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The need for a clinically accessible method with the ability to match protein activity within heterogeneous 
tissues is currently unmet by existing technologies. Our proteomics sample preparation platform, named 
microPOTS (Microdroplet Processing in One pot for Trace Samples), can be used to measure relative protein 
abundance in micron-scale samples alongside the spatial location of each measurement, thereby tying 
biologically interesting proteins and pathways to distinct regions. However, given the smaller sample number 
and amount of tissue measu red, standard mass spectrometric analysis pipelines have proven inadequate. 
Here we describe how existing computational approaches can be adapted to focus on the specific biological 
questions asked in spatial proteomics experiments. We apply this approach to present an unbiased 
characterization of the human islet microenvironment comprising the entire complex array of tissues involved 
while maintaining spatial information and the degree of the islet’s sphere of influence. We identify specific 
functional activity unique to the pancreatic islet cells and demonstrate how far their signature can be measured. 
Our results show that we can distinguish pancreatic islet cells from the neighboring exocrine tissue 
environment, recapitulate known biological functions of islet cells, and identify a spatial gradient in the 
expression of RNA processing proteins within the islet microenvironment. 

Introduction 
 The islets of Langerhans are endocrine micro-organs em-
bedded within a mostly exocrine pancreas, comprising 
roughly two percent of the pancreas by mass. Islets have 
been studied for decades primarily because of their involve-
ment in diseases such as diabetes and obesity. Until re-
cently, in-depth protein profiling of pure islets has been 
very difficult, partly due to their diminutive size and limited 
compositional make up. Recent cutting-edge technologies 
have greatly enhanced our understanding of the islet prote-
ome by isolating islets from their surrounding tissues allow-
ing them to be studied down to near single-cell resolution1–

3. In-depth proteomic studies of acinar cell tissues from the 
exocrine pancreas have also been demonstrated in the 
past4,5. However, despite their encapsulated nature, islets 
do not act entirely independently and rely on the surround-
ing exocrine microenvironment for feedback signaling and 
crosstalk6,7. A characterized islet-acinar portal system di-
rectly facilitates islet hormone dispersion in nearby acinar 
cells. For example, acinar cells are known to contain islet-
hormone-specific receptors that regulate acinar function 
and under the right conditions saturate with locally high 
concentrations of insulin and somatostatin8. In addition to 
insulin and somatostatin, other humoral factors including 
pancreastatin and ghrelin, and several neurotransmitters 
(nitric oxide, peptide YY, substance P, and galanin) have 
been shown to be involved in this islet-acinar connection; 
regulating the functions of each tissue type9. Through 
causes we do not yet understand, people with type 1 diabe-
tes and their first-degree relatives have also been shown to 

have overall reduced pancreatic volume compared to 
matched controls and some evidence supports exocrine 
pancreas atrophy and exocrine insufficiency in people with 
long term T1D10–12. The more we learn about this endo-
crine-exocrine/islet-acinar connection the greater its im-
portance appears to be in understanding diseases involving 
the pancreas. However, until now no unbiased spatially re-
solved method has been available for deep proteomic inves-
tigations of the islet microenvironment encompassing all 
the cell/tissue types involved this complex system.  

Large bulk samples of pancreatic tissues quickly di-
lute and drown out the contribution of the islet signature. 
To gain deeper understanding of the biological signaling 
and interactions that underlies this endocrine-exocrine 
connection, it is critical to study the tissues with their origi-
nal spatial context intact (i.e., in vivo)13,14. Currently, few 
technologies are available to study the heterogeneity of bi-
ological signaling across a tissue sample. Although there are 
several powerful techniques for measuring transcripts with 
high depth and spatial resolution, transcripts often don’t 
correlate well with protein expression15. Existing technolo-
gies for spatially resolved protein measurements mainly 
rely on the use of tagged antibodies, such as Immunohisto-
chemistry16, CyTOF17 and CODEX18,19. While these technolo-
gies are highly effective and can provide single-cell level or 
better spatial resolution, protein coverage is limited by the 
availability of reliable antibodies and the multiplexing limit 
of the labels. Imaging mass spectrometry (MALDI, Laser Ab-
lation) is also a powerful tool for protein mapping that does 
not depend on antibody recognition; but due to the direct 
coupling to the mass spectrometer, these techniques are 
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limited in their dynamic range and accuracy of quantita-
tion20–24. 

