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Abstract

Stroke-related disruptions in functional connectivity (FC) often spread beyond lesioned
areas and, given the localized nature of lesions, it is unclear how the recovery of FC is
orchestrated on a global scale. Since recovery is accompanied by long-term changes in
excitability, we propose excitatory-inhibitory (E-I) homeostasis as a driving mechanism.
We present a large-scale model of the neocortex, with synaptic scaling of local inhibition,
showing how E-I homeostasis can drive the post-lesion restoration of FC and linking it to
changes in excitability. We show that functional networks could reorganize to recover
disrupted modularity and small-worldness, but not network dynamics, suggesting the
need to consider forms of plasticity beyond synaptic scaling of inhibition. On average,
we observed widespread increases in excitability, with the emergence of complex lesion-
dependent patterns related to biomarkers of relevant side effects of stroke, such as
epilepsy, depression and chronic pain. In summary, our results show that the effects of
E-lI homeostasis extend beyond local E-I balance, driving the restoration of global
properties of FC, and relating to post-stroke symptomatology. Therefore, we suggest the
framework of E-1 homeostasis as a relevant theoretical foundation for the study of stroke
recovery and for understanding the emergence of meaningful features of FC from local

dynamics.
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1. Introduction

Stroke, characterized by neural tissue necrosis (i.e. lesion) due to oxygen loss after
occlusion or hemorrhage of a vessel supplying blood to the brain, is one of the leading
causes of disability, with a significant negative impact on patient life quality (1) due to its
debilitating symptoms, ranging from motor deficits to impaired higher-order functions
such as attention and memory (1,2). Besides these symptoms, stroke patients tend to
develop long-term side effects such as seizures (in some cases evolving into epilepsy)
(3-5), chronic pain (6,7), depression (8—10) and chronic fatigue (11). This heterogeneity
in symptoms and side effects raises the need to better understand the mechanisms
through which these symptoms emerge, to better predict their occurrence and to inform
therapeutical approaches. This task is made difficult not only by the heterogeneity in
lesions, but also since their consequences on neural activity and connectivity often
spread beyond lesioned areas (Carrera and Tononi, 2014; Pascoa dos Santos and
Verschure, 2022). This phenomenon, first described by Konstantin von Monakow in 1914
(12), is known as diaschisis. Although its initial conception pertained to acute changes in
the excitability of regions distant from the lesion, today the concept has been expanded
to include global changes in connectivity (13). This might include a range of deficits in
functional connectivity (FC), from disconnection between particular areas (14-17) to
structural-functional decorrelation (18). However, it is considered that the most robust
disruptions, found to correlate with function, are decreased homotopic interhemispheric
functional connectivity and increased functional connectivity between regions that were
not previously connected (Corbetta et al., 2018), manifesting through a loss of modularity
(19). Modularity, a property of networks that have strong connectivity within node
communities, with sparser connections between them, has been observed in human
functional and structural networks and is considered to reflect an appropriate balance
between segregation and integration of networks, underlying functional specialization
(20,21). Importantly, modularity is significantly disrupted following a stroke and is
recovered in the following months, with the magnitude of recovery correlating with
improvement in higher-order functions such as attention and working memory (19).
Similarly, small-worldness, a property of networks where most nodes are not neighbors,
but can be reached through a short path through highly connected nodes (hubs) (22), is
lost after a stroke and subsequently recovered (19). Besides affecting structural and
functional connectivity, stroke lesions may have comparable effects on cortical network

dynamics. While empirical studies are lacking, modeling studies suggest significant post-
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65 lesion effects on dynamical features such as metastability, quantifying the ability of a
66  network to flexibly switch between synchronous and asynchronous states (23) or
67  criticality, a property of brain networks underlying balanced propagation of activity (24).
68  Therefore, the post-stroke loss, and subsequent recovery, of global properties of FC (and
69  possibly network dynamics), raise the question of how the human cortex coordinates the

70  restoration of properties on a large scale.

71  Several studies have reported persistent increases in excitability in the period following
72  stroke, both in rodent models of the disease (25-27) and in human patients (28-30).
73  Such increases have been related to several factors, from increased glutamatergic
74  receptor density (31), prolonged excitatory postsynaptic potentials (25) or, more
75 importantly, decreased GABAergic signaling (27,32—34). Indeed, studies in stroke
76  patients indicate that not only is there a longitudinal decrease in the availability of
77  GABAergic neurotransmitters in the cortex (29), but that its magnitude correlates with
78  behavioral recovery (30). Therefore, as previously suggested (35-37), it is likely that
79 these changes play a significant role in stroke recovery and might result from
80 mechanisms intended to maintain excitatory-inhibitory (E-1) balance in cortical networks,
81 following a significant loss in excitation caused by gray-matter loss or disruption of white-
82  matter tracts.

83 Indeed, research supports E-I balance as a pivotal feature of cortical networks (38—-41),
84  which maintain a close-knit balance between the levels of excitation and inhibition
85 arriving at individual pyramidal neurons (42-44). In addition, criticality, an emergent
86  signature of E-lI balance, has been consistently observed in neural dynamics (45-48)
87 and is relevant for the optimization of functions ranging from high dynamic ranges to
88 information capacity and transmission (49-51). Given its relevance to neural function,
89  cortical neurons have mechanisms of homeostasis that maintain E-I balance (52), from
90  synaptic scaling of excitatory synapses to regulation of intrinsic excitability (53-57). Of
91 particular interest is the scaling of incoming inhibitory synapses by pyramidal neurons,
92  which has been shown to occur after perturbations such as sensory deprivation (56) and
93  to be a strong factor underlying sensory co-tuning, memory stability (40) or criticality in
94  cortical networks (58). Importantly, these processes work on long timescales of hours to
95 days in mice (52) or up to several weeks in monkeys, depending on the type of disruption
96 (59). Therefore, it is likely that such homeostatic mechanisms might participate in stroke
97  recovery (35-37) and underlie the long-term changes in excitability observed in patients
98  (29,30). In addition, it could be possible, as previously suggested (60), that homeostatic
99 plasticity mechanisms are not only responsible for restoring local E-I balance but also

100 contribute to recalibrating global properties of FC. Therefore, E-I homeostasis could
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101  potentially explain the long-term local changes in excitability and the recovery of global
102  dynamics and FC properties simultaneously.

103  On this subject, not only have previous modeling studies shown the importance of E-I
104 homeostasis to accurately reproduce cortical dynamics (61) and functional connectivity
105 (62-64), but also that it might be involved in stroke recovery. The study of Vattikonda
106 and colleagues (60) showed that the restoration of E-I balance, through inhibitory
107  synaptic scaling, further helped with the recovery of FC in a lesion-dependent manner.
108 In addition, models fitted to FC from stroke patients showed reduced local inhibition
109 compared to healthy controls (65). Such approaches, however, lack a detailed
110  exploration of what E-I homeostasis entails regarding which changes in excitability are
111  driving this process how they are distributed across the brain. This understanding is
112 relevant not only to better link the action of E-I homeostasis to current knowledge on
113 post-stroke changes in excitability (27,29,30) but also to elucidate the etiology of stroke
114  symptomatology, such as post-stroke seizures (3), depression (10) and chronic pain (7),
115  which have been tied to changes in excitability. E-I homeostasis could then explain why
116  stroke patients display an increased propensity to develop such symptoms, framing them

117  as side-effects of homeostatic plasticity attempting to restore local E-I balance.

118  Therefore, we hypothesize that E-l homeostasis not only plays an important role in the
119 maintenance of E-I balance at the mesoscale but also in the recovery of macroscale
120  properties of FC (i.e. modularity and small-worldness). In this modeling study, we aim to
121  explore the involvement of E-I homeostasis in recovery from localized lesion in large-
122 scale networks of interacting nodes and the subsequent changes in excitability it entails.
123 To that end, we simulate gray-matter lesions in a network model constrained by the
124  structural connectome of the human cortex, including local E-I homeostasis
125  mechanisms. Our main goal is then to study the long-term changes in excitability
126  observed in lesioned brain networks through the lens of homeostatic plasticity, tying them
127 to the global recovery of FC and suggesting a novel process participating in the
128 emergence of late-onset side effects of stroke previously related to altered cortical

129  excitability, such as epilepsy, depression and chronic pain.
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130 2. Methods

131 2.1. Empirical data

132 2.1.1. Structural Connectivity

133  In order to derive structural connectivity matrices of 78x78 dimensions, we used a
134  probabilistic tractography-based normative connectome from the leadDBS toolbox
135  (https://www.lead-dbs.org/). This normative connectome comes from 32 healthy
136  participants (mean age 31.5 years old £ 8.6, 14 females) generated as part of the Human
137  Connectome Project (HCP - https://www.humanconnectome.org) from diffusion-
138  weighted and T2-weighted Magnetic Resonance Imaging data recorded for 89 minutes
139  on a specially set up MRI scanner with more powerful gradients to the standard models.
140 The HCP data acquisition details can be found in the Image & Data Archive
141  (https:/fida.loni.usc.edu/). For the diffusion imaging, DSI studio (http://dsi-
142  studio.labsolver.org) with a generalized g-sampling imaging algorithm was used.
143 Furthermore, a white-matter mask, derived from the segmentation of the T2-weighted
144  anatomical images was applied to co-register the images to the b0 image of the diffusion
145 data using the SPM 12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/).
146  Then, each participant was sampled with 200 000 most probable tracts. The tracts were
147  transformed to the standard space (MNI space) by applying a nonlinear deformation field,
148  derived from the T2-weighted images via a diffeomorphic registration algorithm (66). The
149 individual tractograms were then aggregated into a joint dataset in MNI standard space
150 resulting in a normative tractogram representative of a healthy young adult population
151 and made available in the leadDBS toolbox (67). Finally, to obtain structural
152 connectomes from the normative connectome in our desired parcellation — the Anatomic
153  Automatic Labeling (AAL) atlas (68) -, we calculated the mean tracts between the voxels

154  belonging to each pair of brain regions.

155 2.1.2. BOLD fMRI Time Series

156  The data from healthy controls used to fit the model were obtained from the public
157  database of the Human Connectome Project (HCP), WU-Minn Consortium (Principal
158 Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16
159  NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research;

160 and by the McDonnell Center for Systems Neuroscience at Washington University. (69).
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161  The specific data used in this project was obtained from 100 unrelated subjects from the
162 HCP database (mean age 29.5 years old, 55% females). Each subject underwent four
163  resting-state fMRI sessions of about 14.5 minutes on a 3-T connectome Skyra scanner
164  (Siemens) with the following parameters: TR =0.72 s, echo time = 33.1 ms, field of view
165 = 208x180mm, flip angle = 52°, multiband factor = 8, echo time = 33.1 with 2x2x2
166  isotropic voxels with 72 slices and alternated LR/RL phase encoding. For further details
167 on the data acquisition and standard processing pipeline, please consult (70) and

168 https://www.humanconnectome.org/study/hcp-young-adult/data-releases. In this work,

169  we used the data from the first session of the first day of scanning.

170  The AAL atlas was further used to parcellate the voxel-based data into 90 anatomically
171  distinct cortical and subcortical regions, excluding the cerebellum. For this work, we then
172 exclude the 12 subcortical regions, given that our modeling approach is focused on
173  cortical dynamics (see section 2.2). Therefore, after averaging BOLD signals associated
174  with each of the 78 cortical regions, data was reduced to size 78 areas X 1200 TR.

