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The need for a clinically accessible method with the ability to match protein activity within heterogeneous
tissues is currently unmet by existing technologies. Our proteomics sample preparation platform, named
microPOTS (Microdroplet Processing in One pot for Trace Samples), can be used to measure relative protein
abundance in micron-scale samples alongside the spatial location of each measurement, thereby tying
biologically interesting proteins and pathways to distinct regions. However, given the smaller sample number
and amount of tissue measu red, standard mass spectrometric analysis pipelines have proven inadequate.
Here we describe how existing computational approaches can be adapted to focus on the specific biological
questions asked in spatial proteomics experiments. We apply this approach to present an unbiased
characterization of the human islet microenvironment comprising the entire complex array of tissues involved
while maintaining spatial information and the degree of the islet’s sphere of influence. We identify specific
functional activity unique to the pancreatic islet cells and demonstrate how far their signature can be measured.
Our results show that we can distinguish pancreatic islet cells from the neighboring exocrine tissue
environment, recapitulate known biological functions of islet cells, and identify a spatial gradient in the

expression of RNA processing proteins within the islet microenvironment.

Introduction

The islets of Langerhans are endocrine micro-organs em-
bedded within a mostly exocrine pancreas, comprising
roughly two percent of the pancreas by mass. Islets have
been studied for decades primarily because of their involve-
ment in diseases such as diabetes and obesity. Until re-
cently, in-depth protein profiling of pure islets has been
very difficult, partly due to their diminutive size and limited
compositional make up. Recent cutting-edge technologies
have greatly enhanced our understanding of the islet prote-
ome by isolating islets from their surrounding tissues allow-
ing them to be studied down to near single-cell resolution?-
3. In-depth proteomic studies of acinar cell tissues from the
exocrine pancreas have also been demonstrated in the
past*5. However, despite their encapsulated nature, islets
do not act entirely independently and rely on the surround-
ing exocrine microenvironment for feedback signaling and
crosstalk®?. A characterized islet-acinar portal system di-
rectly facilitates islet hormone dispersion in nearby acinar
cells. For example, acinar cells are known to contain islet-
hormone-specific receptors that regulate acinar function
and under the right conditions saturate with locally high
concentrations of insulin and somatostatin8. In addition to
insulin and somatostatin, other humoral factors including
pancreastatin and ghrelin, and several neurotransmitters
(nitric oxide, peptide YY, substance P, and galanin) have
been shown to be involved in this islet-acinar connection;
regulating the functions of each tissue type®. Through
causes we do not yet understand, people with type 1 diabe-
tes and their first-degree relatives have also been shown to
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have overall reduced pancreatic volume compared to
matched controls and some evidence supports exocrine
pancreas atrophy and exocrine insufficiency in people with
long term T1D0-12, The more we learn about this endo-
crine-exocrine/islet-acinar connection the greater its im-
portance appears to be in understanding diseases involving
the pancreas. However, until now no unbiased spatially re-
solved method has been available for deep proteomic inves-
tigations of the islet microenvironment encompassing all
the cell/tissue types involved this complex system.

Large bulk samples of pancreatic tissues quickly di-
lute and drown out the contribution of the islet signature.
To gain deeper understanding of the biological signaling
and interactions that underlies this endocrine-exocrine
connection, it is critical to study the tissues with their origi-
nal spatial context intact (i.e., in vivo)1314, Currently, few
technologies are available to study the heterogeneity of bi-
ological signaling across a tissue sample. Although there are
several powerful techniques for measuring transcripts with
high depth and spatial resolution, transcripts often don't
correlate well with protein expression?s. Existing technolo-
gies for spatially resolved protein measurements mainly
rely on the use of tagged antibodies, such as Immunohisto-
chemistry?6, CyTOF17 and CODEX!819, While these technolo-
gies are highly effective and can provide single-cell level or
better spatial resolution, protein coverage is limited by the
availability of reliable antibodies and the multiplexing limit
of the labels. Imaging mass spectrometry (MALDI, Laser Ab-
lation) is also a powerful tool for protein mapping that does
not depend on antibody recognition; but due to the direct
coupling to the mass spectrometer, these techniques are
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limited in their dynamic range and accuracy of quantita-
tion20-24,

