

1 A human neural crest model reveals the developmental impact of 2 neuroblastoma-associated chromosomal aberrations

3
4 Ingrid M. Saldana-Guerrero^{1,2,3,*}, Luis F. Montano-Gutierrez^{4,*}, Katy Boswell^{1,2,\$}, Christoph
5 Hafemeister^{4,\$}, Evon Poon^{5,\$}, Lisa E. Shaw^{6,\$}, Dylan Stavish^{1,2,\$}, Rebecca A. Lea¹, Sara Wernig-Zorc⁴,
6 Eva Bozsaky⁴, Irfete S. Fetahu⁴, Peter Zoescher⁴, Ulrike Pötschger⁴, Marie Bernkopf^{4,7}, Andrea
7 Wenninger-Weinzierl⁴, Caterina Sturtzel⁴, Celine Souilhol^{1,2,8}, Sophia Tarelli^{1,2}, Mohamed R. Shoeb⁴,
8 Polyxeni Bozatzis⁴, Magdalena Rados⁴, Maria Guarini⁹, Michelle C. Buri⁴, Wolfgang Weninger⁶, Eva
9 M. Putz⁴, Miller Huang^{10,11}, Ruth Ladenstein⁴, Peter W. Andrews¹, Ivana Barbaric^{1,2}, George D.
10 Cresswell⁴, Helen E. Bryant³, Martin Distel⁴, Louis Chesler^{5,+}, Sabine Taschner-Mandl^{4,+}, Matthias
11 Farlik^{6,+}, Anestis Tsakiridis^{1,2,#}, Florian Halbritter^{4,#}

12
13 ¹ Centre for Stem Cell Biology, School of Biosciences, The University of Sheffield, Sheffield, UK

14 ² Neuroscience Institute, The University of Sheffield, Sheffield, UK

15 ³ Sheffield Institute for Nucleic Acids (SInFoNiA), School of Medicine and Population Health, The University of Sheffield,
16 Sheffield, UK

17 ⁴ St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria

18 ⁵ Division of Clinical Studies, The Institute of Cancer Research (ICR) & Royal Marsden NHS Trust, London, UK

19 ⁶ Medical University of Vienna, Department of Dermatology, Vienna, Austria

20 ⁷ Labdia Labordiagnostik GmbH, Vienna, Austria

21 ⁸ Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University,
22 Sheffield, UK

23 ⁹ CeMM Research Center for Molecular Medicine of the Austrian Academy of Science, Vienna, Austria

24 ¹⁰ Children's Hospital Los Angeles, Cancer and Blood Disease Institutes, and The Saban Research Institute, Los Angeles,
25 CA, USA

26 ¹¹ Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

27
28 ^{*, \$, +} These authors contributed equally to this work.

29 [#] Equally contributing senior authors.

30
31 Correspondence to a.tsakiridis@sheffield.ac.uk (A.T.) or florian.halbritter@ccri.at (F.H.)

32 33 Abstract

34 Early childhood tumours arise from transformed embryonic cells, which often carry large copy number
35 alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis
36 due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC)
37 differentiation and single-cell transcriptome and epigenome analysis to assess the effects of
38 chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show
39 that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal
40 derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of
41 *MYCN*, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-
42 tumourigenic effects of *MYCN* and mutant NC cells resemble NB cells in tumours. These changes
43 correlate with a stepwise aberration of developmental transcription factor networks. Together, our
44 results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.

45
46
47 **Keywords:** neuroblastoma, copy number alterations, tumourigenesis, stem cells, neural crest

48 Cancers in early childhood are driven by sparse genetic aberrations arising *in utero*, which are thought
49 to lead to defective differentiation and uncontrolled proliferation¹⁻⁴. Most tumours harbour large
50 genomic rearrangements and chromosomal copy number alterations (CNA), which co-occur with
51 mutations in tumour suppressors or tumourigenic transcription factors (TF)^{5,6}. The mechanistic
52 interactions between different mutations and early developmental processes are likely foundational
53 drivers of tumour heterogeneity. However, since visible tumours are only detected long after their
54 initiation, early mutation-driven interactions leading to the healthy-to-tumour transition have remained
55 largely intractable.

56 Neuroblastoma (NB) is the most common extra-cranial solid tumour in infants and an
57 archetypal “developmental cancer”⁷⁻⁹. NB tumours are usually found in the adrenal gland or
58 sympathetic ganglia, tissues derived from the trunk neural crest (NC) lineage during embryonic
59 development^{10,11}, and studies using transgenic animal models and transcriptome analysis have anchored
60 NB tumourigenesis in impaired sympathoadrenal differentiation of trunk NC cells¹²⁻²³. CNAs such as
61 gains of the long arms of chromosomes 17 (chr17q) and 1 (chr1q) have been identified in the majority
62 (up to 65%) of NB tumours²⁴⁻²⁸ and their emergence is considered an early tumourigenesis “priming”
63 event²⁹. Chr17q/1q gains often co-occur with amplification of the *MYCN* oncogene^{24,28,30-33} (at least one
64 CNA in >95% of *MYCN*-amplified tumours³⁴), suggesting they may jointly contribute to
65 tumourigenesis. However, despite our advanced understanding of the genetic and developmental origin
66 of NB, it remains unclear to date how CNAs disrupt embryonic cell differentiation and lead to NB
67 initiation.

68 Here, we used a human embryonic stem cell (hESC)-based model to experimentally dissect the
69 links between NB-associated CNAs, *MYCN* amplification, and tumour initiation. We interrogated the
70 stepwise specification of trunk NC and sympathoadrenal lineages using directed differentiation of
71 isogenic hESC lines with chr17q/1q gains and inducible *MYCN* overexpression. We found that (i) CNAs
72 derail differentiation by potentiating immature NC progenitor phenotypes. Combining CNAs with
73 *MYCN* overexpression completely disrupted normal NC differentiation; (ii) Mutant NC cells acquired
74 tumourigenic hallmarks *in vitro*, the capacity to form tumours in xenografts, and resemble distinct
75 subpopulations of heterogeneous NB tumours; (iii) An extensive re-wiring of chromatin connects the
76 observed transcriptional and functional aberrations with a dysregulated network of developmental TFs.
77 Collectively, our data put forward a CNA-driven distortion of trunk NC and sympathoadrenal
78 differentiation as a priming mechanism for subsequent *MYCN*-induced tumour initiation.

79

80 **Results**

81 **Differentiation of human embryonic stem cells recapitulates key stages of trunk NC and** 82 **sympathoadrenal development**

83 To model the initiation stage and cell types relevant to NB tumourigenesis, we turned to an *in vitro*
84 modelling approach. We have previously described an efficient strategy to produce human trunk NC,
85 sympathoadrenal progenitors, and sympathetic neurons from hESCs^{35,36}. Our protocol involves
86 treatment with defined cocktails of signalling pathway agonists/antagonists that induce
87 neuromesodermal-potent axial progenitors (NMPs) at day 3 of differentiation (D3)³⁷, and subsequently
88 steer NMPs toward trunk NC cells (D9) and their sympathoadrenal derivatives (>D14). At D19, the
89 protocol yields catecholamine-producing sympathetic neurons marked by peripherin-expressing
90 axons³⁵ (**Fig. 1a, Supplementary Fig. 1**).

91 As a prerequisite for studying the effects of CNAs on trunk NC differentiation, we first needed
92 to define a molecular roadmap of normal hESC differentiation as a control. Therefore, we employed
93 our protocol for the differentiation of karyotypically normal hESCs (H7³⁸; 46XX) and performed
94 droplet-based single-cell RNA sequencing (scRNA-seq) at key differentiation stages (D0 ≈ hESCs, D3
95 ≈ NMPs, D9 ≈ trunk NC, D14 ≈ sympathoadrenal progenitors, D19 ≈ early sympathetic neuron) and
96 intermediate/late time points (D4, D10, D12, D28) to examine the resulting cell populations (up to five
97 replicates each; **Supplementary Table 1**). We obtained 29,857 cells that passed quality control, which
98 we allocated to 14 distinct clusters (C1-C14) (**Fig. 1b; Supplementary Figs. 2a-g**). We
99 bioinformatically annotated these cell clusters using two complementary approaches: (i) by identifying
100 characteristic marker genes (**Fig. 1c; Supplementary Fig. 2h; Supplementary Table 2**), and (ii) by
101 mapping our data to single-cell transcriptomes of trunk NC derivatives in human embryos^{15,16} (**Figs.**
102 **1d-f, Supplementary Figs. 2i,j**). This strategy identified cells at different stages of trunk NC
103 development, including NMP-like cells (marked by CDX1/2, NKX1-2, and FGF signalling-associated
104 transcripts³⁷; cluster C2 in **Fig. 1c, Supplementary Table 2**) and later cell populations of a
105 predominantly trunk axial identity (**Supplementary Fig. 2h**) exhibiting characteristics of Schwann cell
106 precursors (SCP), sympathoblasts (SYM), as well as mesenchymal features (MES). For example, D9
107 cells split into subpopulations expressing markers of trunk NC/early SCPs (C3; e.g., *SOX10*¹⁶, **Fig. 1c**;
108 weak SCP-like signature, **Fig. 1e**) and sensory neurons (C5; *ONECUT1*³⁹, **Fig. 1c**; weak SYM-like
109 signature, **Fig. 1f**). At D14, cells started to assume a sympathoadrenal/autonomic progenitor (C8;
110 *ASCL1*) or mesenchymal (C11; *FNI*) identity, and by day D19, we observed three distinct fractions:
111 mature SCP-like cells (C9; *POSTN*⁴⁰; strong SCP signature), autonomic sympathoblasts (C12-C14;
112 *PHOX2A/B, ELAVL4*^{16,41}; strong SYM signature), and MES-like cells (C11; *COL1A1, FNI*). This is in
113 line with findings showing that trunk NC and SCPs are competent to generate mesenchyme^{40,42,43}.
114 Interestingly, we also found cells at the intersection of MES and SYM identity, as observed in mice³⁹
115 and NB cell lines⁴⁴⁻⁴⁸ (**Supplementary Fig. 3; Supplementary Table 3**). After 4 weeks (D28), we also

116 observed some cells with a partial chromaffin-like cell identity (part of C14; *CHGA*⁺, *PMNT*⁻) (**Fig. 1d**).
117

118 Together, these data confirm that our hESC-based model successfully captures trunk NC and
119 sympathoadrenal cells as found in embryos during the onset of NB tumourigenesis. Moreover, they
120 reveal two major developmental branching events: (i) an early commitment of trunk NC toward a
121 sensory neuron fate; (ii) the late generation of multipotent SCP/sympathoadrenal progenitors, which
122 subsequently give rise to three distinct cell types: mature SCPs, MES, and SYM.
123

124 **CNAs and *MYCN* cumulatively disrupt human trunk NC differentiation**

125 Having established a reliable model of trunk NC lineages relevant for NB pathogenesis, we next asked
126 how chr17q and chr1q gains and their interplay with *MYCN* overexpression, which often co-occurs with
127 CNAs in NB^{24,28,30-34}, influence NC development. To this end, we employed two clonal isogenic hESC
128 lines with NB-associated CNAs that were acquired by H7 hESCs ('WT'; used in **Fig. 1**) as a result of
129 culture adaptation⁴⁹ (**Fig. 2a**; **Supplementary Fig. 4a**): (i) a gain of chromosome arm 17q11-qter
130 ('17q')⁵⁰, and (ii) an additional gain of chr1q in the 17q background ('17q1q'). Whole-exome
131 sequencing of 17q and 17q1q cells compared to the parental H7 hESCs revealed a small number of
132 additional mutations and a loss of a small region in chromosome 2 (**Supplementary Figs. 4b**;
133 **Supplementary Tables 4 and 5**). For brevity, we labelled the cell lines by their major CNAs, which
134 overlap regions commonly gained in NB tumours⁵¹ (**Supplementary Fig. 4c**). 17q1q hESCs were
135 engineered to include a Doxycycline (DOX)-inducible *MYCN* expression cassette to mimic *MYCN*
136 amplification in a temporally controlled manner ('17q1qMYCN'). DOX treatment of 17q1qMYCN
137 resulted in robust induction of *MYCN*, similar to expression levels in *MYCN*-amplified tumours
138 (**Supplementary Figs. 4d-f**). In our experiments, we induced *MYCN* overexpression at D5 (when cells
139 adopt a definitive NC identity³⁵) to avoid bias toward central nervous system differentiation, as seen
140 upon *MYCN* overexpression in earlier pre-NC progenitors⁵².

141 Equipped with these three isogenic 'mutant' hESC lines, we performed differentiation toward
142 trunk NC and carried out scRNA-seq as described above, yielding a combined dataset comprising
143 95,766 cells (**Supplementary Table 1**). To assess how differentiation was affected in each mutant cell
144 line, we first focused on stages D9, D14, and D19 for which we had data from all four experimental
145 conditions, and bioinformatically mapped the transcriptomes of mutant cells to our reference of normal
146 trunk NC differentiation (cp. **Fig. 1b**). While many 17q cells intertwined with all WT cell types (~98%
147 matching the cognate WT stage), fewer 17q1q and 17q1qMYCN cells advanced beyond WT D14 (only
148 ~48% and 22% matched with WT, respectively; **Fig. 2b**). Only ~4% of 17q1qMYCN cells mapped to
149 mature cell types (**Fig. 2b**). Altogether, at this level of resolution, we found no evidence that 17q
150 affected differentiation. In contrast, 17q1q and 17q1qMYCN cells matched WT cells of earlier
151 developmental stages, suggesting impaired differentiation (**Fig. 2c**).

152 Next, we tested whether the cell types induced from mutant hESCs still truthfully recapitulated
153 *in vivo* cell types as seen for WT. Mapping mutant cells onto the same human embryonic adrenal gland
154 reference¹⁶ identified proportionally fewer SYM- and MES-like cells in 17q1q and 17q1qMYCN (Figs.
155 **2d,e**). For cells mapped to the respective cell types, we observed a slightly stronger SCP signature in
156 17q and 17q1q, while the expression of both MES and SYM genes was weaker relative to the WT (Fig.
157 **2f**). In 17q1qMYCN, the expression of all signatures was weak, suggesting a failure to fully specify the
158 expected cell types (Figs. **2d-g**). Consistently, antibody staining for SOX10 and HOXC9 and flow
159 cytometry revealed depletion of SOX10+ trunk NC cells in 17q1qMYCN cultures (Fig. **2h**;
160 **Supplementary Fig. 5**). The reduced ability of 17q1qMYCN hESCs to differentiate toward trunk NC
161 derivatives was also reflected by their failure to generate PERIPHERIN-positive neuronal axons
162 (**Supplementary Fig. 4g**). A similar, albeit milder effect was observed upon DOX-induced *MYCN*
163 overexpression at later timepoints (**Supplementary Fig. 4h**).

164 Differential analysis identified 941 (17q vs. WT), 2,039 (17q1q vs. WT), and 5,915
165 (17q1qMYCN vs. WT) differentially expressed genes (DEGs) at D9 (**Supplementary Table 6**). As
166 expected, many upregulated genes were located within the known CNAs (41.4% within chr17q for 17q
167 cells; 18.7% within chr17q and 25.6% within chr1q for 17q1q cells; **Supplementary Fig. 6a**). Pathway
168 analysis indicated an enrichment of genes related to E2F and MTORC1 signalling components for
169 DEGs on chr17q (e.g., *BRCA1*, *NME1*), and of apoptosis-related and members of the p53 pathway on
170 chr1q (e.g., the anti-apoptotic regulator *MCL1*; Figs. **3a-c**; **Supplementary Table 7**). Notably, genes
171 upregulated in 17q1q also include the p53 inhibitor *MDM4*⁵³ (**Supplementary Table 6**). These
172 perturbed pathways may contribute to deregulation of expression of genes outside CNAs (e.g.,
173 upregulation of MYC targets and oxidative phosphorylation, and downregulation of G2-M checkpoint-
174 related genes in 17q1qMYCN; **Fig. 3a**). To better resolve the molecular impact of each mutation, we
175 integrated all datasets into a joint projection of WT and aberrant trunk NC differentiation (**Fig. 3d**;
176 **Supplementary Figs. 6b-h**; **Supplementary Table 8**). The strongest changes were found in
177 17q1qMYCN, which formed disconnected cell clusters not normally produced in our protocol. To
178 delineate the stepwise alteration of transcriptional programmes, we placed cells from D9 on a spectrum
179 from WT to 17q1qMYCN by scoring each cell between 0 and 1 based on the fraction of mutant cells
180 among its gene expression neighbours (“mutation score”; **Fig. 3e**). This allowed us to identify four sets
181 of genes (D9_1–D9_4) that were correlated with mutations (**Fig. 3f**, **Supplementary Figs. 7a,b**;
182 **Supplementary Table 9**): Gain of CNAs led to a decrease in expression of genes (gene set D9_3, **Fig.**
183 **3f**) involved in NC development (e.g., *TFAP2B*^{54,55}) and gradual induction of genes (D9_4, **Fig. 3f**)
184 associated with NC/NB cell migration (e.g., *ZIC2*, *HOXD3*, *GPC3*⁵⁶⁻⁵⁸). *MYCN* overexpression in
185 17q1qMYCN further repressed genes related to NC development (D9_2; e.g., WNT-antagonist
186 *SFRP1*⁵⁹ and nuclear receptors *NR2F1/2*⁶⁰) and led to upregulation of MYCN targets implicated in NB
187 (D9_1; e.g., *NME1* on 17q⁶¹; **Supplementary Table 9**). Interestingly, we had also found *SFRP1* and
188 *NR2F1* to mark the SYM-MES transition state in WT differentiating sympathoadrenal cells (cp).

189 **Supplementary Table 3**). Moreover, we found that many of genes that are upregulated in 17q1qMYCN
190 (D9_1) were also highly expressed in NB tumours (**Supplementary Fig. 7c**).

191 We further sought to disentangle the relative contributions of *MYCN* overexpression and CNAs
192 to the observed differentiation block phenotype in 17q1q cells. To this end, we generated additional cell
193 lines derived from WT and 17q H7 hESCs by equipping each with a DOX-inducible *MYCN* construct
194 (WTMYCN, 17qMYCN; **Supplementary Fig. 8a**). Moreover, we introduced the same inducible
195 *MYCN* expression cassette into a second female hESC cell line³⁸ (H9) which had independently
196 acquired chr17q and 1q gains (H9-WT, H9-17q1q, H9-17q1qMYCN). The differentiation trajectories
197 of these cell lines in the presence and absence of *MYCN* overexpression were interrogated using split-
198 pool single-cell RNA-seq. To ensure consistency, we also included the previously analysed H7 cell
199 lines (WT, 17q, 17q1q, 17q1qMYCN) and performed 2-4 replicate experiments. We obtained a total of
200 45,546 cells (all D9) post-QC and mapped each dataset onto our WT reference, as we had done before
201 (**Supplementary Fig. 8b**). Starting with gain of chr17q, we found a reduction in cells allocated to
202 sensory neuronal differentiation (cluster C4 in **Figs. 1b,c**) and instead a slight increase in a transitional
203 progeny (C7). With chr1q, we also saw an increase of cells in C10. On top of these changes, *MYCN*
204 overexpression led to most cells allocating to earlier developmental stages including clusters C2 and
205 C3 (**Supplementary Figs. 8b,c**) – reflecting the differentiation block we had observed before (cp. **Figs.**
206 **2b,c**). The observed changes were consistent for derivatives of both parental hESC lines (H7 and H9).
207 Analysis of marker gene expression associated with the altered cell clusters (C2, C4, C7, C10) in the
208 different mutant cell lines identified an upregulation of genes like *AZIN1* in all *MYCN*-overexpressing
209 cells that was not active in their wild-type or CNA-only counterparts (**Supplementary Fig. 8d**).
210 Conversely, these cells downregulated developmental regulators. For instance, even though *MYCN*-
211 overexpressing cells still expressed remnant gene signatures leading them to map to differentiating WT
212 cell clusters they downregulated genes in developmental pathways like *HHIP* in cluster C7 or *WNT1* in
213 C10. Moreover, the neurogenic capacity of the mutant trunk NC cells (as reflected by the presence of
214 PERIPHERIN-positive neuronal axons) was found to be disrupted by *MYCN* overexpression primarily
215 in the presence of CNAs, with the strongest phenotype being observed in the presence of both chr17q
216 and chr1q gains (**Supplementary Fig. 8e**), in line with our earlier findings. Collectively, these data
217 indicate that CNAs potentiate the *MYCN*-driven block to the induction of a trunk NC/sympathoadrenal
218 identity.

219 We conclude that NB-associated CNAs alter the differentiation landscape of hESC-derived
220 trunk NC lineages by promoting transitional progenitor states at the expense of mature sympathoadrenal
221 cell types. In conjunction with *MYCN* elevation, they block differentiation and trigger atypical
222 transcriptional programmes incompatible with normal trunk NC development.

223

224 **Impaired trunk NC differentiation correlates with acquisition of tumourigenic hallmarks**

225 We observed that ectopic *MYCN* induction altered the morphology of cultures by D14 only in the
226 presence of CNAs as cells lost their ability to spread out and form neurites, and 17q1q*MYCN* cells even
227 formed tight, dome-like colonies (**Fig. 4a**). As this phenomenon is reminiscent of loss of contact
228 inhibition, a cancer hallmark, we next examined whether CNAs/*MYCN* overexpression led to further
229 cellular changes that are typical of tumourigenesis. We first carried out cell cycle analysis of trunk NC
230 cells (D9) generated from each *MYCN*-overexpressing hESC line (from WT/17q/17q1q backgrounds)
231 by monitoring EdU (5-ethynyl-2'-deoxyuridine) incorporation via flow cytometry. We found a
232 significant increase in the proportion of cells in S-phase only when *MYCN* overexpression was
233 combined with CNAs ($p = 0.0233$ and $p = 0.0073$ respectively; two-way ANOVA; **Fig. 4b**) indicating
234 altered cell cycle and increased replication similar to NB tumours and cell lines⁶²⁻⁶⁴.
235 Immunofluorescence analysis of Ki-67 expression further showed that 17q1q*MYCN* and 17q*MYCN*
236 cultures exhibited a higher proliferation rate by D14 compared to their CNA-only counterparts ($p <$
237 0.0001 and $p = 0.0078$, respectively; two-way ANOVA; **Fig. 4c**). We next tested how CNAs/*MYCN*
238 influenced colony formation, another hallmark of tumourigenesis. Low-density plating of trunk NC
239 cells (D9) and image analysis showed significantly increased clonogenicity ($p = 0.0109$; two-way
240 ANOVA) exclusively in 17q1q*MYCN* cells (**Fig. 4d**). DOX treatment of the unedited parental wild
241 type and chr17q gain cell lines had no effect (**Supplementary Fig. 9a**).

242 Previous work has indicated that *MYCN* overexpression alone is associated with increased
243 apoptosis in early sympathoadrenal cells^{65,66} and can trigger tumourigenesis only in combination with
244 additional mutations⁶⁷⁻⁶⁹. Therefore, we also examined apoptosis levels during the transition of D9 trunk
245 NC cells toward the SCP/sympathoblast stage (D14) by assessing cleaved Caspase-3 levels using flow
246 cytometry. We found that *MYCN* overexpression indeed resulted in a higher rate of apoptosis in the WT
247 background, while this increase was reversed in 17q cells (**Supplementary Fig. 9b**). However, this was
248 not the case in cultures derived from *MYCN*-overexpressing cells with chr17q1q gains, which exhibited
249 apoptosis levels similar to their *MYCN*-overexpressing WT counterparts (**Supplementary Figs. 9b,c**).
250 This phenomenon may be linked to the presence of both pro- and anti-apoptotic genes in chromosome
251 arm chr1q (cp. **Fig. 3c**) as well as increased DNA damage (assessed by the presence of γ H2AX foci)
252 following *MYCN* overexpression specifically in the 17q1q background (**Supplementary Figs. 9d,e**).
253 Interestingly, we detected lower levels of DNA damage in the absence of *MYCN* overexpression in 17q
254 and 17q1q trunk NC cells at D9 compared to WT controls suggesting a potential protective effect of
255 17q1q gains (**Supplementary Figs. 9d**). Moreover, we investigated whether *MYCN*-overexpressing
256 cells from different backgrounds had acquired additional mutations during differentiation. Whole-
257 exome sequencing analysis at D19 of differentiation did not reveal any new large CNAs and detected
258 only few mutations (<10 mutations with variant allele frequency >0.2 between D0 and D19; **Fig. 4e**,
259 **Supplementary Fig. 9f**; **Supplementary Table 4**). None of the discovered mutations have previously
260 been reported in NB, leading us to conclude that the observed phenotypic changes in 17q1q*MYCN*

261 were likely a product of the CNAs and *MYCN* overexpression rather than an expansion of new clonal
262 cell populations with additional pathognomonic mutations. Despite an increase of proliferation (cp.
263 **Figs. 4b,c**), *MYCN* overexpression did not yield more high-frequency mutations during the short
264 timeframe of our differentiation experiments, consistent with earlier work in human neuroepithelial
265 stem cells *in vitro* and after xenotransplantation⁷⁰ ($p = 0.3458$, two-sided, paired Wilcoxon test, $n = 3$
266 per group; **Supplementary Fig. 9g**).

267 Finally, we sought to examine the tumourigenic potential of 17q1q-, 17q1q*MYCN*- and WT-
268 derived trunk NC (D9 of differentiation) cells *in vivo* by xenografting them into immunodeficient NSG
269 mice. We first injected aliquots of about 1 million cells subcutaneously into the recipient animals ($n =$
270 6 per cell line) and monitored tumour volume over time. After 3-5 weeks with continuous DOX
271 administration, all 17q1q*MYCN*-injected mice developed visible tumours at the injection site (**Fig. 5a**).
272 In contrast, neither WT- nor 17q1q-injected control animals displayed any signs of tumours for up to
273 16 weeks (**Fig. 5a**). Likewise, orthotopic injection into the adrenal gland ($n = 3$ mice per condition)
274 yielded tumour growths visible by magnetic resonance imaging (MRI) after 5 weeks only when *MYCN*
275 overexpression was induced by DOX in 17q1q*MYCN*-grafted animals (**Fig. 5b,c**). We found that both
276 subcutaneous and adrenal xenograft-derived tumours consisted of undifferentiated, small round cells
277 similar to tumours from transgenic Th-*MYCN* mice¹² (**Supplementary Fig. 10a**). Complementary to
278 our analysis in mice, we also performed exploratory xenografts of the same cell lines in zebrafish larvae.
279 To this end, we labelled our 17q1q*MYCN* and WT cells at D9 with a fluorescent dye (CellTrace Violet)
280 and injected them into the perivitelline space of zebrafish larvae on day 2 post fertilisation. Consistent
281 with our results in mice, we found that 17q1q*MYCN* cells survived longer in zebrafish than WT, which
282 had diminished in number at day 1 post injection (dpi) and were completely absent at 3 dpi
283 (**Supplementary Figs. 10b,c**). In contrast, 17q1q*MYCN* cells survived until 3 dpi, with 16% of larvae
284 even showing an increase in xenotransplant size. For comparison, injection of cells from a *MYCN*-
285 amplified NB cell line (SK-N-BE2C-H2B-GFP⁷¹) resulted in engraftment with subsequent tumour cell
286 growth in 84% of larvae (**Supplementary Fig. 10d**).

287 Together, our results demonstrate that CNA-carrying trunk NC cells transit into an
288 undifferentiated pre-tumourigenic state and acquire altered cellular properties reminiscent of cancer
289 hallmarks, such as increased proliferation, clonogenic and tumour formation capacity under the
290 influence of *MYCN* overexpression. Our data also suggest that CNAs enhance the pro-tumourigenic
291 effects of *MYCN*.

292

293 ***In vitro* differentiation of mutant hESCs captures NB tumour cell heterogeneity**

294 Given that cells in our *in vitro* model exhibit similarities to NB cells, we asked whether our data could
295 provide insights into cellular heterogeneity in NB tumours. To this end, we collected scRNA-seq data
296 from ten *MYCN*-amplified NB tumours from three independent sources^{15,17,23}. For each dataset, we
297 curated *MYCN*⁺ tumour cells and bioinformatically mapped these to our reference (**Fig. 6a**). For

298 example, this approach matched most cells from tumour dataset *Jansky_NB14*¹⁵ to clusters C13 and
299 C14, which correspond to late SYM-like cell states (**Fig. 6b**; cp. **Fig. 1**). A few cells also mapped to
300 clusters C11 and C12, i.e., cells with MES-like characteristics. The observed transcriptional
301 heterogeneity was surprising, given that most tumour cells appeared karyotypically homogeneous
302 (including a chr17q gain) and expressed *MYCN* (**Fig. 6b**).

303 Extending the *in vitro* reference mapping to all ten tumours portrayed a spectrum of *MYCN*-
304 amplified cells with a majority C13- or C14-like expression profile, and a subset of cells mapping to
305 other differentiating trunk NC cell states (**Supplementary Figs. 11a,b**). We observed apparent
306 differences between studies and tumour types, but to date there is only a limited amount of single-cell
307 data from NB tumours to robustly interpret such heterogeneity. We therefore sought to interrogate a
308 large collection of bulk RNA-seq data from NB tumours (SEQC^{72,73}). We first intersected the
309 development-related gene signatures (C1-C14 from **Fig. 1**) with marker genes identified for the tumour
310 cells that had been mapped to those respective clusters (from all 10 investigated samples; **Fig. 6c**;
311 **Supplementary Table 10**) and labelled each refined signature with an asterisk to distinguish it from
312 the original gene signature (e.g. signature C13* contained genes such as *DLC1* and *RORA*; **Fig. 6c**).
313 Applying these gene signatures to the NB tumour data, we found that expression signatures C5*
314 (sensory neuron-like cells) and C13* (differentiating SYM-like cells), jointly separated *MYCN*-
315 amplified and non-amplified tumours, as well as tumours at different clinical stages (**Fig. 6d**). The C13*
316 signature effectively stratified tumours with a good and poor survival across the entire cohort even when
317 corrected for INSS stage, *MYCN* amplification status, and age (Cox regression analysis with covariates;
318 **Fig. 6e**; **Supplementary Table 11**).

319 Jointly, these observations demonstrate that our *in vitro* model generates cell types that
320 transcriptionally resemble different NB cell subpopulations and that it facilitates the systematic
321 dissection of intra-tumour heterogeneity in NB tumours.

322 **323 CNAs and *MYCN* disrupt the configuration of NC regulatory circuits during differentiation**

324 NB tumours and cell lines are marked by a ‘re-wiring’ of non-coding regulatory elements (e.g.,
325 enhancers) giving rise to tumour-specific regulatory circuitries^{44,45,74-78}. We therefore hypothesised that
326 disruption of developmental TFs also underpins the aberrant differentiation observed in our mutant
327 hESCs (cp. **Figs. 2, 3**) and employed the assay for transposase-accessible chromatin followed by
328 sequencing (ATAC-seq)⁷⁹ to profile chromatin accessibility in the same samples used for scRNA-seq
329 analysis (n = 51; **Supplementary Table 1**). Chromatin accessibility serves as a proxy for the dynamic
330 regulatory DNA element activity during differentiation. For instance, the promoters of the hESC
331 regulator *POU5F1* and trunk NC regulator *SOX10* were accessible only at D0 and D9, respectively
332 (**Fig. 7a**), while the *PHOX2B* promoter exhibited reduced accessibility in 17q1q and 17q1q*MYCN* cells
333 at D19 consistent with impaired differentiation (**Fig. 7b**).

