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Highlights 9 

 The Structure Index is a graph-based topological metric 10 

 It quantifies the distribution of feature values in arbitrary dimensional spaces 11 

 It can be applied to both scalar and vectorial features 12 

 When applied to the head-direction neural system, it extracts concordant 13 
information from high- and low-dimensional representations 14 

 It can be extended to sound and image categorization, expanding the range of 15 
applications 16 

 17 

Abstract 18 

Background: Identifying the structured distribution (or lack thereof) of a given feature over 19 
a point cloud is a general research question. In the neuroscience field, this problem arises 20 
while investigating representations over neural manifolds (e.g., spatial coding), in the 21 
analysis of neurophysiological signals (e.g., auditory coding) or in anatomical image 22 
segmentation.   23 

New method: We introduce the Structure Index (SI) as a graph-based topological metric to 24 
quantify the distribution of feature values projected over data in arbitrary D-dimensional 25 
spaces (neurons, time stamps, pixels). The SI is defined from the overlapping distribution 26 
of data points sharing similar feature values in a given neighborhood. 27 

Results: Using model data clouds we show how the SI provides quantification of the 28 
degree of local versus global organization of feature distribution. SI can be applied to both 29 
scalar and vectorial features permitting quantification of the relative contribution of related 30 
variables. When applied to experimental studies of head-direction cells, it is able to 31 
retrieve consistent feature structure from both the high- and low-dimensional 32 
representations. Finally, we provide two general-purpose examples (sound and image 33 
categorization), to illustrate the potential application to arbitrary dimensional spaces. 34 

Comparison with existing methods: Most methods for quantifying structure depend on 35 
cluster analysis, which are suboptimal for continuous features and non-discrete data 36 
clouds. SI unbiasedly quantifies structure from continuous data in any dimensional space.  37 

Conclusions: The method provides versatile applications in the neuroscience and data 38 
science fields 39 

Keywords 40 

Neural manifolds; Data science; Image categorization; Temporal series analysis; Machine 41 
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1. Introduction 44 

Identifying and quantifying if and how a given feature is structured along a data cloud is a 45 
challenging problem in many fields of science. For instance, in the neurosciences the 46 
temporal evolution of neuronal activity can be pictured as a data cloud on a high-47 
dimensional space, whose axes are determined by the number of simultaneously recorded 48 
cells or recorded channels (Churchland et al., 2012). Under certain conditions, the high-49 
dimensional activity can be embedded into 2D or 3D subspaces, where external and 50 
internal variables are reliably visualized (Cunningham and Yu, 2014; Nieh et al., 2021). 51 
Examples include neural manifolds underlying simple motor tasks (Gallego et al., 2017) 52 
and the internal head-direction and grid-cell representational systems (Chaudhuri et al., 53 
2019; Gardner et al., 2022). In this context, understanding how a given feature is 54 
topologically organized over the manifold sheds light into the representational capacity of 55 
the system under study.  56 

Other applications include analysis of multidimensional data that reflect temporal samples, 57 
such as the auditory coding of the spectro-temporal features of natural sounds (Gervain 58 
and Geffen, 2019), image segmentation of multidimensional pixels (Ternes et al., 2022) or 59 
transcriptomic data (Zeisel et al., 2015). In most cases, evaluating the unknown 60 
distribution of a feature over data samples (e.g., the motor reach, spatial and speech 61 
representations, histological categories in an image or neurodevelopmental profiles across 62 
cell-type clusters) relies on the visual inspection of the reduced embedding. Whether the 63 
very same feature had structure in the original high-dimensional space typically remains 64 
unclear. 65 

Solving this general-purpose problem can provide solutions for an ample set of scientific 66 
applications.  Having the ability to quantify the feature structure in any arbitrary space (i.e., 67 
that defined by cells, temporal samples, or pixels) may boost applications across fields. 68 
Here, we use the term structure in a loose sense. That is, we say that a variable or feature 69 
is structured along data if it follows some type of non-random distribution in the D-70 
dimensional representational space. 71 

Most methods for structure quantification depend on clustering analysis. However, when 72 
data points do not aggregate in groups or the features do not take discrete or nominal 73 
values, the resulting clusters are not directly interpretable. This renders these methods 74 
suboptimal to many real-world problems where continuous variables and point distributions 75 
are the norm. To overcome this limitation, some studies resort to techniques that depend 76 
on linear correlation metrics, posing limitations for the analysis of more realistic convoluted 77 
distributions (Enns, 2011).  Alternative approaches based on decoders tacitly assume that 78 
if a given variable can be decoded from the data cloud, then it must follow some structure. 79 
However, this kind of strategies are highly dependent on the model used, as well as on the 80 
intrinsic dimensionality of the data, being vulnerable to overfitting as sparsity increases 81 
with dimensionality. Crucially, all these approaches provide poor insights about the local 82 
versus global structure of feature representations. It is therefore important to develop a 83 
method that (i) can be applied to non-linear distributions, (ii) generalizes to continuous 84 
features, and (iii) is applicable to arbitrarily high-dimensional spaces. 85 