Over the last decade, improvements in sensitivity
and sample handling for LC-MS proteomics have enabled
spatially resolved measurements25-31 and have extended to
more difficult to analyze samples such as formalin fixed par-
affin embedded (FFPE) tissue263233, These approaches are
particularly attractive as they offer a comprehensive, quan-
titative protein profile without a priori knowledge of the
proteins of interest. In our lab, we have successfully com-
bined laser capture microdissection and the nanoPOTS ap-
proach3435, to enable in-depth proteome imaging. This ini-
tial effort resulted in a platform capable of quantifying
>2000 proteins at 100 um spatial resolution without the use
of antibodies or labels36. To further improve the depth of
protein coverage, we next incorporated tandem mass tags
(TMT) and nanoflow fractionation and concatenation
(nanoFAC37) to our proteome imaging workflow. To collect
and process enough protein material to facilitate robust
fractionation, we scaled up the platform to the microliter
scale3839, and incorporated a TMT carrier channel4%41 into
the image plexes. These changes increased protein coverage
to >5000 proteins while maintaining high-quality quantita-
tive information, thus enabling spatially resolved, unbiased
interrogation of biological signaling.

Robust computational analysis tools for the analy-
sis of data from these evolving technologies are less estab-
lished. Technologies such as CyTOF and CODEX have pro-
prietary software packages that are sold with their technol-
ogy!?, though there are many open source tools that lever-
age these data for the purposes of characterizing cells by
their protein expression via flow cytometry42-44, There are
also computational packages designed for spatially resolved
transcriptomics data that can be leveraged for proteomic
analysis, including those that enable mapping and analysis
of imaging data*54¢ as well as those that link the two data
modalities to improve protein identification and cluster-
ing#’. Existing tools, however, are limited to the study of
pre-formatted image data based on the established plat-
form (e.g. Visium*8) and therefore are not easily applied to
microPOTS data.

In this work, we demonstrate that the potential
utility for microPOTS spatial proteomics to be employed in
a clinical setting through the study of multiple pancreas re-
gions within a single patient. We enhance existing computa-
tional tools to show how these measurements can be used
to robustly measure activity across disparate regions within
a single pancreas, and to make biologically functional hy-
potheses from these data. In addition to showing the in-
creased insulin signaling activity we know to be present
within the islet cells, we also identify specific immune re-
lated processes and RNA processing activities that could not
be captured at the transcriptomic level and can be studied
further in disease settings such as pancreatic cancer or dia-
betes.

Experimental Procedures

Experimental Design

Our overall analysis pipeline is depicted in Figure 1 and de-
scribed below. Seven proteome images were created from
seven different regions of a pancreas tissue section taken
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Figure 1. Overview of our experimental procedures. Top: tissue collec-
tion and coupling to chip requires laser capture microdissection of flash
frozen pancreatic samples enables dissection of each ‘voxel’ into each
microwell for sample preparation. Middle: each well is individually pre-
pared for TMT labeling and MS/MS. To measure relative protein abun-
dance for each voxel. Bottom: individual voxels are annotated to carry
out pathway enrichment and network analysis.

from a healthy human donor. Images consist of 9 tissue
“voxels” created by dissecting a 3 x 3 grid from the tissue
collected directly into corresponding wells in a microPOTS
chip (Supplemental Figure 1). Imaging areas were created
from regions containing a singular group of islet cells to in-
terrogate the islets and their unique microenvironment.
Grids were sized to capture the islet within a single voxel
consisting almost entirely of islet cells. Below we describe
how we captured the data to identify islet-specific signaling
activity.

