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ABSTRACT 29 

In the last few decades, genome-wide association studies (GWAS) with more than 10,0030 

0 subjects have identified several loci associated with lung cancer. Hence, recently, genetic data h31 

ave been used to develop novel risk prediction tools for cancer. The present study aimed to establ32 

ish a lung cancer prediction model for Korean never-smokers using polygenic risk scores (PRSs).33 

 PRSs were calculated using a thresholding-pruning-based approach based on 11 genome-wide si34 

gnificant single nucleotide polymorphisms (SNPs). Overall, the odds ratios tended to increase as 35 

PRSs were larger, with the odds ratio of the top 5% PRSs being 1.71 (95% confidence interval: 1.36 

31–2.23), and the area under the curve (AUC) of the prediction model being of 0.76 (95% confid37 

ence interval: 0.747–0.774). The receiver operating characteristic (ROC) curves of the prediction 38 

model with and without PRSs as covariates were compared using DeLong’s test, and a significant39 

 difference was observed. Our results suggest that PRSs can be valuable tools for predicting the ri40 

sk of lung cancer. 41 

 42 
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1 INTRODUCTION 

Lung neoplasms are the leading cause of cancer worldwide (Fitzmaurice et al., 2019), wit

h lung cancer having been the second most commonly diagnosed cancer in 2020, after breast can

cer in women (Bray et al., 2018). In Korea, the age-adjusted prevalence of lung cancer in 2018 w

as 94.1 cases per 100,000 people, accounting for 4.7% of all cancer cases, and its age-adjusted in

cidence rate was of 28.0 cases per 100,000 people, accounting for 11.7% of all cancers (Korea Ce

ntral Cancer Registry, 2020). Among men, the incidence of lung cancer in 2018 was 41.9 cases p

er 100,000 people, which is the second highest in Korea, whereas in Japan, United States, and Un

ited Kingdom the mean incidence was of 41.4, 40.1, and 35.5 cases per 100,000 people, respectiv

ely (Korea Central Cancer Registry, 2020). Lung cancer is the most common cancer affecting me

n aged > 65 years in Korea (Korea Central Cancer Registry, 2020), despite the proportion of neve

r-smokers increased to 25.4% in 2009-2012, which was 19.1% in 2004-2008 (Park & Jang, 2016)

. 

Smoking is a major risk factor for the progression of lung cancer and has been associated

 with over 80% of lung cancer cases in the Western world (Corrales et al., 2020). Indeed, reduced

 smoking habits has led to a decrease in mortality and incidence of lung cancer (Thandra et al., 20

21). Nonetheless, even though most patients are smokers, the proportion of never-smokers with l

ung cancer has been increasing over time (Couraud et al., 2012), with the World Health Organiza

tion estimating that 25% of lung cancer cases worldwide occur in never-smokers (Ferlay et al., 20

10). Therefore, the risk profiles of never-smokers are expected to be markedly different from thos

e of smokers, with family history, secondhand smoke, cooking oil fumes, radon exposure, domest

ic fuel smoke, asbestos, and menopausal hormone replacement therapy being suggested as potenti

al risk factors associated with lung cancer in never-smokers. However, to date, none of these sug
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gested risk factors have been exclusively identified in never-smokers (Couraud et al., 2012; Hung

 et al., 2021). 

Lung cancer in never-smokers has been considered to be a distinct medical entity from th

at in ever-smokers, and some clinically important features have been identified. First, it is more fr

equent in certain regions than in others (Asia > North America > Europe) (Couraud et al., 2012). 

Second, mutations in the epidermal growth factor receptor (EGFR) are more common in 1) adeno

carcinomas than in non-small cell lung cancer and 2) in never-smokers than in ever-smokers (Cha

pman et al., 2016). Noteworthily, although the somatic variant profile of Asian populations is ver

y similar to that of Europeans, the prevalence of EGFR mutations is higher in Asian women than 

in Caucasian women (Chapman et al., 2016). Therefore, it is unlikely that other risk factors, such 

as secondhand smoke, could be responsible for the increased lung cancer incidence in the Asian p

opulation (Mitsudomi, 2014). Several studies have suggested that EGFR mutations occur indepen

dently of smoking and that the low frequency of EGFR mutations in smokers could be explained 

by the occurrence of smoking-related lung cancer (Mitsudomi, 2014; Shi et al., 2014; Truong et a

l., 2010). Moreover, genome-wide data related to EGFR mutations failed to provide relevant kno

wledge on carcinogenesis. 