Over the last decade, improvements in sensitivity 
and sample handling for LC-MS proteomics have enabled 
spatially resolved measurements25–31 and have extended to 
more difficult to analyze samples such as formalin fixed par-
affin embedded (FFPE) tissue26,32,33. These approaches are 
particularly attractive as they offer a comprehensive, quan-
titative protein profile without a priori knowledge of the 
proteins of interest. In our lab, we have successfully com-
bined laser capture microdissection and the nanoPOTS ap-
proach34,35, to enable in-depth proteome imaging. This ini-
tial effort resulted in a platform capable of quantifying 
>2000 proteins at 100 µm spatial resolution without the use 
of antibodies or labels36. To further improve the depth of 
protein coverage, we next incorporated tandem mass tags 
(TMT) and nanoflow fractionation and concatenation 
(nanoFAC37) to our proteome imaging workflow. To collect 
and process enough protein material to facilitate robust 
fractionation, we scaled up the platform to the microliter 
scale38,39, and incorporated a TMT carrier channel40,41 into 
the image plexes. These changes increased protein coverage 
to >5000 proteins while maintaining high-quality quantita-
tive information, thus enabling spatially resolved, unbiased 
interrogation of biological signaling. 

Robust computational analysis tools for the analy-
sis of data from these evolving technologies are less estab-
lished. Technologies such as CyTOF and CODEX have pro-
prietary software packages that are sold with their technol-
ogy19, though there are many open source tools that lever-
age these data for the purposes of characterizing cells by 
their protein expression via flow cytometry42–44.  There are 
also computational packages designed for spatially resolved 
transcriptomics data that can be leveraged for proteomic 
analysis, including those that enable mapping and analysis 
of imaging data45,46 as well as those that link the two data 
modalities to improve protein identification and cluster-
ing47. Existing tools, however, are limited to the study of 
pre-formatted image data based on the established plat-
form (e.g. Visium48) and therefore are not easily applied to 
microPOTS data.  

In this work, we demonstrate that the potential 
utility for microPOTS spatial proteomics to be employed in 
a clinical setting through the study of multiple pancreas re-
gions within a single patient. We enhance existing computa-
tional tools to show how these measurements can be used 
to robustly measure activity across disparate regions within 
a single pancreas, and to make biologically functional hy-
potheses from these data. In addition to showing the in-
creased insulin signaling activity we know to be present 
within the islet cells, we also identify specific immune re-
lated processes and RNA processing activities that could not 
be captured at the transcriptomic level and can be studied 
further in disease settings such as pancreatic cancer or dia-
betes. 

Experimental Procedures 
Experimental Design  
Our overall analysis pipeline is depicted in Figure 1 and de-
scribed below. Seven proteome images were created from 
seven different regions of a pancreas tissue section taken 

from a healthy human donor. Images consist of 9 tissue 
“voxels” created by dissecting a 3 x 3 grid from the tissue 
collected directly into corresponding wells in a microPOTS 
chip (Supplemental Figure 1). Imaging areas were created 
from regions containing a singular group of islet cells to in-
terrogate the islets and their unique microenvironment. 
Grids were sized to capture the islet within a single voxel 
consisting almost entirely of islet cells.  Below we describe 
how we captured the data to identify islet-specific signaling 
activity.  
Tissue collection and coupling to chip 

Tissue collection. Samples were washed with the gradient 
of ethanol solutions (70%, 96%, and 100% ethanol, respec-
tively) to dehydrate the tissue sections and to remove em-
bedding material. Human pancreas tissue for microPOTS 
imaging was obtained from a 17-year-old male donor.  The 
donor was selected based on our eligibility criteria estab-
lished by the HuBMAP consortium49. Organ recovery and 
tissue processing were performed at University of Florida 
per standard protocol50. Briefly, pancreas was sliced into 
0.5 cm-thick tissue segments, subdivided, and immediately 
frozen in Carboxymethylcellulose (CMC, prepared in Cry-
otray molds that were prechilled on dry ice/isopentane 
slurry51.  Frozen CMC tissue blocks were stored at -80°C un-
til sectioning. CMC embedded human pancreas tissue was 
cut to 10-µm-thick slices using a cryostat and collected on 
PEN membrane slides. Serial sections were shipped on dry 
ice to PNNL for further microPOTS imaging. 
Laser capture microdissection (LCM). Sample dissection 
and “voxel” collection were completed using a PALM Mi-
crobeam system (Carl Zeiss MicroImaging, Munich, Ger-
many) which contains a RoboStage for high-precision laser 
micromanipulation in micrometer range and a PALM Ro-
boMover that collects voxel samples directly into the wells 
of the microPOTS chip. Microwells were preloaded with 3 µl 
of dimethyl sulfoxide (DMSO) that served as a capturing me-
dium for excised voxels.  