Tissue collection and coupling to chip

Tissue collection. Samples were washed with the gradient
of ethanol solutions (70%, 96%, and 100% ethanol, respec-
tively) to dehydrate the tissue sections and to remove em-
bedding material. Human pancreas tissue for microPOTS
imaging was obtained from a 17-year-old male donor. The
donor was selected based on our eligibility criteria estab-
lished by the HUBMAP consortium#°. Organ recovery and
tissue processing were performed at University of Florida
per standard protocols?. Briefly, pancreas was sliced into
0.5 cm-thick tissue segments, subdivided, and immediately
frozen in Carboxymethylcellulose (CMC, prepared in Cry-
otray molds that were prechilled on dry ice/isopentane
slurry5l. Frozen CMC tissue blocks were stored at -80°C un-
til sectioning. CMC embedded human pancreas tissue was
cut to 10-um-thick slices using a cryostat and collected on
PEN membrane slides. Serial sections were shipped on dry
ice to PNNL for further microPOTS imaging.

Laser capture microdissection (LCM). Sample dissection
and “voxel” collection were completed using a PALM Mi-
crobeam system (Carl Zeiss Microlmaging, Munich, Ger-
many) which contains a RoboStage for high-precision laser
micromanipulation in micrometer range and a PALM Ro-
boMover that collects voxel samples directly into the wells
of the microPOTS chip. Microwells were preloaded with 3 pl
of dimethyl sulfoxide (DMSO) that served as a capturing me-
dium for excised voxels.
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For proteomics imaging experiments, we first stained a 10
um thick adjacent human pancreas section using Periodic
Acid-Schiff (PAS) staining kit following the manufacturer’s
protocol. The staining for the confident determination of is-
let and acinar tissue regions when observed using bright-
field microscopy. Informed by the islet localization from the
serial PAS-stained section, a 3x3 grid was created over an
islet and the surrounding acinar tissue. The grid was ar-
ranged to capture the whole islet in a single pixel of approx-
imately 200 um x 300 um dimensions while the surround-
ing 8 pixels contained exclusively acinar tissue. Voxels were
dissected using the grid mode and collected directly into
corresponding microwells of the chip. A carrier sample was
also collected that contained a similar-sized islet and sur-
rounding acinar tissue with a total area equivalent to the en-
tire grid size, which was ~500,000 pm?.

Proteomics sample processing in a microdroplet. All
sample handling steps, from extraction through to TMT la-
beling, were carried out on-chip by manual pipetting. Evap-
oration during preparation was minimized by cooling dur-
ing dispensing of reagents, using a humidified chamber for
incubation steps, and sealing the chip with a contactless
cover and wrapping in aluminum foil. Tissue voxels were
incubated at 75°C for 1 hr to remove DMSO solvent. Next, 2
ul of extraction buffer containing 0.1% DDM, 0.5xPBS, 38
mM TEAB, and 1 mM TCEP was dispensed to each well of
the chip, followed by incubation at 75°C for 1 hr. We then
added 0.5 pl of 10 mM IAA solution in 100 mM TEAB to
reach a final concentration of 2 mM IAA followed by incuba-
tion at room temperature for 30 min. Samples were subse-
quently digested by dispensing 0.5 pl of an enzyme mixture
(10 ng of Lys-C and 40 ng of trypsin in 100 mM TEAB) and
incubated at 37 °C for 10 h. TMT-11 plex reagents were re-
suspended in anhydrous acetonitrile at a concentration of
6.4 pg/uL. 1 pl of each TMT tag was used to label voxel sam-
ples. Following our experimental design, each plex/image
was created by leaving the 130N channel empty and using
the 131N channel for the carrier sample, 128N channel was
used for the islet voxel and the other 8 channels for the aci-
nar tissue voxels. The peptide-TMT mixtures were incu-
bated for 1 h at room temperature, and the labeling reaction
was quenched by adding 1ul of 5% HA in 100mM TEAB and
incubating 15 min at room temperature. All samples were
then pooled together, brought up to the final 1% FA, then
centrifuged at 10,000 rpm for 5 min at 25 °C. Finally, the
pooled sample was transferred to an autosampler vial, and
dried in a speed vac.