In this paper, we introduce the Structure Index (SI) as a new metric specifically aimed at 86 
quantifying how a given feature is topologically organized along an arbitrary data cloud. 87 
We first demonstrate the principles of our approach with simple model examples and 88 
illustrate how the method can be tuned to quantify the degree of the local/global 89 
organization of feature distribution, as well as its robustness along a broad range of data 90 
characteristics. We show how the SI can be equally applied to vectorial features, in which 91 
more than one variable can be considered. Next, we apply the SI to neural data from 92 
experimental studies of head-direction cells, showing how it can retrieve representation of 93 
different features, which are quantified beyond visual inspection of the neural manifold. 94 
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Finally, we provide two additional general-purpose examples (sound and image 95 
categorization), to illustrate the universal application to topological data analysis across 96 
fields. 97 

 98 

2. Material and Methods 99 

2.1. Definition of the Structure Index (SI) 100 

The SI aims at quantifying the amount of structure present at the distribution of a given 101 
feature over a point cloud in an arbitrary D-dimensional space. For instance, feature val-102 
ues can be distributed in a 2D cloud along a gradient (Fig.1A), or randomly (Fig.1E). Iden-103 
tifying such structure without the need for visualization is a major problem in many applica-104 
tions, especially for high-dimensional spaces. In the neuroscience field, this problem arises 105 
for instance when relating the distribution of neuronal activity to external behavioral varia-106 
bles projected over the neural manifold.  107 

To quantify feature distribution over a point cloud, we first divide the range of values in n-108 
equal bins, and then assign each data point to a bin-group according to its feature value 109 
(Fig.1A). Note that features can be either categorical (i.e. they may take nominal values 110 
associated to different categories) or continuous (i.e. they may take values within a scalar 111 
range). In the case of a discrete feature, each bin-group may correspond to one of the 112 
possible discrete or nominal values the feature can take. 113 

Next, we compute the overlapping between each pair of bin-groups in terms of the k-114 
nearest neighbors (Fig.1B). Given two bin-groups, 𝒰 and 𝒱, we define the overlapping 115 
score from 𝒰 to 𝒱 (𝑂𝑆𝒰→𝒱) as the ratio of k-nearest neighbors of all the points of 𝒰 that 116 
belong to 𝒱 in the point cloud space. That is, 117 

 𝑂𝑆𝒰→𝒱ሺkሻ ൌ
1

𝑙𝑒𝑛𝑔𝑡ℎሺ𝒰ሻ ∙ 𝑘
෍ ෍ 𝒪ሺ𝑖, 𝒰, 𝒱, 𝑗ሻ

௞

௝ୀଵ

௟௘௡௚௧௛ሺ𝒰ሻ

௜ୀଵ

 (1) 

 𝑤ℎ𝑒𝑟𝑒 𝒪ሺ𝑖, 𝒰, 𝒱, 𝑗ሻ ൌ ൜
1, 𝑖𝑓 𝑁௝ሺ𝒰௜, 𝒰 ∪ 𝒱ሻ ∈ 𝒱
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                    

  

 
𝑤ℎ𝑒𝑟𝑒 𝑁௝ሺ𝒰௜, 𝒰 ∪ 𝒱ሻ 𝑖𝑠 𝑡ℎ𝑒 𝑗௧௛ 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡 𝒰௜ 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑒𝑡 𝒰 ∪ 𝒱 

 

Note that the definition of nearest neighbors is determined by the distance metric used 118 
(i.e., Euclidean distance, geodesic distance, etc.). Computing the overlapping score for 119 
each pair of bin-groups (𝒰௔ and 𝒱௕) yields an adjacency matrix (ℳ௡௫௡) whose entry ሺ𝑎, 𝑏ሻ 120 
equals 𝑂𝑆𝒰ೌ →𝒱್

 (Fig. 1C). ℳ can be thought as representing a weighted directed graph, 121 
where each node is a bin-group, and the edges represent the overlap (or connection) 122 
between them (Fig.1D). 123 

Finally, we define the Structure Index as 1 minus the mean weighted degree of the nodes 124 
after scaling it: 125 

 𝑆𝐼ሺℳሻ ൌ 1 െ ቌ
2
𝑛

෍ ෍ ℳ௜,௝

௡

௝

௡

௜

ቍ (2) 

Under this definition, for a uniform random distribution the overlapping of any two nodes 126 
would be equal to 0.5 and therefore, the mean degree of the nodes of such distribution 127 
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would also be 0.5. Thus, the Structure Index would take a value of 0 for a random distribu-128 
tion. In contrast, the mean degree of the nodes of a perfectly separated distribution would 129 
be 0 and thus, the SI would be 1. Therefore, the SI ranges between 0 (random feature dis-130 
tribution, fully connected graph) and 1 (maximally separated feature distribution, non-con-131 
nected graph; Fig. 1D).  132 