175 2.2. Neural Mass Model

176  To model the activity of individual cortical regions we make use of the Wilson-Cowan
177  model of coupled excitatory and inhibitory populations (62,71) (Fig. 1a). As a mean-field
178  approach, the Wilson-Cowan model is based on the assumption that the neural activity
179  of a determined population of neurons can be described by its mean at a given instant
180 in time (72). Shortly, the equations describing the firing-rate dynamics of coupled

181  excitatory (rf) and inhibitory (') populations, adapted from (62), can be written as:

E N
182 = dr(lit(t) = —1{(t) + F |cper{ (t) — cgr(O)r{@®) + Cz Wyrf(t — 1) + &) + P|,
=
I
183 50O - @) + Flewrf® + 0], W

184  where c,, represents the coupling from population y to x, C is a scaling factor for
185  structural connectivity, formally called global coupling, and ¢ is additive N(0,0.01)
186  Gaussian noise. W;; represents the structural connections between nodes in the large-
187  scale network and is constrained by human structural connectivity data (see section
188  2.1.1). 7y, in turn, represents the conduction delay between regions i and j and is
189  determined according to empirical white-matter tract length, by dividing tract lengths by
190 a given conduction speed. Long-range connections are only implemented between

191  excitatory neural masses, given the evidence that long-range white matter projections
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192  are nearly exclusively excitatory (73), and following the state-of-the-art in large-scale
193  modeling (61,62,64,74). F(x) is a sigmoid function representing the F-I curve of a

194  population of neurons, given by:

1
195 F(x) = ——=x (2)

14+e o

196 where u and ¢ can be understood, respectively, as the excitability threshold and

197  sensitivity of the neural mass response to external input.

198 The values of the remaining parameters were adapted from (62) and can be consulted
199 in Table 1.

200  For the given parameters, the local neural mass model behaves as a Hopf-Bifurcation
201  (Fig. S1), switching from a steady state of low activity to oscillations, depending on the
202  level of external input. The frequency of oscillation is controlled by the parameters 1
203 and t;. Given that local cortical networks are thought to intrinsically generate gamma
204  oscillations through the interaction between pyramidal cells and fast-spiking inhibitory
205 interneurons (75,76), we chose t; and t; so that isolated neural masses generate
206  oscillations with an intrinsic frequency in the gamma range (~40 Hz) (Fig. S1). The level
207  of input required for the phase transition to occur is, in turn, controlled by u. Therefore,
208 we chose u so that an isolated neural mass, with no external input, is poised near the
209 critical bifurcation point and oscillations emerge only through the coupling between
210  nodes.

211 Table 1 - Fixed model parameters and ranges of variation of free parameters (C, mean delay and p).

Parameter | Value Units
Tg 2.5 ms
T 5 ms
CgE 3.5 -
g 3.75 -
P 0.31 -
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It 1 -

o 0.25 -
Thomeo 2500 ms

c [0.1, 14] -
Mean Delay | [0, 15] ms

p [0.05, 0.3] -

212

213 2.3. Homeostatic Plasticity

214  We implemented homeostatic plasticity as synaptic scaling of inhibitory synapses
215  (40,56), as it has been shown to take an important part in cortical circuit function and
216  homeostasis (40,58) and has been previously applied in the context of large-scale
217  modeling (60-62,64). Shortly, local inhibitory weights adapt to maintain excitatory activity
218  (rf) close to a given target firing rate (p). Therefore, the dynamics of local inhibitory
219  couplings cg;; are described by the following equation, following (40):

dCEI,i

220 Thomeo T = riI (TiE - P) (3)

221 where t,omeo IS the time constant of plasticity. Such homeostatic plasticity mechanisms
222  are known to operate in slow timescales of hours to days (52) or even weeks in primates
223 (59). Here, to keep simulations computationally tractable, we chose tj,yme, 10 be 2.5s. In
224  fact, since the magnitude of 7,4, SOlely controls how fast cg; weights evolve towards
225  asteady-state, provided that 7;,me, IS Sufficiently slow for plasticity to be decoupled from
226  the fast dynamics of local oscillations, cg; weights will stabilize to nearly exactly the same
227  values (Fig. S2).

228 2.4. Hemodynamic Model

229  From the raw model activity, we extracted simulated BOLD signals by using a forward
230 hemodynamic model (77), as described in (78). In short, the hemodynamic model
231 describes the coupling between the firing rate of excitatory populations (rf) and blood

232 vessel diameter, which in turn affects blood flow, inducing changes in blood volume and
8
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233  deoxyhemoglobin content, thought to underlie the BOLD signals measured through
234  fMRI. A detailed description of the system, explaining the hemodynamic changes in node

235 i, is given by:

dsi(t)
236 5t T kisi —vi(fi — 1)
§fi(t)
237 (;t =s;
ov;(t)
238 T (;t =fi —v®
Sqi(t)  fA—A—p)) v
239 T - _
8t Pn v;

q.

240 yi=Vo <7Pi(1 —q)+2 (1 - v—l) +@2p; —02)(1 - vi)) , 4)
L

241 where y; represents the BOLD signal from node i. The parameters were taken from (78).
242 After passing model activity through the hemodynamic model, the output is
243  downsampled to a sampling period of 0.72s to equate modeled signals to the empirical

244  data obtained from human controls used for model optimization.

245 2.5. Model Optimization

246  Model optimization was performed by considering the global coupling (C), mean delay
247  and target firing rate (p) as free parameters. Similarly to previous studies (62), we
248  represent conduction speeds through the mean of the correspondent conduction delays

249 (7). The range of variation for each of the free parameters is described in Table 1. Within

250 the respective ranges, we selected 25 logarithmically spaced values for C, 26 values for
251  pin steps of 0.01 and 16 mean delays in steps of 1 ms. During simulations, we record
252  cg; weights every 10s due to their slow evolution and to avoid dealing with large datasets.
253  To ensure that cg; reached a stable or quasi-stable steady state, we ran models for 500
254  minutes of simulation time or until local inhibitory weights had converged to a steady
255  state, through the test condition described in the supplementary material (Fig. S3). After
256  this stabilization period, homeostatic plasticity was disabled and model activity was
257  recorded for 30 minutes. Similarly to (62), we disable plasticity during the recording of
258  signals to ensure that our final measure of activity is not affected by changes in local
259  synaptic weights, although the slow dynamics of plasticity are unlikely to interfere with

260 the fast dynamics of neural activity.
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261  To evaluate model performance against empirical data, we make use of the following
262  properties of FC, following (74) (Fig. 1b):

263 e Static FC: 78 x 78 matrix of correlations between BOLD time series across all
264 network nodes. Modeled FC matrices were compared with group-averaged
265 empirical FC by computing the correlation coefficient and mean squared error
266 between their upper-triangular elements.

267 e FC Dynamics (FCD): matrix of correlations between the upper-triangular part of
268 FC matrices computed in windows of 80 samples with 80% overlap. Model results
269 are compared to empirical data by performing a Kolmogorov-Smirnov test
270 between the distributions of values in the respective FCD matrixes.

271 2.6. Stroke Simulation Protocol

272 To compare cortical activity and networks pre-stroke, post-stroke acute and post-stroke
273 chronic, we implement the following protocol (Figure 1a,ii). First, we initialize the model
274  with optimized hyper-parameters (C, p and mean delay) and without homeostatic
275  plasticity. We fix the cg; weights to the steady-state values corresponding to that
276  combination of parameters, as obtained from the model optimization procedure, and
277  record 30 minutes of pre-lesion baseline activity (T0). Then, we simulate cortical gray-
278  matter lesions by removing all the connections to and from a single node in the network,
279  similar to previous approaches (60,79). Without turning homeostatic plasticity on, we
280  extract 30 minutes of simulated activity to represent cortical activity during the acute post-
281  stroke period (T1). Given the slow timescales of homeostatic plasticity in the cortex of
282  primates (59), it is unlikely that the human cortex is able to fully adapt to the post-stroke
283  loss in excitation during the acute period. Therefore, we argue that it is reasonable to
284  simulate it by measuring activity in a lesioned model without homeostatic compensation.
285  We then allow equation (3) to change c g; weights and simulate a maximum of 500 extra
286  minutes of simulated time or until ¢ ;; weights reach a new steady state, using the method
287  described in the supplementary material (Fig. S3). Plasticity is then disabled and 30
288 minutes of simulated activity are extracted to represent the chronic period of stroke

289  recovery.

290 Inall simulations, equations (1) and (2) were solved numerically, using the Euler method
291  with an integration time step of 0.2ms (5kHz). Model simulations and subsequent
292  analysis were implemented in Python using in-house scripts, accessible in

293  https://gitlab.com/francpsantos/stroke-e-i-homeostasis.

10


https://doi.org/10.1101/2022.11.23.517696
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517696; this version posted November 24, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

204 2.7. Analysis of Network Dynamics

295 2.7.1. Synchrony and Metastability

296  To evaluate the effect of stroke on the network dynamics of our model we measured
297  synchrony and metastability (Fig. 1b). To do that, we first compute the Kuramoto order
298 parameter (KOP) (80,81), which represents the degree of synchrony among a set of

299 coupled oscillators at a given point in time. The KOP can be calculated as:
300 Z(6) = R()e®® = Z3N_; e!®, (%)

301 where 6,(t) represents the instantaneous Hilbert phase of a given node n at time ¢t.
302  Synchrony and metastability are defined as the mean and standard deviation of R(t)
303  over time, respectively. Therefore, while synchrony represents the degree of phase
304 coupling between nodes in the network, metastability represents the level of flexible

305  switching between a state of synchrony and asynchrony (81).

306 2.7.2. Criticality

307 In critical systems, the size of population events will follow a power-law distribution. In
308 neural systems, such events have been related to neuronal avalanches, where the
309 activation of one of the network elements triggers a response of other elements, until
310 activity dies out. It has been shown that the size and duration of such neuronal
311  avalanches follow a power-law distribution with exponent -1.5 (46,82), at various levels,
312 from local networks to large-scale activity (46,83). Importantly, it is thought that neural
313  systems may operate at this point of criticality to optimize several network functions, from

314  dynamic ranges to information storage and transmission (49-51,84,85).

315 To detect neural avalanches in our data, we employ the method from (61). After time-

1

-z (Bt — E)), we detect

316  series from each excitatory node are Z-scored (E;(t) =

317 incursions beyond a threshold of +2.3, thus identifying events that are distinct from noise
318  with a probability of p<0.01. Then, we define events as the time points where the signal
319 first crossed the threshold and avalanches as continuous periods of time where events
320 occurred in the network. Subsequently, to measure criticality, we employ the method
321  developed by (51), comparing the distribution of avalanche sizes in neural data with a

322 truncated power-law with exponent -1.5. Shortly, we computed the measure k using:

1 m
323 k =1+ a;(FNA(Bn) — FPL(B,)), 6)
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324  where m = 10 is the number of logarithmically spaced points ,, between the minimum
325 and maximum avalanche sizes, FF* is the cumulative distribution of a -1.5 exponent
326  power-law, truncated so that the maximum avalanche size is the number of nodes in our
327 model (N = 78), and F¥4 is the cumulative distribution of avalanche sizes in the model
328 data. Therefore, a score of k close to 1 means that the system is close to criticality, while
329 scores below and above 1 are characteristic of sub and supercritical systems,
330 respectively.

331 2.8. Analysis of Functional Connectivity Properties

332 2.8.1 FC Distance

333  To measure the dissimilarity between FC matrices at TO, T1 and T2, we make use of a
334 metric we call FC distance, following (60), defined as the Frobenius norm of the

335 difference between two matrices.

336 distance(FCy,FC,) = \/Z Z (FC, —FC1)L-2]- @)
i=j

337 2.8.2 Correlation between FC and SC

338 Given the results of (18), showing a decoupling between functional and structural
339  connectivity in stroke patients, correlated with motor function, we test this biomarker at
340 TO, T1 and T2 by computing the Pearson’s correlation coefficient between the upper

341 triangles of FC and SC matrices.