Reagents and Chemicals. Microwell chips with 2.2 mm
well diameter were manufactured on polypropylene sub-
strates by Protolabs (Maple Plain, MN). LC-MS grade water,
formic acid (FA), iodoacetamide (IAA), Triethylammonium
bicarbonate (TEAB), TMT-10plex and TMT11-131C rea-
gents, Anhydrous acetonitrile, Tris(2-carboxyethyl)phos-
phine hydrochloride (TCEP-HCI), and 50% Hydroxylamine
(HA) were all purchased from Thermo Fisher Scientific
(Waltham, MA). N-Dodecyl (B-d-maltose (DDM), DMSO
(HPLC grade), and Phosphate-Buffered Saline (PBS) and
PAS staining kit were purchased from Sigma-Aldrich (St.
Louis, MO). Both Lys-C and trypsin were purchased from
Promega (Madison, WI). Ethanol was purchased from De-
con Labs, Inc (King of Prussia, PA).
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Proteomic measurement and data acquisition

Nanoflow LC-fractionation. Prior to injection, samples were
resuspended in 62 pl of 0.1% formic acid. High pH fraction-
ation was performed off-line by loading 50 pl of the sample
onto a precolumn (150 pm i.d., 5 cm length) using 0.1% for-
mic acid at a flow rate of 9 uL./min for 9 min. The sample is
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Figure 2. Statistical analysis. (A) stained pancreatic region and 3x3
grid placement centered around islet cell, indicated by arrow. Scale bar
is 150 uM. (B) Principal component analysis (PCA) of uncentered
voxels shows grouping by each image compared to (C) the islet anno-
tation. (D) BayesSpace specificity (y-axis) colored by image number,
where x-axis represents number of clusters used in the algorithm. (E-
F) shows PCA of median centered images clustering by islet cell an-
notation rather than image. (G) shows BayesSpace specificity.
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then pushed onto the LC column (75 pum i.d., 60-cm length)
using the separation gradient. Precolumn and column were
packed inhouse with 5-pm and 3-um Jupiter C18 packing
material (300-A pore size) (Phenomenex, Terrence, USA),
respectively. An Ultimate 3000 RSLCnano system (Thermo
Scientific) was used to deliver gradient flow to the LC col-
umn at a nanoflow rate of 300 nl/min. 10 mM ammonium
formate (pH 9.5) was used as mobile phase A and acetoni-
trile as mobile phase B. Eluted fractions were collected us-
ing a HTX PAL collect system into autosampler vials pre-
loaded with 25 pl 0.1% formic acid and 0.01% (m/v) DDM.
The PAL autosampler allows concatenation on-the-fly by
robotically moving the dispensing capillary among 12 col-
lection vials. A total of 96 fractions were concatenated into
12 fractions. Vials were stored at —20 °C until the following
low-pH LC-MS/MS analysis.

LC-MS/MS peptide analyses. LC-MS/MS analysis was
carried out using the Ultimate 3000 RSLCnano system
(Thermo Scientific), coupled to a Q Exactive HF-X (Thermo
Scientific) mass spectrometer. Full MS1 scans were ac-
quired across scan range of 300 to 1,800 m/z at a resolution
of 60,000, combined with a maximum injection time (IT) of
20 ms and automatic gain control (AGC) target value of 3e6.
Data dependent MS2 scans were collected using a top 12
method with a resolving power of 45,000, a maximum injec-
tion time of 100 ms, and AGC target value of 1e5, with the
isolation window was set to 0.7 m/z and dynamic exclusion
time was set to 45 s to reduce repeated selection of precur-
sor ions.

