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ABSTRACT  

The three-dimensional (3D) genome organization influences diverse nuclear 

processes. Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) 

and Hi-C are powerful methods to study the 3D genome organization. However, 

ChIA-PET and Hi-C experiments are expensive, time-consuming, require tens to 

hundreds of millions of cells, and are challenging to optimize and analyze. Predicting 

ChIA-PET/Hi-C data using cheaper ChIP-Seq data and other easily obtainable 

features could be a useful alternative. It is well-established that the cohesin protein 

complex is a key determinant of 3D genome organization. Here we present 

Chromatin Interaction Predictor (ChIPr), a suite of regression models based on deep 
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neural networks (DNN), random forest, and gradient boosting, respectively, to predict 

cohesin-mediated chromatin interaction strength between any two loci in the 

genome. Comprehensive tests on four cell lines show that the predictions of ChIPr 

correlate well with the original ChIA-PET data at the peak-level resolution and bin 

sizes of 25 and 5 Kbp. In addition, ChIPr can accurately capture most of the cell-

type-dependent loops identified by ChIA-PET and Hi-C data. Rigorous feature 

testing indicated that genomic distance and RAD21 (a cohesin component) ChIP-

Seq signals are the most important inputs for ChIPr in determining chromatin 

interaction strength. The standard ChIPr model requires three experimental inputs: 

ChIP-Seq signals for RAD21, H3K27ac (enhancer/active chromatin mark) and 

H3K27me3 (inactive chromatin mark). The minimal ChIPr model performs 

comparably and requires a single experimental input: ChIP-Seq signals for RAD21. 

Integrative analysis revealed novel insights into the role of CTCF motif, its 

orientation, and CTCF binding on the prevalence and strength of cohesin-mediated 

chromatin interactions. These studies outline the general features of genome folding 

and open new avenues to analyze spatial genome organization in specimens with 

limited cell numbers.   

INTRODUCTION 

The three-dimensional (3D) genome organization directly impacts diverse nuclear 

processes such as transcription, DNA repair, and replication. Therefore, it is crucial to 

understand how the distal regulatory elements (in the linear genome) interact in 3D 

space. Several sequencing-based and imaging-based experimental methods have 

been developed in the last two decades to study the 3D genome organization 1. Many 

of the sequencing-based approaches are derived from the chromosome conformation 

capture (3C) concept 2. High-throughput chromosome conformation capture (Hi-C) 3 
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and chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) 4 are 

some of the commonly used methods to study 3D genome organization. Hi-C detects 

all possible genome-wide pairwise interactions between loci. By using Hi-C maps, it 

was observed that chromosomes are partitioned into two compartments, A and B, 

representing active and inactive chromatin regions, respectively 3. Analysis of 

relatively high-resolution Hi-C maps (~40 Kbp) resulted in the discovery of self-

interacting genomic regions called topologically associating domains (TADs) 5-8. Much 

higher resolution Hi-C maps (in the range of 1 – 5 Kbp) have revealed enhancer-

promoter contacts 9.  

Hi-C identifies all chromatin contacts but does not specify the proteins associated 

with 3D interactions. This is partially addressed by including a chromatin 

immunoprecipitation (ChIP) step with the Hi-C protocol. For example, ChIA-PET 

captures genome-wide interactions associated with specific proteins. ChIA-PET has 

facilitated the discovery of chromatin interactions associated with transcription factors 

(ER, AR), RNA Polymerase II, and structural proteins such as the cohesin component 

RAD21 and CTCF 10-12. However, Hi-C and ChIA-PET experiments are labour-

intensive, time-consuming, and expensive 9,13. Furthermore, there always exists a 

possibility that the experiment outcome may not be of the desired quality. The 

ENCODE portal has provided RAD21 ChIA-PET datasets for about 24 cell lines 11. 

However, we still do not have the RAD21 ChIA-PET for many other cell lines 14,15. We 

still do not fully understand the key determinants of cohesin-mediated chromatin 

interactions. Therefore, we sought to develop a machine learning method to predict 

cohesin-associated chromatin interactions using simple 2D chromatin and other 

associated genomic features.  
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Machine learning has been applied to solve long-standing questions in biology. 

Notably, the AlphaFold system has been applied to accurately predict the 3D shape 

of a protein from its amino acid sequence 16. Several machine learning systems have 

been developed to understand 3D genome organization 17-31. For instance, 

transcription factor and histone modification ChIP-Seq data were used to predict the 

chromatin interactions between loop-associated ERa binding sites (laERBSs) 17. 