342  2.8.3 Modularity

343  Modularity measures the degree to which a network follows a community structure, with
344  dense connections within modules and sparser ones between them. Modularity (Q) was

345  calculated using the formula defined in (19):

346 Q = Z [euu - (ZUEM%)Z], (8)

ueMm

347 where M is a set of non-overlapping modules (groups of nodes) in the network and e,
348 is the proportion of edges in the network than connect nodes in module u with nodes in
349 module v. Similarly to (19), we chose network modules a priori to avoid biasing the
350 modularity measure by directly using a clustering algorithm that optimizes community

351  structure in data and also to avoid the problem of varying numbers of modules when
12
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352  using community detection algorithms in data from different time points in the simulation
353  protocol. In our analysis, instead of relying on a pre-defined set of communities, we
354  extract our modules from the empirical FC data, by using a clustering algorithm to detect
355  resting state networks (86). Shortly, we applied k-means clustering (k=6) 200 times on
356  the empirical averaged FC matrix and recorded the number of runs each pair of nodes
357 were grouped together in an association matrix. Afterward, we applied k-means
358 clustering (k=6) to the association matrix to detect modules that could be equated to
359  known resting state networks (Fig. S4). Those networks were then used as modules for
360 the calculation of modularity. Different clustering algorithms were applied, leading to
361 qualitatively similar results (Fig. S4, Fig. S5). The same was observed for different
362 number of clusters (Fig. S5). Since the formula used for modularity relies on the
363  assumption that graphs are undirected and unweighted, FC matrices were transformed
364  into unweighted graphs by applying a density threshold, through which only a percentage
365  of strongest connections are kept and considered edges of the unweighted FC graph
366 (Fig. 1b). Lesioned regions were removed from the network before computing modularity,
367  similarly to (19).

368 2.8.4. Small World Coefficient

369  The small-world (SW) coefficient measures the degree to which a given graph has small-
370  world properties, i.e. its small-worldness. In SW networks, most nodes are not connected
371  but can be reached from any starting point through a small number of edges. SW

372  coefficients were calculated using the following equation (19,87):

— C/ Crand

373 Sw
L/Lrand

9)

374  where C is the average clustering coefficient of a given graph and L is its characteristic
375  path length. Clustering coefficients measure the degree to which the neighbors of a node
376  areinterconnected, and the characteristic path length represents the average of shortest
377 path lengths between all nodes in a graph. Both metrics were computed using the
378  networkx module in Python (88). While C and L represent the values from our simulated
379 data, Crgng and L,,,4 represent the same metrics taken from a random unweighted and
380 undirected graph with the same edge density as the FC graphs from simulated data. To
381 account for the intrinsic stochasticity in the process, for each simulated FC matrix, SW
382  was calculated 100 times for different generated random networks and the results were
383  averaged to obtain the final SW value. Similarly to modularity, SW was calculated after
384  applying a density threshold to FC matrices and lesioned nodes were removed before

385 the calculation.
13
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386  Here, both for modularity and small-world coefficients, instead of performing analysis for
387 edge density thresholds between 4 and 20%, following (19), the range was extended to
388  40%. This is due to the smaller size of our network (78 vs. 324 brain regions), often
389 leading to unconnected graphs when applying thresholds lower than 20%. While this
390 would not affect the calculation of modularity, the computation of small-world coefficients
391 requires graphs to be connected to calculate average shortest-path lengths.
392  Nonetheless, modularity results are qualitatively similar when performing analysis within
393  the 2-20% range (Fig. S5).

394
395
396
397
398
399
400

401
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Figure 1 - Computational Model and Data Analysis.

A) Model Architecture and simulation protocol. i) Cortical dynamics were modeled using a system of neural

masses connected through long-range excitatory connections derived from DTI from healthy subjects. Local

activity was simulated using the Wilson-Cowan model of coupled excitatory and inhibitory populations, with

the addition of homeostatic plasticity regulating inhibitory synapses, with the goal of maintaining excitatory

firing rates at a target level (p). ii) To study the effects of stroke on functional connectivity, the model is first

run until a steady state is reached in terms of local inhibitory weights, after which a lesion is applied by

removing all connections from the lesioned area in the structural connectivity matrix. Acute activity is then

extracted before plasticity is allowed to adjust inhibitory connections and, subsequently, plasticity is enabled,

when local inhibition reaches a new steady state, we extract activity again to simulate the chronic period of

stroke recovery.

B) Analysis of modeled data. To accurately represent BOLD signals, model activity from the excitatory

populations is passed through a hemodynamic model that mechanistically couples neural activity to the

changes in blood oxygenation measured by BOLD fMRI. BOLD signals are then filtered and used to compute

measures of connectivity and dynamics.
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ns 3. Results

a19  3.1. Model Results Capture Healthy FC Data in Parameter
220 Region Corresponding to Rich Network Dynamics

421  To find the optimal working point of our model that best represents empirical FC and
422  FCD, we ran simulations for all the combinations of global coupling (C), mean delay and
423  target firing rate (p) described in the methods section. In Fig.2a, we represent the results
424  of model optimization for mean delay = 4 ms, for simplicity of representation. The results
425  of optimization for the remaining combinations of parameters can be consulted in Fig.
426  S6. From these, it can be visualized that 4ms is generally the optimal mean delay, in
427  particular regarding an accurate representation of empirical FCD. Furthermore, 4ms
428 mean delay corresponds to a conduction speed of ~39m/s which is within a reasonable
429  physiological range for myelinated axons (89). Focusing on FC, it can be observed from
430 Fig.2athat the improved fitting is achieved for high couplings and a target firing rate close
431 to 0.2. In addition, the model captures the overall structure of empirical FC (as measured
432  through the correlation coefficient) as well as the magnitude of connectivity (as measured
433  through the MSE) (Fig 2a and b). Regarding FCD, there is a wide region in the parameter
434  space where the distribution of modeled FCD matrices matches empirical results. Since
435 the same wide parameter region is not observed for other mean delays (Fig. S6), results
436  suggest that axonal conduction velocity has a significant influence on the accurate
437  representation of FCD in our model. Furthermore, there is a narrow parameter region
438  where we can simultaneously optimize the representation of both FC and its dynamics
439  (Fig 2a,i). In this parameter region, BOLD signals show rich dynamics, characterized by
440  transient co-activation of groups of nodes in the network (Fig. 2b), as is characteristic of
441  resting-state cortical signals (90). Importantly, and following previous studies (91), the
442  optimal region lies in the transition between low and high synchrony, corresponding to a
443  region of optimal metastability (Fig. 2a,ii). In addition, this parameter region further
444  corresponds to global dynamics that are close to criticality, following previous studies
445  showing that criticality is a property of large-scale cortical networks (83), also observed
446 in models with similar homeostatic mechanisms (61). Therefore, the model can
447 reproduce, to some level, the structure of FC and its transient dynamics, and is in
448  accordance with the current knowledge of the dynamic features of brain activity. Given

449  these results we choose the following hyperparameter values for the simulations in the
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450 subsequent sections, € = 4.07, p = 0.2, mean delay = 4 ms, as indicated by the white

451  arrows in Fig. 2a.
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453 Figure 2 - Model Optimization and Dynamics

454 A) Model fit and dynamics over parameter space. i) Model fit to empirical FC data. The plots represent the
455 results of a grid search over the parameters of global coupling (C) and target firing rate (FR) (p), with the
456 mean delay fixed at 4ms. Model performance was evaluated by the following metrics: (first) Pearson’s
457 correlation between the upper triangle of simulated and empirical FC matrices, (second) mean squared error
458 (MSE) between simulated and empirical FC matrices and (third) Kolmogorov-Smirnoff (KS) distance
459 between the distribution of values in simulated and empirical FCD matrices. The rightmost plot shows the
460 result of applying the following thresholds: correlation coefficient =2 0.45, MSE < 0.1, KS distance < 0.15.
461 Arrows show the model working point used in the simulations (€=4.07; p=0.2; mean delay=4ms), which
462 satisfies the thresholds for all fitting metrics (correlation coefficient = 0.487, MSE = 0.046, KS distance =
463 0.138). ii) Model dynamics over parameter space. The plots represent relevant dynamic features of model
464 activity over the explored parameter space: (first) synchrony and (second) metastability representing,
465 respectively, the mean and standard deviation of the KOP over time, and (third) global criticality. Note that
466 the chosen working point is poised in a region of transition between low and high synchrony (synchrony =
467 0.606), high metastability (metastability = 0.230) and transition between sub and supercriticality (k = 0.960).
468 B) Model behavior at the chosen working point. i) Example of 15 minutes of model activity. Note the
469 emergence of transient patterns of co-activation between different areas in the network. ii) Simulated (left)

470 and empirical (right) FC matrices. While generally overestimating connectivity, the model is able to capture
17
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471 empirical FC patterns. iii) Simulated FCD matrix (left) and its cumulative distribution function, compared to

472 the one from empirical data (right).

473 3.2. Excitatory-Inhibitory Homeostasis Contributes to
474 the Recovery of Static Properties of FC

475 To evaluate the acute effects of lesions in cortical FC and the putative role of E-I
476  homeostasis on its long-term recovery, we simulated cortical lesions by removing all the
477  connections to and from a single node. This was done individually for all the nodes in the
478 network and FC was extracted pre-lesion (T0O), immediately after lesion application, an
479  equivalent of the acute period (T1), and after local inhibitory weights reach a new steady
480  state through local E-I homeostasis, which we equate to the chronic period of stroke
481  recovery (T2) (Fig 1a,ii).

482  When looking at the differences in FC between T1 and T2 (Fig 3a), it can be first
483  observed that, similarly to what occurs in stroke patients, different lesions have highly
484  heterogeneous acute effects. In Fig 3a we represent the strongest 10% changes in FC
485  for lesions in nodes with different strengths (i.e. sum of incoming structural connectivity
486  weights): the right superior frontal gyrus (strength = 6.23), left precentral gyrus (strength
487 = 3.23) and left parahippocampal gyrus (strength = 0.42). Some qualitative conclusions
488  can be drawn from looking at the observation of acute effects of such lesions. First, while
489 there seems to be a general effect of global disconnection (Fig. 3a,i and iii), also evident
490 in the median changes over lesions (Fig. 3b,i), certain lesions can lead to
491  hypersynchrony (Fig. 3a,ii), as previously reported in lesioned brain networks (23,92).
492  Second, lesions to high degree nodes (Fig. 3a,i and ii) have stronger acute effects than
493  lesions to low degree nodes (Fig. 3a,iii). Third, different lesions show different levels of
494  recovery in the chronic period (T2), as evidenced by the ipsilesional hypersynchrony
495  observed after lesion in the left precentral gyrus, which was not diminished significantly
496 at T2 in our simulations (Fig. 3a,ii). Fourth, regarding the median effects over lesions
497  (Fig. 3b,i), we observed a widespread increase in functional connectivity, compared to
498  pre-lesion levels, in a process that could be understood as a global cortical
499  reorganization. More specifically, it is likely that, given the inability to recover connectivity
500 between certain brain areas, new functional connections are formed (or previous ones
501 strengthened) to maintain relevant graph properties of FC. More specifically, the effects
502 of lesion can be summarized, in a more general way, as follows: a strong acute
503  disconnection, stronger in the ipsilesional size, but extending to the contralesional cortex,

504 as is characteristic of diaschisis (13), and a chronic increase in connectivity, spread
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505 across both hemispheres, likely related to the functional reorganization of cortical

506 networks.

507 To measure lesion effects more quantitatively, we measured the distance between FC
508 matrices at T1 and T2 versus TO across lesions (Fig 3b,ii). It can be observed that there
509 is a strong departure from pre-lesion FC at T1 (FC distance, 10.202+5.838), significantly
510 reduced at T2 (6.664+5.838, p<0.001, Mann Whitney U-test), thus showing a recovery
511  of FC towards pre-lesion patterns. Nonetheless, a difference remains at T2, compared
512 to TO, likely resulting from functional reorganization. Similarly to the results of (60), we
513 found a correlation between graph properties of lesioned nodes and FC distance (Fig.
514  S7), emphasizing the point that lesions in high degree nodes, or structural hubs, cause
515 larger disruptions on FC.

