bioRxiv preprint doi: https://doi.org/10.1101/2022.11.22.517553; this version posted November 24, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MuVEH and mitoMuVEH improve discovery of genetic variation from single cells.
Monica R. Ransom’', Krysta L. Engel’, Brett M. Stevens', Craig T. Jordan', Austin E. Gillen?
' Division of Hematology, Department of Medicine, University of Colorado School of Medicine,
Aurora, CO, 80045, USA.

2 Rocky Mountain Regional VA Medical Center, Aurora, CO, 80045, USA.

Abstract

Understanding the genetic underpinnings and clonal structure of malignancies at single-cell
resolution is critical to accurately predicting drug response and understanding mechanisms of
drug resistance and disease evolution in heterogeneous populations of cells. Here, we introduce
an accessible, multiplexable, targeted mutation enrichment approach and end-to-end analysis
pipeline called MuVEH (Multiplexed Variant Enrichment by Hybridization) that increases the
resolution of variant detection in scRNA-seq analysis. When applied specifically to the
mitochondrial chromosome (“mitoMuVEH?”), this technique can also be used to reconstruct and
trace clonal relationships between individual cells. We applied both approaches to two pairs of
primary bone marrow specimens from acute myelogenous leukemia (AML) patients collected at
diagnosis and after relapse following Venetoclax+Azacitidine (Ven/Aza) therapy. Used together,
MuVEH and mitoMuVEH reveal clonal evolution and changing mutational burden in response to
treatment at single-cell resolution in these patients. Ultimately, these approaches have the
potential to extract additional biological insights from precious patient samples and provide
insight into the contributions clonality and genotype have during disease progression.

Introduction

AML derives from aberrant hematopoietic stem and progenitor cells. As the disease progresses
and patients are treated, cells are subject to constant selective pressures leading to the
expansion and contraction of clonal populations depending on their fithess. This selection
process produces a heterogenous disease, both between patients and within the same patient.
This heterogeneity makes AML particularly difficult to treat and is an important driver of relapse
in patients [1, 2]. Additionally, this heterogeneity, as well as the phenotypic similarities between
healthy and malignant cells, has impeded the characterization of AML biology [3]. Single-cell
methods are uniquely positioned to unveil this complexity, which is critical to characterizing this
heterogeneity and ultimately developing more effective, targeted therapies.

Current work in the field has begun to approach the questions of somatic mutation profiles as
well as clonal lineage tracing from current single-cell datasets. For single-cell somatic variation
profiling, many current approaches target the cDNA molecules generated during library
construction and amplify specific loci of interest [4—8]. These approaches yield high-resolution
results for a small number of genes; however, they require a priori knowledge of the mutational
landscape in the patient which is not always available. Similarly, there are two main types of
lineage tracing approaches available for single-cell analysis: a modify-and-record approach and
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mitochondrial lineage tracing. In the modify-and-record methods, a modification (e.g. an
expressed traceable tag) is made to an original cell to leave a heritable mark that can be
followed through development [9, 10]. While these approaches are powerful and lead to
high-resolution clonal maps, they only go back as far as the original labeled cell (i.e. do not
capture clonal relationships that exist at the time of labeling) and cannot be applied to intact
human cell populations. To trace lineage in humans, work has shifted to tracking naturally
occurring background nuclear DNA mutations including SNVs, CNVs, microsatellite repeats,
and those found on the mitochondrial chromosome [11-13]. The mitochondrial mutation lineage
tracing approach is appealing for several reasons: the mitochondrial genome is large enough to
provide a sufficient mutational landscape but small enough to keep sequencing costs low, the
mitochondrial genome has increased mutational rates as compared to the nuclear loci [14],
mtDNA copy number is high which helps detection in single-cell data, and the mitochondrial
RNA or DNA is often captured in the process of making single-cell libraries. There are currently
several PCR-based approaches to perform lineage tracing from single-cell libraries, including
those utilizing scATACseq [15—-17] and scRNA-seq [11] from multiple platforms.