GWAS have discovered many common genetic variants associated with complex traits a

nd disorders (Buniello et al., 2019; Klein et al., 2005; Visscher et al., 2017). Most cancers are hig

hly polygenic (Stahl et al., 2012; Zeng et al., 2018; Zhang et al., 2018; Zhang et al., 2020), with l

ung cancer being one of the most polygenic (Zhang et al., 2020), along with breast and oropharyn

x cancers. For these polygenic traits, the effect size associated with each risk variant is small, and

 individuals with multiple risk variants tend to have an elevated disease risk (Chatterjee et al., 201

3). Therefore, PRS can be useful for risk assessment as it combines multiple variants into scores t

hat evaluate genetic susceptibility (Dudbridge, 2013). Several studies have shown that PRS can b

e used as a predictor of lung cancer in a population that includes both ever-smokers and never-sm

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 25, 2022. ; https://doi.org/10.1101/2022.11.23.515119doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.23.515119
http://creativecommons.org/licenses/by-nc-nd/4.0/


okers; however, most of these studies were conducted on non-Hispanic whites, and no study eval

uated exclusively for Asian never-smokers. In the present study, a lung cancer prediction model f

or Korean never-smokers was built using PRSs and its accuracy was evaluated. 

 

2 MATERIALS AND METHODS 

2.1 Korean lung cancer cohorts 

Never-smoking Korean lung cancer subjects were recruited from five different institutes: Seoul N

ational University Hospital (SNUH), Yeonsei University (YSU), Sejong University (SU), Samsu

ng Medical Center (SMC), and Chonnam National University (CNU) (Ahn et al., 2012; Kim et al

., 2013; Lan et al., 2012; Lee et al., 2017). Data from non-smoking controls were obtained from t

he CAVAS study of the Korean Genome and Epidemiology Study (Kim & Han, 2017). Never-sm

okers were defined as those who had smoked less than 100 cigarettes in their lifetime or had neve

r smoked. A total of 8,348 individual were included in the study (1,642 cases and 6,706 controls 

matched according to their principal component (PC) scores calculated using the EIGENSTRAT 

method (Price et al., 2006)). All participants provided written informed consent, and the study wa

s approved by the institutional review board and ethics committee of the Seoul National Universit

y Hospital (approval no. H-1906-126-1042). 

2.2 Genotyping, quality control, and imputation 

SNUH and YSU cohorts were genotyped using Axiom KoreanChip V1.0 or Axiom KoreanChip 

V1.1 (Moon et al., 2019), SU and SMC cohorts were evaluated using the Affymetrix Genome-Wi

de Human SNP Array (5.0 and 6.0, respectively), and CNU cohort was evaluated using an Illumi

na Human660W-Quad array. Variant calling for SNUH and YSU was performed using the K-me

doid approach (Seo et al., 2019). The analysis approach used is summarized in Figure 1. As diffe

rent genotyping platforms can generate substantial numbers of false-positive data, and quality con
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trols (QC) were carefully performed. SNPs were removed if call rates were < 95% or 99%, P-val

ues for Hardy–Weinberg equilibrium were < 10−3 or 10−5, or minor allele frequencies (MAFs) we

re < 5%. Subjects were also excluded if there was sex inconsistency, call rate < 0.95, outlying het

erozygosity (heterozygosity rate > mean ± 3 standard deviation [SD]), or estimated identity-by-de

scent > 0.9. QCs were conducted with cases and controls separately for each participant institutio

n, with cases and controls from the same institute being merged and the same QC being applied t

o the merged data with the following additional step: SNPs were removed if missing rates betwee

n cases and controls differed significantly (P < 0.01). Lastly, genotyping platforms of SNUH and 

YSU, and for SU and SMC were the same, and subjects from institutes with the same genotyping

 platforms were pooled. The same QCs were applied to pooled subjects. After QCs, the remaining

 subjects and SNPs were used to impute the untyped SNPs using the Michigan imputation server. 

Non-Europeans of the Haplotype Reference Consortium (r1.1 2016) were selected as reference pa

nel, and Eagle (v2.4) was used as the phasing program. Imputed SNPs were removed if MAFs we

re < 0.05, R2 < 0.3, P-values for the Hardy–Weinberg equilibrium exact test were < 10−3 or 10−5, 

call rates were < 95% or 99%. 

