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Abstract

Characterization of somatic mutations at single-cell resolution is essential to study cancer evolution,
clonal mosaicism, and cell plasticity. However, detection of mutations in single cells remains
technically challenging. Here, we describe SComatic, an algorithm designed for the detection of
somatic mutations in single-cell transcriptomic and ATAC-seq data sets without requiring matched
bulk or single-cell DNA sequencing data. Using >1.5M single cells from 383 single-cell RNAseq and
single-cell ATAC-seq data sets spanning cancer and non-neoplastic samples, we show that SComatic
detects mutations in single cells, even in differentiated cells from polyclonal tissues not amenable to
mutation detection using existing methods. In addition, SComatic permits the estimation of
mutational burdens and de novo mutational signature analysis at single-cell and cell-type resolution.
Notably, using matched exome and single-cell RNAseq data, we show that SComatic achieves a 20 to
40-fold increase in precision as compared to existing algorithms for somatic SNV calling without
compromising sensitivity. Overall, SComatic opens the possibility to study somatic mutagenesis at
unprecedented scale and resolution using high-throughput single-cell profiling data sets.
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Main

Characterization of somatic mutations at single-cell resolution is essential to study genetic
heterogeneity and cell plasticity in cancer?, clonal mosaicism in non-neoplastic tissues?, and to identify
the mutational processes operative in both malignant and phenotypically normal cells®**. Single-cell
genome sequencing provides the most direct way to study mutations in single cells. However, single-
cell genomics methods are not easily scalable, and suffer from high rates of genomic drop-outs and
artefacts introduced during whole-genome amplification®. To circumvent the issues associated with
whole-genome amplification, other approaches rely on bulk sequencing of single-cell-derived colonies
grown in vitro or clonal populations directly isolated from tissues® . However, in vitro growth of single-

578 and isolation of

cell-derived colonies is laborious and limited to cell types amenable to cell culture
clonal units is not technically feasible for some tissues. More recently, the development of ultra-
sensitive sequencing methods using strand-specific barcoding has permitted detection of mutations
at single-molecule resolution, even in polyclonal tissues!®!, Yet, cell type information is lost unless
cell sorting is performed prior to sequencing. Due to these technical limitations, our understanding of
the patterns of somatic mutations across cell types and their impact on cell fates and phenotypes

remains limited.

An alternative strategy consists of detecting somatic mutations in sequencing reads from high-
throughput single-cell profiling assays directly, such as single-cell RNA-seq (scRNA-seq) and single-cell
assay for transposase-accessible chromatin using sequencing (scATAC-seq). The main advantage of
this approach is the possibility to harness the high throughput of single-cell profiling assays to map

the lineage of cells to transcriptional or regulatory programmes!?3

without the need for complex
experimental protocols for joint profiling of the DNA and RNA from the same cell®>#1%1%, Nevertheless,
detection of mutations is strongly limited due to the variability in gene expression across cell types,
allelic drop-out events, transcriptional bursts, RNA editing, limited depth of coverage, and sequencing

17715 Therefore, existing algorithms rely on detecting mutations, such as single-nucleotide

artefacts
variants (SNVs) or indels, previously identified using matched bulk or single-cell DNA sequencing
data'®?%22 These approaches are limited because matched DNA sequencing data are rarely available
for existing high-throughput single-cell data sets, and due to sampling biases or genetic heterogeneity
between the samples undergoing DNA sequencing and single-cell profiling. Therefore, algorithms
designed to detect somatic mutations in single-cell data sets de novo without requiring matched DNA

sequencing data are critically needed.

To address this need, we developed SComatic, an algorithm for de novo detection of somatic SNVs in
single-cell profiling data sets, including scRNA-seq and scATAC-seq data, without requiring matched
bulk or single-cell DNA sequencing data. Using a total of 1,575,862 non-neoplastic and cancer cells
from 317 scRNA-seq and 66 scATAC-seq published data sets (Supplementary Table 1), we show that
SComatic achieves a 20 to 40-fold increase in precision as compared to existing algorithms for somatic
SNV calling without compromising sensitivity. In addition, we show that SComatic permits the
detection of mutational burdens and de novo discovery of mutational signatures at cell-type
resolution, even for differentiated cells and cells from polyclonal tissues showing high levels of genetic
heterogeneity, which are not amenable to mutation detection using existing experimental or
computational methods. SComatic is implemented in Python 3 and is available at
https://github.com/cortes-ciriano-lab/SComatic.
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Results

Overview of SComatic
We developed SComatic to detect somatic mutations using single-cell sequencing data without

requiring matched bulk or single-cell DNA sequencing data (Fig. 1). In brief, SComatic computes base
counts for every position of the genome across cell types from the same individual using cell type
annotations established through e.g., marker gene expression (Fig. 1 and Methods). Somatic
mutations are distinguished from germline polymorphisms and artefacts using a set of hard filters and
statistical tests (Fig. 1). Specifically, SComatic only considers genomic positions with coverage in at
least 5 cells from at least 2 cell types. Candidate somatic SNVs are distinguished from background
sequencing errors and artefacts using a Beta-binomial test parameterized using non-neoplastic
samples (Methods). Next, mutations detected in multiple cell types are considered to be germline
polymorphisms or artefacts and are thus discounted as somatic. The key idea is that germline variants
should be present in all cell types, whereas somatic mutations should only be detected in cell types
from the same differentiation hierarchy, unless mutations were acquired in a progenitor or stem cell
prior to clonal diversification or during early development®?3?4, Candidate mutations overlapping
known RNA editing sites or single-nucleotide polymorphisms (SNPs) with population frequencies
greater than 1 % in gnomAD? are also filtered out. In addition, SComatic uses a ‘Panel of Normals’
generated using a large collection of non-neoplastic samples to discount recurrent sequencing or
mapping artefacts. For example, in 10x Chromium scRNA-seq data, recurrent errors are enriched in
LINE and SINE elements, such as Alu elements (Supplementary Fig. 1), which are thus not considered
for mutation calling. Finally, to make a mutation call, SComatic requires a sequencing depth of at least
5 reads in the cell type in which the mutation is detected, and that the mutation is detected in at least
3 sequencing reads from at least 2 different cells of the same type (Supplementary Fig. 2 and
Methods).

