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ABSTRACT

The three-dimensional (3D) genome organization influences diverse nuclear
processes. Chromatin interaction analysis by paired-end tag sequencing (ChlA-PET)
and Hi-C are powerful methods to study the 3D genome organization. However,
ChIA-PET and Hi-C experiments are expensive, time-consuming, require tens to
hundreds of millions of cells, and are challenging to optimize and analyze. Predicting
ChIA-PET/Hi-C data using cheaper ChlP-Seq data and other easily obtainable
features could be a useful alternative. It is well-established that the cohesin protein
complex is a key determinant of 3D genome organization. Here we present

Chromatin Interaction Predictor (ChlPr), a suite of regression models based on deep
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neural networks (DNN), random forest, and gradient boosting, respectively, to predict
cohesin-mediated chromatin interaction strength between any two loci in the
genome. Comprehensive tests on four cell lines show that the predictions of ChiPr
correlate well with the original ChlA-PET data at the peak-level resolution and bin
sizes of 25 and 5 Kbp. In addition, ChlPr can accurately capture most of the cell-
type-dependent loops identified by ChIA-PET and Hi-C data. Rigorous feature
testing indicated that genomic distance and RAD21 (a cohesin component) ChiP-
Seq signals are the most important inputs for ChlPr in determining chromatin
interaction strength. The standard ChlPr model requires three experimental inputs:
ChlIP-Seq signals for RAD21, H3K27ac (enhancer/active chromatin mark) and
H3K27me3 (inactive chromatin mark). The minimal ChlPr model performs
comparably and requires a single experimental input: ChlP-Seq signals for RAD21.
Integrative analysis revealed novel insights into the role of CTCF motif, its
orientation, and CTCF binding on the prevalence and strength of cohesin-mediated
chromatin interactions. These studies outline the general features of genome folding
and open new avenues to analyze spatial genome organization in specimens with

limited cell numbers.
INTRODUCTION

The three-dimensional (3D) genome organization directly impacts diverse nuclear
processes such as transcription, DNA repair, and replication. Therefore, it is crucial to
understand how the distal regulatory elements (in the linear genome) interact in 3D
space. Several sequencing-based and imaging-based experimental methods have
been developed in the last two decades to study the 3D genome organization '. Many
of the sequencing-based approaches are derived from the chromosome conformation

capture (3C) concept 2. High-throughput chromosome conformation capture (Hi-C) 3
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and chromatin interaction analysis by paired-end tag sequencing (ChlA-PET) 4 are
some of the commonly used methods to study 3D genome organization. Hi-C detects
all possible genome-wide pairwise interactions between loci. By using Hi-C maps, it
was observed that chromosomes are partitioned into two compartments, A and B,
representing active and inactive chromatin regions, respectively 3. Analysis of
relatively high-resolution Hi-C maps (~40 Kbp) resulted in the discovery of self-
interacting genomic regions called topologically associating domains (TADs) 8. Much
higher resolution Hi-C maps (in the range of 1 — 5 Kbp) have revealed enhancer-

promoter contacts °.

Hi-C identifies all chromatin contacts but does not specify the proteins associated
with 3D interactions. This is partially addressed by including a chromatin
immunoprecipitation (ChIP) step with the Hi-C protocol. For example, ChlA-PET
captures genome-wide interactions associated with specific proteins. ChlA-PET has
facilitated the discovery of chromatin interactions associated with transcription factors
(ER, AR), RNA Polymerase I, and structural proteins such as the cohesin component
RAD21 and CTCF %12, However, Hi-C and ChIA-PET experiments are labour-
intensive, time-consuming, and expensive ®'3. Furthermore, there always exists a
possibility that the experiment outcome may not be of the desired quality. The
ENCODE portal has provided RAD21 ChlA-PET datasets for about 24 cell lines .
However, we still do not have the RAD21 ChlA-PET for many other cell lines *15. We
still do not fully understand the key determinants of cohesin-mediated chromatin
interactions. Therefore, we sought to develop a machine learning method to predict
cohesin-associated chromatin interactions using simple 2D chromatin and other

associated genomic features.
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Machine learning has been applied to solve long-standing questions in biology.
Notably, the AlphaFold system has been applied to accurately predict the 3D shape
of a protein from its amino acid sequence . Several machine learning systems have
been developed to understand 3D genome organization '-3'. For instance,
transcription factor and histone modification ChIP-Seq data were used to predict the
chromatin interactions between loop-associated ERa binding sites (laERBSs) .
Higher-order chromatin organization A/B compartments, originally calculated using Hi-
C data 3, have been predicted from epigenetic data, such as DNA methylation
microarray, DNase hypersensitivity sequencing, single-cell ATAC sequencing, and
single-cell whole-genome bisulfite sequencing 8. In 22, the authors developed a neural
network to predict chromatin structural types (i.e., to which subcompartments ° the
chromatin loci belong) from ChIP-Seq signals. They used the available ENCODE
ChlP-seq data for the GM12878 cell line (84 protein binding and 11 histone
modification experiments). They have also trained a reduced model using only the 11
histone modification experiments ?2. Moreover, Gradient Boosting regressor was used
to predict the interaction frequency between loci of 25 Kbp size (the model was shown
to work also at 5 Kbp resolution) 2°. In the final model, RNA-seq data, CTCF binding,
and orientation were used as the regression model predictors 2°. In Chromatin
Interaction Neural Network (ChINN), DNA sequences of interacting loci were used to
predict CTCF-, RNA polymerase ll- and Hi-C- associated chromatin interactions 2.
However, most of the existing models for predicting chromatin interactions are binary
classifiers and do not predict interaction strength. In addition, most of them restrict the
predictions to enhancer-promoter interactions and restrict the distance between

interacting loci to a few megabase pairs. Computational methods to predict the
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strength of cohesin-mediated cell-type-dependent interactions in a genome-wide

manner are still unavailable.