516 In addition, a decoupling between functional and structural connectivity has been
517  observed in stroke patients and shown to correlate with motor function (18). Our results
518 replicate this finding in the acute period (Fig.3b,iii) where the average correlation
519  significantly dropped from 0.381+0.013 at TO to 0.334+0.060 at T1 (p <0.001, Mann-
520 Whitney U-test). Furthermore, similarly to FC distance, we found a correlation between
521 the magnitude of this change and the lesion properties (Fig. S7). Importantly, structural-
522  functional coupling was recovered to pre-lesion levels at T2 (0.376+0.028, TO vs T2
523  p<0.001, Mann-Whitney U-test), further indicating the ability of E-I homeostasis to

524  participate in the recovery of FC.

525 Beyond such metrics of damage to FC, it is relevant to measure changes in graph
526  properties that are relevant in human brain networks, such as modularity (21) and small-
527 worldness (22,87). More importantly, those were shown to be affected by stroke and, in
528 the case of modularity, to be a strong biomarker of performance in higher-order functions
529 (e.g. memory, attention) (19). Thus, in Fig. 3c,i, we present our results on modularity at
530 T1 and T2, normalized to TO values, for different edge density thresholds. Note that, for
531 most of the density thresholds explored, we observed a decrease in modularity at T1,
532  further recovered towards pre-lesion levels at T2. When averaging the values over all
533  the thresholds for each lesion simulation (Fig. 3c,i right) we observed a significant
534  decrease in modularity at T1 (0.908+0.120, p < 0.001, Wilcoxon ranked-sum test), further
535 recovered towards baseline at T2 (p < 0.001, Mann-Whitney U-test), with no significant
536 difference from baseline found at this time point (0.992+0.110, p = 0.500, Wilcoxon
537 ranked-sum test). As opposed to FC distance and association with SC, disruptions in
538  modularity did not correlate significantly with the properties of lesioned nodes (Fig. S7).

539  Similarly to modularity, SW coefficients were significantly decreased at T1 (0.977+0.043,
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540 p<0.001, Wilcoxon ranked-sum test) and further increased from T1 to T2 (p=0.022,
541  Mann-Whitney U-test) (Fig. 3c,ii),. However, in this case, a significant difference from
542  baseline could still be found at T2 (0.997+0.041, p = 0.007, Wilcoxon ranked-sum test).
543  Note that SW coefficients could only be systematically calculated across lesions for edge
544  density thresholds larger than 20%. Due to the small size of our network (78 nodes),
545  thresholding with smaller edge densities leads to disconnected graphs, on which is not
546  possible to calculate SW coefficients reliably. Nonetheless, besides replicating the acute
547  decreases in modularity and small-worldness found by (19), we further show that E-I
548 homeostasis participates in the recovery of these graph properties, offering a possible

549  explanation for the long-term recovery of such properties reported by the same authors.

550 To summarize, our results show the strong effect of stroke lesions on the static properties
551 of FC, and their further recovery through E-I homeostasis. While these effects were
552  heterogeneous across lesions, there was a tendency of cortical networks to experience
553  a loss in modularity and small-worldness, two relevant properties of cortical function
554  shown to be affected in stroke patients. Such metrics were, however, recovered in the
555  chronic period, likely through functional reorganization, showing the important role of E-

556 | homeostasis in their recovery.
557
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570 Figure 3 - E-l Homeostasis Contributes to the Recovery of Static FC Properties

571 A) Differences in FC following example lesions in the acute (T1-T0) and chronic (T2-TO) periods. Only the
572 10% strongest changes are shown. i) Effects of a lesion in the right frontal superior gyrus. ii) Effects of a
573 lesion in the left precentral gyrus iii) Effects of a lesion in the left parahippocampal gyrus

574 B) Effect of lesion in static properties of FC. i) Median differences in FC over lesions in the acute (T1-TO)
575 and chronic (T2-TO) periods. Data from left-side lesions was mirrored so that the right side was always
576 contralesional. Only the 10% strongest differences are shown in the plot. Note the general disconnection in
577 the acute period, stronger on the ipsilesional side, followed by a widespread increase in connectivity in the
578 chronic period. ii) Distance between FC matrices at T1 and T0O, and T2 and TO. FC distance was significantly
579 decreased from the acute (10.202+5.838) to the chronic period (6.664+5.838) (p < 0.001, Mann-Whitney U-
580 test). iii) Pearson’s correlation coefficient between the upper triangle of functional and structural connectivity
581 matrices at TO, T1 and T2. We observe a significant decrease from TO to T1 (p < 0.001, Mann-Whitney U-
582 test) and a subsequent increase towards pre-lesion levels from T1 to T2 (p < 0.001, Mann-Whitney U-test).
583 Results at TO and T2 were not significantly different (p = 0.166, Mann-Whitney U-test).
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584 C) Effect of lesion in graph properties of FC. i) Modularity at T1 and T2, normalized to TO values, for different
585 edge density thresholds. Lines represent the mean over lesions and shaded areas represent the standard
586 error of the mean. On the right side of each plot, we show results averaged over all edge density thresholds
587 for each lesion. We observed a significant decrease in modularity at T1 (0.908+0.120, p < 0.001, Wilcoxon
588 ranked-sum test), with a significant increase between T1 and T2 (p < 0.001, Mann-Whitney U-test).
589 Normalized modularity at T2 was not significantly different from baseline (0.992+0.110, p = 0.500, Wilcoxon
590 ranked-sum test). ii) Same, for small-world (SW) coefficients. Values show significantly decreased SW
591 coefficients at T1 (0.977+0.043, p < 0.001, Wilcoxon ranked-sum test), with a significant increase between
592 T1 and T2 (p = 0.022, Mann-Whitney U-test). In this case, although values at T2 were close to the baseline,
593 a significant difference could still be observed (0.997+0.041, p = 0.007, Wilcoxon ranked-sum test). In both
594 plots, asterisks represent the level of significance of a Mann-Whitney U-test. * p<0.05, ** p<0.01, *** p<0.001.
595
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615 3.3. Excitatory-Inhibitory Homeostasis is Not Sufficient
616 For the Reinstatement of Rich Networks Dynamics

617  Beyond post-stroke disruptions in the static properties of functional connectivity, it is
618  relevant to analyze how it affects cortical dynamics. Healthy resting-state cortical activity
619  displays rich spatiotemporal dynamics, with transient activation of distributed networks,
620 jumps from asynchronous to synchronous states (91) and a scale-free distribution of
621 network events of co-activation (i.e. criticality) (61,83). Therefore, in this section, we
622  measure the acute effects of lesions on such dynamical properties and evaluate the
623  possible role of E-1 homeostasis in the recovery of dynamical features that go beyond
624  static FC networks.

625 If Fig. 4a,i, we plot the distribution of FCD values at TO, T1 and T2 for the same example
626 lesions described in the previous section. Although some level of heterogeneity can be
627 found across lesions, the general effect, further visible in the distribution of FCD values
628  across lesions (Fig. 4a,ii), is a shift towards higher values at T1, which could not be
629  recovered at T2. Such a shift is difficult to interpret, due to the lack of similar analysis in
630 literature. However, given the definition of FCD values as the correlation between FC
631 taken from different time windows in the signal, a functional interpretation can be given.
632  Such a shift could mean that transient FC motifs were more similar across time, indicating
633  a more rigid spatiotemporal pattern of activation, likely due to a loss in the richness of
634  dynamics previously described. However, functional interpretations should be taken with
635  careful consideration, given the lack of empirical studies debating the effects of stroke in
636 FCD and its clinical correlates. Nonetheless, looking at other dynamical properties might
637 shed light on the issue. Regarding synchrony (Fig 4b,i), we observed highly
638 heterogeneous effects, similar to the previous modeling study of (23), where networks
639 can change to either increased or decreased synchrony, in line with the results of the
640 previous section (Fig. 3a,ii), showing hyperconnectivity in the acute period for selected
641 lesions. More importantly, we observed a significant decrease in metastability (Fig 4b,ii)
642 at T1 (-4.932+7.211%, p < 0.001, Wilcoxon Ranked-Sum test) and, while there was a
643  significant shift towards baseline between T1 and T2 (p = 0.008, Mann-Whitney U-test),
644  metastability at T2 was still significantly lower than in the pre-lesion period (-
645  2.144+6.239%, p = 0.004, Wilcoxon Ranked-Sum test). Since high metastability has
646  been associated with the ability of the brain to switch between FC states (91), this might
647  relate to the hypothesized rigidity of FCD patterns from Fig.4a,ii. Therefore, we suggest
648 a decreased flexibility of resting-state dynamics in stroke patients. In addition, while
649 dynamics at TO were found to be close to criticality (Fig 4b,iii)) (k=0.972+£0.022), we
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650 observed a significant shift towards sub-criticality at T1 (k=0.948+0.034, p<0.001, Mann-
651  Whitney U-test). Importantly, dynamics were still significantly sub-critical compared to TO
652  (k=0.950+0.025, p<0.001, Mann-Whitney U-test), with no significant recovery occurring
653 between T1 and T2 (p = 0.935, Mann-Whitney U-test). Therefore, the overarching
654  conclusion from the analysis of dynamics in our simulations is that stroke lesions have a
655 strong effect on network dynamics and, more specifically, in metrics that can be
656 understood as quantifying rich network dynamics, such as metastability (91) and
657  criticality (83). More importantly, as opposed to the static properties of FC, the affected
658  dynamics could not be recovered through the E-I homeostasis mechanism implemented
659  in our model, showing a higher fragility of cortical dynamics to stroke, when compared to

660  connectivity.
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662 Figure 4 - E-l Homeostasis is Not Sufficient to Recover Features of Rich Dynamics

663 A) Effects of lesion in FC dynamics. i) Distribution of values in FCD matrices for TO, T1 and T2 for lesions in
664 Right Frontal Superior Gyrus (left), Left Precentral Gyrus (middle) and Left Parahippocampal Gyrus (right).
665 i) Distribution across lesions of values in FCD matrices for TO, T1 and T2. Note the shift towards higher
666 values at T1 and the similar distribution at T2, denoting an inability of E-1 homeostasis to return FC dynamics
667 to pre-lesion levels.

668 B) Effects of lesion in network dynamics. i) Changes in synchrony, in percentage, at T1 and T2, compared
669 to baseline (TO). While synchrony showed a significant decrease at T1, (-4.743+12.288%, p = 0.007,
670 Wilcoxon Ranked-Sum test), there was no significant difference between values at T1 and T2 (p = 0.058,
671 Mann-Whitney U-test). In addition, the difference in synchrony at T2 was not significantly different from O (-
672 0.187+6.489%, p = 0.058, Wilcoxon Ranked-Sum test). ii) Same, for metastability. We observed a significant
673 decrease at T1 (-4.932+7.211%, p < 0.001, Wilcoxon Ranked-Sum test), further recovered towards pre-
674 lesion levels at T2 (p = 0.008, Mann-Whitney U-test). However, metastability at T2 was still significantly
675 different from baseline at T2 (-2.144+6.239%, p = 0.004, Wilcoxon Ranked-Sum test). iii) Criticality at TO, T1
676 and T2. We observed a shift towards subcriticality at T2 (p < 0.001, Mann-Whitney U-test), with no recovery
677 from T1 to T2 (p = 0.914, Mann-Whitney U-test).
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678 3.4. Long-Term Changes in Local Excitability Replicate
679 Empirical Findings from Stroke Models and Patients

680  While previous studies have attempted to model similar E-1 homeostasis mechanisms to
681 assess their relevance in post-stroke recovery (60), we further our analysis by
682  systematically assessing the changes in local excitability required to adapt to the post-
683 lesion loss in excitation and how they distribute across the brain. We do this by looking
684 at the change, from TO to T2, in the strength of local inhibitory coupling cg;. More
685  specifically, we consider decreases/increases in cg; to represent increases/decreases in
686  excitability, respectively. Importantly, long-term increases in excitability have been found
687 in the cortex of mice models (27,33,34) and stroke patients (29,30,32), mostly related to
688  decreased levels of inhibitory transmission. Therefore, it is important to evaluate if such
689 effects can, at least to some extent, be a result of physiological processes of E-I
690 homeostasis, tied to the recovery of not only local E-I balance, but also FC properties,

691 as demonstrated by our previous results.