Figure 1. Overview of our experimental procedures. Top: tissue collec-
tion and coupling to chip requires laser capture microdissection of flash 
frozen pancreatic samples enables dissection of each ‘voxel’ into each 
microwell for sample preparation. Middle: each well is individually pre-
pared for TMT labeling and MS/MS. To measure relative protein abun-
dance for each voxel. Bottom: individual voxels are annotated to carry 
out pathway enrichment and network analysis. 
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For proteomics imaging experiments, we first stained a 10 
µm thick adjacent human pancreas section using Periodic 
Acid-Schiff (PAS) staining kit following the manufacturer’s 
protocol. The staining for the confident determination of is-
let and acinar tissue regions when observed using bright-
field microscopy. Informed by the islet localization from the 
serial PAS-stained section, a 3x3 grid was created over an 
islet and the surrounding acinar tissue. The grid was ar-
ranged to capture the whole islet in a single pixel of approx-
imately 200 µm x 300 µm dimensions while the surround-
ing 8 pixels contained exclusively acinar tissue. Voxels were 
dissected using the grid mode and collected directly into 
corresponding microwells of the chip. A carrier sample was 
also collected that contained a similar-sized islet and sur-
rounding acinar tissue with a total area equivalent to the en-
tire grid size, which was ~500,000 µm2. 
Proteomics sample processing in a microdroplet.  All 
sample handling steps, from extraction through to TMT la-
beling, were carried out on-chip by manual pipetting. Evap-
oration during preparation was minimized by cooling dur-
ing dispensing of reagents, using a humidified chamber for 
incubation steps, and sealing the chip with a contactless 
cover and wrapping in aluminum foil. Tissue voxels were 
incubated at 75°C for 1 hr to remove DMSO solvent. Next, 2 
µl of extraction buffer containing 0.1% DDM, 0.5×PBS, 38 
mM TEAB, and 1 mM TCEP was dispensed to each well of 
the chip, followed by incubation at 75°C for 1 hr. We then 
added 0.5 µl of 10 mM IAA solution in 100 mM TEAB to 
reach a final concentration of 2 mM IAA followed by incuba-
tion at room temperature for 30 min. Samples were subse-
quently digested by dispensing 0.5 µl of an enzyme mixture 
(10 ng of Lys-C and 40 ng of trypsin in 100 mM TEAB) and 
incubated at 37 °C for 10 h. TMT-11 plex reagents were re-
suspended in anhydrous acetonitrile at a concentration of 
6.4 μg/μL. 1 µl of each TMT tag was used to label voxel sam-
ples.  Following our experimental design, each plex/image 
was created by leaving the 130N channel empty and using 
the 131N channel for the carrier sample, 128N channel was 
used for the islet voxel and the other 8 channels for the aci-
nar tissue voxels. The peptide–TMT mixtures were incu-
bated for 1 h at room temperature, and the labeling reaction 
was quenched by adding 1µl of 5% HA in 100mM TEAB and 
incubating 15 min at room temperature. All samples were 
then pooled together, brought up to the final 1% FA, then 
centrifuged at 10,000 rpm for 5 min at 25 °C. Finally, the 
pooled sample was transferred to an autosampler vial, and 
dried in a speed vac.  
Reagents and Chemicals. Microwell chips with 2.2 mm 
well diameter were manufactured on polypropylene sub-
strates by Protolabs (Maple Plain, MN). LC-MS grade water, 
formic acid (FA), iodoacetamide (IAA), Triethylammonium 
bicarbonate (TEAB), TMT-10plex and TMT11-131C rea-
gents, Anhydrous acetonitrile, Tris(2-carboxyethyl)phos-
phine hydrochloride (TCEP-HCl), and 50% Hydroxylamine 
(HA) were all purchased from Thermo Fisher Scientific 
(Waltham, MA). N-Dodecyl β-d-maltose (DDM), DMSO 
(HPLC grade), and Phosphate-Buffered Saline (PBS) and 
PAS staining kit were purchased from Sigma-Aldrich (St. 
Louis, MO). Both Lys-C and trypsin were purchased from 
Promega (Madison, WI). Ethanol was purchased from De-
con Labs, Inc (King of Prussia, PA). 

