.187±6.489%, $p = 0.058$, Wilcoxon Ranked-Sum test). ii) Same, for metastability. We observed a significant*
 673 *decrease at T1 (-4.932±7.211%, $p < 0.001$, Wilcoxon Ranked-Sum test), further recovered towards pre-*
 674 *lesion levels at T2 ($p = 0.008$, Mann-Whitney U-test). However, metastability at T2 was still significantly*
 675 *different from baseline at T2 (-2.144±6.239%, $p = 0.004$, Wilcoxon Ranked-Sum test). iii) Criticality at T0, T1*
 676 *and T2. We observed a shift towards subcriticality at T2 ($p < 0.001$, Mann-Whitney U-test), with no recovery*
 677 *from T1 to T2 ($p = 0.914$, Mann-Whitney U-test).*

678 3.4. Long-Term Changes in Local Excitability Replicate 679 Empirical Findings from Stroke Models and Patients

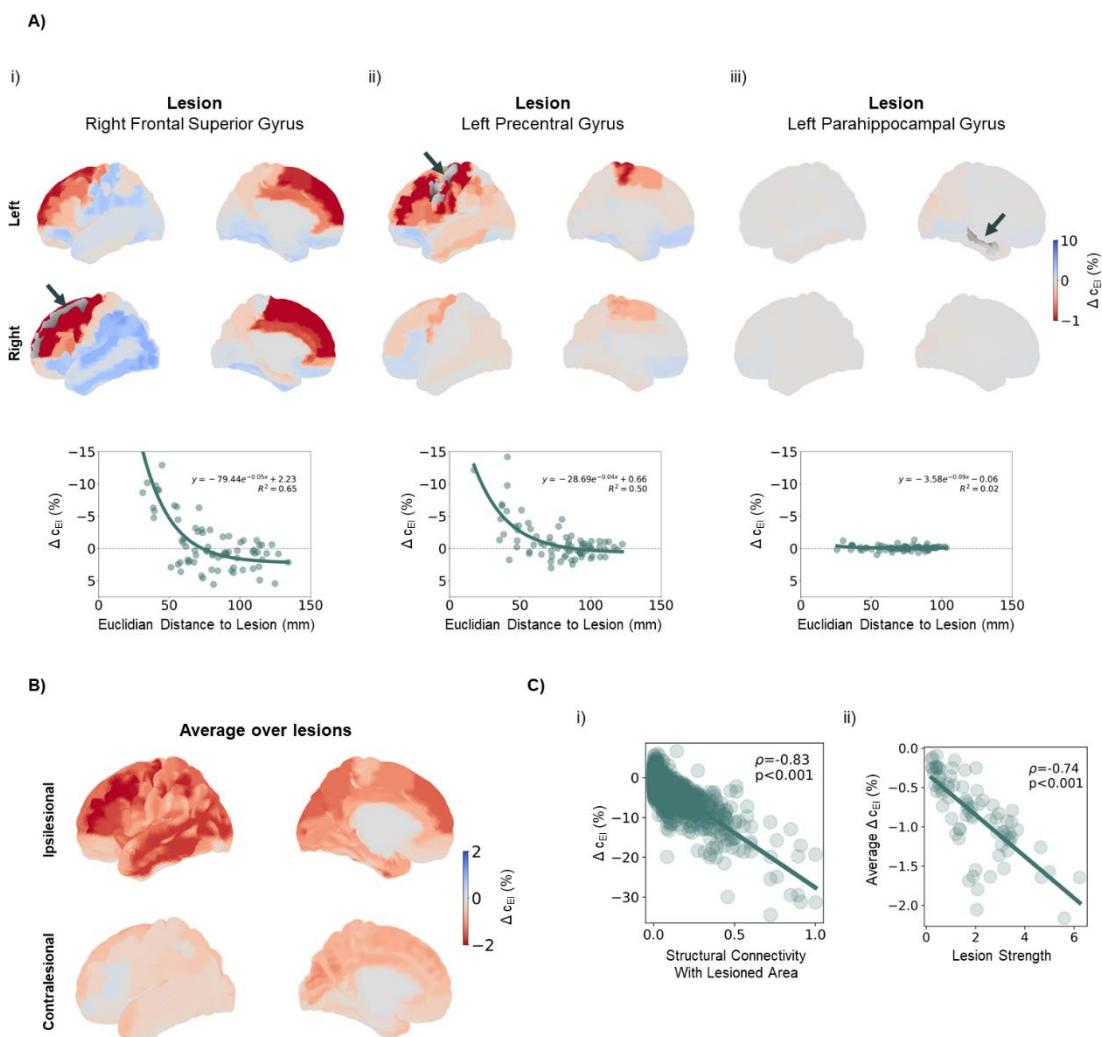
680 While previous studies have attempted to model similar E-I homeostasis mechanisms to
681 assess their relevance in post-stroke recovery (60), we further our analysis by
682 systematically assessing the changes in local excitability required to adapt to the post-
683 lesion loss in excitation and how they distribute across the brain. We do this by looking
684 at the change, from T0 to T2, in the strength of local inhibitory coupling c_{EI} . More
685 specifically, we consider decreases/increases in c_{EI} to represent increases/decreases in
686 excitability, respectively. Importantly, long-term increases in excitability have been found
687 in the cortex of mice models (27,33,34) and stroke patients (29,30,32), mostly related to
688 decreased levels of inhibitory transmission. Therefore, it is important to evaluate if such
689 effects can, at least to some extent, be a result of physiological processes of E-I
690 homeostasis, tied to the recovery of not only local E-I balance, but also FC properties,
691 as demonstrated by our previous results.

692 That said, in Fig. 5a, we plot the long-term changes in excitability felt across the cortex
693 for the same example lesions referenced before. From these plots, it can be deduced
694 that lesions in more connected nodes required larger changes in excitability. Moreover,
695 it can be seen from Fig.5a,i and ii that the strongest increases in excitability are felt
696 closest to the lesioned areas, as evidenced by previous research in rodent models of
697 stroke (27). More specifically, for stronger lesions, $\Delta c_{EI}(\%)$ could be reasonably
698 explained as an exponential function of Euclidean distance to the lesion ($R^2=0.65$ and
699 0.50 for lesions in the right superior frontal gyrus and left precentral gyrus, respectively).
700 This relationship was lost for weaker lesions ($R^2=0.02$ for lesion in the right
701 parahippocampal gyrus), likely due to the less widespread and overall weaker effects
702 (Fig. 3). We chose to explain these variations as an exponential function of distance
703 given the exponential dependence found between structural connectivity and distance in
704 the cortex (93) and the fact that areas more strongly connected to the lesion would
705 experience the strongest loss in excitation. Therefore, an exponential relationship
706 between $\Delta c_{EI}(\%)$ and distance to the lesion is almost trivial, as observed for the most
707 severe lesions in our simulations. Interestingly, while the consensus in the literature
708 favors a long-term increase in excitability during stroke recovery, we observe, in
709 particular for stronger lesions, actual decreases in excitability in distant cortical regions.
710 This response is likely a second-order effect, resulting from the strong increases in
711 excitability in the areas closest to the lesion, which in turn might require an opposite

712 reaction in other regions that might be connected to them, but not to the lesioned area
713 itself.

714 In Fig. 5b, we plot $\Delta c_{EI}(\%)$ averaged across lesions. Here, data from lesions left-side
715 lesions was mirrored before averaging so that the right side always corresponded to the
716 ipsilesional hemisphere. Looking at the average changes across lesions (Fig. 5b) shows
717 a picture of widespread increases in local excitability, following literature. Importantly,
718 such increases were significantly stronger ($p<0.001$, Mann-Whitney U-test) in the
719 ipsilesional cortex ($-1.257\pm3.345\%$), when compared to its counterpart ($-0.417\pm1.212\%$),
720 as expected due to the distance dependence of changes in excitability. The strongest
721 differences were found in the ipsilesional middle frontal gyrus ($-2.205\pm5.195\%$),
722 precentral gyrus ($-2.144\pm4.420\%$), inferior parietal gyrus ($-2.100\pm4.289\%$), middle
723 occipital gyrus ($-1.982\pm3.179\%$) and inferior ($-1.963\pm5.632\%$) and middle ($-$
724 $1.949\pm4.015\%$) temporal gyri. However, while we might observe these general effects,
725 the changes in excitability are still highly dependent on the specific lesioned area. In Fig.
726 5c,i, it can be seen that areas with stronger structural connectivity with the lesioned
727 cortex have to undergo higher increases in excitability (Pearson's correlation coefficient
728 = -0.83 , $p<0.001$ F-test), with local changes in $\Delta c_{EI}(\%)$ being as high as 30%. Moreover,
729 when looking at the average increase in excitability across cortical regions (Fig. 5c,ii), it
730 can be observed that more severe lesions require higher levels of long-term homeostatic
731 adaptation (Pearson's correlation coefficient = -0.74 , $p<0.001$ F-test). Therefore, lesions
732 in well-connected areas require stronger compensation, particularly in nodes that are
733 more strongly connected to the lesion.

734 In conclusion, by accounting for the participation of slow mechanisms of E-I homeostasis
735 in stroke recovery, we replicate empirical findings in stroke patients and models, such as
736 an overall increase in excitability driven by a decrease in inhibitory transmission
737 (27,29,30) and decaying with distance to the lesion (27). Moreover, such changes can
738 be predicted for individual cortical areas, given their structural connectivity to the lesioned
739 cortex. It is important, then, to stress that this leads to high heterogeneity in homeostatic
740 changes, showing the importance of developing personalized models where patient-
741 specific information about structural connectivity and damaged areas can be integrated
742 to predict the long-term changes in excitability required for recovery of E-I balance.



743

744 **Figure 5 - Long-term adaptations required to recover E-I balance replicate observed post-stroke**
745 **changes in excitability.**

746 A) Examples of long-term changes in excitability, quantified through the difference in local c_{EI} weights (in
747 percentage) between T0 and T2, in response to different lesions. (Top) Changes in local excitability,
748 projected onto an anatomical map of the human cortex. Red colors represent increases in excitability
749 (decreased inhibition) and blue colors show decreased excitability (increased inhibition). Arrows and gray
750 shading indicate the location of lesioned areas. (Bottom) Changes in excitability against euclidian distance
751 to the lesioned area with results of an exponential fit to the data and respective R^2 values. i) Response to a
752 lesion in the right frontal superior gyrus. Note the strong changes across the cortex, with the highest
753 increases concentrated in the vicinity of the lesion, decreasing exponentially with distance ($R^2 = 0.65$) ii)
754 Response to a lesion in the left precentral gyrus. Again, the highest increases in excitability occur close to
755 the lesioned area, with a distance-dependent exponential decay ($R^2 = 0.50$). iii) Response to a lesion in the
756 right parahippocampal gyrus. Note the weaker changes and the poor exponential fit ($R^2 = 0.02$).

757 B) Long-term changes in excitability averaged over lesions. Data from left-side lesions was mirrored so that
758 the right side was always ipsilesional. Note the general increases in excitability across the cortex, strongest
759 on the ipsilesional side.

760 C) Relationship between changes and lesion properties. i) Local changes in excitability against structural
761 connectivity with the lesioned area (W_{ij} where i is the region where Δc_{EI} is measured and j is the lesioned

762 area. Δ_{CEI} correlated strongly with W_{ij} (Pearson's correlation coefficient -0.83, $p<0.001$ F-test). ii) Average
763 Δ_{CEI} across cortical areas, plotted against lesion strength (node strength of lesioned areas, $\sum_i W_{ij}$). Average
764 changes were strongly correlated with lesion severity (Pearson's correlation coefficient, -0.74, $p<0.001$ F-
765 test).

766

767 **3.5. Long-Term Changes in Excitability Relate to** 768 **Biomarkers of Common Side-Effects of Stroke**

769 Stroke patients tend to develop some side effects during the months post-stroke, such
770 as seizures (3–5), depression (8–10) and chronic pain (6,7), among others. Importantly
771 some of these pathologies have been previously associated with altered patterns of
772 excitability in the cortex (e.g epilepsy (94,95), depression (10) and neuropathic pain
773 (96)). Given the widespread changes in excitability presented in the previous section, it
774 is then relevant to investigate a possible relationship between such homeostatic
775 processes, necessary to maintain local E-I balance, and the emergence of long-term
776 side-effects of stroke.

777 One such side-effect is the occurrence of post-stroke seizures, which occur in up to 22%
778 of stroke patients (3). When such seizures become recurrent, they are classified as post-
779 stroke epilepsy, occurring in about 7% of stroke patients (97). In addition, the occurrence
780 of seizures or epilepsy has been previously related to hyperexcitability of areas located
781 in the epileptic focus (94,95) and, while the cause of post-stroke seizures is not yet well
782 known, it has been hypothesized that it relates to the increased excitability in a similar
783 manner (3,97,98). While epileptic foci can be distributed across the brain, the most
784 common location observed in humans is the temporal lobe and, more specifically, the
785 medial temporal gyrus (95,99). Accordingly, in Fig. 6a, it can be observed that some of
786 the largest average increases in excitability are found in the ipsilesional temporal lobe
787 (circled area). More specifically, all gyri of the temporal lobe experience significant
788 increases in excitability (asterisks represent the level of significance in a Wilcoxon
789 ranked-sum test), in both ipsi and contralesional cortices. More importantly, the
790 ipsilesional middle temporal gyrus undergoes a particularly strong increase in excitability
791 (-1.949±4.015%), significantly larger than the remaining areas in the ipsilesional cortex
792 ($p = 0.036$, Mann-Whitney U-test). Therefore, the emergence of post-stroke seizures
793 may be potentiated by the action of E-I homeostatic mechanisms, although the
794 magnitude of causality is difficult to assess. Interestingly, most post-stroke seizures
795 result from cortical lesions (98), precisely the type of lesions applied in our computational

796 model of stroke. Furthermore, it is important to stress again the high heterogeneity of
797 effects over lesioned areas observed in our results. Besides the higher prevalence of
798 post-stroke seizure in patients with cortical lesions, the literature is not clear regarding
799 the location of lesions most likely to lead to this side-effect. Here, we predict that lesions
800 to the temporal cortex would have the highest likelihood of leading to post-stroke
801 seizures, due to the strong connectivity and spatial proximity between temporal areas,
802 which, as shown in the previous section, would lead to higher increases in excitability.
803 Nonetheless, lesions in the angular and middle occipital gyri could also cause strong
804 increases in excitability of the middle temporal cortex (Fig. S8).

