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32 Abstract

33 Tools available for reproducible, quantitative assessment of brain correspondence
34  have been limited. We previously validated the anatomical fiducial (AFID) placement
35 protocol for point-based assessment of image registration with millimetric (mm)
36  accuracy. In this data descriptor, we release curated AFID placements for some of the
37  most commonly used structural magnetic resonance imaging templates and datasets.
38 The release of our accurate placements allows for rapid quality control of image
39 registration, teaching neuroanatomy, and clinical applications such as disease
40  diagnosis and surgical targeting. We release placements on individual subjects from
41  four datasets (n = 132 subjects for a total of 15,232 fiducials) and more than 10 brain
42  templates (4,288 fiducials), compiling over 300 human rater hours of annotation. We
43  also validate human rater accuracy of released placements to be within 1-2 mm (using
44  a total of 50,336 Euclidean distances), consistent with prior studies. Our data is
45  compliant with the Brain Imaging Data Structure (BIDS) allowing for facile incorporation
46 into modern neuroimaging analysis pipelines. Data is accessible on GitHub
47  (https://github.com/afids/afids-data).
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ss Background & Summary
56 Open resources available for reproducible, quantitative assessment of brain
57 correspondence have been limited'. The most common metrics employed for the
58 purpose of examining the quality of image registration, including the Jaccard similarity
59 and Dice kappa coefficients, compute the voxel overlap between regions of interest
60 (ROIs), which have been shown to be insufficiently sensitive when used in isolation or
61 in combination for validating image registration strategies'. The ROIs used in voxel
62  overlap are often larger subcortical structures that are readily visible on MRl scans (i.e.,
63  the thalamus, globus pallidus, and striatum), and thus lack the ability to detect subtle
64  misregistration between images which may be crucial to detecting erroneous significant
65 differences and variability'°.
66
67 Inspired by classic stereotactic methods, our group created, curated, and validated a
68  protocol for the placement of anatomical fiducials (AFIDs) on T1 weighted (T1w)
69  structural magnetic resonance imaging (MRI) scans of the human brain?. The protocol
70 involves the placement of 32 AFIDs found to have salient features that allow for
71  accurate localization. The AFIDs are described using three-dimensional (x, y, and z)
72  Cartesian coordinates and thus correspondence between points can be computed
73 using Euclidean distances across a variety of applications. After a brief tutorial, AFIDs
74  have been shown to have high reproducibility even when performed by individuals with
75  no prior knowledge of medical images, neuroanatomy, or neuroimaging software. This
76  was shown in separate studies where placements were performed on publicly available
77  templates and datasets?and a clinical neuroimaging dataset®.
78
79  The AFIDs protocol provides a metric that is independent of the registration itself while
80  offering sensitivity to registration errors at the scale of millimeters (mm). This margin is
81 crucial in neuroimaging applications (including morphometric analysis and surgical
82  neuromodulation), where a few millimetres may represent the difference between
83  optimal and suboptimal therapy.
84
85 The aim of this data descriptor is to provide the community with curated AFID
86  placements and their associated MRI images. We release annotations on four datasets
87 (n = 132; 15,152 fiducials) including healthy subjects and patients with neurological
88 disorders, and more than 10 commonly used magnetic resonance imaging templates
89 (4,288 fiducials), compiling more than 300 human rater hours of manual annotation of
90 neuroanatomical structures. Descriptions of datasets and templates are provided in
91 subsequent sections (see Table 1).
92
93  Current Applications:
94  Registration Assessment: We share our curated AFIDs annotations for a wide variety
95 of datasets and templates of varying field strengths. This diversity of datasets will
96 facilitate the testing and validation of image registration algorithms that can be used in
97 many contexts. The user can select the datasets and templates that are in line with
98 their neuroimaging application, then use the curated annotations to assess image
99 registration quantitatively. For instance, AFIDs have been used to evaluate the process
100  of iterative deformable template creation®’, showing that error metrics generated from
101  AFIDs converged differently as a function of template iterations and registration method
102  (i.e., linear vs non-linear). Sharing the AFID placements and their associated images
103  in the Brain Imaging Data Structure (BIDS) format aids in the convenience we strive to
104  provide for the end-user and neuroimaging application developer®*®”.
105
106  Education: New raters can compare their AFID placements to the curated normative
107  distribution placements we release here. Our placements have been compiled over the
108 years and can help raters assess accuracy for specific fiducials and subject/template
109 data. To improve user accessibility and navigation of our released AFIDs annotations
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110 and framework, we also release the AFIDs validator (https://validator.afids.io). This tool
111  provides: 1) detailed documentation of the AFIDs placement protocol, 2) an interactive
112 way for users to upload placements to a regulated database, and 3) interactive ways
113  to view uploaded placements relative to curated placements, which helps guide user to
114  improve neuroanatomical understanding and placement accuracy?®>.

