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Abstract 13 

Stroke-related disruptions in functional connectivity (FC) often spread beyond lesioned 14 

areas and, given the localized nature of lesions, it is unclear how the recovery of FC is 15 

orchestrated on a global scale. Since recovery is accompanied by long-term changes in 16 

excitability, we propose excitatory-inhibitory (E-I) homeostasis as a driving mechanism. 17 

We present a large-scale model of the neocortex, with synaptic scaling of local inhibition, 18 

showing how E-I homeostasis can drive the post-lesion restoration of FC and linking it to 19 

changes in excitability. We show that functional networks could reorganize to recover 20 

disrupted modularity and small-worldness, but not network dynamics, suggesting the 21 

need to consider forms of plasticity beyond synaptic scaling of inhibition. On average, 22 

we observed widespread increases in excitability, with the emergence of complex lesion-23 

dependent patterns related to biomarkers of relevant side effects of stroke, such as 24 

epilepsy, depression and chronic pain. In summary, our results show that the effects of 25 

E-I homeostasis extend beyond local E-I balance, driving the restoration of global 26 

properties of FC, and relating to post-stroke symptomatology. Therefore, we suggest the 27 

framework of E-I homeostasis as a relevant theoretical foundation for the study of stroke 28 

recovery and for understanding the emergence of meaningful features of FC from local 29 

dynamics.30 
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1. Introduction 31 

Stroke, characterized by neural tissue necrosis (i.e. lesion) due to oxygen loss after 32 

occlusion or hemorrhage of a vessel supplying blood to the brain, is one of the leading 33 

causes of disability, with a significant negative impact on patient life quality (1) due to its 34 

debilitating symptoms, ranging from motor deficits to impaired higher-order functions 35 

such as attention and memory (1,2). Besides these symptoms, stroke patients tend to 36 

develop long-term side effects such as seizures (in some cases evolving into epilepsy) 37 

(3–5), chronic pain (6,7), depression (8–10) and chronic fatigue (11). This heterogeneity 38 

in symptoms and side effects raises the need to better understand the mechanisms 39 

through which these symptoms emerge, to better predict their occurrence and to inform 40 

therapeutical approaches. This task is made difficult not only by the heterogeneity in 41 

lesions, but also since their consequences on neural activity and connectivity often 42 

spread beyond lesioned areas (Carrera and Tononi, 2014; Páscoa dos Santos and 43 

Verschure, 2022). This phenomenon, first described by Konstantin von Monakow in 1914 44 

(12), is known as diaschisis. Although its initial conception pertained to acute changes in 45 

the excitability of regions distant from the lesion, today the concept has been expanded 46 

to include global changes in connectivity (13). This might include a range of deficits in 47 

functional connectivity (FC), from disconnection between particular areas (14–17) to 48 

structural-functional decorrelation (18). However, it is considered that the most robust 49 

disruptions, found to correlate with function, are decreased homotopic interhemispheric 50 

functional connectivity and increased functional connectivity between regions that were 51 

not previously connected (Corbetta et al., 2018), manifesting through a loss of modularity 52 

(19). Modularity, a property of networks that have strong connectivity within node 53 

communities, with sparser connections between them, has been observed in human 54 

functional and structural networks and is considered to reflect an appropriate balance 55 

between segregation and integration of networks, underlying functional specialization 56 

(20,21). Importantly, modularity is significantly disrupted following a stroke and is 57 

recovered in the following months, with the magnitude of recovery correlating with 58 

improvement in higher-order functions such as attention and working memory (19). 59 

Similarly, small-worldness, a property of networks where most nodes are not neighbors, 60 

but can be reached through a short path through highly connected nodes (hubs) (22), is 61 

lost after a stroke and subsequently recovered (19). Besides affecting structural and 62 

functional connectivity, stroke lesions may have comparable effects on cortical network 63 

dynamics. While empirical studies are lacking, modeling studies suggest significant post-64 
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lesion effects on dynamical features such as metastability, quantifying the ability of a 65 

network to flexibly switch between synchronous and asynchronous states (23) or 66 

criticality, a property of brain networks underlying balanced propagation of activity (24). 67 

Therefore, the post-stroke loss, and subsequent recovery, of global properties of FC (and 68 

possibly network dynamics), raise the question of how the human cortex coordinates the 69 

restoration of properties on a large scale. 70 

Several studies have reported persistent increases in excitability in the period following 71 

stroke, both in rodent models of the disease (25–27) and in human patients (28–30). 72 

Such increases have been related to several factors, from increased glutamatergic 73 

receptor density (31), prolonged excitatory postsynaptic potentials (25) or, more 74 

importantly, decreased GABAergic signaling (27,32–34). Indeed, studies in stroke 75 

patients indicate that not only is there a longitudinal decrease in the availability of 76 

GABAergic neurotransmitters in the cortex (29), but that its magnitude correlates with 77 

behavioral recovery (30). Therefore, as previously suggested (35–37), it is likely that 78 

these changes play a significant role in stroke recovery and might result from 79 

mechanisms intended to maintain excitatory-inhibitory (E-I) balance in cortical networks, 80 

following a significant loss in excitation caused by gray-matter loss or disruption of white-81 

matter tracts. 82 

Indeed, research supports E-I balance as a pivotal feature of cortical networks (38–41), 83 

which maintain a close-knit balance between the levels of excitation and inhibition 84 

arriving at individual pyramidal neurons (42–44). In addition, criticality, an emergent 85 

signature of E-I balance, has been consistently observed in neural dynamics (45–48) 86 

and is relevant for the optimization of functions ranging from high dynamic ranges to 87 

information capacity and transmission (49–51). Given its relevance to neural function, 88 

cortical neurons have mechanisms of homeostasis that maintain E-I balance (52), from 89 

synaptic scaling of excitatory synapses to regulation of intrinsic excitability (53–57). Of 90 

particular interest is the scaling of incoming inhibitory synapses by pyramidal neurons, 91 

which has been shown to occur after perturbations such as sensory deprivation (56) and 92 

to be a strong factor underlying sensory co-tuning, memory stability (40) or criticality in 93 

cortical networks (58). Importantly, these processes work on long timescales of hours to 94 

days in mice (52) or up to several weeks in monkeys, depending on the type of disruption 95 

(59). Therefore, it is likely that such homeostatic mechanisms might participate in stroke 96 

recovery (35–37) and underlie the long-term changes in excitability observed in patients 97 

(29,30). In addition, it could be possible, as previously suggested (60), that homeostatic 98 

plasticity mechanisms are not only responsible for restoring local E-I balance but also 99 

contribute to recalibrating global properties of FC. Therefore, E-I homeostasis could 100 
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potentially explain the long-term local changes in excitability and the recovery of global 101 

dynamics and FC properties simultaneously. 102 

On this subject, not only have previous modeling studies shown the importance of E-I 103 

homeostasis to accurately reproduce cortical dynamics (61) and functional connectivity 104 

(62–64), but also that it might be involved in stroke recovery. The study of Vattikonda 105 

and colleagues (60) showed that the restoration of E-I balance, through inhibitory 106 

synaptic scaling, further helped with the recovery of FC in a lesion-dependent manner. 107 

In addition, models fitted to FC from stroke patients showed reduced local inhibition 108 

compared to healthy controls (65). Such approaches, however, lack a detailed 109 

exploration of what E-I homeostasis entails regarding which changes in excitability are 110 

driving this process how they are distributed across the brain. This understanding is 111 

relevant not only to better link the action of E-I homeostasis to current knowledge on 112 

post-stroke changes in excitability (27,29,30) but also to elucidate the etiology of stroke 113 

symptomatology, such as post-stroke seizures (3), depression (10) and chronic pain (7), 114 

which have been tied to changes in excitability. E-I homeostasis could then explain why 115 

stroke patients display an increased propensity to develop such symptoms, framing them 116 

as side-effects of homeostatic plasticity attempting to restore local E-I balance. 117 

Therefore, we hypothesize that E-I homeostasis not only plays an important role in the 118 

maintenance of E-I balance at the mesoscale but also in the recovery of macroscale 119 

properties of FC (i.e. modularity and small-worldness). In this modeling study, we aim to 120 

explore the involvement of E-I homeostasis in recovery from localized lesion in large-121 

scale networks of interacting nodes and the subsequent changes in excitability it entails. 122 

To that end, we simulate gray-matter lesions in a network model constrained by the 123 

structural connectome of the human cortex, including local E-I homeostasis 124 

mechanisms. Our main goal is then to study the long-term changes in excitability 125 

observed in lesioned brain networks through the lens of homeostatic plasticity, tying them 126 

to the global recovery of FC and suggesting a novel process participating in the 127 

emergence of late-onset side effects of stroke previously related to altered cortical 128 

excitability, such as epilepsy, depression and chronic pain.129 
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2. Methods  130 

2.1. Empirical data 131 

2.1.1. Structural Connectivity       132 

In order to derive structural connectivity matrices of 78x78 dimensions, we used a 133 

probabilistic tractography-based normative connectome from the leadDBS toolbox 134 

(https://www.lead-dbs.org/). This normative connectome comes from 32 healthy 135 

participants (mean age 31.5 years old ± 8.6, 14 females) generated as part of the Human 136 

Connectome Project (HCP - https://www.humanconnectome.org) from diffusion-137 

weighted and T2-weighted Magnetic Resonance Imaging data recorded for 89 minutes 138 

on a specially set up MRI scanner with more powerful gradients to the standard models. 139 

The HCP data acquisition details can be found in the Image & Data Archive 140 

(https://ida.loni.usc.edu/). For the diffusion imaging, DSI studio (http://dsi-141 

studio.labsolver.org) with a generalized q-sampling imaging algorithm was used. 142 

Furthermore, a white-matter mask, derived from the segmentation of the T2-weighted 143 

anatomical images was applied to co-register the images to the b0 image of the diffusion 144 

data using the SPM 12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). 145 

Then, each participant was sampled with 200 000 most probable tracts. The tracts were 146 

transformed to the standard space (MNI space) by applying a nonlinear deformation field, 147 

derived from the T2-weighted images via a diffeomorphic registration algorithm (66). The 148 

individual tractograms were then aggregated into a joint dataset in MNI standard space 149 

resulting in a normative tractogram representative of a healthy young adult population 150 

and made available in the leadDBS toolbox (67). Finally, to obtain structural 151 

connectomes from the normative connectome in our desired parcellation – the Anatomic 152 

Automatic Labeling (AAL) atlas (68) -, we calculated the mean tracts between the voxels 153 

belonging to each pair of brain regions. 154 

2.1.2. BOLD fMRI Time Series 155 

The data from healthy controls used to fit the model were obtained from the public 156 

database of the Human Connectome Project (HCP), WU-Minn Consortium (Principal 157 

Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 158 

NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; 159 

and by the McDonnell Center for Systems Neuroscience at Washington University. (69). 160 
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The specific data used in this project was obtained from 100 unrelated subjects from the 161 

HCP database (mean age 29.5 years old, 55% females). Each subject underwent four 162 

resting-state fMRI sessions of about 14.5 minutes on a 3-T connectome Skyra scanner 163 

(Siemens) with the following parameters: TR = 0.72 s, echo time = 33.1 ms, field of view 164 

= 208x180mm, flip angle = 52º, multiband factor = 8, echo time = 33.1 with 2x2x2 165 

isotropic voxels with 72 slices and alternated LR/RL phase encoding. For further details 166 

on the data acquisition and standard processing pipeline, please consult (70) and 167 

https://www.humanconnectome.org/study/hcp-young-adult/data-releases.  In this work, 168 

we used the data from the first session of the first day of scanning. 169 

The AAL atlas was further used to parcellate the voxel-based data into 90 anatomically 170 

distinct cortical and subcortical regions, excluding the cerebellum. For this work, we then 171 

exclude the 12 subcortical regions, given that our modeling approach is focused on 172 

cortical dynamics (see section 2.2). Therefore, after averaging BOLD signals associated 173 

with each of the 78 cortical regions, data was reduced to size 78 areas X 1200 TR. 174 