Association analyses were conducted using logistic regression. To adjust for population s

tratification, PC scores were calculated, and the 10 PC scores corresponding to the 10 largest eige

nvalues were included as covariates in the following logistic regressions: 

 (1) 

 

The genomic inflation factor and quantile-quantile plot were used to compare the genome-wide di

stribution of the test statistic for H0: βSNPs = 0 with the expected null distribution. 

2.3 Polygenic risk score construction 

Calculation of PRS requires an effect size estimate of genome-wide significant SNPs. GWAS Cat
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alog (https://www.ebi.ac.uk/gwas/) and PubMed (https://pubmed.ncbi.nlm.nih.gov) were screene

d to obtain GWAS summary statistics of lung cancer in never-smokers of Asian ancestry. Seow e

t al. (Seow et al., 2017) conducted a GWAS using the largest East Asian population, reporting 11

 genome-wide significant SNPs, among which the genotypes of 10 SNPs were available in each 

Korean cohort(Table S1); thus, their summary statistics were incorporated to build the PRS. Let 

 be the log odds ratios (ORs) obtained from Seow et al. (Seow et al., 2017) for SNP i (i = 1, […

], 11) and xij be the number of risk alleles of SNP i for subject j in the Korean cohort (xij = 0, 1, 2)

; then, the PRS of subject j was calculated by a weighted sum of the risk alleles that an individual

 carries, as follows: 

 

(

2

) 

2.4 Logistic regression and its prediction accuracy 

The prediction model was built with using logistic regression models. Lung cancer status was use

d as the response variable. PRSs were categorized into nine different groups based on PRSs of th

e subject percentiles of the controls: < 5%, 5–10%, 10–20%, 20–40%, 40–60%, 60–80%, 80–90

%, 90–95%, and > 95%, which were indicated as 1, 2, (…), and 9, respectively. PRSs were incor

porated as covariates to estimate their ORs after adjusting for sex, age, 10 PC scores, and genotyp

ing array as follows: 

 

(

3

) 

I

n this study, 10 PC scores were used to adjust the population stratification. To assess the ability o
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f the PRS to identify high-risk cases, we considered an alternative model in which the PRS was c

oded as 1 for the top 1% PRSs, otherwise was coded as 0. 

The prediction accuracy of the logistic regression was evaluated using the AUC. The conf

idence interval and P-value were obtained using the DeLong’s test. Subjects from SU and CNU o

verlapped with those of Seow et al. (Seow et al., 2017), and most never-smokers were females. T

herefore, the accuracy of the prediction model was evaluated according to three different scenario

s: Dataset 1, all subjects (SNUH, YSU, SU, SMC, and CNU); Dataset 2, only females; and datase

t 3, subjects from SNUH, YSU, and SMC. Moreover, ROC curves of the prediction model with a

nd without PRSs as covariates were compared using DeLong’s test. The ORs of the PRSs were es

timated and adjusted for the first 10 PC scores, sex, age, and dataset. All the analyses were perfor

med using Plink (v1.9 and v2.0), ONETOOL (Song et al., 2018), R (v3.6.3), and Python (v2.7.17

). 

2.5 Meta analyses 

Meta-analyses were conducted to calculate the combined effect sizes for each SNP using META

L (Willer et al., 2010). The effect sizes of each SNP were combined using weighted means. Fores

t plots were obtained using R (v3.6.3)(Figure S1). 

3 RESULTS 

3.1 Descriptive statistics 

The descriptive statistics of the subjects included in the study are shown in Table 1. Among the 8

,348 individuals evaluated, 72.4% were females and a total of 84.6% of the patients were patholo

gically diagnosed with adenocarcinoma. Significant differences in age were observed among the 

different study cohorts. 

3.2 Odds ratios of PRS and prediction accuracy 
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The PRSs were calculated for each dataset. The Kolmogorov-Smirnov test showed that the PRSs 

were normally distributed, and that the cases had significantly higher PRSs than controls in all da

tasets (Table 2, Figure S2). Moreover, Table 2 also shows that cases always have significantly hi

gher means than controls in Dataset1, which includes all subjects (P = 4.50 × 10-10 for

 KoreanChip; P = 6.34 × 10-9 for Affymetrix;  P = 3.63 × 10-8 for Illumina array). the estimated O

Rs of the PRSs tended to increase in higher percentile groups of the PRSs, compared with the ref

erence percentile group (40–60%) (Figure 2). OR of the top 5% PRS group was 1.71 (95% confi

dence interval [CI]: 1.31–2.23; P = 7.40 × 10−5), and for females the OR was 1.66 (1.25–2.19; P 

= 3.76 × 10−4). The OR of the top 5% PRS group was maximized for Dataset 3 (OR = 2.45 [1.74–

3.44]; P = 2.21 × 10−7) (Table S2). No significant differences between men and women were obs

erved in Dataset1, which includes all subjects. The ORs of the bottom 5% PRS group were less th

an 1, indicating their protective effect against lung cancer (Table S2). Some PRS percentile grou

ps were not significantly different from the reference group, but an increasing tendency in ORs w

as observed for all datasets (Table S2). 