Validation of SComatic using matched single-cell RNA-seq and exome sequencing data

To compare the patterns of mutations detected by SComatic against DNA sequencing data, we
analysed scRNA-seq data generated using the 10X Genomics Chromium technology and matched
whole-exome sequencing (WES) data from 8 cutaneous squamous cell carcinoma (cSCC) and matched
adjacent normal tissue samples?®. First, we compared the mutations detected by SComatic in epithelial
cells using scRNA-seq data with those detected in matched WES data (Methods). For this analysis, we
focused on the 9,788,377 positions in the genome across the 8 samples with sufficient coverage in
both the scRNA-seq and WES data (Fig. 2d and Methods). In these regions, we detected 266 of the
10,477 (2.4%) mutations found in the WES data, which we considered true positive mutations. Using
SComatic, we detected 179 mutations in the scRNA-seq data (Fig. 2d), 78 (44%) of which were also
detected in the WES data (Methods). For 49/179 (27%) of the mutations, we found at least 1 read in
the WES data supporting the mutated allele, which was however insufficient evidence to call a
mutation by our WES analysis pipeline (Methods). Finally, 52/179 (29%) mutations were only detected
in the scRNA-seq data. Of these, 38/52 (73%) were detected in sample P7. Interestingly, 59 of the 85
(69%) WES-specific mutations were also detected in P7 only. Mutational signature analysis revealed
that 43 (83%) of the mutations only detected in the scRNA-seq data and 70 (82%) of the WES-specific
mutations were attributed to single-base substitution (SBS) mutational signatures SBS7a, SBS7b and
SBS7d, which are linked with mutagenesis caused by exposure to ultraviolet (UV) radiation, consistent
with the expected predominant signature for these samples?® (Fig. 2e). In addition, the variant allele
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fraction (VAF) of the mutations detected in WES and scRNA-seq data were not correlated for P7, unlike
for other samples (Supplementary Fig. 3). Therefore, these results suggest that, for sample P7, the
lack of sequencing reads in the WES data supporting those mutations detected by SComatic in the
scRNA-seq data (and vice versa) is likely due to high genetic heterogeneity.

Next, we applied SComatic to detect somatic mutations across all genomic positions with sufficient
coverage in the scRNAseq data (Methods). We detected 810 and 186 SNVs in the tumour and matched
normal samples, respectively (Supplementary Table 1), which mapped to 3’-UTR (40%), intronic (27%)
and exonic regions (24%) (Supplementary Fig. 4). After normalizing by breadth of coverage (Methods),
we estimated an average mutation rate per haploid genome for epithelial cells from the ¢SCC and
normal skin samples of 12.8 and 3.7 mutations per Mb, respectively (note that we report mutational
burdens for single cells as mutations per haploid genome because only one allele is usually detected
per cell and genomic position). These rates are significantly higher as compared to non-epithelial cells
in the data set, which had a median of 0.33 and 0.40 mutations per Mb in tumour and matched normal
samples, respectively (P < 0.001, Mann-Whitney U-test; Supplementary Fig. 5). Mutational signature
analysis attributed 71% and 84% of the mutations detected in epithelial cells from tumour and
matched normal skin samples, respectively, to signatures associated with exposure to UV radiation
(SBS7a-d; Fig. 2b-c and Methods), consistent with prior DNA sequencing studies of somatic mutations
in sun-exposed skin”?’. The remaining mutations were mostly attributed to SBS5 and SBS40 signatures
(19.6% and 13.4% for the tumour and matched normal samples, respectively), which have been
previously identified in non-neoplastic skin samples’. The mutation rates computed using the
mutations detected using scRNA-seq data for epithelial cells were highly correlated with the rates
estimated using the WES data (R? = 0.97, P = 0.0024; Fig. 2f and Methods), indicating that SComatic
permits the calculation of mutation burdens at cell-type resolution.

Together, these results show a high concordance between the mutations detected in scRNA-seq by
SComatic and WES, and highlight that methods for calling mutations in single-cell data based on
genotyping mutations previously identified in genome sequencing data are likely to have low
sensitivity in samples with high levels of genetic heterogeneity.

SComatic outperforms existing mutation detection algorithms

Next, we compared the performance of SComatic against top-performing pipelines designed for
detecting somatic mutations in scRNA-seq data?? using popular variant calling algorithms (VarScan2%,
SAMtools?® and Strelka23?). To this aim, we used the matched WES and scRNA-seq data from epithelial
cells from 7 out of the 8 cSCC tumours?® described above. We excluded patient P7 from this analysis
due to the high level of genetic heterogeneity observed between the matched scRNA-seq and WES
data (Supplementary Fig. 2). SComatic achieved a sensitivity of 0.59 (95% Cl [0.58-0.60]), which was
slightly lower than VarScan2 (0.62, 95% Cl [0.61-0.63], P = 1.86 x 10™), and significantly higher as
compared to SAMtools (0.38, 95% CI [0.37-0.39], P < 10%). Strelka2 showed a significantly higher
sensitivity than SComatic (0.78, 95% ClI [0.78-0.79], P < 10"%; Fig. 3a). However, SComatic
outperformed by a large margin all other methods in terms of precision: 0.88 for SComatic (95% Cl
[0.87-0.89]) vs 0.043 for Strelka2 (P < 10*°, two-sided Student’s t-test; Fig. 3a). SComatic also achieved
significantly higher F1 score values than other methods (0.71 vs < 0.08, respectively; P < 10™*; Fig. 3a).
Notably, we obtained similar differences in performance between methods when also including
sample P7 in the benchmarking set (Supplementary Fig. 6).
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To further compare the performance of these algorithms, we performed mutational signature analysis
by fitting COSMIC signatures to the observed mutational spectra (Methods). We found that 77% of
the mutations detected by SComatic were attributed to signatures SBS7a-d (R? = 0.96 and P < 10,
Fig. 3b-c), and the mutational spectrum was highly consistent with the WES data (cosine similarity =
0.99, Fig. 3d). By contrast, the mutations detected by VarScan2, SAMtools and Strelka2 were
attributed to signatures SBS1 and SBS5 and were significantly different from the patterns of mutations
detected in WES (cosine similarities < 0.47; Fig. 3d). Collectively, these results indicate that existing
methods for detecting somatic mutations in scRNA-seq have high false positive rates, whereas
SComatic enables the detection of somatic mutations at single-cell resolution at high precision without
compromising sensitivity.