2.2. Neural Mass Model 175 

To model the activity of individual cortical regions we make use of the Wilson-Cowan 176 

model of coupled excitatory and inhibitory populations (62,71) (Fig. 1a). As a mean-field 177 

approach, the Wilson-Cowan model is based on the assumption that the neural activity 178 

of a determined population of neurons can be described by its mean at a given instant 179 

in time (72). Shortly, the equations describing the firing-rate dynamics of coupled 180 

excitatory (𝑟𝐸) and inhibitory (𝑟𝐼) populations, adapted from (62), can be written as: 181 

𝜏𝐸
𝑑𝑟𝑖

𝐸(𝑡)

𝑑𝑡
= −𝑟𝑖

𝐸(𝑡) + 𝐹 [𝑐𝐸𝐸𝑟𝑖
𝐸(𝑡) − 𝑐𝐸𝐼,𝑖(𝑡)𝑟𝑖

𝐼(𝑡) + 𝐶 ∑ 𝑊𝑖𝑗𝑟𝑖
𝐸(𝑡 − 𝜏𝑖𝑗)

𝑁

𝑗=1

+ 𝜉(𝑡) + 𝑃] ,  182 

𝜏𝐼
𝑑𝑟𝑖

𝐼(𝑡)

𝑑𝑡
= −𝑟𝑖

𝐼(𝑡) + 𝐹 [𝑐𝐼𝐸𝑟𝑖
𝐸(𝑡) + 𝜉(𝑡)], (1) 183 

where 𝑐𝑥𝑦 represents the coupling from population 𝑦 to 𝑥, 𝐶 is a scaling factor for 184 

structural connectivity, formally called global coupling, and 𝜉 is additive 𝑁(0,0.01) 185 

Gaussian noise. 𝑊𝑖𝑗 represents the structural connections between nodes in the large-186 

scale network and is constrained by human structural connectivity data (see section 187 

2.1.1). 𝜏𝑖𝑗, in turn, represents the conduction delay between regions 𝑖 and 𝑗 and is 188 

determined according to empirical white-matter tract length, by dividing tract lengths by 189 

a given conduction speed. Long-range connections are only implemented between 190 

excitatory neural masses, given the evidence that long-range white matter projections 191 
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are nearly exclusively excitatory (73), and following the state-of-the-art in large-scale 192 

modeling (61,62,64,74). 𝐹(𝑥) is a sigmoid function representing the F-I curve of a 193 

population of neurons, given by: 194 

𝐹(𝑥) =
1

1 + 𝑒−
𝑥−𝜇

𝜎

, (2) 195 

where 𝜇 and 𝜎 can be understood, respectively, as the excitability threshold and 196 

sensitivity of the neural mass response to external input.  197 

The values of the remaining parameters were adapted from (62) and can be consulted 198 

in Table 1. 199 

For the given parameters, the local neural mass model behaves as a Hopf-Bifurcation 200 

(Fig. S1), switching from a steady state of low activity to oscillations, depending on the 201 

level of external input. The frequency of oscillation is controlled by the parameters 𝜏𝐸 202 

and 𝜏𝐼. Given that local cortical networks are thought to intrinsically generate gamma 203 

oscillations through the interaction between pyramidal cells and fast-spiking inhibitory 204 

interneurons (75,76), we chose 𝜏𝐸 and 𝜏𝐼 so that isolated neural masses generate 205 

oscillations with an intrinsic frequency in the gamma range (~40 Hz) (Fig. S1). The level 206 

of input required for the phase transition to occur is, in turn, controlled by 𝜇. Therefore, 207 

we chose 𝜇 so that an isolated neural mass, with no external input, is poised near the 208 

critical bifurcation point and oscillations emerge only through the coupling between 209 

nodes. 210 

Table 1 – Fixed model parameters and ranges of variation of free parameters (𝐶, mean delay and 𝜌). 211 

Parameter Value Units 

𝜏𝐸 2.5 ms 

𝜏𝐼 5 ms 

𝑐𝐸𝐸 3.5 - 

𝑐𝐼𝐸 3.75 - 

P 0.31 - 
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𝜇 1 - 

𝜎 0.25 - 

𝜏ℎ𝑜𝑚𝑒𝑜 2500 ms 

𝐶 [0.1, 14] - 

Mean Delay [0, 15] ms 

𝜌 [0.05, 0.3] - 

 212 

2.3. Homeostatic Plasticity 213 

We implemented homeostatic plasticity as synaptic scaling of inhibitory synapses 214 

(40,56), as it has been shown to take an important part in cortical circuit function and 215 

homeostasis (40,58) and has been previously applied in the context of large-scale 216 

modeling (60–62,64). Shortly, local inhibitory weights adapt to maintain excitatory activity 217 

(𝑟𝐸) close to a given target firing rate (𝜌). Therefore, the dynamics of local inhibitory 218 

couplings 𝑐𝐸𝐼,𝑖 are described by the following equation, following (40): 219 

𝜏ℎ𝑜𝑚𝑒𝑜

𝑑𝑐𝐸𝐼,𝑖

𝑑𝑡
= 𝑟𝑖

𝐼(𝑟𝑖
𝐸 − 𝜌) (3) 220 

where 𝜏ℎ𝑜𝑚𝑒𝑜 is the time constant of plasticity. Such homeostatic plasticity mechanisms 221 

are known to operate in slow timescales of hours to days (52) or even weeks in primates 222 

(59). Here, to keep simulations computationally tractable, we chose 𝜏ℎ𝑜𝑚𝑒𝑜 to be 2.5s. In 223 

fact, since the magnitude of 𝜏ℎ𝑜𝑚𝑒𝑜 solely controls how fast 𝑐𝐸𝐼 weights evolve towards 224 

a steady-state, provided that 𝜏ℎ𝑜𝑚𝑒𝑜 is sufficiently slow for plasticity to be decoupled from 225 

the fast dynamics of local oscillations, 𝑐𝐸𝐼 weights will stabilize to nearly exactly the same 226 

values (Fig. S2). 227 

2.4. Hemodynamic Model 228 

From the raw model activity, we extracted simulated BOLD signals by using a forward 229 

hemodynamic model (77), as described in (78). In short, the hemodynamic model 230 

describes the coupling between the firing rate of excitatory populations (𝑟𝐸) and blood 231 

vessel diameter, which in turn affects blood flow, inducing changes in blood volume and 232 
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deoxyhemoglobin content, thought to underlie the BOLD signals measured through 233 

fMRI. A detailed description of the system, explaining the hemodynamic changes in node 234 

𝑖, is given by: 235 

𝛿𝑠𝑖(𝑡)

𝛿𝑡
= 𝑟𝑖 − 𝑘𝑖𝑠𝑖 − 𝛾𝑖(𝑓𝑖 − 1) 236 

𝛿𝑓𝑖(𝑡)

𝛿𝑡
= 𝑠𝑖 237 

𝜏ℎ

𝛿𝑣𝑖(𝑡)

𝛿𝑡
= 𝑓𝑖  − 𝑣𝑖

1/𝛼
 238 

𝜏ℎ

𝛿𝑞𝑖(𝑡)

𝛿𝑡
=  

𝑓𝑖(1 − (1 − 𝜌ℎ)1/𝑓𝑖)

𝜌ℎ
−

𝑣𝑖
1/𝛼

𝑞𝑖

𝑣𝑖
 239 

𝑦𝑖 = 𝑉0 (7𝜌𝑖(1 − 𝑞𝑖) + 2 (1 −
𝑞𝑖

𝑣𝑖
) + (2𝜌𝑖 − 0.2)(1 − 𝑣𝑖)) , (4) 240 

where 𝑦𝑖 represents the BOLD signal from node 𝑖. The parameters were taken from (78). 241 

After passing model activity through the hemodynamic model, the output is 242 

downsampled to a sampling period of 0.72s to equate modeled signals to the empirical 243 

data obtained from human controls used for model optimization. 244 

2.5. Model Optimization 245 

Model optimization was performed by considering the global coupling (𝐶), mean delay 246 

and target firing rate (𝜌) as free parameters. Similarly to previous studies (62), we 247 

represent conduction speeds through the mean of the correspondent conduction delays 248 

(𝜏𝑖𝑗). The range of variation for each of the free parameters is described in Table 1. Within 249 

the respective ranges, we selected 25 logarithmically spaced values for 𝐶, 26 values for 250 

𝜌 in steps of 0.01 and 16 mean delays in steps of 1 ms. During simulations, we record 251 

𝑐𝐸𝐼 weights every 10s due to their slow evolution and to avoid dealing with large datasets. 252 

To ensure that 𝑐𝐸𝐼 reached a stable or quasi-stable steady state, we ran models for 500 253 

minutes of simulation time or until local inhibitory weights had converged to a steady 254 

state, through the test condition described in the supplementary material (Fig. S3). After 255 

this stabilization period, homeostatic plasticity was disabled and model activity was 256 

recorded for 30 minutes. Similarly to (62), we disable plasticity during the recording of 257 

signals to ensure that our final measure of activity is not affected by changes in local 258 

synaptic weights, although the slow dynamics of plasticity are unlikely to interfere with 259 

the fast dynamics of neural activity. 260 
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To evaluate model performance against empirical data, we make use of the following 261 

properties of FC, following (74) (Fig. 1b): 262 

● Static FC: 78 × 78 matrix of correlations between BOLD time series across all 263 

network nodes. Modeled FC matrices were compared with group-averaged 264 

empirical FC by computing the correlation coefficient and mean squared error 265 

between their upper-triangular elements. 266 

● FC Dynamics (FCD): matrix of correlations between the upper-triangular part of 267 

FC matrices computed in windows of 80 samples with 80% overlap. Model results 268 

are compared to empirical data by performing a Kolmogorov-Smirnov test 269 

between the distributions of values in the respective FCD matrixes.  270 

2.6. Stroke Simulation Protocol 271 

To compare cortical activity and networks pre-stroke, post-stroke acute and post-stroke 272 

chronic, we implement the following protocol (Figure 1a,ii). First, we initialize the model 273 

with optimized hyper-parameters (𝐶, 𝜌 and mean delay) and without homeostatic 274 

plasticity. We fix the 𝑐 𝐸𝐼 weights to the steady-state values corresponding to that 275 

combination of parameters, as obtained from the model optimization procedure, and 276 

record 30 minutes of pre-lesion baseline activity (T0). Then, we simulate cortical gray-277 

matter lesions by removing all the connections to and from a single node in the network, 278 

similar to previous approaches (60,79). Without turning homeostatic plasticity on, we 279 

extract 30 minutes of simulated activity to represent cortical activity during the acute post-280 

stroke period (T1). Given the slow timescales of homeostatic plasticity in the cortex of 281 

primates (59), it is unlikely that the human cortex is able to fully adapt to the post-stroke 282 

loss in excitation during the acute period. Therefore, we argue that it is reasonable to 283 

simulate it by measuring activity in a lesioned model without homeostatic compensation. 284 

We then allow equation (3) to change 𝑐 𝐸𝐼 weights and simulate a maximum of 500 extra 285 

minutes of simulated time or until 𝑐 𝐸𝐼 weights reach a new steady state, using the method 286 

described in the supplementary material (Fig. S3). Plasticity is then disabled and 30 287 

minutes of simulated activity are extracted to represent the chronic period of stroke 288 

recovery.  289 

In all simulations, equations (1) and (2) were solved numerically, using the Euler method 290 

with an integration time step of 0.2ms (5kHz). Model simulations and subsequent 291 

analysis were implemented in Python using in-house scripts, accessible in 292 

https://gitlab.com/francpsantos/stroke-e-i-homeostasis. 293 
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2.7. Analysis of Network Dynamics 294 

2.7.1. Synchrony and Metastability 295 

To evaluate the effect of stroke on the network dynamics of our model we measured 296 

synchrony and metastability (Fig. 1b). To do that, we first compute the Kuramoto order 297 

parameter (KOP) (80,81), which represents the degree of synchrony among a set of 298 

coupled oscillators at a given point in time. The KOP can be calculated as: 299 

𝑍(𝑡) =  𝑅(𝑡)𝑒𝑖𝛷(𝑡) =
1

𝑁
∑ 𝑒𝑖𝜃𝑛(𝑡)𝑁

𝑛=1 , (5)   300 

where 𝜃𝑛(𝑡) represents the instantaneous Hilbert phase of a given node 𝑛 at time 𝑡. 301 