334 Unsupervised analysis of chromatin patterns on a global level showed that WT and 17q hESCs
335 changed consistently throughout differentiation (**Fig. 7c**). In contrast, 17q1q and 17q1qMYCN
336 appeared not to follow the same path as WT in this low-dimensional projection, in line the
337 differentiation defects observed in our previous analyses (cp. **Figs. 2b,c**). To delineate chromatin
338 changes in detail, we performed differential accessibility analysis between all differentiation stages per
339 cell line and between all cell lines at matched stages (**Supplementary Tables 12, 13**). As in our DEG
340 analysis, we found an increasing number of regions with altered accessibility in 17q (n = 477 regions),
341 17q1q (n = 2,826), and 17q1qMYCN (n = 6,663; **Fig. 7d**). In total, there were 45,583 regions with
342 differential accessibility in at least one comparison, which we divided into nine chromatin modules R1-
343 R9 (**Fig. 7e**). Modules R1-R7 reflect differentiation order, e.g., regions in module R1 were mostly
344 accessible at D0, and R6 comprises regions accessible at D14 and D19. Most changes observed in
345 mutant hESC-derivatives fell within these modules (**Supplementary Figs. 12a,b**). 17q1q and
346 17q1qMYCN cells failed to close chromatin that is usually specific to D9 (R4, R5) and conversely to
347 open chromatin regions indicative of late sympathoadrenal differentiation (R6, R7; **Supplementary**
348 **Fig. 12c**). Additionally, modules R8 and R9 comprised regions with reduced and increased accessibility
349 in mutant hESC derivatives, respectively, independently of differentiation stage.

350 We sought to annotate our chromatin modules by looking for overlaps with genomic regions
351 accessible in human tissues⁸⁰⁻⁸² (**Supplementary Table 14**). In line with our transcriptome data, we
352 found a stepwise change toward chromatin resembling differentiated tissues, e.g., neural tissues in R3-
353 R5 and mesenchyme/stroma in R6/R7 (**Supplementary Figs. 12d-f**). Next, we examined the identity
354 of genes near the chromatin modules (**Fig. 7f**). For each module, we found enrichments of specific
355 marker genes identified in our scRNA-seq analysis of WT trunk NC differentiation (i.e., clusters C1-
356 C14 from **Figs. 1b,c**). For example, chromatin module R7 (accessible in late differentiation stages, lost
357 in mutants) was linked to clusters C11/C12 (MES-like cells). Next, we examined TF binding motifs in
358 each module to identify potential upstream regulators (**Fig. 7g**). We found an enrichment of known
359 regulators of each developmental stage, e.g., TFs associated with trunk NC in R3-R5 (e.g., SOX10) and
360 with sympathetic neuron development in R6/R7 (e.g., PHOX2A/B)³⁹. Moreover, we found enriched
361 overlaps of modules R2/R4/R5/R8/R9 with super-enhancers identified in mesenchymal NB cell lines
362 or adrenergic super-enhancers (in the case of R8), depending on the source annotation used^{44,45}.
363 Furthermore, R7 and R9 overlapped super-enhancers associated with subsets of NB tumours⁷⁵ with
364 mesenchymal characteristics and with non-*MYCN*-amplified high-risk tumours, respectively (**Fig. 7h**).
365 No significant overlap was found with super-enhancers specific for *MYCN*-amplified NB. Finally, we
366 examined the accessibility of each module across a range of NB cell lines (**Supplementary Fig. 12g**).
367 As expected, we found that modules R1 and R2 (undifferentiated, early embryonic developmental
368 stages) and modules R4 and R5 (early trunk NC to sympathoadrenal differentiation) were not accessible
369 in NB cell lines, while modules R6-R8 (late sympathetic neurons and consistently open in mutants)
370 were often highly accessible in cell lines. Interestingly, R3 (accessible at NMP and NC stage) was

371 accessible in most NB cell lines examined except in those with mesenchymal characteristics (SK-N-AS
372 and SHEP; **Supplementary Fig. 12g**). Using data from other studies, we found that R6-R8 were also
373 accessible in non-NB cell lines and tissues, while R3 was only found accessible in brain tissue
374 (**Supplementary Fig. 12g**).

375 Together, our results suggest a systematic reprogramming of chromatin throughout trunk NC
376 differentiation. In cells with CNAs and *MYCN* overexpression, this orderly reconfiguration of chromatin
377 was severely disrupted in a manner similar to NB cells, providing a plausible mechanism for the link
378 between the observed developmental defects and tumour initiation.

379

380 **CNA/*MYCN*-driven cell identity loss is mediated by sets of developmental transcription factors**

381 Finally, we investigated the links between CNA/*MYCN*-induced changes in chromatin dynamics, gene-
382 regulatory networks, and the distorted differentiation trajectories observed at the transcriptional level.
383 In our scRNA-seq analyses, we had recorded a stepwise alteration of expression from WT to
384 17q1q*MYCN* at D9 comprising four gene sets: D9_1 – D9_4 (cp. **Figs. 3f**), which revealed *MYCN*-
385 driven disruptions of early NC and the sensory neuron lineage specification. We hypothesised that these
386 mutation-linked gene sets were also regulated by distinct TFs and therefore employed an algorithm to
387 identify TF targets based on correlated expression patterns⁸³ (**Fig. 8a**). This analysis identified *NR1D1*
388 and *TFAP4* as putative TF targets of *MYCN* (**Figs. 8b,c; Supplementary Figs. 13a,b; Supplementary**
389 **Table 15**). The nuclear receptor *NR1D1* has been shown to correlate with *MYCN* amplification in NB
390 patients^{84,85} and *TFAP4* inhibition leads to differentiation of *MYCN*-amplified neuroblastoma cells^{86,87},
391 supporting the validity of the inferred target genes.

392 We intersected the inferred lists of TF targets with the mutation-linked gene sets (D9_1 – D9_4)
393 and found an enrichment (**Fig. 8d; Supplementary Table 16**) of *MYCN*, *NR1D1*, *TFAP4*, and *ZIC2*
394 targets in D9_1 (highly expressed in 17q1q*MYCN*). Conversely, the gene set D9_2 (expressed in
395 WT/17q/17q1q) was enriched for targets of TFs expected at this stage of differentiation, e.g.
396 *SOX4/5/10*, *TFAP2A/B*, and nuclear receptors *NR2F1/2*. The expression of targets of these TFs
397 increased or decreased along the mutational spectrum, corroborating their association with the
398 mutations (**Fig. 8e**). While many TF targets switched expression rapidly with *MYCN* overexpression,
399 others showed a continuous pattern with up-/down-regulation already detectable in 17q and 17q1q, e.g.,
400 targets of vagal and early NC regulators *HOXB3* and *CDX2*⁸⁸ (up), or of sensory neurogenesis regulator
401 *NEUROD1*³⁹ (down). To aid interpretation, we visualised cell-line-specific interactions between TFs
402 and targets as edges in connected network diagrams (**Fig. 8f; Supplementary Fig. 13c**). These
403 diagrams showcased the emergence of a new subnetwork of TFs in 17q1q*MYCN* that centred on
404 *MYCN* and incorporated TFs like *NR1D1* and *TFAP4*. In contrast, a subnetwork involving NC-related
405 TFs such as *SOX10* and *TFAP2A/B* was lost in these cells. Intriguingly, downregulation of TFs linked
406 to sensory neuronal development (*NEUROD1*, *ONECUT1*) was visible already in 17q cells (**Fig. 8f**),
407 perhaps explaining why sensory neuron-like derivatives were less abundant in 17q cultures (**Fig. 2b**).

408 In 17q1q, we additionally observed upregulation of TFs related to early posterior NC specification
409 including HOXB3, LEF1, and CDX2, which was partially reversed (HOXB3) upon *MYCN*
410 overexpression (**Fig. 8f**). While many of the TFs implicated in these developmental gene-regulatory
411 networks are not or only weakly expressed in NB tumours (**Supplementary Fig. 14a**), we found that
412 the targets of *MYCN*-related TFs (based on our analysis) are highly expressed in *MYCN*-amplified
413 tumours (**Supplementary Fig. 14b**). Our analysis also revealed that the targets of 17q1q-related TFs
414 strongly are expressed in groups of tumours, but we could not determine whether these contained the
415 corresponding CNAs due incomplete annotations.

416 In summary, our data suggest a subtle rewiring of gene-regulatory networks in CNA-carrying
417 hESCs, which may be linked to the depletion of mature sensory NC derivatives and increased early
418 SCP signature found in our single-cell analyses (cp. **Fig. 2**). Overexpression of *MYCN* resulted in a
419 switch in favour of known NC-linked TFs downstream of *MYCN*.
420

421 **Discussion**

422 Although CNAs are a principal genetic hallmark of paediatric cancers, it has remained difficult to
423 determine their exact role in tumour initiation due to the lack of suitable human models. In this study,
424 we used hESCs carrying CNAs that are prevalent in NB (chr17q and chr1q gains). The NC is a transient
425 embryonic tissue that is inaccessible after birth; therefore, hESC differentiation allowed us to
426 experimentally study the effects of these mutations on human sympathoadrenal progenitors, the putative
427 cells-of-origin of NB.

428 We provide a comprehensive knowledge base of transcriptomic and epigenetic changes in this
429 model on a temporal (i.e., during differentiation) and a genetic (i.e., with different mutations) axis. Our
430 data show that chr17q1q gains impair trunk NC differentiation and potentiate an SCP-like gene
431 signature. In this aberrant cell state, overexpression of *MYCN* (mimicking *MYCN* amplification
432 commonly found along with chr17q/chr1q gains in NB tumours) leads to a complete derailment of
433 sympathoadrenal lineage specification, and a proliferative, tumour-like cellular phenotype that
434 correlates with the emergence of NB-like tumours *in vivo*. Moreover, chr17q1q gains were found to
435 enhance the *MYCN*-driven differentiation block and acquisition of tumourigenic hallmarks such as
436 proliferation, clonogenicity and resistance to apoptosis. In line with recent studies^{29,89}, we speculate that
437 CNAs provide an early selective advantage manifested by the expansion of undifferentiated cells, which
438 act subsequently as a NB-initiating entity upon a second oncogenic hit such as *MYCN* overexpression.

439 The accumulation of NB-associated lesions correlated with a failure to reprogram chromatin
440 during trunk NC differentiation. Upon gain of chr17q1q, cells lost TFs associated with sensory
441 differentiation (e.g., *NEUROD1*) and instead upregulated vagal NC TFs like HOXB3 and WNT-related
442 effector LEF1^{88,90}. *MYCN* overexpression on top of these CNAs abolished chromatin states indicative
443 of sympathoadrenal differentiation, and instead led to the induction of targets of NR1D1, TFAP4, and

444 other TFs of the reported NB regulatory circuitry^{44,45,74-78}. TFAP4 is a well-established downstream
445 effector of MYCN^{86,87}, and NR1D1 (Rev-erba) is a circadian rhythm and metabolic regulator, and a
446 downstream effector of MYCN hyperactivity in NB^{84,85}. Together with the appearance of sensory-
447 related signatures in NB tumours (C4* and C5*, **Fig. 6**) our “early *MYCN* onset” scenario reveals
448 previously uncharted disruptions of the early sensory NC lineage, which might complement the
449 currently prevailing model of dichotomous mesenchymal/adrenergic heterogeneity in NB^{11,44-46,78,91-94}.
450 Thus, our model will facilitate the functional dissection of these TFs via loss-/gain-of-function
451 approaches to decipher their crosstalk with *MYCN*/CNA-driven tumourigenesis.

452 Complementing earlier studies using cell lines and animal models^{12-14,18,19,22}, recent single-cell
453 transcriptomic analyses of NB tumours and metastases^{15-17,23} corroborated an origin of NB from
454 neuroblastic, SCP-like progenitors, and highlighted intra-tumour heterogeneity comprising subtypes of
455 tumour cells with adrenergic and mesenchymal properties. In our *in vitro* experiments, we also observed
456 cells expressing signatures of both cell types, suggesting that our model could be useful to
457 experimentally investigate the transition between these and other NB-relevant cell types, providing a
458 new scope into their role in therapy resistance⁹¹. Furthermore, *MYCN* overexpression (in conjunction
459 with chr17q/1q gains) in nascent trunk NC cells was sufficient to drive tumourigenic traits, suggesting
460 that in some cases NB initiation might occur before SCP/neuroblast emergence and that acquisition of
461 an SCP-like identity may also be a consequence of mutations in earlier stages rather than the origin. We
462 also observed that *MYCN* induction resulted in an apparent block of differentiation when activated at
463 other stages. In future, our cell models will provide the means to dissect the specific effects of *MYCN*
464 at different time points and in specific cell types.

465 In this study we exploited the phenomenon of culture adaptation of hESCs⁴⁹, to obtain sets of
466 cell lines with CNAs that are commonly observed in NB in an otherwise largely isogenic background.
467 Our detailed genetic analyses of the used cell lines revealed other mutations that had naturally arisen in
468 these cell lines (**Supplementary Table 4**), including a point mutation in the BCL6-interacting
469 corepressor *BCOR* (*BCOR*^{L1673F}). *BCOR* mutations have been previously observed in human induced
470 pluripotent stem cell cultures^{95,96} and NB patients with *BCOR* mutations exhibit a high frequency of
471 CNAs⁸⁹. *BCOR* mutations have also been reported together with CNAs in other cancers, e.g.,
472 retinoblastoma⁹⁷. It would be tempting to speculate that *BCOR* dysfunction might facilitate the ability
473 of cells to tolerate the emergence of certain CNAs; however, to date a causal relationship remains to be
474 established.

475 Our hESC-based model provides a tractable system for analysing tumour initiation events
476 within disease-relevant human embryonic cell-like populations. In this study, we focused on cell-
477 intrinsic transcriptional regulation since our cultures lack tumour-relevant, non-NC cell types (e.g.,
478 immune cells or Schwann cells) and do not recapitulate the structural and physical properties of the
479 human tumour micro- and macroenvironment⁹⁸⁻¹⁰¹. In the future, it will be possible to combine our

480 system with 3D co-culture approaches with defined cell types or to use biomimetic scaffolds to emulate
481 cell-cell interactions and extrinsic environmental influences.

482 In conclusion, this study unravels the developmental effects of NB-associated mutations and
483 proposes the progressive corruption of gene-regulatory networks by CNAs as an early step toward
484 tumour initiation by selection of undifferentiated progenitor phenotypes. Transformation is then
485 triggered by a second hit with *MYCN* overexpression, which tilts cells toward increased proliferation
486 and formation of aberrant cell types. Our data provide a direct link between CNAs that commonly
487 emerge in hESC cultures with impaired differentiation and the acquisition of tumourigenic hallmarks,
488 thus highlighting the importance of rigorous monitoring of such cultures prior to their use in disease
489 modelling or cell therapy application in line with recent recommendations from the International
490 Society for Stem Cell Research^{49,102}.

491 **Online Methods**

492

493 **Human embryonic stem cell (hESC) cell culture and differentiation**

494

495 Cell lines and cell culture

496 We employed H7 and H9 hESCs as karyotypically normal, female WT controls³⁸. Use of human
497 embryonic cells has been approved by the Human Embryonic Stem Cell UK Steering Committee
498 (SCSC23-29). Their isogenic chr17q counterparts carry a gain in chromosome 17q (region q27q11) via
499 an unbalanced translocation with chromosome 6 (H7) or a gain of 17q via an unbalanced translocation
500 with chromosome 21 with breakpoints at 17q21 and 21p11.2 (H9)^{50,103}. The chr17q1q hESC lines were
501 clonally derived, after their spontaneous emergence following the genetic modification of chr17q
502 hESCs. The H7 chr17q1q-MYCN hESC line was generated by introducing a TetOn-PiggyBac plasmid
503 (PB-TRE3G-MYCN, plasmid#104542, Addgene) carrying the wild-type version of the *MYCN* gene¹⁰⁴
504 while the H9 chr17q1q-MYCN and H7 WT-MYCN and 17q-MYCN hESC lines were produced using
505 a Tet-On “all-in-one” inducible expression cassette containing the TRE3G promoter driving the
506 expression of *MYCN* with a 2A peptide-linked fluorescent reporter (mScarlet) and a pCAG promoter-
507 driven rtTA3G transactivator^{105,106}. Plasmids were introduced via nucleofection using either the Neon
508 NxT Electroporation System (Thermo Fisher Scientific) or the Lonza 4D-Nucleofector System. In the
509 case of the latter, the Amaxa 4D-Nucleofector Basic Protocol for Human Stem Cells was employed
510 with the following modification: 2x10⁶ cells were transfected with 2 µg plasmid in 100 µl
511 Nucleocuvettes. All cell lines were tested regularly for mycoplasma and expression of pluripotency
512 markers. Karyotypic analysis was carried out using G-banding (number of cells examined = 20-30). A
513 rapid qPCR assay was also regularly employed to detect the emergence of common CNAs such as
514 chr17q and 1q gains in our hESC lines¹⁰⁷. hESCs were cultured routinely in feeder-free conditions at
515 37°C and 5% CO₂ in E8 media¹⁰⁸ complemented with GlutaMax (Cat# 35050061, Thermo Fisher
516 Scientific) on Vitronectin (Cat# A14700, Thermo Fisher Scientific) or on Geltrex LDEV-Free Reduced
517 Growth Factor Basement Membrane Matrix (Cat# A1413202, Thermo Fisher Scientific) as an
518 attachment substrate. All hESC lines described in this manuscript are available upon request and
519 completion of a Material Transfer Agreement.

520

521 Differentiation toward trunk neural crest

522 hESC differentiation toward trunk NC and its derivatives was performed using a modified version of
523 the protocol described previously^{35,36}. Briefly, hESCs were harvested using StemPro Accutase Cell
524 Dissociation Reagent (Cat# A1110501, Thermo Fisher Scientific) and plated at 60,000 cells/cm² in
525 N2B27 medium supplemented with 20 ng/ml of FGF2 (Cat# 233-FB/CF, R&D) and 4 µM of CHIR
526 99021 (Cat# 4423, Tocris) and 10 µM of Rock Inhibitor (Y-27632) (Cat# A11001, Generon) in a
527 volume of 300µl/cm². The N2B27 medium consisted of 50:50 DMEM F12 (Merck Life Science /
528 Neurobasal medium (Gibco) and 1x N2 supplement (Cat# 17502048, Invitrogen), 1x B27
529 (Cat#17504044, Invitrogen), 1x GlutaMAX (Cat# 35050061, Thermo Fisher Scientific), 1x MEM Non-
530 essential amino acids (NEAA; Cat#11140050, Thermo Fisher Scientific), 50 µM 2-Mercaptoethanol
531 (Cat# 31350010, Thermo Fisher Scientific). After 24 hours, media was refreshed removing the Rock
532 Inhibitor and cells were cultured for a further 2 days in FGF2/CHIR to generate NMPs (300µl/cm²).
533 NMPs at D3 were then re-plated at 50,000 cells/cm² (H7) or 40,000 cells/cm² (H9) in neural crest
534 inducing medium consisting of DMEM/F12, 1x N2 supplement, 1x GlutaMAX, 1x MEM NEAA, the
535 TGF-beta/Activin/Nodal inhibitor SB-431542 (2 µM, Cat# 1614, Tocris), CHIR99021 (1 µM, Cat#
536 4423, Tocris), BMP4 (15ng/ml, Cat# PHC9534, Thermo Fisher Scientific), the BMP type-I receptor
537 inhibitor DMH-1 (1 µM, Cat# 4126, Tocris), 10 µM of Rock Inhibitor (Y-27632) on Geltrex LDEV-

538 Free Reduced Growth Factor Basement Membrane Matrix (Cat# A1413202, Thermo Fisher Scientific)
539 in a volume of 300 μ l/cm². 48 hours later (D5), media was replaced removing the Rock Inhibitor. Media
540 was refreshed at D7 and D8 increasing volume to 500 μ l/cm². On D5, the expression of MYCN was
541 induced by supplementing the neural crest media with 100ng/ml (H7-17q1q-MYCN), 200ng/ml (H7
542 WT-MYCN, 17q-MYCN), or 1000 ng/ml (H9-derived lines) of Doxycycline (Cat# D3447, Merck). On
543 D9, cells were re-plated at 150,000-250,000 cells/cm² in plates coated with Geltrex (Thermo Fisher
544 Scientific) in the presence of medium containing BrainPhys (Cat# 05790, Stem Cell Technologies), 1x
545 B27 supplement (Cat# 17504044, Invitrogen), 1x N2 supplement (Cat# 17502048, Invitrogen), 1x
546 MEM NEAA (Cat# 11140050, Thermo Fisher Scientific) and 1x Glutamax (Cat# 35050061, Thermo
547 Fisher Scientific), BMP4 (50 ng/ml, Cat# PHC9534, Thermo Fisher Scientific), recombinant SHH
548 (C24II) (50 ng/ml, Cat# 1845-SH-025, R and D) and purmorphamine (1.5 μ M, Cat# SML0868, Sigma)
549 and cultured for 5 days (=D14 of differentiation) in a volume of 250 μ l/cm². Media was refreshed daily.
550 For further sympathetic neuron differentiation, D14 cells were switched into a medium containing
551 BrainPhys neuronal medium (Stem Cell Technologies), 1x B27 supplement (Invitrogen), 1x N2
552 supplement (Invitrogen), 1x NEAA (Thermo Fisher Scientific) and 1x Glutamax (Thermo Fisher
553 Scientific), NGF (10 ng/ml, Cat#450-01 Peprotech), BDNF (10 ng/ml, Cat# 450-02, Peprotech) and
554 GDNF (10 ng/ml, Cat# 450-10, Peprotech) for a further 5-14 days (volume of 300 μ l/cm² changing
555 media every other day). Volume was increased up to 500 μ l/cm², depending on cell density, after day
556 17 of differentiation.
557

558 Immunostaining

559 Cells were fixed using 4% PFA (P6148, Sigma-Aldrich) at room temperature for 10 minutes, then
560 washed twice with PBS (without Ca²⁺, Mg²⁺) to remove any traces of PFA and permeabilised using a
561 PBS supplemented with 10% FCS, 0.1% BSA and 0.5% Triton X-100 for 10 minutes. Cells were then
562 incubated in blocking buffer (PBS supplemented with 10% FCS and 0.1% BSA) for 1 hour at RT or
563 overnight at 4°C. Primary and secondary antibodies were diluted in the blocking buffer; the former were
564 left overnight at 4°C and the latter for 2 hours at 4°C on an orbital shaker. Samples were washed twice
565 with blocking buffer between the primary and secondary antibodies. Hoechst 33342 (H3570,
566 Invitrogen) was added at a ratio of 1:1000 to the secondary antibodies' mixture to label nuclei in the
567 cells. We used the following primary antibodies SOX10 (D5V9L) (Cell Signalling, 89356S, 1:500);
568 HOXC9 (Abcam, Ab50839, 1:50); MYCN (Santa Cruz, SC-53993, 1:100); PHOX2B (Santa Cruz, SC-
569 376997, 1:500); MASH1 (ASCL1) (Abcam, Ab211327, 1:100 or Santa Cruz, SC-374104, 1:500); Ki67
570 (Abcam, Ab238020, 1:100); PERIPHERIN (Sigma-Aldrich, AB1530, 1:400); TH (Santa Cruz, 25269,
571 1:500); cleaved Caspase 3 (Asp175) (Cell Signalling, 9661S, 1:400), yH2AX (Cell Signalling,
572 S139/9718S, 1:400). Secondary antibodies: Goat anti-Mouse Affinipure IgG+IgM (H+L) AlexaFluor
573 647 (Stratech (Jackson ImmunoResearch) 115-605-044-JIR, Polyclonal 1:500); Donkey anti-Rabbit
574 IgG (H+L) Alexa Fluor 488 (Invitrogen, A-21206, 1:1000).
575

576 Intracellular flow cytometry staining

577 Cells were detached and resuspended as single cells using StemPro Accutase Cell Dissociation Reagent
578 (Cat# A1110501, Thermo Fisher Scientific) and then counted. Next, 10 million cells/ml were
579 resuspended in 4% PFA at room temperature for 10 minutes. Then cells were washed once with PBS
580 (without Ca²⁺, Mg²⁺) and pelleted at 200g. Cells were resuspended in PBS at 10 million/ml and used
581 for antibody staining. Permeabilisation buffer (0.5% Triton X-100 in PBS with 10% FCS and 0.1%
582 BSA) was added to each sample, followed by incubation at room temperature for 10 minutes. Samples
583 were then washed once with staining buffer (PBS with 10% FCS and 0.1% BSA) and pelleted at 200g.
584 Then samples were resuspended in staining buffer containing pre-diluted primary antibodies: SOX10
585 (D5V9L) (1:500; 89356S, Cell Signalling); HOXC9 (1:50; Ab50839, Abcam); cleaved Caspase 3

586 (Asp175) (Cell Signalling, 9661S, 1:400). The samples were left at 4°C on an orbital shaker overnight.
587 Then, the primary antibodies were removed, and samples were washed two times with staining buffer.
588 After washings, staining buffer with pre-diluted secondary antibody was added to the samples and
589 incubated at 4°C for 2 hours. The secondary antibodies used were Goat anti-Mouse Affinipure IgG+IgM
590 (H+L) AlexaFluor 647 (Stratech (Jackson ImmunoResearch) 115-605-044-JIR, Polyclonal 1:500);
591 Donkey anti-Rabbit IgG (H+L) Alexa Fluor 488 (Invitrogen, A-21206, 1:1000). Finally, samples were
592 washed once with staining buffer, resuspended in staining buffer and analysed using a BD FACSJazz
593 or a CytoFLEX (Beckman Coulter) flow cytometer. A secondary antibody-only sample was used as a
594 control to set the gating.
595

596 Cell cycle analysis

597 The 5-ethynyl-2'-deoxyuridine (EdU) assay was performed following the manufacturer's instructions
598 (Thermo Fisher Scientific, C10633 Alexa Fluor 488). We used 10µM of Edu for a 2-hour incubation.
599 Cells were analysed in the flow cytometer (BD FACSJazz) using the 405 nm laser to detect the
600 Hoechst/DAPI staining and 488 nm to detect the EdU staining.
601

602 Low-density plating

603 Day 9 trunk NC cells derived from hESCs as described above were harvested and plated at a density of
604 500 cells/cm² in plates pre-coated with Geltrex LDEV-Free Reduced Growth Factor Basement
605 Membrane Matrix (Cat# A1413202, Thermo Fisher Scientific) in the presence of DMEM/F12 (Sigma-
606 Aldrich), 1x N2 supplement, 1x GlutaMAX, 1x MEM NEAA, the TGF-beta/Activin/Nodal inhibitor
607 SB-431542 (2 µM, Tocris), CHIR99021 (1 µM, Tocris), BMP4 (15ng/ml, Thermo Fisher Scientific),
608 the BMP type-I receptor inhibitor DMH-1 (1 µM, Tocris) and ROCK inhibitor Y-27632 2HCl (10 µM)
609 (300µl/cm²). The culture medium was replaced the following day with medium containing BrainPhys
610 (Stem Cell Technologies), 1x B27 supplement (Invitrogen), 1x N2 supplement (Invitrogen), 1x NEAA
611 (Thermo Fisher Scientific) and 1x Glutamax (Thermo Fisher Scientific), BMP4 (50 ng/ml, Thermo
612 Fisher Scientific), recombinant SHH (C24II) (50 ng/ml, R and D) and Purmorphamine (1.5 µM, Sigma)
613 (250µl/cm²). Plates were then incubated at 37°C at 5% CO₂. The media was refreshed every 48 hours.
614 After 5 days of culture, cells were fixed (PFA 4%/10min) and stained with Hoechst 33342 (Cat# H3570,
615 Invitrogen) for 5 minutes. Colonies were detected using an InCell Analyser 2200 (GE Healthcare) at a
616 4X magnification. Images were processed using Cell Profiler.
617

618 DNA damage analysis

619 DNA damage was measured by assessing the phosphorylation state of the histone H2AX on the SerCells
620 were fixed and immunostained using the anti-γH2AX as described above at different time points.
621 Stained cells were imaged using the InCell Analyser 2200 (GE Healthcare) at 40X magnification. Image
622 analysis was performed using a pipeline in CellProfiler that allowed us to detect the number of foci of
623 γH2AX antibody per nuclei.
624

625 Quantitative real-time PCR

626 RNA extractions were performed using the total RNA purification kit (Norgen Biotek, 17200)
627 according to the manufacturer's instructions. cDNA synthesis was performed using the High-Capacity
628 cDNA Reverse Transcription kit (ThermoFisher, 4368814). Quantitative real-time PCR was performed
629 using PowerUp SYBR master mix (ThermoFisher, A25780) and run on a QuantStudio 12K Flex
630 (Applied Biosystems).
631
632

633 **Mouse experiments**

634

635 *Cell preparation for xenotransplantation*

636 H7 wild type, 17q1q and 17q1qMYCN hESCs were differentiated up to day 9 following the protocol
637 described above. Cells were harvested using Accutase to create a single cell suspension, counted and
638 resuspended with media containing Matrigel before injection.

639

640 *Mice and in vivo experiments*

641 All animal experiments were approved by The Institute of Cancer Research Animal Welfare and Ethical
642 Review Body and performed in accordance with the UK Home Office Animals (Scientific Procedures)
643 Act 1986, the UK National Cancer Research Institute guidelines for the welfare of animals in cancer
644 research and the ARRIVE (animal research: reporting in vivo experiments) guidelines. Female NSG
645 mice were obtained from Charles River and enrolled into trial at 6-8 weeks of age. Mice were
646 maintained on a regular diet in a pathogen-free facility on a 12h light/dark cycle with unlimited access
647 to food and water.

648

649 *Subcutaneous xenograft*

650 One million cells with 50% Matrigel were injected subcutaneously into the right flank of NSG mice
651 (female; 6-8 weeks old) and allowed to establish a murine xenograft model. Studies were terminated
652 when the mean diameter of the tumour reached 15mm. Tumour volumes were measured by Vernier
653 caliper across two perpendicular diameters, and volumes were calculated according to the formula
654 $V=4/3\pi [(d1+d2)/4]3$; where d1 and d2 were the two perpendicular diameters. The weight of the mice
655 was measured every 2 days. Mice were fed with either regular diet or DOX diet (chow containing 20 g
656 of DOX per kg of diet) to induce the expression of *MYCN*.

657

658 *Orthotopic (adrenal)xenograft*

659 100,000 cells with 50% Matrigel were injected into the right adrenal gland of NSG mice (female; 6-8
660 weeks old) and allowed to establish a murine xenograft model. Detection of xenografted tumours was
661 performed by magnetic resonance imaging (MRI). The weight of the mice was measured every 2 days.
662 Mice were fed with either standard diet or DOX diet (chow containing 20 g of DOX per kg of diet) to
663 induce the expression of *MYCN*. Magnetic resonance images were acquired on a 1 Tesla M3 small
664 animal MRI scanner (Aspect Imaging). Mice were anaesthetised using isoflurane delivered via oxygen
665 gas and their core temperature was maintained at 37 °C. Anatomical T2-weighted coronal images were
666 acquired through the mouse abdomen, from which tumour volumes were determined using
667 segmentation from regions of interest (ROI) drawn on each tumour-containing slice using the Horos
668 medical image viewer.

669

670 *Pathology*

671 Tissue sections were stained with haematoxylin and eosin (H&E) or specific antibodies (MYCN,
672 Merck; Ki67, BD Pharmingen). Immunohistochemistry was performed using standard methods.
673 Briefly, 5µm sections were stained with antibodies, including heat-induced epitope retrieval of
674 specimens using citrate buffer (pH 6) or EDTA buffer.

