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Highlights
e The Structure Index is a graph-based topological metric
e |t quantifies the distribution of feature values in arbitrary dimensional spaces
e |t can be applied to both scalar and vectorial features

e When applied to the head-direction neural system, it extracts concordant
information from high- and low-dimensional representations

e It can be extended to sound and image categorization, expanding the range of
applications

Abstract

Background: Identifying the structured distribution (or lack thereof) of a given feature over
a point cloud is a general research question. In the neuroscience field, this problem arises
while investigating representations over neural manifolds (e.g., spatial coding), in the
analysis of neurophysiological signals (e.g., auditory coding) or in anatomical image
segmentation.

New method: We introduce the Structure Index (Sl) as a graph-based topological metric to
quantify the distribution of feature values projected over data in arbitrary D-dimensional
spaces (neurons, time stamps, pixels). The Sl is defined from the overlapping distribution
of data points sharing similar feature values in a given neighborhood.

Results: Using model data clouds we show how the Sl provides quantification of the
degree of local versus global organization of feature distribution. Sl can be applied to both
scalar and vectorial features permitting quantification of the relative contribution of related
variables. When applied to experimental studies of head-direction cells, it is able to
retrieve consistent feature structure from both the high- and low-dimensional
representations. Finally, we provide two general-purpose examples (sound and image
categorization), to illustrate the potential application to arbitrary dimensional spaces.

Comparison with existing methods: Most methods for quantifying structure depend on
cluster analysis, which are suboptimal for continuous features and non-discrete data
clouds. Sl unbiasedly quantifies structure from continuous data in any dimensional space.

Conclusions: The method provides versatile applications in the neuroscience and data
science fields

Keywords

Neural manifolds; Data science; Image categorization; Temporal series analysis; Machine
learning;
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1. Introduction

Identifying and quantifying if and how a given feature is structured along a data cloud is a
challenging problem in many fields of science. For instance, in the neurosciences the
temporal evolution of neuronal activity can be pictured as a data cloud on a high-
dimensional space, whose axes are determined by the number of simultaneously recorded
cells or recorded channels (Churchland et al., 2012). Under certain conditions, the high-
dimensional activity can be embedded into 2D or 3D subspaces, where external and
internal variables are reliably visualized (Cunningham and Yu, 2014; Nieh et al., 2021).
Examples include neural manifolds underlying simple motor tasks (Gallego et al., 2017)
and the internal head-direction and grid-cell representational systems (Chaudhuri et al.,
2019; Gardner et al., 2022). In this context, understanding how a given feature is
topologically organized over the manifold sheds light into the representational capacity of
the system under study.

Other applications include analysis of multidimensional data that reflect temporal samples,
such as the auditory coding of the spectro-temporal features of natural sounds (Gervain
and Geffen, 2019), image segmentation of multidimensional pixels (Ternes et al., 2022) or
transcriptomic data (Zeisel et al., 2015). In most cases, evaluating the unknown
distribution of a feature over data samples (e.g., the motor reach, spatial and speech
representations, histological categories in an image or neurodevelopmental profiles across
cell-type clusters) relies on the visual inspection of the reduced embedding. Whether the
very same feature had structure in the original high-dimensional space typically remains
unclear.

Solving this general-purpose problem can provide solutions for an ample set of scientific
applications. Having the ability to quantify the feature structure in any arbitrary space (i.e.,
that defined by cells, temporal samples, or pixels) may boost applications across fields.
Here, we use the term structure in a loose sense. That is, we say that a variable or feature
is structured along data if it follows some type of non-random distribution in the D-
dimensional representational space.

Most methods for structure quantification depend on clustering analysis. However, when
data points do not aggregate in groups or the features do not take discrete or nominal
values, the resulting clusters are not directly interpretable. This renders these methods
suboptimal to many real-world problems where continuous variables and point distributions
are the norm. To overcome this limitation, some studies resort to techniques that depend
on linear correlation metrics, posing limitations for the analysis of more realistic convoluted
distributions (Enns, 2011). Alternative approaches based on decoders tacitly assume that
if a given variable can be decoded from the data cloud, then it must follow some structure.
However, this kind of strategies are highly dependent on the model used, as well as on the
intrinsic dimensionality of the data, being vulnerable to overfitting as sparsity increases
with dimensionality. Crucially, all these approaches provide poor insights about the local
versus global structure of feature representations. It is therefore important to develop a
method that (i) can be applied to non-linear distributions, (ii) generalizes to continuous
features, and (iii) is applicable to arbitrarily high-dimensional spaces.