In this study, we present Chromatin Interaction Predictor (ChiIPr), a suite of
regression models based on DNN (DNN-ChIPr), random forest (RF-ChlPr), and
gradient boosting (GB-ChIPr), respectively, to predict the strength of chromatin
interactions between any two anchor peaks. Our main assumption is that the
interaction strength between any pair of peaks depends on a set of factors that can be
easily measured or widely (publicly) available. We hypothesized that the interaction
strength between two peaks depends on (A) the enrichment of the protein of interest
in the two peaks (feature 1), which can be measured by ChIP-Seq, (B) the enrichment
of active and inactive histone modifications (features 2 and 3), which can also be
measured by ChlP-Seq, and (C) additional factors that can be easily calculated without
any new experimental data, like the genomic distance between the two peaks, the GC
content of the two peaks, and the CTCF motif orientation in the two peaks (features 4
to 6). These six features were selected as inputs for our model. The output of ChiPr is

the predicted strength of the interaction between any two peaks/regions of interest.

We demonstrate that the predictions of ChlPr correlate well with the original ChlA-
PET (as our positive control) interactions at the peak-level resolution and bin sizes of
25 and 5 Kbp. We show that ChlPr accurately predicts most of the cell-type-dependent
loops identified by either ChIA-PET or Hi-C. Moreover, we have analyzed the
importance of each of the model inputs for the model's prediction accuracy and
performed a detailed analysis for the role of CTCF motif orientation and CTCF
occupancy in the prevalence and strength of cohesin-mediated chromatin interactions.

Remarkably, our results demonstrate that, with a single experimental data (RAD21
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ChlIP-Seq), ChlIPr can predict cohesin-mediated chromatin interactions with high

accuracy.
RESULTS

ChlIPr predictions correlate well with the original data at the peak-level

resolution

The schematic of the method and a few examples of the contact maps that can be
constructed using the predicted outputs at different resolutions are shown in Fig. 1A
and B, respectively. Additional details about the input features and the regression
models can be found in the “Methods” section. For each of the three variants of
ChIPr—DNN-ChIPr, RF-ChlPr, and GB-ChIPr—we trained two main models using the
data of the two cell lines, GM12878 and K562, respectively. We chose GM12878 and
K562 because they are two of the best-characterized cell lines in the ENCODE portal
1415 "with the highest data quality. In addition, using models trained on two different
cell lines reduces the inherent biases which might be observed due to the presence of
structural variations and mutations in the genome. We used the models trained on the
RAD21 ChIA-PET data from GM12878 to predict RAD21 interactions’ strengths in the
cell lines K562, H1, and HepG2 using the six inputs described in Fig. 1A—RAD21
ChIP-Seq, H3K27ac ChIP-Seq, H3K27me3 ChIP-Seq, the genomic distance between
peaks, GC content, and CTCF motif orientation flag. The CTCF motif orientation flag
is an input (set to 1 if CTCF motif orientations in the two interacting peaks are
convergent, and is set to ‘0’ otherwise). Reciprocally, we used the models trained on
the RAD21 ChlA-PET data from K562 to predict the strengths of RAD21 interactions
in the cell lines GM12878, H1, and HepG2. The RAD21 ChlP-Seq data used in our
studies were not derived from RAD21 ChIA-PET data and therefore represent

bonafide independent datasets. We have previously shown that ChlA-PET interaction
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strengths follow a negative binomial distribution 32. Hence, to evaluate the
performance of our ChlPr, we generated random values for the interactions’ strengths
drawn from negative binomial distributions with the same mean and variance as that
of the corresponding original ChlA-PET sample. We measured the correlation
coefficient values between the predictions we obtained for the four cell lines (using the
models trained on GM12878 and K562 data, respectively) and the original ChlA-PET
data. We found that the predicted outputs of the three different variants of ChiPr
correlated significantly better with the original data than the randomly generated
interactions’ strengths (Fig. 2A and B, Supp. Fig. 1A and B). We also found that the
three different regression models—DNN-ChIPr, RF-ChIPr, and GB-ChlPr—yielded
comparable results (Fig. 2A and B, Supp. Fig. 1A and B). In addition, the results for
the cell lines H1 and HepG2 are quite similar for the models trained on GM12878 and
K562 data, respectively (Fig. 2A and B, Supp. Fig. 1A and B). These results

showcase the accuracy, reproducibility and generalizability of ChiPr.

ChlIPr predictions correlate well with the original ChlA-PET data at 25 and 5

Kbp bins resolution

Although our goal is to predict the chromatin interactions’ strengths at the peak-
level resolution, we can still capture much information at lower resolutions. For
instance, we can predict TADs using contact maps of 25 and 5 Kbp resolutions °. Thus,
we sought to measure how well the ChlPr outputs correlate with the original data at

these lower resolutions.

In 33, HICRep was developed to assess the reproducibility of Hi-C data taking into
account its unique spatial features, such as domain structure and distance
dependence. HiCRep minimizes the effect of noise by smoothing the Hi-C maps. It

also addresses the impact of distance dependence by dividing the contact maps into
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strata. It calculates the Pearson correlation coefficient between every two
corresponding strata in the two maps being compared. The weighted sum of these
Pearson correlation coefficients is called the stratum-adjusted correlation coefficient
(SCC). SCC has the same range and interpretation as standard correlation coefficients

33, In 34, a faster and more computationally efficient version of HICRep was developed.