Higher-order chromatin organization A/B compartments, originally calculated using Hi-

C data 3, have been predicted from epigenetic data, such as DNA methylation 

microarray, DNase hypersensitivity sequencing, single-cell ATAC sequencing, and 

single-cell whole-genome bisulfite sequencing 18. In 22, the authors developed a neural 

network to predict chromatin structural types (i.e., to which subcompartments 9 the 

chromatin loci belong) from ChIP-Seq signals. They used the available ENCODE 

ChIP-seq data for the GM12878 cell line (84 protein binding and 11 histone 

modification experiments). They have also trained a reduced model using only the 11 

histone modification experiments 22. Moreover, Gradient Boosting regressor was used 

to predict the interaction frequency between loci of 25 Kbp size (the model was shown 

to work also at 5 Kbp resolution) 25. In the final model, RNA-seq data, CTCF binding, 

and orientation were used as the regression model predictors 25. In Chromatin 

Interaction Neural Network (ChINN), DNA sequences of interacting loci were used to 

predict CTCF-, RNA polymerase II- and Hi-C- associated chromatin interactions 28. 

However, most of the existing models for predicting chromatin interactions are binary 

classifiers and do not predict interaction strength. In addition, most of them restrict the 

predictions to enhancer-promoter interactions and restrict the distance between 

interacting loci to a few megabase pairs. Computational methods to predict the 
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strength of cohesin-mediated cell-type-dependent interactions in a genome-wide 

manner are still unavailable.  

In this study, we present Chromatin Interaction Predictor (ChIPr), a suite of 

regression models based on DNN (DNN-ChIPr), random forest (RF-ChIPr), and 

gradient boosting (GB-ChIPr), respectively, to predict the strength of chromatin 

interactions between any two anchor peaks. Our main assumption is that the 

interaction strength between any pair of peaks depends on a set of factors that can be 

easily measured or widely (publicly) available. We hypothesized that the interaction 

strength between two peaks depends on (A) the enrichment of the protein of interest 

in the two peaks (feature 1), which can be measured by ChIP-Seq, (B) the enrichment 

of active and inactive histone modifications (features 2 and 3), which can also be 

measured by ChIP-Seq, and (C) additional factors that can be easily calculated without 

any new experimental data, like the genomic distance between the two peaks, the GC 

content of the two peaks, and the CTCF motif orientation in the two peaks (features 4 

to 6). These six features were selected as inputs for our model. The output of ChIPr is 

the predicted strength of the interaction between any two peaks/regions of interest.  

We demonstrate that the predictions of ChIPr correlate well with the original ChIA-

PET (as our positive control) interactions at the peak-level resolution and bin sizes of 

25 and 5 Kbp. We show that ChIPr accurately predicts most of the cell-type-dependent 

loops identified by either ChIA-PET or Hi-C. Moreover, we have analyzed the 

importance of each of the model inputs for the model's prediction accuracy and 

performed a detailed analysis for the role of CTCF motif orientation and CTCF 

occupancy in the prevalence and strength of cohesin-mediated chromatin interactions. 

Remarkably, our results demonstrate that, with a single experimental data (RAD21 
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ChIP-Seq), ChIPr can predict cohesin-mediated chromatin interactions with high 

accuracy. 

RESULTS 

ChIPr predictions correlate well with the original data at the peak-level 

resolution 

The schematic of the method and a few examples of the contact maps that can be 

constructed using the predicted outputs at different resolutions are shown in Fig. 1A 

and B, respectively. Additional details about the input features and the regression 

models can be found in the “Methods” section. For each of the three variants of 

ChIPr—DNN-ChIPr, RF-ChIPr, and GB-ChIPr—we trained two main models using the 

data of the two cell lines, GM12878 and K562, respectively. We chose GM12878 and 

K562 because they are two of the best-characterized cell lines in the ENCODE portal 

14,15, with the highest data quality. In addition, using models trained on two different 

cell lines reduces the inherent biases which might be observed due to the presence of 

structural variations and mutations in the genome. We used the models trained on the 

RAD21 ChIA-PET data from GM12878 to predict RAD21 interactions’ strengths in the 

cell lines K562, H1, and HepG2 using the six inputs described in Fig. 1A—RAD21 

ChIP-Seq, H3K27ac ChIP-Seq, H3K27me3 ChIP-Seq, the genomic distance between 

peaks, GC content, and CTCF motif orientation flag. The CTCF motif orientation flag 

is an input (set to 1 if CTCF motif orientations in the two interacting peaks are 

convergent, and is set to ‘0’ otherwise). Reciprocally, we used the models trained on 

the RAD21 ChIA-PET data from K562 to predict the strengths of RAD21 interactions 

in the cell lines GM12878, H1, and HepG2. The RAD21 ChIP-Seq data used in our 

studies were not derived from RAD21 ChIA-PET data and therefore represent 

bonafide independent datasets. We have previously shown that ChIA-PET interaction 
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strengths follow a negative binomial distribution 32. Hence, to evaluate the 

performance of our ChIPr, we generated random values for the interactions’ strengths 

drawn from negative binomial distributions with the same mean and variance as that 

of the corresponding original ChIA-PET sample. We measured the correlation 

coefficient values between the predictions we obtained for the four cell lines (using the 

models trained on GM12878 and K562 data, respectively) and the original ChIA-PET 

data. We found that the predicted outputs of the three different variants of ChIPr 

correlated significantly better with the original data than the randomly generated 

interactions’ strengths (Fig. 2A and B, Supp. Fig. 1A and B). We also found that the 

three different regression models—DNN-ChIPr, RF-ChIPr, and GB-ChIPr—yielded 

comparable results (Fig. 2A and B, Supp. Fig. 1A and B). In addition, the results for 

the cell lines H1 and HepG2 are quite similar for the models trained on GM12878 and 