692  That said, in Fig. 5a, we plot the long-term changes in excitability felt across the cortex
693  for the same example lesions referenced before. From these plots, it can be deduced
694  that lesions in more connected nodes required larger changes in excitability. Moreover,
695 it can be seen from Fig.5a,i and ii that the strongest increases in excitability are felt
696  closest to the lesioned areas, as evidenced by previous research in rodent models of
697 stroke (27). More specifically, for stronger lesions, Acg;(%) could be reasonably
698 explained as an exponential function of Euclidean distance to the lesion (R?=0.65 and
699  0.50 for lesions in the right superior frontal gyrus and left precentral gyrus, respectively).
700 This relationship was lost for weaker lesions (R?=0.02 for lesion in the right
701  parahippocampal gyrus), likely due to the less widespread and overall weaker effects
702  (Fig. 3). We chose to explain these variations as an exponential function of distance
703  given the exponential dependence found between structural connectivity and distance in
704  the cortex (93) and the fact that areas more strongly connected to the lesion would
705  experience the strongest loss in excitation. Therefore, an exponential relationship
706  between Acg (%) and distance to the lesion is almost trivial, as observed for the most
707  severe lesions in our simulations. Interestingly, while the consensus in the literature
708 favors a long-term increase in excitability during stroke recovery, we observe, in
709  particular for stronger lesions, actual decreases in excitability in distant cortical regions.
710  This response is likely a second-order effect, resulting from the strong increases in

711  excitability in the areas closest to the lesion, which in turn might require an opposite
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712 reaction in other regions that might be connected to them, but not to the lesioned area
713 itself.

714  In Fig. 5b, we plot Ace (%) averaged across lesions. Here, data from lesions left-side
715 lesions was mirrored before averaging so that the right side always corresponded to the
716  ipsilesional hemisphere. Looking at the average changes across lesions (Fig. 5b) shows
717  a picture of widespread increases in local excitability, following literature. Importantly,
718  such increases were significantly stronger (p<0.001, Mann-Whitney U-test) in the
719  ipsilesional cortex (-1.257+3.345%), when compared to its counterpart (-0.417+1.212%),
720  as expected due to the distance dependence of changes in excitability. The strongest
721  differences were found in the ipsilesional middle frontal gyrus (-2.205+5.195%),
722 precentral gyrus (-2.144+4.420%), inferior parietal gyrus (-2.100+4.289%), middle
723  occipital gyrus (-1.982+3.179%) and inferior (-1.963%£5.632%) and middle (-
724  1.949+4.015%) temporal gyri. However, while we might observe these general effects,
725 the changes in excitability are still highly dependent on the specific lesioned area. In Fig.
726  5c,i, it can be seen that areas with stronger structural connectivity with the lesioned
727  cortex have to undergo higher increases in excitability (Pearson’s correlation coefficient
728 =-0.83, p<0.001 F-test), with local changes in Ace(%) being as high as 30%. Moreover,
729  when looking at the average increase in excitability across cortical regions (Fig. 5c,ii), it
730 can be observed that more severe lesions require higher levels of long-term homeostatic
731  adaptation (Pearson’s correlation coefficient = -0.74, p<0.001 F-test). Therefore, lesions
732  in well-connected areas require stronger compensation, particularly in nodes that are

733  more strongly connected to the lesion.

734 In conclusion, by accounting for the participation of slow mechanisms of E-I homeostasis
735  in stroke recovery, we replicate empirical findings in stroke patients and models, such as
736 an overall increase in excitability driven by a decrease in inhibitory transmission
737  (27,29,30) and decaying with distance to the lesion (27). Moreover, such changes can
738  be predicted for individual cortical areas, given their structural connectivity to the lesioned
739  cortex. Itis important, then, to stress that this leads to high heterogeneity in homeostatic
740 changes, showing the importance of developing personalized models where patient-
741  specific information about structural connectivity and damaged areas can be integrated

742  to predict the long-term changes in excitability required for recovery of E-I balance.
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744 Figure 5 - Long-term adaptations required to recover E-lI balance replicate observed post-stroke
745 changes in excitability.

746 A) Examples of long-term changes in excitability, quantified through the difference in local cer weights (in
747 percentage) between TO and T2, in response to different lesions. (Top) Changes in local excitability,
748 projected onto an anatomical map of the human cortex. Red colors represent increases in excitability
749 (decreased inhibition) and blue colors show deceased excitability (increased inhibition). Arrows and gray
750 shading indicate the location of lesioned areas. (Bottom) Changes in excitability against euclidian distance
751 to the lesioned area with results of an exponential fit to the data and respective R? values. i) Response to a
752 lesion in the right frontal superior gyrus. Note the strong changes across the cortex, with the highest
753 increases concentrated in the vicinity of the lesion, decreasing exponentially with distance (R? = 0.65) ii)
754 Response to a lesion in the left precentral gyrus. Again, the highest increases in excitability occur close to
755 the lesioned area, with a distance-dependent exponential decay (R? = 0.50). iii) Response to a lesion in the
756 right parahippocampal gyrus. Note the weaker changes and the poor exponential fit (R? = 0.02).

757 B) Long-term changes in excitability averaged over lesions. Data from left-side lesions was mirrored so that
758 the right side was always ipsilesional. Note the general increases in excitability across the cortex, strongest
759 on the ipsilesional side.

760 C) Relationship between changes and lesion properties. i) Local changes in excitability against structural

761 connectivity with the lesioned area (W;; where i is the region where Acei is measured and j is the lesioned
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762 area. Ace correlated strongly with W;; (Pearson’s correlation coefficient -0.83, p<0.001 F-test). ii) Average
763 Ace across cortical areas, plotted against lesion strength (node strength of lesioned areas, ¥; W;;). Average

764 changes were strongly correlated with lesion severity (Pearson’s correlation coefficient, -0.74, p<0.001 F-
765 test).

766

767 3.5. Long-Term Changes in Excitability Relate to
768 Biomarkers of Common Side-Effects of Stroke

769  Stroke patients tend to develop some side effects during the months post-stroke, such
770  as seizures (3-5), depression (8-10) and chronic pain (6,7), among others. Importantly
771  some of these pathologies have been previously associated with altered patterns of
772  excitability in the cortex (e.g epilepsy (94,95), depression (10) and neuropathic pain
773 (96)). Given the widespread changes in excitability presented in the previous section, it
774 is then relevant to investigate a possible relationship between such homeostatic
775  processes, necessary to maintain local E-I balance, and the emergence of long-term

776  side-effects of stroke.

777  One such side-effect is the occurrence of post-stroke seizures, which occur in up to 22%
778  of stroke patients (3). When such seizures become recurrent, they are classified as post-
779  stroke epilepsy, occurring in about 7% of stroke patients (97). In addition, the occurrence
780  of seizures or epilepsy has been previously related to hyperexcitability of areas located
781 in the epileptic focus (94,95) and, while the cause of post-stroke seizures is not yet well
782  known, it has been hypothesized that it relates to the increased excitability in a similar
783  manner (3,97,98). While epileptic foci can be distributed across the brain, the most
784  common location observed in humans is the temporal lobe and, more specifically, the
785  medial temporal gyrus (95,99). Accordingly, in Fig. 6a, it can be observed that some of
786  the largest average increases in excitability are found in the ipsilesional temporal lobe
787  (circled area). More specifically, all gyri of the temporal lobe experience significant
788 increases in excitability (asterisks represent the level of significance in a Wilcoxon
789 ranked-sum test), in both ipsi and contralesional cortices. More importantly, the
790 ipsilesional middle temporal gyrus undergoes a particularly strong increase in excitability
791  (-1.949+4.015%), significantly larger than the remaining areas in the ipsilesional cortex
792  (p = 0.036, Mann-Whitney U-test). Therefore, the emergence of post-stroke seizures
793 may be potentiated by the action of E-I homeostatic mechanisms, although the
794  magnitude of causality is difficult to assess. Interestingly, most post-stroke seizures

795  result from cortical lesions (98), precisely the type of lesions applied in our computational
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796  model of stroke. Furthermore, it is important to stress again the high heterogeneity of
797  effects over lesioned areas observed in our results. Besides the higher prevalence of
798  post-stroke seizure in patients with cortical lesions, the literature is not clear regarding
799 the location of lesions most likely to lead to this side-effect. Here, we predict that lesions
800 to the temporal cortex would have the highest likelihood of leading to post-stroke
801  seizures, due to the strong connectivity and spatial proximity between temporal areas,
802  which, as shown in the previous section, would lead to higher increases in excitability.
803  Nonetheless, lesions in the angular and middle occipital gyri could also cause strong

804  increases in excitability of the middle temporal cortex (Fig. S8).

805  Another common side effect of stroke is depression, with an estimated prevalence of 17-
806 52% in stroke patients (8,9). While some studies argue that the main factors of risk
807 pertain to the social situation of stroke patients, gender and a history of previous
808 depression (100) others suggest a dependence on lesion location, showing a higher
809 prevalence of post-stroke depression (PSD) in patients with right side lesions and lesions
810 in more frontal areas (101). Furthermore, depression, in particular major depressive
811 disorder, has been associated with asymmetry in cortical excitability (102), particularly
812  between motor cortices and towards higher excitability of the right side (103,104).
813  Therefore, we hypothesize that, after lesions on the right side, there is an increase in the
814  asymmetry of excitability towards the right motor cortex, when compared to pre-lesion
815 levels. To measure this change quantitatively we compute the following metric,

816  quantifying changes in asymmetry of motor cortex excitability:

CELright (TZ)/CEI,left (T2)

817 -
CElLright (TO)/CEI,left (TO)

(10)

818  Shortly, if the index is negative, the ratio between the right and left motor cortex cg,
819  weights decreased from TO to T2, meaning excitability increased more on the right side
820 than on its left counterpart. If Fig. 6b, we plot this value over all lesions, and split it
821  between lesions on the left and right sides. While the average over all lesions shows no
822  significant change in motor cortex excitability asymmetry (p = 0.465, Wilcoxon ranked-
823  sum test), for right side lesions we observed a significant shift towards higher excitability
824  of the right motor cortex (p<0.001, Wilcoxon ranked-sum test). This result is, therefore,
825  simultaneously consistent with the observation of this biomarker in depressive subjects
826  (103,104) and with the higher prevalence of PSD in patients with right-side lesions (101).
827  For left-side lesions, the opposite variation was found (p<0.001, Wilcoxon ranked-sum
828 test). Infact, under the framework of E-l homeostasis, such results are trivial, considering

829 that the ipsilesional cortex tends to experience a higher increase in excitability than its
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830 counterpart. Therefore, right-side lesions would lead to a generalized shift in the
831 symmetry of excitability towards the right side, as predicted by our model (Fig. 5b). In
832  fact, such asymmetries have been found in human subjects beyond the motor cortex,
833  with studies reporting similar changes in the frontal cortex (102). Furthermore, results
834  are still heterogeneous across lesions, with the highest changes in asymmetry of motor
835  cortex excitability towards the right side found for lesions in the right superior and medial
836  frontal gyri, right postcentral gyrus, and right paracentral lobule (Fig. S9). The stronger
837 changes observed for lesions in the superior and middle frontal gyrus, in accordance
838  with the higher prevalence of depression in patients with more frontal lesions (101), lend

839  further strength to our hypothesis.