Synchrony and metastability are defined as the mean and standard deviation of 𝑅(𝑡) 302 

over time, respectively. Therefore, while synchrony represents the degree of phase 303 

coupling between nodes in the network, metastability represents the level of flexible 304 

switching between a state of synchrony and asynchrony (81). 305 

2.7.2. Criticality 306 

In critical systems, the size of population events will follow a power-law distribution. In 307 

neural systems, such events have been related to neuronal avalanches, where the 308 

activation of one of the network elements triggers a response of other elements, until 309 

activity dies out. It has been shown that the size and duration of such neuronal 310 

avalanches follow a power-law distribution with exponent -1.5 (46,82), at various levels, 311 

from local networks to large-scale activity (46,83). Importantly, it is thought that neural 312 

systems may operate at this point of criticality to optimize several network functions, from 313 

dynamic ranges to information storage and transmission (49–51,84,85).  314 

To detect neural avalanches in our data, we employ the method from (61). After time-315 

series from each excitatory node are Z-scored (𝐸𝑖(𝑡) =
1

𝜎(𝐸𝑖 )
(𝐸𝑖 − 𝐸𝑖̂)), we detect 316 

incursions beyond a threshold of ±2.3, thus identifying events that are distinct from noise 317 

with a probability of p<0.01. Then, we define events as the time points where the signal 318 

first crossed the threshold and avalanches as continuous periods of time where events 319 

occurred in the network. Subsequently, to measure criticality, we employ the method 320 

developed by (51), comparing the distribution of avalanche sizes in neural data with a 321 

truncated power-law with exponent -1.5. Shortly, we computed the measure 𝑘 using: 322 

𝑘 = 1 +
1

𝑚
∑(𝐹𝑁𝐴(𝛽𝑛 ) − 𝐹𝑃𝐿(𝛽𝑛))

𝑚

𝑛=1

, (6) 323 
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where 𝑚 = 10 is the number of logarithmically spaced points 𝛽𝑛 between the minimum 324 

and maximum avalanche sizes, 𝐹𝑃𝐿 is the cumulative distribution of a -1.5 exponent 325 

power-law, truncated so that the maximum avalanche size is the number of nodes in our 326 

model (𝑁 = 78), and 𝐹𝑁𝐴 is the cumulative distribution of avalanche sizes in the model 327 

data. Therefore, a score of 𝑘 close to 1 means that the system is close to criticality, while 328 

scores below and above 1 are characteristic of sub and supercritical systems, 329 

respectively. 330 

2.8. Analysis of Functional Connectivity Properties 331 

2.8.1 FC Distance 332 

To measure the dissimilarity between FC matrices at T0, T1 and T2, we make use of a 333 

metric we call FC distance, following (60), defined as the Frobenius norm of the 334 

difference between two matrices. 335 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐹𝐶1 , 𝐹𝐶2) = √∑ ∑ (𝐹𝐶2 − 𝐹𝐶1)𝑖𝑗
2

𝑗𝑖
 (7) 336 

2.8.2 Correlation between FC and SC 337 

Given the results of (18), showing a decoupling between functional and structural 338 

connectivity in stroke patients, correlated with motor function, we test this biomarker at 339 

T0, T1 and T2 by computing the Pearson’s correlation coefficient between the upper 340 

triangles of FC and SC matrices. 341 

2.8.3 Modularity 342 

Modularity measures the degree to which a network follows a community structure, with 343 

dense connections within modules and sparser ones between them. Modularity (Q) was 344 

calculated using the formula defined in (19): 345 

𝑄 =  ∑ [𝑒𝑢𝑢 − (∑ 𝑒𝑢𝑣
𝑣∈𝑀

)
2

]

𝑢∈𝑀

, (8) 346 

where M is a set of non-overlapping modules (groups of nodes) in the network and 𝑒𝑢𝑣 347 

is the proportion of edges in the network than connect nodes in module 𝑢 with nodes in 348 

module 𝑣. Similarly to (19), we chose network modules a priori to avoid biasing the 349 

modularity measure by directly using a clustering algorithm that optimizes community 350 

structure in data and also to avoid the problem of varying numbers of modules when 351 
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using community detection algorithms in data from different time points in the simulation 352 

protocol. In our analysis, instead of relying on a pre-defined set of communities, we 353 

extract our modules from the empirical FC data, by using a clustering algorithm to detect 354 

resting state networks (86). Shortly, we applied k-means clustering (k=6) 200 times on 355 

the empirical averaged FC matrix and recorded the number of runs each pair of nodes 356 

were grouped together in an association matrix. Afterward, we applied k-means 357 

clustering (k=6) to the association matrix to detect modules that could be equated to 358 

known resting state networks (Fig. S4). Those networks were then used as modules for 359 

the calculation of modularity. Different clustering algorithms were applied, leading to 360 

qualitatively similar results (Fig. S4, Fig. S5). The same was observed for different 361 

number of clusters (Fig. S5). Since the formula used for modularity relies on the 362 

assumption that graphs are undirected and unweighted, FC matrices were transformed 363 

into unweighted graphs by applying a density threshold, through which only a percentage 364 

of strongest connections are kept and considered edges of the unweighted FC graph 365 

(Fig. 1b). Lesioned regions were removed from the network before computing modularity, 366 

similarly to (19). 367 

2.8.4. Small World Coefficient 368 

The small-world (SW) coefficient measures the degree to which a given graph has small-369 

world properties, i.e. its small-worldness. In SW networks, most nodes are not connected 370 

but can be reached from any starting point through a small number of edges. SW 371 

coefficients were calculated using the following equation (19,87): 372 

𝑆𝑊 =  
𝐶/𝐶𝑟𝑎𝑛𝑑

𝐿/𝐿𝑟𝑎𝑛𝑑
 (9) 373 

where 𝐶 is the average clustering coefficient of a given graph and 𝐿 is its characteristic 374 

path length. Clustering coefficients measure the degree to which the neighbors of a node 375 

are interconnected, and the characteristic path length represents the average of shortest 376 

path lengths between all nodes in a graph. Both metrics were computed using the 377 

networkx module in Python (88). While 𝐶 and 𝐿 represent the values from our simulated 378 

data, 𝐶𝑟𝑎𝑛𝑑 and 𝐿𝑟𝑎𝑛𝑑 represent the same metrics taken from a random unweighted and 379 

undirected graph with the same edge density as the FC graphs from simulated data. To 380 

account for the intrinsic stochasticity in the process, for each simulated FC matrix, 𝑆𝑊 381 

was calculated 100 times for different generated random networks and the results were 382 

averaged to obtain the final 𝑆𝑊 value. Similarly to modularity, 𝑆𝑊 was calculated after 383 

applying a density threshold to FC matrices and lesioned nodes were removed before 384 

the calculation. 385 
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Here, both for modularity and small-world coefficients, instead of performing analysis for 386 

edge density thresholds between 4 and 20%, following (19), the range was extended to 387 

40%. This is due to the smaller size of our network (78 vs. 324 brain regions), often 388 

leading to unconnected graphs when applying thresholds lower than 20%. While this 389 

would not affect the calculation of modularity, the computation of small-world coefficients 390 

requires graphs to be connected to calculate average shortest-path lengths. 391 

Nonetheless, modularity results are qualitatively similar when performing analysis within 392 

the 2-20% range (Fig. S5). 393 

  394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 
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 402 

Figure 1 - Computational Model and Data Analysis.  403 

A) Model Architecture and simulation protocol. i) Cortical dynamics were modeled using a system of neural 404 

masses connected through long-range excitatory connections derived from DTI from healthy subjects. Local 405 

activity was simulated using the Wilson-Cowan model of coupled excitatory and inhibitory populations, with 406 

the addition of homeostatic plasticity regulating inhibitory synapses, with the goal of maintaining excitatory 407 

firing rates at a target level (ρ). ii) To study the effects of stroke on functional connectivity, the model is first 408 

run until a steady state is reached in terms of local inhibitory weights, after which a lesion is applied by 409 

removing all connections from the lesioned area in the structural connectivity matrix. Acute activity is then 410 

extracted before plasticity is allowed to adjust inhibitory connections and, subsequently, plasticity is enabled, 411 

when local inhibition reaches a new steady state, we extract activity again to simulate the chronic period of 412 

stroke recovery. 413 

B) Analysis of modeled data. To accurately represent BOLD signals, model activity from the excitatory 414 

populations is passed through a hemodynamic model that mechanistically couples neural activity to the 415 

changes in blood oxygenation measured by BOLD fMRI. BOLD signals are then filtered and used to compute 416 

measures of connectivity and dynamics. 417 
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3. Results 418 

3.1. Model Results Capture Healthy FC Data in Parameter 419 

Region Corresponding to Rich Network Dynamics 420 

To find the optimal working point of our model that best represents empirical FC and 421 

FCD, we ran simulations for all the combinations of global coupling (𝐶), mean delay and 422 

target firing rate (𝜌) described in the methods section. In Fig.2a, we represent the results 423 

of model optimization for mean delay = 4 ms, for simplicity of representation. The results 424 

of optimization for the remaining combinations of parameters can be consulted in Fig. 425 

S6. From these, it can be visualized that 4ms is generally the optimal mean delay, in 426 

particular regarding an accurate representation of empirical FCD. Furthermore, 4ms 427 

mean delay corresponds to a conduction speed of ≈39m/s which is within a reasonable 428 

physiological range for myelinated axons (89). Focusing on FC, it can be observed from 429 

Fig.2a that the improved fitting is achieved for high couplings and a target firing rate close 430 

to 0.2. In addition, the model captures the overall structure of empirical FC (as measured 431 

through the correlation coefficient) as well as the magnitude of connectivity (as measured 432 

through the MSE) (Fig 2a and b). Regarding FCD, there is a wide region in the parameter 433 

space where the distribution of modeled FCD matrices matches empirical results. Since 434 

the same wide parameter region is not observed for other mean delays (Fig. S6), results 435 

suggest that axonal conduction velocity has a significant influence on the accurate 436 

representation of FCD in our model. Furthermore, there is a narrow parameter region 437 

where we can simultaneously optimize the representation of both FC and its dynamics 438 

(Fig 2a,i). In this parameter region, BOLD signals show rich dynamics, characterized by 439 

transient co-activation of groups of nodes in the network (Fig. 2b), as is characteristic of 440 

resting-state cortical signals (90). Importantly, and following previous studies (91), the 441 

optimal region lies in the transition between low and high synchrony, corresponding to a 442 

region of optimal metastability (Fig. 2a,ii). In addition, this parameter region further 443 

corresponds to global dynamics that are close to criticality, following previous studies 444 

showing that criticality is a property of large-scale cortical networks (83), also observed 445 

in models with similar homeostatic mechanisms (61). Therefore, the model can 446 

reproduce, to some level, the structure of FC and its transient dynamics, and is in 447 

accordance with the current knowledge of the dynamic features of brain activity. Given 448 

these results we choose the following hyperparameter values for the simulations in the 449 
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subsequent sections, 𝐶 = 4.07, 𝜌 = 0.2, mean delay = 4 ms, as indicated by the white 450 

arrows in Fig. 2a. 451 

 452 

Figure 2 - Model Optimization and Dynamics 453 

A) Model fit and dynamics over parameter space. i) Model fit to empirical FC data. The plots represent the 454 

results of a grid search over the parameters of global coupling (𝐶) and target firing rate (FR) (𝜌), with the 455 

mean delay fixed at 4ms. Model performance was evaluated by the following metrics: (first) Pearson’s 456 

correlation between the upper triangle of simulated and empirical FC matrices, (second) mean squared error 457 

(MSE) between simulated and empirical FC matrices and (third) Kolmogorov-Smirnoff (KS) distance 458 

between the distribution of values in simulated and empirical FCD matrices. The rightmost plot shows the 459 

result of applying the following thresholds: correlation coefficient ≥ 0.45, MSE ≤ 0.1, KS distance ≤ 0.15. 460 