675

676

677 **Zebrafish experiments**

678

679 Cell preparation for xenotransplantation

680 Pre-differentiated neural crest cells were frozen on D7 during their *in vitro* differentiation as described
681 above, shipped, and subsequently thawed in DMEM at room temperature. All cells were retrieved in
682 complete neural crest media as described above and plated onto Geltrex-coated wells in the presence of
683 Rock inhibitor (50 μ M) for 24 hours. 17q1q cells were additionally treated with DOX (100ng/ml) to
684 induce *MYCN* expression. On D8, media were refreshed, and respective DOX treatment was continued
685 but Rock inhibitor was discontinued. On D9, cells were collected for xenografting experiments and
686 labeled with CellTraceTM Violet (Invitrogen, Thermo Fisher Scientific) for imaging. For this, cells were
687 harvested with Accutase (PAN-Biotech) and resuspended at a concentration of 1*10⁶ cells/ml in PBS.
688 CellTraceTM Violet was added to a final concentration of 5 μ M for an incubation time of 10 minutes at
689 37°C in the dark. The cell-staining mixture was filled up with 5 volumes of DMEM supplemented with
690 10% FBS and the suspension was incubated for 5 min. After gentle centrifugation (5 min, 500 g, 4°C)
691 the collected cells were resuspended in fresh DMEM medium supplemented with 10% FBS and
692 incubated at 37°C for 10 min. Adhering/ clumping cells were separated via a 35 μ m cell strainer. The
693 cell number was adjusted to a concentration of 100 cells/ml in PBS. The freshly stained cells were kept
694 on ice until transplantation. SK-N-BE2C-H2B-GFP cells⁷¹ (a kind gift of F. Westermann) were cultured
695 in RPMI 1640 medium with GlutaMAXTM (Cat# 61870044, Thermo Fisher Scientific) supplemented
696 with 10 % (v/v) fetal bovine serum (Cat# F7524500ML, Sigma), 80 units/ml penicillin, 80 μ g/ml
697 streptomycin (Cat# 15140122, Thermo Fisher Scientific), 1 nM sodium pyruvate (Cat# P0443100,
698 PAN-Biotech), 25 mM Hepes buffer (PAN-Biotech) and 8 μ l/ml G418. For zebrafish
699 xenotransplantations, the GFP-labelled cells were harvested and resuspended in PBS at a density of
700 10⁵/ μ l as described above.

701

702 Zebrafish strains, husbandry, and xenotransplantation

703 Zebrafish (*Danio rerio*) were reared under standard conditions in a 14 hours / 10 hours light cycle
704 according to the guidelines of the local authorities (Magistratsabteilung MA58 of the municipal
705 administration of Vienna, Austria) under licenses GZ:565304-2014-6 and GZ:534619-2014-4. For
706 xenotransplantation experiments, the pigment mutant strain *mitfa*^{b692/b692}; *ednrba*^{b140/b140} was used.
707 *mitfa*^{b692/b692}; *ednrba*^{b140/b140} embryos raised at 28°C were anaesthetised with Tricaine (0.16 g/l Tricaine
708 (Cat# E1052110G, Sigma-Aldrich), adjusted to pH 7 with 1M Tris pH 9.5, in E3) and xenotransplanted
709 at 2 days post fertilization (dpf) as previously described¹⁰⁹. For xenotransplantation, a micromanipulator
710 (Cat# M3301R, World Precision Instruments) holding a borosilicate glass capillary (Cat# GB100T-8P,
711 without filament, Science Products) connected to a microinjector (FemtoJet 4i, Eppendorf) was used.
712 Transplantation capillaries were pulled with a needle puller (P-97, Sutter Instruments) and loaded with
713 approximately 5 μ l of tumour cell suspension. Cells were injected into the perivitelline space (PVS) of
714 larvae. Visual inspection was carried out at 2 hours post-injection on an Axio Zoom.V16 fluorescence
715 microscope (Zeiss, Jena) and only correctly injected larvae were used in subsequent experiments and
716 further maintained at 34°C.

717

718 Automated imaging and quantification

719 One day post injection (1dpi) and 3dpi xenografted larvae were anaesthetised in 1x Tricaine and
720 embedded in a 96-well ZF plate (Hashimoto Electronic Industry) with 0.5 % ultra-low gelling agarose
721 (Cat# A2576-25G, Sigma-Aldrich) for automated imaging on a high-content imager (Operetta CLS,
722 PerkinElmer). Images were acquired with a 5x air objective. Exposure times for brightfield images was
723 40ms at 10% LED power. CellTrace Violet was recorded with an excitation of 390-420 nm at 100%
724 LED power and detection at 430-500 nm using an exposure time of 600ms. GFP was excited with 460-

725 490nm and detected at 500-550nm with an exposure time of 400ms. 23 planes with a distance of 25 μm
726 were imaged per field of view of the laterally orientated larvae to cover the whole tumour. Tumour size
727 was quantified with Harmony Software 4.9 (PerkinElmer).

728

729

730 **Ethical use of data**

731

732 This study did not generate any new genomics data from patients. However, we performed re-analyses
733 of previously published (sc)RNA-seq and SNP-array data that was previously collected at our
734 institutions. The collection and research use of human tumour specimen was performed according to
735 the guidelines of the Council for International Organizations of Medical Sciences (CIOMS) and World
736 Health Organisation (WHO) and has been approved by the ethics board of the Medical University of
737 Vienna (Ethikkommission Medizinische Universität Wien; EK2281/2016, 1216/2018, 1754/2022).
738 Informed consent has been obtained from all patients or parents/guardians/legally authorized
739 representatives. The age-adapted informed consent for the CCRI Biobank covers the use of left over
740 materials from medically necessary surgery or biopsy, which after completion of routine diagnostic
741 procedures is biobanked (EK1853/2016) and available for research purposes, including genetic
742 analysis, that are further specified in EK1216/2018 and EK1754/2022: to conduct genetic and
743 transcriptomic analysis and link to clinical data for survival analysis. All data obtained from external
744 sources derived from studies where informed consent was given for broad research use.

745

746

747 **Whole-exome sequencing**

748

749 Library generation and sequencing

750 Genomic DNA (gDNA) from cell lines was isolated using a desalting method and library preparation
751 was performed with 100ng gDNA and the Enzymatic Fragmentation (undifferentiated hESC lines;
752 **Supplementary Figs. 4b,c**) or Enzymatic Fragmentation 2.0 (cells after differentiation; **Fig. 4e**,
753 **Supplementary Figs. 9f,g**) kit, and Twist Universal Adapter System (Twist). For whole-exome
754 sequencing, the libraries were pooled and enriched with the Exome v1.3 and RefSeq (Human
755 Comprehensive Exome) spike-in capture probes (Twist) according to the manufacturer's protocols.
756 Libraries were quantified (Qubit 4 Fluorometer) and quality-checked on 4200 TapeStation and 2100
757 Bioanalyzer automated electrophoresis instruments (Agilent) and diluted before sequencing by the
758 Biomedical Sequencing Facility at CeMM on an Illumina NovaSeq SP flowcell in 2x100bp paired-end
759 mode (median coverage 87.2; **Supplementary Table 1**).

760

761 Variant identification and annotation

762 Raw reads were processed using the nf-core *sarek*^{110,111} WES pipeline version 2.7.2. Variant calling was
763 performed in a tumour-normal matched mode, with the parental H7 line serving as the matched normal
764 sample. Three variant callers, *Mutect2*, *Strelka*, and *Manta*^{112–114}, were employed for comprehensive
765 variant identification. Resulting VCF files from *Mutect2* and *Strelka* were normalised using *bcftools*
766 norm (v1.9)¹¹⁵ and subsequently annotated using the Ensembl *Variant Effect Predictor* (VEP; v99.2)¹¹⁶.
767 The identified variants were filtered based on the default quality control measures implemented in each
768 tool (*FILTER* column in the VCF contains "PASS"). To identify biologically relevant variants a filtering
769 strategy was applied that was partly inspired by MAPPYACTS¹¹⁷: (i) exclude variants for which
770 GERMQ or STRQ Phred-scaled values are < 30; (ii) exclude variants with a population allele frequency
771 of over 0.1% (in 1000 Genomes or gnomAD); (iii) only include variants that have any of
772 "coding_sequence_variant", "frameshift_variant", "incomplete_terminal_codon", "inframe_deletion",

773 "inframe_insertion", "missense_variant", "protein_altering_variant", "start_lost", "stop_gained",
774 "stop_lost" as Consequence; (iv) only include variants that have any of IMPACT == HIGH, SIFT ==
775 "deleterious", PolyPhen == probably_damaging or damaging^{118,119}; (v) exclude variants that have a
776 variant allele frequency <= 5%.

777

778 Copy number calling

779 CNAs were called by Sequenza (version 3.0.0)¹²⁰. GC content was calculated for hg38 using *sequenza-*
780 *utils gc_wiggle*. Depth ratio and B-allele frequency information was calculated using *bam2seqz* for each
781 non-parental cell line using the parental cell line as a normal reference, single nucleotide variants
782 (SNVs) were considered heterozygous if the allele frequency was in the range 0.4 to 0.6 (–het 0.4).
783 Data was then binned using the *seqz_binning* command. Autosomes and the X chromosome were then
784 extracted using Sequenza (*sequenza.extract*) and, as the cell lines are not contaminated with normal
785 cells as is common place in tumour tissue samples, cellularity was tested in a range of 1 to 1.0002 to
786 ensure a pure solution was produced by Sequenza. Copy number profiles were then plotted using
787 ComplexHeatmaps¹²¹. Breakpoints were considered telomeric if they were within 1Mbp of the
788 beginning or end of the chromosome.

789

790 Phylogenetic analysis

791 Mutations called by Mutect2¹²² with the PASS filter and of VARIANT_CLASS SNV as annotated by
792 VEP¹¹⁶ that overlapped with the exome target panel without padding were used for phylogenetic
793 analysis. Mutations were required to have a minimum variant allele frequency (VAF) of 0.2 to ensure
794 only high frequency clonal mutations were included in the phylogeny. Phylogenetic trees were
795 constructed using parsimony and the *phangorn* R package¹²³. The parsimony ratchet method (*pratchet*)
796 was used to search for the best tree and the tree was rooted on the parental cell line. Branch lengths
797 were calculated using the *acctran* function. Distance between tree tips was calculated using the *distTips*
798 function in the *adephylo* R package¹²⁴. Phylogenetic trees were plotted using *ggtree*¹²⁵.

799

800 Pre-processing and analysis of NB SNP-array data

801 SNP-array data from tumour or bone marrow obtained at diagnosis from Austrian cases with INSS stage
802 4 high-risk NB⁵¹ were re-analysed for chr17 and chr1 CNAs using VARAN-GIE (v0.2.9), yielding 88
803 samples with CNAs (>10kb) on at least one of these chromosomes. Genomic segments were manually
804 curated and plotted using *ggplot2*¹²⁶ (v3.3.5). The available CNA annotations based on the human
805 genome reference hg19. Because of this, the breakpoint annotations for our own cell lines have been
806 brought from hg38 to hg19 using *liftOver* from the R package *rtracklayer* (v1.54.0).

807

808

809 **Single-cell RNA sequencing (10x Genomics)**

810

811 Library generation and sequencing

812 Single-cell suspensions were barcoded using oligo-conjugated lipids following the MULTI-seq
813 workflow and frozen live¹²⁷ for G1-G13 (note, G2 was removed due to a technical failure), or frozen
814 live and barcoded after thawing using the CELLPLEX (10x Genomics) workflow for G14-G27. After
815 thawing cells were stained with DAPI. A maximum of 10,000 live cells per sample were sorted with a
816 FACS-Aria v3 and pooled in sets of 3 or 4 samples by differentiation stage (from 3-5 independent
817 replicate differentiation experiments). Each pooled group was processed using the 10X Genomics
818 Single Cell 3' v3.1 workflow following the manufacturer's instructions. Enriched barcode libraries were
819 indexed following the MULTI-seq workflow¹²⁷. After quality control, libraries were sequenced on the

820 Illumina NovaSeq S4 (G1-13) or S2 (G14-27) platform in 2x150bp paired-end mode. **Supplementary**
821 **Table 1** includes an overview of sequencing data and performance metrics.

822
823 Raw data processing and alignment
824 Raw sequencing data were processed with the *CellRanger multi* v7.1.0 software (10x Genomics) for
825 cell-level demultiplexing and alignment to the human reference transcriptome (*refdata-gex-GRCh38-*
826 *2020-A* assembly provided by 10x Genomics). Following initial data processing, all subsequent
827 analyses were performed in R (v4.1.3) using Bioconductor packages and the *Seurat*^{128–130} (v4.1.0)
828 package.

829
830 Default basic processing
831 We applied processing of scRNA-seq data in many instances across this manuscript. Unless parameters
832 are otherwise specified, the default processing of scRNA-seq counts involved the following steps.
833 Counts were normalised for read depth using Seurat's *SCTransform*¹³¹ v0.3.3 (parameters:
834 *method*="glmGamPoi"; *variable.features.n*=5000), followed by *RunPCA* (keeping the top 50
835 components), and inference of cell neighbourhoods by *FindNeighbors* on the PCA reduction. Finally,
836 Uniform Manifold Approximation and Projection (UMAP) was performed using Seurat's *RunUMAP*
837 function with default parameters. Clustering was performed using *FindClusters*.
838

839 Quality control
840 For each dataset, we first assessed technical covariates and characteristic expression profiles separately.
841 We kept cells with less than 15% mitochondrial UMI counts, and at least 1000 detected genes and
842 applied basic scRNA-seq processing and clustering of the cells (*SCTransform*¹³¹ v0.3.3, parameters:
843 *method*="glmGamPoi"). Cell cycle scoring was calculated as recommended by Seurat and added as a
844 variable to regress in *SCTransform* (*vars.to.regress*="ccvar"). We used clusters devoid of markers
845 and/or characterised by abnormally high mitochondrial expression, to derive a library-specific UMI
846 count and mitochondrial percentage threshold for high-quality cells (thresholds for counts /
847 mitochondrial percentage: G1: 3162/10%; G3: 10000/7.5%; G4: 10000/8%; G5: 3162/10%; G6:
848 10000/8%; G7: 12589/8%; G8: 7943/10%; G9: 7079/10%; G10: 3981/7.5%; G11: 3981/10%; G12:
849 5012/10%; G13: 10000/10%; G14: 5500/13%; G15: 3500/5%; G16: 3000/8%; G17: 2000/8%; G18:
850 3500/10%; G19: 1800/6%; G20: 3000/15%; G21: 6000/8%; G22: 5000/6%; G23: 3000/6%; G24:
851 1500/6%; G25: 3500/5%; G26: 2000/10%; G27: 3000/15%). In addition, empty and doublet droplets
852 were flagged with *Emptydrops*¹³² (v1.14.2; default parameters) and *scDblFinder*¹³³ (v1.8.0; parameters:
853 *dbr*=0.01), respectively. We retained only cells with *Emptydrops* *FDR*>0.05 and individual *scDblscore*
854 cutoffs for the datasets were: G1: 0.01; G3: 0.016; G4: 0.005; G5: 0.005; G6: 0.003; G7: 0.005; G8:
855 0.005; G9: 0.005; G10: 0.005; G11: 0.005; G12: 0.005; G13: 0.005; G14: 0.005; G15: 0.005; G16:
856 0.0075; G17: 0.002; G18: 0.007; G19: 0.00375; G20: 0.01; G21: 0.007; G22: 0.007; G23: 0.0125; G24:
857 0.003; G25: 0.007; G26: 0.005; G27: 0.007.
858

859 Sample demultiplexing
860 To demultiplex cells belonging to different pooled samples, we used deMULTIplex2¹³⁴ (v1.0.1) with
861 default parameters on each dataset using the tag counts from *CellRanger multi*. All non-singlet cells
862 were filtered out from the dataset.
863

864 Normalisation, clustering, and marker gene analysis for the main dataset
865 Raw UMI counts were normalised using Seurat's *SCTransform*¹³¹ (parameters:
866 *variable.features.n*=5000, *method*="glmGamPoi", *vars.to.regress*="ccvar") to account for
867 differences in sequencing depth and cell cycle phase (the variable "ccvar" variable was calculated as

868 the difference of S and G2/M scores using Seurat's *CellCycleScoring* method with default parameters).
869 To integrate data from 3-5 independent differentiation experiments (replicates; **Supplementary Table**
870 **1**), we used *scVI*¹³⁵ (v0.20.3; parameters: *n_epochs* = 50) using 5000 highly variable features of the
871 input data with Python 3.11 via reticulate (v1.24). Nearest neighbours were identified using Seurat's
872 *FindNeighbors* function (parameters: *k*=30) on the ten scVI components. The same scVI reduction was
873 used to find a low dimensionality UMAP projection using Seurat's RunUMAP for both the WT-only
874 (*n.neighbors*=50, *min.dist*=.5, *dims*=1:8) and full dataset (*n.neighbors*: 30, *min.dist*=0.4, *dims*=1:8
875 *method*="umap-learn", *metric*="correlation"). Clusters on the UMAP projection were defined using
876 Seurat's *FindClusters* (parameters [full dataset]: *resolution*=0.6, parameters [WT-only]:
877 *resolution*=0.4, *algorithm*=4). Neighbouring clusters that shared functional markers were merged
878 manually and relabelled to roughly reflect differentiation order. Finally, markers for each cluster were
879 identified using the *FindAllMarkers2* function (*DElegate*¹³⁶ v1.1.0; parameters: *method*="deseq",
880 *min_fc*=1, *min_rate*=0.5, *replicate_column*="replicate"), with each cluster compared to all the other
881 cells in the dataset. Genes with an adjusted P-value less than 0.05 were selected as markers.
882 (**Supplementary Tables 2, 8**). To compare mutant and wild-type cells, we filtered the integrated dataset
883 to cells from D9 and identified pairwise DEGs ($P_{adj} \leq 0.05$, $|\log_2\text{FoldChange}| > 0.25$) between each
884 mutant condition and WT using the *findDEfunction* (Delegate v1.1.0; parameters:
885 *group_column*="condition", *method*="deseq", *replicate_column* = "day_rep"). We discarded DEGs
886 that were not expressed in at least 20% of cells on one side of the comparison. Up- and down-regulated
887 DEGs on chr1q, on chr17q, and outside either CNA were then tested separately to identify significant
888 overlaps with MSigDB HALLMARK¹³⁷ gene sets using the hypergeometric test implemented in the
889 *hypeR*¹³⁸ package (v1.10.0). DEGs and enriched pathways are listed in **Supplementary Tables 6 and**
890 **7**.
891

892 Pseudotime trajectory analysis

893 Pseudotime trajectories were inferred using *Slingshot*¹³⁹ (v2.2.0; default parameters) using a filtered
894 dataset comprising only MES-SYM clusters C11, C12, C13, and C14 (cp. **Fig. 1d; Supplementary**
895 **Fig. 3**). The filtered dataset was reprocessed using the basic scRNA-seq processing workflow as
896 described above and the first two principal components were used to find trajectories between two
897 extreme clusters. Only one trajectory was found. Genes whose expression was associated with the
898 trajectories were identified with the generalised additive model and association test as implemented in
899 *tradeSeq*¹⁴⁰ (v1.8.0; parameters: *knots*=5). The top genes with the highest Wald statistic were selected
900 for reporting (**Supplementary Table 3**). Transcription factors were identified based on the human
901 transcription factors database¹⁴¹ in **Supplementary Fig. 3b**.
902

903 Cross-dataset annotation, label transfer, and signature scores

904 To map data between scRNA-seq datasets, we employed Seurat's label transfer workflow. Both query
905 and reference datasets were processed using the default basic scRNA-seq processing workflow as
906 described above and mapped (*FindTransferAnchors*, *TransferData*, *IntegrateEmbeddings*,
907 *NNTransform*, and *MappingScore* functions; default parameters) using the 50 first principal
908 components of the PCA reduction from both datasets. To visualise cell mappings, we used "glasswork
909 plots", in which the UMAP of the reference was used to define the coordinates of convex hulls for each
910 cluster. Query cells mapping to each cluster were plotted at random positions within their cognate
911 reference cluster hull to mitigate overplotting bias when many cells mapped to a small neighbourhood.
912 In this study, the following mappings were performed with the same processing and parameters:

913 1. Human foetal adrenal reference datasets^{15,16} mapped onto WT-only (**Figs. 1d-f**;
914 **Supplementary Figs. 2i,j, 3c**) and full *in vitro* (**Figs. 2d-f, 3d; Supplementary Fig. 6g**)
915 scRNA-seq references. Upon obtaining consistent results for both (**Supplementary Fig. 2j**),

916 the reference provided by Kameneva *et al.* was used throughout the analysis, because of the
917 curated cell type markers they provided (**Supplementary Fig. 2i**). These gene signatures were
918 also quantified with Seurat's *AddModuleScore* function (default parameters) in **Figs. 1e,f, 2f**.
919 2. Our mutant scRNA-seq data mapped onto the wild-type reference (**Figs. 2b,c**).
920 3. NB tumour scRNA-seq data mapped onto our WT-only reference (**Figs. 6b,c; Supplementary**
921 **Fig. 11**). See additional details about these datasets and processing in the section “*Pre-*
922 *processing and mapping of NB tumour data*” below.
923 4. Extended data from a split-pool scRNA-seq (Parse Biosciences) mapped to the WT-only dataset
924 (10x Genomics) (**Supplementary Fig. 8b-c**).

925
926 Validation of label transfers

927 WT mappings to adrenal gland references were validated by the presence of relevant markers
928 (**Supplementary Fig. 2i**). Mutant and tumour cell mappings were not strictly curated via markers (i.e.,
929 they were allowed to deviate). When analysing markers of mapped mutant and tumour cells, cells with
930 a prediction score of 0.4 or higher were used to minimise ambiguous mappings and maximise marker
931 discovery. Shared markers were consistently found between the query and the cognate cells in the
932 reference, even though their number varied (**Fig. 6c, Supplementary Fig. 8d**).

933
934 Visualising label transfers with glasswork plots

935 To visualise cell mappings, we used “glasswork plots”, in which the UMAP of the reference was used
936 to define the coordinates of concave hulls for each cluster (calculated with R package *concaveman*
937 v1.1.0). Query cells mapping to each cluster were plotted at random positions within their mapped target
938 cluster hull to mitigate overplotting. Input cell populations for the plot were downsampled evenly by
939 condition and stage (n = 1000 cells) to avoid sampling effects.

940
941 Mutation score analysis

942 To calculate the mutation score, we focused on days 9, 14 and 19 as they contained samples from all
943 conditions. We encoded each cell's genotype as a number G based on the genetic lineage of hESC lines:
944 $G(WT)=0$, $G(17q)=1$, $G(17q1q)=2$, and $G(17q1qMYCN)=3$. We then calculated the mutation score m
945 as the mean G of the cell's K nearest neighbouring cells ($K = 30$) in the scVI reduction's neighbourhood
946 graph (see “*Normalization, clustering, and marker gene analysis*”). Division by 3 yielded a score
947 between 0 and 1. Intuitively, the mutation score of a cell indicates whether a cell phenotypically
948 resembles wild-type cells or cells with a given number of relevant alterations independent of its own
949 genotype. To find genes correlated with the mutation score, we calculated Pearson correlation
950 coefficients with gene expression in three settings: (i) correlation for each gene with m in all cells; (ii)
951 correlation for each gene with m leaving out the 17q1qMYCN cells, to emphasise subtle correlations
952 with CNAs; and (iii) correlation for each gene and the neighbourhood entropy (Shannon entropy of all
953 genotype scores G of the K nearest neighbours), to find genes appearing in mixed regions. All non-
954 duplicate absolute correlations (calculated using R's *cor.test*, parameters: *method* = "pearson",
955 *exact* = TRUE) were subject to Bonferroni correction and ranked. The top-300 correlated genes ($p \leq$
956 0.05) per differentiation stage (D9, D14, D19) are reported in **Supplementary Table 9**.

957
958 Pre-processing and mapping of NB tumour data

959 We collected scRNA-seq data for tumours with reported *MYCN* amplification from three sources from
960 the stated database or the corresponding authors:

961 - Three samples (all primary adrenal, 2 male [Dong_T162, Dong_T230], 1 female [Dong_T200];
962 accession GSE137804 [Gene Expression Omnibus])¹⁷,

963 - three samples (1 primary adrenal, 1 primary intraspinal, 1 relapse/occipital subcutaneous bone
964 metastasis [Jansky_NB14]; 1 female [Jansky_NB08], 2 male [Jansky_NB01, Jansky_NB14];
965 accession EGAS00001004388 [European Genome-Phenome Archive])¹⁵,
966 - and four samples (all metastatic bone marrow; 3 female [Fetahu_M1, Fetahu_M3, Fetahu_M4],
967 1 male [Fetahu_M2]; accession GSE216176 [Gene Expression Omnibus])²³.

968 Additional details about each dataset are available from the original research articles. In each dataset,
969 cells with more than 500 reads per barcode and mitochondrial DNA less than 20% were kept for further
970 analysis. We then performed an adrenal gland mapping¹⁶ (same workflow as described above) and
971 discarded cells mapping to the category “HSC_and_immune”. This process left us with strong CNA
972 profiles (see below) at key genomic positions such as chr2p (*MYCN* locus). Cells were then subjected
973 to default basic scRNA-seq processing (see above) and mapped onto our WT-only reference (see
974 above).

975 *Inference of CNA profiles from scRNA-seq data*

976 To infer tumour cell CNA profiles from scRNA-seq expression data, we used the *infercnv*¹⁴² R package
977 (v1.10.1). We first removed cells with less than 500 UMI counts. Then, we created a pan-patient healthy
978 reference cell population by sampling from each patient 500 cells that we determined to be
979 HSC/immune cells based on a mapping to a human embryonic adrenal gland reference¹⁶. For every
980 patient, we then ran *infercnv* with the non-HSC/immune cells as the main input and the pan-patient
981 HSC/immune cells as a reference. The *cutoff* parameter was set to 0.1, all other parameters were left at
982 their default values.

983
984 *Pre-processing and analysis of NB bulk RNA-seq data*

985 We obtained bulk RNA-seq counts and associated metadata from patient-derived NB samples from
986 three sources: TARGET²⁴ (phs000467 [Genomic Data Commons]), SEQC^{72,73} (GSE49711 [Gene
987 Expression Omnibus]) and from our institution^{98,101,143-149} (labelled “CCRI” in the
988 figures; GSE94035, GSE147635 and GSE172184 [Gene Expression Omnibus]). Open access
989 unstranded counts from TARGET patients were obtained directly from the GDC data portal (subsection
990 TARGET:NBL, phs000467). Counts from the CCRI patients were obtained in-house. Both CCRI and
991 TARGET datasets were normalised using DESeq2¹⁵⁰ (v1.34.0) and transformed using the variance
992 stabilizing transformation. A prenormalised \log_2 SEQC matrix was exponentiated, rounded to the
993 nearest integer, and subjected to variance stabilizing transformation. In all datasets, the names of
994 relevant marker genes were harmonised manually in case the gene was found with a different name.
995 Each dataset was analysed separately due to differences in count quantification and normalisation. PCA
996 projections of the normalised variables revealed mainly biological/clinical variables (and not technical
997 variables) having major weight in the variance of the datasets. Only NB data collected at diagnosis were
998 used for our analyses (discarding, e.g., ganglioneuroblastoma and relapse data). To quantify the *in-vitro*
999 cluster signature strength, we used the intersection of markers found both in our *in-vitro* WT-only
1000 dataset (**Supplementary Table 2**) and in the tumour scRNA-seq datasets (**Supplementary Table 10**).
1001 We then used the function *gsva* (from *GSVA*¹⁵¹ v1.42.0; parameters: *method*=“*ssgsea*”) to calculate
1002 signature scores for each of the shared cluster signatures.

1003

1004 *Survival analysis*

1005 We obtained survival data for the SEQC cohort from the original publication⁷². Event-free survival
1006 (EFS) was defined as time from diagnosis to any of the following events: Relapse/progression of
1007 disease, or death due to any cause and secondary malignancies. Patients without events were censored
1008 at last follow-up evaluation. EFS was estimated with Kaplan-Meier estimates and evaluated with Cox-

1009 regression. Cluster signatures (see previous section) were dichotomized using the median-value. The
1010 results of the survival analysis are reported in **Supplementary Table 11**.

1011

1012

1013 **Split-pool single-cell RNA sequencing (Parse Biosciences)**

1014

1015 Library generation and sequencing

1016 Cells were harvested with Accutase to create a single-cell suspension, then were counted using Bio-rad
1017 Tc10 Automated cell counter in the presence of Trypan Blue Stain (Bio-rad). For cell fixation we used
1018 the Evercode Fixation v2 Kit (SKU: ECF 2001, Parse Biosciences, Seattle, USA) as per manufacturer
1019 instructions. A maximum of 5,000 cells per sample were multiplexed using the Evercode WT Mega v2
1020 kit (Parse Biosciences). Three rounds of combinatorial barcoding were performed, and cells were then
1021 pooled and split into 16 sub-libraries (one small 5,000-cell sub-library and 15 large sub-libraries of
1022 32,000 cells each). After DNA amplification and library prep, the small library was sequenced as part
1023 of a larger Illumina NovaSeq S4 flowcell and the 15 large sub-libraries on one dedicated NovaSeq S4
1024 platform in 2x150 bp paired-end mode.

1025

1026 Raw data processing and alignment

1027 Raw sequencing data were processed with the *split-pipe* v1.0.6p software (Parse Biosciences) for cell-
1028 level demultiplexing and alignment to the human reference transcriptome (*refdata-gex-GRCh38-2020-*
1029 *A* assembly provided by 10x Genomics; parameters: *-m all -c v2*). Following initial data processing, all
1030 subsequent analyses were performed in R (v4.1.3) using Bioconductor packages and the *Seurat*¹²⁸⁻¹³⁰
1031 (v4.1.0) package.

1032

1033 Basic processing, quality control, and marker analysis

1034 We applied the *cb_filter_count_matrix* (default parameters) function from *canceRbits* (v0.1.6; default
1035 parameters) to remove cells with high mitochondrial counts (>15%), unusually high/low number of
1036 genes (< 300 genes or z-score of log(genes) not in range (-3, 3)), abnormally high/low number of reads
1037 (z-score of log(transcripts) not in range (-3, 3)), or an abnormal transcript-to-gene ratio (z-score of
1038 residuals of loess fit of "log(genes) ~ log(transcripts)" not in range (-5, 5)), and the *cb_seurat_pipeline*
1039 function (parameters: *seurat_max_pc = 15, metric = "manhattan", k_param = 20, n_neighbors = 40,*
1040 *cluster_res = 0.3*) to perform a standard Seurat analysis workflow including data normalisation,
1041 dimensionality reduction, and clustering. Subsequently, the data were mapped to our 10x-based WT-
1042 only reference as described above. To identify marker genes for cells mapped to different clusters of
1043 the WT reference (for cells with prediction score ≥ 0.4) we again used DElegate::FindAllMarkers2.
1044 (DElegate v1.1.0; parameters: *method = "deseq", min_fc = 1, min_rate = 0.5,*
1045 *replicate_column = "replicate"*), and kept all genes with adjusted pvalue of 0.05 or less.

1046

1047

1048 **Chromatin accessibility mapping (ATAC-seq)**

1049

1050 Library generation and sequencing

1051 ATAC-seq was performed as described previously⁷⁹. Briefly, 20,000 to 50,000 cells were lysed in the
1052 transposase reaction mix (12.5 μ l 2xTD buffer, 2 μ l TDE1 [Illumina], 10.25 μ l nuclease-free water, and
1053 0.25 μ l 1% digitonin [Promega]) for 30 min at 37 °C. Following DNA purification with the MinElute
1054 kit (Qiagen) eluting in 12 μ l, 1 μ l of eluted DNA was used in a quantitative PCR (qPCR) reaction to
1055 estimate the optimum number of amplification cycles. The remaining 11 μ l of each library were
1056 amplified for the number of cycles corresponding to the Cq value (i.e., the cycle number at which

1057 fluorescence has increased above background levels) from the qPCR using custom Nextera primers.
1058 Library amplification was followed by SPRI (Beckman Coulter) size selection to exclude fragments
1059 larger than 1,200 bp. Libraries concentration was measured with a Qubit fluorometer (Life
1060 Technologies), and libraries were quality checked using a 2100 Bioanalyzer (Agilent Technologies).
1061 Libraries were sequenced by the Biomedical Sequencing Facility at CeMM using the Illumina HiSeq
1062 4000 platform in 1x50bp single-end mode. **Supplementary Table 1** includes an overview of the
1063 sequencing data and performance metrics.