K562 data, respectively (Fig. 2A and B, Supp. Fig. 1A and B). These results 

showcase the accuracy, reproducibility and generalizability of ChIPr. 

ChIPr predictions correlate well with the original ChIA-PET data at 25 and 5 

Kbp bins resolution 

Although our goal is to predict the chromatin interactions’ strengths at the peak-

level resolution, we can still capture much information at lower resolutions. For 

instance, we can predict TADs using contact maps of 25 and 5 Kbp resolutions 9. Thus, 

we sought to measure how well the ChIPr outputs correlate with the original data at 

these lower resolutions. 

In 33, HiCRep was developed to assess the reproducibility of Hi-C data taking into 

account its unique spatial features, such as domain structure and distance 

dependence. HiCRep minimizes the effect of noise by smoothing the Hi-C maps. It 

also addresses the impact of distance dependence by dividing the contact maps into 
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strata. It calculates the Pearson correlation coefficient between every two 

corresponding strata in the two maps being compared. The weighted sum of these 

Pearson correlation coefficients is called the stratum-adjusted correlation coefficient 

(SCC). SCC has the same range and interpretation as standard correlation coefficients 

33. In 34, a faster and more computationally efficient version of HiCRep was developed. 

We used SCC and Pearson correlation coefficients to evaluate the similarity 

between the original data and the outputs of ChIPr. More specifically, we created 

interaction maps for the original, predicted, and randomly generated interactions at 25 

and 5 Kbp bin sizes. We measured SCC and Pearson correlation between the original 

maps vs. the predicted and random ones. For SCC, we set the smoothing window 

half-size h to ‘2’ and the maximum genomic distance to include in calculations to 25 

Mbp. We found predicted maps correlate significantly with the original maps than the 

random ones (Fig. 3A-D, Supp. Fig. 2A and B).  

In addition, we calculated the expected contact maps at 5 Kbps, where each entry 

contains the average interaction strength at this genomic distance. We calculated the 

maps P1 = (predicted/expected) for predictions obtained by the three ChIPr models 

and O1 = (original/expected). We calculated the correlation between non-zero entries 

in P1 and O1. We observed high pearson correlation values between the two matrices 

(Supp. Fig. 3A-C). All these results show the agreement between original and 

predicted contact maps. This agreement highlights the ability of ChIPr to reproduce 

reasonably accurate contact maps with relatively small bin sizes like 25 Kbps and 5 

Kbps. 

ChIPr captures ChIA-PET identified cell-type-dependent interactions 
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In 11, ChIA-PET was used to study the cohesin-mediated chromatin loops in 24 cell 

lines. The authors pooled ~125,000 interactions across all the cell lines and found that 

~28% of that pan-cell line loop set are variable loops (i.e., cell-type-dependent loops). 

These variable loops are strong in certain cell types and weaker or near noise level in 

other types. 

We investigated the whole list of cell-type-dependent loops to see if they are 

captured by ChIPr as strong interactions in the corresponding cell-types (i.e., 

interaction strength (PETs) greater than or equal to ‘3’). As a negative control, we 

introduced an equal number of random interactions by shuffling the coordinates of the 

first peak of the cell-type-dependent loops of each chromosome (see Fig. 4A). These 

randomly introduced loops were not expected to be predicted by ChIPr as strong 

interactions. We found that, on average, 74%, 78.5%, and 72.15% of the cell-type-

dependent loops are captured in the four cell lines using DNN-ChIPr, RF-ChIPr, and 

GB-ChIPr, respectively (Fig. 4B-G). On the other hand, 2.3%, 2.6%, and 4.7% of the 

randomly introduced interactions were predicted as strong interactions using DNN-

ChIPr, RF-ChIPr, and GB-ChIPr, respectively (Fig. 4B-G). These results highlight the 

utility of ChIPr in predicting cell-type-dependent cohesin-mediated chromatin 

interactions.  

ChIPr captures both cell-type dependent and universal cohesin-mediated 

chromatin interactions 

We further investigated a region around the SMAD3 gene in the four cell lines 

GM12878, K562, H1, and HepG2. SMAD3 functions as a signal transducer in the 

transforming growth factor-beta (TGF-b) signalling pathway. It also transmits signals 

from the cell surface to the nucleus to regulate cell proliferation and gene activity 35,36. 