Arrows show the model working point used in the simulations (𝐶=4.07; 𝜌=0.2; mean delay=4ms), which 461 

satisfies the thresholds for all fitting metrics (correlation coefficient = 0.487, MSE = 0.046, KS distance = 462 

0.138). ii) Model dynamics over parameter space. The plots represent relevant dynamic features of model 463 

activity over the explored parameter space: (first) synchrony and (second) metastability representing, 464 

respectively, the mean and standard deviation of the KOP over time, and (third) global criticality. Note that 465 

the chosen working point is poised in a region of transition between low and high synchrony (synchrony = 466 

0.606), high metastability (metastability = 0.230) and transition between sub and supercriticality (𝑘 = 0.960).  467 

B) Model behavior at the chosen working point. i) Example of 15 minutes of model activity. Note the 468 

emergence of transient patterns of co-activation between different areas in the network. ii) Simulated (left) 469 

and empirical (right) FC matrices. While generally overestimating connectivity, the model is able to capture 470 
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empirical FC patterns. iii) Simulated FCD matrix (left) and its cumulative distribution function, compared to 471 

the one from empirical data (right). 472 

3.2. Excitatory-Inhibitory Homeostasis Contributes to 473 

the Recovery of Static Properties of FC 474 

To evaluate the acute effects of lesions in cortical FC and the putative role of E-I 475 

homeostasis on its long-term recovery, we simulated cortical lesions by removing all the 476 

connections to and from a single node. This was done individually for all the nodes in the 477 

network and FC was extracted pre-lesion (T0), immediately after lesion application, an 478 

equivalent of the acute period (T1), and after local inhibitory weights reach a new steady 479 

state through local E-I homeostasis, which we equate to the chronic period of stroke 480 

recovery (T2) (Fig 1a,ii). 481 

When looking at the differences in FC between T1 and T2 (Fig 3a), it can be first 482 

observed that, similarly to what occurs in stroke patients, different lesions have highly 483 

heterogeneous acute effects. In Fig 3a we represent the strongest 10% changes in FC 484 

for lesions in nodes with different strengths (i.e. sum of incoming structural connectivity 485 

weights): the right superior frontal gyrus (strength = 6.23), left precentral gyrus (strength 486 

= 3.23) and left parahippocampal gyrus (strength = 0.42). Some qualitative conclusions 487 

can be drawn from looking at the observation of acute effects of such lesions. First, while 488 

there seems to be a general effect of global disconnection (Fig. 3a,i and iii), also evident 489 

in the median changes over lesions (Fig. 3b,i), certain lesions can lead to 490 

hypersynchrony (Fig. 3a,ii), as previously reported in lesioned brain networks (23,92). 491 

Second, lesions to high degree nodes (Fig. 3a,i and ii) have stronger acute effects than 492 

lesions to low degree nodes (Fig. 3a,iii). Third, different lesions show different levels of 493 

recovery in the chronic period (T2), as evidenced by the ipsilesional hypersynchrony 494 

observed after lesion in the left precentral gyrus, which was not diminished significantly 495 

at T2 in our simulations (Fig. 3a,ii). Fourth, regarding the median effects over lesions 496 

(Fig. 3b,i), we observed a widespread increase in functional connectivity, compared to 497 

pre-lesion levels, in a process that could be understood as a global cortical 498 

reorganization. More specifically, it is likely that, given the inability to recover connectivity 499 

between certain brain areas, new functional connections are formed (or previous ones 500 

strengthened) to maintain relevant graph properties of FC. More specifically, the effects 501 

of lesion can be summarized, in a more general way, as follows: a strong acute 502 

disconnection, stronger in the ipsilesional size, but extending to the contralesional cortex, 503 

as is characteristic of diaschisis (13), and a chronic increase in connectivity, spread 504 
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across both hemispheres, likely related to the functional reorganization of cortical 505 

networks. 506 

To measure lesion effects more quantitatively, we measured the distance between FC 507 

matrices at T1 and T2 versus T0 across lesions (Fig 3b,ii). It can be observed that there 508 

is a strong departure from pre-lesion FC at T1 (FC distance, 10.202±5.838), significantly 509 

reduced at T2 (6.664±5.838, p<0.001, Mann Whitney U-test), thus showing a recovery 510 

of FC towards pre-lesion patterns. Nonetheless, a difference remains at T2, compared 511 

to T0, likely resulting from functional reorganization. Similarly to the results of (60), we 512 

found a correlation between graph properties of lesioned nodes and FC distance (Fig. 513 

S7), emphasizing the point that lesions in high degree nodes, or structural hubs, cause 514 

larger disruptions on FC. 515 

In addition, a decoupling between functional and structural connectivity has been 516 

observed in stroke patients and shown to correlate with motor function (18). Our results 517 

replicate this finding in the acute period (Fig.3b,iii) where the average correlation 518 

significantly dropped from 0.381±0.013 at T0 to 0.334±0.060 at T1 (p <0.001, Mann-519 

Whitney U-test). Furthermore, similarly to FC distance, we found a correlation between 520 

the magnitude of this change and the lesion properties (Fig. S7). Importantly, structural-521 

functional coupling was recovered to pre-lesion levels at T2 (0.376±0.028, T0 vs T2 522 

p<0.001, Mann-Whitney U-test), further indicating the ability of E-I homeostasis to 523 

participate in the recovery of FC. 524 

Beyond such metrics of damage to FC, it is relevant to measure changes in graph 525 

properties that are relevant in human brain networks, such as modularity (21) and small-526 

worldness (22,87). More importantly, those were shown to be affected by stroke and, in 527 

the case of modularity, to be a strong biomarker of performance in higher-order functions 528 

(e.g. memory, attention) (19). Thus, in Fig. 3c,i, we present our results on modularity at 529 

T1 and T2, normalized to T0 values, for different edge density thresholds. Note that, for 530 

most of the density thresholds explored, we observed a decrease in modularity at T1, 531 

further recovered towards pre-lesion levels at T2. When averaging the values over all 532 

the thresholds for each lesion simulation (Fig. 3c,i right) we observed a significant 533 

decrease in modularity at T1 (0.908±0.120, p < 0.001, Wilcoxon ranked-sum test), further 534 

recovered towards baseline at T2 (p < 0.001, Mann-Whitney U-test), with no significant 535 

difference from baseline found at this time point (0.992±0.110, p = 0.500, Wilcoxon 536 

ranked-sum test). As opposed to FC distance and association with SC, disruptions in 537 

modularity did not correlate significantly with the properties of lesioned nodes (Fig. S7). 538 

Similarly to modularity, SW coefficients were significantly decreased at T1 (0.977±0.043, 539 
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p<0.001, Wilcoxon ranked-sum test) and further increased from T1 to T2 (p=0.022, 540 

Mann-Whitney U-test) (Fig. 3c,ii),. However, in this case, a significant difference from 541 

baseline could still be found at T2 (0.997±0.041, p = 0.007, Wilcoxon ranked-sum test). 542 

Note that SW coefficients could only be systematically calculated across lesions for edge 543 

density thresholds larger than 20%. Due to the small size of our network (78 nodes), 544 

thresholding with smaller edge densities leads to disconnected graphs, on which is not 545 

possible to calculate SW coefficients reliably. Nonetheless, besides replicating the acute 546 

decreases in modularity and small-worldness found by (19), we further show that E-I 547 

homeostasis participates in the recovery of these graph properties, offering a possible 548 

explanation for the long-term recovery of such properties reported by the same authors. 549 

To summarize, our results show the strong effect of stroke lesions on the static properties 550 

of FC, and their further recovery through E-I homeostasis. While these effects were 551 

heterogeneous across lesions, there was a tendency of cortical networks to experience 552 

a loss in modularity and small-worldness, two relevant properties of cortical function 553 

shown to be affected in stroke patients. Such metrics were, however, recovered in the 554 

chronic period, likely through functional reorganization, showing the important role of E-555 

I homeostasis in their recovery. 556 

 557 

 558 

 559 

 560 

 561 

 562 
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 565 

 566 

 567 

 568 
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 569 

Figure 3 - E-I Homeostasis Contributes to the Recovery of Static FC Properties 570 

A) Differences in FC following example lesions in the acute (T1-T0) and chronic (T2-T0) periods. Only the 571 

10% strongest changes are shown. i) Effects of a lesion in the right frontal superior gyrus. ii) Effects of a 572 

lesion in the left precentral gyrus iii) Effects of a lesion in the left parahippocampal gyrus 573 

B) Effect of lesion in static properties of FC. i) Median differences in FC over lesions in the acute (T1-T0) 574 

and chronic (T2-T0) periods. Data from left-side lesions was mirrored so that the right side was always 575 

contralesional. Only the 10% strongest differences are shown in the plot. Note the general disconnection in 576 

the acute period, stronger on the ipsilesional side, followed by a widespread increase in connectivity in the 577 

chronic period.  ii) Distance between FC matrices at T1 and T0, and T2 and T0. FC distance was significantly 578 

decreased from the acute (10.202±5.838) to the chronic period (6.664±5.838) (p < 0.001, Mann-Whitney U-579 

test). iii) Pearson’s correlation coefficient between the upper triangle of functional and structural connectivity 580 

matrices at T0, T1 and T2. We observe a significant decrease from T0 to T1 (p < 0.001, Mann-Whitney U-581 

test) and a subsequent increase towards pre-lesion levels from T1 to T2 (p < 0.001, Mann-Whitney U-test). 582 

Results at T0 and T2 were not significantly different (p = 0.166, Mann-Whitney U-test).  583 
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C) Effect of lesion in graph properties of FC. i) Modularity at T1 and T2, normalized to T0 values, for different 584 

edge density thresholds. Lines represent the mean over lesions and shaded areas represent the standard 585 

error of the mean. On the right side of each plot, we show results averaged over all edge density thresholds 586 

for each lesion. We observed a significant decrease in modularity at T1 (0.908±0.120, p < 0.001, Wilcoxon 587 

ranked-sum test), with a significant increase between T1 and T2 (p < 0.001, Mann-Whitney U-test). 588 

Normalized modularity at T2 was not significantly different from baseline (0.992±0.110, p = 0.500, Wilcoxon 589 

ranked-sum test). ii) Same, for small-world (SW) coefficients. Values show significantly decreased SW 590 

coefficients at T1 (0.977±0.043, p < 0.001, Wilcoxon ranked-sum test), with a significant increase between 591 

T1 and T2 (p = 0.022, Mann-Whitney U-test). In this case, although values at T2 were close to the baseline, 592 

a significant difference could still be observed (0.997±0.041, p = 0.007, Wilcoxon ranked-sum test). In both 593 

plots, asterisks represent the level of significance of a Mann-Whitney U-test. * p<0.05, ** p<0.01, *** p<0.001.  594 

 595 
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3.3. Excitatory-Inhibitory Homeostasis is Not Sufficient 615 

For the Reinstatement of Rich Networks Dynamics 616 

Beyond post-stroke disruptions in the static properties of functional connectivity, it is 617 

relevant to analyze how it affects cortical dynamics. Healthy resting-state cortical activity 618 

displays rich spatiotemporal dynamics, with transient activation of distributed networks, 619 

jumps from asynchronous to synchronous states (91) and a scale-free distribution of 620 

network events of co-activation (i.e. criticality) (61,83). Therefore, in this section, we 621 

measure the acute effects of lesions on such dynamical properties and evaluate the 622 

possible role of E-I homeostasis in the recovery of dynamical features that go beyond 623 

static FC networks. 624 

If Fig. 4a,i, we plot the distribution of FCD values at T0, T1 and T2 for the same example 625 

lesions described in the previous section. Although some level of heterogeneity can be 626 

found across lesions, the general effect, further visible in the distribution of FCD values 627 

across lesions (Fig. 4a,ii), is a shift towards higher values at T1, which could not be 628 

recovered at T2. Such a shift is difficult to interpret, due to the lack of similar analysis in 629 

literature. However, given the definition of FCD values as the correlation between FC 630 

taken from different time windows in the signal, a functional interpretation can be given. 631 