805 Another common side effect of stroke is depression, with an estimated prevalence of 17-
806 52% in stroke patients (8,9). While some studies argue that the main factors of risk
807 pertain to the social situation of stroke patients, gender and a history of previous
808 depression (100) others suggest a dependence on lesion location, showing a higher
809 prevalence of post-stroke depression (PSD) in patients with right side lesions and lesions
810 in more frontal areas (101). Furthermore, depression, in particular major depressive
811 disorder, has been associated with asymmetry in cortical excitability (102), particularly
812 between motor cortices and towards higher excitability of the right side (103,104).
813 Therefore, we hypothesize that, after lesions on the right side, there is an increase in the
814 asymmetry of excitability towards the right motor cortex, when compared to pre-lesion
815 levels. To measure this change quantitatively we compute the following metric,
816 quantifying changes in asymmetry of motor cortex excitability:

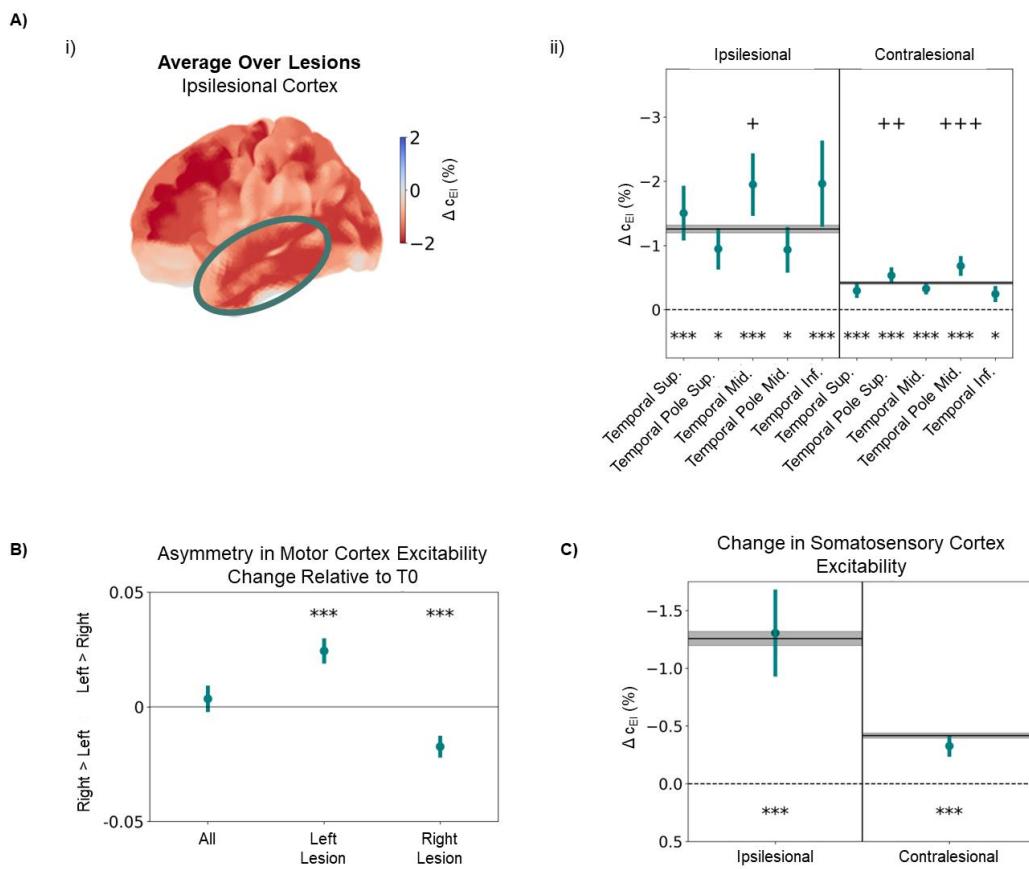
$$817 \frac{c_{EI,right}(T2)/c_{EI,left}(T2)}{c_{EI,right}(T0)/c_{EI,left}(T0)} - 1 \quad (10)$$

818 Shortly, if the index is negative, the ratio between the right and left motor cortex c_{EI}
819 weights decreased from T0 to T2, meaning excitability increased more on the right side
820 than on its left counterpart. If Fig. 6b, we plot this value over all lesions, and split it
821 between lesions on the left and right sides. While the average over all lesions shows no
822 significant change in motor cortex excitability asymmetry ($p = 0.465$, Wilcoxon ranked-
823 sum test), for right side lesions we observed a significant shift towards higher excitability
824 of the right motor cortex ($p < 0.001$, Wilcoxon ranked-sum test). This result is, therefore,
825 simultaneously consistent with the observation of this biomarker in depressive subjects
826 (103,104) and with the higher prevalence of PSD in patients with right-side lesions (101).
827 For left-side lesions, the opposite variation was found ($p < 0.001$, Wilcoxon ranked-sum
828 test). In fact, under the framework of E-I homeostasis, such results are trivial, considering
829 that the ipsilesional cortex tends to experience a higher increase in excitability than its

830 counterpart. Therefore, right-side lesions would lead to a generalized shift in the
831 symmetry of excitability towards the right side, as predicted by our model (Fig. 5b). In
832 fact, such asymmetries have been found in human subjects beyond the motor cortex,
833 with studies reporting similar changes in the frontal cortex (102). Furthermore, results
834 are still heterogeneous across lesions, with the highest changes in asymmetry of motor
835 cortex excitability towards the right side found for lesions in the right superior and medial
836 frontal gyri, right postcentral gyrus, and right paracentral lobule (Fig. S9). The stronger
837 changes observed for lesions in the superior and middle frontal gyrus, in accordance
838 with the higher prevalence of depression in patients with more frontal lesions (101), lend
839 further strength to our hypothesis.

840 Another common post-stroke side effect is neuropathic pain, occurring in 11-55% of
841 stroke patients, although not always associated with the stroke itself (7,105). Neuropathic
842 pain is generally hypothesized to relate to an increase in neuronal excitability of
843 somatosensory areas (106), as is also the case when it occurs post-stroke (7). This
844 increased somatosensory excitability would then lead to a lower threshold for pain. Such
845 changes are thought to be caused by maladaptive plasticity of the somatosensory cortex
846 (7,106). In Fig. 6c, we plot the change in excitability of the ipsi and contralesional
847 somatosensory cortices (i.e. postcentral gyrus). While none of these areas experienced
848 a significant increase in excitability compared to the rest of the cortex on the same side
849 (ipsilesional: $p = 0.702$; contralesional: $p = 0.195$; Mann-Whitney U-test), both the ipsi
850 and contralateral cortices showed a significant increase in excitability from T0 to T2,
851 stronger in the ipsilesional side (ipsilesional: $-1.306 \pm 3.163\%$, $p < 0.001$; contralesional: $-$
852 $0.327 \pm 0.672\%$, $p < 0.001$; Wilcoxon Ranked-sum test). Changes were stronger for lesions
853 in the precentral gyrus, superior parietal gyrus, supramarginal gyrus and paracentral
854 lobule (Fig. S10).

855 Therefore, the changes in excitability operated by E-I homeostasis to adapt to the loss
856 of long-range excitatory might be involved in the appearance of reported side effects of
857 stroke such as epilepsy, depression and neuropathic pain. However, it is important to
858 stress that it is difficult to estimate the magnitude of causal influence between E-I
859 homeostasis and the incidence of the mentioned side effects, since previous research
860 has highlighted other important risk factors, such as a lack of social support in the case
861 of depression (100). Nonetheless, E-I homeostasis may inadvertently contribute either
862 to a higher propensity of stroke patients to develop the aforementioned symptoms or to
863 exacerbate their intensity.



864

865 **Figure 6 - Long-Term Changes in Excitability Relate to Known Side Effects of Stroke**

866 A) Changes in excitability in the temporal cortex, averaged across lesions, quantified through the difference
867 in local c_{EI} weights (in percentage) between T0 and T2 i) Changes in excitability in the ipsilesional cortex.
868 The circled region corresponds to the temporal cortex, where strong increases in excitability can be
869 observed. ii) Changes in excitability for different cortical regions in the temporal lobe, for both ipsi- and
870 contralesional cortex. Black lines and gray shaded areas represent, respectively, the mean and standard
871 deviation of Δc_{EI} across all cortical areas. While all regions display a significant increase in excitability
872 between T0 and T2, the ipsilesional middle temporal gyrus, a common location for epileptic foci, showed a
873 significant increase even when compared with the rest of the ipsilesional cortex ($p = 0.036$, Mann-Whitney
874 U-test). On the contralateral side, while changes are generally weaker, there was a significant difference
875 from the remaining cortical areas in both the superior temporal pole ($p = 0.004$, Mann-Whitney U-test) and
876 the middle temporal pole ($p < 0.001$, Mann-Whitney U-test).
877 B) Change in asymmetry between excitability in left and right motor cortices, calculated as the difference, in
878 percentage, of $c_{EI, left}/c_{EI, right}$ from T0 to T2. Note that, for right-side lesions, a change occurs towards
879 higher excitability on the right side ($p < 0.001$, Wilcoxon ranked-sum test), while the opposite effect is
880 observed for lesions on the left side of the cortex ($p < 0.001$, Wilcoxon ranked-sum test).
881 C) Changes in excitability in the somatosensory cortex (postcentral gyrus). While changes were not
882 significantly different from the remaining cortical areas, in both ipsilesional ($p = 0.702$, Mann-Whitney U-test)
883 and contralesional ($p = 0.195$, Mann-Whitney U-test) cortices, both somatosensory areas underwent
884 significant increases in excitability (ipsilesional: -1.306 ± 0.702 , $p < 0.001$; contralesional: -0.327 ± 0.195 ,
885 $p < 0.001$; Wilcoxon ranked-sum test)

886 *In all plots, points represent the average over lesions and bars represent the standard error of the mean.*
887 *Asterisks represent a significant difference from 0, using the Wilcoxon ranked-sum test. * p<0.05, ** p<0.01,*
888 **** p<0.001. Crosses represent a significant difference from the distribution of ΔcEI across either ipsi- or*
889 *contralesional cortices, using the Mann-Whitney U-test. + p<0.05, ++ p<0.01, +++ p<0.001.*

890 4. Discussion

891 We show that our model, by optimizing local and global parameters (i.e. target firing rate
892 and global coupling), can simultaneously represent empirical FC and relevant dynamical
893 features of cortical activity. By simulating cortical stroke lesions, we further show that E-
894 I homeostasis, a mechanism that is well documented in the cortex (52), likely takes part
895 in the recovery of relevant static properties of FC, from FC-SC correlation (18) to complex
896 graph properties such as modularity and small-worldness (19). Conversely, this type of
897 homeostasis was not sufficient for the recovery of pre-lesion dynamics, such as criticality
898 and metastability, suggesting that, while the global properties of FC can be recovered
899 through local homeostasis of E-I balance, the recovery of dynamics required further
900 adaptive responses from the human cortex. Importantly, we analyze in detail the changes
901 in excitability operated by E-I homeostasis, replicating the known dependence between
902 changes in excitability and distance to the lesion (27). Here, we bring this further by
903 showing that this dependence is exponential, likely due to the exponential decay of
904 structural connectivity with distance (93). While the general effect of a widespread
905 increase in excitability is in concurrence with literature (27–30), we stress the high
906 heterogeneity across lesions, with local decreases in excitability observed in particular
907 cases. Importantly, we tie some of the observed changes with biomarkers of known
908 lasting side-effects of stroke, such as seizures (3,5), depression (10,100) and
909 neuropathic pain (7) related to altered patterns of excitability. Therefore, we suggest E-I
910 homeostasis is responsible for either increasing the tendency of stroke patients to
911 develop such side effects, or at least enhancing their effects, while they might emerge
912 from other causes (100).

913 4.1. E-I Homeostasis in Stroke Recovery

914 The possibility E-I homeostasis participating in stroke recovery has been suggested
915 before (35–37), given the logical association between the acute loss in excitability and
916 the long-term changes in excitability, understood as the subsequent adaptive response
917 from cortical networks to restore E-I balance (52). In this study, we show that E-I
918 homeostasis can have an important participation in stroke recovery, tying the recovery
919 of global FC properties to local E-I balance. However, one must not neglect the influence
920 of other possible strategies of adaptation, such as structural plasticity (24), vicariation
921 (107) and functional reorganization potentiated by rehabilitation strategies (108). Indeed,
922 it is likely that these processes of recovery interact, since neurostimulation techniques
923 such as theta-burst stimulation, shown to be beneficial for stroke rehabilitation, can
924 simultaneously alter local excitability and long-range functional connectivity (109,110). It

925 is relevant to stress that the recovery of important properties such as modularity and
926 small-worldness, in our results, is not tied to a full recovery of FC in a connection-by-
927 connection manner. While there is recovery between the acute and chronic periods, FC
928 matrices are still significantly different from baseline in the latter, while the
929 aforementioned properties are mostly reinstated. Therefore, we suggest that,
930 remarkably, the recovery of the graph structure of FC is indirectly orchestrated by local
931 processes of E-I homeostasis and is achieved through a global reorganization of
932 functional connections. This offers an explanation as to why the cortex can coordinate
933 the recovery of such global properties of FC, while individual cortical areas are virtually
934 agnostic to the connectivity (or lack of it) between the remaining cortex. Moreover, since
935 the association between structural and functional connectivity was recovered to pre-
936 lesion levels, while we simultaneously observed differences in functional connectivity,
937 we speculate that functional reorganization is scaffolded by the structural connectivity,
938 with the preferential enhancement of functional connections between nodes with
939 significant white-matter links.

940 **4.2. Global Dynamics of the Post Stroke Brain**

941 Despite the recovery of static properties of FC, our results show a different picture for
942 relevant dynamical features which can be understood as metrics of 'richness' of
943 dynamics. Both metastability, quantifying the ability of a network to flexibly switch
944 between synchronous and asynchronous states (91) or criticality (47), underlying
945 balanced propagation of activity, are significantly affected by lesions and were not
946 recovered solely through E-I homeostasis. A possible explanation would be the fragility
947 of cortical dynamics to disruptions in the structural scaffold of the human cortex, which
948 cannot be compensated solely by local synaptic scaling. Indeed, recent results (24),
949 suggest that, similarly to our results, stroke lesions bring cortical dynamics to
950 subcriticality. More importantly, dynamics could be brought back to criticality in the long-
951 term, but through structural plasticity of white-matter tracts, suggesting that other forms
952 of plasticity beyond synaptic scaling are relevant for the recovery of global dynamics. As
953 for metastability, empirical investigation of its evolution in the brain of stroke patients is
954 lacking. The same is the case for FCD, which measures the transient dynamics of FC.
955 In our results, FCD distributions experience a shift towards higher values, unable to be
956 recovered, similarly to the aforementioned dynamical features. A possible interpretation
957 is a more rigid spatiotemporal pattern of FC, where the cortex has a higher difficulty in
958 switching between different FC patterns associated with the known resting state
959 networks (86). This might be tied to the decrease in metastability, since rich
960 spatiotemporal FC variation has been hypothesized to be an emergent property of

961 metastable brain dynamics (91). Therefore, we suggest future studies should focus on
962 using methods such as Hidden Markov Modelling (111,112) or leading eigenvector
963 dynamics analysis (113) to evaluate the ability of the stroke brain to flexibly transition
964 between states and how it evolves during the process of recovery.