In this paper, we introduce the Structure Index (Sl) as a new metric specifically aimed at
quantifying how a given feature is topologically organized along an arbitrary data cloud.
We first demonstrate the principles of our approach with simple model examples and
illustrate how the method can be tuned to quantify the degree of the local/global
organization of feature distribution, as well as its robustness along a broad range of data
characteristics. We show how the S| can be equally applied to vectorial features, in which
more than one variable can be considered. Next, we apply the Sl to neural data from
experimental studies of head-direction cells, showing how it can retrieve representation of
different features, which are quantified beyond visual inspection of the neural manifold.
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Finally, we provide two additional general-purpose examples (sound and image
categorization), to illustrate the universal application to topological data analysis across
fields.

2. Material and Methods
2.1. Definition of the Structure Index (Sl)

The Sl aims at quantifying the amount of structure present at the distribution of a given
feature over a point cloud in an arbitrary D-dimensional space. For instance, feature val-
ues can be distributed in a 2D cloud along a gradient (Fig.1A), or randomly (Fig.1E). Iden-
tifying such structure without the need for visualization is a major problem in many applica-
tions, especially for high-dimensional spaces. In the neuroscience field, this problem arises
for instance when relating the distribution of neuronal activity to external behavioral varia-
bles projected over the neural manifold.

To quantify feature distribution over a point cloud, we first divide the range of values in n-
equal bins, and then assign each data point to a bin-group according to its feature value
(Fig.1A). Note that features can be either categorical (i.e. they may take nominal values
associated to different categories) or continuous (i.e. they may take values within a scalar
range). In the case of a discrete feature, each bin-group may correspond to one of the
possible discrete or nominal values the feature can take.

Next, we compute the overlapping between each pair of bin-groups in terms of the k-
nearest neighbors (Fig.1B). Given two bin-groups, U and V, we define the overlapping
score from U to V (0S;_,) as the ratio of k-nearest neighbors of all the points of U that
belong to V in the point cloud space. That is,

length(U) g

1
- k = — Z z -’ v, .
0Su-v() length(U) -k 4 : oG UV, j) 1)
=1 j:l
where O(i, U, V,j) = {1, if Nj(U.i,U Uv)ev
0, otherwise.

where N;(U;, U U V) is the j;, nearest neighbor of point U; in the set UUV

Note that the definition of nearest neighbors is determined by the distance metric used
(i.e., Euclidean distance, geodesic distance, etc.). Computing the overlapping score for
each pair of bin-groups (U, and V) yields an adjacency matrix (M, ) whose entry (a, b)
equals 05y, -y, (Fig. 1C). M can be thought as representing a weighted directed graph,
where each node is a bin-group, and the edges represent the overlap (or connection)
between them (Fig.1D).

Finally, we define the Structure Index as 1 minus the mean weighted degree of the nodes
after scaling it:

SIM) =1~ %ii]vfu )
i

Under this definition, for a uniform random distribution the overlapping of any two nodes
would be equal to 0.5 and therefore, the mean degree of the nodes of such distribution
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would also be 0.5. Thus, the Structure Index would take a value of O for a random distribu-
tion. In contrast, the mean degree of the nodes of a perfectly separated distribution would

be 0 and thus, the Sl would be 1. Therefore, the Sl ranges between 0 (random feature dis-
tribution, fully connected graph) and 1 (maximally separated feature distribution, non-con-

nected graph; Fig. 1D).
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Fig. 1. lllustration of the concepts behind the definition of the Structure Index (SI).
A, Feature gradient distribution in a 2D-ellipsoid data cloud. Each point in the data cloud
is assigned to a group associated with a feature bin value (bin-group). B, C, Next, the
overlapping matrix between bin-groups is computed according to equation 1. D, The
overlapping matrix represents a weighted directed graph between bin-groups, where
structure (overlapping, clustering, etc..) can be quantified using the SI from 0 (random,
equivalent to full overlapping) to 1 (maximal separation, equivalent to zero overlapping
between bins). E, The case of a feature randomly distributed over a 2D data cloud. F,
Different feature distribution yielding the same Sl but different weighted directed graph.
G, Lack of effect of the skewness of feature values on the SI.