Detection of somatic mutations in samples with high mutational burdens

We next assessed the performance of SComatic to detect somatic mutations in samples characterised
by a high mutational burden. To this aim, we applied SComatic to scRNA-seq data from 70 treatment-
naive primary colorectal tumours, including 37 mismatch repair deficient (MMRd) tumours showing
microsatellite instability (MSI), and 40 matched normal adjacent colon samples3'2, Using SComatic,
we called 8,997 somatic SNVs across all samples (7,531 SNVs in MSI, 1,127 in microsatellite stable
(MSS), and 339 in the matched normal samples; Supplementary Table 1), most of which mapped to
non-coding elements, primarily UTR regions (37%) and introns (27%) (Supplementary Fig. 4).

Consistent with previous colorectal cancer genome studies®*3*

, our analysis revealed that epithelial
cells in MSI tumours showed a significantly higher mutational burden than epithelial cells from MSS
tumours (24.7 vs 8.3 SNVs per Mb, P < 1.11 x 10%; two-sided Mann-Whitney U-test) and normal
adjacent colon samples (0.51 SNVs per Mb; P < 1.77 x 10*®). By contrast, the mutational burden for
non-epithelial cells was low and comparable between MSI and MSS tumours (0.41 vs 0.52, P = 0.06;
two-sided Mann-Whitney U-test), as expected for non-malignant cell types (Fig. 4a, Supplementary
Fig. 5b). Moreover, the mutational burden estimated by SComatic using scRNA-seq data from
epithelial cells in MSI tumours was comparable with that of MMRd tumours estimated using exome-

sequencing data from The Cancer Genome Atlas (TCGA)*3* (Fig. 4b; P > 0.05; Student’s t-test).

Mutational signature analysis attributed the mutations detected in MSI tumours to SBS signatures
associated with MMRd (SBS6, SBS14, SBS15, SBS21, SBS26 and SBS44), SBS5 and SBS40 (Fig. 4c-d;
Methods). In one sample (C172), 82.9% of mutations were attributed to signatures SBS10a, SBS10b
and SBS28 (Fig. 4a,c,d), suggesting that hypermutation in this sample is driven by POLE deficiency®>°.
In MSS tumours, most mutations were attributed to signatures SBS5 and SBS40, consistent with
published compendia of mutational signatures extracted from large cancer genome sequencing

studies?®.

We next compared the mutational burdens estimated by SComatic against VarScan2, SAMtools and
Strelka2 using the colorectal cancer scRNA-seq data. As opposed to SComatic, the mutational burdens
computed using the mutations detected by the other algorithms were not different between
MSI/POLE-deficient and MSS or normal adjacent samples, consistent with the low specificity of
existing methodologies for mutation calling using scRNA-seq data (Supplementary Fig. 7).
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Together, these results indicate that SComatic permits the identification of the mutational processes
operative in hypermutated samples at single-cell resolution without requiring matched genomic
sequencing data.

Detection of mutations using scRNA-seq data from samples with low mutational burdens

We further tested the performance of SComatic to detect mutations in samples with low mutational
burdens. To this aim, we applied SComatic to scRNA-seq data for CD34*-enriched cells from 5
individuals with myeloproliferative neoplasms (MPN), a type of blood cancer caused by the clonal
expansion of a single hematopoietic stem cell (HSC)®. We detected an average of 0.12 mutations per
Mb per haploid genome, which primarily mapped to intronic regions (62%, Supplementary Figure 4).
Mutational signature analysis revealed that 96% of the mutations detected by SComatic were
attributed to signatures SBS5 and SBS40 (Fig. 5a-b), consistent with single-cell whole-genome
sequencing (WGS) studies of HSCs from healthy donors®3” and MPN patients®®. In addition, we found
a positive correlation between the average mutation rate of HSCs estimated by SComatic and the
patients’ age at the time of sampling (Pearson’s r =0.79; P = 0.09, Fig. 5c), in agreement with previous
studies®. Altogether, these results show that SComatic accurately detects mutational burdens and
signatures in samples with low mutational burdens.

To further test whether SComatic can be used for the analysis of somatic mutations in samples with
high levels of genetic heterogeneity (e.g., polyclonal tissues) and in differentiated cells, we next
analysed 10X scRNA-seq data from 78 samples obtained from 6 heart regions across 14 donors*. We
detected a total of 2,132 somatic SNVs (Supplementary Table 1), 78% of which mapped to intronic
regions (Supplementary Fig. 4). By extrapolating to the entire genome, we estimated an average
mutation rate per haploid genome of 302 mutations for cardiomyocytes (range 92-1,284; Fig. 5d),
which was significantly lower than the mutation rates estimated for adipocytes (1,179 SNVs per cell
and haploid genome) and smooth muscle cells (581; Supplementary Fig. 8a). Mutational signature
analysis revealed that 46.7% of these mutations were attributed to SBS5 and SBS40 (Fig. 5e,f). In
addition, 35.4% of mutations were attributed to SBS44, consistent with a recent study of somatic
mutagenesis in human cardiomyocytes using single-cell genome sequencing®. The mutational
burdens for cardiomyocytes estimated by SComatic were comparable to those estimated using single-
cell WGS data*® (Supplementary Fig. 9; P = 0.08; two-sided Wilcoxon’s rank test).

Next, we applied SComatic to 24 scRNA-seq data sets from 8 non-neoplastic tissues across 15 human
donors generated by the GTEx consortium®'. We found a total of 524 SNVs and estimated an average
mutation load of 598 mutations per cell and haploid genome (Fig. 5g, Supplementary Fig. 8b and
Methods). As observed in the heart cell atlas, adipocytes had the highest mutation burdens (1,430
mutations per cell and haploid genome), whereas muscle cells showed the lowest burdens (251;
Supplementary Fig. 8b). As observed in other polyclonal tissues’, mutational signature analysis
revealed that most of these mutations were attributed to the mutational signatures SBS5 and SBS40
(92.1 %, Fig. 5h,i). Together, these results suggest that SComatic permits the study of the patterns and
rates of mutations in polyclonal tissues.

Performance of SComatic on single-cell ATAC-seq data sets
Next, we applied SComatic to detect somatic mutations using sciATAC-seq data generated for 459,056

cells from 66 samples spanning 24 non-neoplastic tissues*?. SComatic detected a total of 389 somatic


https://doi.org/10.1101/2022.11.22.517567
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.22.517567; this version posted November 24, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

SNVs (Supplementary Table 1). The distribution of mutations was different as compared to scRNA-seq
data sets, as most mutations mapped to intergenic (32%), promoter (19%), and intronic regions (18%)
(Supplementary Fig. 4). We found low single-cell mutational burdens with an average load of 300
mutations per cell and haploid genome, with ductal cells showing the highest rates (933 per haploid
genome), and skeletal myocytes (9 mutations) and follicular cells (0 mutations) the lowest burdens
(Supplementary Figs. 10a-c). As observed in other polyclonal tissues, 99% of the SNVs were attributed
to SBS5 and SBS40 (Supplementary Fig. 10b,c). Importantly, the genome-wide mutation rates were
comparable for cell types represented in scRNA-seq and sciATAC-seq data sets, indicating that
SComatic permits the estimation of mutation rates across different single-cell profiling assays
(Supplementary Fig. 11).