To visually evaluate and show the accuracy of the interaction strength predicted using 
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ChIPr regression model, we compared the interactions from original ChIA-PET data 

to those predicted by RF-ChIPr model which was trained on GM12878 data (for K562, 

H1, and HepG2 cell lines) and K562 data (for GM12878 cell line), in SMAD3 gene 

region. We found relatively dense, strongly predicted interactions for the cell lines 

GM12878, K562, and HepG2, which was consistent with the elevated activity of the 

enhancer elements in the corresponding region in these cell lines (Fig. 5A). On the 

other hand, we found few interactions in the case of H1, which was also consistent 

with the reduced activity of the enhancers in the region (Fig. 5A). Similarly, we 

examined another region covering the two genes MED29 and ZFP39. MED29 gene 

encodes for a protein which is a part of the mediator complex and functions in the 

regulation of transcription of nearly all RNA POLII dependent genes 35,36. On the other 

hand, ZFP36 gene encodes for an RNA-binding protein involved in mRNA metabolism 

pathways 35,36. This region comprising a non-variable loop predicted strongly in all of 

the four cell lines was also in line with the original data (Fig. 5B).  

Moreover, we also explored loops in the region surrounding the MYC oncogene. 

We found that model predictions could capture the strong interactions between MYC 

promoter and the enhancer elements located in the PVT1 gene in the four cell lines 

(Fig. 6A). In addition, the strong set of enhancer-enhancer interactions in the regions 

of CASC19 and CASC21 genes and in the region of PVT1 gene were also captured 

by all the three variants of ChIPr in GM12878 and K562 cell lines, respectively (Fig. 

6A). We suggest that using all the three ChIPr models is likely to give a more robust 

view of cohesin-associated chromatin interactions in any region of interest.  

ChIPr captures Hi-C identified cell-type-dependent interactions 

In 9, in situ Hi-C was used to investigate the 3D structure of genomes of nine cell 

types. In addition, HICCUPS was developed to identify loops in the Hi-C maps. As an 
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independent validation test, we measured the overlap between the strong interactions 

predicted by ChIPr and the Hi-C identified loops of GM12878 and K562. As a negative 

control, we also introduced random loops of the same number as the Hi-C identified 

ones (see Fig. 4A). We found that the predictions of our regression models capture 

the majority of the loops captured by the original ChIA-PET data Fig. 6B-D). We have 

also found that the Hi-C identified loops captured by the predictions of the three 

variants of ChIPr are significantly higher than the percentage of randomly introduced 

loops captured (Supp. Fig. 4A-C). These results suggest that a substantial number of 

Hi-C loops in these cell types are mediated by cohesins. 

Contributions of input features to the ChIPr predictions 

To measure the importance of each input feature to the prediction accuracy, we 

trained the DNN-ChIPr model multiple times using the GM12878 data of odd 

chromosomes, eliminating one of the input features each time. We tested the trained 

model each time on the data of the even chromosomes and measured the 

performance according to the mean absolute error value when compared with the 

original interactions at the peak-level resolution. Then, we calculated the drop in 

performance when removing each of the input features (Fig. 7A). We found the largest 

drop in the performance was due to genomic distance. Hence, we concluded that 

genomic distance is the most important of the six input features (this is consistent to 

the previous ER loop predictor 17.  We also observed an inverse relationship between 

RAD21 chromatin interaction strength and genomic distance (Fig. 7B). The second 

most important feature is the interaction mediating protein RAD21 ChIP-Seq data. 

Training the model without the H3K27ac, H3K27me3, the GC content of the two 

interacting peaks, or the CTCF motif orientation flag yielded a very small difference. 

However, when we removed both H3K27ac and H3K27me3 ChIP-Seq data together, 
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this yielded a slightly bigger drop in performance (Supp. Fig. 5). This shows that, 

although H3K27ac and H3K27me3 ChIP-Seq signals are anti-correlated, one should 

use at least one of them in the training of the model. For RF-ChIPr and GB-ChIPr, we 

used the permutations test (see Methods section for more details), and it yielded 

comparable order of feature importance as for DNN-ChIPr (Fig. 7C and D). These 

results suggest that training a minimal model with a single experimental data (RAD21 

ChIP-Seq data) can produce good-quality prediction results. 

Minimal model with a single experimental data—RAD21 ChiP-Seq 

We tested the utility of training a minimal model using only a single experimental 

data—RAD21 ChIP-Seq. We trained the three regression models (DNN, Random 

forest and gradient boosting) with just four input data—RAD21 ChIP-Seq, genomic 

distance between peaks, GC content and CTCF motif orientation flag. We compared 

the genome level performance of the minimal ChIPr model vs. standard six input 

model (full model). Both models gave comparable results (Fig. 7E and F, Supp. Fig. 