By definition, the Sl is agnostic to the type of structure (e.g., gradient, patchy, etc.) since
bin-groups do not need to follow any specific arrangement. Instead, the weighted directed
graph provides additional insights. Fig. 1F shows the example of two different distributions

4


https://doi.org/10.1101/2022.11.23.517657
http://creativecommons.org/licenses/by-nc-nd/4.0/

138
139

140
141
142
143
144
145

146

147

148
149
150
151
152
153

154

155
156

157
158
159
160
161

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517657; this version posted November 24, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

with similar Sl but different graphs. Of note, the skewness of feature values has little im-
pact on Sl, being robust for a wide range of statistical properties (Fig. 1G).

Note that this metric can be applied to any type of data represented in arbitrary D-dimen-
sional spaces (cells, time series, pixels). Our approach is not in direct competition with the
many methods that use cluster analysis or topological decoding. Rather, it generalizes at a
class of distributions (i.e., continuous distributions) where clusters typically fail to apply.
Our definition of Sl and the equivalent graph makes this metric general enough to ease a
range of application, which we will illustrate along the Results section.

2.2. Parameter dependence of Sl on the neighborhood size

To compute the overlapping between each pair of bin-groups, the Sl looks at the properties
of the k-nearest neighbors of each point. For a low number of neighbors, the overlapping
is computed in the close vicinity of each point, thus being biased towards the local
distribution. As the number of neighbors increases, the Sl tends to better account for the
global structure. This dependence of the Sl on the number of neighbors can be exploited
to infer information about the local versus global organization of data features.
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A feature bin-groups C D —global-gattern
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Fig. 2. Parametric dependence of Sl on the number of neighbors. A, A local pattern is
simulated in 2D by projecting feature values differently along the data cloud (9000 points).
Note local structure between bin-groups. B, The same 2D data cloud exhibiting a global
distribution of feature values. C, Dependency of the Sl values as a function of the number
of neighbors can help to identify the local versus the global distribution trends. Data is
tested against shuffled distribution of feature values (99" percentile). D, Same as in C, but
as a function of the radius.

Figure 2 shows two different feature distributions over the same data cloud. In the local
pattern, feature values replicate at the different regions of the data cloud and so bin-
groups reflect such organization (Fig. 2A). In contrast, in the global pattern, feature values
follow a general trend (Fig. 2B). By evaluating the evolution of the Sl as a function of the
number of neighbors, the trade-off between local and global structure can be quantified.

5


https://doi.org/10.1101/2022.11.23.517657
http://creativecommons.org/licenses/by-nc-nd/4.0/

162
163
164
165
166
167

168
169
170

171
172
173

174
175

176
177
178
179
180
181
182

183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199
200

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517657; this version posted November 24, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

For the local pattern, overlapping between bin-groups increases as the number of
neighbors increase, and thus the Sl sharply decreases. On the contrary, for the global
pattern, the overlapping is less sensitive to the number of neighbors, and therefore the SlI
decreases smoothly (Fig. 2C). As expected, the SI of the shuffled distribution equals 0
independently on the number of neighbors. Thus, by tuning the number of neighbors, one
can effectively change the sensitivity of Sl to better detect local or global structures.

For data clouds with highly uneven density, the S| presents the option of setting a radius
size (r) instead of the number of neighbors. In such a case, the neighbors of a point are
set to be all points that fall within a given distance r. That is, equation (1) becomes:

length(U) length(B)

1 1 .
OSu_’V(r):length(‘U) ; length(B(r)Y) Z 19(1[,/3(7‘) %) 3)

0, ifpMieu
1, otherwise.

where 9(U, B(1),,)) = {

where B(r)! = {x e UV V:|U; — x| <1}

In such cases, the radius still helps to control for the trade-off between local and global
structure, with smaller values making the SI more sensitive to local, and larger values
being more sensitive to global structure (Fig. 2D).

2.3. Datasets

In this study, we used different datasets to evaluate S| performance. For the parameter
study, we created objects (2D-ellipsoids, balls and spheres) using the corresponding
mathematical equations. For the object lamp, we used the model from the ModelNet40
dataset, which is publicly available at https://github.com/antac97/PointCloudDatasets.
Different feature value distributions were created over these objects and used to evaluate
S| performance. By default all objects were created with 40,000 data points, except
otherwise reported.