133 

 134 

By definition, the SI is agnostic to the type of structure (e.g., gradient, patchy, etc.) since 135 
bin-groups do not need to follow any specific arrangement. Instead, the weighted directed 136 
graph provides additional insights. Fig. 1F shows the example of two different distributions 137 

Fig. 1. Illustration of the concepts behind the definition of the Structure Index (SI). 
A, Feature gradient distribution in a 2D-ellipsoid data cloud. Each point in the data cloud 
is assigned to a group associated with a feature bin value (bin-group). B, C, Next, the 
overlapping matrix between bin-groups is computed according to equation 1. D, The 
overlapping matrix represents a weighted directed graph between bin-groups, where 
structure (overlapping, clustering, etc..) can be quantified using the SI from 0 (random, 
equivalent to full overlapping) to 1 (maximal separation, equivalent to zero overlapping 
between bins). E, The case of a feature randomly distributed over a 2D data cloud. F, 
Different feature distribution yielding the same SI but different weighted directed graph. 
G, Lack of effect of the skewness of feature values on the SI.  
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with similar SI but different graphs. Of note, the skewness of feature values has little im-138 
pact on SI, being robust for a wide range of statistical properties (Fig. 1G).  139 

Note that this metric can be applied to any type of data represented in arbitrary D-dimen-140 
sional spaces (cells, time series, pixels). Our approach is not in direct competition with the 141 
many methods that use cluster analysis or topological decoding. Rather, it generalizes at a 142 
class of distributions (i.e., continuous distributions) where clusters typically fail to apply. 143 
Our definition of SI and the equivalent graph makes this metric general enough to ease a 144 
range of application, which we will illustrate along the Results section. 145 

 146 

2.2. Parameter dependence of SI on the neighborhood size 147 

To compute the overlapping between each pair of bin-groups, the SI looks at the properties 148 
of the 𝑘-nearest neighbors of each point. For a low number of neighbors, the overlapping 149 
is computed in the close vicinity of each point, thus being biased towards the local 150 
distribution. As the number of neighbors increases, the SI tends to better account for the 151 
global structure. This dependence of the SI on the number of neighbors can be exploited 152 
to infer information about the local versus global organization of data features. 153 

154 

 155 

 156 

Figure 2 shows two different feature distributions over the same data cloud. In the local 157 
pattern, feature values replicate at the different regions of the data cloud and so bin-158 
groups reflect such organization (Fig. 2A). In contrast, in the global pattern, feature values 159 
follow a general trend (Fig. 2B). By evaluating the evolution of the SI as a function of the 160 
number of neighbors, the trade-off between local and global structure can be quantified. 161 

Fig. 2. Parametric dependence of SI on the number of neighbors. A, A local pattern is 
simulated in 2D by projecting feature values differently along the data cloud (9000 points). 
Note local structure between bin-groups. B, The same 2D data cloud exhibiting a global 
distribution of feature values. C, Dependency of the SI values as a function of the number 
of neighbors can help to identify the local versus the global distribution trends. Data is 
tested against shuffled distribution of feature values (99th percentile). D, Same as in C, but 
as a function of the radius. 
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For the local pattern, overlapping between bin-groups increases as the number of 162 
neighbors increase, and thus the SI sharply decreases. On the contrary, for the global 163 
pattern, the overlapping is less sensitive to the number of neighbors, and therefore the SI 164 
decreases smoothly (Fig. 2C). As expected, the SI of the shuffled distribution equals 0 165 
independently on the number of neighbors. Thus, by tuning the number of neighbors, one 166 
can effectively change the sensitivity of SI to better detect local or global structures.  167 

For data clouds with highly uneven density, the SI presents the option of setting a radius 168 
size (𝑟) instead of the number of neighbors. In such a case, the neighbors of a point are 169 
set to be all points that fall within a given distance 𝑟. That is, equation (1) becomes: 170 

 𝑂𝑆𝒰→𝒱ሺrሻ ൌ
1

𝑙𝑒𝑛𝑔𝑡ℎሺ𝒰ሻ
෍ ቌ

1
𝑙𝑒𝑛𝑔𝑡ℎሺ𝛽ሺ𝑟ሻ௜ሻ

෍ 𝜗൫𝒰, 𝛽ሺ𝑟ሻ௜, 𝑗൯

௟௘௡௚௧௛ሺఉሻ

௝ୀଵ

ቍ

௟௘௡௚௧௛ሺ𝒰ሻ

௜ୀଵ

 (3) 

 𝑤ℎ𝑒𝑟𝑒 𝜗൫𝒰, 𝛽ሺ𝑟ሻ௜, 𝑗൯ ൌ ቊ
0, 𝑖𝑓 𝛽ሺ𝑟ሻ௝

௜ ∈ 𝒰         
1,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.             