Such a shift could mean that transient FC motifs were more similar across time, indicating 632 

a more rigid spatiotemporal pattern of activation, likely due to a loss in the richness of 633 

dynamics previously described. However, functional interpretations should be taken with 634 

careful consideration, given the lack of empirical studies debating the effects of stroke in 635 

FCD and its clinical correlates. Nonetheless, looking at other dynamical properties might 636 

shed light on the issue. Regarding synchrony (Fig 4b,i), we observed highly 637 

heterogeneous effects, similar to the previous modeling study of (23), where networks 638 

can change to either increased or decreased synchrony, in line with the results of the 639 

previous section (Fig. 3a,ii), showing hyperconnectivity in the acute period for selected 640 

lesions. More importantly, we observed a significant decrease in metastability (Fig 4b,ii) 641 

at T1 (-4.932±7.211%, p < 0.001, Wilcoxon Ranked-Sum test) and, while there was a 642 

significant shift towards baseline between T1 and T2 (p = 0.008, Mann-Whitney U-test), 643 

metastability at T2 was still significantly lower than in the pre-lesion period (-644 

2.144±6.239%, p = 0.004, Wilcoxon Ranked-Sum test). Since high metastability has 645 

been associated with the ability of the brain to switch between FC states (91), this might 646 

relate to the hypothesized rigidity of FCD patterns from Fig.4a,ii. Therefore, we suggest 647 

a decreased flexibility of resting-state dynamics in stroke patients. In addition, while 648 

dynamics at T0 were found to be close to criticality (Fig 4b,iii) (𝑘=0.972±0.022), we 649 
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observed a significant shift towards sub-criticality at T1 (𝑘=0.948±0.034, p<0.001, Mann-650 

Whitney U-test). Importantly, dynamics were still significantly sub-critical compared to T0 651 

(𝑘=0.950±0.025, p<0.001, Mann-Whitney U-test), with no significant recovery occurring 652 

between T1 and T2 (p = 0.935, Mann-Whitney U-test). Therefore, the overarching 653 

conclusion from the analysis of dynamics in our simulations is that stroke lesions have a 654 

strong effect on network dynamics and, more specifically, in metrics that can be 655 

understood as quantifying rich network dynamics, such as metastability (91) and 656 

criticality (83). More importantly, as opposed to the static properties of FC, the affected 657 

dynamics could not be recovered through the E-I homeostasis mechanism implemented 658 

in our model, showing a higher fragility of cortical dynamics to stroke, when compared to 659 

connectivity. 660 

 661 

Figure 4 - E-I Homeostasis is Not Sufficient to Recover Features of Rich Dynamics 662 

A) Effects of lesion in FC dynamics. i) Distribution of values in FCD matrices for T0, T1 and T2 for lesions in 663 

Right Frontal Superior Gyrus (left), Left Precentral Gyrus (middle) and Left Parahippocampal Gyrus (right). 664 

ii) Distribution across lesions of values in FCD matrices for T0, T1 and T2. Note the shift towards higher 665 

values at T1 and the similar distribution at T2, denoting an inability of E-I homeostasis to return FC dynamics 666 

to pre-lesion levels. 667 

B) Effects of lesion in network dynamics. i) Changes in synchrony, in percentage, at T1 and T2, compared 668 

to baseline (T0). While synchrony showed a significant decrease at T1, (-4.743±12.288%, p = 0.007, 669 

Wilcoxon Ranked-Sum test), there was no significant difference between values at T1 and T2 (p = 0.058, 670 

Mann-Whitney U-test). In addition, the difference in synchrony at T2 was not significantly different from 0 (-671 

0.187±6.489%, p = 0.058, Wilcoxon Ranked-Sum test). ii) Same, for metastability. We observed a significant 672 

decrease at T1 (-4.932±7.211%, p < 0.001, Wilcoxon Ranked-Sum test), further recovered towards pre-673 

lesion levels at T2 (p = 0.008, Mann-Whitney U-test). However, metastability at T2 was still significantly 674 

different from baseline at T2 (-2.144±6.239%, p = 0.004, Wilcoxon Ranked-Sum test). iii) Criticality at T0, T1 675 

and T2. We observed a shift towards subcriticality at T2 (p < 0.001, Mann-Whitney U-test), with no recovery 676 

from T1 to T2 (p = 0.914, Mann-Whitney U-test). 677 
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3.4. Long-Term Changes in Local Excitability Replicate 678 

Empirical Findings from Stroke Models and Patients 679 

While previous studies have attempted to model similar E-I homeostasis mechanisms to 680 

assess their relevance in post-stroke recovery (60), we further our analysis by 681 

systematically assessing the changes in local excitability required to adapt to the post-682 

lesion loss in excitation and how they distribute across the brain. We do this by looking 683 

at the change, from T0 to T2, in the strength of local inhibitory coupling 𝑐𝐸𝐼. More 684 

specifically, we consider decreases/increases in 𝑐𝐸𝐼 to represent increases/decreases in 685 

excitability, respectively. Importantly, long-term increases in excitability have been found 686 

in the cortex of mice models (27,33,34) and stroke patients (29,30,32), mostly related to 687 

decreased levels of inhibitory transmission. Therefore, it is important to evaluate if such 688 

effects can, at least to some extent, be a result of physiological processes of E-I 689 

homeostasis, tied to the recovery of not only local E-I balance, but also FC properties, 690 

as demonstrated by our previous results.  691 

That said, in Fig. 5a, we plot the long-term changes in excitability felt across the cortex 692 

for the same example lesions referenced before. From these plots, it can be deduced 693 

that lesions in more connected nodes required larger changes in excitability. Moreover, 694 

it can be seen from Fig.5a,i and ii that the strongest increases in excitability are felt 695 

closest to the lesioned areas, as evidenced by previous research in rodent models of 696 

stroke (27). More specifically, for stronger lesions, Δ𝑐𝐸𝐼(%) could be reasonably 697 

explained as an exponential function of Euclidean distance to the lesion (R2=0.65 and 698 

0.50 for lesions in the right superior frontal gyrus and left precentral gyrus, respectively). 699 

This relationship was lost for weaker lesions (R2=0.02 for lesion in the right 700 

parahippocampal gyrus), likely due to the less widespread and overall weaker effects 701 

(Fig. 3). We chose to explain these variations as an exponential function of distance 702 

given the exponential dependence found between structural connectivity and distance in 703 

the cortex (93) and the fact that areas more strongly connected to the lesion would 704 

experience the strongest loss in excitation. Therefore, an exponential relationship 705 

between Δ𝑐𝐸𝐼(%) and distance to the lesion is almost trivial, as observed for the most 706 

severe lesions in our simulations. Interestingly, while the consensus in the literature 707 

favors a long-term increase in excitability during stroke recovery, we observe, in 708 

particular for stronger lesions, actual decreases in excitability in distant cortical regions. 709 

This response is likely a second-order effect, resulting from the strong increases in 710 

excitability in the areas closest to the lesion, which in turn might require an opposite 711 
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reaction in other regions that might be connected to them, but not to the lesioned area 712 

itself. 713 

In Fig. 5b, we plot ΔcEI(%) averaged across lesions. Here, data from lesions left-side 714 

lesions was mirrored before averaging so that the right side always corresponded to the 715 

ipsilesional hemisphere. Looking at the average changes across lesions (Fig. 5b) shows 716 

a picture of widespread increases in local excitability, following literature. Importantly, 717 

such increases were significantly stronger (p<0.001, Mann-Whitney U-test) in the 718 

ipsilesional cortex (-1.257±3.345%), when compared to its counterpart (-0.417±1.212%), 719 

as expected due to the distance dependence of changes in excitability. The strongest 720 

differences were found in the ipsilesional middle frontal gyrus (-2.205±5.195%), 721 

precentral gyrus (-2.144±4.420%), inferior parietal gyrus (-2.100±4.289%), middle 722 

occipital gyrus (-1.982±3.179%) and inferior (-1.963±5.632%) and middle (-723 

1.949±4.015%) temporal gyri. However, while we might observe these general effects, 724 

the changes in excitability are still highly dependent on the specific lesioned area. In Fig. 725 

5c,i, it can be seen that areas with stronger structural connectivity with the lesioned 726 

cortex have to undergo higher increases in excitability (Pearson’s correlation coefficient 727 

= -0.83, p<0.001 F-test), with local changes in ΔcEI(%) being as high as 30%. Moreover, 728 

when looking at the average increase in excitability across cortical regions (Fig. 5c,ii), it 729 

can be observed that more severe lesions require higher levels of long-term homeostatic 730 

adaptation (Pearson’s correlation coefficient = -0.74, p<0.001 F-test). Therefore, lesions 731 

in well-connected areas require stronger compensation, particularly in nodes that are 732 

more strongly connected to the lesion.  733 

In conclusion, by accounting for the participation of slow mechanisms of E-I homeostasis 734 

in stroke recovery, we replicate empirical findings in stroke patients and models, such as 735 

an overall increase in excitability driven by a decrease in inhibitory transmission 736 

(27,29,30) and decaying with distance to the lesion (27). Moreover, such changes can 737 

be predicted for individual cortical areas, given their structural connectivity to the lesioned 738 

cortex. It is important, then, to stress that this leads to high heterogeneity in homeostatic 739 

changes, showing the importance of developing personalized models where patient-740 

specific information about structural connectivity and damaged areas can be integrated 741 

to predict the long-term changes in excitability required for recovery of E-I balance. 742 
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 743 

Figure 5 - Long-term adaptations required to recover E-I balance replicate observed post-stroke 744 

changes in excitability.  745 

A) Examples of long-term changes in excitability, quantified through the difference in local cEI weights (in 746 

percentage) between T0 and T2, in response to different lesions. (Top) Changes in local excitability, 747 

projected onto an anatomical map of the human cortex. Red colors represent increases in excitability 748 

(decreased inhibition) and blue colors show deceased excitability (increased inhibition). Arrows and gray 749 

shading indicate the location of lesioned areas. (Bottom) Changes in excitability against euclidian distance 750 

to the lesioned area with results of an exponential fit to the data and respective R2 values. i) Response to a 751 

lesion in the right frontal superior gyrus. Note the strong changes across the cortex, with the highest 752 

increases concentrated in the vicinity of the lesion, decreasing exponentially with distance (R2 = 0.65) ii) 753 

Response to a lesion in the left precentral gyrus. Again, the highest increases in excitability occur close to 754 

the lesioned area, with a distance-dependent exponential decay (R2 = 0.50). iii) Response to a lesion in the 755 

right parahippocampal gyrus. Note the weaker changes and the poor exponential fit (R2 = 0.02). 756 

B) Long-term changes in excitability averaged over lesions. Data from left-side lesions was mirrored so that 757 

the right side was always ipsilesional. Note the general increases in excitability across the cortex, strongest 758 

on the ipsilesional side.  759 

C) Relationship between changes and lesion properties. i) Local changes in excitability against structural 760 

connectivity with the lesioned area (𝑊𝑖𝑗 where 𝑖 is the region where ΔcEI is measured and 𝑗 is the lesioned 761 
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area. ΔcEI correlated strongly with 𝑊𝑖𝑗 (Pearson’s correlation coefficient -0.83, p<0.001 F-test). ii) Average 762 

ΔcEI across cortical areas, plotted against lesion strength (node strength of lesioned areas, ∑ 𝑊𝑖𝑗𝑖 ). Average 763 

changes were strongly correlated with lesion severity (Pearson’s correlation coefficient, -0.74, p<0.001 F-764 

test). 765 

 766 

3.5. Long-Term Changes in Excitability Relate to 767 

Biomarkers of Common Side-Effects of Stroke 768 

Stroke patients tend to develop some side effects during the months post-stroke, such 769 

as seizures (3–5), depression (8–10) and chronic pain (6,7), among others. Importantly 770 

some of these pathologies have been previously associated with altered patterns of 771 

excitability in the cortex (e.g epilepsy (94,95), depression (10) and neuropathic pain 772 