Proteomic measurement and data acquisition 

Nanoflow LC-fractionation. Prior to injection, samples were 
resuspended in 62 μl of 0.1% formic acid. High pH fraction-
ation was performed off-line by loading 50 μl of the sample 
onto a precolumn (150 µm i.d., 5 cm length) using 0.1% for-
mic acid at a flow rate of 9 µL/min for 9 min. The sample is 

Figure 2. Statistical analysis. (A) stained pancreatic region and 3x3 
grid placement centered around islet cell, indicated by arrow. Scale bar 
is 150 uM. (B) Principal component analysis (PCA) of uncentered 
voxels shows grouping by each image compared to (C) the islet anno-
tation. (D) BayesSpace specificity (y-axis) colored by image number, 
where x-axis represents number of clusters used in the algorithm. (E-
F) shows PCA of median centered images clustering by islet cell an-
notation rather than image. (G) shows BayesSpace specificity. 
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then pushed onto the LC column (75 µm i.d., 60-cm length) 
using the separation gradient. Precolumn and column were 
packed inhouse with 5-µm and 3-µm Jupiter C18 packing 
material (300-Å pore size) (Phenomenex, Terrence, USA), 
respectively. An Ultimate 3000 RSLCnano system (Thermo 
Scientific) was used to deliver gradient flow to the LC col-
umn at a nanoflow rate of 300 nl/min. 10 mM ammonium 
formate (pH 9.5) was used as mobile phase A and acetoni-
trile as mobile phase B.  Eluted fractions were collected us-
ing a HTX PAL collect system into autosampler vials pre-
loaded with 25 μl 0.1% formic acid and 0.01% (m/v) DDM. 
The PAL autosampler allows concatenation on-the-fly by 
robotically moving the dispensing capillary among 12 col-
lection vials. A total of 96 fractions were concatenated into 
12 fractions. Vials were stored at −20 °C until the following 
low-pH LC-MS/MS analysis. 

LC-MS/MS peptide analyses.  LC-MS/MS analysis was 
carried out using the Ultimate 3000 RSLCnano system 
(Thermo Scientific), coupled to a Q Exactive HF-X (Thermo 
Scientific) mass spectrometer. Full MS1 scans were ac-
quired across scan range of 300 to 1,800 m/z at a resolution 
of 60,000, combined with a maximum injection time (IT) of 
20 ms and automatic gain control (AGC) target value of 3e6. 
Data dependent MS2 scans were collected using a top 12 
method with a resolving power of 45,000, a maximum injec-
tion time of 100 ms, and AGC target value of 1e5, with the 
isolation window was set to 0.7 m/z and dynamic exclusion 
time was set to 45 s to reduce repeated selection of precur-
sor ions.  

Data Analysis. InstrumentRAW files were first pro-
cessed using MSConvert to correct mass errors52. Corrected 
spectra were searched with MS-
GF + v988153,54 against the Uniprot 
human database downloaded in 
March of 2021 (20,371 proteins) 
and a list of common contaminants 
(e.g., trypsin, keratin). Partially 
tryptic search setting was used and 
a ± 20 parts per million (ppm) par-
ent ion mass tolerance. A reversed 
sequence decoy database ap-
proach was used to control the 
false discovery rate. Carbami-
domethylation (+ 57.0215 Da) on 
Cys residues, and TMT modifica-
tion (+ 229.1629 Da) on N termi-
nus and Lys residues were consid-
ered as static modifications. Oxida-
tion (+ 15.9949 Da) of Met residues 
was set as a dynamic modification. 
Identifications were first filtered to 
a 1% false discovery rate (FDR) at 
the unique peptide level, and a se-
quence coverage minimum of 6 per 
1000 amino acids was used to 
maintain a 1% FDR at the protein 
level after assembly by parsimoni-
ous inference. 