1064

1065 *Raw data processing, alignment, and quality control*

1066 Raw sequencing data were processed using *PEPATAC*¹⁵² (v0.9.5; default parameters) including
1067 alignment to the human genome (*refdata-cell ranger-atac-GRCh38-1.2.0* assembly provided by 10x
1068 Genomics for maximum compatibility with scRNA-seq analyses). Following initial data processing, all
1069 subsequent analyses were performed in R (v4.1.3) using Bioconductor packages and *ggplot2*¹²⁶ (v3.3.5)
1070 and *ComplexHeatmap*¹²¹ (v2.10.0) for plotting. After discarding low-quality data (NRF<0.65 or
1071 PBC1<0.7 or PBC2<1 or FRiP<0.025), we removed peaks overlapping blacklisted regions from
1072 ENCODE (<http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/hg38-human/hg38.blacklist.bed.gz>) and merged overlapping peaks across all ATAC-seq datasets to create a
1073 common set of consensus genomic regions for subsequent analysis (**Supplementary Table 12**). Next,
1074 we quantified for each input dataset the number of reads overlapping these consensus peaks using
1075 *featureCounts*¹⁵³ (*Rsubread* v2.8.2).

1077

1078 *Differential accessibility analysis and chromatin modules*

1079 Raw read counts were loaded into *DESeq2*¹⁵⁰ (v1.34.0; default parameters, design:
1080 *~lane+batch+sample_group*) for normalization (variance-stabilizing transformation) and differential
1081 analysis. In doing so, we estimated count size factors for normalization excluding regions on
1082 chromosomes with known chromosomal aberrations (i.e., chr1, chr17) to avoid overcompensation due
1083 to differences in global signal strength. We queried all pairwise comparisons of sample groups stratified
1084 by cell line / condition stratified (time-wise differences, e.g., WT-D3 vs. WT-D0) and between
1085 conditions stratified by stage (condition-wise differences, e.g., 17q-D9 vs. WT-D9) and recorded all
1086 significantly differentially accessible regions ($P_{adj} \leq 0.005$, $|\log_2\text{FoldChange}| \geq \log_2(1.5)$); parameters:
1087 *pAdjustMethod*="BH", *lfcThreshold*=*log2(1.5)*, *independentFiltering*=TRUE; **Supplementary Table**
1088 **13**). To define chromatin regulatory modules, we divided time-wise differences in WT hESCs (n =
1089 41,699 regions) into six chromatin modules (R1-R6) and condition-wise differences (n = 3,914 regions)
1090 into three chromatin modules (R7-R9) by hierarchical clustering using the Ward criterion (parameter:
1091 *method* = "ward.D2"). To associate ATAC-seq regions with putative target genes, we used the
1092 *GenomicRanges*¹⁵⁴ package (v1.46.1) to assign each region to all genes (using the *refdata-gex-GRCh38-*
1093 *2020-A* gene annotation provided by 10x Genomics) with overlapping promoters (transcription start
1094 side) or to distal genes whose promoter within a maximum distance of 250kb whose expression was
1095 significantly correlated with the region's accessibility. To this end, we calculated the correlation
1096 coefficient between normalised read counts in our ATAC-seq data with the normalised read counts in
1097 our matching scRNA-seq data (mean of cells per sample; note, the ATAC-seq was collected from the
1098 same experiments as the first replicate experiments for scRNA-seq). We calculated an empirical false
1099 discovery rate (FDR) by shuffling RNA/ATAC assignments (10 repetitions) and retained associations
1100 with a value ≤ 0.05 . Annotated regulatory regions from the analysis of ATAC-seq data are listed in
1101 **Supplementary Table 12**.

1102

1103 Overlap enrichment analysis for chromatin modules

1104 To characterise the chromatin modules, we interrogated overlaps with genomic regions or associated
1105 genes using the hypergeometric test implemented in the *hyperR*¹³⁸ package (v1.10.0) via the *cb_hyper*
1106 function (*cancerRbits* v0.1.6; parameters: collapse = FALSE, min_size = 5, max_size = (<75% of the
1107 size of the background dataset)). We looked at three types of overlaps: (a) Annotated reference regions
1108 from the DNase hypersensitivity index⁸⁰, from the Cis-element Atlas⁸¹, from the Enhancer Atlas⁸², and
1109 NB subgroup-specific super-enhancers⁷⁵, which all catalogue regulatory elements active in different
1110 cell or tissue types. (b) Matches to known TF motifs from the *HOCOMOCO* database¹⁵⁵ (v11). Here,
1111 we downloaded motifs from the *HOCOMOCO* website
1112 (*HOCOMOCOv11_full_annotation_HUMAN_mono.tsv*) and used *motifmatchr* (v1.16.0) to scan the
1113 DNA sequences underlying each genomic region for matches. Regions with at least one match to the
1114 motif were recorded as potential binding sites. (c) Marker genes from our scRNA-seq analysis of WT
1115 hESC differentiation (**Fig. 1c; Supplementary Table 2**). For this purpose, genomic regions were
1116 associated with genes as described above. In each case, we used the entire set of all analysed genomic
1117 regions as a background for the enrichment analysis, and we considered overlaps with an FDR-corrected
1118 P-value less than 0.005 as significant. For motifs, we find the reported P-values are inflated and
1119 therefore used stricter thresholds: $P_{adj} \leq 0.0000001$, $|\log_2 \text{odds}| > \log_2(2)$. All enrichment results are
1120 reported in **Supplementary Table 14**.

1121

1122 Integration with published ATAC/DNaseI-seq data

1123 To interrogate accessibility of the chromatin modules in existing data from NB cell lines we used fast
1124 gene set enrichment analysis *fgsea* (v1.20.0)¹⁵⁶. We obtained ready-processed genomic coverage tracks
1125 (*wig* or *bigwig* files) from three studies profiling NB cell lines^{75,157,158} (GSE138293, GSE224241,
1126 GSE136279). Additionally, we obtained data from three studies profiling breast¹⁵⁹ (GSE202511) and
1127 lung cancer¹⁶⁰ lines (GSE228832), or human tissue data¹⁶¹ (<https://epigenome.wustl.edu/epimap>) as
1128 controls. For studies based on older genome assemblies (GSE138293, GSE224241, GSE136279,
1129 GSE228832, and EpiMap used hg19), we converted our peak coordinates to hg19 using the *liftOver* R
1130 package (v1.18.0). We then used the *GenomicRanges*¹⁵⁴ (v1.46.1) and *plyranges*¹⁶² (v1.14.0) packages
1131 to identify genome segments overlapping our peaks and to aggregate the corresponding mean score
1132 reported in the coverage tracks, which were then used for gene set enrichment analysis via the *cb_fgsea*
1133 function (*cancerRbits* v0.1.6; parameters: max_size = Inf).

1134

1135 Identification of transcription factor targets

1136 To identify putative target genes of TFs, we used *GRNboost2*⁸³ (*arboreto* library v0.1.6, with Python
1137 v3.8.17 via reticulate [v1.24]) to identify genes whose expression could be predicted from the
1138 expression of each TF. We tested all TFs in the *HOCOMOCO* database¹⁵⁵ for which at least one motif
1139 could be identified in our dataset. We found that stronger association values were reported for stem-
1140 cell-related factors, likely because of a proportional overrepresentation of this developmental stage in
1141 our dataset. To alleviate this effect and create more balanced data to build our networks on, we
1142 downsampled our dataset to no more than 500 cells per cluster and took the average importance value
1143 of ten random samples forward for further analysis. Putative targets with high importance values but
1144 without a supporting nearby ATAC-seq peak with a motif matching the respective TF were considered
1145 indirect targets and discarded from the target gene sets. We found that the range of importance values
1146 varied between TFs. We therefore calculated a TF-specific threshold on the importance score to define
1147 target genes. To this end, we ranked importance values and used the *changepoint* package (v2.2.3;
1148 default parameters) to identify the first point at which the mean values of the curve of importance values
1149 changed (disregarding the top 1% highest importance values which often were outliers and disrupted

1150 this analysis). The resulting target gene sets were divided into putative activating and inhibiting
1151 interactions by the sign of the Pearson correlation coefficient r of the respective TF-target pairs (using
1152 the mean correlation value of the same eight random samples as used for *GRNboost2*). Interactions with
1153 $|r|<0.1$ were discarded. To calculate the average expression of target genes in each cell we used only
1154 activated targets ($r>0.1$) and the Seurat module score. To identify significant overlaps between target
1155 genes and gene sets D9_1 – D9_4 (**Supplementary Table 15**), we used the *hypeR*¹³⁸ package (v1.10.0)
1156 via the *cb_hyper* function (*canceRbits* v0.1.6; parameters: *collapse* = FALSE, *min_size* = 0, *max_size*
1157 = Inf), considering TFs with $P_{adj} \leq 0.05$, $|\log_2 \text{odds}| \geq \log_2(4)$, and frequency $\geq 5\%$ as significant. All
1158 target gene sets are reported in **Supplementary Table 15** and all enrichment results in **Supplementary**
1159 **Table 16**.

1160

1161 Gene-regulatory network visualisation

1162 For the visualisation of gene-regulatory networks, we used the *igraph* package (v1.3.1). A directed
1163 graph was constructed from edges between genes in the gene sets D9_1, D9_2, D9_3, or D9_4
1164 (**Supplementary Table 9**) and TFs found enriched in the overlap with these genes (**Fig. 8d**). The same
1165 automated graph layout (function *layout_with_fr()*) was used to draw mutant-specific network
1166 diagrams. To generate mutant-specific networks (**Fig. 8f**), we selected cells derived at D9 and
1167 parameterised node colour to indicate the mean scaled expression of the genes in those cells and node
1168 size to indicate the mean scaled TF target score (Seurat module score) for TFs or the mean scaled
1169 expression for non-TFs. To simplify plots, we only labelled TFs with positive mean scaled expression
1170 values (>0.05) and manually aggregated many overlapping values, but all node labels are shown in
1171 **Supplementary Fig. 12c**.

1172

1173

1174 **Data availability**

1175 Raw and processed single-cell RNA-seq and ATAC-seq will be deposited at the Gene Expression
1176 Omnibus (GEO). Public scRNA-seq data from NB tumours used in this study are available under the
1177 following accession codes: GSE147821, GSE216176, and GSE137804 (Gene Expression Omnibus),
1178 and EGAS00001004388 (European Genome-Phenome Archive). Public ATAC-seq data from NB cell
1179 lines and controls used in this study are available under accession codes: GSE138293, GSE224241,
1180 GSE136279, GSE202511, and GSE228832 (Gene Expression Omnibus), from the EpiMap website
1181 (<https://epigenome.wustl.edu/epimap>). Bulk RNA-seq data from NB tumours were obtained from
1182 phs000467 (Genomic Data Commons), GSE49711, GSE94035, GSE147635 and GSE172184 (Gene
1183 Expression Omnibus).

1184

1185

1186 **Code availability**

1187 Computer code used for the data analysis in this paper will be shared via our GitHub page
1188 (<https://github.com/cancerbits>).

1189

1190

1191 **Acknowledgements**

1192 We would like to thank the Biomedical Sequencing Facility at the CeMM Research Center for
1193 Molecular Medicine of the Austrian Academy of Sciences for assistance with next-generation
1194 sequencing, Bettina Brunner-Herglotz (CCRI) for her technical assistance, and Duncan Baker
1195 (Sheffield Diagnostic Genetic Services, Sheffield Children's Hospital) for carrying out karyotyping of
1196 hESC lines. We would like to acknowledge Yann Jamin and Barbara Martins da Costa (ICR, London)
1197 for help with the MRI and animal work, respectively. We are also grateful to Igor Adameyko and Polina

1198 Kameneva (Medical University of Vienna), Sofie Mohlin (Lund University), and Christoph Bock
1199 (CeMM Research Center for Molecular Medicine) for critical reading of the manuscript. For the
1200 purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) licence to
1201 any Author Accepted Manuscript version arising.

1202

1203 **Funding**

1204 Funding sources in authorship order: K.B.: Biotechnology and Biological Sciences Research Council
1205 (BBSRC) (DTP Studentship, BB/T007222/1); I.S.F.: Austrian Science Fund (FWF)
1206 (10.55776/P35072); M.C.B.: Austrian Academy of Sciences (25905); E.M.P.: FWF (10.55776/P32001,
1207 10.55776/P34832); M.H.: National Institutes of Health (R00CA197484); I.B.: UK Regenerative
1208 Medicine Platform (MR/R015724/1), Medical Research Council UK (MRC) (MR/X000028/1,
1209 MR/X007979/1); M.D.: Austrian Research Promotion Agency (FFG) project 7940628 533
1210 (Danio4Can), Alex's Lemonade Stand Foundation for Childhood Cancer (ALSF) (20-17258);
1211 L.C./E.Po.: CRUK Programme Award A28278; L. C.: HEFCE/ICR; S.T.M.: Vienna Science and
1212 Technology Fund (WWTF; project LS18-111), FWF (10.55776/P35841B MAPMET), H2020 (project
1213 826494 PRIMAGE); M.F.: ALSF (20-17258); A.T.: BBSRC (New Investigator Research Grant,
1214 BB/P000444/1), European Union Horizon 2020 Framework Programme (H2020-EU.1.2.2; project
1215 824070), Children's Cancer and Leukaemia Group/Neuroblastoma UK/Little Princess Trust (CCLGA
1216 2019 28, CCLGA 2020 19, together with H.B.), MRC (MR/V002163/1); F.H.: ALSF (20-17258), FWF
1217 (10.55776/TAI454, 10.55776/TAI732, 10.55776/PAT1300223).

1218

1219 **Author contributions**

1220 I.S.G. and L.M.G. championed the experimental and computational work on this study, respectively.
1221 Formal contributions in authorship order (CrediT taxonomy): Conceptualization: A.T., F.H.; Data
1222 curation: L.M.G., I.S.G., L.S., K.B., E.Po., S.W.Z., E.B., I.S.F., P.Z., U.P., G.C., S.T.M., M.F., A.T.,
1223 F.H.; Formal Analysis: L.M.G., I.S.G., C.H., E.Po., S.W.Z., P.Z., U.P., C.St., M.S., G.C., H.B., A.T.,
1224 F.H.; Funding acquisition: K.B., I.S.F., M.C.B., W.W., P.A., I.B., H.B., M.D., L.C., S.T.M., M.F., A.T.,
1225 F.H.; Investigation: I.S.G., L.M.G., K.B., E.Po., L.S., D.S., R.Le., E.B., I.S.F., M.B., A.W.W., C.St.,
1226 C.So., S.T., P.B., M.R., M.G., M.C.B.; Methodology: I.S.G., L.M.G., L.S., E.Po., I.S.F., M.B., P.B.,
1227 M.G., G.C., H.B., M.D., L.C., S.T.M., M.F., A.T., F.H.; Project administration: A.T., F.H.; Resources:
1228 W.W., E.Pu., M.H., R.La., H.B., M.D., L.C., S.T.M., M.F., A.T., F.H.; Software: L.M.G., C.H.;
1229 Supervision: E.Pu., G.C., H.B., M.D., L.C., S.T.M., M.F., A.T., F.H.; Visualization: I.S.G., L.M.G.,
1230 K.B., E.P., C.St., G.C., A.T., F.H.; Writing – original draft: I.S.G., L.M.G., A.T., F.H.; Writing – review
1231 & editing: I.S.G., L.M.G., K.B., C.H., E.Po., L.S., I.S.F., C.St., C.So, M.B., P.B., M.G., M.C.B., E.Pu.,
1232 M.H., P.A., I.B., H.B., G.C., M.D., S.T.M., M.F., A.T., F.H.

1233

1234 **Declaration of interests**

1235 The authors declare no competing interests.

1236 References

1237

1238 1. Marshall, G. M. *et al.* The prenatal origins of cancer. *Nat Rev Cancer* **14**, 277–289 (2014).

1239 2. Pritchard-Jones, K. Genetics of childhood cancer. *Br Med Bull* **52**, 704–23 (1996).

1240 3. Scotting, P. J., Walker, D. A. & Perilongo, G. Childhood solid tumours: A developmental
1241 disorder. *Nature Reviews Cancer* vol. 5 481–488 Preprint at <https://doi.org/10.1038/nrc1633>
1242 (2005).

1243 4. Maris, J. M. & Denny, C. T. Focus on embryonal malignancies. *Cancer Cell* **2**, 447–50 (2002).

1244 5. Gröbner, S. N. *et al.* The landscape of genomic alterations across childhood cancers. *Nature*
1245 **555**, 321–327 (2018).

1246 6. Ma, X. *et al.* Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias
1247 and solid tumours. *Nature* **555**, 371–376 (2018).

1248 7. Matthay, K. K. *et al.* Neuroblastoma. *Nat Rev Dis Primers* **2**, 16078 (2016).

1249 8. Schulte, J. H. & Eggert, A. Neuroblastoma. *Crit Rev Oncog* **20**, 245–270 (2015).

1250 9. Zeineldin, M., Patel, A. G. & Dyer, M. A. Neuroblastoma: When differentiation goes awry.
1251 *Neuron* **110**, 2916–2928 (2022).

1252 10. Nakagawara, A. Neural crest development and neuroblastoma: the genetic and biological
1253 link. *Prog Brain Res* **146**, 231–242 (2004).

1254 11. Ponzoni, M. *et al.* Recent advances in the developmental origin of neuroblastoma: an
1255 overview. *Journal of Experimental and Clinical Cancer Research* **41**, 1–28 (2022).

1256 12. Weiss, W. A., Aldape, K., Mohapatra, G., Feuerstein, B. G. & Bishop, J. M. Targeted expression
1257 of MYCN causes neuroblastoma in transgenic mice. *EMBO Journal* **16**, 2985–2995 (1997).

1258 13. Cohen, M. A. *et al.* Formation of Human Neuroblastoma in Mouse-Human Neural Crest
1259 Chimeras. *Cell Stem Cell* **26**, 579–592.e6 (2020).

1260 14. Olsen, R. R. *et al.* MYCN induces neuroblastoma in primary neural crest cells. *Oncogene* **36**,
1261 5075–5082 (2017).

1262 15. Jansky, S. *et al.* Single-cell transcriptomic analyses provide insights into the developmental
1263 origins of neuroblastoma. *Nat Genet* **53**, 683–693 (2021).

1264 16. Kameneva, P. *et al.* Single-cell transcriptomics of human embryos identifies multiple
1265 sympathoblast lineages with potential implications for neuroblastoma origin. *Nat Genet* **53**,
1266 694–706 (2021).

1267 17. Dong, R. *et al.* Single-Cell Characterization of Malignant Phenotypes and Developmental
1268 Trajectories of Adrenal Neuroblastoma. *Cancer Cell* **38**, 716–733.e6 (2020).

1269 18. Hanemaijer, E. S. *et al.* Single-cell atlas of developing murine adrenal gland reveals relation
1270 of Schwann cell precursor signature to neuroblastoma phenotype. *Proc Natl Acad Sci U S A*
1271 **118**, (2021).

1272 19. Kildisiute, G. *et al.* Tumor to normal single-cell mRNA comparisons reveal a pan-
1273 neuroblastoma cancer cell. *Sci Adv* **7**, eabd3311 (2021).

1274 20. de Preter, K. *et al.* Human fetal neuroblast and neuroblastoma transcriptome analysis
1275 confirms neuroblast origin and highlights neuroblastoma candidate genes. *Genome Biol* **7**, 1–
1276 17 (2006).

1277 21. Althoff, K. *et al.* A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved
1278 tool for preclinical studies. *Oncogene* **34**, 3357–3368 (2015).

1279 22. Molenaar, J. J. *et al.* Sequencing of neuroblastoma identifies chromothripsis and defects in
1280 neuritogenesis genes. *Nature* **483**, 589–593 (2012).

1281 23. Fetahu, I. S. *et al.* Single-cell transcriptomics and epigenomics unravel the role of monocytes
1282 in neuroblastoma bone marrow metastasis. *Nat Commun* **14**, 3620 (2023).

1283 24. Pugh, T. J. *et al.* The genetic landscape of high-risk neuroblastoma. *Nat Genet* **45**, 279–284
1284 (2013).

1285 25. Bown, N. *et al.* Gain of chromosome arm 17q and adverse outcome in patients with
1286 neuroblastoma. *N Engl J Med* **340**, 1954–1961 (1999).

1287 26. Gilbert, F. *et al.* Human neuroblastomas and abnormalities of chromosomes 1 and 17. *Cancer*
1288 *Res* **44**, 5444–9 (1984).

1289 27. Lastowska, M. *et al.* Comprehensive genetic and histopathologic study reveals three types of
1290 neuroblastoma tumors. *J Clin Oncol* **19**, 3080–3090 (2001).

1291 28. Mazzocco, K. *et al.* Genetic abnormalities in adolescents and young adults with
1292 neuroblastoma: A report from the Italian Neuroblastoma Group. *Pediatr Blood Cancer* **62**,
1293 1725–1732 (2015).

1294 29. Körber, V. *et al.* Neuroblastoma arises in early fetal development and its evolutionary
1295 duration predicts outcome. *Nat Genet* **55**, 619–630 (2023).

1296 30. Bogen, D. *et al.* The genetic tumor background is an important determinant for
1297 heterogeneous MYCN-amplified neuroblastoma. *Int J Cancer* **139**, 153–163 (2016).

1298 31. O'Neill, S. *et al.* MYCN amplification and 17q in neuroblastoma: evidence for structural
1299 association. *Genes Chromosomes Cancer* **30**, 87–90 (2001).

1300 32. Huang, M. & Weiss, W. A. Neuroblastoma and MYCN. *Cold Spring Harb Perspect Med* **3**,
1301 (2013).

1302 33. Schleiermacher, G. *et al.* Accumulation of segmental alterations determines progression in
1303 neuroblastoma. *J Clin Oncol* **28**, 3122–3130 (2010).

1304 34. Schleiermacher, G. *et al.* Segmental chromosomal alterations have prognostic impact in
1305 neuroblastoma: a report from the INRG project. *Br J Cancer* **107**, 1418 (2012).

1306 35. Frith, T. J. R. *et al.* Human axial progenitors generate trunk neural crest cells in vitro. *Elife* **7**,
1307 (2018).

1308 36. Frith, T. J. R. & Tsakiridis, A. Efficient Generation of Trunk Neural Crest and Sympathetic
1309 Neurons from Human Pluripotent Stem Cells Via a Neuromesodermal Axial Progenitor
1310 Intermediate. *Curr Protoc Stem Cell Biol* **49**, e81 (2019).

1311 37. Wymeersch, F. J., Wilson, V. & Tsakiridis, A. Understanding axial progenitor biology in vivo
1312 and in vitro. *Development* **148**, (2021).

1313 38. Thomson, J. A. *et al.* Embryonic stem cell lines derived from human blastocysts. *Science* **282**,
1314 1145–7 (1998).

1315 39. Soldatov, R. *et al.* Spatiotemporal structure of cell fate decisions in murine neural crest.
1316 *Science* (1979) **364**, (2019).

1317 40. Kastriti, M. E. *et al.* Schwann cell precursors represent a neural crest-like state with biased
1318 multipotency. *EMBO J* **41**, e108780 (2022).

1319 41. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J. F. Expression and interactions of the
1320 two closely related homeobox genes Phox2a and Phox2b during neurogenesis. *Development*
1321 **124**, 4065–4075 (1997).

1322 42. Xie, M. *et al.* Schwann cell precursors contribute to skeletal formation during embryonic
1323 development in mice and zebrafish. *Proc Natl Acad Sci U S A* **116**, 15068–15073 (2019).

1324 43. McGonnell, I. M. & Graham, A. Trunk neural crest has skeletogenic potential. *Curr Biol* **12**,
1325 767–771 (2002).

1326 44. Boeva, V. *et al.* Heterogeneity of neuroblastoma cell identity defined by transcriptional
1327 circuitries. *Nat Genet* **49**, 1408–1413 (2017).

1328 45. Van Groningen, T. *et al.* Neuroblastoma is composed of two super-enhancer-associated
1329 differentiation states. *Nat Genet* **49**, 1261–1266 (2017).

1330 46. van Groningen, T. *et al.* A NOTCH feed-forward loop drives reprogramming from adrenergic
1331 to mesenchymal state in neuroblastoma. *Nat Commun* **10**, 1530 (2019).

1332 47. Ciccarone, V., Spengler, B. A., Meyers, M. B., Biedler, J. L. & Ross, R. A. Phenotypic
1333 diversification in human neuroblastoma cells: expression of distinct neural crest lineages.
1334 *Cancer Res* **49**, 219–25 (1989).

1335 48. Biedler, J. L., Helson, L. & Spengler, B. A. Morphology and growth, tumorigenicity, and
1336 cytogenetics of human neuroblastoma cells in continuous culture. *Cancer Res* **33**, 2643–52
1337 (1973).

1338 49. Halliwell, J., Barbaric, I. & Andrews, P. W. Acquired genetic changes in human pluripotent
1339 stem cells: origins and consequences. *Nature Reviews Molecular Cell Biology* **2020** **21**:12 **21**,
1340 715–728 (2020).

1341 50. Draper, J. S. *et al.* Recurrent gain of chromosomes 17q and 12 in cultured human embryonic
1342 stem cells. *Nat Biotechnol* **22**, 53–54 (2004).

1343 51. Abbasi, M. R. *et al.* Impact of Disseminated Neuroblastoma Cells on the Identification of the
1344 Relapse-Seeding Clone. *Clin Cancer Res* **23**, 4224–4232 (2017).

1345 52. Kerosuo, L. *et al.* Enhanced expression of MycN/CIP2A drives neural crest toward a neural
1346 stem cell-like fate: Implications for priming of neuroblastoma. *Proc Natl Acad Sci U S A* **115**,
1347 E7351–E7360 (2018).

1348 53. Girish, V. *et al.* Oncogene-like addiction to aneuploidy in human cancers. *Science* **381**,
1349 eadg4521 (2023).

1350 54. Mitchell, P. J., Timmons, P. M., Hébert, J. M., Rigby, P. W. J. & Tjian, R. Transcription factor
1351 AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. *Genes Dev* **5**,
1352 105–119 (1991).

1353 55. Rothstein, M. & Simoes-Costa, M. Heterodimerization of TFAP2 pioneer factors drives
1354 epigenomic remodeling during neural crest specification. *Genome Res* **30**, 35–48 (2020).

1355 56. Howard, A. G. A. & Uribe, R. A. Hox proteins as regulators of extracellular matrix interactions
1356 during neural crest migration. *Differentiation* **128**, 26–32 (2022).

1357 57. Akkermans, O. *et al.* GPC3-Unc5 receptor complex structure and role in cell migration. *Cell*
1358 **185**, 3931-3949.e26 (2022).

1359 58. TeSlaa, J. J., Keller, A. N., Nyholm, M. K. & Grinblat, Y. Zebrafish Zic2a and Zic2b regulate
1360 neural crest and craniofacial development. *Dev Biol* **380**, 73–86 (2013).

1361 59. Handel, A. E. *et al.* Developmental dynamics of the neural crest–mesenchymal axis in creating
1362 the thymic microenvironment. *Sci Adv* **8**, 9844 (2022).

1363 60. Rada-Iglesias, A. *et al.* Epigenomic annotation of enhancers predicts transcriptional regulators
1364 of human neural crest. *Cell Stem Cell* **11**, 633–648 (2012).

1365 61. Adam, K., Lesperance, J., Hunter, T. & Zage, P. E. The Potential Functional Roles of NME1
1366 Histidine Kinase Activity in Neuroblastoma Pathogenesis. *Int J Mol Sci* **21**, (2020).

1367 62. Ryl, T. *et al.* Cell-Cycle Position of Single MYC-Driven Cancer Cells Dictates Their Susceptibility
1368 to a Chemotherapeutic Drug. *Cell Syst* **5**, 237-250.e8 (2017).

1369 63. Lutz, W. *et al.* Conditional expression of N-myc in human neuroblastoma cells increases
1370 expression of alpha-prothymosin and ornithine decarboxylase and accelerates progression
1371 into S-phase early after mitogenic stimulation of quiescent cells. *Oncogene* **13**, 803–12
1372 (1996).

1373 64. King, D. *et al.* MYCN expression induces replication stress and sensitivity to PARP inhibition in
1374 neuroblastoma. *Oncotarget* **11**, 2141 (2020).

1375 65. Kramer, M., Ribeiro, D., Arsenian-Henriksson, M., Deller, T. & Rohrer, H. Proliferation and
1376 Survival of Embryonic Sympathetic Neuroblasts by MYCN and Activated ALK Signaling. *J*
1377 *Neurosci* **36**, 10425–10439 (2016).

1378 66. Mobley, B. C. *et al.* Expression of MYCN in Multipotent Sympathoadrenal Progenitors Induces
1379 Proliferation and Neural Differentiation, but Is Not Sufficient for Tumorigenesis. *PLoS One* **10**,
1380 e0133897 (2015).

1381 67. Berry, T. *et al.* The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in
1382 neuroblastoma. *Cancer Cell* **22**, 117–130 (2012).

1383 68. Olsen, R. R. *et al.* MYCN induces neuroblastoma in primary neural crest cells. *Oncogene* **36**,
1384 5075–5082 (2017).

1385 69. Cohen, M. A. *et al.* Formation of Human Neuroblastoma in Mouse-Human Neural Crest
1386 Chimeras. *Cell Stem Cell* **26**, 579-592.e6 (2020).

1387 70. Huang, M. *et al.* Engineering Genetic Predisposition in Human Neuroepithelial Stem Cells
1388 Recapitulates Medulloblastoma Tumorigenesis. *Cell Stem Cell* **25**, 433-446.e7 (2019).

1389 71. Wrobel, J. K. *et al.* Rapid In Vivo Validation of HDAC Inhibitor-Based Treatments in
1390 Neuroblastoma Zebrafish Xenografts. *Pharmaceuticals (Basel)* **13**, 345 (2020).

1391 72. Su, Z. *et al.* A comprehensive assessment of RNA-seq accuracy, reproducibility and
1392 information content by the Sequencing Quality Control Consortium. *Nat Biotechnol* **32**, 903–
1393 914 (2014).

1394 73. Wang, C. *et al.* The concordance between RNA-seq and microarray data depends on chemical
1395 treatment and transcript abundance. *Nat Biotechnol* **32**, 926–932 (2014).

1396 74. Durbin, A. D. *et al.* EP300 Selectively Controls the Enhancer Landscape of MYCN-Amplified
1397 Neuroblastoma. *Cancer Discov* **12**, 730–751 (2022).

1398 75. Gartlgruber, M. *et al.* Super enhancers define regulatory subtypes and cell identity in
1399 neuroblastoma. *Nat Cancer* **2**, 114–128 (2021).

1400 76. Zeid, R. *et al.* Enhancer invasion shapes MYCN-dependent transcriptional amplification in
1401 neuroblastoma. *Nat Genet* **50**, 515–523 (2018).

1402 77. Jahangiri, L. *et al.* Core regulatory circuitries in defining cancer cell identity across the
1403 malignant spectrum. *Open Biol* **10**, 200121 (2020).

1404 78. Zimmerman, M. W. *et al.* Retinoic acid rewrites the adrenergic core regulatory circuitry of
1405 childhood neuroblastoma. *Sci Adv* **7**, (2021).

1406 79. Corces, M. R. *et al.* An improved ATAC-seq protocol reduces background and enables
1407 interrogation of frozen tissues. *Nat Methods* **14**, 959–962 (2017).

1408 80. Meuleman, W. *et al.* Index and biological spectrum of human DNase I hypersensitive sites.
1409 *Nature* **2020** 584:7820 **584**, 244–251 (2020).

1410 81. Zhang, K. *et al.* A single-cell atlas of chromatin accessibility in the human genome. *Cell* **184**,
1411 5985–6001.e19 (2021).

1412 82. Gao, T. & Qian, J. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586
1413 tissue/cell types across nine species. *Nucleic Acids Res* **48**, D58–D64 (2020).

1414 83. Moerman, T. *et al.* GRNBoost2 and Arboreto: Efficient and scalable inference of gene
1415 regulatory networks. *Bioinformatics* **35**, 2159–2161 (2019).

1416 84. Moreno-Smith, M. *et al.* Restoration of the molecular clock is tumor suppressive in
1417 neuroblastoma. *Nature Communications* **2021** 12:1 **12**, 1–16 (2021).