840  Another common post-stroke side effect is neuropathic pain, occurring in 11-55% of
841  stroke patients, although not always associated with the stroke itself (7,105). Neuropathic
842  pain is generally hypothesized to relate to an increase in neuronal excitability of
843  somatosensory areas (106), as is also the case when it occurs post-stroke (7). This
844  increased somatosensory excitability would then lead to a lower threshold for pain. Such
845  changes are thought to be caused by maladaptive plasticity of the somatosensory cortex
846  (7,106). In Fig. 6¢, we plot the change in excitability of the ipsi and contralesional
847  somatosensory cortices (i.e. postcentral gyrus). While none of these areas experienced
848  a significant increase in excitability compared to the rest of the cortex on the same side
849 (ipsilesional: p = 0.702; contralesional: p = 0.195; Mann-Whitney U-test), both the ipsi
850 and contralateral cortices showed a significant increase in excitability from TO to T2,
851  stronger in the ipsilesional side (ipsilesional: -1.306+3.163%, p<0.001; contralesional: -
852  0.327+0.672%, p<0.001; Wilcoxon Ranked-sum test). Changes were stronger for lesions
853 in the precentral gyrus, superior parietal gyrus, supramarginal gyrus and paracentral
854 lobule (Fig. S10).

855  Therefore, the changes in excitability operated by E-I homeostasis to adapt to the loss
856  of long-range excitatory might be involved in the appearance of reported side effects of
857  stroke such as epilepsy, depression and neuropathic pain. However, it is important to
858  stress that it is difficult to estimate the magnitude of causal influence between E-I
859 homeostasis and the incidence of the mentioned side effects, since previous research
860 has highlighted other important risk factors, such as a lack of social support in the case
861  of depression (100). Nonetheless, E-I homeostasis may inadvertently contribute either
862  to a higher propensity of stroke patients to develop the aforementioned symptoms or to

863  exacerbate their intensity.
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864

865 Figure 6 - Long-Term Changes in Excitability Relate to Known Side Effects of Stroke

866 A) Changes in excitability in the temporal cortex, averaged across lesions, quantified through the difference
867 in local cel weights (in percentage) between TO and T2 i) Changes in excitability in the ipsilesional cortex.
868 The circled region corresponds to the temporal cortex, where strong increases in excitability can be
869 observed. ii) Changes in excitability for different cortical regions in the temporal lobe, for both ipsi- and
870 contralesional cortex. Black lines and gray shaded areas represent, respectively, the mean and standard
871 deviation of Ace across all cortical areas. While all regions display a significant increase in excitability
872 between TO and T2, the ipsilesional middle temporal gyrus, a common location for epileptic foci, showed a
873 significant increase even when compared with the rest of the ipsilesional cortex (p = 0.036, Mann-Whitney
874 U-test). On the contralateral side, while changes are generally weaker, there was a significant difference
875 from the remaining cortical areas in both the superior temporal pole (p = 0.004, Mann-Whitney U-test) and
876 the middle temporal pole (p < 0.001, Mann-Whitney U-test).

877 B) Change in asymmetry between excitability in left and right motor cortices, calculated as the difference, in

878 percentage, of CEl, left/CE” from TO to T2. Note that, for right-side lesions, a change occurs towards

ight
879 higher excitability on the right side (p < 0.001, Wilcoxon ranked-sum test), while the opposite effect is
880 observed for lesions on the left side of the cortex (p < 0.001, Wilcoxon ranked-sum test).

881 C) Changes in excitability in the somatosensory cortex (postcentral gyrus). While changes were not
882 significantly different from the remaining cortical areas, in both ipsilesional (p = 0.702, Mann-Whitney U-test)
883 and contralesional (p = 0.195, Mann-Whitney U-test) cortices, both somatosensory areas underwent
884 significant increases in excitability (ipsilesional: -1.306+0.702, p<0.001; contralesional: -0.327+0.195,

885 p<0.001; Wilcoxon ranked-sum test)
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886 In all plots, points represent the average over lesions and bars represent the standard error of the mean.
887 Asterisks represent a significant difference from 0, using the Wilcoxon ranked-sum test. * p<0.05, ** p<0.01,
888 *** n<0.001. Crosses represent a significant difference from the distribution of Acel across either ipsi- or
889 contralesional cortices, using the Mann-Whitney U-test. + p<0.05, ++ p<0.01, +++ p<0.001.
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ss0 4. Discussion

891  We show that our model, by optimizing local and global parameters (i.e. target firing rate
892  and global coupling), can simultaneously represent empirical FC and relevant dynamical
893  features of cortical activity. By simulating cortical stroke lesions, we further show that E-
894 | homeostasis, a mechanism that is well documented in the cortex (52), likely takes part
895 inthe recovery of relevant static properties of FC, from FC-SC correlation (18) to complex
896  graph properties such as modularity and small-worldness (19). Conversely, this type of
897 homeostasis was not sufficient for the recovery of pre-lesion dynamics, such as criticality
898 and metastability, suggesting that, while the global properties of FC can be recovered
899 through local homeostasis of E-I balance, the recovery of dynamics required further
900 adaptive responses from the human cortex. Importantly, we analyze in detail the changes
901 in excitability operated by E-I homeostasis, replicating the known dependence between
902 changes in excitability and distance to the lesion (27). Here, we bring this further by
903 showing that this dependence is exponential, likely due to the exponential decay of
904  structural connectivity with distance (93). While the general effect of a widespread
905 increase in excitability is in concurrence with literature (27-30), we stress the high
906 heterogeneity across lesions, with local decreases in excitability observed in particular
907 cases. Importantly, we tie some of the observed changes with biomarkers of known
908 lasting side-effects of stroke, such as seizures (3,5), depression (10,100) and
909 neuropathic pain (7) related to altered patterns of excitability. Therefore, we suggest E-
910 homeostasis is responsible for either increasing the tendency of stroke patients to
911  develop such side effects, or at least enhancing their effects, while they might emerge

912  from other causes (100).

913 4.1. El Homeostasis in Stroke Recovery

914  The possibility E-I homeostasis participating in stroke recovery has been suggested
915  before (35—-37), given the logical association between the acute loss in excitability and
916 the long-term changes in excitability, understood as the subsequent adaptive response
917 from cortical networks to restore E-l balance (52). In this study, we show that E-I
918 homeostasis can have an important participation in stroke recovery, tying the recovery
919  of global FC properties to local E-I balance. However, one must not neglect the influence
920 of other possible strategies of adaptation, such as structural plasticity (24), vicariation
921  (107) and functional reorganization potentiated by rehabilitation strategies (108). Indeed,
922 it is likely that these processes of recovery interact, since neurostimulation techniques
923 such as theta-burst stimulation, shown to be beneficial for stroke rehabilitation, can

924  simultaneously alter local excitability and long-range functional connectivity (109,110). It
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925 is relevant to stress that the recovery of important properties such as modularity and
926  small-worldness, in our results, is not tied to a full recovery of FC in a connection-by-
927  connection manner. While there is recovery between the acute and chronic periods, FC
928 matrices are still significantly different from baseline in the latter, while the
929 aforementioned properties are mostly reinstated. Therefore, we suggest that,
930 remarkably, the recovery of the graph structure of FC is indirectly orchestrated by local
931 processes of E-I homeostasis and is achieved through a global reorganization of
932  functional connections. This offers an explanation as to why the cortex can coordinate
933  the recovery of such global properties of FC, while individual cortical areas are virtually
934  agnostic to the connectivity (or lack of it) between the remaining cortex. Moreover, since
935 the association between structural and functional connectivity was recovered to pre-
936 lesion levels, while we simultaneously observed differences in functional connectivity,
937  we speculate that functional reorganization is scaffolded by the structural connectivity,
938 with the preferential enhancement of functional connections between nodes with

939  significant white-matter links.

940 4.2. Global Dynamics of the Post Stroke Brain

941  Despite the recovery of static properties of FC, our results show a different picture for
942 relevant dynamical features which can be understood as metrics of ‘richness’ of
943  dynamics. Both metastability, quantifying the ability of a network to flexibly switch
944  between synchronous and asynchronous states (91) or criticality (47), underlying
945 balanced propagation of activity, are significantly affected by lesions and were not
946  recovered solely through E-I homeostasis. A possible explanation would be the fragility
947  of cortical dynamics to disruptions in the structural scaffold of the human cortex, which
948 cannot be compensated solely by local synaptic scaling. Indeed, recent results (24),
949  suggest that, similarly to our results, stroke lesions bring cortical dynamics to
950  subcriticality. More importantly, dynamics could be brought back to criticality in the long-
951 term, but through structural plasticity of white-matter tracts, suggesting that other forms
952  of plasticity beyond synaptic scaling are relevant for the recovery of global dynamics. As
953  for metastability, empirical investigation of its evolution in the brain of stroke patients is
954  lacking. The same is the case for FCD, which measures the transient dynamics of FC.
955 In our results, FCD distributions experience a shift towards higher values, unable to be
956  recovered, similarly to the aforementioned dynamical features. A possible interpretation
957 is a more rigid spatiotemporal pattern of FC, where the cortex has a higher difficulty in
958  switching between different FC patterns associated with the known resting state
959 networks (86). This might be tied to the decrease in metastability, since rich
960  spatiotemporal FC variation has been hypothesized to be an emergent property of
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961 metastable brain dynamics (91). Therefore, we suggest future studies should focus on
962 using methods such as Hidden Markov Modelling (111,112) or leading eigenvector
963 dynamics analysis (113) to evaluate the ability of the stroke brain to flexibly transition

964  between states and how it evolves during the process of recovery.

965 4.3. Possible Impairments of E-l Homeostasis in Stroke Patients

966  Animportant consideration from our study is that, in the modeling approach, we assume
967 E-lI homeostasis through inhibitory synaptic scaling to be fully functional during the entire
968  simulations. While this process has been found to respond robustly to perturbations such
969  as sensory deprivation in rodents (56,58,114), further studies also advance the possibility
970 of impairments in homeostatic plasticity occurring in pathological states (115,116).
971  Therefore, there is a possibility that E-I homeostasis experiences some level of
972  impairment during stroke recovery. More so, research in homeostatic plasticity suggests
973  that synaptic scaling may not be sufficient to adapt to certain perturbations and that other
974  processes such as regulation of intrinsic excitability might come into play for stronger
975  disruptions (52). That said, the ability of cortical circuits to homeostatically regulate their
976  own E-I balance may be affected post-stroke, possibly in a patient-specific manner. In
977 fact, literature shows variability in either the strength of inhibition (28,29) or the
978  magnitude of its longitudinal variation in stroke patients (30). While this variability could
979 be attributed to several heterogeneities between patients (e.g. lesion location,
980 rehabilitation procedures), the strong correlation with behavioral improvement found in
981  (30) suggests that the magnitude of homeostatic adaptation is important for recovery,
982  and patients with putative impairments in E-I homeostasis would have more difficulty in

983  regaining function.

984  Importantly, this possibility raises the question of how to modulate cortical circuits to
985  correct such deficits in E-I homeostasis, as has been suggested for the treatment of
986 mood disorders (115). A possibility is the use of neurostimulation methods, such as
987 theta-burst stimulation, which have been shown to modulate the excitability of cortical
988 areas (110) and that could be applied to specific regions of the cortex undergoing
989  particularly strong increases in E-I homeostasis. Coincidentally, such methods modulate
990 functional connectivity, with effects spreading beyond the stimulated area (109) and,
991  while the precise ties between the modulation of excitability and connectivity are not yet
992  known, such procedures may also stimulate the large-scale reorganization needed to

993  recover the graph-properties of FC.

994  Animportant challenge, then, would be how to detect localized disruptions in E-I balance,

995 i.e. particular regions of the cortex where E-I homeostasis was not able to fully adapt.
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996 Here, novel methods such as the measurement of functional E-I balance from

997  electroencephalographic recordings (117) could be of help, indicating localized deficits

998 that could then be corrected using heuromodulation. Alternatively, models such as ours

999  could be used with patient-specific structural connectivity data and fitted to respective
1000 functional data by varying local parameters such as local target firing rates (p). Then, by
1001  comparing them with similar models with fully functioning homeostasis, regional
1002  differences could be detected, pointing to areas in need of further modulation of
1003  excitability. In any case, future studies should focus on measuring the evolution of E-I
1004 balance in the cortex of stroke patients, relating it to the recovery of function and
1005 evaluating possible impairments in homeostatic plasticity and how to correct them.