Data Analysis. InstrumentRAW files were first pro-
cessed using MSConvert to correct mass errors>2. Corrected
spectra were searched with MS-
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software>>. Extracted intensities were linked to peptide-to-
spectrum matches (PSMs) passing the FDR thresholds de-
scribed above. Relative protein abundance was then calcu-
lated as the ratio of sample abundance to the median abun-
dance of the protein across all datasets, using the summed
reporter ion intensities from peptides that could be
uniquely mapped to a protein. While we typically trans-
form/zero-center the relative abundances for each gene rel-
ative to the final abundance value, we asked in the next sec-
tion if that was necessary here.

Normalization and statistical rationale

We compared the batch effects and made normalization de-
cisions via PCA and clustering. Each image was annotated
by its sample number and position in the grid - each ele-
ment of the grid was labeled as ‘islet’ if it contained islet
cells, ‘proximal’ if the voxel was adjacent to the islet, and
‘distal’ otherwise. The first two principal components were
used to assess batch effects in Figures 2B-C and 2E-F.

The BayesSpace*’ clustering algorithm was used to clus-
ter the voxels into 2, 3, 4, and 5 clusters based on position
in the grid and proteomics measurements. To compare me-
dian centering of the individual voxels, we measured speci-
ficity of each clustering approach. If the islet-containing
voxel was the only one in its cluster, the specificity was 1.
Otherwise, it was lower. These results are depicted in Fig-
ures 2D and 2G.

Pathway analysis

To compute differences between the islet cell-containing
voxel and other regions, we used the limma package with
pooled images (with the annotation described as above).
This enabled each image to be its own biological replicate,
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Figure 3 Mapping protein expression to islet regions. (A) Expression of Insulin protein across all 7
images, with islet highlighted by black box. (B) Expression of Glucagon across all 7 images, with islet
region highlighted in black. (C) Gene set enrichment of biological pathways of proteins ranked by var-
iance across all 63 voxels.
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particularly of the islet cells, which were only measured in
one voxel per image. We then compared analysis of regions
using the upsetR>¢ tool to compare expression differences
across annotated regions, then employed leapR57 pathway
enrichment tool to identify specific pathways that were up
regulated in islets across all 7 images using the enrich-
ment_in_sets parameter with the KEGG, Reactome, and GO
Biological Process pathways. We used the same pathways
to do the enrichment_in_order analysis in our variance-
based and distance-based analysis. The network analysis
leveraged the PCSF R tool58 based on the approach de-
scribed previously>°.

Results

Here we describe the analysis pipeline by which we in-
vestigate the proteomics imaging of the microPOTS frame-
work to enable interpretation in biological use cases.

Spatial proteomics across multiple images enables quanti-
tation of proteins at high resolution
We collected seven distinct samples from a single human
pancreas and disected each sample into a 3x3 grid for 9
“voxels” for each image (Supplemental Figure 1). Images
were stained with Periodic Acid-Schiff (PAS) to identify the
islet (Figure 2A) and an adjacent sample was captured for
proteomics. After running each of the 9 samples for the 7
images through our mass spectrometry pipeline (see
Methods), we captured ~6000 distinct proteins
(Supplemental Table 1).

We compared the clustering
of the individual voxels as described A
above and determined that, despite
the batch effect observed between
images, we could still robustly
identify the islet containing voxels
(Figure 2). In fact, using the
BayesSpace clustering algorithm, we
were able to identify islets with more
specificity without normalization
(Figure 2C and 2E). As such, we

Lastly we assess the variance of each protein across all
samples to determine if proteins in some pathways are
changing more than others. We then used ranked gene set
enrichment (see Experimental Procedures) to identify if the
variance of proteins corresponded to some pathways. The
results, depicted in Figure 3C show that most of the
pathways that are highly variable - depicted in red - are
related to insulin or beta cells, suggesting that the primary
differences in protein expression are between the beta cells
and acinar tissue.