6A-D). We also compared the performance of the minimal model with the full model 

by analyzing the MYC locus. Remarkably, both the models performed equally well in 

predicting the cell-type dependent cohesin-mediated chromatin interactions in the 

MYC locus (Fig. 8).   

The role of CTCF motif, its orientation and CTCF occupancy in cohesin-

mediated chromatin interactions 

We analyzed the relationship between the strength and prevalence of the RAD21 

interactions with the CTCF motif presence and orientation in the two interacting peak 

regions in both GM12878 and K562 cell lines. We found that the CTCF motif is found 

with high confidence (q < 0.3) 37 in both of the two interacting peaks in ~10% of the 
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RAD21-mediated interactions in the two cell lines (Fig. 9A). In addition, when the 

CTCF motif is present in both of the two peaks and its orientation is in the convergent 

manner, the interactions are, on average stronger than in the other cases, including 

divergent, tandem left or right, and absence of the motif in one or both peaks (Fig. 9B 

and C). A big portion of the loops with convergent CTCF motifs (45% and 34% in 

GM12878 and K562, respectively) exhibit strong interactions (Fig. 9D). However, 

more than 50% of the interactions are weak (PETs < 3) even with CTCF motif 

convergent orientation (Fig. 9D). On the other hand, when the CTCF motif orientation 

is not convergent (divergent, tandem left or right, or the motif does not exist in one or 

both of the two peaks), we found that more than 70% of the interactions are weak (Fig. 

9D). These results show that the convergent CTCF motif orientation is not critical for 

the strength of the majority of RAD21-mediated interactions, in line with its small 

contribution to predicting the output of ChIPr (Fig. 7A, C, and D).  

In addition, we analyzed the relationship between RAD21 interactions and CTCF 

ChIP-seq peaks. This analysis showed that ~50%-80% of the RAD21 interactions 

were enriched with CTCF binding in the two anchor peak regions of the interaction. 

However, less than 15% of the interactions had no CTCF ChIP-seq binding in both of 

the two peaks. The peaks of the interactions with no CTCF ChIP-seq binding were 

enriched with enhancers, and many of these interactions were enhancer-enhancer 

interactions (Supp. Fig. 7). Taken together, these results suggest that CTCF motif 

presence is not a common feature of all cohesin-mediated chromatin interactions. 

However, CTCF occupancy is a common—but not a universal feature—of cohesin-

mediated chromatin interactions. There can be multiple explanations for the 

discrepancy between the CTCF motif and CTCF occupancy in cohesin-mediated 

chromatin interactions. There could be weak or variant CTCF binding sites below our 
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motif detection level. Indeed when we performed motif enrichment analysis for the 

peaks where CTCF binds without the presence of the CTCF motif in the GM12878 cell 

line using HOMER 38, we found that, in these locations, other variants of the CTCF 

motifs with several alignment mismatches are significantly enriched (Supp. Fig. 8). In 

addition, it has been shown that, in general, transcription factor binding may occur in 

the absence of any discernible motif instance, or it may occur at ‘hotspots’ where 

several factors are found together 39.  

DISCUSSION 

In this study, we present ChIPr, three regression models based on DNN, random 

forest, and gradient boosting, respectively, and predict the strength of RAD21-

mediated chromatin interactions at the peak-level resolution. ChIPr uses a few input 

ChIP-Seq samples and other easily obtainable public data for training, testing and 

prediction. We have shown that the most important feature for predicting a functional 

cohesin loop is the genomic distance (loop length), in line with previous report for 

predicting ER loops 17. The second most important feature was the ChIP-Seq data for 

the interaction mediating protein (which was RAD21 in all our analyses), consistent 

with the expected detection of ChIP-Seq peaks of the mediating protein at the 

interacting loci regions 40. However, we found much less importance for the two 

histone mark profiles, H3K27ac and H3K27me3. This may be due to the fact that these 

two histone marks are anti-correlated. Thus, the presence of only one of them is 

enough to get high prediction accuracy. When both of them were removed, we noticed 

a slightly bigger drop in the prediction accuracy in some cases. However, in general, 

the results were still very comparable. We also noticed a very small contribution by the 

GC content information of the two interacting peaks and the CTCF motif convergence 

flag. A detailed analysis of CTCF motif presence and orientation with the RAD21 
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interactions prevalence and strength indicated that CTCF motif presence is not 

necessary for RAD21 interactions prevalence. However, its presence and convergent 

orientation are associated in ~30%-40% of the cases with strong RAD21 interactions. 

These results suggest that CTCF motif presence and orientation play a necessary but 

insufficient role in RAD21 interactions’ strength. We have also observed the 

occupancy of CTCF in both of the two peaks in most of the RAD21 interactions. In the 

absence of CTCF binding, we found that many RAD21 loops are enhancer-enhancer 

interactions (Supp. Fig. 6). 