Patterns of clonality at cell-type resolution

Motivated by the importance of clonal mosaicism to somatic evolution and disease**

, we next
assessed whether the single-cell resolution provided by SComatic permits analysis of the patterns of
clonality across cell types. To this aim, we computed the fraction of mutant cells per cell type across
the single-cell data sets analysed (Supplementary Table 1, Supplementary Fig. 12 and Methods). We
detected clonal mutations in epithelial cells from the ¢SCC samples, but not in epithelial cells from
non-neoplastic skin samples, consistent with the high level of polyclonally in normal skin
(Supplementary Fig. 12a,b). The clonality of mutations in epithelial cells in both MSI and MSS
colorectal samples spanned a dynamic range of values, as expected for tumours harbouring both
clonal and subclonal mutations (Supplementary Fig. 12c¢,d). The mutations detected in non-neoplastic
cell types from both cancer and non-neoplastic samples showed overall low (<0.2) mutant cell
fractions, in agreement with genome sequencing studies of non-neoplastic tissue samples’
(Supplementary Fig. 12d-f). Together, these results show that SComatic permits the study of clonality
patterns of both cancer and non-neoplastic cell types.

De novo mutational signature analysis

Clustering of samples based on the cosine similarity of mutational spectra revealed groups consistent
with the relative activity of known mutational processes quantified though refitting of COSMIC
mutational signatures (Supplementary Fig. 13). Thus, we sought to determine whether the mutations
detected by SComatic permit the identification of mutational processes using de novo mutational
signature extraction. Decomposition of the mutations identified in epithelial cells from hypermutated
colorectal cancer samples using COSMIC signatures revealed a strong contribution of signatures
associated with POLE and MMRd. By contrast, the signatures extracted from epithelial cells in MSS
tumours showed strong contributions of SBS5 and SBS40, consistent with the mutational processes
expected for these tumours (cosine similarities > 0.96, Supplementary Fig. 14). We identified two
signatures in cSCC samples, one of which showed a cosine similarity >0.98 when decomposed into the
COSMIC signatures attributed to UV-light mutagenesis (SBS7a, SBS7b and SBS7c), and the other was
decomposed into a combination of signatures (SBS5 and SBS40), in agreement with the WES data
(cosine similarity = 0.7, Supplementary Fig. 14). Despite the limited number of mutations and samples
available for analysis, the signatures extracted from the mutations detected in non-neoplastic samples
from GTEx and the heart cell atlas were decomposed into SBS5 and SBS40 (cosine similarity > 0.36;
Supplementary Fig. 14), which is consistent with the mutational signatures identified in WGS studies
of non-neoplastic samples’. The signatures detected in cardiomyocytes showed a strong contribution
of SBS44, which is related to MMRd and recently reported in a recent study of cardiomyocytes using
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single-cell WGS*. Together, these results indicate that SComatic permits de novo mutational signature
analysis using mutations detected in single-cell data.

Discussion
Here, we show that SComatic permits de novo detection of somatic SNVs at single-cell resolution. In

contrast to existing methods relying on genotyping sites known to be mutated in the sample under
study, SComatic detects somatic SNVs in single-cell data sets directly without requiring matched bulk
or single-cell DNA sequencing data. This is particularly relevant to study somatic mutagenesis in cell
types and samples that cannot be reliably analysed using existing single-cell genomics methods, such
as differentiated cells and polyclonal tissues showing high levels of genetic heterogeneity®’. Critically,
we show that SComatic vastly outperforms existing pipelines for the detection of somatic SNVs in
single cell data sets, which allows the identification of mutational processes in both cancer and non-
neoplastic cells, including those from differentiated cells and polyclonal tissues in which mutations
cannot be reliably studied using current experimental or computational approaches.

Despite its higher performance as compared to existing tools, we note that SComatic is limited by the
sparsity and low sequencing depth of current single-cell sequencing assays. As single-cell methods
improve, SComatic will allow to derive further insights from single-cell sequencing data sets, such as
phylogenetic analysis, identification of driver mutations in cancer and non-neoplastic cells, and the
study of clonal mosaicism, including the estimation of mutations under positive selection driving clonal
expansions. Although we have previously shown that somatic mutations can be detected in off-target
regions, such as introns*, only a small fraction of the genome has sufficient sequencing coverage to
be amenable to mutation detection. Therefore, other methodologies are required to study the rates,
patterns, and selection of mutations in those regions missed by scRNA-seq and ATAC-seq or
overlapping known RNA editing sites. In addition, SComatic relies on predefined cell type annotations
using e.g., marker genes or gene expression clustering. Therefore, the quality of the mutations
identified is contingent on reliable cell type annotations, which can be challenging in cases in which
clonally unrelated cells cannot be easily distinguished using gene expression data alone®**. Finally, we
applied SComatic to study the patterns of clonality and mutation rates in clonal and polyclonal tissues.
Although the cell-type mutation rates we estimate are comparable across assays, we note that the
bias introduced by allele-specific expression, polyploidization, and limited sequencing depth might
affect the burden or clonality estimates for other data sets.

Overall, SComatic opens the possibility to study somatic mutagenesis using single-cell data sets
generated for human samples under the auspices of large-scale initiatives, such as the Human Cell
Atlas or the Human Tumour Atlas Network®*®, as well as the analysis of mutational burdens and
processes in other organisms.
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Methods

Processing of single-cell data sets

Single-cell RNA-seq data from cancer and non-neoplastic samples were downloaded in fastq format
and processed uniformly. Specifically, raw sequencing reads were aligned to the GRCh38 build of the
human reference genome using Cell Ranger*’ version 6.0.1 and default parameter values to generate
alignment files in Binary Alignment Map (BAM) format and count matrices. Cell type annotations were
downloaded from the original publications from which the data were downloaded (Supplementary
Table 1). Cell annotations were used to assign sequencing reads to individual cells. Single cells without
cell type annotations were discarded. Raw sciATAC-seq reads were mapped to the GRCh38 build of
the human reference genome using BWA-MEM v0.7.17-r1188%. Aligned sequencing reads in BAM
format were then processed following the Genome Analysis Toolkit (GATK) v4.1.8.0 Best Practices
workflow to remove duplicates and recalibrate base quality scores®.