Table 3 shows the ORs of the top 1% PRSs compared with the other PRS subgroups.  Ov

erall, the ORs were significant only for Dataset 3 and the OR of the top 1% PRS group was gener

ally not higher than that of the top 5% group (Table 3, Table S2). For comparison, we referred to

 the ORs reported in the study by Fritsche et al. (Fritsche, 2020), which included data from lung c

ancer patients obtained from the UK biobank (UKB) and Michigan Genomics Initiative (MGI) (T

able 3). Most of these patients were Caucasian, and both smokers and never-smokers were includ

ed. Although the ethnicity and smoking status were different, OR of the top 1% PRSs of Dataset3

 was higher than those of UKB and MGI. 

3.3 Lung cancer prediction with polygenic risk scores 

PRSs, age, and sex were considered covariates, and a prediction model was built. The pre
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dictors included sex, age, and continuous PRSs. The highest AUC was 0.764 (95% CI: 0.750–0.7

78; P = 7.02 × 10−280) from Dataset 2, followed by Dataset 1 (Figure 3, Table 4). AUCs from Da

taset 1 and Dataset 2 were similar (P = 0.73), whereas those from Dataset 1 and Dataset 3 differe

d significantly (P = 1.80 × 10−6). Moreover, significant differences were observed concerning the

 ROC of the prediction model with and without PRSs as covariates in every scenario (Table 4). 

4 DISCUSSION 

Genetics for lung cancer in never-smokers has been considered one of the most important 

risk factors, with several studies having been performed to predict lung cancer while considering 

specific genetic factors. Recently, PRS has been applied to predict lung cancer; however, there no

 such studies have been conducted exclusively for Asian never-smokers. In this study, we constru

cted PRSs based on recent meta-analyses and evaluated their prediction accuracy for lung cancer 

in never-smokers in Korea. Our results show that individuals with PRSs higher than the reference

 percentile group(40-60%) have a much higher probability of developing lung cancer; thus, these 

PRSs can be considered valuable predictors of lung cancer. 

To date, the largest studies exploring PRS in patients with lung cancer were based on the 

MGI and UKB cohorts, which consist of non-Hispanic white European populations, including ev

er and never-smokers. Their data suggested that the top 1% PRS represented an increased risk of l

ung cancer, with ORs of 1.75 for MGI (95% CI 0.796–3.85) and 1.94 for UKB (95% CI 1.22–3.1

) groups (Fritsche, 2020). In our analyses, the OR of the top 1% PRS in never-smoker subjects of 

the Dataset 3 was 2.22 and was significantly associated with increase lung cancer risk (P = 0.03). 

For Datasets 1 and 2, the results were not statistically significant, but the data suggested a tenden

cy for increased risk (OR > 1). These results indicate that the PRS can be utilized as a prognostic 

tool for lung cancer, regardless of the smoking status of the patient. Moreover, PRS can be useful

 for identifying never-smoking individuals with a high risk of lung cancer. 
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Our data showed that the predictive potential of PRS was similar between women and me

n. Multiple studies have shown substantial differences in lung cancer incidence according to sex. 

For example, studies based on data from The Cancer Genome Atlas showed that 15% of autosom

al genes have sex-biased copy number alterations in several cancers, which can be associated wit

h different mRNA expression profiles (Lopes-Ramos et al., 2020). Sex-related behavior and expo

sure can also affect gene mutations. In non-small cell lung cancer, the mutational spectrum of EG

FR and TP53 is influenced by sex. Indeed, the frequency of transversion mutations on TP53 is 40

% among women, which is higher than among men (25-28%) (Lopes-Ramos et al., 2020). Moreo

ver, different methylation patterns by sex have been observed in various human tissues, such as b

lood, brain, and muscle (Lopes-Ramos et al., 2020). Therefore, it is expected that a combination o

f genetic mechanisms can contribute to epidemiological sex differences. However, in the present 

study, no sex-specific differences were observed. The largest difference in MAFs between men a

nd women was 0.002, and there were no SNPs with minor allele frequencies that were significant

ly different between women and men. 