Imaging pooling enables capture of islet-specific enrich-
ment patterns

The protein expression signature of islets is substantially
different than the neighboring acinar tissue. We determined
the most significant pathways that differed, either in-
creased or decreased expression in islets compared to the
neighboring microenvironment. The voxel grids were posi-
tioned so that the majority of one of the central edge voxels
encapsulated a complete islet. The remaining voxels were
annotated based on their spatial distance from the islet
voxel. For each image we annotated the five voxels immedi-
ately surrounding the islet as ‘proximal’ and the remaining
three voxels as ‘distal’ (Figure 2A). We then grouped the
expression of all voxels by these three annotations. We ex-
amined differences in the non-islet regions, as shown in the
upset plot in Figure 4A. As expected, we found the majority
of differentially expressed proteins between the islet and
other cells were also differentially expressed between the
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Figure 5. Network analysis. (A) Protein interaction network of 216 nodes uniquely active
islet cells across images. Red indicates degree of up-regulation in islets, blue indicates
down-regulation. Triangles indicate protein is differentially expressed, while circles mean
the protein is inferred to be active. (B) Protein interaction network of 179 proteins that are
down-regulated in islets. Colors and shapes as in (A). (C) Subnetwork of (A) highlighting the
role of insulin (INS) and glucagon (GCG). (D) subnetwork of (B) highlighting the insulin re-

network as an interactor of many highly ex-
pressed proteins including Insulin, Gluca-
gon, and Islet amyloid peptide. Despite be-
ing a clear regulator of these proteins®? In-
sulin-degrading enzyme, while somewhat
downregulated (but not statistically so) in
the islets, is essential for the regulation of
these proteins and therefore belongs in the
signaling network. Similarly, we found key
proteins that interact with the insulin re-
ceptor, which is up-regulated in the acinar
tissue (Figure 5D). Here we found this pro-
tein to be centrally interacting with PTPN1,
VAV1, and RASA1, all proteins whose
change in expression was not statistically
significant, and without VAV1 even being
detected despite it being shown to support
Beta cell maturation®s.

Distance based metric reveals distinct RNA

processing changes as distance from islet
increases

To further exploit the spatial relationship
between voxels, we searched for signals
that permeated through the tissue from the
voxel. To do this, measured the spearman
rank correlation of the expression of each

ceptor (INSR).
islets and the proximal/distal regions when compared inde-
pendently.

We then evaluated the pathways that were up-reg-
ulated in islet cells compared to the non-islet cells. The re-
sults, shown for Reactome pathways in Figure 4B depict
the most statistically significant terms that were up-regu-
lated in the islets (red) and down-regulated (blue). Confirm-
ing the role of the islet cell in insulin signaling®?, we see reg-
ulation of insulin secretion as one of the most enriched
pathways in the islet cells. We also observed enrichment in
RNA splicing®1.62 and pre mRNA capping as up-regulated. In
the acinar tissue, we see up-regulation of immune signaling
and the complement cascade, suggesting a role in immune
machinery in the pancreas.