  

 
𝑤ℎ𝑒𝑟𝑒 𝛽ሺ𝑟ሻ௜ ൌ ሼ𝑥 ∈ 𝒰 ∪ 𝒱: |𝒰௜ െ 𝑥| ൏ 𝑟ሽ 

 

In such cases, the radius still helps to control for the trade-off between local and global 171 
structure, with smaller values making the SI more sensitive to local, and larger values 172 
being more sensitive to global structure (Fig. 2D). 173 

 174 

2.3. Datasets 175 

In this study, we used different datasets to evaluate SI performance. For the parameter 176 
study, we created objects (2D-ellipsoids, balls and spheres) using the corresponding 177 
mathematical equations. For the object lamp, we used the model from the ModelNet40 178 
dataset, which is publicly available at https://github.com/antao97/PointCloudDatasets. 179 
Different feature value distributions were created over these objects and used to evaluate 180 
SI performance. By default all objects were created with 40,000 data points, except 181 
otherwise reported. 182 

To study neural manifold representations, a publicly available head-direction dataset was 183 
used (http://crcns.org/data-sets/thalamus/th-1; doi:10.6080/K0G15XS1) (Peyrache et al., 184 
2015). We chose this dataset because the neural manifold organization of head direction 185 
angles was recently validated (Chaudhuri et al., 2019), excluding any confounding in the 186 
ability of the SI to extract structure. Moreover, as we will show in the Results section, using 187 
these data allowed us to illustrate the capacity of the SI to quantify structure in the original 188 
space, which was not tested in the aforementioned reference due to lack of 189 
computationally efficient available methods. We used all data available to build the 3D 190 
neural manifold as reported in (Chaudhuri et al., 2019) using Isomap (Tenenbaum et al., 191 
2000). We also built the representations in the original space using single cell data (one 192 
axis per cell), yielding different high-dimensional spaces per mouse (n=6; mouse12 -193 
120806: 37 cells; mouse17-130130: 29 cells; mouse20-130520: 11 cells; mouse24-194 
131216: 10 cells; mouse25-140130: 10 cells; mouse28-140313: 22 cells). Information 195 
about brain states was used to separate the neural manifolds from awake and sleeping 196 
periods, with sleep classified as Slow-Wave Sleep (SWS) or Rapid Eyes Movement (REM) 197 
sleep (Chaudhuri et al., 2019).  198 

To evaluate the application of SI to temporal data, we opted to use musical notes given 199 
their similarities with electroencephalographic waveforms (Baier et al., 2007). An additional 200 
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advantage is that musical notes are directly interpretable, allowing us to focus in 201 
evaluating SI performance. We chose the NSynth dataset (Engel et al., 2017), which 202 
contains over 300,000 musical notes produced by around 1000 different acoustic, 203 
electronic or synthetic instruments, including the human voice. This dataset is available on 204 
the TensorFlow Magenta project at https://magenta.tensorflow.org/datasets/nsynth. 205 
Different features (source, instrument family, pitch and velocity) characterize each musical 206 
note. Each note consists in 4 seconds of monophonic 16 kHz audio snippets at five 207 
different velocities. For analysis, we downsampled the original snippets to 1.2 kHz 208 
resulting in 4800 time-stamps, which were used to build the high-dimensional space (one 209 
point per note). To comply with the Nyquist–Shannon sampling theorem, audio snippets 210 
with an associated pitch higher than 73 MIDI (equivalent to 554 Hz) were discarded. 211 
Binary features were not included in the analysis. For statistical testing, the dataset was 212 
divided in 5 equivalent batches, which were analyzed both in the original and the 3D-213 
reduced space using Uniform Manifold Approximation and Projection (UMAP) (McInnes et 214 
al., 2018).  215 

Finally, to provide examples of image analysis using SI we resorted to the bird species 216 
problem, given its application in fine-grained image recognition. Similar as above, this 217 
allowed us to focus in evaluating the performance of SI without requiring any particular 218 
interpretation. To this purpose, we used SI the 100-bird species dataset created by Gerald 219 
Piosenka, which is hosted on the Kaggle platform 220 
(https://www.kaggle.com/datasets/gpiosenka/100-bird-species ; date of download July 28th, 221 
2022). The dataset consists of more than 70000 RGB images of 450 bird species. Images 222 
are 224 x 224 pixels x 3 color (jpg format) annotated by species name. For analysis, we 223 
downsampled images to 56x56 pixels x 3 colors, resulting in a 9408-dimensional space, 224 
where each axis is the value of a pixel (one point per image). To expand the number of 225 
features associated to each image, we performed an automated data scraping from 226 
Wikipedia, so that for each bird species we also extracted information about geographical 227 
distribution (continents), as well as the scientific order and family, using the Python library 228 
'Wikipedia' (https://pypi.org/project/wikipedia/). The dataset was divided in 2 equivalent 229 
batches. 230 