This study had some limitations. First, although more than 1,500 lung cancer patients wer

e considered, genetic analyses usually require more than 10,000 subjects, and the sample size ma

y not be sufficient for evaluating the accuracy of the risk prediction model estimates using PRSs. 

Second, lung cancer consists of etiologically heterogeneous subtypes; however, this information 

was not available for this study. If etiological subtypes are to be considered, prediction accuracy 

may be greatly improved. Thus, further studies considering the subtype-specific genetic architect

ure of lung cancer with adequate sample size are still needed to further confirm our findings. Thir

d, summary statistics were only available for some SNPs. Some studies showed that the AUC diff

erence between the prediction model with 592,000 SNPs and 10 SNPs was 0.03, with inclusion o

f more SNPs not substantially improving prediction accuracy (Liyanarachchi et al., 2020). Howe

ver, this conclusion was obtained based on non-Hispanic white populations; hence, further investi
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gations are necessary for East Asians. Fourth, it has been shown that secondhand smoke significa

ntly affects lung cancer; however, its effect was not considered in this study. The mean age of the

 study participants was 60.2 years old. Laws to ban or stop smoking in all enclosed workplaces or

 cessation of health have been recently adopted, and the controls of our study participants may ha

ve also been affected by secondhand smoke. 

Lung cancer has been widely known to be a highly heterogeneous disease that can occur a

nd progress due to the interplay between permanent genetic mutations and epigenetic alterations (

Dong et al., 2017). The lung cancer prediction accuracy can be improved by combining other clin

ical or lifestyle risk factors. In this study, we demonstrate that PRS can be a valuable tool for iden

tifying individuals at a high risk of lung cancer. However, the predictive accuracy of PRSs is still 

not sufficiently good so it can be used in clinical practice; hence, further studies are warranted to 

improve it. 
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Table 1. Descriptive statistics. 

 SNUH YSU SU SMC CNU Total P-value 

Overall, N 1,694 1,018 3,038 1,575 1,023 8,348  

Case 206 172 276 407 581 1,642 < 0.001 

Control 1,488 846 2,762 1,168 442 6,706  

Sex, N        

Male 389 336 318 339 0 1,382 < 0.001 

Female 1,305 682 2,720 1,236 1,023 6,966  

Mean age (S

D), years 

53.5 (10.0

) 

47.2 (11.6

) 

53.3 (9.4) 60.0 (8.1) 60.5 (10.7

) 

 < 0.001 

Histology, N        

AD 192 NA 240 359 453  < 0.001 

Non-AD 14 NA 36 48 128   

Abbreviations: AD, adenocarcinoma; CNU, Chonnam National University; NA, not available; S

D, standard deviation; SMC, Samsung Medical Center; SNUH, Seoul National University Hospit

al; SU, Sejong University; YSU, Yeonsei University. 
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Table 2. Mean differences between cases and controls 

 

Polygenic risk score, mean (SD) P-values 

Cases Controls KS test 
t-test for phenoty

pe 
t-test for sex 

Dataset 1†      

KoreanChip 0.30 (0.97) −0.05 (1.0) 0.33 4.50 × 10−10 0.12 

Affymetrix 0.20 (0.98) −0.04 (1.0) 0.08 6.34 × 10−9 0.13 

Illumina 0.15 (0.98) −0.20 (0.99) 0.66 3.63 × 10−8 NA† 

      

Dataset 2‡      

KoreanChip 0.30 (0.95) −0.04 (0.99) 0.24 1.96 × 10−8 NA† 

Affymetrix 0.20 (0.98) −0.05 (1.0) 0.11 2.45 × 10−8 NA† 

Illumina 0.15 (0.98) −0.20 (0.99) 0.66 3.63 × 10−8 NA† 

      

Dataset 3§      

KoreanChip 0.30 (0.97) −0.05 (1.0) 0.33 4.50 × 10−10 0.12 

Affymetrix 0.30 (1.04) −0.10 (0.97) 0.15 2.88 × 10−10 0.80 

Illumina   NA   

†Included all subjects from Chonnam National University (CNU), Samsung Medical Center (SMC

), Seoul National University Hospital (SNUH), Sejong University (SU), and Yeonsei University (

YSU). 

‡Included only females from SNUH, YSU, SU, SMC, and CNU. 

§Included subjects from SNUH, YSU, and SMC. 