1418 85. Altman, B. J. *et al.* MYC Disrupts the Circadian Clock and Metabolism in Cancer Cells. *Cell*
1419 *Metab* **22**, 1009–1019 (2015).

1420 86. Xue, C. *et al.* MYCN promotes neuroblastoma malignancy by establishing a regulatory circuit
1421 with transcription factor AP4. *Oncotarget* **7**, 54937–54951 (2016).

1422 87. Boboila, S. *et al.* Transcription factor activating protein 4 is synthetically lethal and a master
1423 regulator of MYCN-amplified neuroblastoma. *Oncogene* **37**, 5451–5465 (2018).

1424 88. Ana Paula Azambuja, A., Paula Azambuja, A. & Simoes-Costa, M. The connectome of neural
1425 crest enhancers reveals regulatory features of signaling systems. *Dev Cell* **56**, 1268–1282.e6
1426 (2021).

1427 89. Gundem, G. *et al.* Clonal evolution during metastatic spread in high-risk neuroblastoma. *Nat Genet* **55**, 1022–1033 (2023).

1429 90. Merrill, B. J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of
1430 multipotent stem cells in skin. *Genes Dev* **15**, 1688–1705 (2001).

1431 91. Gautier, M., Thirant, C., Delattre, O. & Janoueix-Lerosey, I. Plasticity in neuroblastoma cell
1432 identity defines a noradrenergic-to-mesenchymal transition (Nmt). *Cancers (Basel)* **13**, (2021).

1433 92. Thirant, C. *et al.* Reversible transitions between noradrenergic and mesenchymal tumor
1434 identities define cell plasticity in neuroblastoma. *Nat Commun* **14**, (2023).

1435 93. Vayani, O. R. *et al.* Adrenergic and mesenchymal signatures are identifiable in cell-free DNA
1436 and correlate with metastatic disease burden in children with neuroblastoma. *Pediatr Blood
1437 Cancer* **71**, (2024).

1438 94. Durbin, A. D. *et al.* Selective gene dependencies in MYCN-amplified neuroblastoma include
1439 the core transcriptional regulatory circuitry. *Nature Genetics* vol. 50 1240–1246 Preprint at
1440 <https://doi.org/10.1038/s41588-018-0191-z> (2018).

1441 95. Rouhani, F. J. *et al.* Substantial somatic genomic variation and selection for BCOR mutations
1442 in human induced pluripotent stem cells. *Nature Genetics* **2022** *54*: 9 **54**, 1406–1416 (2022).

1443 96. Puigdevall, P., Jerber, J., Danecek, P., Castellano, S. & Kilpinen, H. Somatic mutations alter the
1444 differentiation outcomes of iPSC-derived neurons. *Cell Genomics* **3**, 100280 (2023).

1445 97. Aschero, R. *et al.* Recurrent Somatic Chromosomal Abnormalities in Relapsed Extraocular
1446 Retinoblastoma. *Cancers* **2021**, Vol. 13, Page 673 **13**, 673 (2021).

1447 98. Lazic, D. *et al.* Landscape of Bone Marrow Metastasis in Human Neuroblastoma Unraveled by
1448 Transcriptomics and Deep Multiplex Imaging. *Cancers (Basel)* **13**, 4311 (2021).

1449 99. Verhoeven, B. M. *et al.* The immune cell atlas of human neuroblastoma. *Cell Rep Med* **3**,
1450 100657 (2022).

1451 100. Costa, A. *et al.* Single-cell transcriptomics reveals shared immunosuppressive landscapes of
1452 mouse and human neuroblastoma. *J Immunother Cancer* **10**, (2022).

1453 101. Weiss, T. *et al.* Schwann cell plasticity regulates neuroblastic tumor cell differentiation via
1454 epidermal growth factor-like protein 8. *Nat Commun* **12**, (2021).

1455 102. Ludwig, T. E. *et al.* ISSCR standards for the use of human stem cells in basic research. *Stem
1456 Cell Reports* **18**, 1744 (2023).

1457 103. Price, C. J. *et al.* Genetically variant human pluripotent stem cells selectively eliminate wild-
1458 type counterparts through YAP-mediated cell competition. *Dev Cell* **56**, 2455-2470.e10
1459 (2021).

1460 104. Randolph, L. N., Bao, X., Zhou, C. & Lian, X. An all-in-one, Tet-On 3G inducible PiggyBac
1461 system for human pluripotent stem cells and derivatives. *Sci Rep* **7**, (2017).

1462 105. Loew, R., Heinz, N., Hampf, M., Bujard, H. & Gossen, M. Improved Tet-responsive promoters
1463 with minimized background expression. *BMC Biotechnol* **10**, 1–13 (2010).

1464 106. Zhou, X., Vink, M., Klaver, B., Berkhout, B. & Das, A. T. Optimization of the Tet-On system for
1465 regulated gene expression through viral evolution. *Gene Ther* **13**, 1382–1390 (2006).

1466 107. Laing, O., Halliwell, J. & Barbaric, I. Rapid PCR Assay for Detecting Common Genetic Variants
1467 Arising in Human Pluripotent Stem Cell Cultures. *Curr Protoc Stem Cell Biol* **49**, e83 (2019).

1468 108. Chen, G. *et al.* Chemically defined conditions for human iPSC derivation and culture. *Nat
1469 Methods* **8**, 424–429 (2011).

1470 109. Sturtzel, C. *et al.* Refined high-content imaging-based phenotypic drug screening in zebrafish
1471 xenografts. *npj Precision Oncology* **2023** *7*:1 **7**, 1–16 (2023).

1472 110. Hanssen, F. *et al.* Scalable and efficient DNA sequencing analysis on different compute
1473 infrastructures aiding variant discovery. *bioRxiv* **23**, 2023.07.19.549462 (2023).

1474 111. Garcia, M. *et al.* Sarek: A portable workflow for whole-genome sequencing analysis of
1475 germline and somatic variants. *F1000Research* **2020** *9*:63 **9**, 63 (2020).

1476 112. Van der Auwera, G., O'Connor, B. & Safari, an O. M. Company. Genomics in the Cloud: Using
1477 Docker, GATK, and WDL in Terra. *Genomics in the Cloud* **300** (2020).

1478 113. Kim, S. *et al.* Strelka2: fast and accurate calling of germline and somatic variants. *Nat
1479 Methods* **15**, 591–594 (2018).

1480 114. Chen, X. *et al.* Manta: rapid detection of structural variants and indels for germline and
1481 cancer sequencing applications. *Bioinformatics* **32**, 1220–1222 (2016).

1482 115. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**, (2021).

1483 116. McLaren, W. *et al.* The Ensembl Variant Effect Predictor. *Genome Biol* **17**, 1–14 (2016).

1484 117. Berlanga, P. *et al.* The European MAPPYACTS Trial: Precision Medicine Program in Pediatric
1485 and Adolescent Patients with Recurrent Malignancies. *Cancer Discov* **12**, 1266–1281 (2022).

1486 118. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense
1487 mutations using PolyPhen-2. *Curr Protoc Hum Genet* **Chapter 7**, (2013).

1488 119. Ng, P. C. & Henikoff, S. SIFT: Predicting amino acid changes that affect protein function.
1489 *Nucleic Acids Res* **31**, 3812–3814 (2003).

1490 120. Favero, F. *et al.* Sequenza: allele-specific copy number and mutation profiles from tumor
1491 sequencing data. *Ann Oncol* **26**, 64–70 (2015).

1492 121. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in
1493 multidimensional genomic data. *Bioinformatics* **32**, 2847–2849 (2016).

1494 122. McKenna, A. *et al.* The genome analysis toolkit: A MapReduce framework for analyzing next-
1495 generation DNA sequencing data. *Genome Res* **20**, 1297–1303 (2010).

1496 123. Schliep, K. P. phangorn: phylogenetic analysis in R. *Bioinformatics* **27**, 592–593 (2011).

1497 124. Jombart, T., Balloux, F. & Dray, S. adephylo: new tools for investigating the phylogenetic
1498 signal in biological traits. *Bioinformatics* **26**, 1907–1909 (2010).

1499 125. Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. Y. *ggtree*: an r package for visualization and
1500 annotation of phylogenetic trees with their covariates and other associated data. *Methods Ecol Evol* **8**, 28–36 (2017).

1502 126. Wickham, H. *ggplot2: Elegant Graphics for Data Analysis. Use R! series* (Springer, 2016).

1503 127. McGinnis, C. S. *et al.* MULTI-seq: sample multiplexing for single-cell RNA sequencing using
1504 lipid-tagged indices. *Nat Methods* **16**, 619–626 (2019).

1505 128. Stuart, T. *et al.* Comprehensive integration of single-cell data. *Cell* **177**, 1888-1902.e21 (2019).

1506 129. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587.e29
1507 (2021).

1508 130. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
1509 transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol* **36**,
1510 411–420 (2018).

1511 131. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq
1512 data using regularized negative binomial regression. *Genome Biol* **20**, 576827 (2019).

1513 132. Lun, A. T. L. *et al.* EmptyDrops: Distinguishing cells from empty droplets in droplet-based
1514 single-cell RNA sequencing data. *Genome Biol* **20**, 1–9 (2019).

1515 133. Germain, P. L., Robinson, M. D., Lun, A., Garcia Meixide, C. & Macnair, W. Doublet
1516 identification in single-cell sequencing data using *scDblFinder*. *F1000Research* 2022 **10**:979
1517 **10**, 979 (2022).

1518 134. Zhu, Q., Conrad, D. N. & Gartner, Z. J. deMULTIplex2: robust sample demultiplexing for
1519 scRNA-seq. *bioRxiv* 2023.04.11.536275 (2023) doi:10.1101/2023.04.11.536275.

1520 135. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-
1521 cell transcriptomics. *Nature Methods* 2018 **15**:12 **15**, 1053–1058 (2018).

1522 136. Hafemeister, C. & Halbritter, F. Single-cell RNA-seq differential expression tests within a
1523 sample should use pseudo-bulk data of pseudo-replicates. *bioRxiv* 2023.03.28.534443 (2023)
1524 doi:10.1101/2023.03.28.534443.

1525 137. Liberzon, A. *et al.* The Molecular Signatures Database (MSigDB) hallmark gene set collection.
1526 *Cell Syst* **1**, 417 (2015).

1527 138. Federico, A. & Monti, S. *hypeR*: an R package for geneset enrichment workflows.
1528 *Bioinformatics* **36**, 1307–1308 (2020).

1529 139. Street, K. *et al.* Slingshot: Cell lineage and pseudotime inference for single-cell
1530 transcriptomics. *BMC Genomics* **19**, 477 (2018).

1531 140. van den Berge, K. *et al.* Trajectory-based differential expression analysis for single-cell
1532 sequencing data. *Nat Commun* **11**, 1–13 (2020).

1533 141. Lambert, S. A. *et al.* The Human Transcription Factors. *Cell* **172**, 650–665 (2018).

1534 142. Patel, A. P. *et al.* Single-cell RNA-seq highlights intratumoral heterogeneity in primary
1535 glioblastoma. *Science (1979)* **344**, 1396–1401 (2014).

1536 143. Rifatbegovic, F. *et al.* Neuroblastoma cells undergo transcriptomic alterations upon
1537 dissemination into the bone marrow and subsequent tumor progression. *Int J Cancer* **142**,
1538 297–307 (2018).

1539 144. Ladenstein, R. *et al.* [Value of prognostic factors in the Austrian A-NB87 Neuroblastoma
1540 Study]. *Klin Padiatr* **208**, 210–20 (1996).

1541 145. Fiedler, S. *et al.* Long-Term Outcome and Role of Biology within Risk-Adapted Treatment
1542 Strategies: The Austrian Neuroblastoma Trial A-NB94. *Cancers 2021, Vol. 13, Page 572* **13**,
1543 572 (2021).

1544 146. Garaventa, A. *et al.* Randomized Trial of Two Induction Therapy Regimens for High-Risk
1545 Neuroblastoma: HR-NBL1.5 International Society of Pediatric Oncology European
1546 Neuroblastoma Group Study. *J Clin Oncol* **39**, 2552–2563 (2021).

1547 147. Ladenstein, R. *et al.* Investigation of the Role of Dinutuximab Beta-Based Immunotherapy in
1548 the SIOPEN High-Risk Neuroblastoma 1 Trial (HR-NBL1). *Cancers (Basel)* **12**, (2020).

1549 148. Ladenstein, R. *et al.* Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in
1550 patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase
1551 3 trial. *Lancet Oncol* **19**, 1617–1629 (2018).

1552 149. Ladenstein, R. *et al.* Busulfan and melphalan versus carboplatin, etoposide, and melphalan as
1553 high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international,
1554 randomised, multi-arm, open-label, phase 3 trial. *Lancet Oncol* **18**, 500–514 (2017).

1555 150. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for
1556 RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

1557 151. Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: Gene set variation analysis for microarray
1558 and RNA-Seq data. *BMC Bioinformatics* **14**, 1–15 (2013).

1559 152. Smith, J. P. *et al.* PEPATAC: an optimized pipeline for ATAC-seq data analysis with serial
1560 alignments. *NAR Genom Bioinform* **3**, lqab101 (2021).

1561 153. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for
1562 assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930 (2014).

1563 154. Lawrence, M. *et al.* Software for Computing and Annotating Genomic Ranges. *PLoS Comput
1564 Biol* **9**, e1003118 (2013).

1565 155. Kulakovskiy, I. v. *et al.* HOCOMOCO: Towards a complete collection of transcription factor
1566 binding models for human and mouse via large-scale ChIP-Seq analysis. *Nucleic Acids Res* **46**,
1567 D252–D259 (2018).

1568 156. Korotkevich, G. *et al.* Fast gene set enrichment analysis. *bioRxiv* 060012 (2021)
1569 doi:10.1101/060012.

1570 157. Upton, K. *et al.* Epigenomic profiling of neuroblastoma cell lines. *Sci Data* **7**, (2020).

1571 158. Decaesteker, B. *et al.* SOX11 regulates SWI/SNF complex components as member of the
1572 adrenergic neuroblastoma core regulatory circuitry. *Nature Communications* **2023 14:1** **14**, 1–
1573 16 (2023).

1574 159. Xu, D. *et al.* Recapitulation of patient-specific 3D chromatin conformation using machine
1575 learning. *Cell reports methods* **3**, (2023).

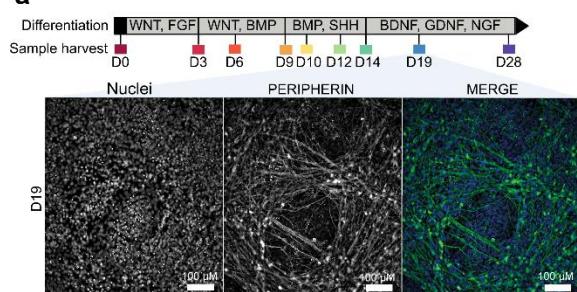
1576 160. Hariprakash, J. M. *et al.* Leveraging Tissue-Specific Enhancer-Target Gene Regulatory
1577 Networks Identifies Enhancer Somatic Mutations That Functionally Impact Lung Cancer.
1578 *Cancer Res* **84**, (2024).

1579 161. Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of
1580 human disease loci by integrative epigenomics. *Nature* **2021** *590*:7845 **590**, 300–307 (2021).

1581 162. Lee, S., Cook, D. & Lawrence, M. Plyranges: A grammar of genomic data transformation.
1582 *Genome Biol* **20**, (2019).

1583 163. La Manno, G. *et al.* RNA velocity of single cells. *Nature* **560**, 494–498 (2018).

1584


1585

1586 **Figures**

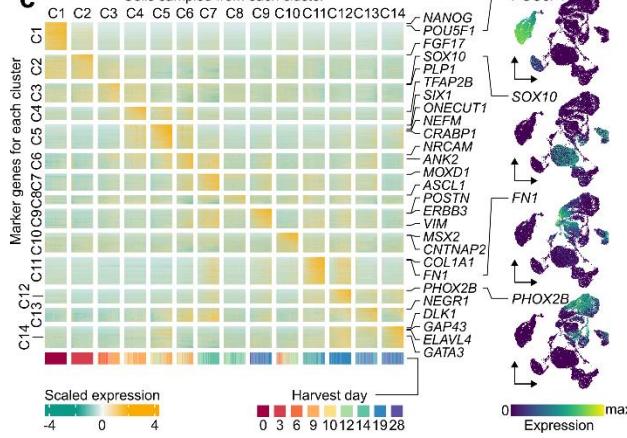
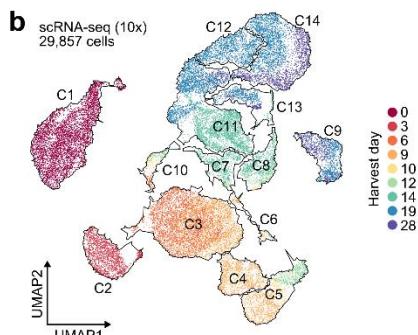
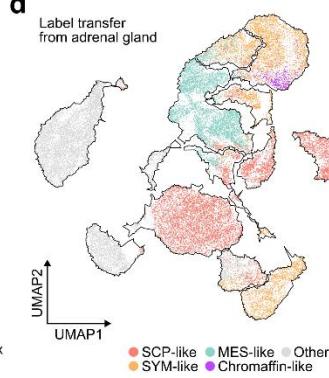
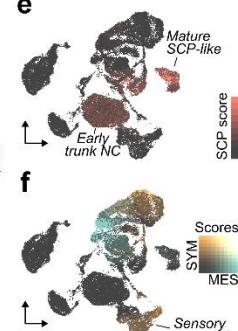

1587

Figure 1


a


c


b

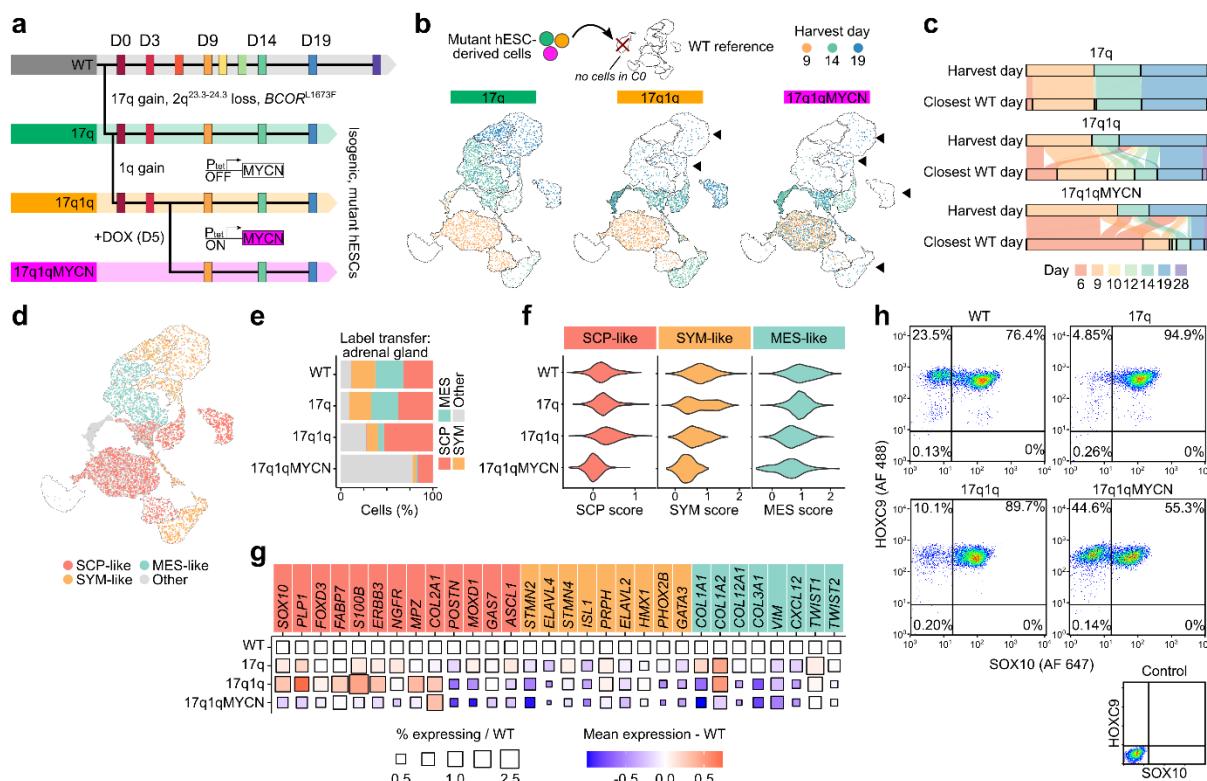
d

e

f

1588

1589


1590 **Figure 1. *In vitro* culture efficiently generates human trunk NC cells and their sympathoadrenal derivatives from hESCs.**

1591

- Diagram depicting the extrinsically supplemented signals employed to direct hESCs toward trunk NC cells and their downstream derivatives, and immunofluorescence analysis of PERIPHERIN protein expression illustrating the generation of sympathetic neurons at D19. Cell nuclei were counterstained using Hoechst 33342.
- UMAP of scRNA-seq data from wild-type hESCs collected at 9 stages (indicated by different colours) of differentiation to trunk neural crest and sympathoadrenal derivatives. Cells were divided into 14 distinct clusters as indicated by the contours.
- Heatmap of gene markers for each cluster in **panel b**. Selected genes have been highlighted and UMAPs indicate the expression level of canonical markers for stem (*POU5F1*), neural crest (*SOX10*), mesenchymal (*FN1*), and sympathetic (*PHOX2B*) cells. All marker genes are reported in **Supplementary Table 2**.
- Cells from D9-D28 of **panel b** labelled by their closest matching cell type from the human embryonic adrenal gland reference¹⁶ via label transfer. Cells in grey could not be verified with markers (**Supplementary Fig. 2i**) or could not be assigned to a single type.
- Cells from **panel d** coloured by the strength of their SCP marker signature (Seurat module score) in red. A high / medium score distinguishes a cluster of early SCP-like / trunk NC and a late cluster with more mature SCP-like cells.
- Same as above but visualising simultaneously SYM (orange) and MES (teal) marker signature. Cells with overlapping marker signatures appear in grey tones, with the highest mixture in C12. An early diverging cluster of sensory neuron-like cells has a weak match to the SYM signature. A pseudotime trajectory for the MES-SYM transition in clusters C11-C14 can be found in **Supplementary Figure 3**.

1614 **Abbreviations:** hESC, human embryonic stem cells; D0/3/9/10/12/14/19/28, day 0/3/9/10/12/14/19/28;
1615 UMAP, Uniform Manifold Approximation and Projection; C1-C14, cell clusters; SCP, Schwann cell
1616 precursor; SYM, sympathoblast; MES, mesenchymal.

Figure 2

1617
1618

Figure 2. Copy number alterations and overexpression of MYCN impair the specification of trunk NC derivatives.

1619
1620

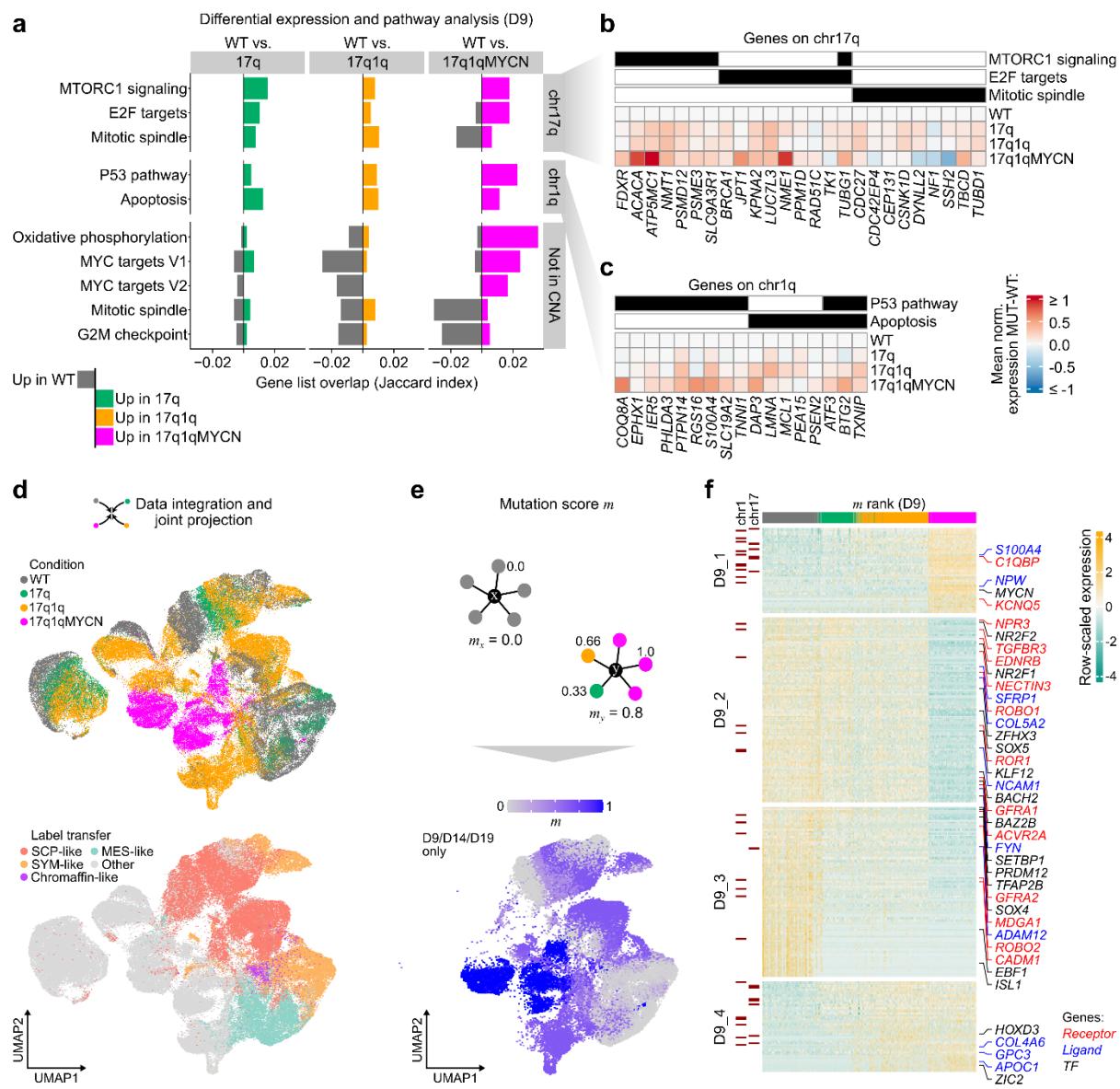
a) Scheme depicting the different hESC genetic backgrounds employed and the timing of DOX-induced MYCN overexpression in the context of our trunk NC differentiation system.

b) scRNA-seq data from mutant cells (17q, 17q1q, 17q1qMYCN at D9, D14, and D19) were mapped to the wild-type trunk NC reference (illustration on the left side). Glasswork UMAP plots depicting the destination clusters in the WT reference for cells of the 17q, 17q1q and 17q1qMYCN conditions. Mutant cells are coloured by stage to emphasise mismatches with WT. Fewer 17q1q and 17q1qMYCN cells map to later differentiation stages, highlighted by arrows.

c) Alluvial plots comparing the stage at which each mutant cell was harvested versus its phenotypically closest stage in the WT reference (based on label transfer as also shown in panel b). In each subplot, the top bar indicates the proportion of cells collected at each stage (D9, D14, D19). The bottom bar indicates the distribution of matching phenotypes in the WT for that same population of cells, and streams indicate which subpopulations flow into cognate or non-cognate WT stages. The plots suggest that cells from 17q1q and 17q1qMYCN progressively mapped to earlier stages compared to WT.

d) Glasswork UMAPs of mapped 17q, 17q1q, and 17q1qMYCN cells (as in panel b) coloured by closest-matching cell type in the human embryonic adrenal gland reference¹⁶. The category “other” comprises other cell types in the reference dataset and mappings that could not be validated by cell type markers (Supplementary Fig. 2i).

e) Percentage of cells mapped to each cell type in panel d split by cell line.


f) Violin plots indicating the strength of the SCP/SYM/MES (left to right) gene expression signature (Seurat module score) for cells mapped to the respective cell type, split by cell line.

g) Plot indicating the change in mean expression (colour) and the percentage of cells expressing the gene (size) for each gene in the signatures from panel e relative to WT. WT squares (size = 1, white) are shown for reference.

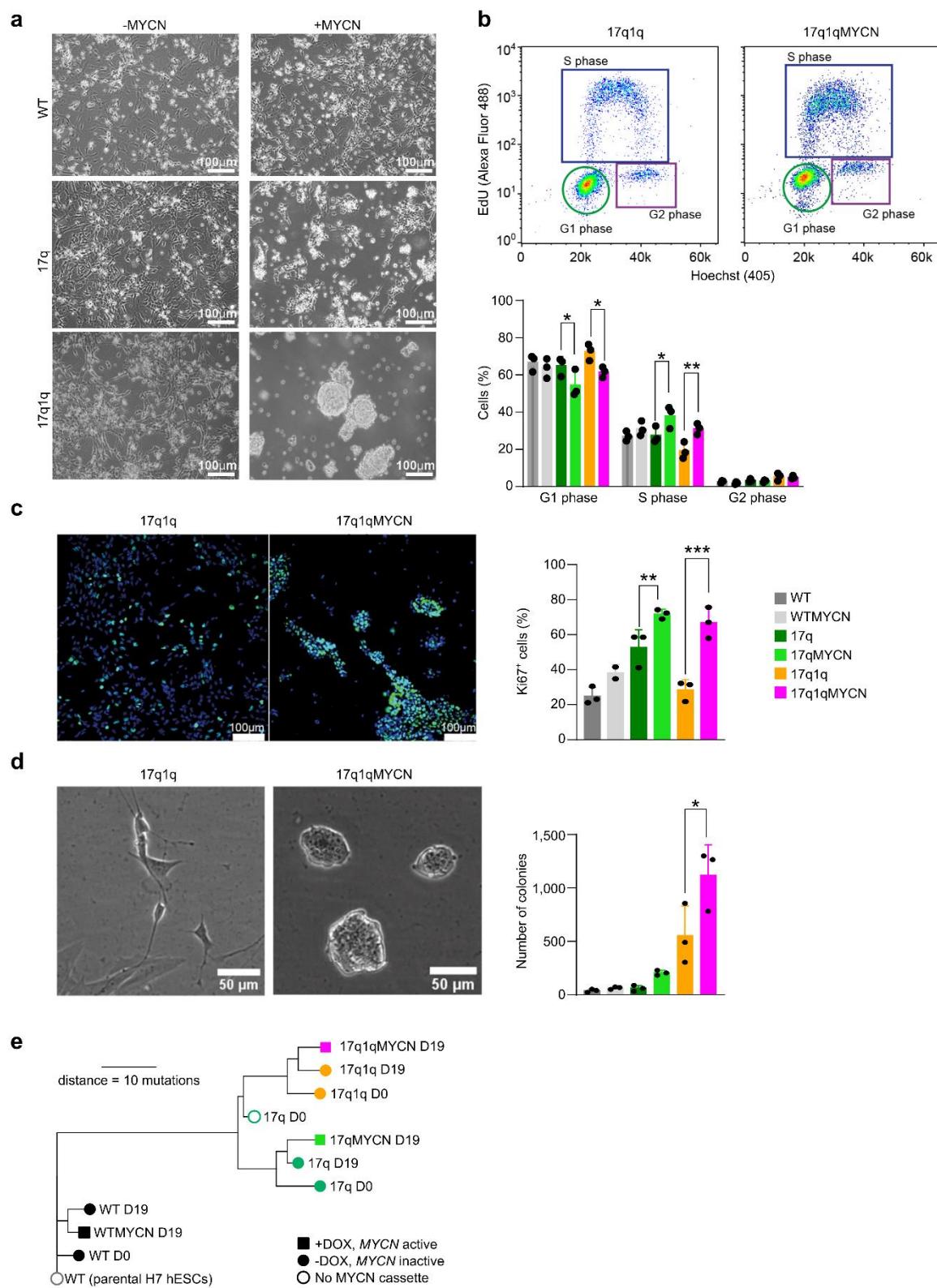
h) Flow cytometric analysis of trunk NC markers HOXC9 and SOX10 in D9 cultures obtained from hESCs marked by the indicated NB-associated lesions.