965 **4.3. Possible Impairments of E-I Homeostasis in Stroke Patients**

966 An important consideration from our study is that, in the modeling approach, we assume
967 E-I homeostasis through inhibitory synaptic scaling to be fully functional during the entire
968 simulations. While this process has been found to respond robustly to perturbations such
969 as sensory deprivation in rodents (56,58,114), further studies also advance the possibility
970 of impairments in homeostatic plasticity occurring in pathological states (115,116).
971 Therefore, there is a possibility that E-I homeostasis experiences some level of
972 impairment during stroke recovery. More so, research in homeostatic plasticity suggests
973 that synaptic scaling may not be sufficient to adapt to certain perturbations and that other
974 processes such as regulation of intrinsic excitability might come into play for stronger
975 disruptions (52). That said, the ability of cortical circuits to homeostatically regulate their
976 own E-I balance may be affected post-stroke, possibly in a patient-specific manner. In
977 fact, literature shows variability in either the strength of inhibition (28,29) or the
978 magnitude of its longitudinal variation in stroke patients (30). While this variability could
979 be attributed to several heterogeneities between patients (e.g. lesion location,
980 rehabilitation procedures), the strong correlation with behavioral improvement found in
981 (30) suggests that the magnitude of homeostatic adaptation is important for recovery,
982 and patients with putative impairments in E-I homeostasis would have more difficulty in
983 regaining function.

984 Importantly, this possibility raises the question of how to modulate cortical circuits to
985 correct such deficits in E-I homeostasis, as has been suggested for the treatment of
986 mood disorders (115). A possibility is the use of neurostimulation methods, such as
987 theta-burst stimulation, which have been shown to modulate the excitability of cortical
988 areas (110) and that could be applied to specific regions of the cortex undergoing
989 particularly strong increases in E-I homeostasis. Coincidentally, such methods modulate
990 functional connectivity, with effects spreading beyond the stimulated area (109) and,
991 while the precise ties between the modulation of excitability and connectivity are not yet
992 known, such procedures may also stimulate the large-scale reorganization needed to
993 recover the graph-properties of FC.

994 An important challenge, then, would be how to detect localized disruptions in E-I balance,
995 i.e. particular regions of the cortex where E-I homeostasis was not able to fully adapt.

996 Here, novel methods such as the measurement of functional E-I balance from
997 electroencephalographic recordings (117) could be of help, indicating localized deficits
998 that could then be corrected using neuromodulation. Alternatively, models such as ours
999 could be used with patient-specific structural connectivity data and fitted to respective
1000 functional data by varying local parameters such as local target firing rates (ρ). Then, by
1001 comparing them with similar models with fully functioning homeostasis, regional
1002 differences could be detected, pointing to areas in need of further modulation of
1003 excitability. In any case, future studies should focus on measuring the evolution of E-I
1004 balance in the cortex of stroke patients, relating it to the recovery of function and
1005 evaluating possible impairments in homeostatic plasticity and how to correct them.

1006 **4.4. Emergence of Biomarkers of Stroke Side-Effects from E-I
1007 Homeostasis**

1008 Interestingly, we could relate certain side-effects of stroke and respective biomarkers
1009 with changes in the patterns of excitability observed in our model. Signatures such as
1010 increased excitability of the contralateral medial temporal cortex, the most common focus
1011 of epileptic seizures (95,99), could then be related to E-I homeostasis and to the
1012 tendency of stroke patients to developed seizures (3), in some cases evolving to epilepsy
1013 (98). Critically, this finding is supported by one study in which neuromodulation was used
1014 in a rodent stroke model to increase motor cortex excitability (118). While this led to a
1015 significant improvement in motor function, it also increased the propensity of the rodents
1016 to develop epileptic seizures. While this particular study was related to motor cortex
1017 excitability, its results are likely generalizable to other structures in the brain. Regarding
1018 depression, we observed a shift in the right-left asymmetry in motor cortex excitability
1019 towards higher excitability of the right side (103,104). This was found particularly after
1020 right-side lesions in the frontal cortex, which are common in patients that experience
1021 post-stroke depression (101). Interestingly, under the framework of E-I homeostasis, this
1022 result is relatively trivial, since right lesions would lead to higher increases in excitability
1023 in the right side, thus leading to the observed changes in right-left asymmetry associated
1024 with depression. Finally, chronic pain has been associated with maladaptive plasticity
1025 leading to a pathological increase in the excitability of sensorimotor cortices, thus
1026 creating a neuropathic sensation of pain (96). In our case, we suggest that this process
1027 might not be maladaptive, but a physiological change that is required to compensate for
1028 a loss of cortico-cortical excitation, which could then affect how the sensorimotor areas
1029 respond to subcortical sensory input.

1030 In addition, while the general effect observed was a widespread increase in excitability,
1031 our results show the surprising possibility that strong decreases in excitability can be felt
1032 in certain regions for particular lesions. An example is decreased ipsilesional motor
1033 cortex excitability after a lesion in the precuneus or posterior cingulate cortex (Fig. S11).
1034 This particular case is interesting since chronic fatigue, commonly felt by stroke patients,
1035 has been associated with hypoexcitability of the motor cortex (11). Therefore, we suggest
1036 that the participation of E-I homeostasis in enhancing post-stroke side effects may not
1037 only be tied to increased excitability, but also to the opposite effect in particular cases.

1038 All that considered, care must be taken in attributing a causal relationship between the
1039 slow changes resulting from E-I homeostasis and the development of the mentioned side
1040 effects. Indeed, certain patients of stroke experience seizures already in the acute
1041 period, although this might be related to the excitotoxic release of glutamatergic
1042 neurotransmitters in this period (119). Nonetheless, some patients continue experiencing
1043 repeated seizures into the chronic period (4), when such massive levels of glutamate are
1044 no longer present. In addition, the strongest risk factor of post-stroke depression is the
1045 amount of social support patients receive during recovery (100), seemingly rejecting
1046 changes caused by E-I homeostasis as a major cause for this pathology. Therefore,
1047 instead of attributing a fully causal role of E-I homeostasis in the emergence of the
1048 aforementioned side-effects, we suggest it as one of the multiple factors increasing the
1049 propensity of stroke patients to develop them. Alternatively, it is possible that the
1050 changes we observe could instead enhance the severity of said side-effects, caused by
1051 entirely different factors.

1052 All that considered, we predict that E-I homeostasis, albeit necessary for post-stroke
1053 recovery, might inadvertently participate in the emergence of the discussed side effects.
1054 However, further research is required to understand this connection more clearly, for
1055 example, by associating particular lesions to specific patterns of alteration in excitability
1056 and the onset of the discussed pathologies in a patient-by-patient manner.

1057 **4.5. Limitations**

1058 The first limitation that can be pointed out in our study is the fact that we only simulate
1059 cortical gray matter lesions, by removing all the connections to and from a given cortical
1060 area. While this approach is common in lesion studies (23,60,79), it neglects the impact
1061 of white-matter disconnection. Indeed, a cortical lesion might not only affect the gray
1062 contained by its volume, but also white-matter tracts that pass through it and may
1063 connect other regions. Importantly, recent research suggests a greater relevance of
1064 white-matter disconnection in predicting future deficits, when compared to gray-matter

1065 loss (120). However, in our case, without lesion-specific information about lesion volume
1066 and the white matter tracts it intercepts, it is not possible to estimate the extent of white
1067 matter damage. Therefore, future modeling studies should focus on the incorporation of
1068 realistic cortical lesions affecting both gray and white matter. In addition, regions in the
1069 AAL parcellation not only have different levels of connectivity, but also different volumes.
1070 Therefore, while lesions in, for example, the precuneus and the superior frontal cortex
1071 are both single-node in our simulations, in reality, the latter would involve a much larger
1072 volume. Nonetheless, while studies show that lesion volume has an impact on the extent
1073 of functional damage and subsequent recovery (121), it is arguable that the graph
1074 properties of lesioned areas have a significant influence as well (60,122). Also, given the
1075 heterogeneity in the lesions applied in this study, we argue that it still retains validity in
1076 representing the wide range of post-stroke deficits and the participation of E-I
1077 homeostasis in recovery.

1078 Another missing aspect in this study is the influence of sub-cortical dynamics. Studies
1079 have shown that the processes of diaschisis involve subcortical structures as well, such
1080 as the spread of thalamocortical dysrhythmia due to decreased excitation in
1081 thalamocortical networks (123). In addition, subcortical lesions also have strong effects
1082 on cortical dynamics (124), albeit not as strongly as cortical lesions. While studying such
1083 effects would be important, it is out of the scope of our study, given the difficulty in
1084 modeling subcortical structures at such a large-scale, due to their functional and
1085 structural heterogeneity. Recent approaches in embedding multiscale subcortical
1086 networks in mean-field models of the human cortex (125) might, however, prove useful
1087 to further study the effects of subcortical lesions and the participation of subcortical
1088 structures in post-stroke recovery.

1089 A further caveat of our study is the aforementioned lack of E-I homeostasis mechanisms
1090 beyond inhibitory synaptic scaling. Arguments in favor of our approach, besides being
1091 the most common in large-scale modeling studies (61,62,64,74), are tied to the
1092 demonstrated importance of inhibitory homeostasis for cortical function (40,58) and the
1093 fact that a long-term decrease in inhibitory activity has been robustly observed in rodent
1094 stroke models (27) and patients (28–30). More importantly, research suggests a
1095 correlation between the magnitude of this decrease and functional recovery (30).
1096 Nonetheless, changes in excitatory neurotransmitters have been observed in stroke
1097 patients as well and different mechanisms of E-I homeostasis, such as excitatory
1098 synaptic scaling and regulation of intrinsic excitability (52) are likely involved. Further
1099 studies could then focus on the involvement of such mechanisms in stroke recovery, the
1100 magnitude of their participation, or the possibility that some of them, such as changes in

1101 intrinsic excitability, come into play when other types of homeostasis are not sufficient to
1102 adapt to the damage.

1103 Finally, an important caveat in the analysis is that we do not measure changes in
1104 homotopic interhemispheric connectivity, shown to be one of the strongest biomarkers
1105 of stroke correlated with patient behavior (126). The main rationale behind this decision
1106 is the fact that large-scale computational models are generally lacking in the
1107 representation of interhemispheric homotopic connectivity in the cortex, likely due to an
1108 underestimation of white-matter tracts connecting the two hemispheres from methods
1109 such as diffusion tensor imaging (127). Indeed, studies stress the importance of callosal
1110 white matter tracts in underlying stable homotopic FC and communication between
1111 hemispheres (128). Therefore, to counteract the underestimation of homotopic white
1112 matter tracts, recent studies suggest the improvement of structural connectivity data with
1113 white-matter microstructure (129) or the artificial augmentation of homotopic connections
1114 (130). Notwithstanding, we were able to replicate the effects of stroke (19) in FC graph
1115 properties relevant for cortical function, such as modularity or small-worldness (21,22),
1116 showing the participation of E-I homeostasis in their recovery.

1117 5. Conclusion

1118 In conclusion, our results lend strength to the claim that cortical E-I homeostasis is an
1119 important driver of stroke recovery, not only by showing that it corrects deficits in static
1120 properties of FC, but that the required adjustments to local inhibition are consistent with
1121 the literature on post-stroke changes in inhibition. In addition, we suggest that specific
1122 patterns of altered excitability observed in our model can be associated with biomarkers
1123 of known side effects of stroke (e.g. seizures, depression, neuropathic pain), offering at
1124 least a partial explanation for the increased propensity of stroke patients to develop them.
1125 Therefore, by observing stroke through the lens of E-I homeostasis, we hope to advance
1126 the current knowledge about the neural processes involved in stroke recovery, essential
1127 to improve the effectiveness of therapeutical approaches that modulate cortical
1128 excitability, to predict more reliably the occurrence of stroke side effects and to better
1129 understand putative deficits in homeostatic plasticity that can hinder the rehabilitation
1130 process.

1131 **6. Funding**

1132 This work was supported by the EU projects euSNN (MSCA-ITN-ETN H2020—ID
1133 860563), Virtual Brain Cloud (H2020 ID 826421) and RGS@HOME (H2020—EIT
1134 Health—ID 19277).

1135 **7. Conflict of Interest**

1136 FPS is employed by the company Eodyne Systems SL. PFMJV is founder and
1137 shareholder of Eodyne Systems S.L., which aims at bringing scientifically validated
1138 neurorehabilitation and education technology to society.

1139

1140 References

- 1141 1. Campbell BCV, Khatri P. Stroke. The Lancet. 2020 Jul;396(10244):129–42.
- 1142 2. Musuka TD, Wilton SB, Traboulsi M, Hill MD. Diagnosis and management of
1143 acute ischemic stroke: speed is critical. CMAJ Can Med Assoc J. 2015 Sep
1144 8;187(12):887–93.
- 1145 3. Fu Y, Feng L, Xiao B. Current advances on mechanisms and treatment of post-
1146 stroke seizures. Acta Epileptol. 2021 Jul 5;3(1):14.
- 1147 4. Pitkänen A, Roivainen R, Lukasiuk K. Development of epilepsy after ischaemic
1148 stroke. Lancet Neurol. 2016 Feb 1;15(2):185–97.
- 1149 5. Silverman IE, Restrepo L, Mathews GC. Poststroke Seizures. Arch Neurol. 2002
1150 Feb 1;59(2):195–201.
- 1151 6. Andersen G, Vestergaard K, Ingeman-Nielsen M, Jensen TS. Incidence of central
1152 post-stroke pain. Pain. 1995 May 1;61(2):187–93.
- 1153 7. Klit H, Finnerup NB, Jensen TS. Central post-stroke pain: clinical characteristics,
1154 pathophysiology, and management. Lancet Neurol. 2009 Sep 1;8(9):857–68.
- 1155 8. Gaete JM, Bogousslavsky J. Post-stroke depression. Expert Rev Neurother. 2008
1156 Jan 1;8(1):75–92.
- 1157 9. Robinson RG, Jorge RE. Post-Stroke Depression: A Review. Am J Psychiatry.
1158 2016 Mar;173(3):221–31.
- 1159 10. Towfighi A, Ovbiagele B, El Husseini N, Hackett ML, Jorge RE, Kissela BM, et
1160 al. Poststroke Depression: A Scientific Statement for Healthcare Professionals
1161 From the American Heart Association/American Stroke Association. Stroke. 2017
1162 Feb 1;48(2):e30–43.
- 1163 11. Kuppuswamy A, Clark EV, Turner IF, Rothwell JC, Ward NS. Post-stroke fatigue:
1164 a deficit in corticomotor excitability? Brain. 2015 Jan;138(1):136–48.
- 1165 12. von Monakow C. Die Lokalisation im Grosshirn und der Abbau der Funktion
1166 durch kortikale Herde [Internet]. Wiesbaden; 1914 [cited 2021 Sep 30]. Available
1167 from: <https://wellcomecollection.org/works/sv9frejr>
- 1168 13. Carrera E, Tononi G. Diaschisis: past, present, future. Brain. 2014 Sep
1169 1;137(9):2408–22.
- 1170 14. Baldassarre A, Ramsey L, Hacker CL, Callejas A, Astafiev SV, Metcalf NV, et al.
1171 Large-scale changes in network interactions as a physiological signature of spatial
1172 neglect. Brain. 2014 Dec 1;137(12):3267–83.