Abbreviations: KS, Kolmogorov-Smirnov, NA, not available; SD, standard deviation. 
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Table 3. Odds ratios of top 1% polygenic risk scores (PRSs) compared with the other PRS subgrou

ps 

 OR (95% CI) P-value 

Dataset 1 1.29 (1.26–1.42) 0.38 

Dataset 2 1.20 (1.26–1.43) 0.53 

Dataset 3 2.22 (1.36–1.60) 0.03 

UK Biobank 1.75 (0.796–3.85) 
NA 

MGI 1.94 (1.22–3.1) 

Abbreviations: CI, confidence interval; MGI, Michigan Genomics Initiative; NA, not available; OR, odds 

ratio. 
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Table 4. Comparison of the area under the curves (AUC) of the prediction models with and with

out polygenic risk scores (PRSs) as a covariate 

 
AUC with PRSs 

(95% confidence interval) 

AUC without PRSs 

(95% confidence interval) 
P-value, DeLong test 

Dataset 1 0.760 (0.747–0.774) 0.750 (0.736–0.765) 1.87 × 10−5 

Dataset 2 0.764 (0.750–0.778) 0.754 (0.739–0.769) 4.01 × 10−5 

Dataset 3 0.703 (0.684–0.722) 0.673 (0.654–0.692) 1.09 × 10−7 
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Figure Legends 

Figure 1. Flowchart of data collection and analysis protocols. Abbreviations: CNU, Chonnam 

National University; GWAS, genome-wide association study; IBS, identity by state; PC, 

principal component; PRS, polygenic risk score; QC, quality control; Rsq, R squared; SNP, 

single nucleotide polymorphism; SMC, Samsung Medical Center; SNUH, Seoul National 

University Hospital; SU, Sejong University; YSU, Yeonsei University. 

 

Figure 2. Odds ratios depending on percentiles of polygenic risk scores. Percentiles were 

defined in control subjects. Dots and vertical red lines represent the odds ratios and their 95% 

confidence intervals (CI), respectively. Middle quintile (40–60%) was considered as reference 

group. (a) Dataset 1 included all subjects from Chonnam National University (CNU), Samsung 

Medical Center (SMC), Seoul National University Hospital (SNUH), Sejong University (SU), 

and Yeonsei University (YSU). (b) Dataset 2 included only females from SNUH, YSU, SU, 

SMC, and CNU. (c) Dataset 3 included subjects from SNUH, YSU, and SMC. 

 

Figure 3. Receiver operating characteristic curves of the different datasets. (a) Dataset 1 

included all subjects from Chonnam National University (CNU), Samsung Medical Center 

(SMC), Seoul National University Hospital (SNUH), Sejong University (SU), and Yeonsei 

University (YSU). (b) Dataset 2 included only females from SNUH, YSU, SU, SMC, and CNU. 

(c) Dataset 3 included subjects from SNUH, YSU, and SMC. AUC, area under the curve. 
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Figure 1. Flowchart of data collection and analysis protocols. Abbreviations: CNU, Chonnam 

National University; GWAS, genome-wide association study; IBS, identity by state; PC, principa

l component; PRS, polygenic risk score; QC, quality control; Rsq, R squared; SNP, single nucleoti

de polymorphism; SMC, Samsung Medical Center; SNUH, Seoul National University Hospital; 

SU, Sejong University; YSU, Yeonsei University. 
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Figure 2. Odds ratios depending on percentiles of polygenic risk scores. Percentiles were defi

ned in control subjects. Dots and vertical red lines represent the odds ratios and their 95% confide

nce intervals (CI), respectively. Middle quintile (40–60%) was considered as reference group. (a)

 Dataset 1 included all subjects from Chonnam National University (CNU), Samsung Medical Ce

nter (SMC), Seoul National University Hospital (SNUH), Sejong University (SU), and Yeonsei 

University (YSU). (b) Dataset 2 included only females from SNUH, YSU, SU, SMC, and CNU. (

c) Dataset 3 included subjects from SNUH, YSU, and SMC. 
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(a)      (b) 

 
(c) 

 
Figure 3. Receiver operating characteristic curves of the different datasets. (a) Dataset 1 incl

uded all subjects from Chonnam National University (CNU), Samsung Medical Center (SMC), S

eoul National University Hospital (SNUH), Sejong University (SU), and Yeonsei University (YS

U). (b) Dataset 2 included only females from SNUH, YSU, SU, SMC, and CNU. (c) Dataset 3 in

cluded subjects from SNUH, YSU, and SMC. AUC, area under the curve. 
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