1006 4.4. Emergence of Biomarkers of Stroke Side-Effects from E-I

1007 Homeostasis

1008 Interestingly, we could relate certain side-effects of stroke and respective biomarkers
1009  with changes in the patterns of excitability observed in our model. Signatures such as
1010 increased excitability of the contralateral medial temporal cortex, the most common focus
1011  of epileptic seizures (95,99), could then be related to E-I homeostasis and to the
1012  tendency of stroke patients to developed seizures (3), in some cases evolving to epilepsy
1013 (98). Critically, this finding is supported by one study in which neuromodulation was used
1014 in a rodent stroke model to increase motor cortex excitability (118). While this led to a
1015  significant improvement in motor function, it also increased the propensity of the rodents
1016  to develop epileptic seizures. While this particular study was related to motor cortex
1017  excitability, its results are likely generalizable to other structures in the brain. Regarding
1018  depression, we observed a shift in the right-left asymmetry in motor cortex excitability
1019 towards higher excitability of the right side (103,104). This was found particularly after
1020 right-side lesions in the frontal cortex, which are common in patients that experience
1021  post-stroke depression (101). Interestingly, under the framework of E-1 homeostasis, this
1022  result is relatively trivial, since right lesions would lead to higher increases in excitability
1023 inthe right side, thus leading to the observed changes in right-left asymmetry associated
1024  with depression. Finally, chronic pain has been associated with maladaptive plasticity
1025 leading to a pathological increase in the excitability of sensorimotor cortices, thus
1026  creating a neuropathic sensation of pain (96). In our case, we suggest that this process
1027  might not be maladaptive, but a physiological change that is required to compensate for
1028  aloss of cortico-cortical excitation, which could then affect how the sensorimotor areas

1029 respond to subcortical sensory input.
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1030 In addition, while the general effect observed was a widespread increase in excitability,
1031  our results show the surprising possibility that strong decreases in excitability can be felt
1032 in certain regions for particular lesions. An example is decreased ipsilesional motor
1033  cortex excitability after a lesion in the precuneus or posterior cingulate cortex (Fig. S11).
1034  This particular case is interesting since chronic fatigue, commonly felt by stroke patients,
1035 has been associated with hypoexcitability of the motor cortex (11). Therefore, we suggest
1036 that the participation of E-I homeostasis in enhancing post-stroke side effects may not

1037  only be tied to increased excitability, but also to the opposite effect in particular cases.

1038  All that considered, care must be taken in attributing a causal relationship between the
1039  slow changes resulting from E-l1 homeostasis and the development of the mentioned side
1040 effects. Indeed, certain patients of stroke experience seizures already in the acute
1041  period, although this might be related to the excitotoxic release of glutamatergic
1042  neurotransmitters in this period (119). Nonetheless, some patients continue experiencing
1043  repeated seizures into the chronic period (4), when such massive levels of glutamate are
1044  no longer present. In addition, the strongest risk factor of post-stroke depression is the
1045 amount of social support patients receive during recovery (100), seemingly rejecting
1046  changes caused by E-l homeostasis as a major cause for this pathology. Therefore,
1047 instead of attributing a fully causal role of E-I homeostasis in the emergence of the
1048  aforementioned side-effects, we suggest it as one of the multiple factors increasing the
1049  propensity of stroke patients to develop them. Alternatively, it is possible that the
1050 changes we observe could instead enhance the severity of said side-effects, caused by

1051  entirely different factors.

1052  All that considered, we predict that E-1 homeostasis, albeit necessary for post-stroke
1053  recovery, might inadvertently participate in the emergence of the discussed side effects.
1054  However, further research is required to understand this connection more clearly, for
1055 example, by associating particular lesions to specific patterns of alteration in excitability

1056 and the onset of the discussed pathologies in a patient-by-patient manner.

1057 4.5. Limitations

1058  The first limitation that can be pointed out in our study is the fact that we only simulate
1059  cortical gray matter lesions, by removing all the connections to and from a given cortical
1060 area. While this approach is common in lesion studies (23,60,79), it neglects the impact
1061  of white-matter disconnection. Indeed, a cortical lesion might not only affect the gray
1062  contained by its volume, but also white-matter tracts that pass through it and may
1063  connect other regions. Importantly, recent research suggests a greater relevance of

1064  white-matter disconnection in predicting future deficits, when compared to gray-matter
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1065 loss (120). However, in our case, without lesion-specific information about lesion volume
1066  and the white matter tracts it intercepts, it is not possible to estimate the extent of white
1067  matter damage. Therefore, future modeling studies should focus on the incorporation of
1068  realistic cortical lesions affecting both gray and white matter. In addition, regions in the
1069  AAL parcellation not only have different levels of connectivity, but also different volumes.
1070  Therefore, while lesions in, for example, the precuneus and the superior frontal cortex
1071  are both single-node in our simulations, in reality, the latter would involve a much larger
1072  volume. Nonetheless, while studies show that lesion volume has an impact on the extent
1073  of functional damage and subsequent recovery (121), it is arguable that the graph
1074  properties of lesioned areas have a significant influence as well (60,122). Also, given the
1075 heterogeneity in the lesions applied in this study, we argue that it still retains validity in
1076  representing the wide range of post-stroke deficits and the participation of E-I

1077 homeostasis in recovery.

1078  Another missing aspect in this study is the influence of sub-cortical dynamics. Studies
1079 have shown that the processes of diaschisis involve subcortical structures as well, such
1080 as the spread of thalamocortical dysrhythmia due to decreased excitation in
1081 thalamocortical networks (123). In addition, subcortical lesions also have strong effects
1082  on cortical dynamics (124), albeit not as strongly as cortical lesions. While studying such
1083  effects would be important, it is out of the scope of our study, given the difficulty in
1084 modeling subcortical structures at such a large-scale, due to their functional and
1085  structural heterogeneity. Recent approaches in embedding multiscale subcortical
1086  networks in mean-field models of the human cortex (125) might, however, prove useful
1087  to further study the effects of subcortical lesions and the participation of subcortical

1088  structures in post-stroke recovery.

1089 A further caveat of our study is the aforementioned lack of E-l homeostasis mechanisms
1090 beyond inhibitory synaptic scaling. Arguments in favor of our approach, besides being
1091 the most common in large-scale modeling studies (61,62,64,74), are tied to the
1092 demonstrated importance of inhibitory homeostasis for cortical function (40,58) and the
1093 fact that a long-term decrease in inhibitory activity has been robustly observed in rodent
1094 stroke models (27) and patients (28-30). More importantly, research suggests a
1095 correlation between the magnitude of this decrease and functional recovery (30).
1096  Nonetheless, changes in excitatory neurotransmitters have been observed in stroke
1097 patients as well and different mechanisms of E-I homeostasis, such as excitatory
1098  synaptic scaling and regulation of intrinsic excitability (52) are likely involved. Further
1099  studies could then focus on the involvement of such mechanisms in stroke recovery, the

1100  magnitude of their participation, or the possibility that some of them, such as changes in
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1101  intrinsic excitability, come into play when other types of homeostasis are not sufficient to

1102  adapt to the damage.

1103  Finally, an important caveat in the analysis is that we do not measure changes in
1104  homotopic interhemispheric connectivity, shown to be one of the strongest biomarkers
1105  of stroke correlated with patient behavior (126). The main rationale behind this decision
1106 is the fact that large-scale computational models are generally lacking in the
1107  representation of interhemispheric homotopic connectivity in the cortex, likely due to an
1108 underestimation of white-matter tracts connecting the two hemispheres from methods
1109  such as diffusion tensor imaging (127). Indeed, studies stress the importance of callosal
1110  white matter tracts in underlying stable homotopic FC and communication between
1111  hemispheres (128). Therefore, to counteract the underestimation of homotopic white
1112  matter tracts, recent studies suggest the improvement of structural connectivity data with
1113  white-matter microstructure (129) or the artificial augmentation of homotopic connections
1114  (130). Notwithstanding, we were able to replicate the effects of stroke (19) in FC graph
1115  properties relevant for cortical function, such as modularity or small-worldness (21,22),

1116  showing the participation of E-I homeostasis in their recovery.

117 5. Conclusion

1118 In conclusion, our results lend strength to the claim that cortical E- homeostasis is an
1119  important driver of stroke recovery, not only by showing that it corrects deficits in static
1120  properties of FC, but that the required adjustments to local inhibition are consistent with
1121  the literature on post-stroke changes in inhibition. In addition, we suggest that specific
1122  patterns of altered excitability observed in our model can be associated with biomarkers
1123  of known side effects of stroke (e.g. seizures, depression, neuropathic pain), offering at
1124 least a partial explanation for the increased propensity of stroke patients to develop them.
1125  Therefore, by observing stroke through the lens of E-I homeostasis, we hope to advance
1126  the current knowledge about the neural processes involved in stroke recovery, essential
1127 to improve the effectiveness of therapeutical approaches that modulate cortical
1128  excitability, to predict more reliably the occurrence of stroke side effects and to better
1129 understand putative deficits in homeostatic plasticity that can hinder the rehabilitation

1130 process.
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S$1 = Behavior of uncoupled Wilson-Cowan node under different parameter combinations.

A) Impact of changing the parameter P, which controls the intrinsic excitability of the Wilson-Cowan node, on node activity and power spectrum. On the left side, we
show results for models without noise and, on the right side, we show results of nodes with gaussian noise with 0.01 standard deviation. Note that, in our model,
uncoupled nodes go from a state of low activity to a limit cycle (oscillations), by increasing P, showing the behavior of a Hopf-bifurcation. For the chosen population
time constants (tz = 2.5 ms, t; = 5.0 ms), the Wilson-Cowan model displays oscillations at 40 Hz.

B) Impact of changing population time constants on the oscillatory dynamics of uncoupled noisy Wilson-Cowan nodes (Gaussian noise, 0.01 standard deviation). For
all shown plots, (t; = 273). It can be observed that the intrinsic frequency of oscillation of the Wilson-Cowan nodes is changed by varying the time constants of the
excitatory and inhibitory populations.
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Figure S2 — Change in local inhibitory weights caused by homeostatic plasticity for different time constants of homeostatic plasticity.

A) Variation in time in local inhibitory weights for all 78 nodes in the model, under different time constants of homeostatic plasticity, for the following combination of free
parameters: C = 4.07, p = 0.2, md = 4ms. Note that while cg, values take longer to reach a steady state for slower time constants, the final steady-state values are
virtually the same.

B) Scatter plots of steady-state cg, values for each homeostatic time constant against each other. Note that values are virtually the same, showing that, as long as the
homeostatic time constant is sufficiently slow to be decoupled from local node dynamics, it can be arbitrarily fast without affecting the steady state of the system.
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CEI,,eC(t) = [CEI(t - Twindow)v CEI(t - Twindow + 105). ()r CEI(t - 105); Cgr (t)], Twindow = 600s

Then, the following test condition is applied, using dcg,,, ., the difference between consecutive elements in cg;,,,.

Std(dCEIyec)

VN

When this condition is satisfied in a specific node for the first time during a simulation, we consider that node to have reached a steady
state in terms of cg; weight. Shortly, if the absolute mean change of cg; for that specific node in the last 10 minutes is smaller than the
standard error of the mean in the same period, the value is considered stable. Since the rate of variation of cg; decreases until the local
firing rate is brought close to the target firing rate, |mean(ch,,,,eC)| will decrease until it approaches 0. However, one must account for the
stochasticity of the system, and that is why we compare the mean variation with its respective standard error. Therefore, we effectively
detect when the tendency of variation caused by homeostatic plasticity trying to restore El balance is smaller than changes caused by the
inherent stochasticity of the model.

|mean(dcg; pec)| <

When a steady state has been reached in all nodes or 500 minutes have passed, plasticity is disabled and activity is recorded from the
model.