- 1173 15. Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, et al.
1174 Resting state inter-hemispheric fMRI connectivity predicts performance after
1175 stroke. *Ann Neurol.* 2009;NA-NA.
- 1176 16. He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M. Breakdown
1177 of Functional Connectivity in Frontoparietal Networks Underlies Behavioral
1178 Deficits in Spatial Neglect. *Neuron.* 2007 Mar 15;53(6):905–18.
- 1179 17. Park C hyun, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A, et al.
1180 Longitudinal Changes of Resting-State Functional Connectivity During Motor
1181 Recovery After Stroke. *Stroke.* 2011 May;42(5):1357–62.
- 1182 18. Zhang J, Zhang Y, Wang L, Sang L, Yang J, Yan R, et al. Disrupted structural and
1183 functional connectivity networks in ischemic stroke patients. *Neuroscience.* 2017
1184 Nov 19;364:212–25.
- 1185 19. Siegel JS, Seitzman BA, Ramsey LE, Ortega M, Gordon EM, Dosenbach NUF, et
1186 al. Re-emergence of modular brain networks in stroke recovery. *Cortex.* 2018
1187 Apr;101:44–59.
- 1188 20. Newman MEJ. Fast algorithm for detecting community structure in networks. *Phys
1189 Rev E.* 2004 Jun 18;69(6):066133.
- 1190 21. Sporns O, Betzel RF. Modular Brain Networks. *Annu Rev Psychol.* 2016 Jan
1191 4;67:613–40.
- 1192 22. Bassett DS, Bullmore E. Small-World Brain Networks. *The Neuroscientist.* 2006
1193 Dec;12(6):512–23.
- 1194 23. Váša F, Shanahan M, Hellyer PJ, Scott G, Cabral J, Leech R. Effects of lesions on
1195 synchrony and metastability in cortical networks. *NeuroImage.* 2015 Sep;118:456–
1196 67.
- 1197 24. Rocha RP, Koçillari L, Suweis S, De Filippo De Grazia M, de Schotten MT, Zorzi
1198 M, et al. Recovery of neural dynamics criticality in personalized whole-brain
1199 models of stroke. *Nat Commun.* 2022 Jun 27;13(1):3683.
- 1200 25. Luhmann HJ, Mudrick-Donnon LA, Mittmann T, Heinemann U. Ischaemia-
1201 induced Long-term Hyperexcitability in Rat Neocortex. *Eur J Neurosci.* 1995
1202 Feb;7(2):180–91.
- 1203 26. Neumann-Haefelin T, Hagemann G, Witte OW. Cellular correlates of neuronal
1204 hyperexcitability in the vicinity of photochemically induced cortical infarcts in rats
1205 in vitro. *Neurosci Lett.* 1995 Jun;193(2):101–4.
- 1206 27. Neumann-Haefelin T, Witte OW. Perifarct and Remote Excitability Changes
1207 after Transient Middle Cerebral Artery Occlusion. *J Cereb Blood Flow Metab.*
1208 2000 Jan 1;20(1):45–52.
- 1209 28. Butefisch CM. Remote changes in cortical excitability after stroke. *Brain.* 2003
1210 Feb 1;126(2):470–81.

- 1211 29. Huynh W, Vucic S, Krishnan AV, Lin CSY, Kiernan MC. Exploring the Evolution
1212 of Cortical Excitability Following Acute Stroke. *Neurorehabil Neural Repair*. 2016
1213 Mar 1;30(3):244–57.
- 1214 30. Kim YK, Yang EJ, Cho K, Lim JY, Paik NJ. Functional Recovery After Ischemic
1215 Stroke Is Associated With Reduced GABAergic Inhibition in the Cerebral Cortex:
1216 A GABA PET Study. *Neurorehabil Neural Repair*. 2014 Jul 1;28(6):576–83.
- 1217 31. Qü M, Schiene K, Witte OW, Zilles K. Widespread up-regulation of N-methyl-d-
1218 aspartate receptors after focal photothrombotic lesion in rat brain. *Neurosci Lett*.
1219 1999 Oct;273(2):77–80.
- 1220 32. Blicher JU, Jakobsen J, Andersen G, Nielsen JF. Cortical Excitability in Chronic
1221 Stroke and Modulation by Training: A TMS Study. *Neurorehabil Neural Repair*.
1222 2009 Jun 1;23(5):486–93.
- 1223 33. Buchkremer-Ratzmann I, Witte OW. Extended brain disinhibition following small
1224 photothrombotic lesions in rat frontal cortex. *Neuroreport*. 1997 Jan 20;8(2):519–
1225 22.
- 1226 34. Schiene K, Bruehl C, Zilles K, Qu M, Hagemann G, Kraemer M, et al. Neuronal
1227 Hyperexcitability and Reduction of GABA_A-Receptor Expression in the Surround
1228 of Cerebral Photothrombosis. *J Cereb Blood Flow Metab*. 1996 Sep 1;16(5):906–
1229 14.
- 1230 35. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to
1231 behaviour. *Nat Rev Neurosci*. 2009 Dec;10(12):861–72.
- 1232 36. Páscoa dos Santos F, Verschure PFMJ. Excitatory-Inhibitory Homeostasis and
1233 Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex. *Front
1234 Syst Neurosci [Internet]*. 2022 [cited 2022 Jun 23];15. Available from:
1235 <https://www.frontiersin.org/article/10.3389/fnsys.2021.806544>
- 1236 37. Platz T, editor. *Clinical Pathways in Stroke Rehabilitation: Evidence-based
1237 Clinical Practice Recommendations [Internet]*. Cham: Springer International
1238 Publishing; 2021 [cited 2021 Sep 28]. Available from:
1239 <http://link.springer.com/10.1007/978-3-030-58505-1>
- 1240 38. Litwin-Kumar A, Doiron B. Formation and maintenance of neuronal assemblies
1241 through synaptic plasticity. *Nat Commun*. 2014 Nov 14;5(1):5319.
- 1242 39. Tao HW, Poo M ming. Activity-Dependent Matching of Excitatory and Inhibitory
1243 Inputs during Refinement of Visual Receptive Fields. *Neuron*. 2005 Mar
1244 24;45(6):829–36.
- 1245 40. Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. Inhibitory Plasticity
1246 Balances Excitation and Inhibition in Sensory Pathways and Memory Networks.
1247 *Science*. 2011 Dec 16;334(6062):1569–73.
- 1248 41. Vreeswijk C van, Sompolinsky H. Chaos in Neuronal Networks with Balanced
1249 Excitatory and Inhibitory Activity. *Science*. 1996 Dec 6;274(5293):1724–6.

- 1250 42. Froemke RC, Merzenich MM, Schreiner CE. A synaptic memory trace for cortical
1251 receptive field plasticity. *Nature*. 2007 Nov;450(7168):425–9.
- 1252 43. Wehr M, Zador AM. Balanced inhibition underlies tuning and sharpens spike
1253 timing in auditory cortex. *Nature*. 2003 Nov;426(6965):442–6.
- 1254 44. Xue M, Atallah BV, Scanziani M. Equalizing excitation–inhibition ratios across
1255 visual cortical neurons. *Nature*. 2014 Jul;511(7511):596–600.
- 1256 45. Beggs JM. The Critically Tuned Cortex. *Neuron*. 2019 Nov 20;104(4):623–4.
- 1257 46. Beggs JM, Plenz D. Neuronal Avalanches in Neocortical Circuits. *J Neurosci*.
1258 2003 Dec 3;23(35):11167–77.
- 1259 47. Beggs JM, Timme N. Being Critical of Criticality in the Brain. *Front Physiol*
1260 [Internet]. 2012 [cited 2021 Jul 27];3. Available from:
1261 <http://journal.frontiersin.org/article/10.3389/fphys.2012.00163/abstract>
- 1262 48. Shew WL, Clawson WP, Pobst J, Karimipanah Y, Wright NC, Wessel R.
1263 Adaptation to sensory input tunes visual cortex to criticality. *Nat Phys*. 2015
1264 Aug;11(8):659–63.
- 1265 49. Kinouchi O, Copelli M. Optimal dynamical range of excitable networks at
1266 criticality. *Nat Phys*. 2006 May;2(5):348–51.
- 1267 50. Shew WL, Yang H, Yu S, Roy R, Plenz D. Information Capacity and
1268 Transmission Are Maximized in Balanced Cortical Networks with Neuronal
1269 Avalanches. *J Neurosci*. 2011 Jan 5;31(1):55–63.
- 1270 51. Shew WL, Yang H, Petermann T, Roy R, Plenz D. Neuronal Avalanches Imply
1271 Maximum Dynamic Range in Cortical Networks at Criticality. *J Neurosci*. 2009
1272 Dec 9;29(49):15595–600.
- 1273 52. Turrigiano GG. Too Many Cooks? Intrinsic and Synaptic Homeostatic
1274 Mechanisms in Cortical Circuit Refinement. *Annu Rev Neurosci*. 2011 Jul
1275 21;34(1):89–103.
- 1276 53. Desai NS, Rutherford LC, Turrigiano GG. Plasticity in the intrinsic excitability of
1277 cortical pyramidal neurons. *Nat Neurosci*. 1999 Jun;2(6):515–20.
- 1278 54. Ibata K, Sun Q, Turrigiano GG. Rapid synaptic scaling induced by changes in
1279 postsynaptic firing. *Neuron*. 2008 Mar 27;57(6):819–26.
- 1280 55. Keck T, Keller GB, Jacobsen RI, Eysel UT, Bonhoeffer T, Hübener M. Synaptic
1281 Scaling and Homeostatic Plasticity in the Mouse Visual Cortex In Vivo. *Neuron*.
1282 2013 Oct 16;80(2):327–34.
- 1283 56. Maffei A, Turrigiano GG. Multiple Modes of Network Homeostasis in Visual
1284 Cortical Layer 2/3. *J Neurosci*. 2008 Apr 23;28(17):4377–84.

- 1285 57. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-
1286 dependent scaling of quantal amplitude in neocortical neurons. *Nature*. 1998
1287 Feb;391(6670):892–6.
- 1288 58. Ma Z, Turrigiano GG, Wessel R, Hengen KB. Cortical Circuit Dynamics Are
1289 Homeostatically Tuned to Criticality In Vivo. *Neuron*. 2019 Nov 20;104(4):655-
1290 664.e4.
- 1291 59. Hendry S. Activity-dependent regulation of GABA expression in the visual cortex
1292 of adult monkeys. *Neuron*. 1988 Oct;1(8):701–12.
- 1293 60. Vattikonda A, Surampudi BR, Banerjee A, Deco G, Roy D. Does the regulation of
1294 local excitation–inhibition balance aid in recovery of functional connectivity? A
1295 computational account. *NeuroImage*. 2016 Aug;136:57–67.
- 1296 61. Hellyer PJ, Jachs B, Clopath C, Leech R. Local inhibitory plasticity tunes
1297 macroscopic brain dynamics and allows the emergence of functional brain
1298 networks. *NeuroImage*. 2016 Jan;124:85–95.
- 1299 62. Abeysuriya RG, Hadida J, Sotiropoulos SN, Jbabdi S, Becker R, Hunt BAE, et al.
1300 A biophysical model of dynamic balancing of excitation and inhibition in fast
1301 oscillatory large-scale networks. Marinazzo D, editor. *PLOS Comput Biol*. 2018
1302 Feb 23;14(2):e1006007.
- 1303 63. Deco G, Ponce-Alvarez A, Hagmann P, Romani GL, Mantini D, Corbetta M. How
1304 Local Excitation-Inhibition Ratio Impacts the Whole Brain Dynamics. *J Neurosci*.
1305 2014 Jun 4;34(23):7886–98.
- 1306 64. Naskar A, Vattikonda A, Deco G, Roy D, Banerjee A. Multiscale dynamic mean
1307 field (MDMF) model relates resting-state brain dynamics with local cortical
1308 excitatory–inhibitory neurotransmitter homeostasis. *Netw Neurosci*. 2021 Sep
1309 2;5(3):757–82.
- 1310 65. Falcon MI, Riley JD, Jirsa V, McIntosh AR, Elinor Chen E, Solodkin A.
1311 Functional Mechanisms of Recovery after Chronic Stroke: Modeling with the
1312 Virtual Brain. *eneuro*. 2016 Mar;3(2):ENEURO.0158-15.2016.
- 1313 66. Ashburner J. A fast diffeomorphic image registration algorithm. *NeuroImage*.
1314 2007 Oct 15;38(1):95–113.
- 1315 67. Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S, et al. Lead-DBS v2:
1316 Towards a comprehensive pipeline for deep brain stimulation imaging.
1317 *NeuroImage*. 2019 Jan 1;184:293–316.
- 1318 68. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix
1319 N, et al. Automated Anatomical Labeling of Activations in SPM Using a
1320 Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain.
1321 *NeuroImage*. 2002 Jan 1;15(1):273–89.
- 1322 69. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. The
1323 WU-Minn Human Connectome Project: An overview. *NeuroImage*. 2013 Oct
1324 15;80:62–79.