(96)). Given the widespread changes in excitability presented in the previous section, it 773 

is then relevant to investigate a possible relationship between such homeostatic 774 

processes, necessary to maintain local E-I balance, and the emergence of long-term 775 

side-effects of stroke. 776 

One such side-effect is the occurrence of post-stroke seizures, which occur in up to 22% 777 

of stroke patients (3). When such seizures become recurrent, they are classified as post-778 

stroke epilepsy, occurring in about 7% of stroke patients (97). In addition, the occurrence 779 

of seizures or epilepsy has been previously related to hyperexcitability of areas located 780 

in the epileptic focus (94,95) and, while the cause of post-stroke seizures is not yet well 781 

known, it has been hypothesized that it relates to the increased excitability in a similar 782 

manner (3,97,98). While epileptic foci can be distributed across the brain, the most 783 

common location observed in humans is the temporal lobe and, more specifically, the 784 

medial temporal gyrus (95,99). Accordingly, in Fig. 6a, it can be observed that some of 785 

the largest average increases in excitability are found in the ipsilesional temporal lobe 786 

(circled area). More specifically, all gyri of the temporal lobe experience significant 787 

increases in excitability (asterisks represent the level of significance in a Wilcoxon 788 

ranked-sum test), in both ipsi and contralesional cortices. More importantly, the 789 

ipsilesional middle temporal gyrus undergoes a particularly strong increase in excitability 790 

(-1.949±4.015%), significantly larger than the remaining areas in the ipsilesional cortex 791 

(p = 0.036, Mann-Whitney U-test). Therefore, the emergence of post-stroke seizures 792 

may be potentiated by the action of E-I homeostatic mechanisms, although the 793 

magnitude of causality is difficult to assess. Interestingly, most post-stroke seizures 794 

result from cortical lesions (98), precisely the type of lesions applied in our computational 795 
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model of stroke. Furthermore, it is important to stress again the high heterogeneity of 796 

effects over lesioned areas observed in our results. Besides the higher prevalence of 797 

post-stroke seizure in patients with cortical lesions, the literature is not clear regarding 798 

the location of lesions most likely to lead to this side-effect. Here, we predict that lesions 799 

to the temporal cortex would have the highest likelihood of leading to post-stroke 800 

seizures, due to the strong connectivity and spatial proximity between temporal areas, 801 

which, as shown in the previous section, would lead to higher increases in excitability. 802 

Nonetheless, lesions in the angular and middle occipital gyri could also cause strong 803 

increases in excitability of the middle temporal cortex (Fig. S8). 804 

Another common side effect of stroke is depression, with an estimated prevalence of 17-805 

52% in stroke patients (8,9). While some studies argue that the main factors of risk 806 

pertain to the social situation of stroke patients, gender and a history of previous 807 

depression (100) others suggest a dependence on lesion location, showing a higher 808 

prevalence of post-stroke depression (PSD) in patients with right side lesions and lesions 809 

in more frontal areas (101). Furthermore, depression, in particular major depressive 810 

disorder, has been associated with asymmetry in cortical excitability (102), particularly 811 

between motor cortices and towards higher excitability of the right side (103,104). 812 

Therefore, we hypothesize that, after lesions on the right side, there is an increase in the 813 

asymmetry of excitability towards the right motor cortex, when compared to pre-lesion 814 

levels. To measure this change quantitatively we compute the following metric, 815 

quantifying changes in asymmetry of motor cortex excitability: 816 

𝑐𝐸𝐼,𝑟𝑖𝑔ℎ𝑡(𝑇2)/𝑐𝐸𝐼,𝑙𝑒𝑓𝑡(𝑇2)

𝑐𝐸𝐼,𝑟𝑖𝑔ℎ𝑡(𝑇0)/𝑐𝐸𝐼,𝑙𝑒𝑓𝑡(𝑇0)
− 1 (10) 817 

Shortly, if the index is negative, the ratio between the right and left motor cortex 𝑐𝐸𝐼 818 

weights decreased from T0 to T2, meaning excitability increased more on the right side 819 

than on its left counterpart. If Fig. 6b, we plot this value over all lesions, and split it 820 

between lesions on the left and right sides. While the average over all lesions shows no 821 

significant change in motor cortex excitability asymmetry (p = 0.465, Wilcoxon ranked-822 

sum test), for right side lesions we observed a significant shift towards higher excitability 823 

of the right motor cortex (p<0.001, Wilcoxon ranked-sum test). This result is, therefore, 824 

simultaneously consistent with the observation of this biomarker in depressive subjects 825 

(103,104) and with the higher prevalence of PSD in patients with right-side lesions (101). 826 

For left-side lesions, the opposite variation was found (p<0.001, Wilcoxon ranked-sum 827 

test). In fact, under the framework of E-I homeostasis, such results are trivial, considering 828 

that the ipsilesional cortex tends to experience a higher increase in excitability than its 829 
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counterpart. Therefore, right-side lesions would lead to a generalized shift in the 830 

symmetry of excitability towards the right side, as predicted by our model (Fig. 5b). In 831 

fact, such asymmetries have been found in human subjects beyond the motor cortex, 832 

with studies reporting similar changes in the frontal cortex (102). Furthermore, results 833 

are still heterogeneous across lesions, with the highest changes in asymmetry of motor 834 

cortex excitability towards the right side found for lesions in the right superior and medial 835 

frontal gyri, right postcentral gyrus, and right paracentral lobule (Fig. S9). The stronger 836 

changes observed for lesions in the superior and middle frontal gyrus, in accordance 837 

with the higher prevalence of depression in patients with more frontal lesions (101), lend 838 

further strength to our hypothesis. 839 

Another common post-stroke side effect is neuropathic pain, occurring in 11-55% of 840 

stroke patients, although not always associated with the stroke itself (7,105). Neuropathic 841 

pain is generally hypothesized to relate to an increase in neuronal excitability of 842 

somatosensory areas (106), as is also the case when it occurs post-stroke (7). This 843 

increased somatosensory excitability would then lead to a lower threshold for pain. Such 844 

changes are thought to be caused by maladaptive plasticity of the somatosensory cortex 845 

(7,106). In Fig. 6c, we plot the change in excitability of the ipsi and contralesional 846 

somatosensory cortices (i.e. postcentral gyrus). While none of these areas experienced 847 

a significant increase in excitability compared to the rest of the cortex on the same side 848 

(ipsilesional: p = 0.702; contralesional: p = 0.195; Mann-Whitney U-test), both the ipsi 849 

and contralateral cortices showed a significant increase in excitability from T0 to T2, 850 

stronger in the ipsilesional side (ipsilesional: -1.306±3.163%, p<0.001; contralesional: -851 

0.327±0.672%, p<0.001; Wilcoxon Ranked-sum test). Changes were stronger for lesions 852 

in the precentral gyrus, superior parietal gyrus, supramarginal gyrus and paracentral 853 

lobule (Fig. S10). 854 

Therefore, the changes in excitability operated by E-I homeostasis to adapt to the loss 855 

of long-range excitatory might be involved in the appearance of reported side effects of 856 

stroke such as epilepsy, depression and neuropathic pain. However, it is important to 857 

stress that it is difficult to estimate the magnitude of causal influence between E-I 858 

homeostasis and the incidence of the mentioned side effects, since previous research 859 

has highlighted other important risk factors, such as a lack of social support in the case 860 

of depression (100). Nonetheless, E-I homeostasis may inadvertently contribute either 861 

to a higher propensity of stroke patients to develop the aforementioned symptoms or to 862 

exacerbate their intensity. 863 
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 864 

Figure 6 - Long-Term Changes in Excitability Relate to Known Side Effects of Stroke 865 

A) Changes in excitability in the temporal cortex, averaged across lesions, quantified through the difference 866 

in local cEI weights (in percentage) between T0 and T2 i) Changes in excitability in the ipsilesional cortex. 867 

The circled region corresponds to the temporal cortex, where strong increases in excitability can be 868 

observed. ii) Changes in excitability for different cortical regions in the temporal lobe, for both ipsi- and 869 

contralesional cortex. Black lines and gray shaded areas represent, respectively, the mean and standard 870 

deviation of ΔcEI across all cortical areas. While all regions display a significant increase in excitability 871 

between T0 and T2, the ipsilesional middle temporal gyrus, a common location for epileptic foci, showed a 872 

significant increase even when compared with the rest of the ipsilesional cortex (p = 0.036, Mann-Whitney 873 

U-test). On the contralateral side, while changes are generally weaker, there was a significant difference 874 

from the remaining cortical areas in both the superior temporal pole (p = 0.004, Mann-Whitney U-test) and 875 

the middle temporal pole (p < 0.001, Mann-Whitney U-test). 876 

B) Change in asymmetry between excitability in left and right motor cortices, calculated as the difference, in 877 

percentage, of 
𝑐𝐸𝐼, 𝑙𝑒𝑓𝑡

𝑐𝐸𝐼,𝑟𝑖𝑔ℎ𝑡
⁄  from T0 to T2. Note that, for right-side lesions, a change occurs towards 878 

higher excitability on the right side (p < 0.001, Wilcoxon ranked-sum test), while the opposite effect is 879 

observed for lesions on the left side of the cortex (p < 0.001, Wilcoxon ranked-sum test). 880 

C) Changes in excitability in the somatosensory cortex (postcentral gyrus). While changes were not 881 

significantly different from the remaining cortical areas, in both ipsilesional (p = 0.702, Mann-Whitney U-test) 882 

and contralesional (p = 0.195, Mann-Whitney U-test) cortices, both somatosensory areas underwent 883 

significant increases in excitability (ipsilesional: -1.306±0.702, p<0.001; contralesional: -0.327±0.195, 884 

p<0.001; Wilcoxon ranked-sum test) 885 
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In all plots, points represent the average over lesions and bars represent the standard error of the mean. 886 

Asterisks represent a significant difference from 0, using the Wilcoxon ranked-sum test. * p<0.05, ** p<0.01, 887 

*** p<0.001. Crosses represent a significant difference from the distribution of ΔcEI across either ipsi- or 888 

contralesional cortices, using the Mann-Whitney U-test. + p<0.05, ++ p<0.01, +++ p<0.001.  889 
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4. Discussion  890 

We show that our model, by optimizing local and global parameters (i.e. target firing rate 891 

and global coupling), can simultaneously represent empirical FC and relevant dynamical 892 

features of cortical activity. By simulating cortical stroke lesions, we further show that E-893 

I homeostasis, a mechanism that is well documented in the cortex (52), likely takes part 894 

in the recovery of relevant static properties of FC, from FC-SC correlation (18) to complex 895 

graph properties such as modularity and small-worldness (19). Conversely, this type of 896 

homeostasis was not sufficient for the recovery of pre-lesion dynamics, such as criticality 897 

and metastability, suggesting that, while the global properties of FC can be recovered 898 

through local homeostasis of E-I balance, the recovery of dynamics required further 899 

adaptive responses from the human cortex. Importantly, we analyze in detail the changes 900 

in excitability operated by E-I homeostasis, replicating the known dependence between 901 

changes in excitability and distance to the lesion (27). Here, we bring this further by 902 

showing that this dependence is exponential, likely due to the exponential decay of 903 

structural connectivity with distance (93). While the general effect of a widespread 904 

increase in excitability is in concurrence with literature (27–30), we stress the high 905 

heterogeneity across lesions, with local decreases in excitability observed in particular 906 

cases. Importantly, we tie some of the observed changes with biomarkers of known 907 

lasting side-effects of stroke, such as seizures (3,5), depression (10,100) and 908 

neuropathic pain (7) related to altered patterns of excitability. Therefore, we suggest E-I 909 

homeostasis is responsible for either increasing the tendency of stroke patients to 910 

develop such side effects, or at least enhancing their effects, while they might emerge 911 

from other causes (100). 912 

4.1. EI Homeostasis in Stroke Recovery 913 

The possibility E-I homeostasis participating in stroke recovery has been suggested 914 

before (35–37), given the logical association between the acute loss in excitability and 915 

the long-term changes in excitability, understood as the subsequent adaptive response 916 

from cortical networks to restore E-I balance (52). In this study, we show that E-I 917 

homeostasis can have an important participation in stroke recovery, tying the recovery 918 

of global FC properties to local E-I balance. However, one must not neglect the influence 919 

of other possible strategies of adaptation, such as structural plasticity (24), vicariation 920 