We used SCC and Pearson correlation coefficients to evaluate the similarity
between the original data and the outputs of ChlPr. More specifically, we created
interaction maps for the original, predicted, and randomly generated interactions at 25
and 5 Kbp bin sizes. We measured SCC and Pearson correlation between the original
maps vs. the predicted and random ones. For SCC, we set the smoothing window
half-size h to ‘2’ and the maximum genomic distance to include in calculations to 25
Mbp. We found predicted maps correlate significantly with the original maps than the

random ones (Fig. 3A-D, Supp. Fig. 2A and B).

In addition, we calculated the expected contact maps at 5 Kbps, where each entry
contains the average interaction strength at this genomic distance. We calculated the
maps P71 = (predicted/expected) for predictions obtained by the three ChIPr models
and Of1 = (original/expected). We calculated the correlation between non-zero entries
in P71 and O1. We observed high pearson correlation values between the two matrices
(Supp. Fig. 3A-C). All these results show the agreement between original and
predicted contact maps. This agreement highlights the ability of ChlIPr to reproduce
reasonably accurate contact maps with relatively small bin sizes like 25 Kbps and 5

Kbps.

ChlIPr captures ChlA-PET identified cell-type-dependent interactions
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In ", ChIA-PET was used to study the cohesin-mediated chromatin loops in 24 cell
lines. The authors pooled ~125,000 interactions across all the cell lines and found that
~28% of that pan-cell line loop set are variable loops (i.e., cell-type-dependent loops).
These variable loops are strong in certain cell types and weaker or near noise level in

other types.

We investigated the whole list of cell-type-dependent loops to see if they are
captured by ChIPr as strong interactions in the corresponding cell-types (i.e.,
interaction strength (PETs) greater than or equal to ‘3’). As a negative control, we
introduced an equal number of random interactions by shuffling the coordinates of the
first peak of the cell-type-dependent loops of each chromosome (see Fig. 4A). These
randomly introduced loops were not expected to be predicted by ChIPr as strong
interactions. We found that, on average, 74%, 78.5%, and 72.15% of the cell-type-
dependent loops are captured in the four cell lines using DNN-ChIPr, RF-ChIPr, and
GB-ChlPr, respectively (Fig. 4B-G). On the other hand, 2.3%, 2.6%, and 4.7% of the
randomly introduced interactions were predicted as strong interactions using DNN-
ChlIPr, RF-ChlIPr, and GB-ChlIPr, respectively (Fig. 4B-G). These results highlight the
utility of ChIPr in predicting cell-type-dependent cohesin-mediated chromatin

interactions.

ChlIPr captures both cell-type dependent and universal cohesin-mediated

chromatin interactions

We further investigated a region around the SMADS3 gene in the four cell lines
GM12878, K562, H1, and HepG2. SMAD3 functions as a signal transducer in the
transforming growth factor-beta (TGF-f) signalling pathway. It also transmits signals
from the cell surface to the nucleus to regulate cell proliferation and gene activity 3°-%.

To visually evaluate and show the accuracy of the interaction strength predicted using
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ChIPr regression model, we compared the interactions from original ChlA-PET data
to those predicted by RF-ChIPr model which was trained on GM12878 data (for K562,
H1, and HepG2 cell lines) and K562 data (for GM12878 cell line), in SMAD3 gene
region. We found relatively dense, strongly predicted interactions for the cell lines
GM12878, K562, and HepG2, which was consistent with the elevated activity of the
enhancer elements in the corresponding region in these cell lines (Fig. 5A). On the
other hand, we found few interactions in the case of H1, which was also consistent
with the reduced activity of the enhancers in the region (Fig. 5A). Similarly, we
examined another region covering the two genes MEDZ29 and ZFP39. MEDZ29 gene
encodes for a protein which is a part of the mediator complex and functions in the
regulation of transcription of nearly all RNA POLII dependent genes 3%36. On the other
hand, ZFP36 gene encodes for an RNA-binding protein involved in mRNA metabolism
pathways 3%36. This region comprising a non-variable loop predicted strongly in all of

the four cell lines was also in line with the original data (Fig. 5B).

Moreover, we also explored loops in the region surrounding the MYC oncogene.
We found that model predictions could capture the strong interactions between MYC
promoter and the enhancer elements located in the PVT1 gene in the four cell lines
(Fig. 6A). In addition, the strong set of enhancer-enhancer interactions in the regions
of CASC19 and CASC21 genes and in the region of PVT1 gene were also captured
by all the three variants of ChIPr in GM12878 and K562 cell lines, respectively (Fig.
6A). We suggest that using all the three ChIPr models is likely to give a more robust

view of cohesin-associated chromatin interactions in any region of interest.
ChlIPr captures Hi-C identified cell-type-dependent interactions

In ®, in situ Hi-C was used to investigate the 3D structure of genomes of nine cell

types. In addition, HICCUPS was developed to identify loops in the Hi-C maps. As an
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independent validation test, we measured the overlap between the strong interactions
predicted by ChIPr and the Hi-C identified loops of GM12878 and K562. As a negative
control, we also introduced random loops of the same number as the Hi-C identified
ones (see Fig. 4A). We found that the predictions of our regression models capture
the maijority of the loops captured by the original ChlA-PET data Fig. 6B-D). We have
also found that the Hi-C identified loops captured by the predictions of the three
variants of ChlPr are significantly higher than the percentage of randomly introduced
loops captured (Supp. Fig. 4A-C). These results suggest that a substantial number of

Hi-C loops in these cell types are mediated by cohesins.
Contributions of input features to the ChlPr predictions

To measure the importance of each input feature to the prediction accuracy, we
trained the DNN-ChIPr model multiple times using the GM12878 data of odd
chromosomes, eliminating one of the input features each time. We tested the trained
model each time on the data of the even chromosomes and measured the
performance according to the mean absolute error value when compared with the
original interactions at the peak-level resolution. Then, we calculated the drop in
performance when removing each of the input features (Fig. 7A). We found the largest
drop in the performance was due to genomic distance. Hence, we concluded that
genomic distance is the most important of the six input features (this is consistent to
the previous ER loop predictor 7. We also observed an inverse relationship between
RAD21 chromatin interaction strength and genomic distance (Fig. 7B). The second
most important feature is the interaction mediating protein RAD21 ChIP-Seq data.
Training the model without the H3K27ac, H3K27me3, the GC content of the two
interacting peaks, or the CTCF motif orientation flag yielded a very small difference.