- 1325 70. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et
1326 al. The minimal preprocessing pipelines for the Human Connectome Project.
1327 *NeuroImage*. 2013 Oct 15;80:105–24.
- 1328 71. Wilson HR, Cowan JD. Excitatory and Inhibitory Interactions in Localized
1329 Populations of Model Neurons. *Biophys J*. 1972 Jan;12(1):1–24.
- 1330 72. Breakspear M. Dynamic models of large-scale brain activity. *Nat Neurosci*. 2017
1331 Mar;20(3):340–52.
- 1332 73. Tremblay R, Lee S, Rudy B. GABAergic Interneurons in the Neocortex: From
1333 Cellular Properties to Circuits. *Neuron*. 2016 Jul;91(2):260–92.
- 1334 74. Deco G, Kringelbach ML, Arnatkeviciute A, Oldham S, Sabaroedin K, Rogasch
1335 NC, et al. Dynamical consequences of regional heterogeneity in the brain's
1336 transcriptional landscape. *Sci Adv*. 2021 Jul 1;7(29):eabf4752.
- 1337 75. Buzsáki G. Rhythms of the brain. New York, NY, US: Oxford University Press;
1338 2006. xv, 448 p. (Rhythms of the brain).
- 1339 76. Buzsáki G, Wang XJ. Mechanisms of Gamma Oscillations. *Annu Rev Neurosci*.
1340 2012;35:203–25.
- 1341 77. Friston KJ, Mechelli A, Turner R, Price CJ. Nonlinear Responses in fMRI: The
1342 Balloon Model, Volterra Kernels, and Other Hemodynamics. *NeuroImage*. 2000
1343 Oct;12(4):466–77.
- 1344 78. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. *NeuroImage*. 2003
1345 Aug 1;19(4):1273–302.
- 1346 79. Alstott J, Breakspear M, Hagmann P, Cammoun L, Sporns O. Modeling the
1347 Impact of Lesions in the Human Brain. Friston KJ, editor. *PLoS Comput Biol*.
1348 2009 Jun 12;5(6):e1000408.
- 1349 80. Kuramoto Y. Self-entrainment of a population of coupled non-linear oscillators.
1350 In: Araki H, editor. *International Symposium on Mathematical Problems in*
1351 *Theoretical Physics*. Berlin, Heidelberg: Springer; 1975. p. 420–2. (Lecture Notes
1352 in Physics).
- 1353 81. Shanahan M. Metastable chimera states in community-structured oscillator
1354 networks. *Chaos Interdiscip J Nonlinear Sci*. 2010 Mar;20(1):013108.
- 1355 82. Shew WL, Plenz D. The functional benefits of criticality in the cortex. *Neurosci
1356 Rev J Bringing Neurobiol Neurol Psychiatry*. 2013 Feb;19(1):88–100.
- 1357 83. Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. Criticality in Large-Scale
1358 Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis. *Front Physiol
1359 [Internet]*. 2012 [cited 2021 Jul 27];0. Available from:
1360 <https://www.frontiersin.org/articles/10.3389/fphys.2012.00015/full>

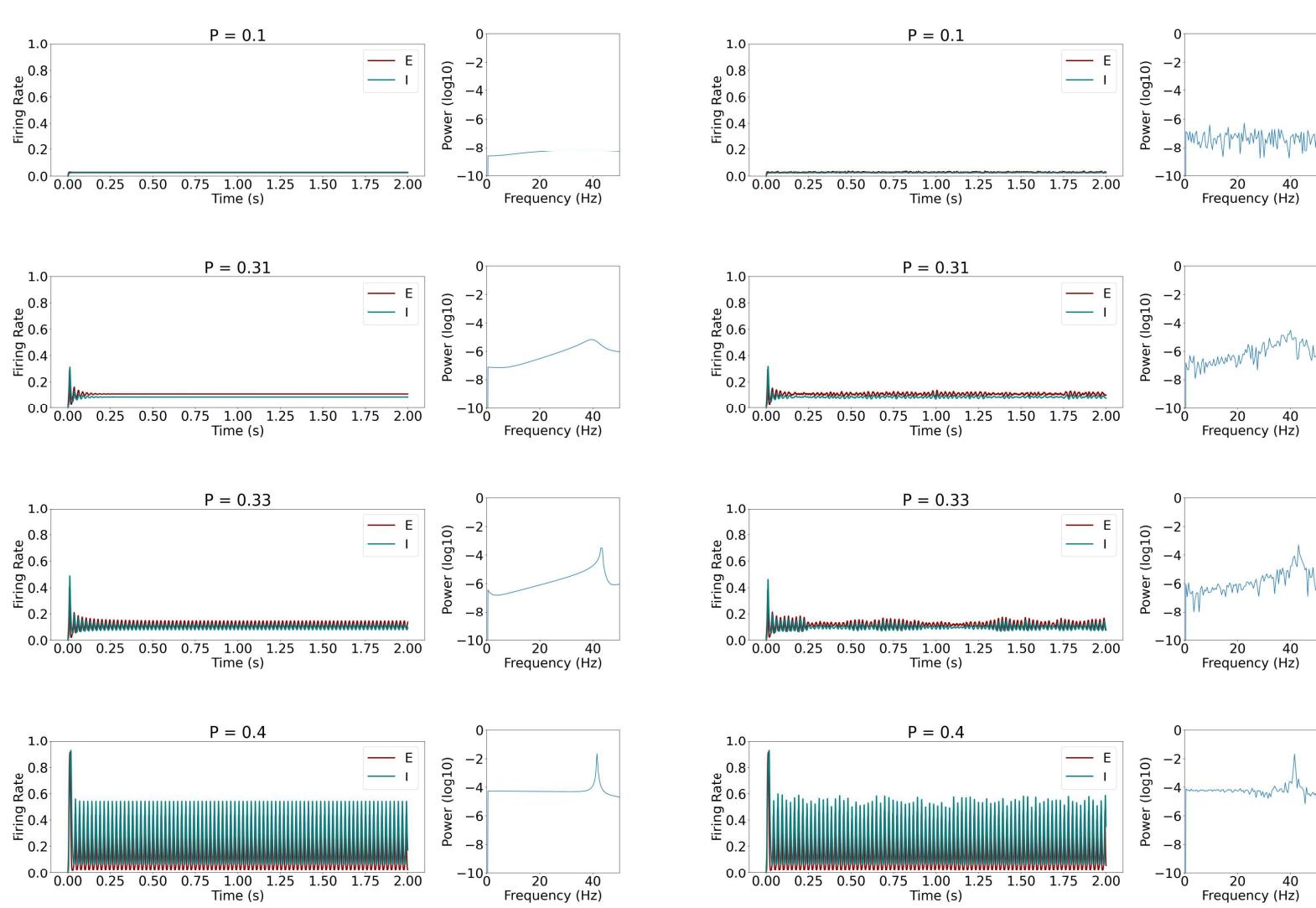
- 1361 84. Avramiea AE, Masood A, Mansvelder HD, Linkenkaer-Hansen K. Long-Range
1362 Amplitude Coupling Is Optimized for Brain Networks That Function at Criticality.
1363 *J Neurosci.* 2022 Mar 16;42(11):2221–33.
- 1364 85. Gautam SH, Hoang TT, McClanahan K, Grady SK, Shew WL. Maximizing
1365 Sensory Dynamic Range by Tuning the Cortical State to Criticality. *PLOS Comput*
1366 *Biol.* 2015 dic;11(12):e1004576.
- 1367 86. Thomas Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead
1368 M, et al. The organization of the human cerebral cortex estimated by intrinsic
1369 functional connectivity. *J Neurophysiol.* 2011 Sep 1;106(3):1125–65.
- 1370 87. Telesford QK, Joyce KE, Hayasaka S, Burdette JH, Laurienti PJ. The ubiquity of
1371 small-world networks. *Brain Connect.* 2011;1(5):367–75.
- 1372 88. Hagberg AA, Schult DA, Swart PJ. Exploring Network Structure, Dynamics, and
1373 Function using NetworkX. 2008;5.
- 1374 89. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia AS, McNamara JO, et
1375 al. Increased Conduction Velocity as a Result of Myelination. *Neurosci* 2nd Ed
1376 [Internet]. 2001 [cited 2022 Jun 28]; Available from:
1377 <https://www.ncbi.nlm.nih.gov/books/NBK10921/>
- 1378 90. Deco G, Jirsa VK, McIntosh AR. Emerging concepts for the dynamical
1379 organization of resting-state activity in the brain. *Nat Rev Neurosci.* 2011
1380 Jan;12(1):43–56.
- 1381 91. Deco G, Kringelbach ML, Jirsa VK, Ritter P. The dynamics of resting fluctuations
1382 in the brain: metastability and its dynamical cortical core. *Sci Rep.* 2017 Jun
1383 8;7(1):3095.
- 1384 92. Hillary FG, Grafman JH. Injured Brains and Adaptive Networks: The Benefits and
1385 Costs of Hyperconnectivity. *Trends Cogn Sci.* 2017 May;21(5):385–401.
- 1386 93. Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai
1387 Z, et al. A Predictive Network Model of Cerebral Cortical Connectivity Based on a
1388 Distance Rule. *Neuron.* 2013 Oct 2;80(1):184–97.
- 1389 94. Moshé SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. *The Lancet.*
1390 2015 Mar 7;385(9971):884–98.
- 1391 95. Thijs RD, Surges R, O'Brien TJ, Sander JW. Epilepsy in adults. *The Lancet.* 2019
1392 Feb 16;393(10172):689–701.
- 1393 96. Ratté S, Prescott SA. Afferent hyperexcitability in neuropathic pain and the
1394 inconvenient truth about its degeneracy. *Curr Opin Neurobiol.* 2016 Feb 1;36:31–
1395 7.
- 1396 97. Tanaka T, Ihara M. Post-stroke epilepsy. *Neurochem Int.* 2017 Jul 1;107:219–28.
- 1397 98. Myint PK, Staufenberg EFA, Sabanathan K. Post-stroke seizure and post-stroke
1398 epilepsy. *Postgrad Med J.* 2006 Sep;82(971):568–72.

- 1399 99. Téllez-Zenteno JF, Hernández-Ronquillo L. A Review of the Epidemiology of
1400 Temporal Lobe Epilepsy. *Epilepsy Res Treat*. 2012 Dec 29;2012:1–5.
- 1401 100. Andersen G, Vestergaard K, Ingemann-Nielsen M, Lauritzen L. Risk factors for
1402 post-stroke depression. *Acta Psychiatr Scand*. 1995 Sep;92(3):193–8.
- 1403 101. Nickel A, Thomalla G. Post-Stroke Depression: Impact of Lesion Location and
1404 Methodological Limitations—A Topical Review. *Front Neurol [Internet]*. 2017
1405 [cited 2022 Jun 28];8. Available from:
1406 <https://www.frontiersin.org/article/10.3389/fneur.2017.00498>
- 1407 102. Concerto C, Lanza G, Cantone M, Pennisi M, Giordano D, Spampinato C, et al.
1408 Different patterns of cortical excitability in major depression and vascular
1409 depression: a transcranial magnetic stimulation study. *BMC Psychiatry*. 2013 Nov
1410 9;13(1):300.
- 1411 103. Cotovio G, Rodrigues da Silva D, Real Lage E, Seybert C, Oliveira-Maia AJ.
1412 Hemispheric asymmetry of motor cortex excitability in mood disorders – Evidence
1413 from a systematic review and meta-analysis. *Clin Neurophysiol*. 2022 May
1414 1;137:25–37.
- 1415 104. Lefaucheur JP, Lucas B, Andraud F, Hogrel JY, Bellivier F, Del Cul A, et al. Inter-
1416 hemispheric asymmetry of motor corticospinal excitability in major depression
1417 studied by transcranial magnetic stimulation. *J Psychiatr Res*. 2008 Apr
1418 1;42(5):389–98.
- 1419 105. Hansson P. Post-stroke pain case study: clinical characteristics, therapeutic options
1420 and long-term follow-up. *Eur J Neurol*. 2004;11(s1):22–30.
- 1421 106. Costigan M, Scholz J, Woolf CJ. *Neuropathic Pain. Annu Rev Neurosci*.
1422 2009;32:1–32.
- 1423 107. Dancause N, Nudo RJ. Shaping plasticity to enhance recovery after injury. *Prog
1424 Brain Res*. 2011;192:273–95.
- 1425 108. Prochnow D, Bermúdez i Badia S, Schmidt J, Duff A, Brunheim S, Kleiser R, et
1426 al. A functional magnetic resonance imaging study of visuomotor processing in a
1427 virtual reality-based paradigm: Rehabilitation Gaming System. *Eur J Neurosci*.
1428 2013 May;37(9):1441–7.
- 1429 109. Ding Q, Zhang S, Chen S, Chen J, Li X, Chen J, et al. The Effects of Intermittent
1430 Theta Burst Stimulation on Functional Brain Network Following Stroke: An
1431 Electroencephalography Study. *Front Neurosci*. 2021;15:1432.
- 1432 110. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta Burst
1433 Stimulation of the Human Motor Cortex. *Neuron*. 2005 Jan 20;45(2):201–6.
- 1434 111. Higgins C, Liu Y, Vidaurre D, Kurth-Nelson Z, Dolan R, Behrens T, et al. Replay
1435 bursts in humans coincide with activation of the default mode and parietal alpha
1436 networks. *Neuron*. 2021 Mar 3;109(5):882-893.e7.