To study neural manifold representations, a publicly available head-direction dataset was
used (http://crcns.org/data-sets/thalamus/th-1; doi:10.6080/KOG15XS1) (Peyrache et al.,
2015). We chose this dataset because the neural manifold organization of head direction
angles was recently validated (Chaudhuri et al., 2019), excluding any confounding in the
ability of the Sl to extract structure. Moreover, as we will show in the Results section, using
these data allowed us to illustrate the capacity of the Sl to quantify structure in the original
space, which was not tested in the aforementioned reference due to lack of
computationally efficient available methods. We used all data available to build the 3D
neural manifold as reported in (Chaudhuri et al., 2019) using Isomap (Tenenbaum et al.,
2000). We also built the representations in the original space using single cell data (one
axis per cell), yielding different high-dimensional spaces per mouse (n=6; mouse12 -
120806: 37 cells; mouse17-130130: 29 cells; mouse20-130520: 11 cells; mouse24-
131216: 10 cells; mouse25-140130: 10 cells; mouse28-140313: 22 cells). Information
about brain states was used to separate the neural manifolds from awake and sleeping
periods, with sleep classified as Slow-Wave Sleep (SWS) or Rapid Eyes Movement (REM)
sleep (Chaudhuri et al., 2019).

To evaluate the application of Sl to temporal data, we opted to use musical notes given
their similarities with electroencephalographic waveforms (Baier et al., 2007). An additional
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advantage is that musical notes are directly interpretable, allowing us to focus in
evaluating S| performance. We chose the NSynth dataset (Engel et al., 2017), which
contains over 300,000 musical notes produced by around 1000 different acoustic,
electronic or synthetic instruments, including the human voice. This dataset is available on
the TensorFlow Magenta project at https://magenta.tensorflow.org/datasets/nsynth.
Different features (source, instrument family, pitch and velocity) characterize each musical
note. Each note consists in 4 seconds of monophonic 16 kHz audio snippets at five
different velocities. For analysis, we downsampled the original snippets to 1.2 kHz
resulting in 4800 time-stamps, which were used to build the high-dimensional space (one
point per note). To comply with the Nyquist—Shannon sampling theorem, audio snippets
with an associated pitch higher than 73 MIDI (equivalent to 554 Hz) were discarded.
Binary features were not included in the analysis. For statistical testing, the dataset was
divided in 5 equivalent batches, which were analyzed both in the original and the 3D-
reduced space using Uniform Manifold Approximation and Projection (UMAP) (Mclnnes et
al., 2018).

Finally, to provide examples of image analysis using S| we resorted to the bird species
problem, given its application in fine-grained image recognition. Similar as above, this
allowed us to focus in evaluating the performance of S| without requiring any particular
interpretation. To this purpose, we used Sl the 100-bird species dataset created by Gerald
Piosenka, which is hosted on the Kaggle platform
(https://www.kaggle.com/datasets/gpiosenka/100-bird-species ; date of download July 28",
2022). The dataset consists of more than 70000 RGB images of 450 bird species. Images
are 224 x 224 pixels x 3 color (jpg format) annotated by species name. For analysis, we
downsampled images to 56x56 pixels x 3 colors, resulting in a 9408-dimensional space,
where each axis is the value of a pixel (one point per image). To expand the number of
features associated to each image, we performed an automated data scraping from
Wikipedia, so that for each bird species we also extracted information about geographical
distribution (continents), as well as the scientific order and family, using the Python library
'Wikipedia' (https://pypi.org/project/wikipedia/). The dataset was divided in 2 equivalent
batches.

Statistical analysis of different instances of each dataset was performed using one- or two-
way ANOVAs followed by Student t-tests or equivalent. Spearman correlation was used to
evaluate relationship between variables, which were fitted by exponential curves.

2.4. Computational resources

All simulations and analysis were performed in Python 3.8.13 using personal computer
workstations (Intel Xeon CPU E5-2620 v4 @ 2.10GHz processor with 16 cores, 64GB
RAM memory, GeForce GTX 1080 Ti GPU with 11GB memory and 0.355 TFlops for
double precision). Whenever required, the supercomputer cluster Artemisa
(https://artemisa.ific.uv.es/web/content/nvidia-tesla-volta-v100-sxm2) was used to
accelerate calculation and parametric analysis (NeuroDIM Project).