We sought to address some of the issues noted above and increase access to these powerful
analyses by expanding our previous hybridization-based single-cell enrichment technique [18] to
develop MuVEH and mitoMuVEH (pronounced “movie” and “mito-movie”, respectively). We
chose to utilize a hybridization-based approach for four reasons: (1) we can target many (100+)
genes with the one pool of probes, (2) we can pool libraries prior to hybridization to save time
and reagents, (3) we require less amplification than existing PCR-based strategies, and (4) for
ease of execution with this protocol, we can target 64 single-capture libraries in 1 strip tube in
about 1.5 days. Additionally, the resulting libraries contain the same indices as the original
libraries, which simplifies pooling for resequencing.

These hybridization-based approaches enrich targeted variants and facilitate the accurate
measurement of the mutational profile and the clonal relationships of each cell in existing
scRNA-seq libraries. Importantly, this protocol functions without modification to the capture or
library preparation process. Previous approaches to call mutations from scRNA-seq data have
focused on the detection of small numbers of variants in one or a few genes per sample,
necessitating upfront knowledge of the driver mutations present in these samples [4, 5, 19]. In
contrast, MUVEH uses a panel of probes encompassing more than 100 genes of interest in one
hybridization capture (Figure 1A). Similarly, mitoMuVEH uses a panel of probes covering the
entire mitochondrial genome to enrich mitochondrial variants that allow us to reconstruct clonal
lineages at single-cell resolution. We chose to tile probes across the entire mitochondrial
genome based on the observation that single-cell libraries contain both genic and intergenic
coverage of the mitochondrial chromosome in our scRNA-seq libraries. We utilize currently
available tools to determine mitochondrial variants of interest and use these variants to identify
clonal populations of single cells [19, 20]. Both MuVEH mitoMuVEH also take advantage of the
indexed nature of the starting material to multiplex 8-10 samples together into one hybridization,
cutting down on costs and time. Notably, MuVEH is completely agnostic to the nature of this
starting material, final libraries from any single-cell sequencing technique can be used with
MuVEH, and the only requirement for mitoMuVEH is capture of mitochondrial RNA or DNA.
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Together with our soon-to-be-released end-to-end informatics pipeline, these approaches
provide an accessible, multiplexable, and highly flexible set of tools to extract additional data
from both existing and future single-cell sequencing experiments. Combined with multimodal
single-cell phenotypic measurements including gene expression, surface protein expression,
and chromatin accessibility, the genotyping data generated by MuVEH will help investigators
better understand the impact of genotype and clonal relationships on the phenotype at
single-cell resolution.

Results

A hybridization-based method for optimized coverage of nuclear and mitochondrial RNA
to yield improved mutation calling from single cell RNAseq libraries.

Single-cell RNAseq assays typically have sparse coverage of genes, biases in coverage based
on gene location, and technical noise created by PCR amplification [21]. These factors
complicate single-cell mitochondrial and nuclear variant identification and render them prone to
error. To improve the resolution of this mutation calling we undertook to increase the coverage
of both the entirety of mitochondrial variants and targeted nuclear genes of interest to improve
variant calling confidence and to help mitigate the dropout effects typically seen in 10X data. We
took 10X libraries generated using the 3’ v3.1 protocol and performed enrichment using two
custom panels of targets using a tiled probe approach covering the full cDNA of the target gene
as well as 5" and 3’ UTR regions (Figure 1A, methods). Notably, this approach is not limited to 3’
libraries, but also works on 5’ libraries, spatial libraries and could be modified to work with most
single-cell approaches. This targeted gene enrichment was originally designed to improve
coverage for expression analysis, but we reasoned that it could also be used to improve
resolution for mutational analysis.

We designed one panel against the full mitochondrial genome based on the relatively high initial
coverage rate in our scRNAseq libraries, which was observed across the mitochondrial DNA
independent of gene location. As shown for a representative sample with our mitochondrial
pulldown approach, we see high coverage of the full mitochondrial genome with a median depth
of 262,562 UMIs per base, and an average fold change of 5.4x in the pulldown compared to the
original data (Figure 1B). This is accomplished with approximately 4.5-fold fewer total reads in
the pulldown as compared to the original data.