Detection of somatic mutations in single-cell data sets using SComatic
SComatic consists of the following steps:

- Processing of alignment files

First, the BAM file containing the sequencing reads for all cell types in a sample is split into cell-type-
specific BAM files using precomputed cell type annotations. To this aim, sequencing reads are assigned
to individual cells using molecular barcodes (tag “CB” in BAM files processed using Cell Ranger). Before
identifying candidate mutation sites, reads with a mapping quality lower than 255 (or 30 for sciATAC-
seq data) or with more than 5 mismatches are filtered out. In addition, to ignore sequencing artefacts
enriched in terminal ends of the reads or adapter sequences not properly trimmed, the base quality
for the first 5 bases at the 3’ and 5’ ends of each read is set to 0°°.

- Collecting base count information
Next, the count of each base in each cell type for every position in the genome is recorded in a base
count matrix indexed by cell types and genomic coordinates using the pileup functionality from the
Pysam module®!. For this analysis, a minimum base quality of 30 is required, and only sites with a
sequencing depth of 5 reads across at least 2 cell types are considered. Sites overlapping RNA editing
sites are removed®?>3, In addition, sites mapping to polymorphisms in the gnomAD?% database version
v2.0.1 with a population frequency greater than 1% are removed.

- Detecting potential somatic SNVs
To distinguish technical artefacts, such as recurrent sequencing or mapping errors, from true somatic
mutations, SComatic models the background error rate using a Beta-binomial distribution. Specifically,
non-reference allele counts at homozygous reference sites are modelled using a binomial distribution
with parameter P (error rate), which is a random variable that follows a Beta distribution with
parameters a and B*°. To infer the parameter values, SComatic uses base count information for 1
million sites in the genome randomly selected from a panel of unrelated non-neoplastic samples
generated using the same sequencing technology. Next, for each site in the genome and cell type, the
Beta-binomial distribution is used to test whether the non-reference allele counts are significantly
higher than expected given the background error rate, and thus, considered as a potential somatic
mutation. Candidate somatic mutations are required to be present in only cells from the candidate
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cell type. To test this, SComatic requires that the Beta-binomial test is not significant when applied to
all other cell types independently and when applied to the base counts aggregated across all other
cell types. The threshold for statistical significance for the Beta-binomial is set to 0.001.

- Filtering out recurrent artefacts

Due to the enrichment of artefacts in repetitive regions (Supplementary Fig. 1) and the high error rate
of lllumina sequencers at homopolymer tracts®®, mutations mapping to or within 4bp of
mononucleotide tracts are removed. Finally, mutations mapping less than 5bp apart from each other
are filtered out, except for doublet base substitutions (DBS) dinucleotide changes previously reported
to be generated by specific mutational processes, such as CC>TT mutations associated with UV-light-
induced mutagenesis in skin (COSMIC signature DBS1) or characteristic DBS peaks observed in
colorectal cancers (COSMIC signatures DBS2,3,4,6,7,8,10 and 11).3¢

In addition, SComatic generates a ‘Panel of Normals’ to discount positions affected by recurrent
artefacts (sites with non-reference allele counts significantly higher than the background error rate
modelled with the Beta-binomial distribution). To this aim, SComatic uses a large collection of non-
neoplastic datasets to assess the frequency of non-reference allele counts at each genomic site in the
genome. This analysis serves to filter out candidate mutations mapping to regions of the genome
prone to sequencing or mapping artefacts, germline variants missed by other filters, and candidate
mutations found in at least 2 unrelated samples, which are considered to be germline polymorphisms.

- Calling somatic mutations

Finally, to make a mutation call, SComatic requires mutations to be supported at least 3 reads from at
least 2 cells from the same cell type. To tune this parameter, we performed mutational signature
analysis on subsets of mutations defined based on the number of cells harbouring each mutation. For
this analysis, we focused on the somatic mutations detected by SComatic in epithelial cells from MSI
tumours. Our analysis revealed that the mutational spectra and mutational signature contributions
were consistent across subsets of mutations present in 2 or more cells (Supplementary Fig. 2),
indicating that requiring mutations to be present in at least 2 cells to make a call is adequate to detect
true somatic mutations

Estimation of mutational burdens

To compute the mutational burden at the cell type level, we divided the total number of somatic
mutations detected in each cell type by the total number of callable sites across all cells of the same
type (Supplementary Fig. 15). Cell types with less than 500,000 callable sites were not included in this
analysis. To estimate single-cell mutational burdens, we divided the number of mutations detected in
each unique cell by the number of sites with a sequencing depth of at least 1 read and within the set
of callable sites across all cells of the same type. We only considered the autosomes for computing
mutational burdens. The sensitivity of single-cell assays to detect both alleles is low due to limited
sequencing depth and allele-specific expression'’. That is, we only detect one read per cell for most
genomic position in the genome. Thus, our estimated mutational burdens for single cells mostly reflect
the mutational burdens per haploid genome. We decided to report mutational burdens per haploid
genome instead of correcting for ploidy because ploidy information for single cells was not available
for the data sets analysed. We could not assume that all cells are diploid as the data sets analysed
contained cell types, such as cancer cells and cardiomyocytes, that often undergo polyploidization.
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Mutational signature analysis

Mutational signature analysis was performed using the R package MutationalPatterns® and the
COSMIC Mutational Signatures catalogue version 3°¢. We used the function fit_to_signatures with
default parameter values to estimate the contribution of each mutational process to the mutational
spectrum observed in each sample. To account for differences in the frequency of each of the 96
trinucleotide contexts in which mutations can be detected between the whole genome and the
regions profiled using scRNA-seq or scATAC-seq, we normalised the frequency of mutations detected
at each trinucleotide context. To this aim, we first computed the frequency of each trinucleotide
context in the human genome using the function get trinuc_norm from the R package SigMA
(https://github.com/parklab/SigMA). Next, for each single-cell data set we estimated the frequency
of each trinucleotide context across callable regions using a custom Python script,
TrinucleotideContextBackground.py, which is provided as part of SComatic. To normalize the
mutational spectra detected in each single-cell data set to the frequency of each trinucleotide in the
whole genome, we divided the fraction of mutations detected at each trinucleotide context by the
frequency of such context in the whole genome relative to its frequency in the single-cell data set
being analysed.