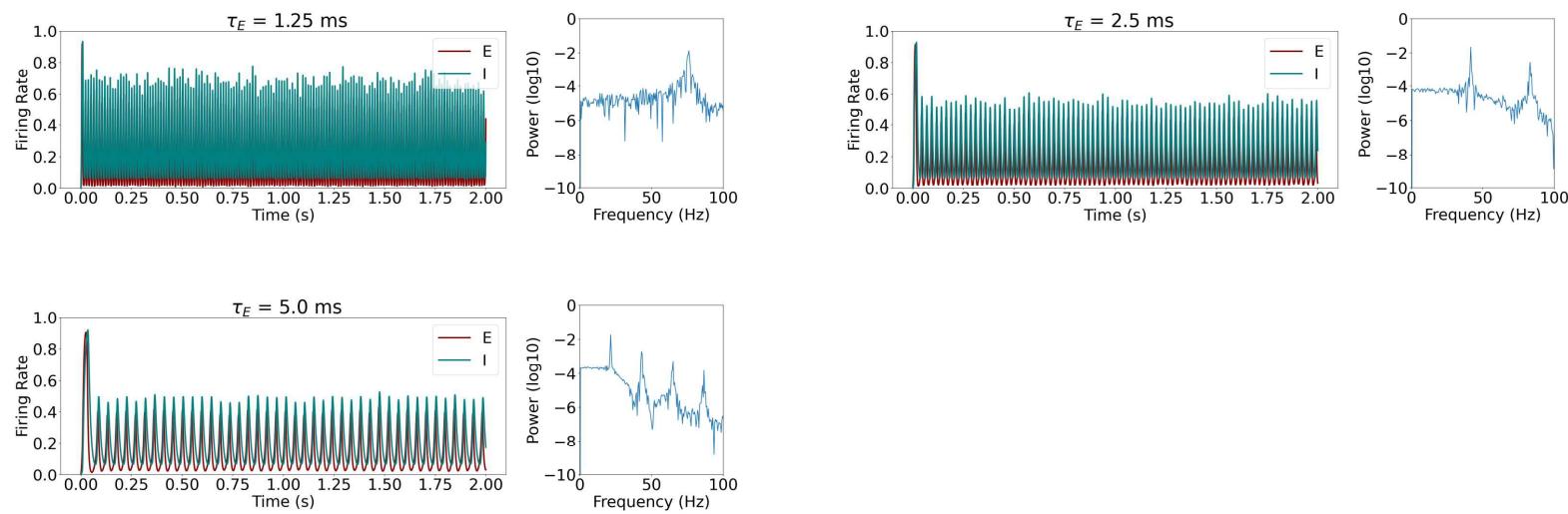
- 1437 112. Vidaurre D, Smith SM, Woolrich MW. Brain network dynamics are hierarchically
1438 organized in time. *Proc Natl Acad Sci*. 2017 Nov 28;114(48):12827–32.
- 1439 113. Cabral J, Vidaurre D, Marques P, Magalhães R, Silva Moreira P, Miguel Soares J,
1440 et al. Cognitive performance in healthy older adults relates to spontaneous
1441 switching between states of functional connectivity during rest. *Sci Rep*. 2017 Jul
1442 11;7(1):5135.
- 1443 114. Maffei A, Nelson SB, Turrigiano GG. Selective reconfiguration of layer 4 visual
1444 cortical circuitry by visual deprivation. *Nat Neurosci*. 2004 Dec;7(12):1353–9.
- 1445 115. Kavalali ET, Monteggia LM. Targeting Homeostatic Synaptic Plasticity for
1446 Treatment of Mood Disorders. *Neuron*. 2020 Jun 3;106(5):715–26.
- 1447 116. Smith-Dijak AI, Nassrallah WB, Zhang LYJ, Geva M, Hayden MR, Raymond LA.
1448 Impairment and Restoration of Homeostatic Plasticity in Cultured Cortical
1449 Neurons From a Mouse Model of Huntington Disease. *Front Cell Neurosci*.
1450 2019;13:209.
- 1451 117. Bruining H, Hardstone R, Juarez-Martinez EL, Sprengers J, Avramiea AE,
1452 Simpraga S, et al. Measurement of excitation-inhibition ratio in autism spectrum
1453 disorder using critical brain dynamics. *Sci Rep*. 2020 Jun 8;10(1):9195.
- 1454 118. Jaenisch N, Liebmann L, Guenther M, Hübner CA, Frahm C, Witte OW. Reduced
1455 tonic inhibition after stroke promotes motor performance and epileptic seizures.
1456 *Sci Rep*. 2016 May 18;6:26173.
- 1457 119. Nicolo JP, O'Brien TJ, Kwan P. Role of cerebral glutamate in post-stroke
1458 epileptogenesis. *NeuroImage Clin*. 2019;24:102069.
- 1459 120. Griffis JC, Metcalf NV, Corbetta M, Shulman GL. Structural Disconnections
1460 Explain Brain Network Dysfunction after Stroke. *Cell Rep*. 2019 Sep;28(10):2527–
1461 2540.e9.
- 1462 121. Idesis S, Faskowitz J, Betzel RF, Corbetta M, Sporns O, Deco G. Edge-centric
1463 analysis of stroke patients: An alternative approach for biomarkers of lesion
1464 recovery. *NeuroImage Clin*. 2022 Jan 1;35:103055.
- 1465 122. Warren DE, Power JD, Bruss J, Denburg NL, Waldron EJ, Sun H, et al. Network
1466 measures predict neuropsychological outcome after brain injury. *Proc Natl Acad
1467 Sci U S A*. 2014 Sep 30;111(39):14247–52.
- 1468 123. van Wijngaarden JBG, Zucca R, Finnigan S, Verschure PFMJ. The Impact of
1469 Cortical Lesions on Thalamo-Cortical Network Dynamics after Acute Ischaemic
1470 Stroke: A Combined Experimental and Theoretical Study. Jbabdi S, editor. *PLOS
1471 Comput Biol*. 2016 Aug 10;12(8):e1005048.
- 1472 124. Philips GR, Daly JJ, Príncipe JC. Topographical measures of functional
1473 connectivity as biomarkers for post-stroke motor recovery. *J NeuroEngineering
1474 Rehabil*. 2017 Jul 6;14(1):67.

- 1475 125. Meier JM, Perdikis D, Blickensdörfer A, Stefanovski L, Liu Q, Maith O, et al.
1476 Virtual deep brain stimulation: Multiscale co-simulation of a spiking basal ganglia
1477 model and a whole-brain mean-field model with The Virtual Brain. *Exp Neurol.*
1478 2022 Aug 1;354:114111.
- 1479 126. Corbetta M, Siegel JS, Shulman GL. On the low dimensionality of behavioral
1480 deficits and alterations of brain network connectivity after focal injury. *Cortex J*
1481 *Devoted Study Nerv Syst Behav.* 2018 Oct;107:229–37.
- 1482 127. Deco G, Ponce-Alvarez A, Mantini D, Romani GL, Hagmann P, Corbetta M.
1483 Resting-State Functional Connectivity Emerges from Structurally and
1484 Dynamically Shaped Slow Linear Fluctuations. *J Neurosci.* 2013 Jul
1485 3;33(27):11239–52.
- 1486 128. Shen K, Mišić B, Cipollini BN, Bezgin G, Buschkuhl M, Hutchison RM, et al.
1487 Stable long-range interhemispheric coordination is supported by direct anatomical
1488 projections. *Proc Natl Acad Sci.* 2015 May 19;112(20):6473–8.
- 1489 129. Mollink J, Smith SM, Elliott LT, Kleinnijenhuis M, Hiemstra M, Alfaro-Almagro
1490 F, et al. The spatial correspondence and genetic influence of interhemispheric
1491 connectivity with white matter microstructure. *Nat Neurosci.* 2019
1492 May;22(5):809–19.
- 1493 130. Finger H, Bönstrup M, Cheng B, Messé A, Hilgetag C, Thomalla G, et al.
1494 Modeling of Large-Scale Functional Brain Networks Based on Structural
1495 Connectivity from DTI: Comparison with EEG Derived Phase Coupling Networks
1496 and Evaluation of Alternative Methods along the Modeling Path. *PLoS Comput*
1497 *Biol.* 2016 Aug 9;12(8):e1005025.
- 1498

A)



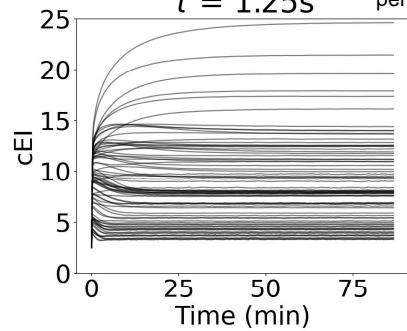
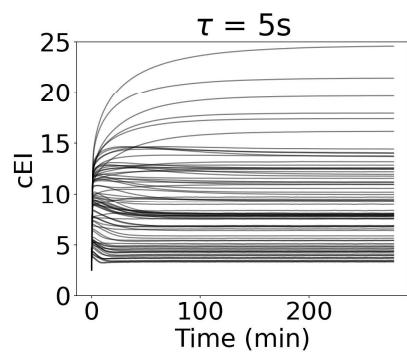
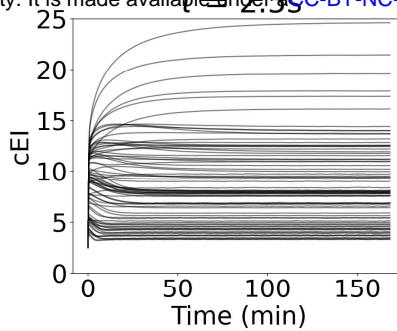
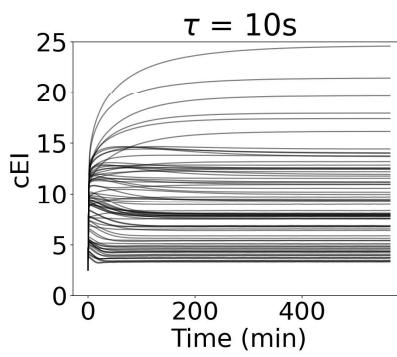
B)



S1 – Behavior of uncoupled Wilson-Cowan node under different parameter combinations.

- A) Impact of changing the parameter P , which controls the intrinsic excitability of the Wilson-Cowan node, on node activity and power spectrum. On the left side, we show results for models without noise and, on the right side, we show results of nodes with gaussian noise with 0.01 standard deviation. Note that, in our model, uncoupled nodes go from a state of low activity to a limit cycle (oscillations), by increasing P , showing the behavior of a Hopf-bifurcation. For the chosen population time constants ($\tau_E = 2.5$ ms, $\tau_I = 5.0$ ms), the Wilson-Cowan model displays oscillations at 40 Hz.
- B) Impact of changing population time constants on the oscillatory dynamics of uncoupled noisy Wilson-Cowan nodes (Gaussian noise, 0.01 standard deviation). For all shown plots, ($\tau_I = 2\tau_E$). It can be observed that the intrinsic frequency of oscillation of the Wilson-Cowan nodes is changed by varying the time constants of the excitatory and inhibitory populations.

A)



B)

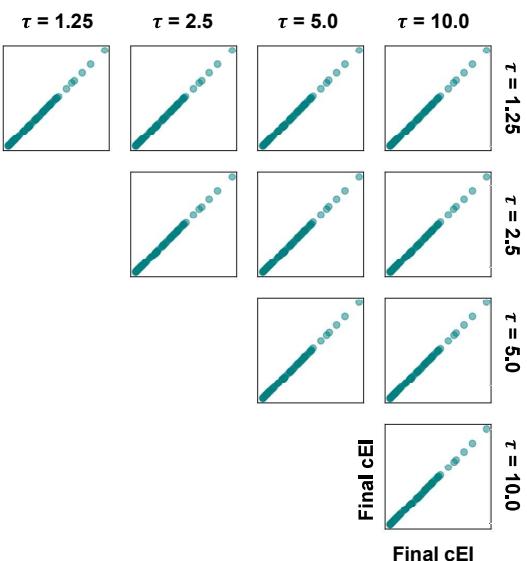


Figure S2 – Change in local inhibitory weights caused by homeostatic plasticity for different time constants of homeostatic plasticity.

A) Variation in time in local inhibitory weights for all 78 nodes in the model, under different time constants of homeostatic plasticity, for the following combination of free parameters: $C = 4.07$, $\rho = 0.2$, $md = 4\text{ms}$. Note that while c_{EI} values take longer to reach a steady state for slower time constants, the final steady-state values are virtually the same.

B) Scatter plots of steady-state c_{EI} values for each homeostatic time constant against each other. Note that values are virtually the same, showing that, as long as the homeostatic time constant is sufficiently slow to be decoupled from local node dynamics, it can be arbitrarily fast without affecting the steady state of the system.

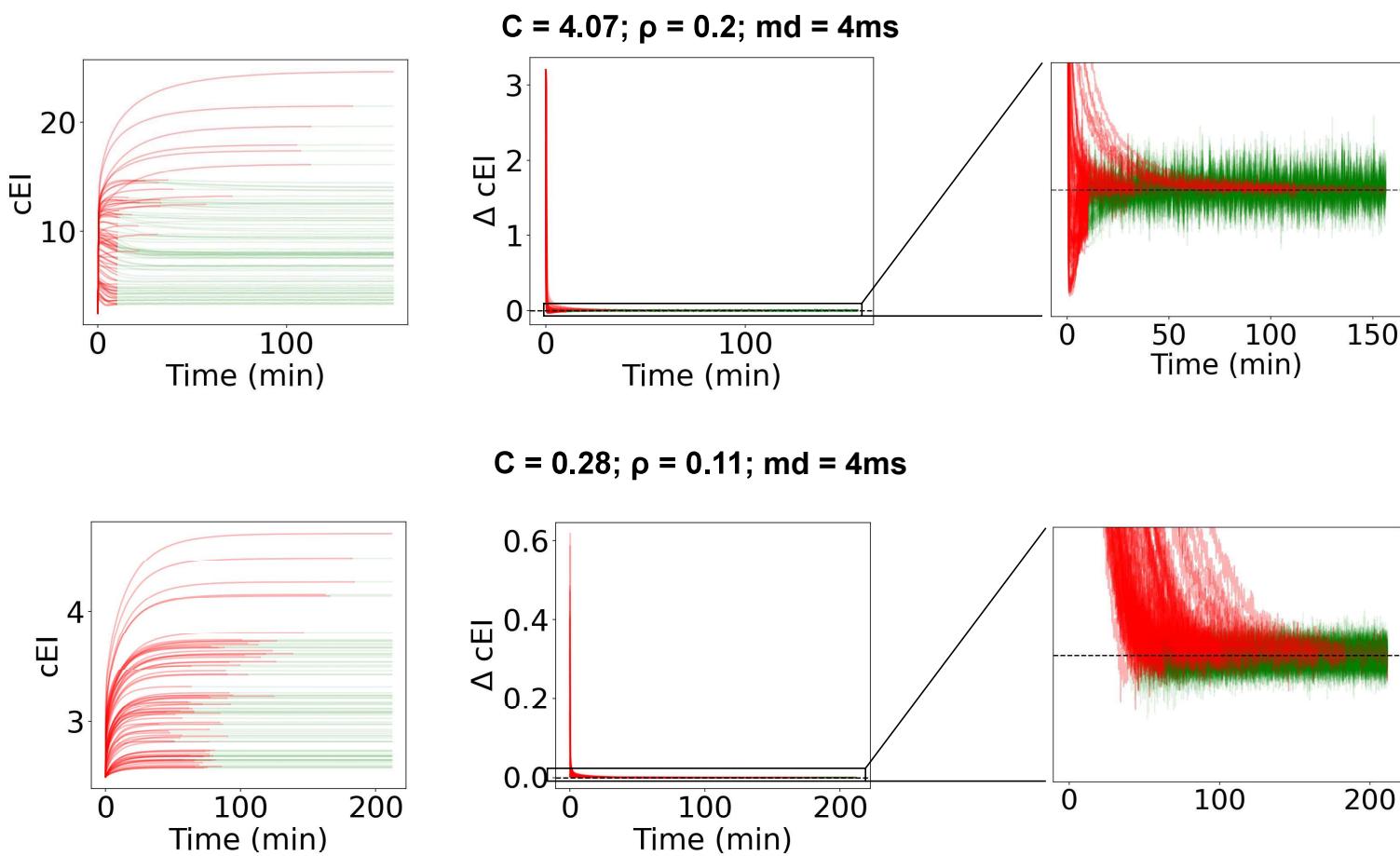
$$c_{EI,vec}(t) = [c_{EI}(t - T_{window}), c_{EI}(t - T_{window} + 10s), \dots, c_{EI}(t - 10s), c_{EI}(t)], \quad T_{window} = 600s$$

Then, the following test condition is applied, using $dc_{EI,vec}$, the difference between consecutive elements in $c_{EI,vec}$

$$|mean(dc_{EI,vec})| < \frac{std(dc_{EI,vec})}{\sqrt{N}}$$

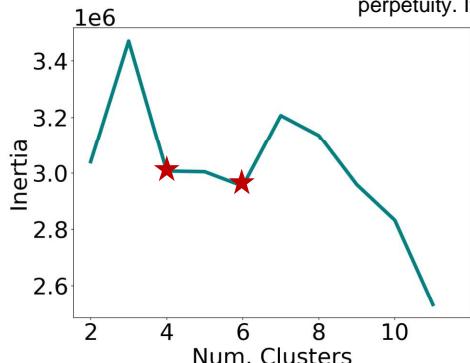
When this condition is satisfied in a specific node for the first time during a simulation, we consider that node to have reached a steady state in terms of c_{EI} weight. Shortly, if the absolute mean change of c_{EI} for that specific node in the last 10 minutes is smaller than the standard error of the mean in the same period, the value is considered stable. Since the rate of variation of c_{EI} decreases until the local firing rate is brought close to the target firing rate, $|mean(dc_{EI,vec})|$ will decrease until it approaches 0. However, one must account for the stochasticity of the system, and that is why we compare the mean variation with its respective standard error. Therefore, we effectively detect when the tendency of variation caused by homeostatic plasticity trying to restore EI balance is smaller than changes caused by the inherent stochasticity of the model.