TMT 11 reporter ions area un-
der the curve (AUC) intensities 
were extracted using MASIC 

software55. Extracted intensities were linked to peptide-to-
spectrum matches (PSMs) passing the FDR thresholds de-
scribed above. Relative protein abundance was then calcu-
lated as the ratio of sample abundance to the median abun-
dance of the protein across all datasets, using the summed 
reporter ion intensities from peptides that could be 
uniquely mapped to a protein. While we typically trans-
form/zero-center the relative abundances for each gene rel-
ative to the final abundance value, we asked in the next sec-
tion if that was necessary here.  
Normalization and statistical rationale 

We compared the batch effects and made normalization de-
cisions via PCA and clustering. Each image was annotated 
by its sample number and position in the grid – each ele-
ment of the grid was labeled as ‘islet’ if it contained islet 
cells, ‘proximal’ if the voxel was adjacent to the islet, and 
‘distal’ otherwise. The first two principal components were 
used to assess batch effects in Figures 2B-C and 2E-F.  

The BayesSpace47 clustering algorithm was used to clus-
ter the voxels into 2, 3, 4, and 5 clusters based on position 
in the grid and proteomics measurements. To compare me-
dian centering of the individual voxels, we measured speci-
ficity of each clustering approach. If the islet-containing 
voxel was the only one in its cluster, the specificity was 1. 
Otherwise, it was lower. These results are depicted in Fig-
ures 2D and 2G.  
Pathway analysis  

To compute differences between the islet cell-containing 
voxel and other regions, we used the limma package with 
pooled images (with the annotation described as above). 
This enabled each image to be its own biological replicate, 

 
Figure 3 Mapping protein expression to islet regions. (A) Expression of Insulin protein across all 7 
images, with islet highlighted by black box. (B) Expression of Glucagon across all 7 images, with islet 
region highlighted in black. (C) Gene set enrichment of biological pathways of proteins ranked by var-
iance across all 63 voxels. 
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particularly of the islet cells, which were only measured in 
one voxel per image. We then compared analysis of regions 
using the upsetR56 tool to compare expression differences 
across annotated regions, then employed leapR57 pathway 
enrichment tool to identify specific pathways that were up 
regulated in islets across all 7 images using the enrich-
ment_in_sets parameter with the KEGG, Reactome, and GO 
Biological Process pathways. We used the same pathways 
to do the enrichment_in_order analysis in our variance-
based and distance-based analysis. The network analysis 
leveraged the PCSF R tool58 based on the approach de-
scribed previously59.  

Results 
Here we describe the analysis pipeline by which we in-

vestigate the proteomics imaging of the microPOTS frame-
work to enable interpretation in biological use cases.  
 
Spatial proteomics across multiple images enables quanti-
tation of proteins at high resolution 

We collected seven distinct samples from a single human 
pancreas and disected each sample into a 3x3 grid for 9 
‘’voxels” for each image (Supplemental Figure 1). Images 
were stained with  Periodic Acid-Schiff (PAS) to identify the 
islet (Figure 2A) and an adjacent sample was captured for 
proteomics. After running each of the 9 samples for the 7 
images through our mass spectrometry pipeline (see 
Methods), we captured ~6000 distinct proteins 
(Supplemental Table 1).  

We compared the clustering 
of the individual voxels as described 
above and determined that, despite 
the batch effect observed between 
images, we could still robustly 
identify the islet containing voxels 
(Figure 2). In fact, using the 
BayesSpace clustering algorithm, we 
were able to identify islets with more 
specificity without normalization 
(Figure 2C and 2E). As such, we 
decided to keep the original log2 ratio 
values.  

We first sought to identify 
protein targets we knew have high 
cell-type specificity. Figure 3A shows 
the uncentered log2 fold change 
values of Insulin, a hormone released 
in islet cells across each of the 7 
images, while Figure 3B shows the 
expression of glucagon. Each islet cell 
is annotated with a solid box as 
derived from the imaging data. As 
expected, both insulin and glucagon 
are highest in the islet cells across of 
the 7 images. Note that we were 
unable to resolve beta cells (insulin) 
from alpha cells (glucagon) at this 
level of spatial resolution, and that 
insulin is also highly expressed in a 
non-islet-containing voxel in image 3, 
likely due to an islet in another region 
that was not measured. 