However, when we removed both H3K27ac and H3K27me3 ChlP-Seq data together,
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this yielded a slightly bigger drop in performance (Supp. Fig. 5). This shows that,
although H3K27ac and H3K27me3 ChlIP-Seq signals are anti-correlated, one should
use at least one of them in the training of the model. For RF-ChIPr and GB-ChlPr, we
used the permutations test (see Methods section for more details), and it yielded
comparable order of feature importance as for DNN-ChIPr (Fig. 7C and D). These
results suggest that training a minimal model with a single experimental data (RAD21

ChIP-Seq data) can produce good-quality prediction results.
Minimal model with a single experimental data—RAD21 ChiP-Seq

We tested the utility of training a minimal model using only a single experimental
data—RAD21 ChIP-Seq. We trained the three regression models (DNN, Random
forest and gradient boosting) with just four input data—RAD21 ChIP-Seq, genomic
distance between peaks, GC content and CTCF motif orientation flag. We compared
the genome level performance of the minimal ChlPr model vs. standard six input
model (full model). Both models gave comparable results (Fig. 7E and F, Supp. Fig.
6A-D). We also compared the performance of the minimal model with the full model
by analyzing the MYC locus. Remarkably, both the models performed equally well in
predicting the cell-type dependent cohesin-mediated chromatin interactions in the

MYC locus (Fig. 8).

The role of CTCF motif, its orientation and CTCF occupancy in cohesin-

mediated chromatin interactions

We analyzed the relationship between the strength and prevalence of the RAD21
interactions with the CTCF motif presence and orientation in the two interacting peak
regions in both GM12878 and K562 cell lines. We found that the CTCF motif is found

with high confidence (q < 0.3) 3" in both of the two interacting peaks in ~10% of the
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RAD21-mediated interactions in the two cell lines (Fig. 9A). In addition, when the
CTCF motif is present in both of the two peaks and its orientation is in the convergent
manner, the interactions are, on average stronger than in the other cases, including
divergent, tandem left or right, and absence of the motif in one or both peaks (Fig. 9B
and C). A big portion of the loops with convergent CTCF motifs (45% and 34% in
GM12878 and K562, respectively) exhibit strong interactions (Fig. 9D). However,
more than 50% of the interactions are weak (PETs < 3) even with CTCF motif
convergent orientation (Fig. 9D). On the other hand, when the CTCF motif orientation
is not convergent (divergent, tandem left or right, or the motif does not exist in one or
both of the two peaks), we found that more than 70% of the interactions are weak (Fig.
9D). These results show that the convergent CTCF motif orientation is not critical for
the strength of the majority of RAD21-mediated interactions, in line with its small

contribution to predicting the output of ChlPr (Fig. 7A, C, and D).

In addition, we analyzed the relationship between RAD21 interactions and CTCF
ChIP-seq peaks. This analysis showed that ~50%-80% of the RAD21 interactions
were enriched with CTCF binding in the two anchor peak regions of the interaction.
However, less than 15% of the interactions had no CTCF ChlP-seq binding in both of
the two peaks. The peaks of the interactions with no CTCF ChlP-seq binding were
enriched with enhancers, and many of these interactions were enhancer-enhancer
interactions (Supp. Fig. 7). Taken together, these results suggest that CTCF motif
presence is not a common feature of all cohesin-mediated chromatin interactions.
However, CTCF occupancy is a common—but not a universal feature—of cohesin-
mediated chromatin interactions. There can be multiple explanations for the
discrepancy between the CTCF motif and CTCF occupancy in cohesin-mediated

chromatin interactions. There could be weak or variant CTCF binding sites below our
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motif detection level. Indeed when we performed motif enrichment analysis for the
peaks where CTCF binds without the presence of the CTCF motif in the GM12878 cell
line using HOMER 38, we found that, in these locations, other variants of the CTCF
motifs with several alignment mismatches are significantly enriched (Supp. Fig. 8). In
addition, it has been shown that, in general, transcription factor binding may occur in
the absence of any discernible motif instance, or it may occur at ‘hotspots’ where

several factors are found together 3°.
DISCUSSION

In this study, we present ChlPr, three regression models based on DNN, random
forest, and gradient boosting, respectively, and predict the strength of RAD21-
mediated chromatin interactions at the peak-level resolution. ChlPr uses a few input
ChIP-Seq samples and other easily obtainable public data for training, testing and
prediction. We have shown that the most important feature for predicting a functional
cohesin loop is the genomic distance (loop length), in line with previous report for
predicting ER loops '7. The second most important feature was the ChlP-Seq data for
the interaction mediating protein (which was RAD21 in all our analyses), consistent
with the expected detection of ChIP-Seq peaks of the mediating protein at the
interacting loci regions “°. However, we found much less importance for the two
histone mark profiles, H3K27ac and H3K27me3. This may be due to the fact that these
two histone marks are anti-correlated. Thus, the presence of only one of them is
enough to get high prediction accuracy. When both of them were removed, we noticed
a slightly bigger drop in the prediction accuracy in some cases. However, in general,
the results were still very comparable. We also noticed a very small contribution by the
GC content information of the two interacting peaks and the CTCF motif convergence

flag. A detailed analysis of CTCF motif presence and orientation with the RAD21
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interactions prevalence and strength indicated that CTCF motif presence is not
necessary for RAD21 interactions prevalence. However, its presence and convergent
orientation are associated in ~30%-40% of the cases with strong RAD21 interactions.
These results suggest that CTCF motif presence and orientation play a necessary but
insufficient role in RAD21 interactions’ strength. We have also observed the
occupancy of CTCF in both of the two peaks in most of the RAD21 interactions. In the
absence of CTCF binding, we found that many RAD21 loops are enhancer-enhancer

interactions (Supp. Fig. 6).