1648 **Abbreviations:** WT, wild-type H7 hESCs; D0/3/9/10/12/14/19/28, day 0/3/9/10/12/14/19/28; UMAP,
1649 Uniform Manifold Approximation and Projection; SCP, Schwann cell precursor; SYM, sympathoblast;
1650 MES, mesenchymal.

Figure 3

Figure 3. Copy number alterations and overexpression of *MYCN* alter the expression of metabolic and developmental pathways.

1655 a) We performed differential expression analysis between WT and derivatives of each mutant
1656 hESC line at D9 of differentiation and performed a pathway enrichment analysis to summarise
1657 the differentially expressed genes (DEGs). Enrichment was determined by hypergeometric tests
1658 (*hypeR*¹³⁸, background: all detected genes in our scRNA-seq dataset; $P_{adj} \leq 0.1$) using pathways
1659 from MSigDB¹³⁷. The overlap between up- and down-regulated DEGs with the pathway genes
1660 is indicated as a positive (green/orange/magenta colour bars) or negative (grey colour) number,
1661 respectively. We additionally distinguished between DEGs located on chromosome arms
1662 chr17q, chr1q, or anywhere else in the genome to analyse potential direct and indirect effects
1663 of CNAs (split from top to bottom). All differentially expressed genes and pathway
1664 enrichments are available in **Supplementary Tables 6 and 7**.

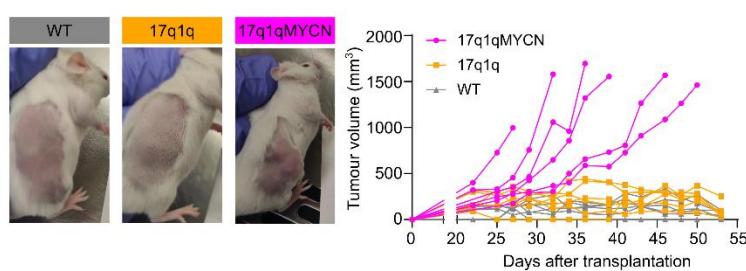

1665 b) DEGs located on chromosome arm chr17q from the enriched pathways shown in **panel a**. The
1666 heatmap indicates the mean normalised expression difference between each indicated mutant
1667 cell line and WT (at D9). The annotation bar on top of the heatmap indicate membership (black
1668 colour) of genes in the selection pathways (MSigDB hallmark database).

1669 c) As **panel (b)**, but for DEGs on chr1q and the respective enriched pathways.

1670 **d)** UMAP of scRNA-seq data from wild-type and mutant hESCs (indicated by colour; cp. **Fig. 2a**)
1671 throughout differentiation to trunk neural crest and sympathoadrenal derivatives (top). Bottom:
1672 the same dataset coloured by closest-matching cell type in the human embryonic adrenal gland
1673 reference¹⁶. The category “other” comprises other cell types in the reference dataset and
1674 mappings that could not be validated by cell type markers (**Supplementary Fig. 2i**).
1675 **e)** Illustration (top) of the calculation of mutation scores m (k-nearest neighbour (KNN)
1676 mutational average) as average score of each cell’s neighbours. In this calculation, each
1677 neighbour weighs in by its cell line (0 = WT, 1/3 = 17q, 2/3 = 17q1q, 1 = 17q1qMYCN) such
1678 that the mutation score allows ordering cells from WT to MYCN mutation. Only cells from D9,
1679 D14, and D19 were used, for which data from all conditions were available. The actual scores
1680 are shown overlaid on the UMAP from **panel d** (bottom).
1681 **f)** Heatmap showing the expression of top 300 genes highly correlated to the mutation score m
1682 from **panel e** across all cells from D9. Genes have been divided into four groups by hierarchical
1683 clustering, and selected TFs, receptors, and ligands are highlighted. All correlated genes are
1684 reported in **Supplementary Table 9**. Genes located on chr17q or chr1q are indicated.

1685 **Abbreviations:** WT, wild-type H7 hESCs; D0/3/9/14/19, day 0/3/9/14/19; UMAP, Uniform Manifold
1686 Approximation and Projection; m , mutation score; TF, transcription factor.

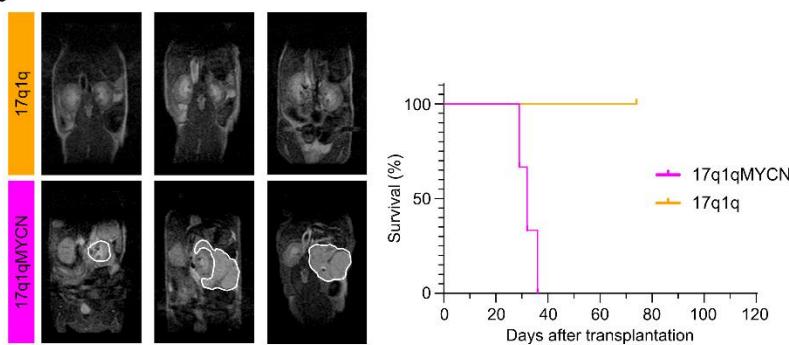
Figure 4


1694 found in each of the different stages of the cell cycle (G1, S, G2) corresponding to indicated
1695 NB-associated lesions (n = 3 biological replicates, error bars= standard deviation two-way
1696 ANOVA). P values in comparisons: G1 (17q vs 17qMYCN, p = 0.0266= *; 17q1q vs
1697 17q1qMYCN, p= 0.0153=**), S (17q vs 17qMYCN, p = 0.0233= *; 17q1q vs 17q1qMYCN, p= 0.0073=***). Note only comparisons examining the effect of MYCN overexpression in different
1698 backgrounds are shown.
1699

1700 c) Immunofluorescence analysis (green) of the expression of the cell proliferation marker KI-67
1701 in D14 (left) cultures obtained from hESCs marked by the indicated NB-associated lesions.
1702 Cell nuclei were counterstained using Hoechst 33342 (blue). Scoring of the percentages of KI-
1703 67-positive cells is also shown (right) (n = 3 biological replicates, error bars= standard
1704 deviation, ordinary two-way ANOVA with Tukey correction). P values in comparisons: 17q vs
1705 17qMYCN, p=0.0078 =**; 17q1q vs. 17q1qMYCN p= 0.0001=***). Note only comparisons
1706 examining the effect of MYCN overexpression in different backgrounds are shown.
1707 d) Left: Representative brightfield images of cell/colony morphology following a low-density
1708 plating assay using cells marked by the indicated NB-associated lesions after 84 hours. Right:
1709 Comparison of the number of colonies formed by cells marked by the indicated NB-associated
1710 lesions following plating at low density. (n= 3 biological replicates, error bars= SD, Ordinary
1711 Two-way ANOVA test with Tukey correction). P values in comparisons: 17q1q vs.
1712 17q1qMYCN p= 0.0109=*. Note only comparisons examining the effect of MYCN
1713 overexpression in different backgrounds are shown.
1714 e) Phylogenetic tree indicating the genetic relationship and distance (in number of SNVs detected
1715 by whole-exome sequencing) between different hESC lines before (D0) and after differentiation
1716 (D19). The shape of nodes indicates samples without a *MYCN* overexpression cassette (unfilled
1717 circles), with an expression cassette which has not been activated (filled circles), and with an
1718 activated (by addition of DOX from D5 onwards) *MYCN* overexpression cassette (filled
1719 squares). The colours have been chosen to match those used elsewhere in the paper, without
1720 specific meaning. The plot shows that few additional mutations occurred during differentiation
1721 since the distances between differentiated cell lines and the shared ancestor with the matching
1722 undifferentiated samples are small (<10 mutations). **Supplementary Tables 4 and 5** report
1723 SNVs and CNAs identified in our analyses.

1724 **Abbreviations:** D0/5/14/19, day 0/5/14/19; WT, wild-type H7 hESCs.

Figure 5


a

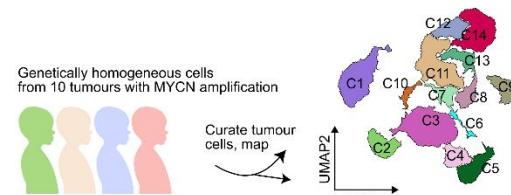
c

Site of injection	Cell line	Penetrance
Subcutaneous	WT	0 out of 6
	17q1q	0 out of 6
	17q1qMYCN	6 out of 6
Adrenal gland	17q1q	0 out of 3
	17q1qMYCN	3 out of 3

b

1725

1726


1727 **Figure 5. hESC-derived trunk NC cells with CNAs form tumours in mice upon *MYCN* overexpression.**

1729 a) Left: Representative images of subcutaneous xenografts of trunk NC cells derived from the
1730 indicated cell lines in the presence (17q1qMYCN) and absence (WT, 17q1q) of DOX treatment.
1731 Right: Graph showing tumour size growth per mouse corresponding to xenografts of indicated
1732 cell lines (n = 6 animals per cell line).
1733 b) Left: Representative MRI sections of mice at week 5 following xenografting of indicated cell
1734 lines in the adrenal gland and DOX treatment regimens. The white lines indicate the tumour
1735 perimeter. Right: Graph showing survival of the recipient animals after xenografting (n = 3
1736 animals per cell line).
1737 c) Summary of mouse xenograft experiments.

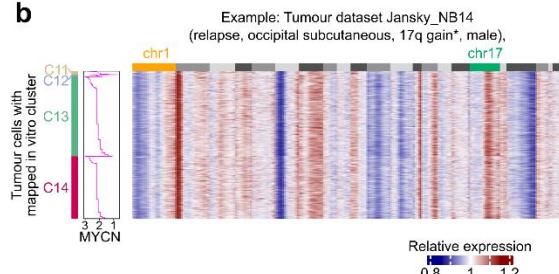
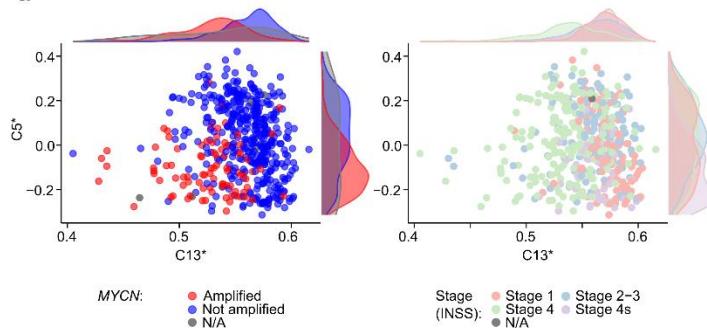

1738 **Abbreviations:** DOX, doxycycline; MRI, magnetic resonance imaging.

Figure 6

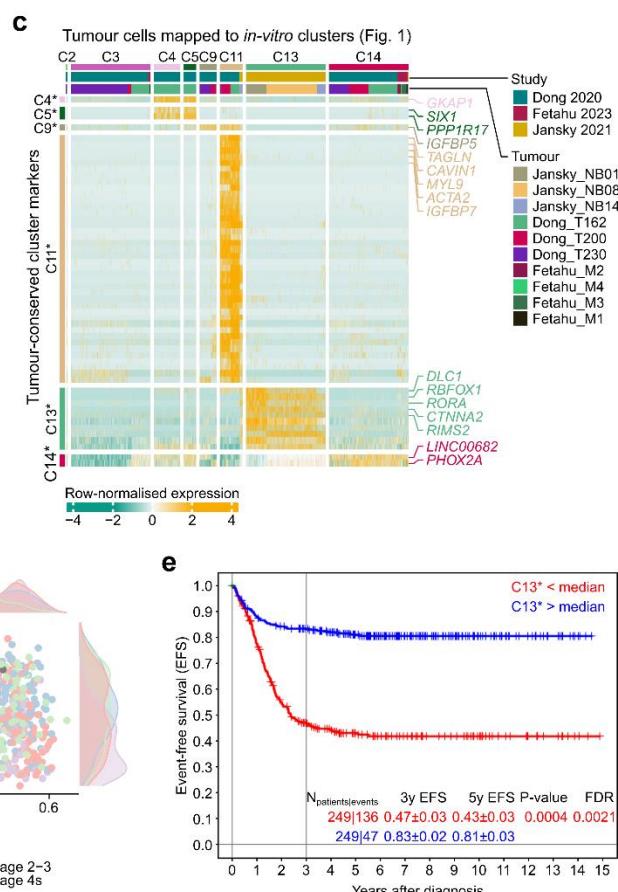

a

b

d

1739

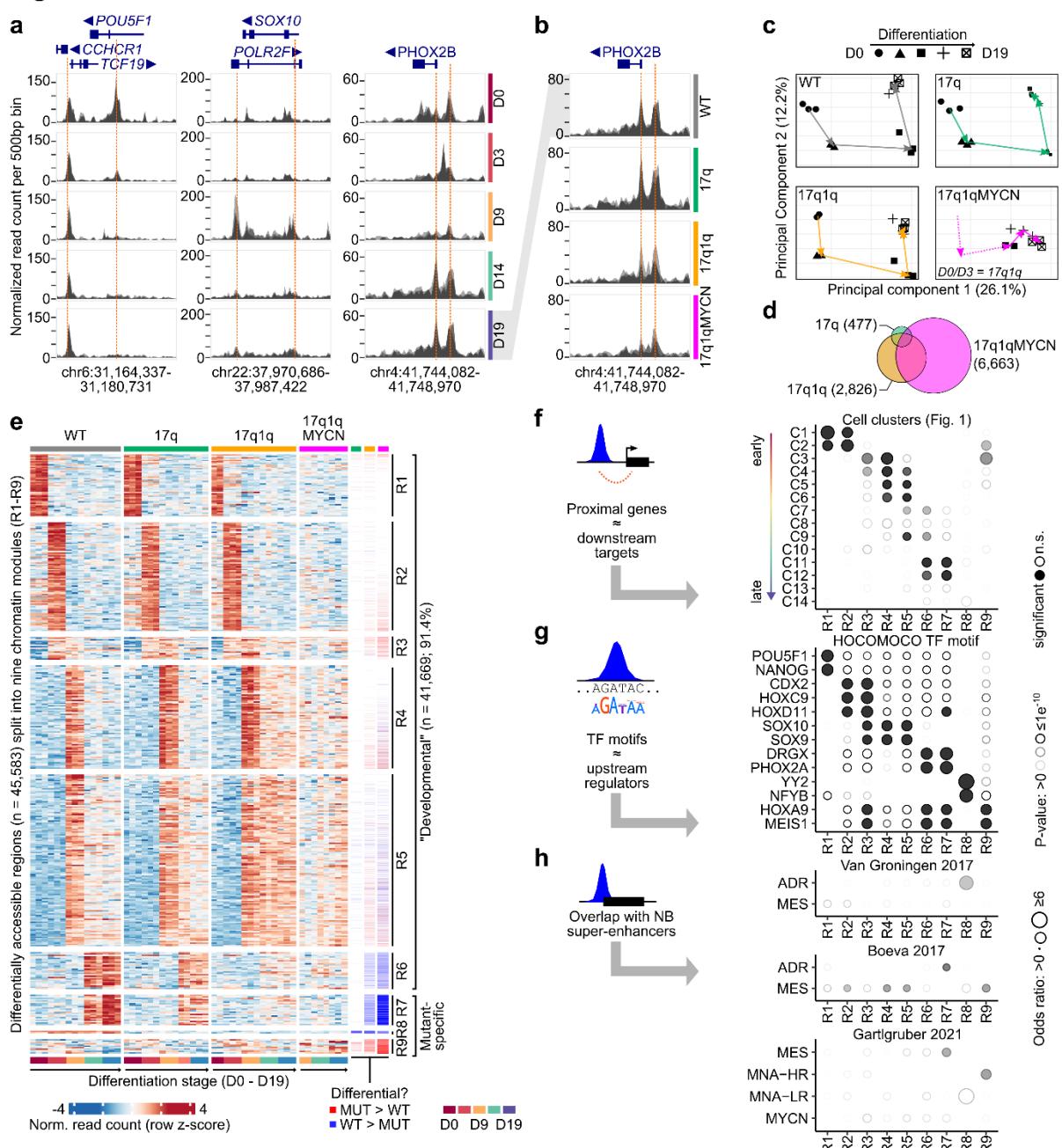
1740


Figure 6. Comparison to hESC-based trunk NC differentiation resolves structured heterogeneity across neuroblastoma tumours.

1741 a) Schematic overview of the analysis of tumour cells. We curated tumour cells from 10 *MYCN*-
1742 amplified NB samples^{15,17,23} from three studies and mapped them onto our reference (cp. **Fig.**
1743 1)¹²⁹. Mapping is represented as tumour cells falling into sectors of the WT *in vitro* reference
1744 (depicted as contours of each cluster in the glasswork plot).

1745 b) Heatmap depicting gene expression in *MYCN*⁺ tumour cells of dataset *Jansky_NB14*¹⁵. Values
1746 are inferCNV¹⁴² copy number estimations per gene, relative to hematopoietic and immune cells
1747 in the sample ordered by genomic position and chromosome (1-22). Cells (one per row) are
1748 shown ordered by the respective cluster in our reference dataset that the tumour cells were
1749 mapped to (C11 to C14) and therein by *MYCN* expression levels (depth-normalised sliding
1750 window average, width = 20 cells). Mappings of other tumours datasets are shown in
1751 **Supplementary Fig. 11**.

1752 c) Heatmap showing markers from gene expression signatures C4*, C5*, C9*, C13*, and C14*
1753 (rows, top to bottom) in cells from 10 tumour datasets that were mapped to our in vitro reference
1754 dataset (cp. **panel a**). Each gene expression signature is the intersection of the cluster markers
1755 in our reference dataset (as in Fig. 1) and differentially expressed genes between the respective
1756 tumour cells. No genes were found for C2* and C3*. Markers for tumour cells mapped to C2
1757 and C3 showed no overlap with *in-vitro* cluster markers; thus, only mapped cells are shown.
1758 All genes identified in this analysis are reported in **Supplementary Table 10**.


1759 d) Scatterplots evaluating the strength of gene expression signatures C5* and C13* (from **panel**
1760 **c**; calculated using GSVA¹⁵¹) in NB bulk RNA-seq data from SEQC^{72,73}. Each dot corresponds
1761 to one tumour dataset coloured by *MYCN* amplification status (left) or clinical stage (right).
1762 The density of points (kernel density estimate) in each group is indicated in the margins of the
1763 plots.

1766 e) Survival analysis for data from the SEQC cohort stratified by strength of the C13* expression
1767 signature. Groups were split by the median. Cox regression adjusted for age-group (< 18
1768 months, 18-60 months, > 60 months), INSS stage 4 (yes / no),
1769 and *MYCN* amplification status (yes / no). n = 249 patients per group, or 136 [C13* low] and
1770 47 [C13* high] events. All survival analysis results are reported in **Supplementary Table 11**.

1771 **Abbreviations:** UMAP, Uniform Manifold Approximation and Projection; EFS, event-free survival.

Figure 7

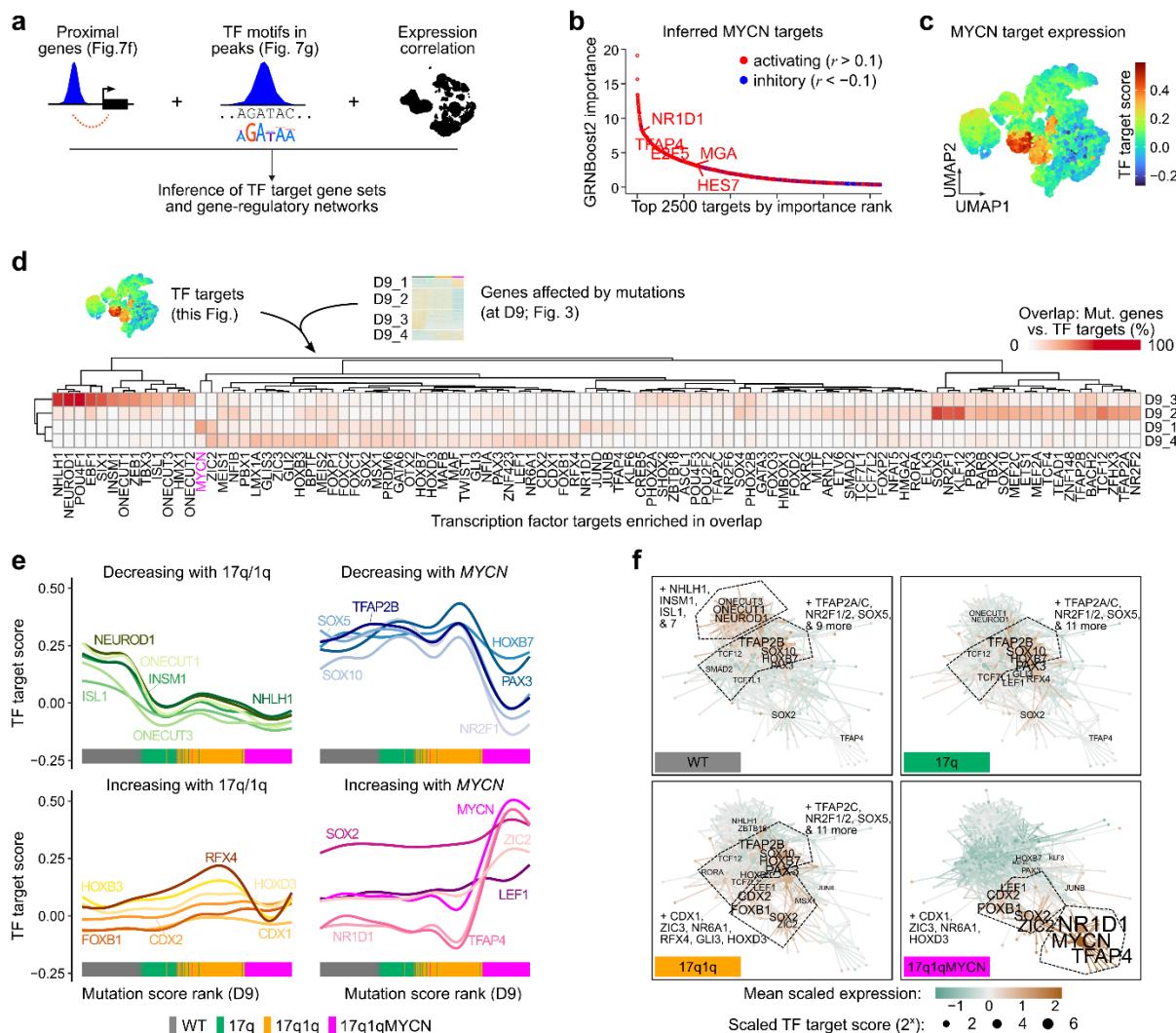
1772

1773 **Figure 7. Differentiation of wild-type and mutant hESCs is associated with epigenetic changes in**
1774 **nine distinct chromatin modules.**

1775 a) ATAC-seq read coverage for wild-type hESCs at three example loci. Each area plot reports the
1776 normalised read count aggregated per genomic bin (width = 500bp). Multiple semi-transparent
1777 area plots are overlaid for each replicate. Genes within each locus are shown on top with
1778 thin/thick lines indicating introns/exons. The arrows next to gene names indicate the direction
1779 of transcription. Selected peaks have been highlighted manually (dashed red lines).

1780 b) ATAC-seq read coverage of wild-type and mutant hESCs at D19 near the *PHOX2B* locus. Plots
1781 as in panel a.

1782 c) Principal component analysis of all ATAC-seq datasets, split into four panels by condition. The
1783 geometric means of all data belonging to the same stages are connected by arrows to visualise
1784 the stepwise chromatin changes during differentiation.


1785 d) Euler diagram visualising the overlap of differentially accessible regions in mutant hESCs-
1786 derived trunk NC derivatives across all stages compared to WT (*DEseq2*¹⁵⁰; $P_{adj} \leq 0.005$,

$|\log_2\text{FoldChange}| \geq \log_2(1.5)$). Numbers indicate the total number of regions per cell line aggregated over all developmental stages.

- e) Heatmaps showing normalised read counts for all differentially accessible regions (columns) in any pairwise comparison of two stages or conditions ($DEseq2^{150}$; $P_{adj} \leq 0.005$, $|\log_2\text{FoldChange}| \geq \log_2(1.5)$; $n_{total} = 45,583$). Regions have been divided into nine non-overlapping modules (R1–R9) by hierarchical clustering. Three annotation columns are shown to the right indicating regions called down- (blue) and up-regulated (red) in each mutant hESC. All regions and differential analysis results are reported in **Supplementary Tables 12 and 13**.
- f) Comparison of regions belonging to the nine chromatin modules (from **panel e**) and proximal genes from the cluster markers lists defined in our scRNA-seq analysis (cp. **Fig. 1**). An enrichment analysis for the overlaps was performed using hypergeometric tests (using $hypeR^{138}$; background: all genes associated with at least one ATAC-seq peak) and the sizes and transparency of circles indicates the odds ratio and P-value, respectively. Significant results are indicated with filled circles ($P_{adj} \leq 0.005$). All results are shown in the figure and also reported in **Supplementary Table 14**.
- g) Enrichment analysis for overlaps between chromatin modules and known TF motifs (*HOCOMOCO* database¹⁵⁵, v11). The plots are as in **panel f**, with the exception that only overlaps with $P_{adj} \leq 0.0000001$ and $|\log_2\text{FoldChange}| \geq \log_2(2)$ were marked as significant (background: all peaks with at least one motif match). The top results per module are shown and all results are reported in **Supplementary Table 14**.
- h) Enrichment analysis of overlaps between regions belonging to the nine chromatin modules and super-enhancers specific to certain NB epigenetic subtypes^{44,45,75} (background: all peaks with at least one overlapping region annotated in the super-enhancer analyses). Plots as in **panel f**.

Abbreviations: D0/3/9/14/19, day 0/3/9/14/19; WT, wild-type H7 hESCs; MUT, a “mutant” hESC line (17q, 17q1q, or 17q1qMYCN); R1-R9, chromatin region modules; sig., significant; ADR, adrenergic; MES, mesenchymal; MNA-HR, not *MYCN*-amplified high-risk; MNA-LR, not *MYCN*-amplified low-risk.

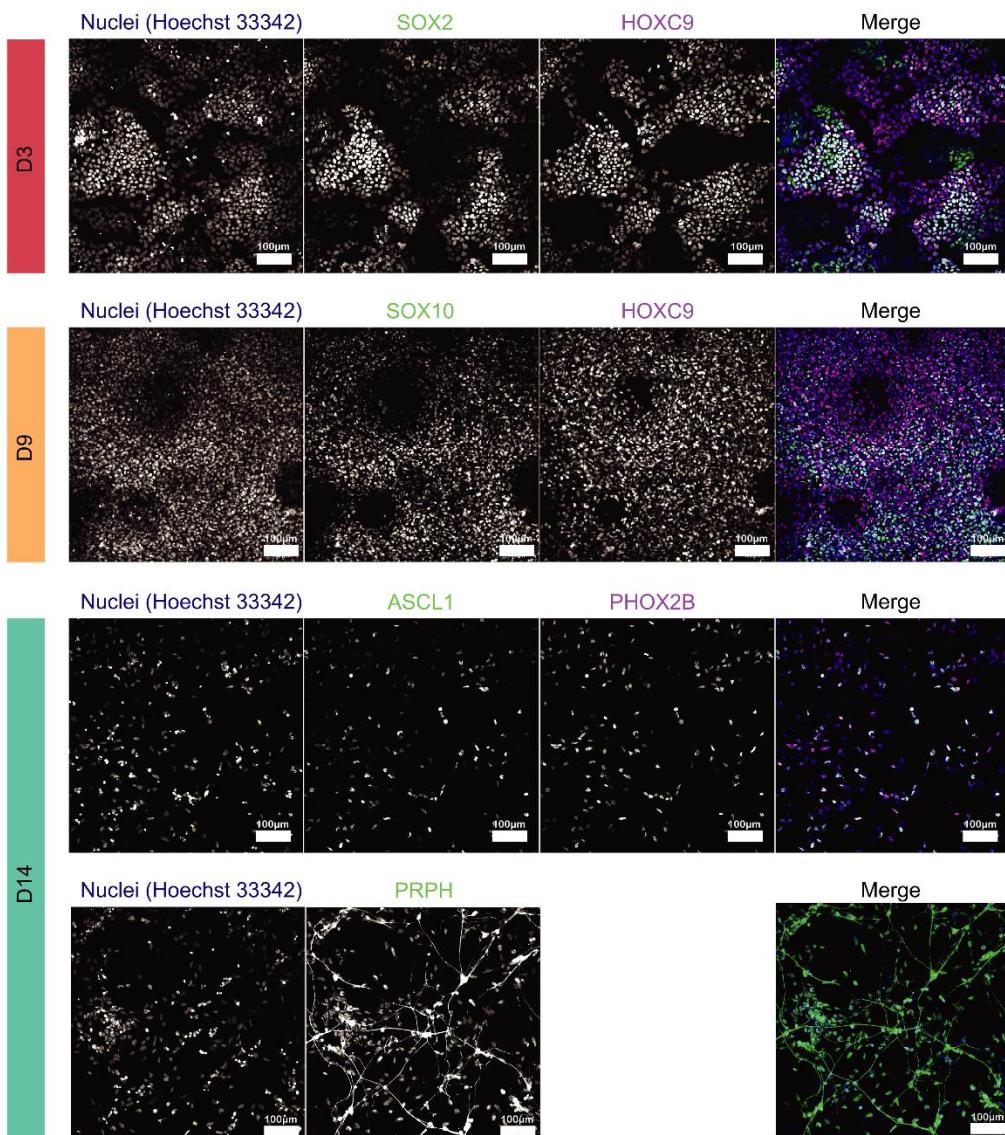
Figure 8

Figure 8. Copy number changes facilitate MYCN-mediated blockage of differentiation via developmental transcription factor networks.

1814
1815
1816
1817
1818 a) To define putative target genes of TFs, we linked TF motifs identified in ATAC-seq peaks with
1819 proximal genes and additionally used the *GRNboost2* algorithm⁸³ to identify highly correlated
1820 TF-target gene candidates based on our scRNA-seq data.
1821 b) Top 2500 targets of MYCN predicted by *GRNboost2*⁸³. Putative targets without support in our
1822 ATAC-seq data (motif for TF in ≥ 1 peak near the gene) have been removed. We also calculated
1823 the Pearson correlation coefficient (r) between each TF and target gene to determine the
1824 direction of the putative interaction ($r > 0.1$ = “activating”, $r < -0.1$ = “inhibitory”, others =
1825 “marginal”). The top 5 TFs have been highlighted. TF target gene sets are reported in
1826 **Supplementary Table 15**.
1827 c) Average expression (Seurat module score) of the MYCN target gene set (“activated” targets
1828 from **panel d**) in our integrated scRNA-seq dataset (cp. **Fig. 3d**).
1829 d) Heatmap displaying the percentage of genes in gene sets D9_1 to D9_4 (correlated with
1830 mutation score, cp. **Fig. 3e,f**) that overlapped with targets of the indicated TFs (one TF per
1831 column). All TF target sets with significant overlaps in at least one comparison are shown
1832 (hypergeometric test, *hypeR*¹³⁸; $P_{adj} \leq 0.05$, $|\log_2\text{FoldChange}| \geq \log_2(4)$, frequency $\geq 5\%$).
1833 Enrichment results are also reported in **Supplementary Table 16**.
1834 e) Smoothed line plots evaluating target gene expression (Seurat module score) for selected TFs
1835 from **panel f** with increasing mutations (mutation scores from **Figs. 3e,f**). We manually split

1836 the TFs into groups corresponding to target genes losing or gaining expression along the module
1837 score spectrum. The source cell line of each data point is indicated at the bottom.