We designed our second panel, an AML-specific gene panel, to target the full-length cDNA and
UTR of ~100 genes that have been shown to be mutated or play a role in AML biology [22].
Figure 1C shows a representative sample of our gene enrichment performance. We see
increased coverage of three representative genes with top tertile (NPM1), middle tertile (NRAS),
and bottom tertile expression (DNMT3B) in our original dataset. We see an increase in coverage
and fold change in the exonic regions targeted across the whole gene body as well as the UTR
(Figure 1C). This is accomplished with approximately 5-fold fewer total reads in the pulldown as
compared to the original data. Unsurprisingly, this enrichment is limited to regions of the
genome that are present in the original libraries and excludes regions far upstream from poly(A)
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tracts that are not represented in the original libraries. Additionally, some intronic regions see a
decreased fold change compared to the original data, due to the lack of probes in this region
and these fragments not being resequenced.
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Figure 1. MuVEH and mitoMuVEH enrich for variants in nuclear and mitochondrial RNA. (A)
Schematic for hybridization-based enrichment of 10X Genomics final libraries drawn with
Biorender. (B) MitoMuVEH enrichment of the mitochondrial genome. Plot from the R package
circlize [23] depicting in the rings from outer to inner; mitochondrial location, heavy chain genes,
light chain genes, pulldown probe locations, log10(UMI) depth from the pulldown library, and
log10(UMI) fold-change between pulldown and original libraries. (C) MuVEH enrichment of 3
genes with high (NPM1), mid (NRAS), and low (DNMT3B) depth in the original 10X libraries.
Circle plot depicting in the rings from outer to inner; chromosomal location, gene structure of the
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full mRNA including all exons, pulldown probe locations, log10(UMIs+1) depth from the
pulldown library, and log10(UMiIs+1) fold-change between pulldown and original libraries.

Application of mitoMuVEH and MuVEH to primary AML samples

We applied our hybridization approach to bone marrow mononuclear cells from two AML
patients captured at diagnosis and after relapse following Ven/Aza-mediated remission. For
these 4 samples, we first called mitochondrial mutations from the single cell data treated as bulk
on the diagnosis and relapse samples separately. Bulk SNV calls for each timepoint as well as
for a combined diagnosis + relapse were generated. These variant lists were combined and
filtered using MQUAD [19], which uses a binomial mixture model to identify variants that are
informative for determining clones. These filtered variants were then used as input into
cellsnp-lite [20] to call mutations in single-cell mode, ultimately producing matrices of variant
counts per cell. We then used vireoSNP [24] to assign probability estimates to the clones and
visualized them using Seurat [25]. Transcriptome and CITE-seq analysis of 22 target proteins
were combined and used to generate a UMAP projection colored by cell type (Figure 2A).
VireoSNP mitochondrial clone assignments were then used to generate alluvial plots (Fig 2B-C)
and projected on the ftranscriptome UMAP, split by timepoint, and colored by
mitoMuVEH-defined clone (Figure2D-E). For each diagnosis/relapse pair, six mitochondrial
clones were confidently identified based on a plateau in the ELBO score reported by vireoSNP.
In Patient 1 at diagnosis, there are two main clones, M1 and M2, which label the monocytic and
primitive cells respectively (Figure 2D). Upon relapse, both of these clones collapsed and a
phenotypically distinct myeloid-committed population of clones, M3-6 expanded (Figure 2B). In
contrast, the primitive cells in Patient 2 at diagnosis are indistinguishable from putatively normal
lymphocytes (clone M1), likely due to a lack of differentiating mitochondrial variants in the
primitive AML population (Figure 2E). Like Patient 1; however, this patient also experiences a
complete loss of phenotypically primitive AML cells at relapse, concurrent with an expansion of
subclonal, phenotypically monocytic cells(Figure 2C). These results are consistent with
previous studies on AML heterogeneity post-relapse.