2.5. Data and code availability

All data used in this study is publicly available (see section 2.3). Code is deposited at
https://github.com/PridaLab/structure_index.
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3. Results
3.1. Sl quantifies the topological distribution of scalar feature values

Before applying our method to the study of neural data, we used toy model data to
illustrate its performance and robustness to a wide range of point cloud characteristics. We
generated 3 independent toy-models, including a 2D linear gradient (40,000 points), a 3D
solid ball (40,000 points) where the feature was distributed along the radius, and a 3D
lamp (32,000 points) whose feature varies in terms of the three axes (Fig. 3A).

To test for the stability of the method, we began by expanding these models in an
increasing number of dimensions while adding white noise and then rotating the object in
the extended space (Fig. 3B). By doing so, we maintained the intrinsic dimension of the
object but spread the information along all dimensions. The Sl showed a consistent
response while increasing dimensionality (Fig. 3C). Importantly, the S| performed smoothly
for a wide range of points in the cloud when examined in 2 dimensions (Fig. 3D).

In terms of the number of bin-groups used when computing the Sl, there are two potential
cases. For discrete or nominal features, the number of bin-groups is determined by the
unique values the feature can take, so that there is a bin-group per discrete value. When
dealing with continuous feature values, the number of bin-groups becomes a heuristic
choice, which can be informed by statistical analysis. It should be large enough so that the
continuity of the feature values is fully captured, but small enough so that there is a
reasonable number of points assigned to each bin-group. While the Sl performs
consistently for a range of bin-groups (Fig. 3E), the topological characteristics of the data
cloud may have different impacts that should be examined for each application.
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Fig. 3. Robustness of Sl under a wide range of data-cloud characteristics. A, Three
toy models used to evaluate performance of Sl (40,000 points for the gradient and the ball;
32,000 points for the lamp). B, Objects in A were embedded into spaces of increasing
dimensionality by adding noise and then rotating. C, Dependence of the Sl on the
embedded dimensionality for the three toy models. D, Effects of the number of points in
the data cloud as examined in a 2D space. E, Effects of the number of bin-groups on the
Sl for the three toy models. F, Effect of different levels of signal-to-noise ratio on SlI.
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Finally, we studied the sensitivity of the Sl to different levels of noise in terms of the Signal
to Noise Ratio (SNR), as defined in (Zeng et al., 2019). To this purpose, we introduced
Gaussian noise across all existing dimensions (Fig.3F, left). While noise has effect in
structure, the Sl was able to capture the trends even when introducing high levels of noise
into the point clouds (Fig. 3F, right). This renders the Sl suitable for testing a wide variety
of experimental data sets.

3.2. Evaluating the structure distribution of vectorial features

The definition of bin-groups used in the Sl can be extended to vectorial features which
integrate values from several characteristics. For example, a feature vector (4, B) can be
created from two scalar features, A and B, taking values along a continuous scale. In such
case, bin-groups can be defined by the upper and lower bound for both A and B. Thus, a
point (p) in the cloud will fall within the bin-group U if and only if both entries of the
associated feature vector fall within the common range.

A x(#) = cos(f)
y(0, ¢) = sin(#) - cos(@)
z(0,¢) = sin(#) - sin(¢)
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rp_y =sin(w;)...sin{pp_2) cos(ep-1) —ri
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o
o

sphere dimension o

Fig. 4. Evaluating structure of vectorial features. A, 3D sphere defined by trigonometric
equations depending on angles 8 and ¢ (40,000 points). Feature values can be defined for
each angle independently, 8 or ¢, and for both together in a vectorial form (6, ¢). B, Sl for
each individual angle values and for the vectorial angle. C, A D-dimensional sphere is
defined by trigonometric equations depending on D-1 angles (8PN points, with N=40,000
points to keep cloud density over D-dimensional spaces). The plot at right shows the
dependence of Sl on the sphere dimension, computed for the D-1 angle alone, and for all
angles in vectorial form. Dashed lines indicate results from shuffled distribution values
(99" percentile). D, Behavior of Sl for a feature defined in 2D according to the equation
shown (20,000 points).