115

116  Brain structure and volumetric analyses: The 32 AFIDs (and associated images) in our
117  pathologic dataset relative to the control can allow for insight on brain morphology and
118  putative biomarkers of neurodegenerative diseases®.

119

120 Prospective Applications:

121 Registration optimization and quality control: The released imaging and AFID
122 placement data may be useful in a few ways for improving neuroimaging pipelines: 1)
123 providing centralized and quality controlled neuroimaging data (from more than 5
124  international neuroimaging datasets) allowing for a more accurate and generalizable
125 head-to-head comparison amongst existing software for image registration, and 2)
126  establishing a new registration metric which can be incorporated into neuroimaging
127  software development workflows to optimize registration algorithm performance and
128  also for quality control.

129

130 Automatic and accurate landmark placement: Our curated AFIDs can be used as
131  ground truth placements when training machine-learning algorithms to automate brain
132 landmark localization. Among the 32 AFID placements we release are the anterior and
133 posterior commissures (AC and PC, respectively). Downstream applications of
134  automatic localization include automatically computing AC-PC transforms (a common
135  process in neuroimaging studies) and aspects of neurosurgical planning which involve
136  the placement of these anatomical landmarks. The diversity of the released data (both
137  hardware and disease status) will be crucial to the generalizability of such tools.

138

139  Surgical targeting: We release ultra-high field (7-Tesla; 7-T) MRI data where small
140  structures like the subthalamic nucleus (STN)® and zona incerta within the posterior
141  subthalamic area are clearly visible’. Ground-truth locations of surgical targets (x, y,
142 and z) can be related to the AFIDs placement locations via predictive models. This
143  approach mitigates the lack of access to best case neuroimaging in clinical settings
144  due to lack of high-field MRI or motion degradation.

145

146  Brain anatomy abstraction and anonymization: AFIDs and the distances between them
147  represent an abstraction of brain anatomy in an anonymized way while still allowing for
148 accurate pooling of data. Other major anatomical landmarks (representing lesions,
149  tumors, or other structures) can be described in reference to the AFIDs “coordinate
150 system” we establish using these curated placements.

151

152 Methods

153

154  Rationale for fiducial selection and placement assessments

155  The current version of the AFIDs protocol involves the placement of 32 anatomical
156 fiducials. These AFIDs were selected to be easily identified on T1w MRI scans across
157  varying field strengths (1.5-T, 3-T, 7-T) and were validated in previous studies®*. During
158 the selection process, regions that were prone to geometric inhomogeneity and
159  distortion were avoided to enhance the accuracy of fiducial placement across
160  applications of the AFIDs protocol®. There are 10 fiducials that fall on the midline and
161 11 located laterally on both hemispheres. The AFIDs protocol includes fiducials
162  representing salient neuroanatomical features mostly located in the subcortex.
163  Additional proposed fiducials could be included in future versions of the AFIDs protocol,
164  but would require undergoing a similarly rigorous validation process?2.
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165  Fiducial localization error (FLE) is a term described by Fitzpatrick and colleagues® that
166  represents the distance between a fiducial position from its intended location. This term
167 is used when operating image-guidance systems during neurosurgical procedures. In
168 the context of the AFIDs protocol, and inspired by this extant terminology, we have
169  defined the term anatomical fiducial localization error (AFLE). This value, in millimetres,
170  can be thought of as the error arising from the placement (i.e., localization) of each of
171  the 32 fiducials. When used to communicate the accuracy of all 32 AFIDs together, we
172  termit global AFLE. There are three contexts for applying AFLEs: 1) Mean AFLE: rater
173  localization error relative to the intended location defined as the mean placement of all
174  raters for a specific fiducial (termed ground truth AFID in subsequent sections). 2) Inter-
175 Rater AFLE: rater localization error calculated as the pairwise distances between
176  different rater placements. If a single rater applied the AFIDs protocol more than once,
177 then their mean placement coordinates were used for the pairwise distances
178  calculations. 3) Intra-Rater AFLE: rater localization error evaluating the precision of
179  multiple placements by a single rater computed as the average pairwise distance
180 between the same rater’s placements.