Both Patient 1 and Patient 2 had a known upfront driver mutation in NRAS at position Q61. A
UMAP was generated for each sample using the combined transcriptome and proteome cluster
assignments. MuVEH was then used to visualize this diagnostic driver mutation in both patients
(Figure 2F-G). In both patients, the variant allele (red) is restricted primarily to the monocytic
AML populations, with the detection of only the WT allele (yellow) in the most primitive AML
cells and normal (non-neoplastic) lymphocytes.

MuVEH and mitoMuVEH together revealed complex clonal structures in both patients by
leveraging mtRNA and nuclear RNA SNVs. These can be visualized together on heatmaps
showing the clone informative mitochondrial variants per cell colored by their expression(Figure
2H-1). Further annotation of these cells by the cluster designation, mitochondrial clone call, as
well as SNV mutations of interest help uncover the clonal complexity in these samples.
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Figure 2. MuVEH and mtMuVEH can be used to infer clonal lineage and mutational status in
AML diagnosis and relapse samples. Here, bone marrow mononuclear cells from two AML
patients captured at diagnosis and after relapse following Ven/Aza-mediated remission are
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interrogated using CITE-seq with MuVEH and mitoMuVEH targeted enrichments. (A) A
combined clustered UMAP projection based on the transcriptome and surface proteome (22
protein targets). (B, C) Alluvial plots show the expansion and loss of clones following relapse.
(D, E) A UMAP projection of the clonal structure of the two patients at diagnosis and relapse. (F,
G) UMAP projection colored by the mutational status of a prognostic driver mutation NRAS
Q61K variant observed in both patients for diagnosis and relapse samples, the variant allele is
shown in red, the reference allele in yellow, and no call is shown as gray. (H, |I) Heatmap
projections showing the proportion of mitochondrial variants of interest per cell. The heatmap is
also annotated by cluster designation based on the transcriptome and surface proteome as well
as for the presence of the driver NRAS mutation in these samples.

Discussion

It is often difficult to determine the mutational profile or clonal lineage in patient-derived cells.
Here we demonstrate a method to enhance the coverage of genomic regions to aid the
identification and quantitation of these variants. Requiring minimal enrichment steps, our
protocol is able to enrich these loci in a multiplexed and efficient way. This protocol can target
mutations in arbitrary numbers of genes, as long as there is sufficient starting material for the
combined genes in the initial library, and across the entire mitochondrial genome. Our analysis
shows that this technique can be used to increase detection of mutations in primary human
samples, and is particularly well suited to longitudinal study designs as it can track clonal
evolution across time.

The strength of this approach is the use of a hybridization technique developed previously by
our group [18] and implemented in a 10X Genomics protocol to target the enrichment of genes
of interest in previously prepared libraries. We used this approach to target many genes known
to be mutated in AML patients and the full mitochondrial genome. These libraries are highly
enriched for the targets and can be sequenced at a relatively low depth and still yield high
coverage in our regions of interest. The number of genes targeted was relatively low in our case
(110 genes) but performance could be improved further with an increased number of genes.
This approach allows for a less biased interrogation of the mutational landscape in single-cell
analysis when compared to existing methods.

With the possibilities enabled by this approach, we hope to further elucidate the role that
genotype plays in cancer formation, progression, and resistance to treatment. The method
presented here is not specific to our cell type, disease, or even single-cell sequencing
technique, and can be used to help increase the knowledge gained from precious samples. For
example, we MuVEH to be particularly useful as a tool to enhance long read single-cell
sequencing protocols. As this field is evolving, we envision this approach can be utilized and
improved to study a wide variety of important biological questions.

Methods
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10X targeted custom AML mutation panel

A 10X targeted custom panel was designed using the 10X Genomics custom panel design
software. 111 human gene targets were input into the software yielding a design of 5475 baits,
which were then analyzed with 10X Targeted Depth tool for percent on target in our previously
sequenced libraries (ranging from 0.13-0.28%). A percent on target of greater than 0.1% is
needed for optimal hybridization efficiency, therefore our panel passed the criteria to proceed.
These baits were ordered from IDT as biotinylated probes in a 16-reaction Discovery Pool and
treated as per the manufacturer’s specs.