To illustrate the case, we generated a point cloud sampled from a sphere of unitary radius
using two angles 6, ¢, with added Gaussian noise in 3D. Mathematically, the x-coordinate
of a sphere is defined by the cosine of 8, while the y- and z-coordinates follow
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trigonometric relationships between both 6, ¢ (Fig. 4A). Thus, a feature defined by 6 and ¢
independently will distribute differently along the sphere than a vectorial one integrating
both angles (Fig. 4A). By definition, the structure of each angle separately should be lower
than the vectorial angle (8, ¢). Moreover, given that the x-coordinate is completely defined
by 6, we would expect more structure for 8 than for ¢. Consistently, the S| behaved as
expected, with the lowest Sl value obtained for ¢, then for 8, and the highest value for both
angles as a vectorial feature (6, ¢) (Fig. 4B).

To evaluate the generalization of this behavior to vectorial features of any dimension, we
generated point-clouds sampled from D-dimensional spheres according to the equation
shown in Fig. 4C (left). For each point cloud in D-dimensional space, we computed the Sl
for both the D — 1 angle used to generate the sphere and all angles together as a feature
vector (Fig. 4C, right). As predicted, the Sl obtained when introducing all angles as a
vector remained stable for all D-dimensional spheres. However, when only the D — 1
angle is considered, the Sl declined as the dimensionality of the sphere increased. This
reflects the fact that as the dimensions become larger, a lower percentage of coordinates
depend on the D-1 angle, and thus the position of a given point is less dependent on it.

This property of the Sl can be exploited to examine the interdependence between distinct
interrelated features. For instance, we created a 2D cloud where the position of each point
depends on two features: a, b (Fig. 4D; see equation). While the impact of b in the position
of the points was constant, the impact of a could be tuned by increasing or decreasing the
parameter a. We proceeded by computing the Sl of the scalar features a, b, and for the
vector (a, b) using a range of « values (Fig. 4D). The maximum SI(b) was obtained for «
equal to zero (as the position of the points was completely defined by b) and decreased
consistently as « increased. In contrast, Sl(a) increased with a as expected. Interestingly,
Sl(a, b) was lower than Sl(b) for low a values (as the points are completely defined by b,
the structure of (a, b) is lower than that of b). However, Sl(a, b) rapidly increased with «
reaching a plateau at maximum structure around 1 when both a and b equally contributed
to the position of points.

These examples illustrate the capability of the Sl to capture the structure of vectorial
features, opening new avenues to study the relative impact and dependency between
mathematically or experimentally related variables.

3.3. Application to neural manifold representations

Having established the main readouts expected from the S| metric, we sought to apply it to
the study of neural manifolds. To illustrate the effectiveness of the approach, we chose a
public dataset of extracellular recordings from multi-site silicon probes in the anterodorsal
thalamic nucleus (ADn) of freely moving mice (Peyrache et al., 2015). This dataset has
been recently used to demonstrate the intrinsic attractor manifold of the mammalian head-
direction system (Chaudhuri et al., 2019), permitting direct testing of the ability of S| to
extract feature structure.

In their study, Chaudhuri et al. showed that neural activity of N-simultaneously recorded
ADn neurons of mice foraging in an open environment was constrained to a ring-shaped
3D manifold (Fig. 5A, right; n=6 mice), which they visualized in 3D using Isomap (Fig. 5B).
Therefore, structure was implicitly expected at least in the low dimensional representation.

When computing the SlI of the head-direction angle over the neural manifold (3 neighbors),

we obtained a high structure concordant with visual inspection of the embedding (Fig. 5C;

blue). Importantly, in Chaudhuri et al. the analysis was mainly restricted to the 3D reduced

space. Since the Sl can be applied to an arbitrarily high-dimensional data cloud, we also

evaluated the structure of the head-direction angle over the original N-dimensional neural

space. Interestingly, the Sl for all animals in the original space was slightly higher than in
10
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the low dimensional embedding (Fig. 5C; grey, paired sample t-test p=0.011). Visualization
of individual weighted directed graphs from the high- and the low-dimensional