C=4.07; p=0.2; md =4ms
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S3 - Description of test condition for detection of steady states in cg; and examples of its application for models with two different combinations of free
parameters.
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Figure S4 = Results of the application of different clustering algorithms to average functional connectivity from healthy subjects.
A) Resulting cluster inertia from applying the k-means algorithm described in the methods to empirical averaged functional connectivity from healthy subjects, with

B)

C)
D)

E)

different numbers of clusters. Stars indicate potential 'elbows' in the cluster analysis, i.e. local minima or points with an inflection in inertia relative to the number of
clusters. Inertia was calculated using the sci-kit learn module in Python.

Resulting cluster distance from hierarchical clustering to averaged functional connectivity from healthy subjects, with different numbers of clusters. Stars indicate
potential 'elbows' in the cluster analysis, i.e. local minima or points with an inflection in distance relative to the number of clusters. Hierarchical clustering was
computed using the sci-kit learn module in Python.

Dendrogram of averaged functional connectivity from healthy subjects. Colors represent 6 different clusters.

Functional networks resulting from the application of the k-means clustering algorithm to empirical data with 4 and 6 clusters. Note that the resulting networks for
k=6 can be equated to known resting state networks (e.g. visual (first), somatomotor (second) and default mode network (third)).

Functional networks resulting from the application of hierarchical clustering to empirical data with 4 and 6 clusters. Note that the resulting networks for both k=4 and
k=6 are reasonably similar to the ones in D), with known resting-state networks emerging when k=6.
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Figure S5 = Post-stroke change in modularity for different clustering algorithms, numbers of clusters and edge density threshold ranges
A) Normalized modularity at T1 (acute post-lesion) and T2 (chronic post-lesion) for different results of k-means clustering. Each plot represents modularity analysis
using as modules the result of k-means with the number of clusters ranging from 4 (left) to 10 (right). In each plot, we present results across a range of density
thresholds and the average across density thresholds. Across density thresholds, asterisks represent the level of significance of a Mann-Whitney U-test. For the
average across density thresholds, asterisks represent the level of significance of a Wilcoxon ranked sum test against baseline (norm. mod. = 1). * p<0.05, **

B)
C)

p<0.01, *** p<0.001.

Same as A), but for modules derived from hierarchical clustering.
Normalized modularity at T1 (acute post-lesion) and T2 (chronic post-lesion) for edge-density thresholds ranging between 0.02 and 0.2, with 6 modules derived
from k-means (Left) or hierarchical clustering (Right). In each plot, we present results across the range of density thresholds and the average across density
thresholds. Across density thresholds, asterisks represent the level of significance of a Mann-Whitney U-test. For the average across density thresholds, asterisks
represent the level of significance of a Wilcoxon ranked sum test against baseline (norm. mod. = 1). * p<0.05, ** p<0.01, *** p<0.001.



https://doi.org/10.1101/2022.11.23.517696
http://creativecommons.org/licenses/by-nc-nd/4.0/

FC = correlation

FC - MSE

FCD

FC = correlation

FC - MSE

FCD

FC = correlation

FC - MSE

FCD

bloR iv preprint doi: https://doi.org/10.1101/2022.11.23.517696; this version posted November 24, 2022. The copyright holder for thls

rint (which was not cert i peer reV|eW) is the authormd , who has granted bloRxMﬁdlce'hse to display the preprlnt md
i hde av -ND 4,0 Intesn 029
a 105, 05, | & 5 | &025 05, | & (0.5,
= T T g} 021 o] @
£ S §|E §|E §|E S
e 2 = T | w017 s :
@ g E| g £ | E| S =
=4 S g |2 3| Pg13 s |2 =
i 00" 0o | £ oo | & oo™ | & 0.0
05 z Qa5 z 05 a5 05
0.1 028 0.78 2.19 614 0.1 0.28 0.78 2.19 6.14 0.1 0.28 0.78 2,19 614 0.1 0.28 0.76 2.19 6.14 0.1 028 0.78 2,19 614
Glebal Caupling (C) Glokal Coupling (C) Glebal Caupling (C) Global Coupling (C) Global Coupling (C)
0.29 0.29 0.29
g 025 1 5025 1 1 F025 1
o 0.21 w 0.21 w 0.21
I ] w w w i w
5 0.17 2 5 0.17 g 2 5 017 [
o013 " Eoa3 o " Soas3 .
= 0.09 ~ a.09 = 0.09
5 a5 0.05 a5 05
0.1 028 D78 2,19 6.14 01 028 078 219 614 0.1 028 0.78 2.19 614 01 028 0.78 2.19 614 D.1 028 0.78 2.19 6.14
Global Coupling (C) Global Coupling (C) Global Coupling {C) Global Coupling (C) Global Coupling (C)
0.29 0.29]'
3 1 T 4: 3 0.25 1 3 0.254 1
-4 o 021 o 0.214
w w o
g 2 |3 2 | go17 e |y 017 e
o o o o
S ” = i =013 o = 0134 -
= = " 0.09 = 0.091
05 - T 05 05 > a5 -4 05
0.1 0.28 D.78 2.19 6.14 U 1 0.28 Q.78 2.19 6.14 0.1 0.28 0.76 2.19 614 0.1 0.28 D.78 2.19 6.14 0.1 0.28 0.78 2.19 6.14
Global Coupling (C) Global Coupling (C) Global Coupling (C} Global Coupling (C) Global Coupling (C)
md=7 md=8 md=9 md =10
0.5 . = 0.5 . 0.5 . 0.5 . 0.5 .
ol T o m ‘T
a E <1 =1 1 a
g e v) a (&) u
E| T i g i E i £ i £
a o = =] =} a8
00 | E oot oo™ ooV 00"
05 05 05 05 05
0.1 0.28 0.78 2.1% 6.14 0.1 0.28 0.78 2.19 6.14 01 0.28 078 2.1% 6.14 0.1 0.28 0.78 2.19 6.14 0.1 .28 078 2.1% 6.14
Glohal Coupling (C) Global Caupling (C} Global Coupling (C) Global Coupling (C) Global Coupling (C)
1 o 1 1 1 1
' : i i i i
w w w w w w
I} C ] n a I
= @ = = = =
2
0 I o 0 0 0
05 05 05 05 05
01 028 078 219 6.14 0.1 028 0.78 2.19 6.14 01 028 078 219 6.14 0.1 0.28 0.78 2.19 6.14 01 028 078 2.19 6.14
Global Coupling (C) Global Coupling (C) Global Coupling (C) Global Coupling (C) Glabal Coupling (C)
0.29 0.29 0.29 0.29
§0.25 EO.ZS 1 s §0.25 1 §D.25 3
e 0.21 x 0.21 x 0.21 o 0.21
o w w i
5 0.17 5 017 ] 2 5 017 4 5 017 2
o o o o
2013 SR E] 4 5 Zo13 . 013 i
~ 0.09 " 0.09 " 0.09 ~ 0.09
05 - 05 — 05 - 05 — 05
0.1 0.28 0.78 212 6.14 0.1 0.28 0.78 2.19 6.14 0.1 0.28 078 2.12 6.14 0.1 0.28 0.78 2.19 6.14 0.1 0.28 0.78 212 6.14
Global Coupling (C) Global Coupling (C} Glohal Coupling (C) Global Coupling (C) Global Coupling (C)
md =12 md =15
0.29
0.5, D5 0.5, 705, | 025 £ 0.5,
u z & T zon B
o a (] o | v o]
= - = @ -
§ g & &z :
0.0 0.0 0.0 0.0 g 0.0
05 05 05 05 3 05
0.1 0.28 0.78 2,19 614 0.1 0.28 0.78 2.19 614 0.1 0.28 0.78 2.19 6.14 0.1 028 0.78 2,19 6.14 0.1 0.28 0.78 2.19 .14
Global Coupling (C) Global Coupling (C) Global Coupling (C) Global Coupling (C) Global Coupling (€)
= 1 1 s = 1 g 1
o« a« i o o« i
'S w w ™™ ™ i ™ w
= w n 2 o n F n
1 = = T @ = @ =
24 2 =i =2
e 0 0 e e 0 i 0
0.1 0.28 0.78 2.19 614 0.1 028 0.78 219 614 0.1 0.28 0.78 2.19 6.14 0.1 0.28 0.78 2.19 6.14 01 0.28 0.78 2.19 6.14
Global Caupling (C) Glabal Coupling (C) Global Ceupling (C) Glabal Coupling (C) Global Coupling (C)
0.29 029 0.29 0.29 0.29
5025 1 5 0.254 1 g025 1 5025 1 5025 1
50.21 EDEI' 50.21 EDZI 5021
5 017 bV 5017~ g 5 017 a 5 017 @ 5 0.17 ]
o o | o - = o
2013 . 20,134 A £013 " 2013 o 2013 .
" 0.09 = 0.09- = 0.09 ~ 0.09 " 0.9
0.05 0.05- 0.05 0.05 — .05
0.1 0.28 0.78 2.19 6.14 0.1 0.28 0.78 2.19 614 0.1 0.28 0.78 2.19 6.14 0.1 0.28 0.78 2.19 6.14 0.1 0.28 0.78 2.19 6.14
Global Coupling (C) Global Coupling (C) Global Coupling (C) Global Coupling (C) Global Coupling (C)

Figure S6 — Results of fitting across the full parameter space
Model fit over full parameter space. Each column of three plots represents the results of a grid search over the parameters of global coupling (C) and target firing rate
(FR) (p), for a specific mean delay between 0 and 15 ms. In each column, model performance is shown according to the following metrics: (Top) Pearson’s correlation
between the upper triangle of simulated and empirical FC matrices, (Middle) mean squared error (MSE) between simulated and empirical FC matrices and (Bottom)
Kolmogorov-Smirnoff (KS) distance between the distribution of values in simulated and empirical FCD matrices.
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Figure S7 — Correlation between structural graph properties of lesioned nodes and effects on functional connectivity

A) Distance from baseline FC matrices at T1 (acute post-lesion) and T2 (chronic post-lesion) against node degree, betweenness centrality and clustering coefficient of
lesioned nodes. All graph theoretical measures of lesioned nodes used in the plots were calculated using the networkx module in Python, after transforming the
SC matrix into an undirected unweighted graph by thresholding the 10% strongest structural connections

B) Same as A), for the difference in correlation between structural and functional connectivity at T1 and T2, compared to baseline.

C) Same as A), for normalized modularity at T1 (acute post-lesion) and T2 (chronic post-lesion). Normalization was calculated using the value at TO as the baseline.
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Figure S8 = Changes in excitability of middle temporal cortex across lesions

Variation, between TO and T2, in cg, weight of the middle temporal cortex after lesion in the same hemisphere. Points represent results for left and right lesions in the
respective areas and the dashed line represents the average between these two values. Areas are ordered according to the average effect on middle temporal cortex
excitability.

Change in Asymmetry of Motor Cortex Excitability
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Figure S9 = Change in asymmetry of motor cortex excitability across lesions

Variation, between TO and T2, in motor cortex (precentral gyrus) excitability asymmetry across all lesions. Positive values indicate that the left motor cortex experienced a
stronger increase in excitability when compared to its right counterpart, while negative values indicate the opposite variation. Areas are ordered according to lesion effects in
this asymmetry.

Change in Ipsilesional Somatosensory Cortex Excitability

Figure S10 = Change in excitability of somatosensory cortex across lesions

Variation, between TO and T2, in cg, weight of the somatosensory cortex (postcentral gyrus) after lesion in the same hemisphere. Points represent results for left and right
lesions in the respective areas and the dashed line represents the average between these two values. Areas are ordered according to the average effect on somatosensory
cortex excitability.

Change in Ipsilesional Motor Cortex Excitability

Figure S11 = Changes in excitability of ipsilesional motor cortex across lesions.
Variation, between TO and T2, in cg, weight of the motor cortex (precentral gyrus) after lesion in the same hemisphere. Points represent results for left and right lesions in the
respective areas and the dashed line represents the average between these two values. Areas are ordered according to the average effect on motor cortex excitability.
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