For fitting COSMIC signatures, we only used the mutational processes known to be operative in each
sample type analysed’®®: (1) SBS1, SBS5, SBS6, SBS10a, SBS10b, SBS14, SBS15, SBS17a, SBS17b, SBS18,
SBS21, SBS26, SBS28, SBS37, SBS40 and SBS44 for colorectal cancer samples; (2) SBS1, SBS2, SBS5,
SBS7a, SBS7b, SBS7c, SBS7d, SBS13, SBS32 and SBS40 for skin squamous cell carcinoma samples; (3)
SBS1, SBS2, SBS4, SBS5, SBS7a, SBS7b, SBS13, SBS16, SBS17b, SBS18, SBS22, SBS23, SBS32, SBS40,
SBS41 and SBS88 for MPNs and non-neoplastic samples. We also included SBS6, SBS8, SBS19, SBS32,
SBS35, SBS39, and SBS44 when analysing heart samples®. The goodness of fit was determined by
computing the cosine similarity between the observed and the reconstructed mutational spectra using
the estimated signature contributions.

De novo mutational signature extraction was performed using non-negative matrix factorization
(NMF) as implemented in the R package MutationalPatterns using somatic SNVs detected in each of
the following sample groups: epithelial cells from MSI and POLE-deficient colorectal cancer samples,
epithelial cells from MSS colorectal cancer samples, epithelial cells from ¢SCC and matched normal
skin samples, cardiomyocytes from the heart cell atlas, and all cell types from the GTEx dataset. The
extracted signatures were decomposed into COSMIC v3 signatures using the fit to signatures
function after normalizing them to the trinucleotide frequencies of the whole genome. The goodness
of fit of the decomposition of de novo signatures was estimated by computing the cosine similarity
between the extracted mutational signature and the mutational spectrum reconstructed based on the
estimated COSMIC signature contributions.

Whole-exome sequencing data analysis

Raw sequencing reads were mapped to the GRCh38 build of the human reference genome using BWA-
MEM?® (version 0.7.17-r1188). Aligned sequencing reads in BAM format were processed to remove
duplicates and recalibrate base quality scores following the GATK (version 4.1.8.0) Best Practices
workflow®®>’, Point mutations were detected using Strelka23 (version 2.9.10) and MuSE>® (version
1.0rc) using default parameter values and the matched normal samples as germline controls. For
benchmarking purposes, we only considered those somatic mutations detected by both algorithms.
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Comparison of mutations detected in scRNA-seq and WES data

To compare the mutations detected using matched WES and scRNA-seq data, we computed the base
counts for all positions in the genome using the WES data. For this analysis, we only focused on regions
with a coverage of at least 50x in the WES data from the cancer sample and 10x in the matched normal
sample. In the case of the scRNA-seq data, we only interrogated regions with a sequencing depth of
at least 10 reads in the epithelial cells, and with a depth of 5 reads in at least 2 additional cell types.
Only regions that passed these filtering criteria for the scRNA-seq and WES data were considered for
benchmarking purposes.

As we considered the WES data as the baseline for comparison, we categorized the mutations as: (1)
true negatives: non-mutated sites; (2) WES-specific mutations: mutations detected in the WES but not
in scRNA-seq data; (3) scRNA-seqg-specific: mutations detected in the scRNA-seq data with no reads
supporting the mutant allele in the WES data; (4) low-confidence true positives: mutations detected
in the scRNA-seq data with at least one read supporting the alternative allele and no reads supporting
any other alternative allele in WES, but not called by our WES mutation detection pipeline; (5) true
positives: mutations detected in both the scRNA-seq and WES data; and (6) WES and low-quality
scRNA-seq: somatic mutations detected in WES but filtered out by SComatic. To compute performance
metrics, we estimated the sensitivity, precision and Fl-score values for each algorithm using 50
bootstrap resamples. We then compared the performances between callers using the Student's t-test
correcting for multiple hypothesis testing using the FDR method.
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Data availability

The raw WES and scRNA-seq data for the skin squamous cell carcinoma and matched normal samples
are available at the Gene Expression Omnibus (GEO) database under the accession number
GSE144240. The raw scRNA-seq data from myeloproliferative neoplasms and colorectal cancer
patients are available through controlled access application via dbGaP under dbGaP Study Accession
numbers phs002308.v1.p1 and phs002407.v1.pl, respectively. The cell type annotations for the
colorectal cancer data set®! are available at GEO database under the accession number GSE178341.
Raw sequencing data and cell type annotations for 6 additional colorectal cancer patients®? included
in this study are available at GEO database under the accession number GSE144735. The cell type
annotations for the MPN data set were obtained from our previous study®. The raw scRNA-seq data
and cell type annotations for the human heart cell atlas*® were downloaded from the Human Cell Atlas
Data Portal (https://data.humancellatlas.org/). The raw single-cell ATAC-seq data and cell type
annotations are available at GEO database under the accession number GSE184462. The raw sequence
data from GTEx samples are available at the Analysis Visualization and Informatics Lab-space (AnVIL;
https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_GTEx_V9_hg38) and can be
downloaded through controlled data access application via dbGaP under Study Accession number:
phs000424.

Code availability
SComatic is available at: https://github.com/cortes-ciriano-lab/SComatic.
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Figure 2. Validation of SComatic using matched scRNA-seq and exome sequencing data. a) Mutational burdens for epithelial
cells using the somatic SNVs detected by SComatic in ¢SCC and matched normal skin scRNA-seq data sets. The number of
mutations is normalized to account for the variable number of callable sites in each sample. b) Fraction of somatic SNVs
detected in epithelial cells attributed to COSMIC signatures. SBS signatures associated with ultraviolet radiation (SBS7a,b,c
and d) and clock-like mutational processes (SBS5 and SBS40) are collapsed for visualization purposes. ¢) Mutational spectra
computed for the mutations detected using SComatic in epithelial cells from ¢SCC and matched normal skin scRNA-seq data.
The cosine similarities between the observed and reconstructed mutational spectra are shown. d) Venn diagram showing the
overlap of the somatic SNVs detected by SComatic in epithelial cells using scRNA-seq data and exome sequencing data from
the ¢SCC samples. e) Decomposition of the mutations detected in scRNA-seq data only (scRNA-seq-specific mutations) into
COSMIC signatures. f) Correlation between the mutational burdens estimated using the mutations detected in WES and the
mutations detected by SComatic in the scRNA-seq data. Only genomic regions with sufficient sequencing depth in both the
WES and scRNA-seq data were considered for this analysis.
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Figure 3. Comparison of the performance of SComatic against other mutation detection methods. a) Performance of Strelka2,
SAMtools, VarScan2 and SComatic for the detection of somatic mutations in the scRNA-seq data from cSCC samples. The error
bars show the 95% bootstrap confidence interval for each statistic computed using 50 bootstrap resamples. b) Decomposition
into COSMIC signatures of the mutations detected in scRNA-seq data by each algorithm and the mutations detected in WES data.
c) Correlation between the number of mutations detected in each trinucleotide context using the WES and scRNA-seq data. FDR-
adjusted P values are shown. d) Comparison between the mutational spectra of the mutations detected using WES and scRNA-
seq data using each of the algorithms benchmarked. The cosine similarity between the mutational spectra computed using the