We have shown that the RAD21-mediated DNA loop prediction outputs of ChiIPr
correlate well with the original RAD21 ChlA-PET data at the peak-level resolution.
They also correlate well at the resolution of bin sizes 25 and 5 Kbp, which suggests
that we can reliably use ChlPr predictions to detect TAD boundaries. We have also
demonstrated that ChiIPr could capture most of the ChlIA-PET and Hi-C identified cell-
type-dependent loops as strong interactions. Altogether, we have shown multiple lines
of evidence that ChlPr could reliably reproduce much of the ChlA-PET information
using a minimal number of easily obtainable features. These studies outline the
general features of genome folding and open new avenues to analyze spatial genome

organization in specimens with limited cell numbers.
MATERIALS AND METHODS
Structure of ChiPr

ChlIPr is composed of three variants of regression models based on DNN, random
forest, and gradient boosting, respectively. ChIPr uses six input features of the two
interacting peaks to predict the RAD21-mediated interactions’ strengths. The first input

feature is the linear genomic distance between the centres of the two peaks in
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kilobases. We have chosen the genomic distance because it is known to be a good
predictor of the interaction strength, and it is usually inversely proportional with it
according to both Hi-C and fluorescence in situ hybridization (FISH) experiments 34",
The second input feature is the RAD21 ChlP-Seq data at the two interacting peaks. It
is expected that the two peaks will be detected by the RAD21 ChlIP-Seq data at the
two interacting loci 4°. In addition, we use the ChIP-Seq data at the two peaks for two
canonical histone modification marks, H3K27ac and H3K27me3, which should

correlate with active and inactive chromatin states, respectively °.

Moreover, it is known that the human genome is organized into long (>300 Kbp),
relatively homogeneous regions called isochores, which differ in their GC content 42.
It has also been reported that 66% of the genes are present in the GC-rich and GC-
richest isochores 42, suggesting a relation between gene distribution and the GC level.
Accordingly, we sought that there may be a relation between chromatin activity (which
leads to strong interactions) and GC content as well. Thus, we used the GC content
of the two peaks as the following two input features to our regression model. Besides,
it was reported in ° that for the Hi-C identified loops whose corresponding anchor loci
contain the CTCF motif, most of the motif pairs are convergent. Thus, we added an
input that denotes the convergence of the CTCF motif orientation in the two peaks.
This input is ‘1’ if the CTCF motif orientation is convergent. If the CTCF motif
orientation in the two peaks is divergent, tandem left or right, or if the motif is absent

in one or both peaks, the CTCF motif orientation input will be ‘0.
Hyper-parameter selection for DNN-ChIPr

To decide the architecture of DNN-ChIPr, we used grid search to determine the
best number of layers, number of neurons in each layer, dropout rate, batch size, and

activation function for the output layer. We have fixed another set of hyperparameters


https://doi.org/10.1101/2022.11.23.517572
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517572; this version posted November 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

that are commonly used. For instance, we fixed the activation function for the hidden
layers to be ‘relu’ 43. We have also used the ‘Adam’ optimizer 44 with a small learning
rate of 10°. We selected this small learning rate, although it will require a relatively
longer training time to ensure the stability of the training process. In addition, we used
a large number of epochs (750), with early stopping if no improvement in performance
(using the validation mean square error metric) is observed for 50 epochs. The
performance of each model was measured according to the mean squared error loss
on the validation data. We found several models gave very comparable values of
validation mean squared error (Supp. Table1). We chose our final model to have three
hidden layers; each has 128 neurons, with ‘relu’ activation function for the output node
(to ensure that the output is always bigger than zero) and values of 0.2 and 32 for the

dropout rate and the batch size, respectively (Supp. Table1).
Preparation of the training data

The ChIA-PET data of the four cell lines GM12878, K562, H1, and HepG2 was
downloaded from the ENCODE project ''. The data was processed using the ChlA-
PET2 pipeline #° to get the inter- and intra-chromosomal interactions files. We focused
on the intra-chromosomal interactions and for each interaction, we got the coordinates
of the two anchor peaks and the interaction strength. We calculated the input features
of anchor peaks of each interaction which comprise alongside the interaction strength

a training example to our model.
ChiP-Seq data normalization

We used the RAD21, H3K27ac, and H3K27me3 ChIP-Seq data of our four
investigated cell lines (GM12878, K562, H1, and HepG2). We calculated the read

count for each of the two anchor peaks of each loop. To account for the sample’s
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sequencing depth and the peaks’ sizes, we normalized the ChIP-Seq data using the
reads per kilobase per million (RPKM) normalization method, described in the
following few lines. We first get the ‘per million scaling factor’ by dividing the total
number of reads in the chromosome by 1,000,000. Then, we divide the read count in
each peak by the ‘per million scaling factor’, a step that accounts for the effect of
sequencing depth. After that, we divide by the peak length in kilobases, a step that

accounts for the peak length.
Getting the GC content and CTCF motif orientation within peaks

To include sequence information into our model, we calculated the GC content for
each peak, defined as the percentage of cytosine (C) and guanine (G) bases in that

peak. We calculated it using the bedtools nuc function 46,

Also, we used GimmeMotifs and CTCF Bioconductor package 34" to detect the
presence of the CTCF motif in each peak and its orientation. For the CTCF motif
orientation input, we set it to ‘1’ if the CTCF motif orientation in the two peaks is

convergent and ‘0’ otherwise.
Constructing contact maps from peak-level interactions

ChlPr predicts interaction strength between peaks. The peak length is in the range
of 2 Kb. It may be slightly smaller or bigger than that. From interactions between peaks,
we can build bin-based contact maps. We do that by summing all interactions whose
anchor peaks lie within the same bin. For instance, to build a 25 Kb bins contact map,
we have a square matrix where each entry represents the interaction strength between
two 25 Kb bins. To get the value of interaction strength between a pair of bins, we sum

all the interactions whose anchor peaks fall within these two bins.