(107) and functional reorganization potentiated by rehabilitation strategies (108). Indeed, 921 

it is likely that these processes of recovery interact, since neurostimulation techniques 922 

such as theta-burst stimulation, shown to be beneficial for stroke rehabilitation, can 923 

simultaneously alter local excitability and long-range functional connectivity (109,110). It 924 
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is relevant to stress that the recovery of important properties such as modularity and 925 

small-worldness, in our results, is not tied to a full recovery of FC in a connection-by-926 

connection manner. While there is recovery between the acute and chronic periods, FC 927 

matrices are still significantly different from baseline in the latter, while the 928 

aforementioned properties are mostly reinstated. Therefore, we suggest that, 929 

remarkably, the recovery of the graph structure of FC is indirectly orchestrated by local 930 

processes of E-I homeostasis and is achieved through a global reorganization of 931 

functional connections. This offers an explanation as to why the cortex can coordinate 932 

the recovery of such global properties of FC, while individual cortical areas are virtually 933 

agnostic to the connectivity (or lack of it) between the remaining cortex. Moreover, since 934 

the association between structural and functional connectivity was recovered to pre-935 

lesion levels, while we simultaneously observed differences in functional connectivity, 936 

we speculate that functional reorganization is scaffolded by the structural connectivity, 937 

with the preferential enhancement of functional connections between nodes with 938 

significant white-matter links. 939 

4.2. Global Dynamics of the Post Stroke Brain 940 

Despite the recovery of static properties of FC, our results show a different picture for 941 

relevant dynamical features which can be understood as metrics of ‘richness’ of 942 

dynamics. Both metastability, quantifying the ability of a network to flexibly switch 943 

between synchronous and asynchronous states (91) or criticality (47), underlying 944 

balanced propagation of activity, are significantly affected by lesions and were not 945 

recovered solely through E-I homeostasis. A possible explanation would be the fragility 946 

of cortical dynamics to disruptions in the structural scaffold of the human cortex, which 947 

cannot be compensated solely by local synaptic scaling. Indeed, recent results (24), 948 

suggest that, similarly to our results, stroke lesions bring cortical dynamics to 949 

subcriticality. More importantly, dynamics could be brought back to criticality in the long-950 

term, but through structural plasticity of white-matter tracts, suggesting that other forms 951 

of plasticity beyond synaptic scaling are relevant for the recovery of global dynamics. As 952 

for metastability, empirical investigation of its evolution in the brain of stroke patients is 953 

lacking. The same is the case for FCD, which measures the transient dynamics of FC. 954 

In our results, FCD distributions experience a shift towards higher values, unable to be 955 

recovered, similarly to the aforementioned dynamical features. A possible interpretation 956 

is a more rigid spatiotemporal pattern of FC, where the cortex has a higher difficulty in 957 

switching between different FC patterns associated with the known resting state 958 

networks (86). This might be tied to the decrease in metastability, since rich 959 

spatiotemporal FC variation has been hypothesized to be an emergent property of 960 
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metastable brain dynamics (91). Therefore, we suggest future studies should focus on 961 

using methods such as Hidden Markov Modelling (111,112) or leading eigenvector 962 

dynamics analysis (113) to evaluate the ability of the stroke brain to flexibly transition 963 

between states and how it evolves during the process of recovery. 964 

4.3. Possible Impairments of E-I Homeostasis in Stroke Patients 965 

An important consideration from our study is that, in the modeling approach, we assume 966 

E-I homeostasis through inhibitory synaptic scaling to be fully functional during the entire 967 

simulations. While this process has been found to respond robustly to perturbations such 968 

as sensory deprivation in rodents (56,58,114), further studies also advance the possibility 969 

of impairments in homeostatic plasticity occurring in pathological states (115,116). 970 

Therefore, there is a possibility that E-I homeostasis experiences some level of 971 

impairment during stroke recovery. More so, research in homeostatic plasticity suggests 972 

that synaptic scaling may not be sufficient to adapt to certain perturbations and that other 973 

processes such as regulation of intrinsic excitability might come into play for stronger 974 

disruptions (52). That said, the ability of cortical circuits to homeostatically regulate their 975 

own E-I balance may be affected post-stroke, possibly in a patient-specific manner. In 976 

fact, literature shows variability in either the strength of inhibition (28,29) or the 977 

magnitude of its longitudinal variation in stroke patients (30). While this variability could 978 

be attributed to several heterogeneities between patients (e.g. lesion location, 979 

rehabilitation procedures), the strong correlation with behavioral improvement found in 980 

(30) suggests that the magnitude of homeostatic adaptation is important for recovery, 981 

and patients with putative impairments in E-I homeostasis would have more difficulty in 982 

regaining function.  983 

Importantly, this possibility raises the question of how to modulate cortical circuits to 984 

correct such deficits in E-I homeostasis, as has been suggested for the treatment of 985 

mood disorders (115). A possibility is the use of neurostimulation methods, such as 986 

theta-burst stimulation, which have been shown to modulate the excitability of cortical 987 

areas (110) and that could be applied to specific regions of the cortex undergoing 988 

particularly strong increases in E-I homeostasis. Coincidentally, such methods modulate 989 

functional connectivity, with effects spreading beyond the stimulated area (109) and, 990 

while the precise ties between the modulation of excitability and connectivity are not yet 991 

known, such procedures may also stimulate the large-scale reorganization needed to 992 

recover the graph-properties of FC.  993 

An important challenge, then, would be how to detect localized disruptions in E-I balance, 994 

i.e. particular regions of the cortex where E-I homeostasis was not able to fully adapt. 995 
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Here, novel methods such as the measurement of functional E-I balance from 996 

electroencephalographic recordings (117) could be of help, indicating localized deficits 997 

that could then be corrected using neuromodulation. Alternatively, models such as ours 998 

could be used with patient-specific structural connectivity data and fitted to respective 999 

functional data by varying local parameters such as local target firing rates (𝜌). Then, by 1000 

comparing them with similar models with fully functioning homeostasis, regional 1001 

differences could be detected, pointing to areas in need of further modulation of 1002 

excitability. In any case, future studies should focus on measuring the evolution of E-I 1003 

balance in the cortex of stroke patients, relating it to the recovery of function and 1004 

evaluating possible impairments in homeostatic plasticity and how to correct them. 1005 

4.4. Emergence of Biomarkers of Stroke Side-Effects from E-I 1006 

Homeostasis 1007 

Interestingly, we could relate certain side-effects of stroke and respective biomarkers 1008 

with changes in the patterns of excitability observed in our model. Signatures such as 1009 

increased excitability of the contralateral medial temporal cortex, the most common focus 1010 

of epileptic seizures (95,99), could then be related to E-I homeostasis and to the 1011 

tendency of stroke patients to developed seizures (3), in some cases evolving to epilepsy 1012 

(98). Critically, this finding is supported by one study in which neuromodulation was used 1013 

in a rodent stroke model to increase motor cortex excitability (118). While this led to a 1014 

significant improvement in motor function, it also increased the propensity of the rodents 1015 

to develop epileptic seizures. While this particular study was related to motor cortex 1016 

excitability, its results are likely generalizable to other structures in the brain. Regarding 1017 

depression, we observed a shift in the right-left asymmetry in motor cortex excitability 1018 

towards higher excitability of the right side (103,104). This was found particularly after 1019 

right-side lesions in the frontal cortex, which are common in patients that experience 1020 

post-stroke depression (101). Interestingly, under the framework of E-I homeostasis, this 1021 

result is relatively trivial, since right lesions would lead to higher increases in excitability 1022 

in the right side, thus leading to the observed changes in right-left asymmetry associated 1023 

with depression. Finally, chronic pain has been associated with maladaptive plasticity 1024 

leading to a pathological increase in the excitability of sensorimotor cortices, thus 1025 

creating a neuropathic sensation of pain (96). In our case, we suggest that this process 1026 

might not be maladaptive, but a physiological change that is required to compensate for 1027 

a loss of cortico-cortical excitation, which could then affect how the sensorimotor areas 1028 

respond to subcortical sensory input. 1029 
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In addition, while the general effect observed was a widespread increase in excitability, 1030 

our results show the surprising possibility that strong decreases in excitability can be felt 1031 

in certain regions for particular lesions. An example is decreased ipsilesional motor 1032 

cortex excitability after a lesion in the precuneus or posterior cingulate cortex (Fig. S11). 1033 

This particular case is interesting since chronic fatigue, commonly felt by stroke patients, 1034 

has been associated with hypoexcitability of the motor cortex (11). Therefore, we suggest 1035 

that the participation of E-I homeostasis in enhancing post-stroke side effects may not 1036 

only be tied to increased excitability, but also to the opposite effect in particular cases. 1037 

All that considered, care must be taken in attributing a causal relationship between the 1038 

slow changes resulting from E-I homeostasis and the development of the mentioned side 1039 

effects. Indeed, certain patients of stroke experience seizures already in the acute 1040 

period, although this might be related to the excitotoxic release of glutamatergic 1041 

neurotransmitters in this period (119). Nonetheless, some patients continue experiencing 1042 

repeated seizures into the chronic period (4), when such massive levels of glutamate are 1043 

no longer present. In addition, the strongest risk factor of post-stroke depression is the 1044 

amount of social support patients receive during recovery (100), seemingly rejecting 1045 

changes caused by E-I homeostasis as a major cause for this pathology. Therefore, 1046 

instead of attributing a fully causal role of E-I homeostasis in the emergence of the 1047 

aforementioned side-effects, we suggest it as one of the multiple factors increasing the 1048 

propensity of stroke patients to develop them. Alternatively, it is possible that the 1049 

changes we observe could instead enhance the severity of said side-effects, caused by 1050 

entirely different factors. 1051 

All that considered, we predict that E-I homeostasis, albeit necessary for post-stroke 1052 

recovery, might inadvertently participate in the emergence of the discussed side effects. 1053 

However, further research is required to understand this connection more clearly, for 1054 

example, by associating particular lesions to specific patterns of alteration in excitability 1055 

and the onset of the discussed pathologies in a patient-by-patient manner. 1056 

4.5. Limitations 1057 

The first limitation that can be pointed out in our study is the fact that we only simulate 1058 

cortical gray matter lesions, by removing all the connections to and from a given cortical 1059 

area. While this approach is common in lesion studies (23,60,79), it neglects the impact 1060 

of white-matter disconnection. Indeed, a cortical lesion might not only affect the gray 1061 

contained by its volume, but also white-matter tracts that pass through it and may 1062 

connect other regions. Importantly, recent research suggests a greater relevance of 1063 

white-matter disconnection in predicting future deficits, when compared to gray-matter 1064 
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loss (120). However, in our case, without lesion-specific information about lesion volume 1065 

and the white matter tracts it intercepts, it is not possible to estimate the extent of white 1066 

matter damage. Therefore, future modeling studies should focus on the incorporation of 1067 

realistic cortical lesions affecting both gray and white matter. In addition, regions in the 1068 

AAL parcellation not only have different levels of connectivity, but also different volumes. 1069 