We have shown that the RAD21-mediated DNA loop prediction outputs of ChIPr 

correlate well with the original RAD21 ChIA-PET data at the peak-level resolution. 

They also correlate well at the resolution of bin sizes 25 and 5 Kbp, which suggests 

that we can reliably use ChIPr predictions to detect TAD boundaries. We have also 

demonstrated that ChIPr could capture most of the ChIA-PET and Hi-C identified cell-

type-dependent loops as strong interactions. Altogether, we have shown multiple lines 

of evidence that ChIPr could reliably reproduce much of the ChIA-PET information 

using a minimal number of easily obtainable features. These studies outline the 

general features of genome folding and open new avenues to analyze spatial genome 

organization in specimens with limited cell numbers.   

MATERIALS AND METHODS 

Structure of ChIPr 

ChIPr is composed of three variants of regression models based on DNN, random 

forest, and gradient boosting, respectively. ChIPr uses six input features of the two 

interacting peaks to predict the RAD21-mediated interactions’ strengths. The first input 

feature is the linear genomic distance between the centres of the two peaks in 
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kilobases. We have chosen the genomic distance because it is known to be a good 

predictor of the interaction strength, and it is usually inversely proportional with it 

according to both Hi-C and fluorescence in situ hybridization (FISH) experiments 3,41. 

The second input feature is the RAD21 ChIP-Seq data at the two interacting peaks. It 

is expected that the two peaks will be detected by the RAD21 ChIP-Seq data at the 

two interacting loci 40. In addition, we use the ChIP-Seq data at the two peaks for two 

canonical histone modification marks, H3K27ac and H3K27me3, which should 

correlate with active and inactive chromatin states, respectively 9.   

Moreover, it is known that the human genome is organized into long (>300 Kbp), 

relatively homogeneous regions called isochores, which differ in their GC content 42. 

It has also been reported that 66% of the genes are present in the GC-rich and GC-

richest isochores 42, suggesting a relation between gene distribution and the GC level. 

Accordingly, we sought that there may be a relation between chromatin activity (which 

leads to strong interactions) and GC content as well. Thus, we used the GC content 

of the two peaks as the following two input features to our regression model. Besides, 

it was reported in 9 that for the Hi-C identified loops whose corresponding anchor loci 

contain the CTCF motif, most of the motif pairs are convergent. Thus, we added an 

input that denotes the convergence of the CTCF motif orientation in the two peaks. 

This input is ‘1’ if the CTCF motif orientation is convergent. If the CTCF motif 

orientation in the two peaks is divergent, tandem left or right, or if the motif is absent 

in one or both peaks, the CTCF motif orientation input will be ‘0’.  

Hyper-parameter selection for DNN-ChIPr 

To decide the architecture of DNN-ChIPr, we used grid search to determine the 

best number of layers, number of neurons in each layer, dropout rate, batch size, and 

activation function for the output layer. We have fixed another set of hyperparameters 
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that are commonly used. For instance, we fixed the activation function for the hidden 

layers to be ‘relu’ 43. We have also used the ‘Adam’ optimizer 44 with a small learning 

rate of 10-5. We selected this small learning rate, although it will require a relatively 

longer training time to ensure the stability of the training process. In addition, we used 

a large number of epochs (750), with early stopping if no improvement in performance 

(using the validation mean square error metric) is observed for 50 epochs. The 

performance of each model was measured according to the mean squared error loss 

on the validation data. We found several models gave very comparable values of 

validation mean squared error (Supp. Table1). We chose our final model to have three 

hidden layers; each has 128 neurons, with ‘relu’ activation function for the output node 

(to ensure that the output is always bigger than zero) and values of 0.2 and 32 for the 

dropout rate and the batch size, respectively (Supp. Table1). 

Preparation of the training data 

The ChIA-PET data of the four cell lines GM12878, K562, H1, and HepG2 was 

downloaded from the ENCODE project 11. The data was processed using the ChIA-

PET2 pipeline 45 to get the inter- and intra-chromosomal interactions files. We focused 

on the intra-chromosomal interactions and for each interaction, we got the coordinates 

of the two anchor peaks and the interaction strength. We calculated the input features 

of anchor peaks of each interaction which comprise alongside the interaction strength 

a training example to our model. 

ChIP-Seq data normalization 

We used the RAD21, H3K27ac, and H3K27me3 ChIP-Seq data of our four 

investigated cell lines (GM12878, K562, H1, and HepG2). We calculated the read 

count for each of the two anchor peaks of each loop. To account for the sample’s 
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sequencing depth and the peaks’ sizes, we normalized the ChIP-Seq data using the 

reads per kilobase per million (RPKM) normalization method, described in the 

following few lines. We first get the ‘per million scaling factor’ by dividing the total 

number of reads in the chromosome by 1,000,000. Then, we divide the read count in 

each peak by the ‘per million scaling factor’, a step that accounts for the effect of 

sequencing depth. After that, we divide by the peak length in kilobases, a step that 

accounts for the peak length. 