Statistical analysis of different instances of each dataset was performed using one- or two-231 
way ANOVAs followed by Student t-tests or equivalent. Spearman correlation was used to 232 
evaluate relationship between variables, which were fitted by exponential curves. 233 

 234 

2.4. Computational resources  235 

All simulations and analysis were performed in Python 3.8.13 using personal computer 236 
workstations (Intel Xeon CPU E5-2620 v4 @ 2.10GHz processor with 16 cores, 64GB 237 
RAM memory, GeForce GTX 1080 Ti GPU with 11GB memory and 0.355 TFlops for 238 
double precision). Whenever required, the supercomputer cluster Artemisa 239 
(https://artemisa.ific.uv.es/web/content/nvidia-tesla-volta-v100-sxm2) was used to 240 
accelerate calculation and parametric analysis (NeuroDIM Project). 241 

 242 

2.5. Data and code availability 243 

All data used in this study is publicly available (see section 2.3). Code is deposited at 244 
https://github.com/PridaLab/structure_index. 245 

 246 

  247 
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3. Results 248 

3.1. SI quantifies the topological distribution of scalar feature values 249 

Before applying our method to the study of neural data, we used toy model data to 250 
illustrate its performance and robustness to a wide range of point cloud characteristics. We 251 
generated 3 independent toy-models, including a 2D linear gradient (40,000 points), a 3D 252 
solid ball (40,000 points) where the feature was distributed along the radius, and a 3D 253 
lamp (32,000 points) whose feature varies in terms of the three axes (Fig. 3A).  254 

To test for the stability of the method, we began by expanding these models in an 255 
increasing number of dimensions while adding white noise and then rotating the object in 256 
the extended space (Fig. 3B). By doing so, we maintained the intrinsic dimension of the 257 
object but spread the information along all dimensions. The SI showed a consistent 258 
response while increasing dimensionality (Fig. 3C). Importantly, the SI performed smoothly 259 
for a wide range of points in the cloud when examined in 2 dimensions (Fig. 3D).  260 

In terms of the number of bin-groups used when computing the SI, there are two potential 261 
cases. For discrete or nominal features, the number of bin-groups is determined by the 262 
unique values the feature can take, so that there is a bin-group per discrete value. When 263 
dealing with continuous feature values, the number of bin-groups becomes a heuristic 264 
choice, which can be informed by statistical analysis. It should be large enough so that the 265 
continuity of the feature values is fully captured, but small enough so that there is a 266 
reasonable number of points assigned to each bin-group. While the SI performs 267 
consistently for a range of bin-groups (Fig. 3E), the topological characteristics of the data 268 
cloud may have different impacts that should be examined for each application. 269 

270 

 271 

 272 

Fig. 3. Robustness of SI under a wide range of data-cloud characteristics. A, Three 
toy models used to evaluate performance of SI (40,000 points for the gradient and the ball; 
32,000 points for the lamp). B, Objects in A were embedded into spaces of increasing 
dimensionality by adding noise and then rotating. C, Dependence of the SI on the 
embedded dimensionality for the three toy models. D, Effects of the number of points in 
the data cloud as examined in a 2D space. E, Effects of the number of bin-groups on the 
SI for the three toy models. F, Effect of different levels of signal-to-noise ratio on SI.  
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Finally, we studied the sensitivity of the SI to different levels of noise in terms of the Signal 273 
to Noise Ratio (SNR), as defined in (Zeng et al., 2019). To this purpose, we introduced 274 
Gaussian noise across all existing dimensions (Fig.3F, left). While noise has effect in 275 
structure, the SI was able to capture the trends even when introducing high levels of noise 276 
into the point clouds (Fig. 3F, right). This renders the SI suitable for testing a wide variety 277 
of experimental data sets.  278 

 279 

3.2. Evaluating the structure distribution of vectorial features 280 

The definition of bin-groups used in the SI can be extended to vectorial features which 281 
integrate values from several characteristics. For example, a feature vector ሺ𝐴, 𝐵ሻ can be 282 
created from two scalar features, 𝐴 and 𝐵, taking values along a continuous scale. In such 283 
case, bin-groups can be defined by the upper and lower bound for both 𝐴 and 𝐵. Thus, a 284 
point ሺ𝑝ሻ in the cloud will fall within the bin-group 𝒰 if and only if both entries of the 285 
associated feature vector fall within the common range.  286 

287 

 288 

 289 

To illustrate the case, we generated a point cloud sampled from a sphere of unitary radius 290 
using two angles 𝜃, 𝜑, with added Gaussian noise in 3D. Mathematically, the x-coordinate 291 
of a sphere is defined by the cosine of 𝜃, while the y- and z-coordinates follow 292 