representations confirm similar organization (Fig.5D).
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Fig. 5. Using Sl to evaluate neural representations. A, In the neural manifold framework,
firing rates from N-neurons at a given time (ts) are represented in an N-dimensional
Euclidean space. Activity is constrained in a subspace which can be retrieved using
dimensionality reduction approaches (d-dimension). B, 3D neural manifold computed from
the head direction system by Chaudhuri et al., with the head direction angle projected over
the data cloud. C, Sl of the head direction angle in the original (og) and 3D-embedded
representations (emb). Dashed lines indicate results from shuffled distribution values (99t
percentile). D, Example of the weighted directed graphs from the same mouse (mouse12 -
120806) in the original and in the low-dimensional embedding. Note similar organization. E,
Relationship between the S| and the mean square error (MSE) of the decoder trained by
Chaudhuri et al. in the reduced space. Fitting curve parameters: a= -0.12; =4.47; y=-4.7
and A=0.9; tested significant at p<0.05. F, Head direction data plotted over the 3D
embedding for awake, REM, and SWS states separately. G, Sl for states and angles
separately, and for both features together as expressed in a vectorial form. Results are
shown for both the original (og) and the reduced space (emb). ANOVA effects for space
(F(2,1)=8.2, p=0.007) but not for feature nor interaction. Post-hoc tests: *, p<0.05; **,
p<0.01; ***, p<0.001. H, Sl of the head direction angle for each state separately both in the
original (og) and the reduced space (emb). ANOVA effects for state (F(2,1)=83.5,
p<0.0001), space (F(2,1)=25.7, p<0.0001) and interaction. Post-hoc tests: *, p<0.05; **,
p<0.01; ***, p<0.001.
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In their original work, the author parametrized the manifold with splines of matching
topology and used them to decode the represented latent variable (head-direction angle).
We thus tested how the decoder performance (measured as the mean square error of
predictions per mice) related to the head-direction information structured in the data. We
found that the Sl correlated with the decoder error (Spearman correlation -0.83, p=0.042),
following an exponential decay relationship (R?=0.98; Fig.5E). That is, manifolds with lower
decoding errors had higher head-direction structure as measured by Sl.

Given the nature of the data, we wondered whether the head direction representation can
be retrieved during REM as well as in SWS states (Senzai and Scanziani, 2022). To tackle
this question, we resorted to the same dataset but used all neural data to compute the 3D
manifold as reported in Chaudhuri et al. Indeed, when points of the manifold were color-
coded according to the state (awake, REM, nREM) we noted some stratification, which
could be quantified using the Sl (Fig. 5F). The Sl returned structure for both the animal
state and the head-direction angle, with higher values in the original than in the reduced
space (Fig.5G; ANOVA effects for space, F(2,1)=8.2, p=0.007, but not for feature nor
interaction). Interestingly, structure was higher when using a vectorial feature consisting on
the state and the head-direction angle together, indicating that there may be some
interdependency between them (Fig. 5G).

Finally, we computed the Sl of the head-direction angle for each state separately (Fig. 5H).
S| was maximal in awake conditions. In general, data represented in the original space
provided more structure than in the manifold embedding (ANOVA effects for state
(F(2,1)=83.5, p<0.0001), space (F(2,1)=25.7, p<0.0001) and interaction). Moreover,
whereas REM and SWS yielded a low Sl in the manifold, it was significantly higher in the
original space, indicating that information was lost while reducing dimension. Thus, being
able to evaluate neural activity in the original space using the SI might provide new
insights into the representative capacity during multiple brain states.

3.4. Application to arbitrary D-dimensional spaces (temporal samples and images)

Finally, we applied the Sl to two additional general-purpose examples: sound (temporal
data) and image categorization (pixels), illustrating the usefulness of the SI metric for
analysis of different types of data and across fields.

For temporal data, we resorted to musical notes given similarities with electro-
encephalographic waveforms (Baier et al., 2007). In addition, using this dataset allowed us
to focus in evaluating S| performance directly, given direct interpretability of musical notes.
Data consisted on 4 seconds of musical notes of different pitch and velocity downsampled
as 4800 time stamps. They were produced by different instruments (including the human
voice) using acoustic, electronic or synthetic sources. Instruments are annotated as
belonging to different families. Notes were represented in the 4800-dimensional space
(Fig.S1A), and the Sl was calculated both locally (using 3 neighbors) and globally (60
neighbors). In general, data showed a higher local than global structure (Fig.S1B; ANOVA
effects F(3,1)=4.0, p<0.0001). We found that the pitch provided maximal structure,
followed by the source and family, as confirmed by the weighted directed graph returned
by the overlapping of instrument families (Fig.S1C; ANOVA effects for features
F(3,1)=12.0, p<0.0001). Reducing data to 3D allowed for visualization of these trends
(Fig.S1D), and provided similar Sl figures as for the original space (Fig.S1E).