181

182  We also adopt the term fiducial registration error (FRE) in the context of the AFIDs
183  protocol and term it the anatomical fiducial registration error (AFRE). It is important to
184 note that FRE in our context diverges from the original usage by Fitzpatrick and
185  colleagues® which was restricted to external fiducials used in the context of image
186  registration. Computed in millimetres, AFRE is defined as errors arising from the
187  registration protocol applied on two images (often, but not limited to, subject and
188  template). AFRE is the distance after co-registration between each of the 32 AFIDs
189 placed on a subject image and their counterparts placed on template image. The
190 average AFRE of all fiducials is termed the global AFRE. We also establish
191 nomenclature to differentiate various use cases for AFRE. If an individual rater
192  placement is chosen for subsequent analysis, then we term the resulting AFRE to be
193 the real-world AFRE as it is more representative of what would happen in a clinical
194  setting where one rater would apply the AFIDs protocol. If a ground truth AFID
195 placementis used, then the resulting error is termed consensus AFRE as it represents
196 the average placement among a group of raters prior to the image registration step. In
197 this data descriptor, our focus is on releasing the curated fiducial placements and not
198  an assessment of registration, so no AFRE metrics are produced. We still felt it would
199 be useful to introduce AFRE as their computation constitutes one of the main
200 applications of AFIDs and our shared datasets for quality control (i.e., in the context of
201  image registration).

202

203 Hardware and software used to curate data

204  All manually curated fiducials were placed using the Markups Module of 3DSlicer (an
205 open-source imaging software)'’. The datasets were curated at different times so a
206  reference to the exact version of 3DSlicer and associated modules will be made under
207  each dataset. 3DSlicer was chosen because it offers a variety of modules, particularly
208 markups and registration modules were used for fiducial placement and AC-PC
209 transform. 3DSlicer stores fiducials placed within its 3D coordinate system overlaid on
210 the image giving the possibility of more accurate localization without the need to
211  interpolate to the nearest voxel. The AFIDs placements released here for templates
212  and datasets were performed on structural T1w MRI images.

213

214  AFIDs protocol application

215  Before raters performed the AFIDs protocol, they attended a 3DSlicer workshop and
216  placed the AFIDs protocol on a publicly available template as a form of training. For
217  manual rater placements, the AFIDs protocol (https://afids.github.io/afids-protocol/)
218 generally began with the placement of the anterior commissure (AC) and posterior
219  commissure (PC) points (AFID01 and 02 respectively), which are defined to be at the
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220  center of each commissure. This was then followed by the identification of one or two
221  more midline points (often the pontomesencephalic junction, AFID04, and the Genu of
222 Corpus Callosum, AFID19, are used). After that, an AC-PC transform is performed, and
223  the rest of the anatomical fiducials are placed. Rater placements deviating from a
224 ground truth fiducial by greater than 10 mm were removed and considered outliers, as
225  these errors are likely to be due to mislabelling and not reflective of true localization
226  accuracy. In addition to subsequent sections, Table 1 provides brief descriptions of the
227 released datasets and templates, information about raters, and AFIDs applications.
228

229 AFIDs-HCP30 dataset

230  Subject demographics and imaging protocol

231  This subset consists of 30 unrelated healthy subjects (age: 21-52; 15 female and 15
232 male) chosen from the Human Connectome Project dataset (HCP). All scans were T1-
233 weighted MR volumes with 1 mm voxels acquired on a 3-T scanner’".