When a steady state has been reached in all nodes or 500 minutes have passed, plasticity is disabled and activity is recorded from the model.

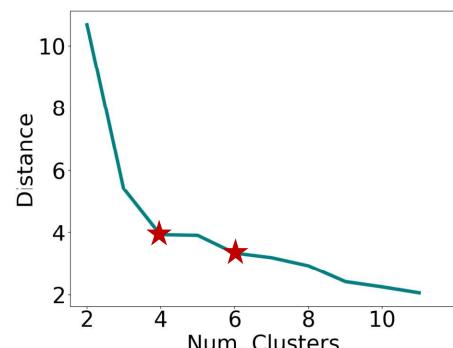


S3 – Description of test condition for detection of steady states in c_{EI} and examples of its application for models with two different combinations of free parameters.

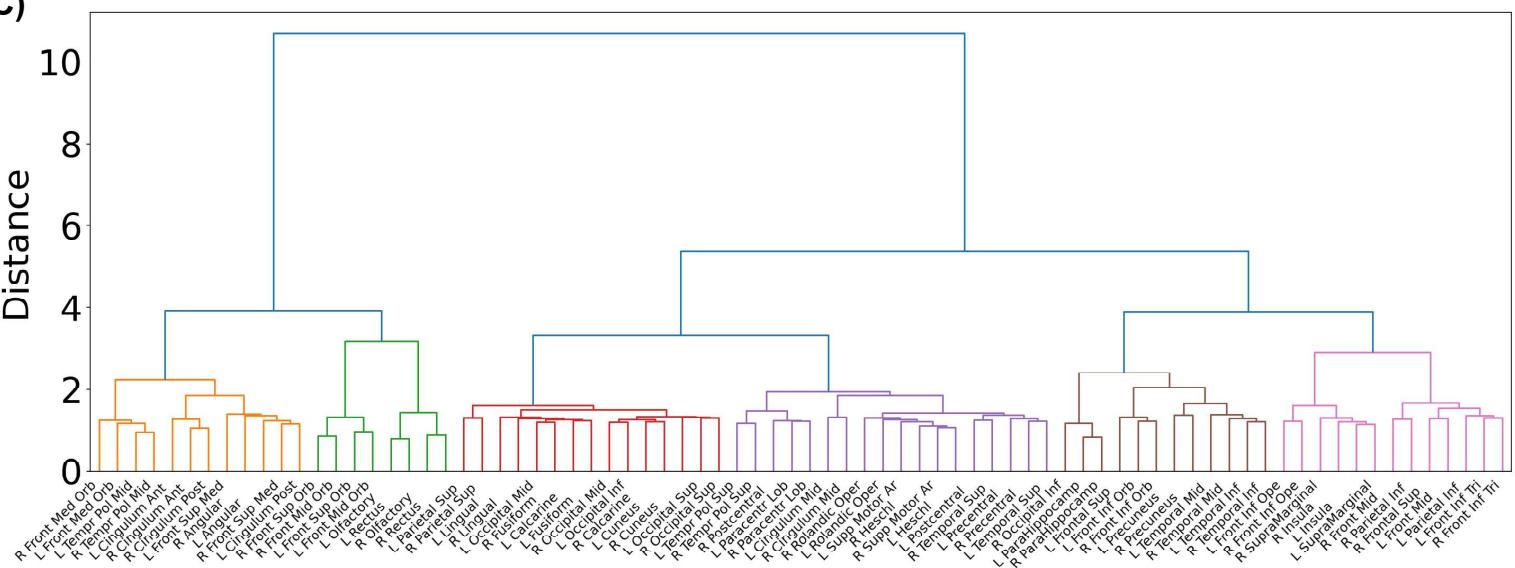
A)



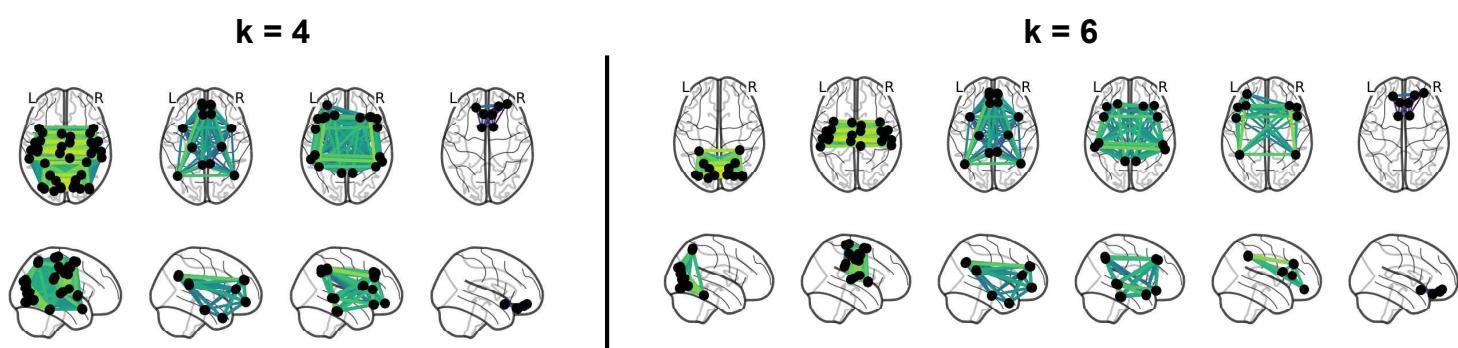
B)



C)



D)



E)

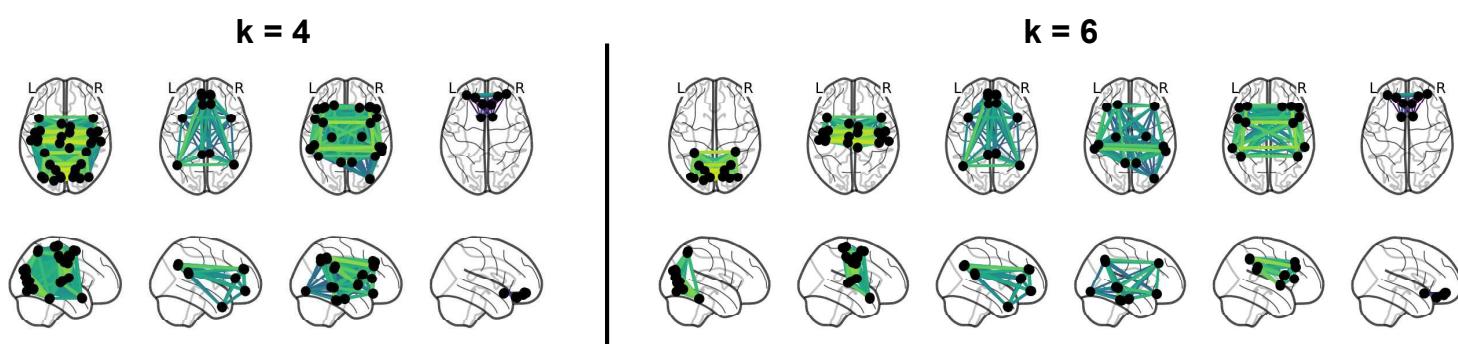
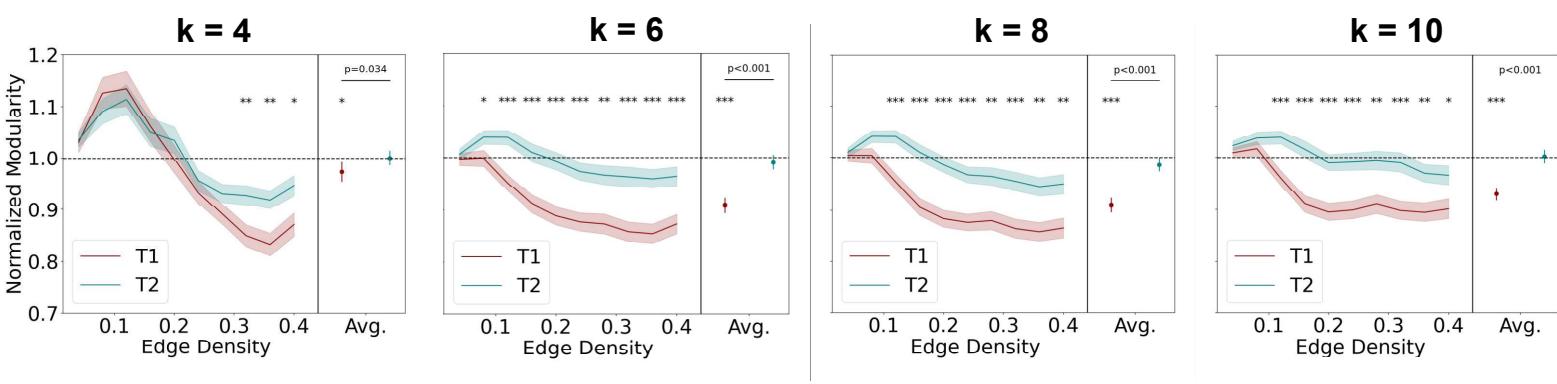


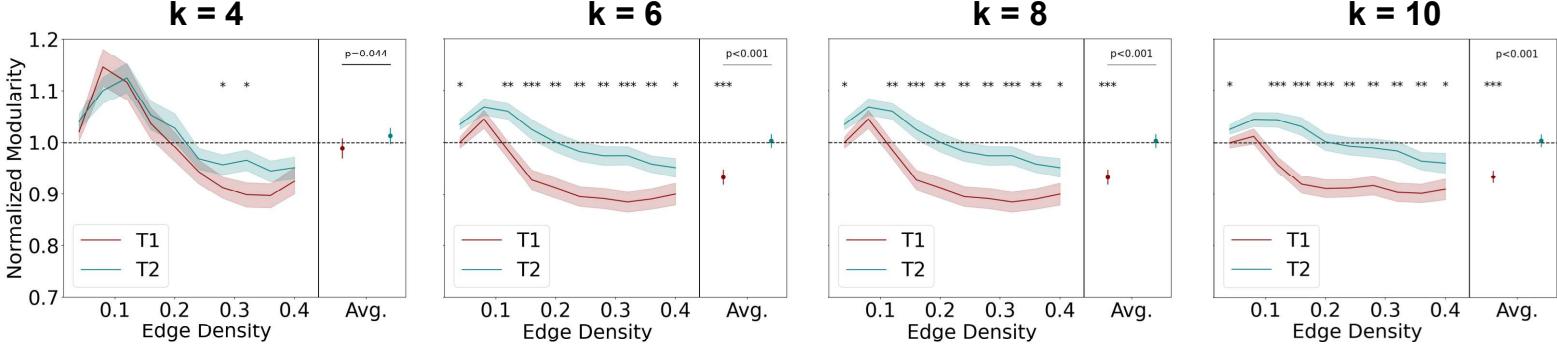
Figure S4 – Results of the application of different clustering algorithms to average functional connectivity from healthy subjects.

- Resulting cluster inertia from applying the k-means algorithm described in the methods to empirical averaged functional connectivity from healthy subjects, with different numbers of clusters. Stars indicate potential 'elbows' in the cluster analysis, i.e. local minima or points with an inflection in inertia relative to the number of clusters. Inertia was calculated using the sci-kit learn module in Python.
- Resulting cluster distance from hierarchical clustering to averaged functional connectivity from healthy subjects, with different numbers of clusters. Stars indicate potential 'elbows' in the cluster analysis, i.e. local minima or points with an inflection in distance relative to the number of clusters. Hierarchical clustering was computed using the sci-kit learn module in Python.
- Dendrogram of averaged functional connectivity from healthy subjects. Colors represent 6 different clusters.
- Functional networks resulting from the application of the k-means clustering algorithm to empirical data with 4 and 6 clusters. Note that the resulting networks for k=6 can be equated to known resting state networks (e.g. visual (first), somatomotor (second) and default mode network (third)).
- Functional networks resulting from the application of hierarchical clustering to empirical data with 4 and 6 clusters. Note that the resulting networks for both k=4 and k=6 are reasonably similar to the ones in D), with known resting-state networks emerging when k=6.

A)



B)



C)



Figure S5 – Post-stroke change in modularity for different clustering algorithms, numbers of clusters and edge density threshold ranges

- A) Normalized modularity at T1 (acute post-lesion) and T2 (chronic post-lesion) for different results of k-means clustering. Each plot represents modularity analysis using as modules the result of k-means with the number of clusters ranging from 4 (left) to 10 (right). In each plot, we present results across a range of density thresholds and the average across density thresholds. Across density thresholds, asterisks represent the level of significance of a Mann-Whitney U-test. For the average across density thresholds, asterisks represent the level of significance of a Wilcoxon ranked sum test against baseline (norm. mod. = 1). * $p<0.05$, ** $p<0.01$, *** $p<0.001$.
- B) Same as A), but for modules derived from hierarchical clustering.
- C) Normalized modularity at T1 (acute post-lesion) and T2 (chronic post-lesion) for edge-density thresholds ranging between 0.02 and 0.2, with 6 modules derived from k-means (Left) or hierarchical clustering (Right). In each plot, we present results across the range of density thresholds and the average across density thresholds. Across density thresholds, asterisks represent the level of significance of a Mann-Whitney U-test. For the average across density thresholds, asterisks represent the level of significance of a Wilcoxon ranked sum test against baseline (norm. mod. = 1). * $p<0.05$, ** $p<0.01$, *** $p<0.001$.