context

mutations detected in the scRNAs-seq and the WES data are shown.
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Figure 4. Detection of somatic mutations in scRNA-seq data from colorectal cancer samples. a) mutational burden of
epithelial cells computed using SComatic. The number of mutations is normalized to the number of callable sites per sample. b)
Distribution of the mutational burden of epithelial cells from MSI tumours detected using SComatic and the mutational burden
of MSI tumours from TCGA computed using WES data. The red horizontal line shows the mean for each group. c)
Decomposition of the mutational spectra computed using SComatic into COSMIC signatures. Mutational signatures associated
with MMRd (SBS6, SBS14, SBS15, SBS21, SBS26 and SBS44), POLE deficiency (SBS10a, SBS10b and SBS28) and clock-like
mutational processes (SBS5 and SBS40) are collapsed for visualization purposes. d) Trinucleotide context of somatic mutations
detected by SComatic using the scRNA-seq data from colorectal cancer samples.
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Figure 5. Detection of somatic mutations in samples with a low tumour mutational burden. a) Trinucleotide context of somatic
mutations detected in hematopoietic stem cells (HSC) from MPN patients. b) Decomposition of the somatic mutations detected in
HSCs from MPN patients into COSMIC signatures. c) Correlation between the mutational burden of HSCs estimated using SComatic
and the age of patients at the time of sampling (Pearson’s r = 0.79; P = 0.09). d) Average number of mutations detected per cell
and genome in cardiomyocytes from the heart cell atlas across donors. e) Decomposition of the mutations detected in
cardiomyocytes into COSMIC signatures. f) Trinucleotide context of mutations detected in cardiomyocytes from the heart cell
atlas. g) Average mutational burden of individual cells across the tissues included in the GTEx scRNA-seq dataset. The number on
top of the bars indicates the number of cells per cell type. h) Decomposition of the mutations detected across all cells from the
GTEx data set into COSMIC signatures. i) Trinucleotide context of mutations detected across all single cells from the GTEx data set.

context

The numbers on top of the bars in d and g indicate the number of cells per cell type analysed.
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Supplementary Figure 1. Recurrent artefacts are enriched in repetitive elements. a) Genomic distribution of artefactual
sites included in the “Panel of Normals” (PoN) generated using scRNA-seq data across different types of repetitive elements.
b) Enrichment of artefactual sites in repetitive element classes. The dashed red line indicates no enrichment or depletion.
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Supplementary Figure 2. Mutational signature analysis of the somatic mutations detected across an increasingly larger
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sets across increasingly higher cut-off values for the number of cells required to harbour a mutation to make a call. Overall,
the contribution of mutational signatures associated with MMRd is constant across increasingly stringent cut-off values,
indicating that requiring mutations to be detected in at least 2 cells to make a call is adequate to discover true somatic
mutations. Mutational signatures associated with MMRd (SBS6, SBS14, SBS15, SBS21, SBS26 and SBS44), POLE-deficiency
(SBS10a, SBS10b and SBS28) and clock-like mutational processes (SBS5 and SBS40) are collapsed for visualization purposes.
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Supplementary Figure 3. Comparison of the variant allele fraction (VAF) of mutations detected in WES data and scRNA-
seq data from epithelial cells using SComatic.
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Supplementary Figure 4. Genomic distribution of somatic mutations detected by SComatic in single-cell data sets.
Distribution of somatic mutations across genomic regions.
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Supplementary Figure 5. Mutational burden across cell types. a) Mutational burden across cell types detected in the scRNA-seq
data from cSCC and matched normal skin samples. b) Mutational burden across cell types detected in the colorectal cancer (CRC)
and matched normal colon samples. Mac: macrophages; ASDC: AXL+SIGLEC6+ dendritic cells; LC: Langerhans cells; MDSC:
myeloid-derived suppressor cells; PDC: Plasmacytoid dendritic cells; TNKILC: T-cells, natural killer cells, Innate lymphoid cells. Box
plots show median, first and third quartiles (boxes), and the whiskers encompass observations within a distance of 1.5x the

interquartile range from the first and third quartiles.

Supplementary Figure 6. Comparison of the performance of SComatic against other mutation detection methods including
sample P7. Performance of Strelka2, SAMtools, VarScan2 and SComatic for the detection of somatic mutations in scRNA-seq
data from ¢SCC samples (including sample P7). The error bars show the 95% bootstrap confidence interval for each statistic
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Supplementary Figure 7. Comparison of the mutational burden of epithelial cells computed using the mutations
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Supplementary Figure 8. Mutational burdens estimated for single cells. Average mutational burden for single cells across the
cell types detected in the scRNA-seq data from (a) the heart cell atlas, (b) pan-tissue GTEX, and (c) pan-tissue sciATAC-seq data
sets. Each dot represents the average number of mutations estimated for each cell per sample. Only samples with at least 100
cells per cell type and datasets with at least two samples are shown. The horizontal line shows the median value across samples.
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Supplementary Figure 9. Rate of SNVs in cardiomyocytes computed using scRNA-seq from the Heart Cell Atlas and scWGS data
from Choudhury et al. (Nature Aging, 2022). Mutation burdens were normalised to mutations per Mb and are expressed as
mutations per cell and haploid genome. The mutation burdens estimated using scWGS data by Choudhury et al. (Nature Aging,
2022) were divided by the ploidy of each cell. The P value was computed using the two-sided Wilcoxon’s test.
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Supplementary Figure 10. Somatic mutation detection in sciATAC-seq data. a) Average mutational burden at the single cell level
estimated using the somatic mutations detected by SComatic in sciATAC-seq data. The mutational burden is expressed as
mutations per cell and haploid genome. The number on top of the bars indicates the number of cells per cell type. b)
Trinucleotide context of mutations detected across all cell types in the sciATAC-seq dataset. ¢) Decomposition of the mutations
detected in sciATAC-seq data across all cell types into COSMIC signatures (reconstructed cosine similarity = 0.79). The
contributions of SBS5 and SBS40 are collapsed for visualization purposes.
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Supplementary Figure 11. Comparison of the mutational burdens estimated for single cells across datasets. Each dot

represents the average number of mutations detected per cell and haploid genome for each donor. The horizontal line shows

the median value across samples. Only datasets with at least two samples and cell types present in at least two datasets are

shown.