234 Rater demographics and AFID placements

235 A total of 5 expert raters applied the AFIDs protocol. All raters had applied the AFIDs
236  protocol before and have more than a year of neuroimaging, anatomy, and 3DSlicer
237  experience. Three raters were previously heavily involved in validation studies®? and
238  were assigned 10 random scans such that a total of one application of the AFIDs
239  protocol was applied (via 3DSlicer 4.10.0). Two independent raters annotated all the
240 30 subjects for a total of three AFIDs protocol applications (2,880 fiducials) via 3DSlicer
241  4.10.0. Dataset can be found on: doi:10.18112/openneuro.ds004253.v1.0.3

242

243  AFIDs-OASIS30 dataset

244  Subject demographics and imaging protocol

245  This subset consists of 30 subjects (age: 58.0 £ 17.9 years; range: 25-91; 17 female
246 and 23 male) selected from the publicly available Open Access Series of Imaging
247  Studies (OASIS-1) database' and imaged at 3-T. The subjects were cognitively intact
248  (Mini-Mental State Examination = 30), and the MRI scans were specifically chosen to
249  be challenging (areas with more complex anatomy and asymmetries) by the senior
250  author. More details on the selected subjects can be found in a previous study?. It is
251  important to note that this subset of the OASIS-1 dataset is different from other currently
252  existing subsets (for instance, the one used in the Mindboggle project'?).

253  Rater demographics and AFID placements

254  Eight novice raters (11.5 = 11.2 months imaging experience, 14.2 £ 17.0 months
255  neuroanatomy experience, and 7.0 + 8.8 months of 3DSlicer experience) and 1 expert
256  rater (neurosurgical resident with 10 years experience in neuroanatomy) applied the
257  AFIDs protocol via 3DSlicer 4.8.1. A total of 3 AFIDs protocol applications (2,880
258  fiducials) were performed as part of the AFIDs-OASIS30 dataset. Dataset can be found
259  on: doi:10.18112/openneuro.ds004288.v1.0.2

260

261 LHSCPD dataset

262  Subject demographics/template details and imaging protocol

263  The London Health Sciences Center Parkinson’s disease (LHSCPD) dataset currently
264  consists of 40 subjects diagnosed with Parkinson’s Disease (age: 60.2 £ 6.8, range: 38
265 — 70; sex: 13 female and 27 male) with images acquired at University Hospital in
266 London, ON, Canada on a 1.5-T scanner (Signa, General Electric, Milwaukee,
267  Wisconsin, USA). The detailed imaging protocol was described in a previous study?®.
268  Ethics approval was received for anonymized release of patient scans by the Human
269  Subject Research Ethics Board (HSREB) office at the University of Western Ontario
270  (REB# 109045).

271  Rater demographics and AFID placements

272 There were 2 expert raters (over 5 years of experience in medical imaging,
273  neuroanatomy, and 3DSlicer) and 3 novice raters (no knowledge of medical imaging,
274  neuroanatomy, and 3DSlicer prior to training). AFIDs placements were performed using
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275 3D Slicer version 4.10.0 on structural T1w images. A total of 5 AFIDs protocol
276  applications were performed (6,400 fiducials). Dataset can be found on:
277  doi:10.18112/openneuro.ds004298.v1.0.1

278

279 SNSX dataset

280  Subject demographics and imaging protocol

281 The Stereotactic Neurosurgery (SNSX) dataset currently consists of 32 healthy
282  participants (age: 46.2 + 13.5 years; range: 20-70 years; 12 female and 20 male) with
283 images acquired at the Western University Centre for Functional and Metabolic
284  Mapping (CFMM) on a 7-T head-only scanner (Siemens Magnetom; Siemens
285  Healthineers, Erlangen, Germany). An 8-channel parallel transmit/32-receive channel
286  coil was used. The ethics approval, detailed imaging protocol, and pre-processing steps
287  were documented in a previous study’.

288  Rater demographics and AFID placements

289  There were 3 expert and 6 novice raters recruited to apply the AFIDs protocol on the
290 SNSX-32 dataset using 3DSlicer 4.8.1. No rater demographic data was collected,
291  however, the 3 expert raters had more than 12 months of exposure to medical imaging,
292  neuroanatomy, and 3DSlicer and applied the AFIDs protocol in our previous validation
293  study?. The 6 novice raters had prior exposure to medical imaging, neuroanatomy, and
294  3DSlicer but have never applied the AFIDs protocol before training. The raters were
295  splitinto 3 equal groups with one expert rater placed in each. Each group was randomly
296  assigned a subset of the 32 subjects (two out of three rater groups had 11 subjects to
297 annotate). Each rater within the group placed the AFIDs protocol on all subjects
298 allocated to their group. Thus, the AFIDs protocol was performed a total of 3 times on
299  all 32 subject scans (3,072 fiducials), with each rater annotating either 10 or 11 different
300 subjects once depending on their group assignment. Dataset can be found on:
301 doi:10.18112/openneuro.ds004241.v1.0.2