Lastly we assess the variance of each protein across all 
samples to determine if proteins in some pathways are 
changing more than others. We then used ranked gene set 
enrichment (see Experimental Procedures) to identify if the 
variance of proteins corresponded to some pathways. The 
results, depicted in Figure 3C show that most of the 
pathways that are highly variable – depicted in red – are 
related to insulin or beta cells, suggesting that the primary 
differences in protein expression are between the beta cells 
and acinar tissue. 
Imaging pooling enables capture of islet-specific enrich-
ment patterns 

The protein expression signature of islets is substantially 
different than the neighboring acinar tissue. We determined 
the most significant pathways that differed, either in-
creased or decreased expression in islets compared to the 
neighboring microenvironment. The voxel grids were posi-
tioned so that the majority of one of the central edge voxels 
encapsulated a complete islet. The remaining voxels were 
annotated based on their spatial distance from the islet 
voxel. For each image we annotated the five voxels immedi-
ately surrounding the islet as ‘proximal’ and the remaining 
three voxels as ‘distal’ (Figure 2A).  We then grouped the 
expression of all voxels by these three annotations. We ex-
amined differences in the non-islet regions, as shown in the 
upset plot in Figure 4A. As expected, we found the majority 
of differentially expressed proteins between the islet and 
other cells were also differentially expressed between the 

  
Figure 4. Image-pooling differential expression analysis. (A) shows pairwise differential expres-
sion between each region. (B) Pathways enriched in the islet cells compared to the union of 
distal and proximal regions. 
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islets and the proximal/distal regions when compared inde-
pendently.  

We then evaluated the pathways that were up-reg-
ulated in islet cells compared to the non-islet cells. The re-
sults, shown for Reactome pathways in Figure 4B depict 
the most statistically significant terms that were up-regu-
lated in the islets (red) and down-regulated (blue). Confirm-
ing the role of the islet cell in insulin signaling60, we see reg-
ulation of insulin secretion as one of the most enriched 
pathways in the islet cells. We also observed enrichment in 
RNA splicing61,62 and pre mRNA capping as up-regulated. In 
the acinar tissue, we see up-regulation of immune signaling 
and the complement cascade, suggesting a role in immune 
machinery in the pancreas.  
Network analysis implicates related proteins in key islet 
pathways 

Given the number of proteins derived from the microPOTs 
measurements (~6000 proteins per voxel) we explored 
network inference tools to determine if we could infer bio-
logical signaling pathways based on the protein expression 
alone. Specifically, we used the Prize-collecting Steiner tree 
algorithm (see Experimental Procedures) to identify the 
network implicated by proteins up-regulated in islets (red, 
Figure 5A) and down-regulated in islets (blue, Figure 4B). 
As input to the algorithm, we had 261 up-regulated proteins 
and 184 down-regulated proteins. The resulting networks 
were 216 and 179 nodes, respectively, as the algorithm re-
moved proteins that were not connected to others in the in-
teractome and added proteins that maximized the connec-
tion of differentially expressed proteins in the network.  
This approach allows us to investigate specific nodes impli-
cated (i.e., not detected experimentally but added via the al-
gorithm) in the network (circles in Figure 5). Specifically, 
in the islet network, Figure 5C, we found IDE, an Insulin-
degrading enzyme. This protein is implicated in the 

network as an interactor of many highly ex-
pressed proteins including Insulin, Gluca-
gon, and Islet amyloid peptide. Despite be-
ing a clear regulator of these proteins60 In-
sulin-degrading enzyme, while somewhat 
downregulated (but not statistically so) in 
the islets, is essential for the regulation of 
these proteins and therefore belongs in the 
signaling network. Similarly, we found key 
proteins that interact with the insulin re-
ceptor, which is up-regulated in the acinar 
tissue (Figure 5D). Here we found this pro-
tein to be centrally interacting with PTPN1, 
VAV1, and RASA1, all proteins whose 
change in expression was not statistically 
significant, and without VAV1 even being 
detected despite it being shown to support 
Beta cell maturation63.  
Distance based metric reveals distinct RNA 
processing changes as distance from islet 
increases 