Fig. 4. Evaluating structure of vectorial features. A, 3D sphere defined by trigonometric 
equations depending on angles 𝜃 and 𝜑 (40,000 points). Feature values can be defined for 
each angle independently, 𝜃 or 𝜑, and for both together in a vectorial form (𝜃, 𝜑). B, SI for 
each individual angle values and for the vectorial angle. C, A D-dimensional sphere is 
defined by trigonometric equations depending on D-1 angles (8DxN points, with N=40,000 
points to keep cloud density over D-dimensional spaces). The plot at right shows the 
dependence of SI on the sphere dimension, computed for the D-1 angle alone, and for all 
angles in vectorial form. Dashed lines indicate results from shuffled distribution values 
(99th percentile). D, Behavior of SI for a feature defined in 2D according to the equation 
shown (20,000 points).  
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trigonometric relationships between both 𝜃, 𝜑 (Fig. 4A). Thus, a feature defined by 𝜃 and 𝜑 293 
independently will distribute differently along the sphere than a vectorial one integrating 294 
both angles (Fig. 4A). By definition, the structure of each angle separately should be lower 295 
than the vectorial angle (𝜃, 𝜑). Moreover, given that the x-coordinate is completely defined 296 
by 𝜃, we would expect more structure for 𝜃 than for 𝜑. Consistently, the SI behaved as 297 
expected, with the lowest SI value obtained for 𝜑, then for 𝜃, and the highest value for both 298 
angles as a vectorial feature (𝜃, 𝜑) (Fig. 4B). 299 

To evaluate the generalization of this behavior to vectorial features of any dimension, we 300 
generated point-clouds sampled from D-dimensional spheres according to the equation 301 
shown in Fig. 4C (left). For each point cloud in D-dimensional space, we computed the SI 302 
for both the 𝐷 െ 1 angle used to generate the sphere and all angles together as a feature 303 
vector (Fig. 4C, right). As predicted, the SI obtained when introducing all angles as a 304 
vector remained stable for all D-dimensional spheres. However, when only the 𝐷 െ 1  305 
angle is considered, the SI declined as the dimensionality of the sphere increased. This 306 
reflects the fact that as the dimensions become larger, a lower percentage of coordinates 307 
depend on the D-1 angle, and thus the position of a given point is less dependent on it.  308 

This property of the SI can be exploited to examine the interdependence between distinct 309 
interrelated features. For instance, we created a 2D cloud where the position of each point 310 
depends on two features: 𝑎, 𝑏 (Fig. 4D; see equation). While the impact of 𝑏 in the position 311 
of the points was constant, the impact of 𝑎 could be tuned by increasing or decreasing the 312 
parameter 𝛼. We proceeded by computing the SI of the scalar features 𝑎, 𝑏, and for the 313 
vector (𝑎, 𝑏ሻ using a range of 𝛼 values (Fig. 4D). The maximum SIሺ𝑏ሻ was obtained for 𝛼 314 
equal to zero (as the position of the points was completely defined by b) and decreased 315 
consistently as 𝛼 increased. In contrast, SIሺ𝑎ሻ increased with 𝛼 as expected. Interestingly, 316 
SIሺ𝑎, 𝑏ሻ was lower than SIሺ𝑏ሻ for low 𝛼 values (as the points are completely defined by 𝑏, 317 
the structure of ሺ𝑎, 𝑏ሻ is lower than that of 𝑏). However, SIሺ𝑎, 𝑏ሻ rapidly increased with 𝛼 318 
reaching a plateau at maximum structure around 1 when both 𝑎 and 𝑏 equally contributed 319 
to the position of points.  320 

These examples illustrate the capability of the SI to capture the structure of vectorial 321 
features, opening new avenues to study the relative impact and dependency between 322 
mathematically or experimentally related variables.  323 

 324 

3.3. Application to neural manifold representations 325 

Having established the main readouts expected from the SI metric, we sought to apply it to 326 
the study of neural manifolds. To illustrate the effectiveness of the approach, we chose a 327 
public dataset of extracellular recordings from multi-site silicon probes in the anterodorsal 328 
thalamic nucleus (ADn) of freely moving mice (Peyrache et al., 2015). This dataset has 329 
been recently used to demonstrate the intrinsic attractor manifold of the mammalian head-330 
direction system (Chaudhuri et al., 2019), permitting direct testing of the ability of SI to 331 
extract feature structure. 332 

In their study, Chaudhuri et al. showed that neural activity of N-simultaneously recorded 333 
ADn neurons of mice foraging in an open environment was constrained to a ring-shaped 334 
3D manifold (Fig. 5A, right; n=6 mice), which they visualized in 3D using Isomap (Fig. 5B). 335 
Therefore, structure was implicitly expected at least in the low dimensional representation. 336 

When computing the SI of the head-direction angle over the neural manifold (3 neighbors), 337 
we obtained a high structure concordant with visual inspection of the embedding (Fig. 5C; 338 
blue). Importantly, in Chaudhuri et al. the analysis was mainly restricted to the 3D reduced 339 
space. Since the SI can be applied to an arbitrarily high-dimensional data cloud, we also 340 
evaluated the structure of the head-direction angle over the original N-dimensional neural 341 
space. Interestingly, the SI for all animals in the original space was slightly higher than in 342 
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the low dimensional embedding (Fig. 5C; grey, paired sample t-test p=0.011). Visualization 343 
of individual weighted directed graphs from the high- and the low-dimensional 344 
representations confirm similar organization (Fig.5D).  345 