Permutation test for determining feature importance
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To calculate the permutation importance of a certain feature, a baseline metric (for
instance, mean absolute error) is evaluated on the test data (for instance, the data of
even chromosomes if the training was done using the data of odd chromosomes).
Then, for the feature column that is required to measure its importance, this column is
permuted, and the metric is evaluated again. The permutation importance of that
feature is defined as the difference between the baseline metric and the metric

obtained after the permutation of the feature column .
Implementation details

The DNN model (DNN-ChIPr) was implemented using Keras, the Python deep
learning API [https://keras.io/]. For the random forest (RF-ChlIPr) and gradient boosting
(GB-ChIPr) models, we used sklearn RandomForestRegressor and

GradientBoostingRegressor with the default parameters, respectively 4°.
Datasets used

The RAD21 ChIA-PET data for the four cell lines GM12878, K562, H1, and HepG2
can be downloaded from the ENCODE portal [https://www.encodeproject.org]. The
RAD21 ChlIP-Seq data for the four cell lines can be downloaded from NCBI GEO:
GSM935332 (GM12878 cell line), GSM935319 (K562 cell line), GSM935379 (H1 cell
line), and GSM935647 (HepG2 cell line). The H3K27ac ChIP-Seq data for the four cell
lines can be downloaded from NCBI GEO: GSM733771 (GM12878 cell line),
GSM733656 (K562 cell line), GSM733718 (H1 cell line), and GSM733743 (HepG2 cell
line). The H3K27me3 ChIP-Seq data for the four cell lines can be downloaded from
NCBO GEO: GSM733758 (GM12878 cell line), GSM733658 (K562 cell line),
GSM733748 (H1 cell line), and GSM733754 (HepG2 cell line). The CTCF ChIP-Seq

data can be downloaded from NCBI GEO: GSM935611 (GM12878 cell line),
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GSM935407 (K562 cell line), GSM733672 (H1 cell line), and GSM733645 (HepG2 cell
line). Enhancer lists for the four cell lines can be downloaded from EnhancerAtlas 2.0

[http://www.enhanceratlas.org/indexv2.php].
Code availability

Source code of ChlIPr with a detailed Readme file can be downloaded from

https://qit.biohpc.swmed.edu/s206442/chipr

Acknowledgements

We thank Satwik Rajaram and Diego Castrillon for insightful comments and
discussions. We acknowledge the funding support from National Cancer Institute

(NCI)/NIH grant (RO1CA245294).
Author contributions

Conception and Design, A.A., M.Q.Z., R.S.M.; Methodology Development, A.A.;
Data Acquisition, A.A., K.C., Y.G., and J.Y.; Data Analysis and Interpretation, A.A.,
K.C.,Y.G,, J.Y., M.Q.Z.,, and R.S.M.; Manuscript Writing, Review, and Revision,
A.A., M.Q.Z., and R.S.M. with input from all authors; Study Supervision, M.Q.Z. and

R.S.M.
Declaration of Interests

The authors declare no competing interests.


https://doi.org/10.1101/2022.11.23.517572
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517572; this version posted November 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

REFERENCES

1 Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. Nature
Reviews Molecular Cell Biology 22, 511-528 (2021).

2 Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation.
science 295, 1306-1311 (2002).

3 Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding
principles of the human genome. science 326, 289-293 (2009).

4 Fullwood, M. J. et al. An oestrogen-receptor-a-bound human chromatin interactome. Nature
462, 58-64 (2009).

5 Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of
chromatin interactions. Nature 485, 376-380 (2012).

6 Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre.
Nature 485, 381-385 (2012).

7 Sexton, T. et al. Three-dimensional folding and functional organization principles of the
Drosophila genome. Cell 148, 458-472 (2012).

8 Hou, C,, Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute
to the partition of the Drosophila genome into physical domains. Molecular cell 48, 471-484
(2012).

9 Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of
chromatin looping. Cell 159, 1665-1680 (2014).

10 Tang, Z. et al. CTCF-mediated human 3D genome architecture reveals chromatin topology
for transcription. Cell 163, 1611-1627 (2015).

11 Grubert, F. et al. Landscape of cohesin-mediated chromatin loops in the human genome.
Nature 583, 737-743 (2020).

12 Zhang, Z. et al. An AR-ERG transcriptional signature defined by long-range chromatin
interactomes in prostate cancer cells. Genome research 29, 223-235 (2019).

13 Li, X. et al. Long-read ChIA-PET for base-pair-resolution mapping of haplotype-specific
chromatin interactions. Nature protocols 12, 899-915 (2017).

14 Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome.
Nature 489, 57 (2012).

15 Davis, C. A. et al. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic
acids research 46, D794-D801 (2018).

16 Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596,
583-589 (2021).

17 He, C., Wang, X. & Zhang, M. Q. Nucleosome eviction and multiple co-factor binding predict
estrogen-receptor-alpha-associated long-range interactions. Nucleic acids research 42, 6935-
6944 (2014).

18 Fortin, J.-P. & Hansen, K. D. Reconstructing A/B compartments as revealed by Hi-C using
long-range correlations in epigenetic data. Genome biology 16, 1-23 (2015).