302

303 MNI2009Asym & Agile12v2016 & Colin27 templates

304  Template details and imaging protocol

305 A group of commonly used public templates were annotated. The MNI2009bAsym is a
306  population group template consisting of 152 individuals (aged 18.5-43.5 years) used
307 commonly in the literature™. The images were acquired on a Philips 1.5-T Gyroscan
308 (Best, Netherlands) scanner at the Montreal Neurological Institute.

309 The Agile12v2016 is an ultra-high field template created locally at our institution
310 (CFMM). It consists of 12 healthy control subjects (6 female; age: 27.6 + 4.4 years).
311 Scans were on a 7-T scanner (Agilent, Santa Clara, California, USA/Siemens,
312  Erlangen, Germany) via a 24-channel transmit-receive head coil array'>'®.

313  The Colin27 is a template created from one subject scanned 27 times on a Phillips 1.5-
314 T MR unit".

315  Rater demographics and AFID placements

316  The same 8 novice raters that annotated the AFIDs-OASIS30 subset also annotated
317  all of the templates mentioned above 4 times. Each rater performed the AFIDs protocol
318 a total of 12 times for a total of 96 protocols (1,024 fiducials). Since raters annotated
319 the same template more than once, there was an intra-rater metric calculated for these
320 three templates (contrary to the datasets). Annotations were performed via 3DSlicer
321  4.81.

322

323 BigBrainSym & MNI2009Sym & PD-25 templates

324  Template details and imaging protocol

325 BigBrain is an ultra-high resolution histological 3D model of the brain created using a
326  large-scale microtome to cut a complete paraffin-embedded brain (65-year-old male)
327 coronally at 20-mm thickness'®. The BigBrainSym template refers to the BigBrain
328  registered to MNI2009bSym space, defined in previous studies?®. The MNI2009Sym is
329  a symmetric version of the MNI2009Asym™.
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330 The PD-25 template is a multi-contrast MNI template of a PD cohort with 3-T field
331  strength'. We used the PD25-T1MPRAGE for the AFIDs placements.

332  Rater demographics and AFID placements

333  Atotal of 2 expert raters (more than one year of experience in neuroimaging, anatomy,
334 and 3DSlicer and have been involved in prior validation studies’?) were involved in
335 placements. Each rater annotated both templates once (192 fiducials) via 3DSlicer
336 4.8.1.

337

338 TemplateFlow templates

339  Template details and imaging protocol

340  All adult human structural MRI templates that could be found on TemplateFlow at the
341 time of manuscript preparation were annotated (n=8).

342  Rater demographics and AFID placements

343  Three novice raters (no prior neuroimaging, anatomy, and 3DSlicer experience) and 1
344  expert rater (lead author; more than 10 years of experience in medical imaging,
345 anatomy, and 3DSlicer) annotated a total of 8 templates (see Table 1). Each rater
346  annotated the 8 templates once (1,024 fiducials) via 3DSlicer 4.10.

347

348 AFLE calculation for all datasets and templates

349  All placements for a given scan and fiducial were averaged to achieve the ground truth
350 fiducial placement per participant or template as shown in Figure 2a. For datasets,
351  ground truth fiducial placements were computed for each subject in a dataset as shown
352  in Figure 2b.

353  To compute the mean AFLE, Euclidean distances from the ground truth fiducial location
354  to each of the individual rater placements were averaged for each fiducial. The result
355 is termed the subject or template mean AFLE per fiducial. This process was
356 independently repeated for all subjects. All subject mean AFLEs were averaged to
357 achieve a dataset mean AFLE per fiducial as shown in Figure 3a. Finally, the dataset
358 mean AFLE per fiducial was averaged across all fiducials to produce the global dataset
359 mean AFLE. In a similar fashion, global inter-rater AFLE was computed for one subject
360 across fiducials and then averaged across all subjects to produce a global dataset inter-
361 Rater AFLE shown in Figure 3b.