https://doi.org/10.1101/2022.11.22.517567
http://creativecommons.org/licenses/by-nc-nd/4.0/

a

100 o o6
o P=5.12x10"° d e
s 078 Tumour Matched normal
g 0.50 Heart

bioRxie prepfint dof: hitps://doj,0rg/10.1101/2022 gyember 24, 2022. The cppyright holder for this

FHisRXiv a license to display thelpreprint in

0 YAternatipnal license.

prefink{ hg frofecertified by peer revie
o3 perpetuity. It is made

0.00 . . Smooth_muscle_cells |
0.00 0.25 050 0.75 1.00
VAF in scRNA-seq data
_— TNKILC — ) |
b ¢SCC (Epithelial cells) Pericytes
9 Cl Tumour
. Matched normal Myeloids -

= Stromal_cells |
2 6
2
o3
)
3 Mesothelial_cells |
g
2
0 3 Plasma -
o
O ) O Lymphoid —
SEERNUEN SRS
Cancer Cell Fraction
[9 CRC (Epithelial cells) Myeloids — Fibroblast | L
Endothelial_cells |
Epithelial_cells
POLEd CRC -
Cardiomyocytes —|
MSS CRC B_cells |
Adipocytes |
MSI CRC T T T T T T T T T T T T T T T
7 N o N vl L O ) N \al O N N Uz D i \2J
R N N N O AN TN N Q7 o7 o7 o7 o7 o
X Mutant Cell Fraction
T T T T T Mutant Cell Fraction
N o ) \a3 N
PN PN PN
Cancer Cell Fraction
f Breast Skin
Mammary Tissue  Esophagus Mucosa Esophagus Muscularis Heart Left-Ventricle Lung Muscle Skeletal Prostate Sun-Exposed
c GTEx
.% 0.6
g °o 9 Q
3 0.4+ ° g &
o ° &
g % S S . ° g °
S 02 Qeggo & 000 % ® &
SR 4 @a?w@@@@& & F & %@&
T T T T T T T T T T T T T T T T T T T T T T T
o?}\% oos,}e 0\‘;} g.'z}\e ;;?}\‘o & cﬁ\e o‘o(}q’ ’é’"z} o\'be\ \\.faéel & oe}\% @\e o\'ﬁ\ @6% oq}\% G';} Q"’c}?’ \\?c}el °Q}\{° “Q}\% “q}\%
& @
S P O R A A P R I R P O AP El S of
K & K & & ) S K S
< < <& <& 2 &
Cell types

Supplementary Figure 12. Clonality of the mutations detected in scRNA-seq data. a) Pearson correlation between the VAF of
somatic mutations in WES and scRNA-seq data from the c¢SCC samples. Distribution of the cell fraction of mutations detected in
scRNA-seq data from b) ¢SCC tumours and matched normal skin samples, c) colorectal tumours and matched normal samples,
and d) epithelial cells from colorectal tumour samples. Distribution of the cell fraction of mutations detected across cell types
from e) the heart cell atlas, and f) the GTEx data set. Each dot in f represents an individual SNV and the red horizontal line shows
the mean for each group.
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Supplementary Figure 13. Comparison of the mutational patterns detected across the data sets analysed in this study. a)
Pairwise cosine similarities between the mutational spectra computed using the mutations detected across cell types from each
data set. b) Hierarchical clustering based on the cosine similarity comparison (shown in a) of the mutational spectra detected in
each data set using SComatic.
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Supplementary Figure 14. De novo mutational signature analysis of the somatic mutations discovered by SComatic. a)
Trinucleotide context of the de novo signatures discovered in the data sets analysed. De novo mutational signatures were extracted
independently from each dataset. The decomposition of the de novo signatures into COSMIC signatures was also run for each
dataset independently. b) Cosine similarities between the de novo signatures and the reconstructed mutational spectra using the
estimated signature contributions. c) Pairwise cosine similarities between each pair of mutational signatures extracted de novo.
Mutational signatures associated with MMRd (SBS6, SBS14, SBS15, SBS21, SBS26 and SBS44), POLE deficiency (SBS10a, SBS10b and
SBS28), ultraviolet radiation (SBS7a,b,c and d) and clock-like mutational processes (SBS5 and SBS40) are collapsed for visualization
purposes.


https://doi.org/10.1101/2022.11.22.517567
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.22.517567; this version posted November 24, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Number of callable sites

Supplementary Figure 15. Number of callable sites per cell type and data set.
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Supplementary Table 1. Summary of the data analysed and the somatic mutations detected in each data set.

. Number of cells
Technology D sample type MSI status Number of | Number of Number of Number of Number of SNVs in harbouring each PMID
samples donors cells SNVs cell types N
mutation
Sc'fgﬁiieq Pan-tissue Normal - 66 4 459056 1032 389 2.7 34774128
ScRNA-seq Matched MSS 56 40 119694 719 339 21
normal
cRe 34450029,
SCRNA-seq MSI/POLE 68 37 120789 178107 7531 236 32451460
Tumour
SCRNA-seq MSS 66 33 144512 19097 1127 16.9
ScRNA-seq GTUE:S S:;”' Normal NA 24 15 205426 1790 524 3.4 35549429
scRNA-seq He:t::e” Normal - 78 14 441777 4524 2132 2.1 32971526
scRNA-seq MPN Tumour - 5 5 36555 2264 847 2.7
33621486
ScRNA-seq Matched . 10 10 21800 2122 186 114
cSCC normal
SCRNA-seq Tumour - 10 10 26253 18142 810 224 32579974
Total 383 230 1575862 227797 13885
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