For image analysis, we chose using images of one hundreds bird species, typically
exploited in fine-grained recognition problems. Data consist on RGB images (56x56x3
pixels) so that each image was represented as a point in a 9408-dimensional space
(Fig.S2A). Birds were classified as belonging to different species, continent, scientific order
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and family. S| was maximal for bird species, followed by family and order (Fig.2SB). We

noted that continents provided the lower structure, potentially reflecting migratory habits

and/or species diversification. Visualization of images showing maximal and minimal

overlapping values confirmed that the Sl successfully captured the underlying structure of

the data (Fig. S2C,D).

These examples illustrate how the SI method successful operates in arbitrary D-
dimensional spaces, allowing for a range of multidisciplinary applications in neuroscience,
as well as across other research fields.

4. Discussion

With the development of a graph-based topological metric (Sl), we have enabled accurate
quantification of the structure of feature distributions. The approach is not constrained by
the dimensionality of the space and is robust to a wide range of data and feature
characteristics. Importantly, the S| not only quantifies the “amount” of structure of scalar
feature values represented over a point cloud, but it can also provide insights into the
topological distribution of the feature by looking at the overlapping directed graph.
Importantly, the Sl is not limited to Euclidean spaces, as one can define the k-closest
neighbors in terms of different distance metrics. For instance, the Sl allows for the use of
geodesic distance and cosine distance among others.

A common issue in current dimensionality reduction methods is being able to capture the
global structure without deforming local relationships. Indeed, most dimensionality
reduction methods have a parameter to control that tradeoff (e.g., the number of
neighbors). Here, we demonstrated that the SI can be tuned to better detect local vs global
structure by changing the number of neighbors (or equivalently the radius) used to
compute overlapping between bin-groups. Thus, the Sl can be used not only to quantify
the structure in the original space, but also to evaluate the quality of the dimensionality
reduction by looking at how much structure has been preserved both locally and globally
while reducing from the high- to the low-dimensional representations.

As demonstrated above, the S| can be extended to vectorial features, expanding the range
of applications. Note that a vectorial label can be created by grouping multiple
scalar/categorical features, or by integrating several related variables. By doing so, the Sl
allows for the study of how different features interact with each other, allowing for a deeper
understanding of how data structure is determined. This may ease data-driven discoveries
of latent interaction between experimental features, which cannot be established a priori.

In this context, we have applied the Sl to study the representation capability of the head-
directional system (Peyrache et al., 2015). By using data from a previous study that
demonstrated low dimensional representations of the head-direction angle (Chaudhuri et
al., 2019), we have shown that the Sl captures structure both in the lower dimensional
manifold and in the original space. Moreover, by applying the metrics to awake, REM, and
NREM states, we showed that the head-direction representation is preserved during REM,
providing additional interpretation. This is consistent with recent data supporting mental
replay of head-direction angles during REM sleep (Senzai and Scanziani, 2022).

The SI method can be applied to the study of temporal data expressed in high-dimensional
spaces. By representing temporal events in the space built from the individual time
stamps, electrophysiological signals can be analyzed with state space methods (Durbin
and Koopman, 2001; Gervasoni et al., 2004; Reichinnek et al., 2010). Applying the Sl to
these representations may thus allow for new strategies for the analysis of the spectro-
temporal organization of brain oscillations and/or perception (Valero et al., 2017; Lopes-
Dos-Santos et al., 2018; Gervain and Geffen, 2019; Navas-Olive et al., 2020; Douchamps
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et al., 2022). Similarly, the S| permits image quantification and categorization in the service
for fine-grained image recognition problems applicable to several research fields.

As topological and high-dimensional analysis become the norm in the neuroscience field,
we expect that the Sl will be a powerful tool to shed light into a wide range of questions.
Here we have provided several examples, from high-dimensional geometrical analysis to
sound and image categorization, expanding the applicability of the tool across fields.
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