19 Chen, Y., Wang, Y., Xuan, Z., Chen, M. & Zhang, M. Q. De novo deciphering three-
dimensional chromatin interaction and topological domains by wavelet transformation of
epigenetic profiles. Nucleic acids research 44, e106-e106 (2016).

20 Chiariello, A. M., Annunziatella, C., Bianco, S., Esposito, A. & Nicodemi, M. Polymer physics
of chromosome large-scale 3D organisation. Scientific reports 6, 1-8 (2016).

21 Zhu, Y. et al. Constructing 3D interaction maps from 1D epigenomes. Nature
communications 7, 1-11 (2016).

22 Di Pierro, M., Cheng, R. R., Aiden, E. L., Wolynes, P. G. & Onuchic, J. N. De novo prediction of

human chromosome structures: Epigenetic marking patterns encode genome architecture.
Proceedings of the National Academy of Sciences 114, 12126-12131 (2017).


https://doi.org/10.1101/2022.11.23.517572
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517572; this version posted November 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

38

39

40

41

42

43
44

45

46

47

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Al Bkhetan, Z. & Plewczynski, D. Three-dimensional epigenome statistical model: genome-
wide chromatin looping prediction. Scientific reports 8, 1-11 (2018).

Kai, Y. et al. Predicting CTCF-mediated chromatin interactions by integrating genomic and
epigenomic features. Nature communications 9, 1-14 (2018).

Belokopytova, P. S., Nuriddinov, M. A., Mozheiko, E. A., Fishman, D. & Fishman, V.
Quantitative prediction of enhancer—promoter interactions. Genome research 30, 72-84
(2020).

Li, W., Wong, W. H. & Jiang, R. DeepTACT: predicting 3D chromatin contacts via
bootstrapping deep learning. Nucleic acids research 47, e60-e60 (2019).

Singh, S., Yang, Y., Péczos, B. & Ma, J. Predicting enhancer-promoter interaction from
genomic sequence with deep neural networks. Quantitative Biology 7, 122-137 (2019).
Cao, F. et al. Chromatin interaction neural network (ChINN): a machine learning-based
method for predicting chromatin interactions from DNA sequences. Genome biology 22, 1-
25 (2021).

Feng, F., Yao, Y., Wang, X. Q. D., Zhang, X. & Liu, J. Connecting high-resolution 3D chromatin
organization with epigenomics. Nature communications 13, 1-10 (2022).

Abbas, A. et al. Integrating Hi-C and FISH data for modeling of the 3D organization of
chromosomes. Nature communications 10, 1-14 (2019).

Zhou, J. Sequence-based modeling of three-dimensional genome architecture from kilobase
to chromosome scale. Nature genetics 54, 725-734, doi:10.1038/s41588-022-01065-4
(2022).

Ramanand, S. G. et al. The landscape of RNA polymerase Il-associated chromatin
interactions in prostate cancer. The Journal of clinical investigation 130 (2020).

Yang, T. et al. HiCRep: assessing the reproducibility of Hi-C data using a stratum-adjusted
correlation coefficient. Genome research 27, 1939-1949 (2017).

Lin, D., Sanders, J. & Noble, W. S. HiCRep. py: Fast comparison of Hi-C contact matrices in
Python. Bioinformatics 37, 2996-2997 (2021).

Safran, M. et al. GeneCards Version 3: the human gene integrator. Database 2010 (2010).
Stelzer, G. et al. The GeneCards suite: from gene data mining to disease genome sequence
analyses. Current protocols in bioinformatics 54, 1.30. 31-31.30. 33 (2016).

Dozmorov, M. G. etal. (2021).

Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities. Molecular cell 38, 576-
589 (2010).

Kheradpour, P. & Kellis, M. Systematic discovery and characterization of regulatory motifs in
ENCODE TF binding experiments. Nucleic acids research 42, 2976-2987 (2014).

Johnson, K. D. & Bresnick, E. H. Dissecting long-range transcriptional mechanisms by
chromatin immunoprecipitation. Methods 26, 27-36 (2002).

Wang, S. et al. Spatial organization of chromatin domains and compartments in single
chromosomes. Science 353, 598-602 (2016).

Mouchiroud, D. et al. The distribution of genes in the human genome. Gene 100, 181-187
(1991).

Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. (MIT Press, 2016).

Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

Li, G., Chen, Y., Snyder, M. P. & Zhang, M. Q. ChIA-PET2: a versatile and flexible pipeline for
ChIA-PET data analysis. Nucleic acids research 45, e4-e4 (2017).

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics 26, 841-842 (2010).

van Heeringen, S. J. & Veenstra, G. J. C. GimmeMotifs: a de novo motif prediction pipeline
for ChlP-sequencing experiments. Bioinformatics 27, 270-271 (2011).


https://doi.org/10.1101/2022.11.23.517572
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517572; this version posted November 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

48 Breiman, L. Random forests. Machine learning 45, 5-32 (2001).
49 Pedregosa, F. et al. Scikit-learn: Machine learning in Python. the Journal of machine Learning
research 12, 2825-2830 (2011).


https://doi.org/10.1101/2022.11.23.517572
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.23.517572; this version posted November 25, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

FIGURES LEGENDS
Fig. 1

Overview of ChlPr, a regression model with three variants to predict interaction
strength between two peaks. (A) A schematic representation of ChlPr showing all the
input features, the three regression variants, and the expected output from ChlPr. (B)
An example of contact maps constructed from the original ChlA-PET data and the
corresponding ones constructed from the predictions of DNN-ChIPr at resolutions of