 346 

 347 

Fig. 5. Using SI to evaluate neural representations. A, In the neural manifold framework, 
firing rates from N-neurons at a given time (ts) are represented in an N-dimensional 
Euclidean space. Activity is constrained in a subspace which can be retrieved using 
dimensionality reduction approaches (d-dimension).  B, 3D neural manifold computed from 
the head direction system by Chaudhuri et al., with the head direction angle projected over 
the data cloud. C, SI of the head direction angle in the original (og) and 3D-embedded 
representations (emb). Dashed lines indicate results from shuffled distribution values (99th 
percentile). D, Example of the weighted directed graphs from the same mouse (mouse12 -
120806) in the original and in the low-dimensional embedding. Note similar organization. E, 
Relationship between the SI and the mean square error (MSE) of the decoder trained by 
Chaudhuri et al. in the reduced space. Fitting curve parameters: α= -0.12; β=4.47; =-4.7 
and =0.9; tested significant at p<0.05. F, Head direction data plotted over the 3D 
embedding for awake, REM, and SWS states separately. G, SI for states and angles 
separately, and for both features together as expressed in a vectorial form. Results are 
shown for both the original (og) and the reduced space (emb). ANOVA effects for space 
(F(2,1)=8.2, p=0.007) but not for feature nor interaction. Post-hoc tests: *, p<0.05; **, 
p<0.01; ***, p<0.001.  H, SI of the head direction angle for each state separately both in the 
original (og) and the reduced space (emb). ANOVA effects for state (F(2,1)=83.5, 
p<0.0001), space (F(2,1)=25.7, p<0.0001) and interaction. Post-hoc tests: *, p<0.05; **, 
p<0.01; ***, p<0.001. 
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 348 

In their original work, the author parametrized the manifold with splines of matching 349 
topology and used them to decode the represented latent variable (head-direction angle). 350 
We thus tested how the decoder performance (measured as the mean square error of 351 
predictions per mice) related to the head-direction information structured in the data. We 352 
found that the SI correlated with the decoder error (Spearman correlation -0.83, p=0.042), 353 
following an exponential decay relationship (R2=0.98; Fig.5E). That is, manifolds with lower 354 
decoding errors had higher head-direction structure as measured by SI.  355 

Given the nature of the data, we wondered whether the head direction representation can 356 
be retrieved during REM as well as in SWS states (Senzai and Scanziani, 2022). To tackle 357 
this question, we resorted to the same dataset but used all neural data to compute the 3D 358 
manifold as reported in Chaudhuri et al. Indeed, when points of the manifold were color-359 
coded according to the state (awake, REM, nREM) we noted some stratification, which 360 
could be quantified using the SI (Fig. 5F). The SI returned structure for both the animal 361 
state and the head-direction angle, with higher values in the original than in the reduced 362 
space (Fig.5G; ANOVA effects for space, F(2,1)=8.2, p=0.007, but not for feature nor 363 
interaction). Interestingly, structure was higher when using a vectorial feature consisting on 364 
the state and the head-direction angle together, indicating that there may be some 365 
interdependency between them (Fig. 5G).  366 

Finally, we computed the SI of the head-direction angle for each state separately (Fig. 5H). 367 
SI was maximal in awake conditions. In general, data represented in the original space 368 
provided more structure than in the manifold embedding (ANOVA effects for state 369 
(F(2,1)=83.5, p<0.0001), space (F(2,1)=25.7, p<0.0001) and interaction). Moreover, 370 
whereas REM and SWS yielded a low SI in the manifold, it was significantly higher in the 371 
original space, indicating that information was lost while reducing dimension. Thus, being 372 
able to evaluate neural activity in the original space using the SI might provide new 373 
insights into the representative capacity during multiple brain states. 374 

 375 

3.4. Application to arbitrary D-dimensional spaces (temporal samples and images) 376 

Finally, we applied the SI to two additional general-purpose examples: sound (temporal 377 
data) and image categorization (pixels), illustrating the usefulness of the SI metric for 378 
analysis of different types of data and across fields.  379 