10X targeted custom Mitochondrial DNA panel

The full mitochondrial genomic DNA sequence was used to design a tiled mitochondrial 10X
Genomic custom targeting panel. This panel design yielded 137 probes that were ordered from
IDT as biotinylated probes pooled in a 16-reaction xGen Custom Hyb panel. The percent on
target of this panel was measured as described above and exceeded the 0.1% needed for
hybridization efficiency.

Standard 10X targeted libraries

Standard 10X targeted libraries were made as per the protocol from 10X Genomics using either
the AML mutation panel probeset or the mitochondrial probe set. Briefly, libraries were
measured by qubit for concentration, and libraries that had less than 300ng of material were
amplified. Eight to ten libraries with compatible indexes were pooled with 300ng of input each.
Samples were lyophilized with Cot DNA and Universal blockers. Libraries were then hybridized
with the custom panel following the fully custom panel guidelines using 2 ul of the probe pool.
Libraries were captured with Dynabeads M-270 Streptavadin (ThermoFisher cat # 65305) beads
and washed 4x with the provided wash buffer. Libraries were amplified for 13 cycles of PCR for
the AML panel and 11 cycles for the mitochondrial panel. The resulting libraries were normalized
to 4nM for sequencing.

scRNA-seq data processing

Raw sequencing data for gene expression, antibody-derived tag (ADT; surface protein), and
hashing libraries were processed using STARsolo 2.7.8a [26] with the 10X Genomics
GRCh38/GENCODE v32 genome and transcriptome reference version GRCh38_ 2020A;
https://support.10xgenomics.com/single-cell-gene-expression/software/release-notes/build#GR
Ch38 2020A or a TotalSeq barcode reference, as appropriate. Hashed samples were
demultiplexed using GMM-Demux [27]. Next, cell-containing droplets were identified using
dropkick 1.2.6 [28] using manual thresholds when automatic thresholding failed, ambient RNA
was removed using DecontX 1.12 [29] and cells estimated to contain >50% ambient RNA were
removed, and doublets were identified using DoubletFinder 2.0.3 [30] and removed. The
remaining cells were then filtered to retain only those with > 200 genes, 500-80,000 UMls, <
10-20% of UMIs from genes encoded by the mitochondrial genome (sample dependent based
on UMI distributions), < 5% of UMIs derived from HBB, < 20,000 UMIs from antibody-derived
tags (ADTs), and >100-2,750 UMIs from antibody derived tags (sample dependent based on
UMI distribution). Filtered cells were modeled in latent space using TotalVI 0.18.0 [31] to create
a joint embedding derived from both RNA and ADT expression data, corrected for batch effects,
mitochondrial proportion, and cell cycle. Scanpy 1.8.2 [32] was used to cluster the data in latent
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space using the Leiden algorithm [33], and marker genes were identified in latent space using
TotalVI. Clusters were annotated using clustifyr 1.9.1 [34] and the leukemic/normal bone marrow
reference dataset presented in [35]. Scanpy and Seurat 4.1.1 [36] were then used to generate
UMAP projections from the TotalVl embeddings and perform exploratory analysis, data
visualization, etc.

Variant calling on AML panel pulldowns

Single-cell alignments from Star-solo as well as valid barcodes were input into cellsnp-lite [20] in
bulk calling mode to generate a starting list of variants. Variants were filtered on 1 of 2 criteria:
A) if the variant was in a gene not in the pulldown list we selected variants that met 3 criteria; 1)
an alternate allele depth of 50 2) a reference allele depth of 50 3) an alternate allele ratio of less
than 80%, B) if the variant was in the pulldown list required both an alternate depth of 10 and an
alternate allele ratio of less than 90%. This filtered variant list was then utilized to call variants
on single cells with Cellsnp-lite in single-cell calling mode. The resulting variant matrices were
used as input into Seurat to visualize mutational profiles across cells.

Variant calling on mitochondrial panel pulldowns

Mitochondrial variants were called using Cellsnp-lite [20]. The resulting matrices were then
filtered with MQUAD [19] to identify informative variants for clonal lineage reconstruction. These
filtered variants were then used to assign clones with vireoSNP[24] as described in [19] and
visualized with Seurat.
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