Getting the GC content and CTCF motif orientation within peaks 

To include sequence information into our model, we calculated the GC content for 

each peak, defined as the percentage of cytosine (C) and guanine (G) bases in that 

peak. We calculated it using the bedtools nuc function 46.  

Also, we used GimmeMotifs and CTCF Bioconductor package 37,47 to detect the 

presence of the CTCF motif in each peak and its orientation. For the CTCF motif 

orientation input, we set it to ‘1’ if the CTCF motif orientation in the two peaks is 

convergent and ‘0’ otherwise.  

Constructing contact maps from peak-level interactions 

ChIPr predicts interaction strength between peaks. The peak length is in the range 

of 2 Kb. It may be slightly smaller or bigger than that. From interactions between peaks, 

we can build bin-based contact maps. We do that by summing all interactions whose 

anchor peaks lie within the same bin. For instance, to build a 25 Kb bins contact map, 

we have a square matrix where each entry represents the interaction strength between 

two 25 Kb bins. To get the value of interaction strength between a pair of bins, we sum 

all the interactions whose anchor peaks fall within these two bins. 

Permutation test for determining feature importance 
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To calculate the permutation importance of a certain feature, a baseline metric (for 

instance, mean absolute error) is evaluated on the test data (for instance, the data of 

even chromosomes if the training was done using the data of odd chromosomes). 

Then, for the feature column that is required to measure its importance, this column is 

permuted, and the metric is evaluated again. The permutation importance of that 

feature is defined as the difference between the baseline metric and the metric 

obtained after the permutation of the feature column 48. 

Implementation details 

The DNN model (DNN-ChIPr) was implemented using Keras, the Python deep 

learning API [https://keras.io/]. For the random forest (RF-ChIPr) and gradient boosting 

(GB-ChIPr) models, we used sklearn RandomForestRegressor and 

GradientBoostingRegressor with the default parameters, respectively 49. 

Datasets used 

The RAD21 ChIA-PET data for the four cell lines GM12878, K562, H1, and HepG2 

can be downloaded from the ENCODE portal [https://www.encodeproject.org]. The 

RAD21 ChIP-Seq data for the four cell lines can be downloaded from NCBI GEO: 

GSM935332 (GM12878 cell line), GSM935319 (K562 cell line), GSM935379 (H1 cell 

line), and GSM935647 (HepG2 cell line). The H3K27ac ChIP-Seq data for the four cell 

lines can be downloaded from NCBI GEO: GSM733771 (GM12878 cell line), 

GSM733656 (K562 cell line), GSM733718 (H1 cell line), and GSM733743 (HepG2 cell 

line). The H3K27me3 ChIP-Seq data for the four cell lines can be downloaded from 

NCBO GEO: GSM733758 (GM12878 cell line), GSM733658 (K562 cell line), 

GSM733748 (H1 cell line), and GSM733754 (HepG2 cell line). The CTCF ChIP-Seq 

data can be downloaded from NCBI GEO: GSM935611 (GM12878 cell line), 
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GSM935407 (K562 cell line), GSM733672 (H1 cell line), and GSM733645 (HepG2 cell 

line). Enhancer lists for the four cell lines can be downloaded from EnhancerAtlas 2.0 

[http://www.enhanceratlas.org/indexv2.php]. 

Code availability 

Source code of ChIPr with a detailed Readme file can be downloaded from 

https://git.biohpc.swmed.edu/s206442/chipr 
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FIGURES LEGENDS 

Fig. 1 

Overview of ChIPr, a regression model with three variants to predict interaction 

strength between two peaks. (A) A schematic representation of ChIPr showing all the 

input features, the three regression variants, and the expected output from ChIPr. (B) 

An example of contact maps constructed from the original ChIA-PET data and the 

corresponding ones constructed from the predictions of DNN-ChIPr at resolutions of 

500 Kbp, 50 Kbp, and 5 Kbp. Heatmaps in (B) were plotted using HiTC. 

Fig. 2 

Predicted interactions correlate well with the original ones at the peak-level-

resolution. (A) Predicted interactions using the three variants of ChIPr for the cell 

lines K562, H1, and HepG2 correlate significantly better than the random interactions 

with the original ChIA-PET interactions of these three cell lines. The predictions in 

(A) are obtained using models trained on the GM12878 cell line data. (B) Predicted 

interactions using the three variants of ChIPr for the cell lines GM12878, H1, and 

HepG2 correlate significantly better than the random interactions with the original 

ChIA-PET interactions of these three cell lines. The predictions in (B) are obtained 

using the models trained on the K562 cell line data. ****: p-value < 0.0001, Wilcoxon 

rank sum test. 