Network analysis implicates related proteins in key islet
pathways

Given the number of proteins derived from the microPOTs
measurements (~6000 proteins per voxel) we explored
network inference tools to determine if we could infer bio-
logical signaling pathways based on the protein expression
alone. Specifically, we used the Prize-collecting Steiner tree
algorithm (see Experimental Procedures) to identify the
network implicated by proteins up-regulated in islets (red,
Figure 5A) and down-regulated in islets (blue, Figure 4B).
As input to the algorithm, we had 261 up-regulated proteins
and 184 down-regulated proteins. The resulting networks
were 216 and 179 nodes, respectively, as the algorithm re-
moved proteins that were not connected to others in the in-
teractome and added proteins that maximized the connec-
tion of differentially expressed proteins in the network.
This approach allows us to investigate specific nodes impli-
cated (i.e., not detected experimentally but added via the al-
gorithm) in the network (circles in Figure 5). Specifically,
in the islet network, Figure 5C, we found IDE, an Insulin-
degrading enzyme. This protein is implicated in the
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protein to the voxels distance to the islet
cell. We then searched for biological pathways using the
Gene Ontology biological processes (Figure 6A) or the
KEGG pathways (Figure 6B) that were enriched in proteins
with a high positive correlation (more active farther from
islet) or a highly negative correlation (more active closer to
islet). We computed the results for each of the seven images,
to ensure that we were getting similar results, shown in Fig-
ure 6. We found numerous pathways, such as rRNA pro-
cessing/metabolism and the ribosome, to be enriched
across all 7 images, which suggests that these proteins are
more highly expressed the farther the voxel is from the islet
cell.
When compared to the baseline functional enrichment anal-
ysis (Figure 4) the distance-based approach shows the
same up-regulation of RNA splicing but identifies specific el-
ements of the splicing activity within the ribosome. Addi-
tionally, it identifies other RNA processes such as rRNA pro-
cessing, ER protein targeting, and ncRNA processing, as be-
ing up-regulated farther from the islet cells. This clarifies
the recent findings of RNA processing regulation changes in
pancreatic beta cells®4.

Discussion

Here we introduce how the microPOTS spatial proteomics
platform can be utilized in a clinical setting to characterize
specific biological pathways that are uniquely expressed in
pancreatic islet cells. We can robustly characterize ~6000
proteins in each sample and identify, within each sample,
islet-specific biological processes. Our computational anal-
ysis enhances initial proteomic resolution through network
integration and distance analysis.

These results highlight the distinction between in-
sulin secretion, an exclusively islet cell activity, and insulin
signaling, which is clearly enriched in the neighboring aci-
nar cells. Network analysis highlights PTPN11, VAV1, and
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Figure 5. Distance-based analysis. For each image, we computed the
correlation statistic between the protein of interest and the Manhattan
distance to the islet voxel. We then ranked the proteins by correlation
and computed gene set enrichment on (A) GO biological process and

(B) the KEGG pathways. Red indicates positive correlation with dis-

tance, enriched farther from islet, while blue indicates negative correla-
tion, or enrichment closer to islet

RASA1 as key hub proteins which influence the down-
stream response to upstream stimuli®3; for example, these
hub proteins could act to funnel contrasting signals from in-
sulin and glucagon to the same set of distal cellular re-
sponses, providing a mechanism for opposing physiological
consequences of these effectors. Interestingly, the observed
increase in foundational RNA processing activities with in-
creasing distance from the islets confirms recent findings of
ribosomal changes®* and suggests that exocrine cells at a
distance from islets are predominantly engaged in normal
activities associated with cell growth and renewal, while ac-
inar cells in closer proximity to islets may be more special-
ized for signal transduction. Clearly these are hypothesis
generating observations, and substantiation of these hy-
potheses would require careful mechanistic experiments,
possibly using a spatially controlled system such as pan-
creas-on-a-chip systems. The value of this unbiased spatial
proteomic approach is that it suggests targets for genetic
manipulation in future experiments.

In summary, we believe the technology and analy-
sis procedures described herein enable a diverse set of ap-
plications of proteomics in the clinical setting. There are
many diseases, such as cancer or Type 1 diabetes, in which
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a small group of cells can cause a large amount of damage.
As such, these technologies are imperative to enable the
study of specific signaling activities that enable these cells
to affect the neighboring tissue to cause systemic disease.
Going forward we plan to collect additional tissue measure-
ments to confirm the results we found in a single pancreas
across diverse patients.
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Islet 1

Figure S1: The title of a supplementary figure. Description of pancreas sampling and 3x3 grid. (A) image and islet position of image 0. (B) image
and islet position of image 1. (C) image and islet position of image 2 (D) image and islet position of image 3. (E) image and islet position of image 4.
(F) image and islet position of image 7. (G) image and islet position of image 10.
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