500 Kbp, 50 Kbp, and 5 Kbp. Heatmaps in (B) were plotted using HiTC.
Fig. 2

Predicted interactions correlate well with the original ones at the peak-level-
resolution. (A) Predicted interactions using the three variants of ChlPr for the cell
lines K562, H1, and HepG2 correlate significantly better than the random interactions
with the original ChlA-PET interactions of these three cell lines. The predictions in
(A) are obtained using models trained on the GM12878 cell line data. (B) Predicted
interactions using the three variants of ChIPr for the cell lines GM12878, H1, and
HepG2 correlate significantly better than the random interactions with the original
ChIA-PET interactions of these three cell lines. The predictions in (B) are obtained
using the models trained on the K562 cell line data. ****: p-value < 0.0001, Wilcoxon

rank sum test.
Fig. 3

Predicted interactions correlate well with the original ones at the 25 Kbp bin
resolution. (A and B) Comparison between the correlation coefficient values between
the original interactions and the predicted ones using the three variants of ChlPr vs.

those between the original and randomly generated ones for the three cell lines
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K562, H1, and HepG2. The correlation coefficients were calculated using stratum
adjusted correlation coefficients (A) and Pearson correlation coefficients (B),
respectively. The predictions in (A and B) were generated using the models trained
on GM12878 data. (C and D) Comparison between the correlation coefficient values
between the original interactions and the predicted ones using the three variants of
ChlPr vs. those between the original and randomly generated ones for the three cell
lines GM12878, H1, and HepG2. The correlation coefficients were calculated using
stratum adjusted correlation coefficients (C) and Pearson correlation coefficients (D),
respectively. The predictions in (C and D) were generated using the models trained

on K562 data.
Fig. 4

Predicted interactions capture the majority of cell-type-dependent loops. (A) An
illustration of how the random control loops were generated for the comparison. (B —
G) Predicted interactions using DNN-ChIA-Pr (B and C), RF-ChlPr (D and E), and
GB-ChlIPr (F and G) captured a significantly higher portion of the ChlA-PET identified
cell-type-dependent loops vs. randomly introduced loops of the same number for the
cell lines K562, H1, and HepG2. The models in (B, D, and F) were trained using the
data of GM12878 cell line and the models in (C, E, and G) were trained using the

data of K562 cell line. ****: p-value < 0.0001, Wilcoxon rank sum test.

Fig. 5

Examples for the predictions of RF-ChlIPr for variable and non-variable loops. (A)
Predictions of RF-ChlIPr are highly similar to the original data for the selected region

surrounding SMAD3 gene. (B) Predictions of RF-ChIPr are highly similar to the
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original data for the non-variable loops in the region covering the two genes MED29
and ZFP36 in the four cell lines GM12878, K562, H1, and HepG2. Interactions
shown in (A) and (B) are those having strength >= ‘3’. Red: original loops from

RAD21 ChIA-PET data; blue: predicted loops by RF-ChiPr.
Fig. 6

ChlIPr captures majority of cell-type-dependent interactions and Hi-C identified loops.
(A) Original interactions and predicted ones for the four cell lines GM12878, K562,
H1, and HepG2 using the three variants of ChlPr in the region surrounding the MYC
oncogene. Interactions shown are those having strength >= ‘3’. Red: original loops
from RAD21 ChIA-PET data; blue: predicted loops by ChlIPr. (B - D) Predicted
interactions using DNN-ChIPr (B), RF-ChIPr (C), and GB-ChlIPr (D) captured the
majority of the Hi-C identified loops captured by the original ChlA-PET data from the

cell lines GM12878 and K562.
Fig. 7

Contributions of input features to ChlPr outputs. (A) The drop in mean absolute error
when comparing predicted interactions with the original ones when training DNN-
ChlIPr while removing one of the input features at each time. (B) The relation
between the number of RAD21 interactions with different strengths and the genomic
distance between the two interacting peaks. (C and D) The importance of the inputs
features for RF-ChIPr (C) and GB-ChlIPr (D) using the permutations test. (E and F)
Comparison between the genome-level performance of RF-ChIPr minimal and full
models trained on GM12878 data (E) and K562 data (F), respectively. The data is

split into training data (75%) and test data (25%). In (E), the performance of
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GM12878 is measured on the GM12878 test data. Similarly, in (F), the performance

of K562 is also measured on the K562 test data.
Fig. 8

Original interactions and predicted ones for the four cell lines GM12878, K562, H1,
and HepG2 using the three variants of ChlIPr in the region surrounding the MYC

oncogene. Interactions shown are those having strength >= ‘3’. Red: original loops
from RAD 21 ChIA-PET data; blue: predicted loops by ChlPr full model, and cyan:

predicted loops by ChIPr minimal model.
Fig. 9

Relationship between RAD21 interactions and CTCF motif orientation and ChlP-seq
binding. (A) The relationship between the RAD21 interactions prevalence and the
presence of CTCF motif in the interacting peaks. (B and C) The relationship between
the strength of RAD21 interactions and the presence of CTCF motif in the interacting
peaks for (B) GM12878 and (C) K562, respectively. (D) The percentage of
interactions of different strengths and their relation with the presence of CTCF motif

in the interacting peaks.
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Figure 2
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Figure 3

A K562 H1 HepG2

HepG2

H1
e HEE

chris ..: E%arson
chri4 1.00

chr13 I
§ oz N 07
chr11 ... 0.50
chr10 025

chr9 l l
0.00

SIIRIRY @Q‘Q &
O N O \ \ \
Q3§\$’ & 6/ (</ /‘Q Qb/C)(</

HepG2

I Pearson
IlI I -

%@@wosz SOGE
/ / / /
Q\é << ‘2\&‘<

SCC
value

chr2

N
ot

\
S 6c\,{zogo @GOGQ‘&‘\« ,§°° c§§
/ / 4 /
EY S SEF S



https://doi.org/10.1101/2022.11.23.517572
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4
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Figure 5
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Figure 7
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Figure 9
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