Fig. 3 

Predicted interactions correlate well with the original ones at the 25 Kbp bin 

resolution. (A and B) Comparison between the correlation coefficient values between 

the original interactions and the predicted ones using the three variants of ChIPr vs. 

those between the original and randomly generated ones for the three cell lines 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.517572doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.517572
http://creativecommons.org/licenses/by-nc-nd/4.0/


K562, H1, and HepG2. The correlation coefficients were calculated using stratum 

adjusted correlation coefficients (A) and Pearson correlation coefficients (B), 

respectively. The predictions in (A and B) were generated using the models trained 

on GM12878 data. (C and D) Comparison between the correlation coefficient values 

between the original interactions and the predicted ones using the three variants of 

ChIPr vs. those between the original and randomly generated ones for the three cell 

lines GM12878, H1, and HepG2. The correlation coefficients were calculated using 

stratum adjusted correlation coefficients (C) and Pearson correlation coefficients (D), 

respectively. The predictions in (C and D) were generated using the models trained 

on K562 data.  

Fig. 4 

Predicted interactions capture the majority of cell-type-dependent loops. (A) An 

illustration of how the random control loops were generated for the comparison. (B – 

G) Predicted interactions using DNN-ChIA-Pr (B and C), RF-ChIPr (D and E), and 

GB-ChIPr (F and G) captured a significantly higher portion of the ChIA-PET identified 

cell-type-dependent loops vs. randomly introduced loops of the same number for the 

cell lines K562, H1, and HepG2. The models in (B, D, and F) were trained using the 

data of GM12878 cell line and the models in (C, E, and G) were trained using the 

data of K562 cell line. ****: p-value < 0.0001, Wilcoxon rank sum test. 

 

Fig. 5 

Examples for the predictions of RF-ChIPr for variable and non-variable loops. (A) 

Predictions of RF-ChIPr are highly similar to the original data for the selected region 

surrounding SMAD3 gene. (B) Predictions of RF-ChIPr are highly similar to the 
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original data for the non-variable loops in the region covering the two genes MED29 

and ZFP36 in the four cell lines GM12878, K562, H1, and HepG2. Interactions 

shown in (A) and (B) are those having strength >= ‘3’. Red: original loops from 

RAD21 ChIA-PET data; blue: predicted loops by RF-ChIPr. 

Fig. 6 

ChIPr captures majority of cell-type-dependent interactions and Hi-C identified loops. 

(A) Original interactions and predicted ones for the four cell lines GM12878, K562, 

H1, and HepG2 using the three variants of ChIPr in the region surrounding the MYC 

oncogene. Interactions shown are those having strength >= ‘3’. Red: original loops 

from RAD21 ChIA-PET data; blue: predicted loops by ChIPr. (B - D) Predicted 

interactions using DNN-ChIPr (B), RF-ChIPr (C), and GB-ChIPr (D) captured the 

majority of the Hi-C identified loops captured by the original ChIA-PET data from the 

cell lines GM12878 and K562.  

Fig. 7 

Contributions of input features to ChIPr outputs. (A) The drop in mean absolute error 

when comparing predicted interactions with the original ones when training DNN-

ChIPr while removing one of the input features at each time. (B) The relation 

between the number of RAD21 interactions with different strengths and the genomic 

distance between the two interacting peaks. (C and D) The importance of the inputs 

features for RF-ChIPr (C) and GB-ChIPr (D) using the permutations test. (E and F) 

Comparison between the genome-level performance of RF-ChIPr minimal and full 

models trained on GM12878 data (E) and K562 data (F), respectively. The data is 

split into training data (75%) and test data (25%). In (E), the performance of 
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GM12878 is measured on the GM12878 test data. Similarly, in (F), the performance 

of K562 is also measured on the K562 test data. 

Fig. 8 

Original interactions and predicted ones for the four cell lines GM12878, K562, H1, 

and HepG2 using the three variants of ChIPr in the region surrounding the MYC 

oncogene. Interactions shown are those having strength >= ‘3’. Red: original loops 

from RAD 21 ChIA-PET data; blue: predicted loops by ChIPr full model, and cyan: 

predicted loops by ChIPr minimal model. 

Fig. 9 

Relationship between RAD21 interactions and CTCF motif orientation and ChIP-seq 

binding. (A) The relationship between the RAD21 interactions prevalence and the 

presence of CTCF motif in the interacting peaks. (B and C) The relationship between 

the strength of RAD21 interactions and the presence of CTCF motif in the interacting 

peaks for (B) GM12878 and (C) K562, respectively. (D) The percentage of 

interactions of different strengths and their relation with the presence of CTCF motif 

in the interacting peaks.  
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