1838 **f)** Gene-regulatory network diagrams visualizing putative TF-to-target relations for enriched TF
1839 targets (cp. **panels c-e**). In these diagrams, each node represents a TF or target gene, and each
1840 edge is a link between a TF and a target. We made these networks specific to cells from each
1841 condition (WT, 17q, 17q1q, 17q1qMYCN) by using colour to indicate the mean scaled
1842 expression of each gene in the respective cells at D9 (edges coloured by source TF) and node
1843 size to indicate the mean scaled T_{TF} target score of each TF. Only labels of TFs with positive
1844 scaled expression are shown and selected groups of TFs have been merged for visualisation. A
1845 network diagram with all node labels is shown in **Supplementary Fig. 13c**.


1846 **Abbreviations:** D9, day 9; R1-R9, chromatin region modules; TF, transcription factor; WT, wild-type
1847 H7 hESCs; sig., significant; r, Pearson correlation coefficient.

1848

1849 **Supplementary figures**

1850

Supplementary Figure 1

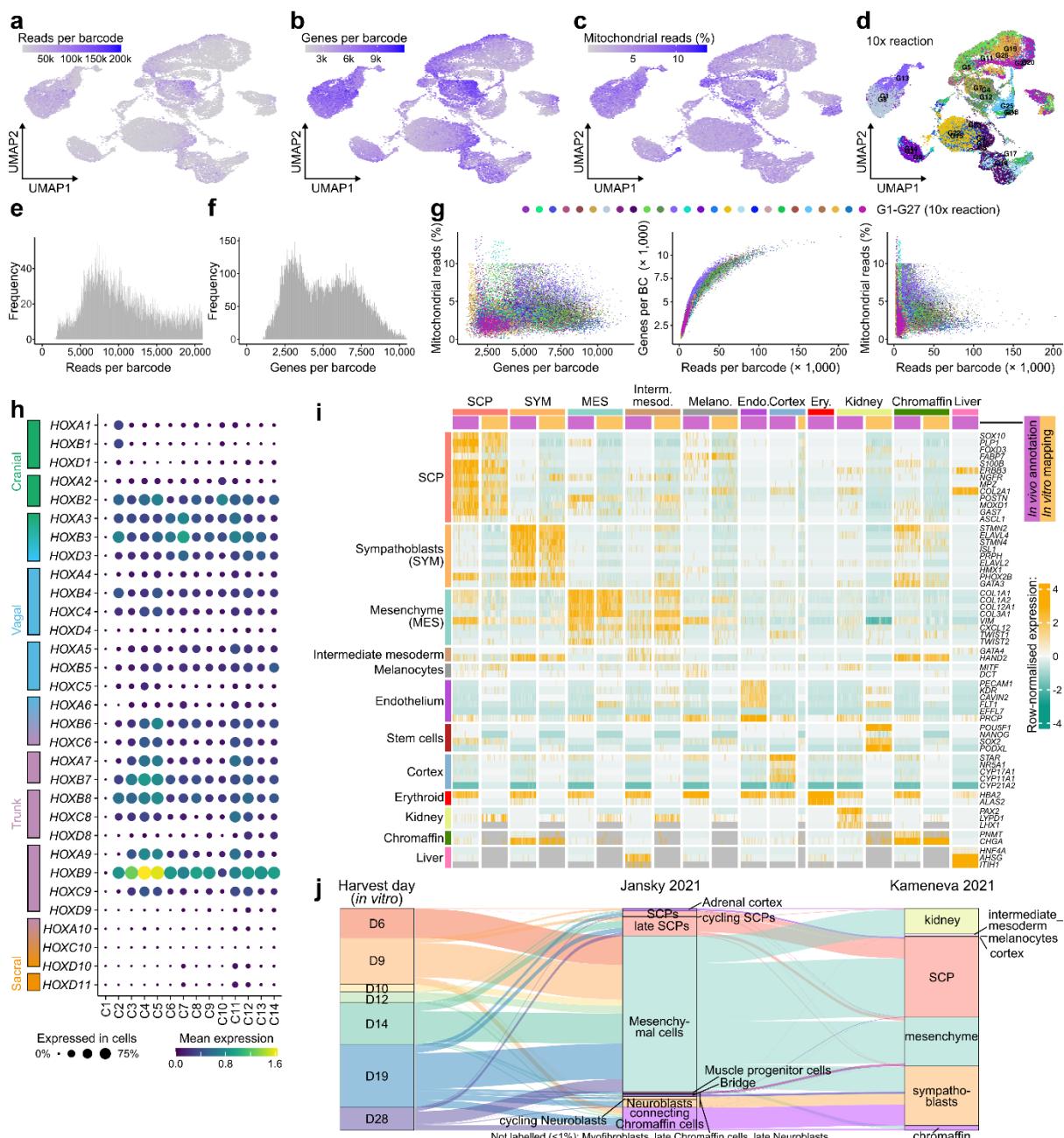
1851

1852

1853

Supplementary Figure 1 (related to Fig. 1). Immunofluorescence analysis of hESCs during trunk NC differentiation.

1854


1855

1856

Immunofluorescence analysis of the expression of indicated markers at different time points during the differentiation of hESCs toward trunk NC and its derivatives.

Abbreviations: D3/9/14, day 3/9/14.

Supplementary Figure 2

1857

1858 **Supplementary Figure 2 (related to Fig. 1). Quality control and reference mapping of single-cell**
 1859 **RNA-seq data from wild-type hESC trunk neural crest differentiation.**

1860 **a-d)** UMAP plots showing quality covariates for the wild-type hESC dataset in **Figure 1**.

1861 **e-f)** Histograms depicting the distribution of read depth (**e**) and number of genes detected (**f**) per

1862 cell barcode after quality control filtering.

1863 **g)** Scatterplots comparing all quality control covariates (shown on **panels a-c**) from the same cell,

1864 plotted versus each other, coloured by 10x Genomics run (G1-G27; cp. **Fig. 1b**).

1865 **h)** Bubble plot indicating the mean expression (colour) and fraction of cells expressing (size) each

1866 of the HOX genes per cluster. Genes have been ordered from cranial to sacral axis specification.

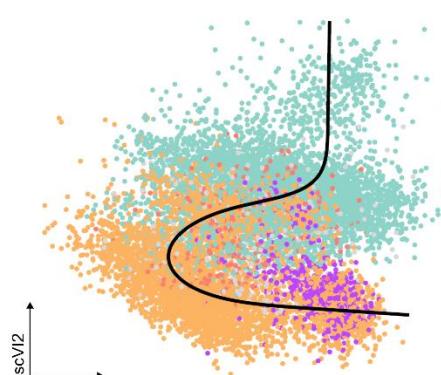
1867 **i)** Side-to-side comparison of cell type marker expression in 200 annotated cells selected at random

1868 from the human adrenal gland reference¹⁶ versus the top 200 high-confidence cells mapped to

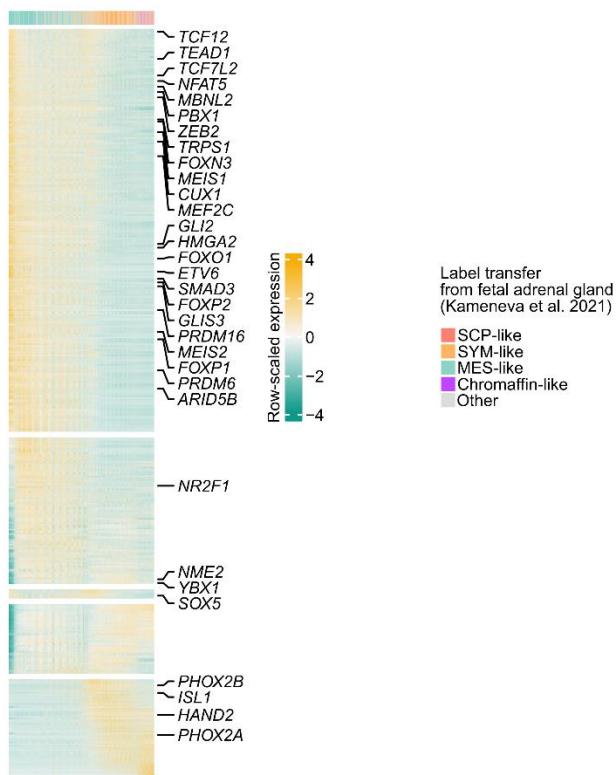
1869 the same cell types in our WT *in vitro* trunk NC dataset. Rows are cell-type marker genes.

1870 Columns are cells first divided by cell type (separated with a grey line), then by dataset of origin

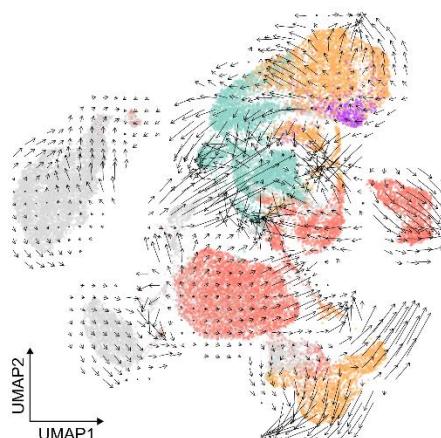
1871 (adrenal gland: purple, *in vitro*: orange). Expression values are depth-normalised per


1872 experiment and row-scaled globally. Known stem cell markers were added to trace where the
1873 stem cell population would be spuriously mapped to, in this case kidney, an indicator that cells
1874 not found in the reference may be mapped to kidney. No *in vitro* cells were mapped to
1875 chromaffin or liver identities, leading to the absence of the respective *in vitro* columns. Cells
1876 erroneously mapped, absent from the reference, or lacking relevant cell type markers were
1877 classified as “other” and coloured grey in **Figure 1e**.

1878 **j)** Alluvial plots comparing the mappings between cells in the *in vitro* dataset compared to two
1879 adrenal gland reference datasets^{15,16}. Each “stream” indicates a group of cells that were mapped
1880 to one cell identity in the Jansky *et al.* (middle) and the Kameneva *et al.* (right) references (also
1881 indicated in colour). For example, cells that were labelled MES in Kameneva *et al.* (this is the
1882 foundation for the cell type labels used in this paper) also mapped to mesenchymal cells in the
1883 Jansky *et al.* reference, cells that mapped to SYM mapped to cycling neuroblasts and to
1884 neuroblasts. Cells that we labelled as SCPs split into cells that mapped to mesenchymal cells
1885 and late SCPs in Jansky *et al.*, consistent with our observations that some of the “SCP-like”
1886 cells in our dataset represent a less mature, early SCP state (see main text).


1887 **Abbreviations:** D0/3/9/10/12/14/19/28, day 0/3/9/10/12/14/19/28; UMAP, Uniform Manifold
1888 Approximation and Projection; SCP, Schwann cell precursor; SYM, sympathoblast; MES,
1889 mesenchymal.

Supplementary Figure 3

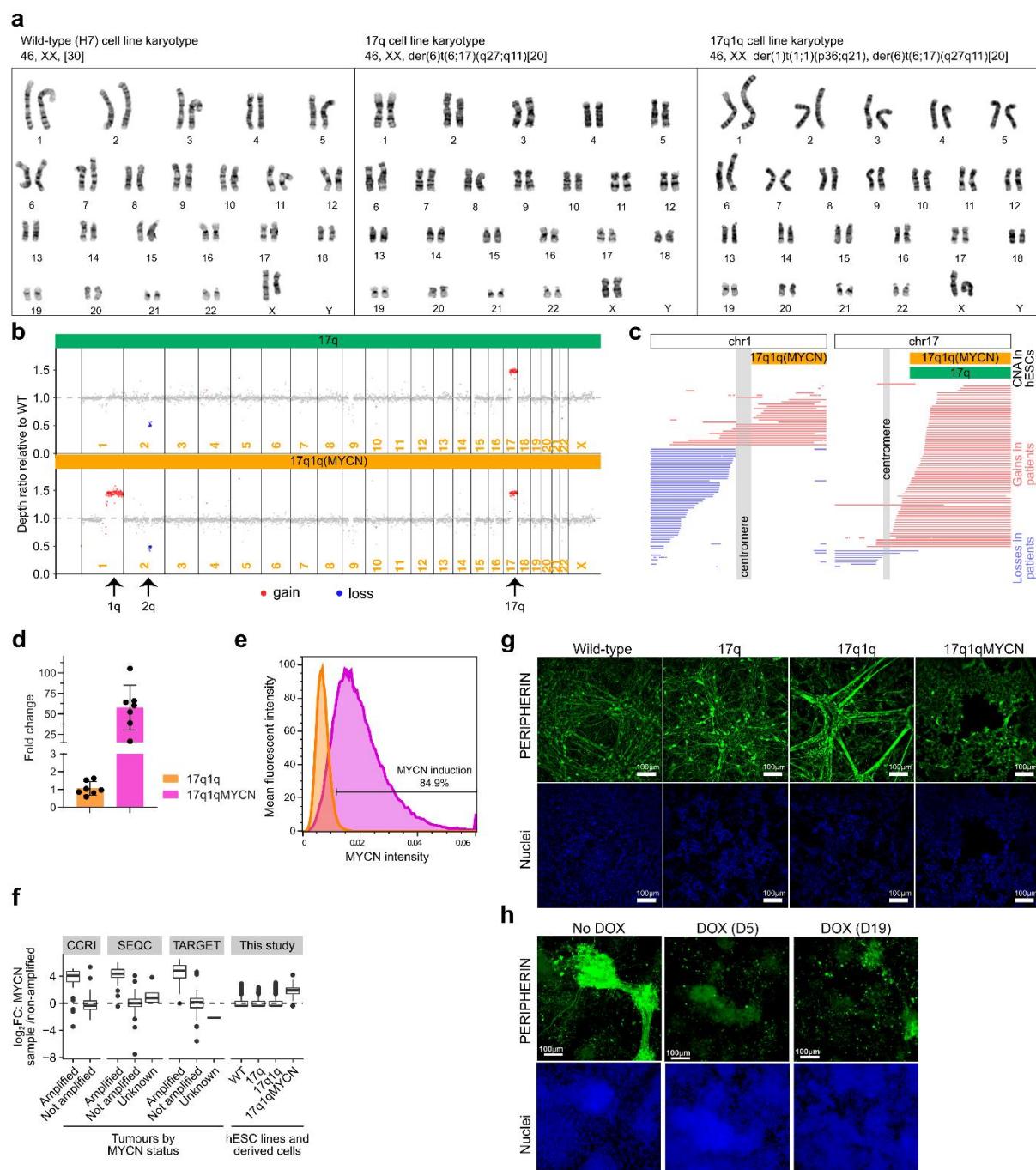

a

b

c

1890

1891 **Supplementary Figure 3 (related to Fig. 1). Trajectories connecting gradients of transcriptionally**
1892 **similar cells at different developmental stages.**


1893 **a)** *Slingshot*¹³⁹ pseudotime trajectories (top) for wild-type clusters C11-C14. Cells were extracted
1894 from the main dataset and reprocessed (see “Basic scRNA-seq processing” in Methods), and
1895 trajectories were calculated on the first two scVI components.

1896 **b)** Heatmap showing the top 400 genes with the strongest association with the trajectory as ranked
1897 by *tradeSeq*'s Wald test¹⁴⁰ (based on a *fitGAM* model with 5 knots). Highlighted genes are all
1898 the transcription factors found in the association test. **Supplementary Table 3** reports all genes
1899 found in this analysis.

1900 **c)** RNA velocities calculated for the cells in **Figure 1d** using *Velocyto*¹⁶³.

1901 **Abbreviations:** principal component; SCP, Schwann cell precursor; SYM, sympathoblast; MES,
1902 mesenchymal.

Supplementary Figure 4

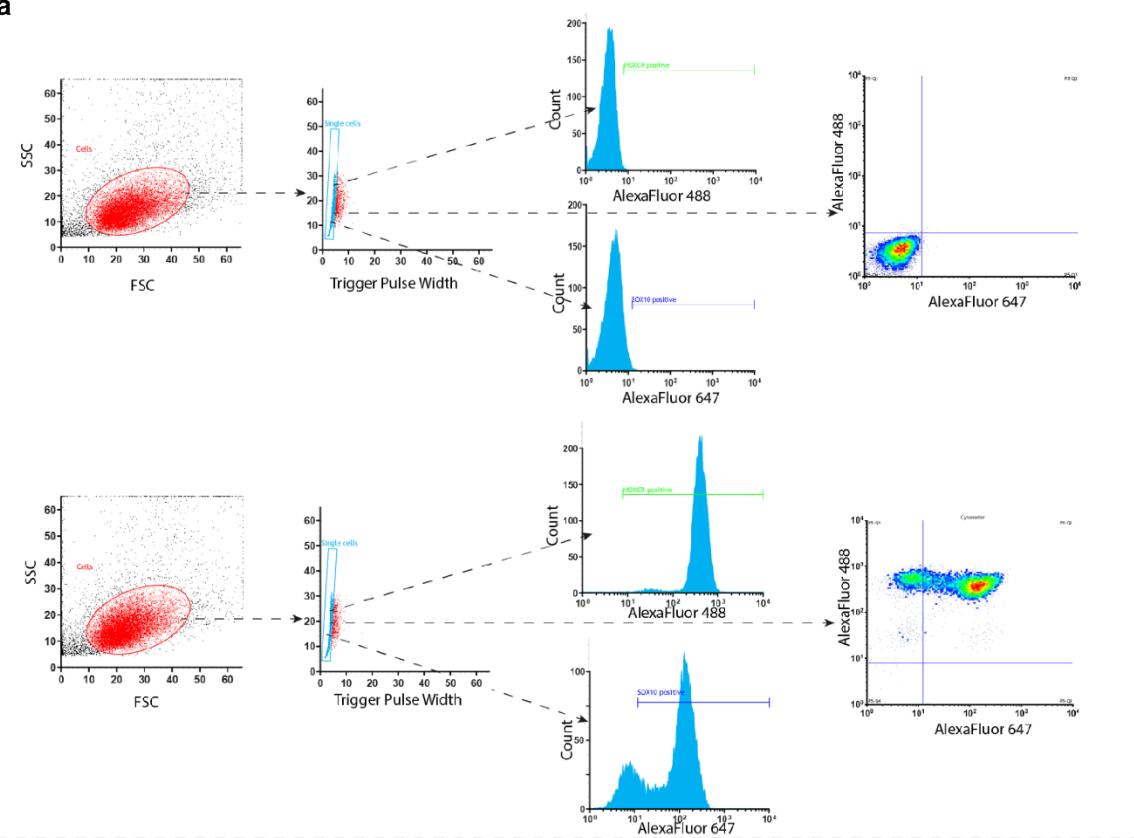
1903
1904

1905 **Supplementary Figure 4 (related to Fig. 2). Genetic and phenotypic characterization of mutant**
1906 **hESC lines.**

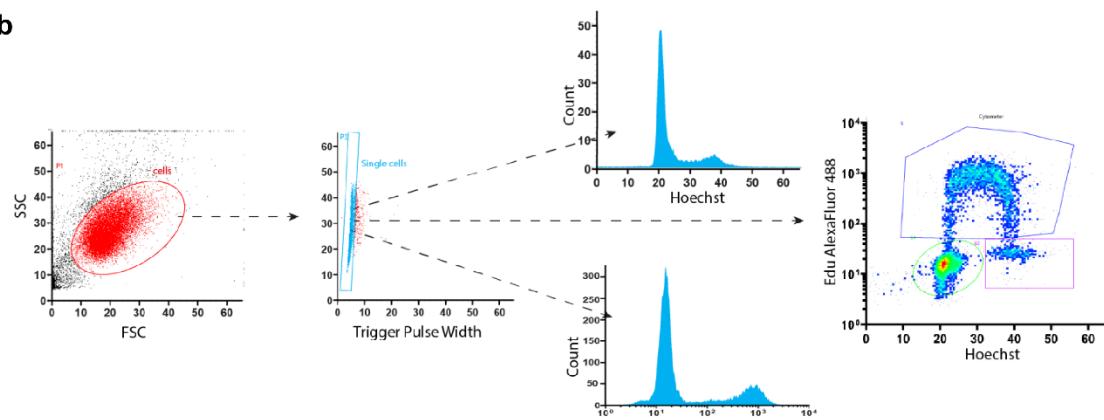
1907 **a)** Cytogenetic analysis of the H7-derived hESC lines used in the study.

1908 **b)** Plots of the depth ratio calculated between each sample and the parental control using
1909 Sequenza¹²⁰. CNAs can be seen for chr1q and chr17q, and a small segment which is lost on
1910 chr2 (q23.3-24.3). CNA coordinates and SNVs in these cell lines are reported in
1911 **Supplementary Tables 4 and 5**.

1912 **c)** Pile-up of segmental gains (red) and losses (blue) on chromosome 1 (left) and 17 (right) based
1913 on SNP array data of 88 NB samples⁵¹ (thin lines) compared to CNAs in our 17q and
1914 17q1q(MYCN) hESC lines (from panel **b**). The X axis corresponds to chromosome position.
1915 Each horizontal line depicts all the aberrations found for the same patient. For compatibility


1916 with available annotations, coordinates in this plot are shown with respect to human genome
1917 reference GRCh37/hg19 (while all other analysis in this paper were done using hg38/GRCh38).
1918 **d,e)** Analysis of *MYCN* expression at the transcript (**d**) and protein (**e**) level in D9 17q1q*MYCN*
1919 cultures after DOX treatment at day 5 vs untreated control.
1920 **f)** Comparison of *MYCN* expression in tumours and our engineered hESCs and their derivatives.
1921 The plots on the left show bulk RNA-seq data from three NB tumour compendia (CCRI, SEQC,
1922 TARGET) divided into cases with and without diagnosed *MYCN* amplification. The plot on the
1923 right (“This study”) shows our scRNA-seq data divided by cell line (across all timepoints). The
1924 values in all plots are the \log_2 fold changes of over the mean of all non-amplified tumours (left
1925 plots) or all WT cells (right plot).
1926 **g)** Immunofluorescence analysis of PERIPHERIN expression in D19 cultures following
1927 differentiation of hESCs with the indicated genotypes. Cell nuclei were counterstained using
1928 Hoechst 33342.
1929 **h)** Immunofluorescence analysis of PERIPHERIN expression in D28 cultures following
1930 differentiation of 17q1q (No DOX) or 17q1q*MYCN* hESCs following DOX treatment at the
1931 indicated timepoints. Cell nuclei were counterstained using Hoechst 33342.

1932 **Abbreviations:** WT, wild-type H7 hESCs; CNA, copy number alteration; DOX, Doxycycline.

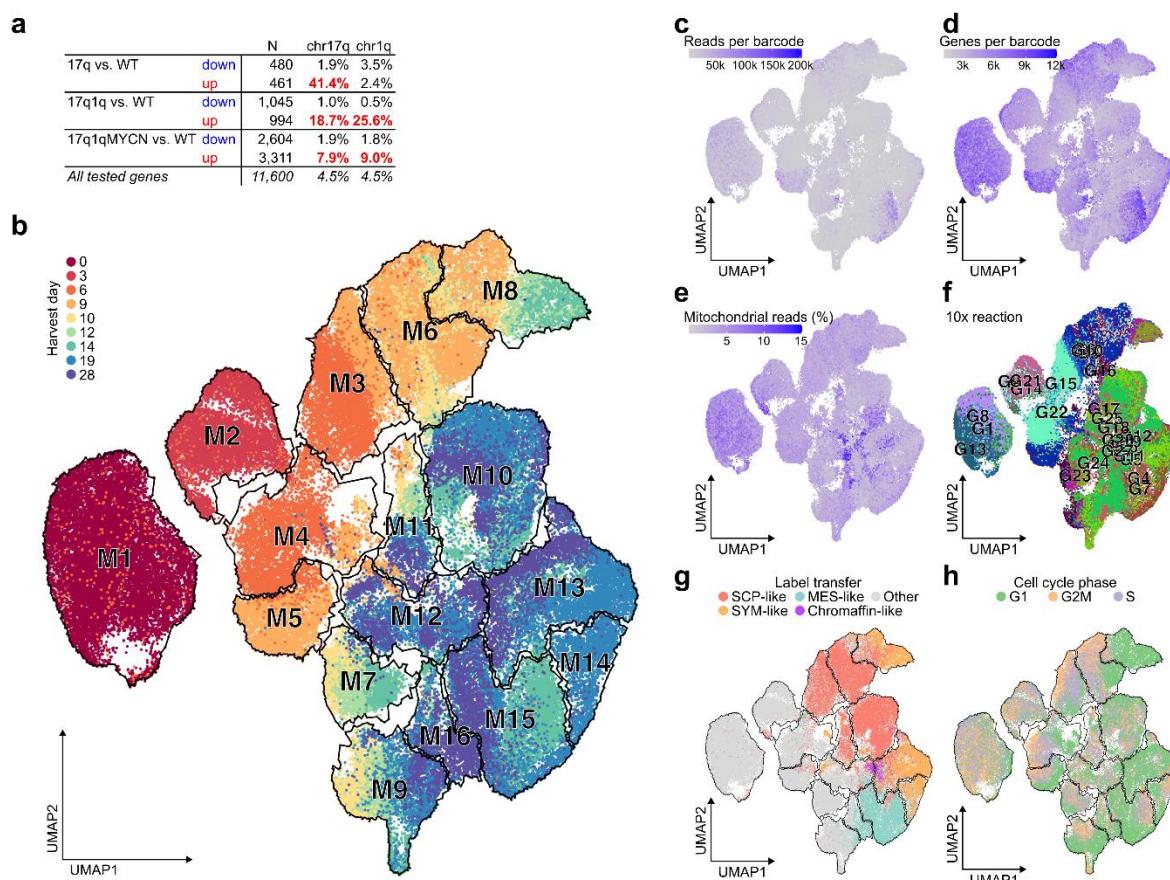

1933

Supplementary Figure 5

a

b

1934

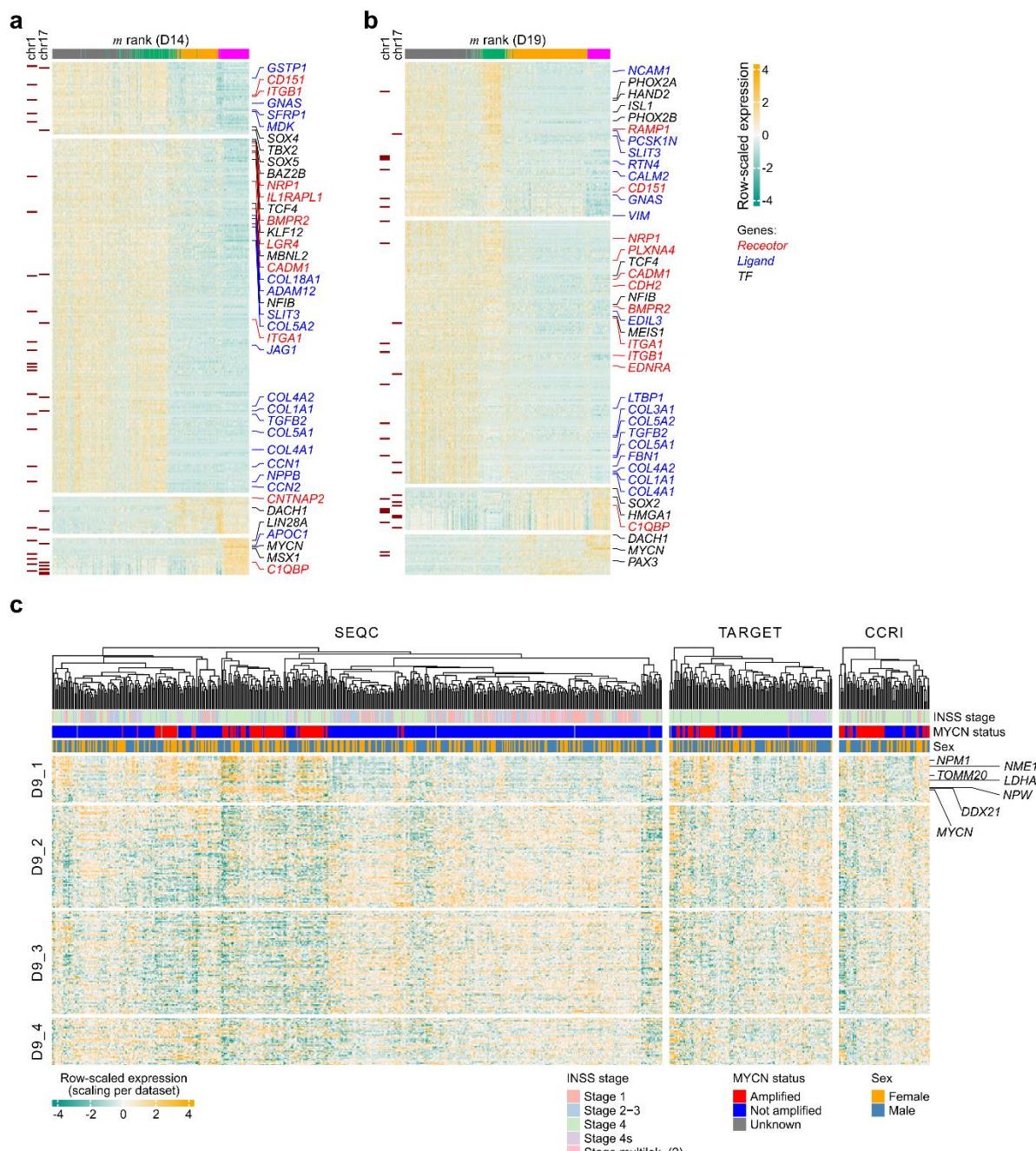

1935 **Supplementary Figure 5 (related to Fig. 2). Plots illustrating the gating strategy for the FACS**
1936 **performed in this manuscript.**

1937

1938 a) Secondary-only (negative) gating was set using cells differentiated at the correspondent stage
1939 stained only with secondary antibodies (detailed in the methods section). The scatter plots of
1940 Forward Scatter (FSC) and Side scatter (SSC) variables were used as the method to identify
1941 the main cell population size. Once the main population was identified, SSC and Trigger
1942 Pulse Width variables were further used to determine the single-cell population (doublet
1943 discrimination). The FITC (488) and Red (647) channels were used to set the baseline of
1944 fluorescence (upper panel) and subsequent positive gates (lower panel).
1945 b) Cells were analysed in the flow cytometer (BD FACSJazz) using the 405 nm laser to detect
1946 the Hoechst staining and 488 nm to detect the Edu staining.