For temporal data, we resorted to musical notes given similarities with electro-380 
encephalographic waveforms (Baier et al., 2007). In addition, using this dataset allowed us 381 
to focus in evaluating SI performance directly, given direct interpretability of musical notes. 382 
Data consisted on 4 seconds of musical notes of different pitch and velocity downsampled 383 
as 4800 time stamps. They were produced by different instruments (including the human 384 
voice) using acoustic, electronic or synthetic sources. Instruments are annotated as 385 
belonging to different families. Notes were represented in the 4800-dimensional space 386 
(Fig.S1A), and the SI was calculated both locally (using 3 neighbors) and globally (60 387 
neighbors). In general, data showed a higher local than global structure (Fig.S1B; ANOVA 388 
effects F(3,1)=4.0, p<0.0001). We found that the pitch provided maximal structure, 389 
followed by the source and family, as confirmed by the weighted directed graph returned 390 
by the overlapping of instrument families (Fig.S1C; ANOVA effects for features 391 
F(3,1)=12.0, p<0.0001). Reducing data to 3D allowed for visualization of these trends 392 
(Fig.S1D), and provided similar SI figures as for the original space (Fig.S1E).  393 

For image analysis, we chose using images of one hundreds bird species, typically 394 
exploited in fine-grained recognition problems. Data consist on RGB images (56x56x3 395 
pixels) so that each image was represented as a point in a 9408-dimensional space 396 
(Fig.S2A). Birds were classified as belonging to different species, continent, scientific order 397 
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and family. SI was maximal for bird species, followed by family and order (Fig.2SB). We 398 
noted that continents provided the lower structure, potentially reflecting migratory habits 399 
and/or species diversification. Visualization of images showing maximal and minimal 400 
overlapping values confirmed that the SI successfully captured the underlying structure of 401 
the data (Fig. S2C,D).  402 

These examples illustrate how the SI method successful operates in arbitrary D-403 
dimensional spaces, allowing for a range of multidisciplinary applications in neuroscience, 404 
as well as across other research fields. 405 

 406 

4. Discussion 407 

With the development of a graph-based topological metric (SI), we have enabled accurate 408 
quantification of the structure of feature distributions. The approach is not constrained by 409 
the dimensionality of the space and is robust to a wide range of data and feature 410 
characteristics. Importantly, the SI not only quantifies the “amount” of structure of scalar 411 
feature values represented over a point cloud, but it can also provide insights into the 412 
topological distribution of the feature by looking at the overlapping directed graph. 413 
Importantly, the SI is not limited to Euclidean spaces, as one can define the k-closest 414 
neighbors in terms of different distance metrics. For instance, the SI allows for the use of 415 
geodesic distance and cosine distance among others. 416 

A common issue in current dimensionality reduction methods is being able to capture the 417 
global structure without deforming local relationships. Indeed, most dimensionality 418 
reduction methods have a parameter to control that tradeoff (e.g., the number of 419 
neighbors). Here, we demonstrated that the SI can be tuned to better detect local vs global 420 
structure by changing the number of neighbors (or equivalently the radius) used to 421 
compute overlapping between bin-groups. Thus, the SI can be used not only to quantify 422 
the structure in the original space, but also to evaluate the quality of the dimensionality 423 
reduction by looking at how much structure has been preserved both locally and globally 424 
while reducing from the high- to the low-dimensional representations. 425 

As demonstrated above, the SI can be extended to vectorial features, expanding the range 426 
of applications. Note that a vectorial label can be created by grouping multiple 427 
scalar/categorical features, or by integrating several related variables. By doing so, the SI 428 
allows for the study of how different features interact with each other, allowing for a deeper 429 
understanding of how data structure is determined. This may ease data-driven discoveries 430 
of latent interaction between experimental features, which cannot be established a priori.   431 

In this context, we have applied the SI to study the representation capability of the head-432 
directional system (Peyrache et al., 2015). By using data from a previous study that 433 
demonstrated low dimensional representations of the head-direction angle (Chaudhuri et 434 
al., 2019), we have shown that the SI captures structure both in the lower dimensional 435 
manifold and in the original space. Moreover, by applying the metrics to awake, REM, and 436 
nREM states, we showed that the head-direction representation is preserved during REM, 437 
providing additional interpretation. This is consistent with recent data supporting mental 438 
replay of head-direction angles during REM sleep (Senzai and Scanziani, 2022).  439 

The SI method can be applied to the study of temporal data expressed in high-dimensional 440 
spaces. By representing temporal events in the space built from the individual time 441 
stamps, electrophysiological signals can be analyzed with state space methods (Durbin 442 
and Koopman, 2001; Gervasoni et al., 2004; Reichinnek et al., 2010). Applying the SI to 443 
these representations may thus allow for new strategies for the analysis of the spectro-444 
temporal organization of brain oscillations and/or perception (Valero et al., 2017; Lopes-445 
Dos-Santos et al., 2018; Gervain and Geffen, 2019; Navas-Olive et al., 2020; Douchamps 446 
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et al., 2022). Similarly, the SI permits image quantification and categorization in the service 447 
for fine-grained image recognition problems applicable to several research fields. 448 

As topological and high-dimensional analysis become the norm in the neuroscience field, 449 
we expect that the SI will be a powerful tool to shed light into a wide range of questions. 450 
Here we have provided several examples, from high-dimensional geometrical analysis to 451 
sound and image categorization, expanding the applicability of the tool across fields.  452 
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