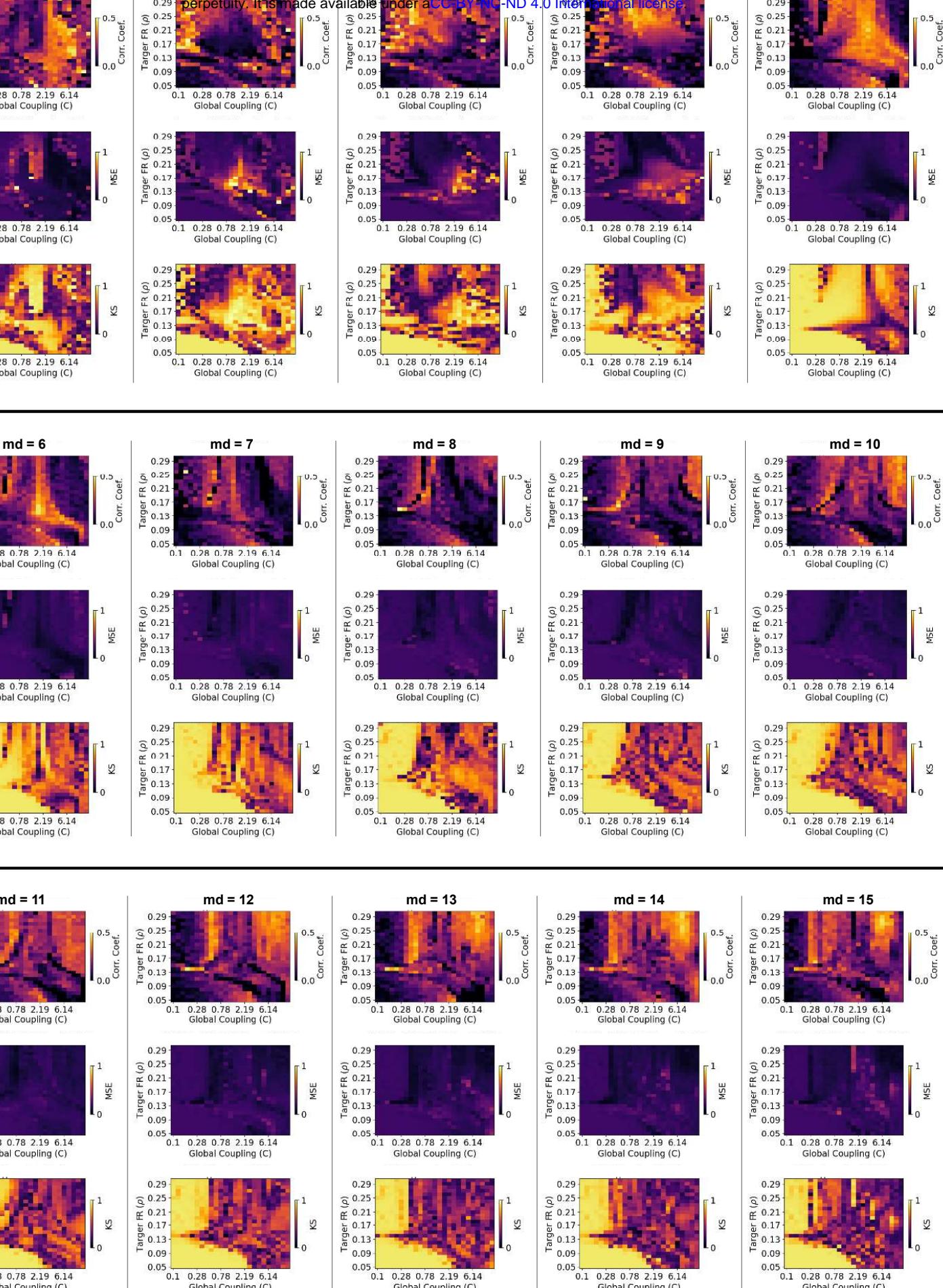
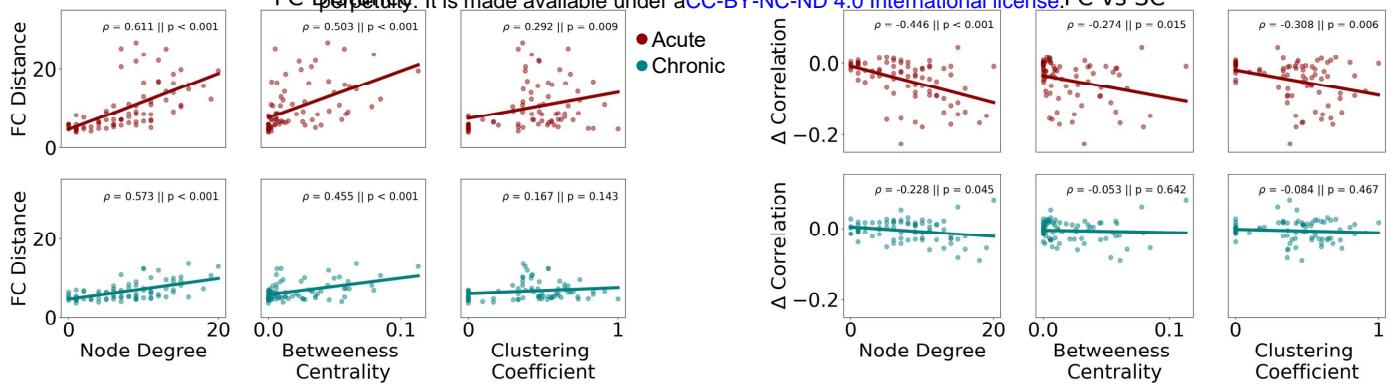


Figure S6 – Results of fitting across the full parameter space

Model fit over full parameter space. Each column of three plots represents the results of a grid search over the parameters of global coupling (C) and target firing rate (FR) (ρ), for a specific mean delay between 0 and 15 ms. In each column, model performance is shown according to the following metrics: (Top) Pearson's correlation between the upper triangle of simulated and empirical FC matrices, (Middle) mean squared error (MSE) between simulated and empirical FC matrices and (Bottom) Kolmogorov-Smirnov (KS) distance between the distribution of values in simulated and empirical FCD matrices.

A)



B)

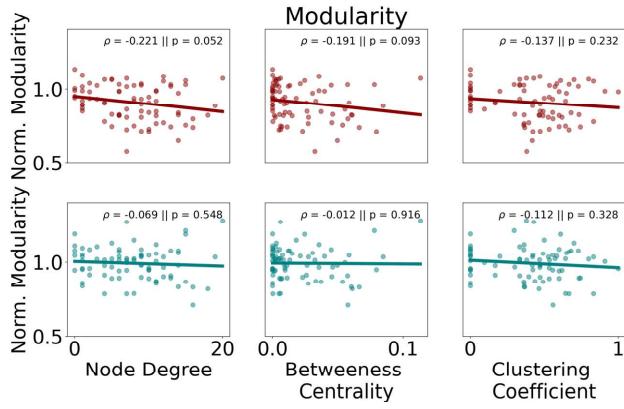


Figure S7 – Correlation between structural graph properties of lesioned nodes and effects on functional connectivity

- A) Distance from baseline FC matrices at T1 (acute post-lesion) and T2 (chronic post-lesion) against node degree, betweenness centrality and clustering coefficient of lesioned nodes. All graph theoretical measures of lesioned nodes used in the plots were calculated using the *networkx* module in Python, after transforming the SC matrix into an undirected unweighted graph by thresholding the 10% strongest structural connections
- B) Same as A), for the difference in correlation between structural and functional connectivity at T1 and T2, compared to baseline.
- C) Same as A), for normalized modularity at T1 (acute post-lesion) and T2 (chronic post-lesion). Normalization was calculated using the value at T0 as the baseline.

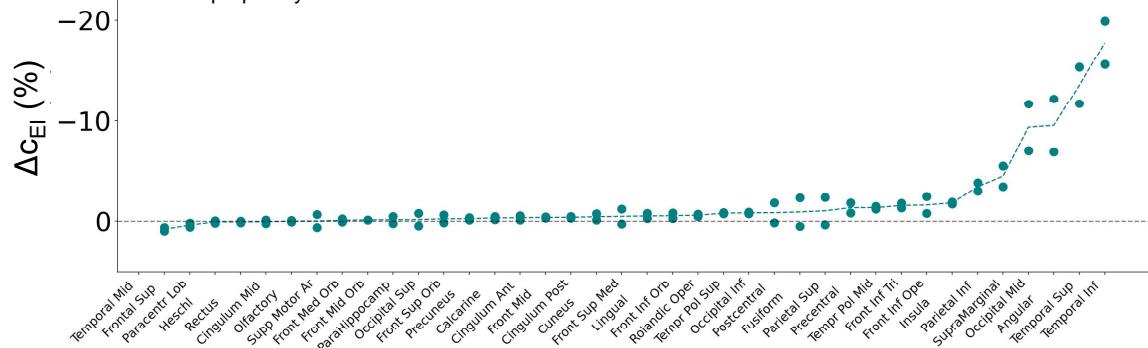


Figure S8 – Changes in excitability of middle temporal cortex across lesions

Variation, between T0 and T2, in c_{EI} weight of the middle temporal cortex after lesion in the same hemisphere. Points represent results for left and right lesions in the respective areas and the dashed line represents the average between these two values. Areas are ordered according to the average effect on middle temporal cortex excitability.

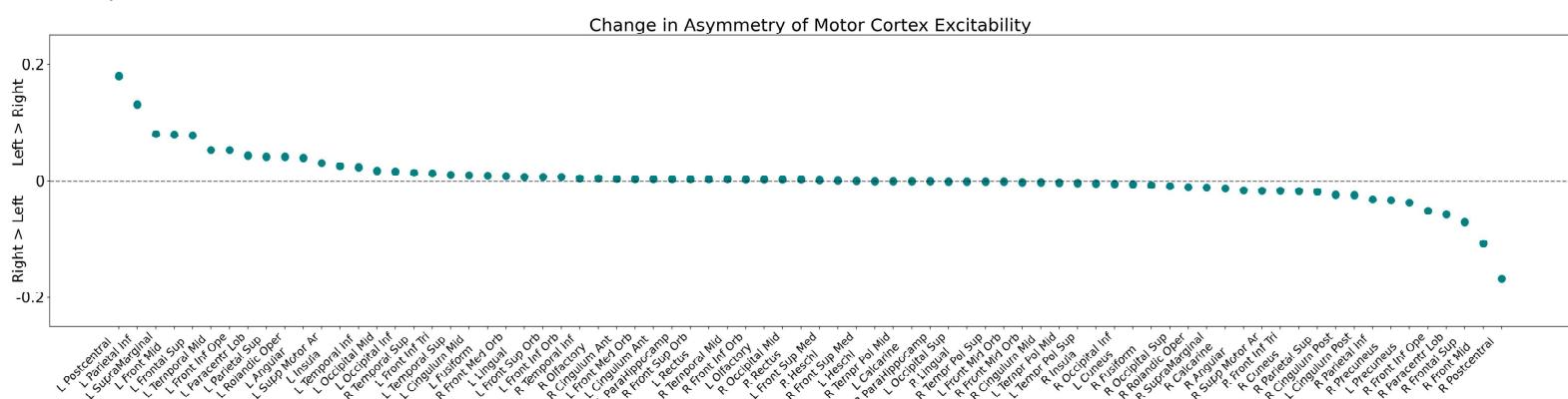


Figure S9 – Change in asymmetry of motor cortex excitability across lesions

Variation, between T0 and T2, in motor cortex (precentral gyrus) excitability asymmetry across all lesions. Positive values indicate that the left motor cortex experienced a stronger increase in excitability when compared to its right counterpart, while negative values indicate the opposite variation. Areas are ordered according to lesion effects in this asymmetry.

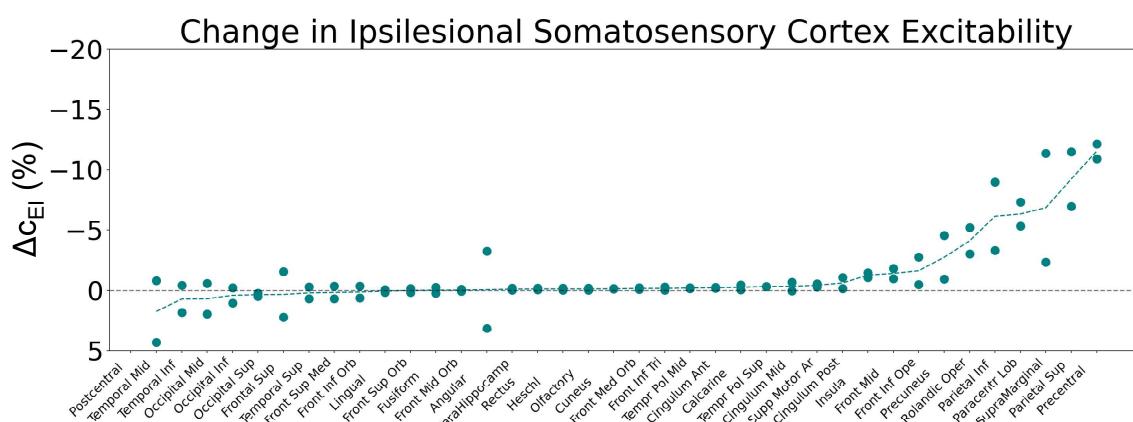


Figure S10 – Change in excitability of somatosensory cortex across lesions

Variation, between T0 and T2, in c_{EI} weight of the somatosensory cortex (postcentral gyrus) after lesion in the same hemisphere. Points represent results for left and right lesions in the respective areas and the dashed line represents the average between these two values. Areas are ordered according to the average effect on somatosensory cortex excitability.

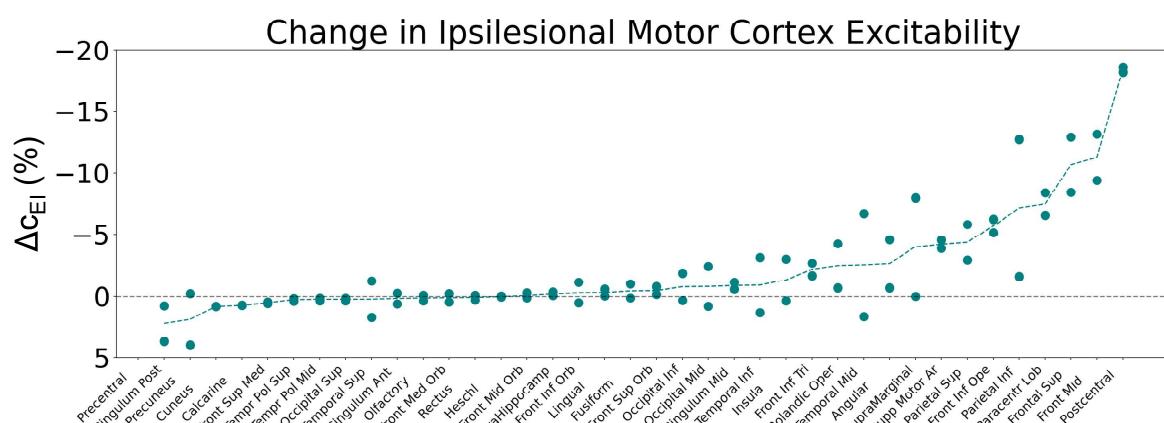


Figure S11 – Changes in excitability of ipsilesional motor cortex across lesions.

Variation, between T0 and T2, in c_{EI} weight of the motor cortex (precentral gyrus) after lesion in the same hemisphere. Points represent results for left and right lesions in the respective areas and the dashed line represents the average between these two values. Areas are ordered according to the average effect on motor cortex excitability.