Therefore, while lesions in, for example, the precuneus and the superior frontal cortex 1070 

are both single-node in our simulations, in reality, the latter would involve a much larger 1071 

volume. Nonetheless, while studies show that lesion volume has an impact on the extent 1072 

of functional damage and subsequent recovery (121), it is arguable that the graph 1073 

properties of lesioned areas have a significant influence as well (60,122). Also, given the 1074 

heterogeneity in the lesions applied in this study, we argue that it still retains validity in 1075 

representing the wide range of post-stroke deficits and the participation of E-I 1076 

homeostasis in recovery. 1077 

Another missing aspect in this study is the influence of sub-cortical dynamics. Studies 1078 

have shown that the processes of diaschisis involve subcortical structures as well, such 1079 

as the spread of thalamocortical dysrhythmia due to decreased excitation in 1080 

thalamocortical networks (123). In addition, subcortical lesions also have strong effects 1081 

on cortical dynamics (124), albeit not as strongly as cortical lesions. While studying such 1082 

effects would be important, it is out of the scope of our study, given the difficulty in 1083 

modeling subcortical structures at such a large-scale, due to their functional and 1084 

structural heterogeneity. Recent approaches in embedding multiscale subcortical 1085 

networks in mean-field models of the human cortex (125) might, however, prove useful 1086 

to further study the effects of subcortical lesions and the participation of subcortical 1087 

structures in post-stroke recovery. 1088 

A further caveat of our study is the aforementioned lack of E-I homeostasis mechanisms 1089 

beyond inhibitory synaptic scaling. Arguments in favor of our approach, besides being 1090 

the most common in large-scale modeling studies (61,62,64,74), are tied to the 1091 

demonstrated importance of inhibitory homeostasis for cortical function (40,58) and the 1092 

fact that a long-term decrease in inhibitory activity has been robustly observed in rodent 1093 

stroke models (27) and patients (28–30). More importantly, research suggests a 1094 

correlation between the magnitude of this decrease and functional recovery (30). 1095 

Nonetheless, changes in excitatory neurotransmitters have been observed in stroke 1096 

patients as well and different mechanisms of E-I homeostasis, such as excitatory 1097 

synaptic scaling and regulation of intrinsic excitability (52) are likely involved. Further 1098 

studies could then focus on the involvement of such mechanisms in stroke recovery, the 1099 

magnitude of their participation, or the possibility that some of them, such as changes in 1100 
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intrinsic excitability, come into play when other types of homeostasis are not sufficient to 1101 

adapt to the damage. 1102 

Finally, an important caveat in the analysis is that we do not measure changes in 1103 

homotopic interhemispheric connectivity, shown to be one of the strongest biomarkers 1104 

of stroke correlated with patient behavior (126). The main rationale behind this decision 1105 

is the fact that large-scale computational models are generally lacking in the 1106 

representation of interhemispheric homotopic connectivity in the cortex, likely due to an 1107 

underestimation of white-matter tracts connecting the two hemispheres from methods 1108 

such as diffusion tensor imaging (127). Indeed, studies stress the importance of callosal 1109 

white matter tracts in underlying stable homotopic FC and communication between 1110 

hemispheres (128). Therefore, to counteract the underestimation of homotopic white 1111 

matter tracts, recent studies suggest the improvement of structural connectivity data with 1112 

white-matter microstructure (129) or the artificial augmentation of homotopic connections 1113 

(130). Notwithstanding, we were able to replicate the effects of stroke (19) in FC graph 1114 

properties relevant for cortical function, such as modularity or small-worldness (21,22), 1115 

showing the participation of E-I homeostasis in their recovery. 1116 

5. Conclusion 1117 

In conclusion, our results lend strength to the claim that cortical E-I homeostasis is an 1118 

important driver of stroke recovery, not only by showing that it corrects deficits in static 1119 

properties of FC, but that the required adjustments to local inhibition are consistent with 1120 

the literature on post-stroke changes in inhibition. In addition, we suggest that specific 1121 

patterns of altered excitability observed in our model can be associated with biomarkers 1122 

of known side effects of stroke (e.g. seizures, depression, neuropathic pain), offering at 1123 

least a partial explanation for the increased propensity of stroke patients to develop them. 1124 

Therefore, by observing stroke through the lens of E-I homeostasis, we hope to advance 1125 

the current knowledge about the neural processes involved in stroke recovery, essential 1126 

to improve the effectiveness of therapeutical approaches that modulate cortical 1127 

excitability, to predict more reliably the occurrence of stroke side effects and to better 1128 

understand putative deficits in homeostatic plasticity that can hinder the rehabilitation 1129 

process. 1130 
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S1 Behavior of uncoupled Wilson-Cowan node under different parameter combinations.
A) Impact of changing the parameter P, which controls the intrinsic excitability of the Wilson-Cowan node, on node activity and power spectrum. On the left side, we

show results for models without noise and, on the right side, we show results of nodes with gaussian noise with 0.01 standard deviation. Note that, in our model,
uncoupled nodes go from a state of low activity to a limit cycle (oscillations), by increasing P, showing the behavior of a Hopf-bifurcation. For the chosen population
time constants ( ms, ms), the Wilson-Cowan model displays oscillations at 40 Hz.

B) Impact of changing population time constants on the oscillatory dynamics of uncoupled noisy Wilson-Cowan nodes (Gaussian noise, 0.01 standard deviation). For
all shown plots, ( ). It can be observed that the intrinsic frequency of oscillation of the Wilson-Cowan nodes is changed by varying the time constants of the
excitatory and inhibitory populations.

Noise = 0.00 Noise = 0.01
A)

B)
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Figure S2 Change in local inhibitory weights caused by homeostatic plasticity for different time constants of homeostatic plasticity.
A) Variation in time in local inhibitory weights for all 78 nodes in the model, under different time constants of homeostatic plasticity, for the following combination of free

parameters: C = 4.07, = 0.2, md = 4ms. Note that while cEI values take longer to reach a steady state for slower time constants, the final steady-state values are
virtually the same.

B) Scatter plots of steady-state cEI values for each homeostatic time constant against each other. Note that values are virtually the same, showing that, as long as the
homeostatic time constant is sufficiently slow to be decoupled from local node dynamics, it can be arbitrarily fast without affecting the steady state of the system.

Final cEI

= 1.25 = 2.5 = 5.0 = 10.0

A) B)
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S3 Description of test condition for detection of steady states in and examples of its application for models with two different combinations of free
parameters.

Every 10 seconds, a vector keeping a down-sampled version of in the last 10 minutes is created for every node as follows:

Then, the following test condition is applied, using , the difference between consecutive elements in

When this condition is satisfied in a specific node for the first time during a simulation, we consider that node to have reached a steady
state in terms of weight. Shortly, if the absolute mean change of for that specific node in the last 10 minutes is smaller than the
standard error of the mean in the same period, the value is considered stable. Since the rate of variation of decreases until the local
firing rate is brought close to the target firing rate, will decrease until it approaches 0. However, one must account for the
stochasticity of the system, and that is why we compare the mean variation with its respective standard error. Therefore, we effectively
detect when the tendency of variation caused by homeostatic plasticity trying to restore EI balance is smaller than changes caused by the
inherent stochasticity of the model.

When a steady state has been reached in all nodes or 500 minutes have passed, plasticity is disabled and activity is recorded from the
model.

md = 4ms

md = 4ms
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Figure S4 Results of the application of different clustering algorithms to average functional connectivity from healthy subjects.
A) Resulting cluster inertia from applying the k-means algorithm described in the methods to empirical averaged functional connectivity from healthy subjects, with

different numbers of clusters. Stars indicate potential 'elbows' in the cluster analysis, i.e. local minima or points with an inflection in inertia relative to the number of
clusters. Inertia was calculated using the sci-kit learn module in Python.

B) Resulting cluster distance from hierarchical clustering to averaged functional connectivity from healthy subjects, with different numbers of clusters. Stars indicate
potential 'elbows' in the cluster analysis, i.e. local minima or points with an inflection in distance relative to the number of clusters. Hierarchical clustering was
computed using the sci-kit learn module in Python.

C) Dendrogram of averaged functional connectivity from healthy subjects. Colors represent 6 different clusters.
D) Functional networks resulting from the application of the k-means clustering algorithm to empirical data with 4 and 6 clusters. Note that the resulting networks for

k=6 can be equated to known resting state networks (e.g. visual (first), somatomotor (second) and default mode network (third)).
E) Functional networks resulting from the application of hierarchical clustering to empirical data with 4 and 6 clusters. Note that the resulting networks for both k=4 and

k=6 are reasonably similar to the ones in D), with known resting-state networks emerging when k=6.

B)A)

C)

E)

k = 6

k = 6

D) k = 4

k = 4
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Figure S5 Post-stroke change in modularity for different clustering algorithms, numbers of clusters and edge density threshold ranges
A) Normalized modularity at T1 (acute post-lesion) and T2 (chronic post-lesion) for different results of k-means clustering. Each plot represents modularity analysis

using as modules the result of k-means with the number of clusters ranging from 4 (left) to 10 (right). In each plot, we present results across a range of density
thresholds and the average across density thresholds. Across density thresholds, asterisks represent the level of significance of a Mann-Whitney U-test. For the
average across density thresholds, asterisks represent the level of significance of a Wilcoxon ranked sum test against baseline (norm. mod. = 1). * p<0.05, **
p<0.01, *** p<0.001.

B) Same as A), but for modules derived from hierarchical clustering.
C) Normalized modularity at T1 (acute post-lesion) and T2 (chronic post-lesion) for edge-density thresholds ranging between 0.02 and 0.2, with 6 modules derived

from k-means (Left) or hierarchical clustering (Right). In each plot, we present results across the range of density thresholds and the average across density
thresholds. Across density thresholds, asterisks represent the level of significance of a Mann-Whitney U-test. For the average across density thresholds, asterisks
represent the level of significance of a Wilcoxon ranked sum test against baseline (norm. mod. = 1). * p<0.05, ** p<0.01, *** p<0.001.

k = 4 k = 8 k = 10k = 6

A)

B)
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Hierarchical, k = 6k means, k = 6

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 24, 2022. ; https://doi.org/10.1101/2022.11.23.517696doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517696
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S6 Results of fitting across the full parameter space
Model fit over full parameter space. Each column of three plots represents the results of a grid search over the parameters of global coupling ( ) and target firing rate
(FR) ( ), for a specific mean delay between 0 and 15 ms. In each column, model performance is shown according to the following metrics: (Top) correlation
between the upper triangle of simulated and empirical FC matrices, (Middle) mean squared error (MSE) between simulated and empirical FC matrices and (Bottom)
Kolmogorov-Smirnoff (KS) distance between the distribution of values in simulated and empirical FCD matrices.
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Figure S7 Correlation between structural graph properties of lesioned nodes and effects on functional connectivity
A) Distance from baseline FC matrices at T1 (acute post-lesion) and T2 (chronic post-lesion) against node degree, betweenness centrality and clustering coefficient of

lesioned nodes. All graph theoretical measures of lesioned nodes used in the plots were calculated using the networkx module in Python, after transforming the
SC matrix into an undirected unweighted graph by thresholding the 10% strongest structural connections

B) Same as A), for the difference in correlation between structural and functional connectivity at T1 and T2, compared to baseline.
C) Same as A), for normalized modularity at T1 (acute post-lesion) and T2 (chronic post-lesion). Normalization was calculated using the value at T0 as the baseline.
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Figure S8 Changes in excitability of middle temporal cortex across lesions
Variation, between T0 and T2, in cEI weight of the middle temporal cortex after lesion in the same hemisphere. Points represent results for left and right lesions in the
respective areas and the dashed line represents the average between these two values. Areas are ordered according to the average effect on middle temporal cortex
excitability.

Figure S9 Change in asymmetry of motor cortex excitability across lesions
Variation, between T0 and T2, in motor cortex (precentral gyrus) excitability asymmetry across all lesions. Positive values indicate that the left motor cortex experienced a
stronger increase in excitability when compared to its right counterpart, while negative values indicate the opposite variation. Areas are ordered according to lesion effects in
this asymmetry.
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Figure S10 Change in excitability of somatosensory cortex across lesions
Variation, between T0 and T2, in cEI weight of the somatosensory cortex (postcentral gyrus) after lesion in the same hemisphere. Points represent results for left and right
lesions in the respective areas and the dashed line represents the average between these two values. Areas are ordered according to the average effect on somatosensory
cortex excitability.

Figure S11 Changes in excitability of ipsilesional motor cortex across lesions.
Variation, between T0 and T2, in cEI weight of the motor cortex (precentral gyrus) after lesion in the same hemisphere. Points represent results for left and right lesions in the
respective areas and the dashed line represents the average between these two values. Areas are ordered according to the average effect on motor cortex excitability.
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