To further exploit the spatial relationship 
between voxels, we searched for signals 
that permeated through the tissue from the 
voxel. To do this, measured the spearman 
rank correlation of the expression of each 
protein to the voxels distance to the islet 

cell. We then searched for biological pathways using the 
Gene Ontology biological processes (Figure 6A) or the 
KEGG pathways (Figure 6B) that were enriched in proteins 
with a high positive correlation (more active farther from 
islet) or a highly negative correlation (more active closer to 
islet). We computed the results for each of the seven images, 
to ensure that we were getting similar results, shown in Fig-
ure 6. We found numerous pathways, such as rRNA pro-
cessing/metabolism and the ribosome, to be enriched 
across all 7 images, which suggests that these proteins are 
more highly expressed the farther the voxel is from the islet 
cell.  
When compared to the baseline functional enrichment anal-
ysis (Figure 4) the distance-based approach shows the 
same up-regulation of RNA splicing but identifies specific el-
ements of the splicing activity within the ribosome. Addi-
tionally, it identifies other RNA processes such as rRNA pro-
cessing, ER protein targeting, and ncRNA processing, as be-
ing up-regulated farther from the islet cells. This clarifies 
the recent findings of RNA processing regulation changes in 
pancreatic beta cells64. 

Discussion 
Here we introduce how the microPOTS spatial proteomics 
platform can be utilized in a clinical setting to characterize 
specific biological pathways that are uniquely expressed in 
pancreatic islet cells. We can robustly characterize ~6000 
proteins in each sample and identify, within each sample, 
islet-specific biological processes. Our computational anal-
ysis enhances initial proteomic resolution through network 
integration and distance analysis.  

These results highlight the distinction between in-
sulin secretion, an exclusively islet cell activity, and insulin 
signaling, which is clearly enriched in the neighboring aci-
nar cells. Network analysis highlights PTPN11, VAV1, and 

Figure 5. Network analysis. (A) Protein interaction network of 216 nodes uniquely active 
islet cells across images. Red indicates degree of up-regulation in islets, blue indicates 
down-regulation. Triangles indicate protein is differentially expressed, while circles mean 
the protein is inferred to be active. (B) Protein interaction network of 179 proteins that are 
down-regulated in islets. Colors and shapes as in (A). (C) Subnetwork of (A) highlighting the 
role of insulin (INS) and glucagon (GCG). (D) subnetwork of (B) highlighting the insulin re-
ceptor (INSR). 
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RASA1 as key hub proteins which influence the down-
stream response to upstream stimuli63; for example, these 
hub proteins could act to funnel contrasting signals from in-
sulin and glucagon to the same set of distal cellular re-
sponses, providing a mechanism for opposing physiological 
consequences of these effectors. Interestingly, the observed 
increase in foundational RNA processing activities with in-
creasing distance from the islets confirms recent findings of 
ribosomal changes64 and suggests that exocrine cells at a 
distance from islets are predominantly engaged in normal 
activities associated with cell growth and renewal, while ac-
inar cells in closer proximity to islets may be more special-
ized for signal transduction. Clearly these are hypothesis 
generating observations, and substantiation of these hy-
potheses would require careful mechanistic experiments, 
possibly using a spatially controlled system such as pan-
creas-on-a-chip systems. The value of this unbiased spatial 
proteomic approach is that it suggests targets for genetic 
manipulation in future experiments.  

In summary, we believe the technology and analy-
sis procedures described herein enable a diverse set of ap-
plications of proteomics in the clinical setting. There are 
many diseases, such as cancer or Type 1 diabetes, in which 

a small group of cells can cause a large amount of damage. 
As such, these technologies are imperative to enable the 
study of specific signaling activities that enable these cells 
to affect the neighboring tissue to cause systemic disease. 
Going forward we plan to collect additional tissue measure-
ments to confirm the results we found in a single pancreas 
across diverse patients.  
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Figure S1: The title of a supplementary figure. Description of pancreas sampling and 3x3 grid. (A) image and islet position of image 0. (B) image 
and islet position of image 1. (C) image and islet position of image 2 (D) image and islet position of image 3. (E) image and islet position of image 4. 
(F) image and islet position of image 7. (G) image and islet position of image 10. 
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