362

363 Data Records

364 In total, we release the curated AFID placements and associated imaging of 4 datasets
365 and 14 openly available human brain templates (total of 19,520 manually placed
366  anatomical landmarks — more than 300 human rater annotation hours). When
367 available, individual rater placements were released, otherwise, the rater's mean
368  (ground-truth) placements were made available. The data we release here is BIDS
369  compliant with a primary focus on adoption and usability. The AFIDs coordinates are
370  described using the Markups comma-separated values file (i.e., .fcsv extension) which
371 is generated after the raters save their placements. The *.fcsv file is compatible for
372 loading and viewing on 3DSlicer. As for the imaging data, all images used for
373  annotations were BIDS compatible and made available in a compressed NIfTI-1 format
374  (i.e., .nii.gz extension). Each BIDS dataset has been released separately on
375  OpenNeuro?' (links found under each dataset). A GitHub repository (serves as a
376  centralized reference) also hosts AFIDs annotation files and template imaging data
377  with directions for accessing BIDS datasets (https://github.com/afids/afids-data).

378

379 Technical Validation

380 As mentioned in the methods, raters typically go through the AFIDs protocol by
381 referring to the detailed documentation we have made available online
382  (https://afids.qgithub.io/afids-protocol/) and attend a neuroanatomy session with
383  supplementary video (https:/github.com/afids/afids-education). To ensure the
384  placements we share are accurate and reproducible amongst expert and novice raters
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385  we computed the AFLE metrics to show the distribution in localization and validate that
386 it is generally within 1-2 mm across various raters. Table 2 summarizes the AFLE
387 metrics computed for each of the templates and datasets. On all datasets and
388 templates, the mean AFLE metric was always within 1-2 mm.

389

390 Usage Notes

391  We recommend loading the shared AFIDs annotation files (*.fcsv) in 3DSlicer alongside
392 their associated images all of which are in BIDS format for ease of navigating. The local
393  neuroimaging datasets we release here (namely, the LHSCPD and SNSX) will be
394  quality controlled and expanded as more patients are recruited. Additionally, quality
395 and version control of the AFIDs framework will be introduced as more collaborations
396 and initiatives begin incorporating it into their workflows and releases. New templates
397 and brain images can be added to future versions of the data descriptor once they have
398  met standards for validation set by prior related studies®>.

399

400 Code Availability

401  GitHub repository for code used in technical validation and prior AFIDs studies can be
402  found on the AFIDs project repository: https://github.com/afids/.

403
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Figure.1: Current and prospective applications of curated anatomical fiducial (AFID) placements. Top
panel: current applications in neuroanatomy education and image registration. Middle panel: released
healthy and pathologic datasets and templates (descriptions can be found in text). Bottom panel:
prospective applications of AFIDs in stereotactic targeting and as a disease biomarker.
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Figure 2: Ground-truth anatomical fiducial (AFID) placement on templates and datasets. (a) and (b)
show the process of computing the intended AFID placement on a neuroimaging template or dataset
respectively. It is the mean of the rater point cloud at each AFID, referred to as “ground-truth” in the text.
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Figure 3: The technical validation computations for our anatomical fiducial (AFID) placements on
templates and datasets. (a) and (b) show the equations used to compute mean and inter-rater anatomical
localization error, respectively. N = number of subjects in a dataset. If calculating for a template, N would
be 1. R = the number of raters per scan/image. In (a) Euclidean distances (shown in pink) represent
distance from rater placement to the ground-truth (red). The mean AFLE was calculated by dividing the
sum all Euclidean distances across all subjects (shown by the sigma notation) with the total number of
Euclidean distances in the dataset (N x R) for each AFID. In (b) Euclidean distances (shown in pink)
represent the pairwise distances between all rater placements on a scan. Inter-Rater AFLE was calculated
by dividing the sum of the pairwise distances (shown by the sigma notation) by the total number of rater

pairwise distances across a dataset per AFID (N X R X %L).
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Table 1: Summary of templates and datasets released, raters, and anatomical fiducial (AFID) protocol

applications.
Template or . .- Field AFID References
Dataset Brief Description Strength | Raters (N) prt_)toqol
(T) applications | |maging Placements
A population group template
MNI2009bAsym consistent of 152 individuals 15 Fonov et al.,
used most commonly in ' 2011
neuroimaging literature
A template of a single
. healthy control subject (N = Holmes et al.,
Colin27 1) imaged 27 times and 15 8 x4 (1,024 1998
averaged together 8 novices individual
An ultra-high field template points)
created at Western
University Centre for Lau et al., Lau et al.,
Agile12v2016 Functional and Metabolic 7 2017; Wang et 2019
Mapping (CFMM). It al., 2016
consists of 12 healthy
control averaged subjects
Ultra-high resolution
Bi . histological 3D model of the N/A; Amurrts .et al.,
igBrainSym brai ; : : . . 2013; Xiao et
rain (BigBrain) registered | histological al. 2019
to MNI2009bSym space 2x1 (64 )
The symmetric version of 2 experts individual Fonov et al
MNI2009bSym the MNI2009bAsym 1.5 points) 2011 v
Template
A multi-contrast MNI Xiao et al.
PD-25 template of a PD cohort 3 2017 N/A
A centralized resource of
open-access templates for
neuroimaging studies
(MNI152 -Lin, - 4 total: 1 4x1(128 Ciric et al
TemplateFlow NLin2009cAsym, - 3+ expert and 3 individual 2021 ’ N/A
NLin2009cSym, - novices points)
NLin6Asym, -NLin6Sym,
MNI305, OASIS30ANTS,
fsaverage)
CA(\)r?tL:glslegTe';lt irr?g Zzaflrtg% S total: 4 3x 30 (2,880 Van Essen et
AFIDs-HCP30 ! 9 3 experts, 1 individual N/A
the human connectome . . al., 2013
. novice points)
project dataset
A subset of N = 30
cognitively intact and wide .
AFIDs-OASIS30 age ranged independent 3 ex%g;:a:.n:j 8 3 ::133/|(dzu2?0 Marcus et al., Lau et al.,
images from the OASIS-1 . . 2010 2019
database with large novices points)
9
ventricle sizes
A set of N = 40 Parkinson's Stotal: 2 | 5x40 (6,400
LHSCPD S€ patient Images 15 expert and 3 individual Abbass et al., 2021
acquired at University ) .
Hospital (London, ON) novices points)
A set of N = 32 control
subject images acquired at 9 total: 3 3x32 (3,072
SNSX Western University Centre 7 expert and 6 individual Lau et al., 2020
for Functional and novices points)

Metabolic Mapping (CFMM)
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Table 2: Summary anatomical localization errors (AFLE) and Euclidean distances (ED) used for their
calculations for all released data

Template or Dataset

EDs utilized for AFLE metrics

AFLE % Error

Mean Inter-rater
MNI152NLin2009bAsym 0.99+1.11 1.07 £ 0.46
Colin27 Mean: 1,024 and inter-rater: 3,584 1.71+2.78 1.36 £ 0.88
Agile12v2016 1.10 £ 1.59 1.14 £ 0.48
BigBrainSym 0.63 +0.50 1.25+1.02
MNI152NLin2009bSym Mean: 64 and inter-rater: 32 0.55+0.26 1.09 £ 0.52
PD-25 0.42+0.24 0.83+0.47
MNI152Lin 1.07 £ 0.45 1.74 £0.74
MNI152NLin2009cAsym 1.03£0.40 1.67 £ 0.63
MNI152NLin2009¢cSym 1.06 £ 0.47 1.67 £ 0.63
MNI152NLin6Asym _ 1.16 £ 0.51 1.90 £ 0.86
Mean: 128 and inter-rater: 192
MNI152NLIin6Sym 1.08 £ 0.54 1.73+0.84
MNI305 1.14 £ 0.41 1.85+0.52
OASIS30ANTs 0.78 £+ 0.33 1.25 £ 0.51
fsaverage 1.00 £ 0.44 1.65+0.73
AFIDs-HCP30 . 1.16 £ 0.53 1.98 £2.03
Mean: 2,880 and inter-rater: 2,880
AFIDs-OASIS30 0.94+0.73 1.58 £ 1.02
LHSCPD Mean: 6,400 and inter-rater: 12,480 1.57 +1.16 2.01+1.49
SNSX Mean: 3,072 and inter-rater: 3,072 0.96 £ 0.33 1.64 £ 1.37
Total or Average Mean: 19,520 and inter-rater: 30,816 1.02 £ 0.31 1.52+0.34
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