1947

Supplementary Figure 6

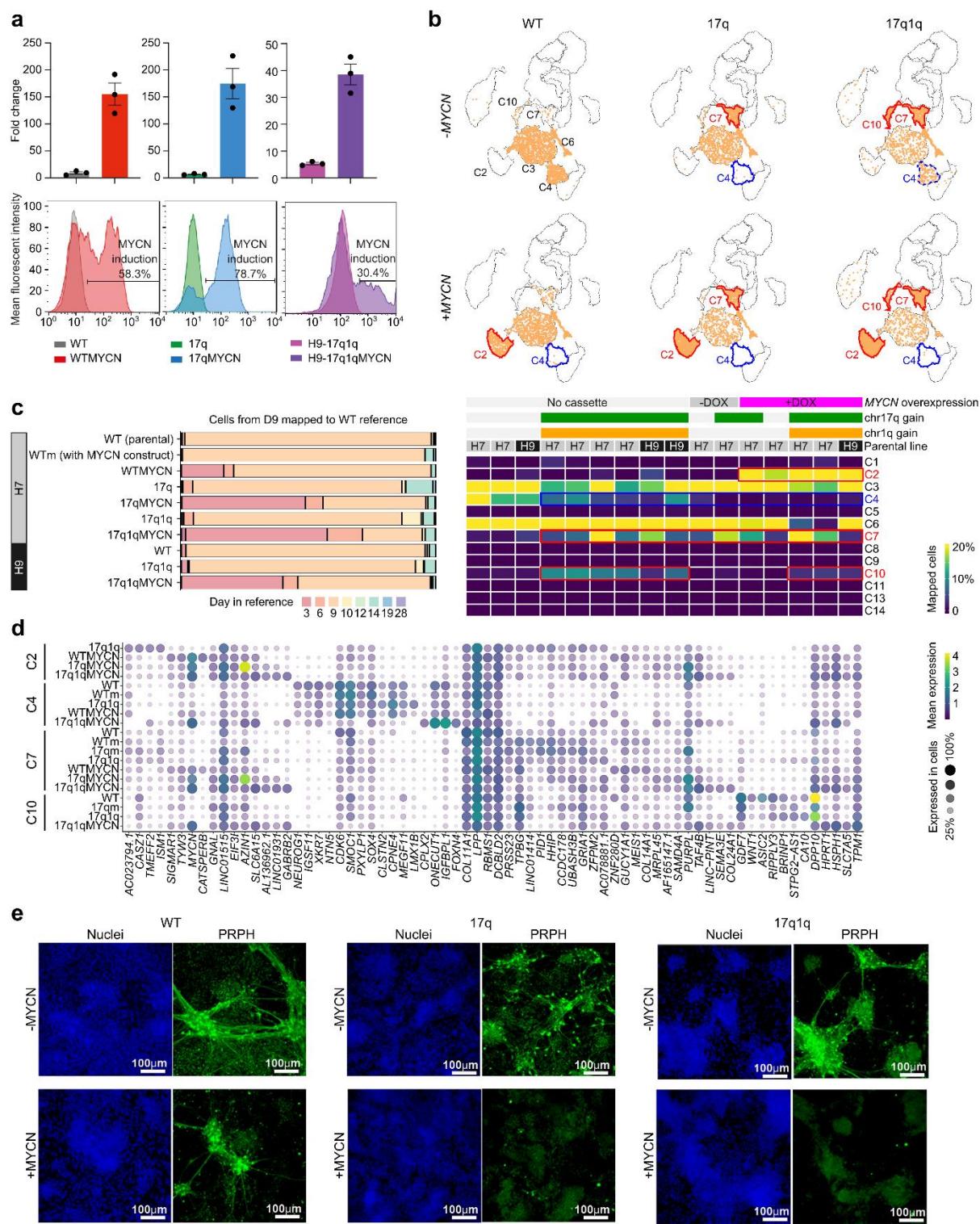


Supplementary Figure 6 (related to Fig. 3). scRNA-seq analysis of differentiating wild-type and mutant hESCs.

- a) Overview of the number of differentially expressed genes (DEGs) in 17q, 17q1q, and 17q1qMYCN cells at D9 of differentiation compared to wild-type. The total number of DEGs is given (N), and the percentage of those genes that are located on chromosome arms chr17q or chr1q are indicated. Percentage values >5% have been highlighted (which also correspond to upregulated DEGs within known CNAs). DEGs are reported in **Supplementary Table 6**.
- b) Cell clusters defined for the full *in vitro* trunk NC dataset scRNA-seq dataset generated in this study. Cluster marker genes are reported in **Supplementary Table 8**.
- c-h) QC covariate plots: reads per cell (**panel c**), features per cell (**panel d**), % mitochondrial genes (**panel e**), replicates (one of up to three repeat experiments; **panel f**), developmental stage (sampling day; **panel g**), and computationally inferred cell cycle stage (**panel h**).

Abbreviations: WT, wild-type H7 hESCs; D0/3/9/14/19, day 0/3/9/14/19; UMAP, Uniform Manifold Approximation and Projection; SCP, Schwann cell precursor; SYM, sympathoblast; MES, mesenchymal.

Supplementary Figure 7


Supplementary Figure 7 (related to Fig. 3). Differential gene expression in mutant hESC-derived trunk NC and sympathoadrenal cells.

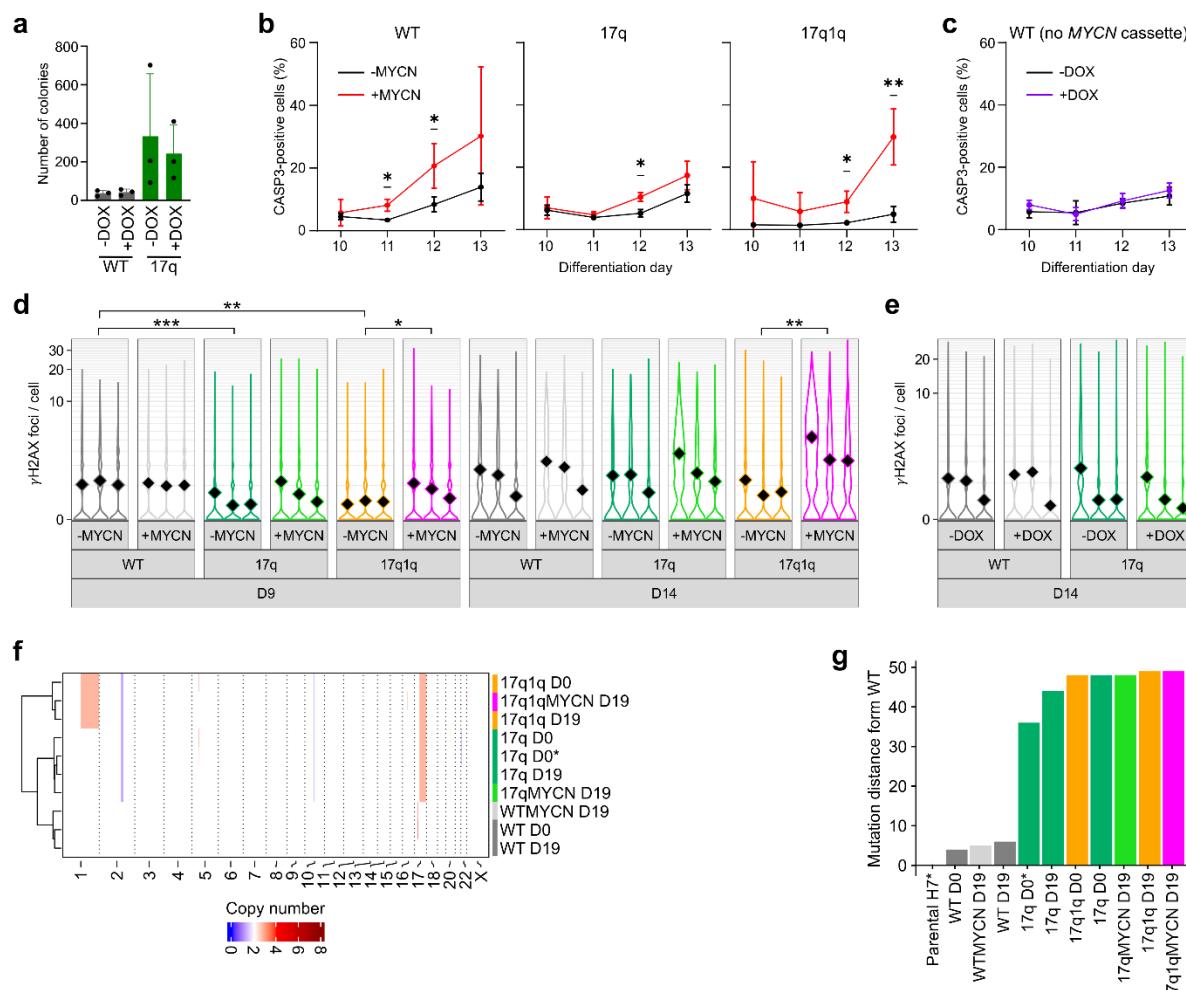
a,b) Heatmaps containing the genes correlated or anti-correlated with the mutation score m and for D14 (a) and D19 (b). Left annotation indicates whether the gene is on chromosome 1q or 17q, respectively. Transcription factors (black), receptors (red) and ligands (blue) have been highlighted. All mutation-score-related genes are reported in **Supplementary Table 9**.

c) Heatmap showing the expression of mutation-score-related genes (Fig. 3f, **Supplementary Table 9**) in public bulk RNA-seq data from three NB tumour compendia (SEQC, TARGET, CCRI). The heatmaps display the row-normalised transcript counts per gene and sample. The INSS stage, MYCN amplification status, and sex of each sample are indicated by the colour bars on top. Genes in D9_1 that are highly expressed in MYCN-amplified tumours are highlighted.

Abbreviations: TF, transcription factor; m rank, mutation score rank.

Supplementary Figure 8

Supplementary Figure 8 (related to Figs. 2,3). Comparison of multiple mutant hESC lines with the WT trunk NC differentiation reference.


a) Analysis of MYCN expression at the transcript (top) and protein (bottom) level in D9 cultures of the indicated genotypes after DOX treatment from day 5 vs untreated control.

b) scRNA-seq data mapped to the wild-type trunk NC reference (from **Fig. 1**). Top: Example glasswork UMAP plots depicting the destination clusters in the WT reference for cells of the WT, 17q, and 17q1q cells (H7 cell line) with and without *MYCN* overexpression. Clusters with an increased (red) and decreased (blue) number of mapped cells are indicated. Bottom:

1990 Heatmap displaying the mapping of all 16 datasets including 1-4 replicates of each cell line /
1991 experimental condition. Cells were derived from two parental hESC lines (H7 and H9),
1992 with/without gains of chr17q and/or chr1q, and edited with a *MYCN* expression cassette (which
1993 can be active [+DOX] or inactive [-DOX]). Clusters with increased/decreased numbers of
1994 mapped cells have been highlighted with red/blue boxes, respectively.
1995 **c)** Barplots summarising the mappings from **panel b** for derivatives of each hESC line (top to
1996 bottom). Each bar indicates the proportion of cells (all collected at D9) that mapped to cells in
1997 the WT reference of a given developmental stage. The plots suggest that cells with *MYCN*
1998 induction mapped to earlier stages compared to WT.
1999 **d)** Bubble plot showing marker genes of cells mapped to the WT cell clusters associated with
2000 the different genetic changes in **panel b** (C2, C4, C7 and C10). Only cells with positive
2001 percentages are shown. The size and colour of each circle indicate the percent of cells in the
2002 indicated group which express the gene and the average expression, respectively. Some gene
2003 expression programmes are affected by specific combinations of mutations and cell types, such
2004 as polyamine homeostasis gene *AZIN1* or P53 suppressor *PURPL* in 17qMYCN in C2 or C7.
2005 **e)** Immunofluorescence analysis of PERIPHERIN (PRPH) expression in D19 cultures
2006 following differentiation of *MYCN*-overexpressing hESCs with the indicated genotypes in the
2007 presence and absence of DOX. Cell nuclei were counterstained using Hoechst 33342.

2008 **Abbreviations:** DOX, Doxycycline.

Supplementary Figure 9

(*) = cell line without MYCN cassette

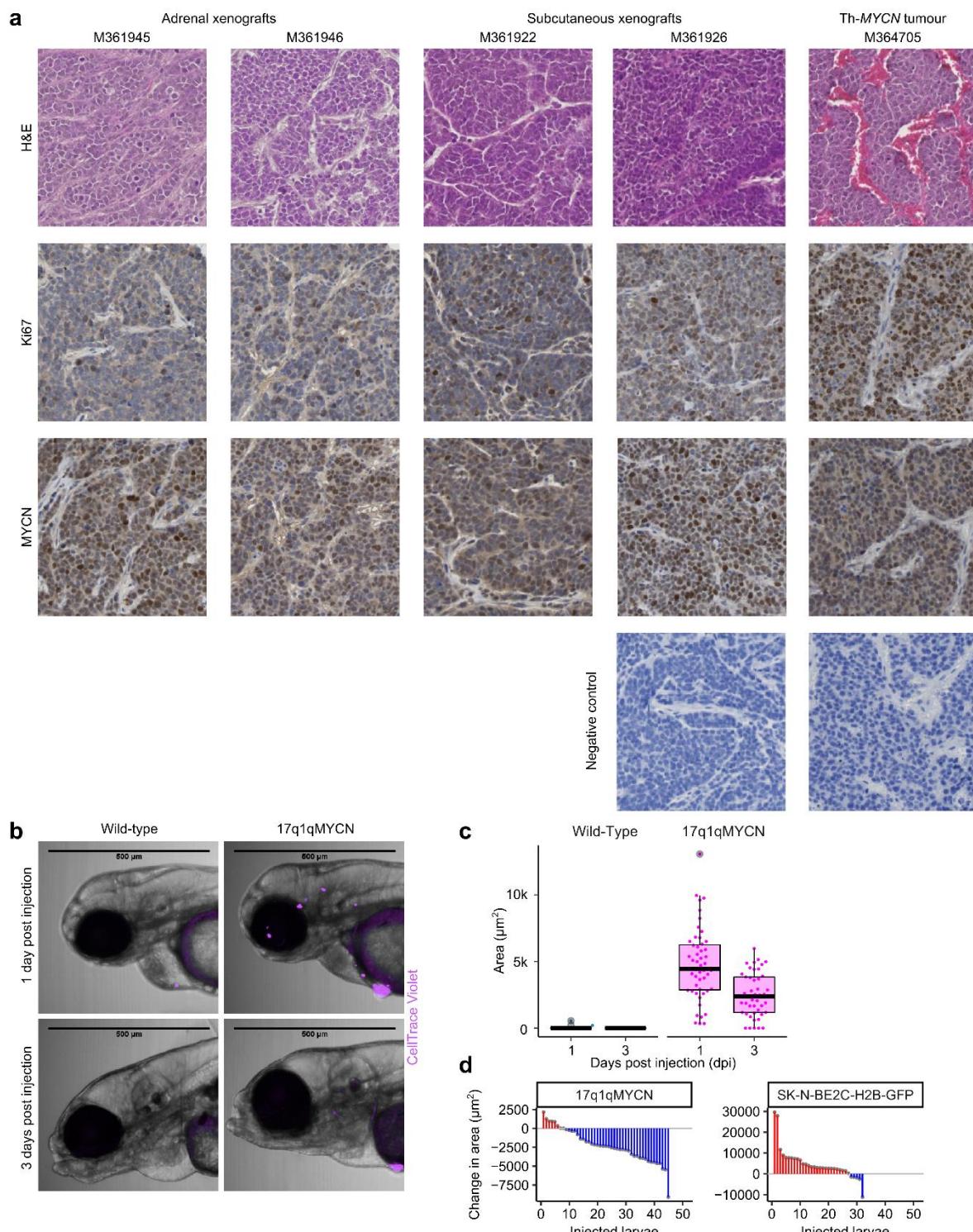
2009
2010

2011 **Supplementary Figure 9 (related to Fig. 4). Apoptosis, DNA damage, and mutations in mutant hESC-derived trunk NC differentiation.**

2013 a) Comparison of the number of colonies formed by D14 cells generated from unmodified WT
2014 and 17q cells in the presence and absence of DOX treatment with or without 17q gain (n= 3
2015 biological replicates, error bars= SD, Ordinary One-way ANOVA test with Tukey correction).
2016 No statically significant differences were observed.

2017 b) Time course flow cytometry analysis of cleaved Caspase-3 levels in differentiating trunk NC
2018 cells generated from hESCs of the indicated genotypes in the presence and absence of DOX
2019 treatment from day 5. Error bars= standard deviation, unpaired t-test). P values in comparisons:
2020 WTMYCN (Day 11 DOX vs NO DOX, p = 0.010797 = *; Day 12 DOX vs NO DOX, p= 0.033974 = *), 17qMYCN (Day 12 DOX vs NO DOX, p = 0.034166 = *), 17q1qMYCN (Day
2021 12 DOX vs NO DOX, p = 0.020679 = *; Day 13 DOX vs NO DOX, p = 0.005686 = **).

2022 c) Control comparison of Caspase-3 levels in untreated and DOX-treated WT controls. As in
2023 panel b.


2024 d) Number of γ H2AX foci per cell in differentiating cultures corresponding to indicated
2025 timepoints and genotypes in the presence and absence of DOX treatment. FDR values in
2026 comparisons (ANOVA with mixed effect model with negative binomial distribution): FDR ***
2027 < 0.001, ** < 0.01, * < 0.05. Comparisons performed: DOX status within a genotype and day,
2028 genotype vs WT per DOX status and day.

2029 e) Control comparison of the number of γ H2AX foci per cell in untreated and DOX-treated
2030 unmodified WT and 17q cells. As in panel d.

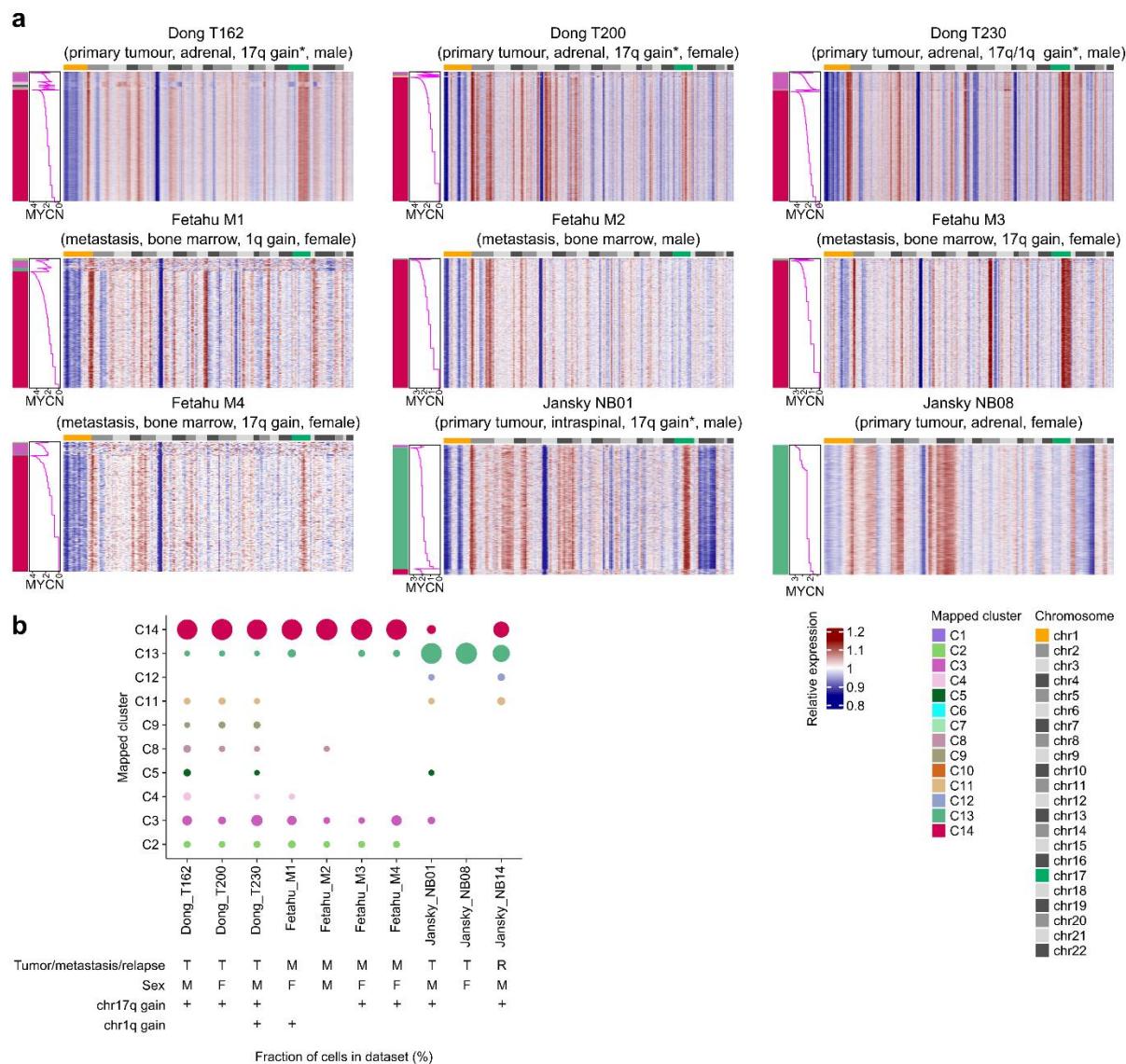
2032 **f)** Heatmap containing CNA calls by Sequenza¹²⁰ in bins of 1Mbp. Dendrogram represents
2033 hierarchical clustering. CNA coordinates are reported in **Supplementary Table 5**.
2034 **g)** Phylogenetic distance measured in mutations (SNVs) of each sample relative to the parental
2035 control using the phylogenetic analysis presented in **Fig. 4e**.

2036 **Abbreviations:** WT, wild-type H7 hESCs; DOX, Doxycycline.

Supplementary Figure 10

2037
2038

2039 **Supplementary Figure 10 (related to Fig. 5). Mouse and zebrafish xenografts of WT, 17q1q, and**
2040 **17q1qMYCN cells.**

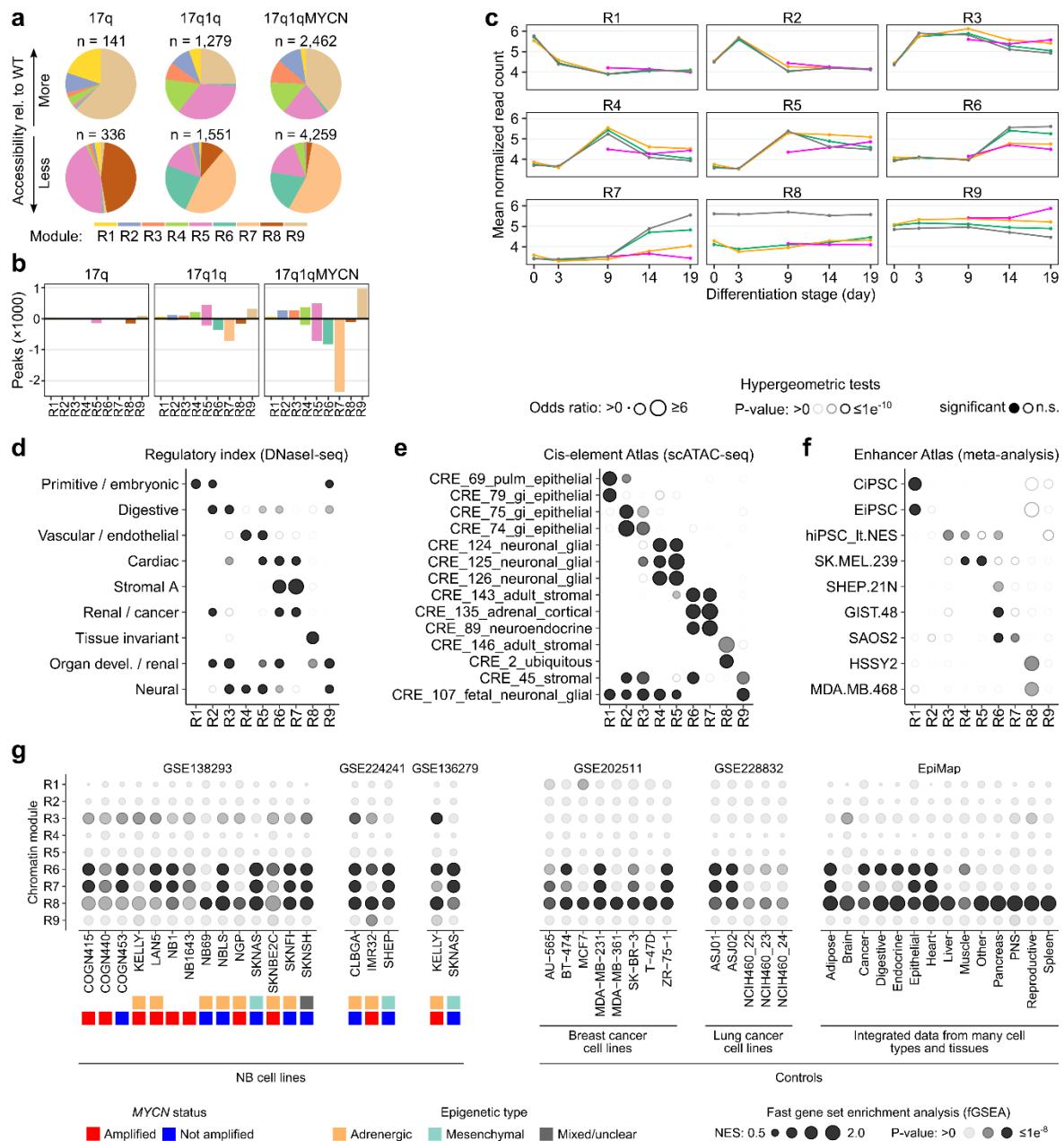

2041 a) Representative sections from individual tumours following xenografting of 17q1qMYCN cells
2042 in the indicated locations and showing haematoxylin and eosin staining (top row), Ki67 (middle
2043 row) and MYCN expression (bottom row). Tumour sections from a Th-MYCN NB GEM model
2044 and negative controls are shown.

2045 b) Representative images of zebrafish xenografted with WT or 17q1qMYCN cells labelled with
2046 CellTrace Violet at one day or three days post injection (top and bottom, respectively).

2047 **c)** Quantification of the area covered by WT or 17q1qMYCN cells in zebrafish xenografts at 1
2048 and 3 dpi. While 17q1qMYCN cells persist, WT cells are not maintained in zebrafish
2049 xenografts. Xenografts with WT cells (n = 11), and 17q1qMYCN cells (n = 51).
2050 **d)** Waterfall plots depicting the change in tumour area for 17q1qMYCN at D9 of differentiation
2051 (~ NC stage) and SK-N-BE2C-H2B-GFP⁷¹ cells in zebrafish xenografts from 1dpi to 3dpi.

2052 **Abbreviations:** dpi, day post injection.

Supplementary Figure 11



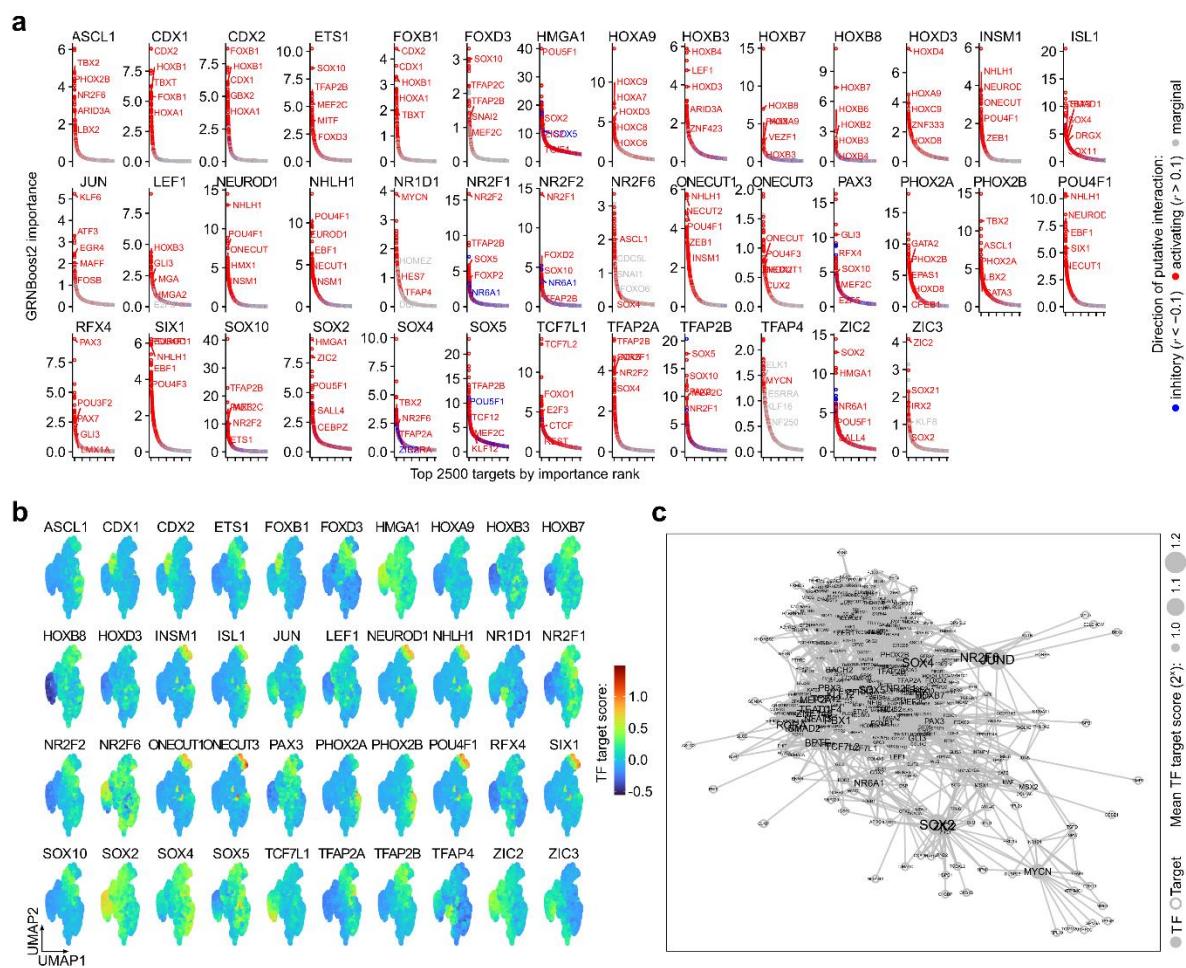
2053
2054 **Supplementary Figure 11 (related to Fig. 6). Analysis of MYCN-amplified tumour cells and**
2055 **mapping to *in vitro* trunk NC differentiation.**

2056 a) *inferCNV*¹⁴² profile heatmaps such as the one in **Fig. 6b** for the remaining 9 tumour
2057 datasets^{15,17,23} not shown in **Fig. 6**. Each row (tumour cells) and each column (genes, ordered
2058 by genomic position), indicate the intensity of the CNA signal relative to non-tumour,
2059 HSC/immune cells from the same sample. All samples were curated and processed as described
2060 in **Fig. 6** and mapped to our wild-type trunk NC differentiation reference (**Fig. 1**). Cells are
2061 ordered first by matching cluster and then by *MYCN* levels within each cluster. Annotation of
2062 the chromosomes can be found on top of the heatmap. The tumour type (primary, metastasis,
2063 relapse), tissue, chr17q/1q gain status, and sex of each sample are indicated. The asterisk (*)
2064 marks cases in which the chr17q/1q gain status is based on the inferred *inferCNV* copy number
2065 profile shown in this figure panel.
2066 b) Bubble plot summarising the mapping of tumour cells to our *in vitro* trunk NC reference (from
2067 **panel a** and **Fig. 6b**). The tumour type (primary, metastasis, relapse), sex, and chr17q/1q gain
2068 status are indicated. Ordering by study suggests a study-specific effect; for example, Fetahu
2069 samples are all bone marrow metastases and lack mesenchymal C11 cells.

2070 **Abbreviations:** CNA, copy number alteration; T, primary tumour; M, metastasis; R, relapse; M, male;
2071 F, female

Supplementary Figure 12

Supplementary Figure 12 (related to Fig. 7). Chromatin accessibility in differentiating wild-type and mutant hESCs.


- a) Pie charts indicating the fraction of differentially accessible regions belonging to chromatin modules (**Fig. 7e**) in mutant hESCs compared to WT (left to right). Up- and down-regulated regions are shown separately (top vs. bottom row). The total number (n) of regions in each category is indicated.
- b) Barplots indicating the number of up- (positive numbers) and down-regulated (negative numbers) peaks from each comparison of mutant hESCs vs WT, split by chromatin module (R1-R9).
- c) Line plots summarizing the dynamics of accessibility per module and cell line throughout differentiation. Each data point indicates the mean normalised read count.
- d-f) Enrichment analysis of overlaps between regions belonging to the nine chromatin modules (from left to right) and annotated reference regions from the Regulatory Index⁸⁰ (based on DNaseI-seq; **panel d**), Cis-element Atlas⁸¹ (based on scATAC-seq analysis; **panel e**) and the

Enhancer Atlas⁸² (based on a meta-analysis of many different data; **panel f**). The size and transparency of circles indicate the odds ratio and P-value, respectively (hypergeometric test, *hypeR*¹³⁸). Significant results are indicated with filled circles ($P_{\text{adj}} \leq 0.05$). The top enrichments per stage have been selected for visualisation (all results are shown in **panel e**) and all results are reported in **Supplementary Table 14**.

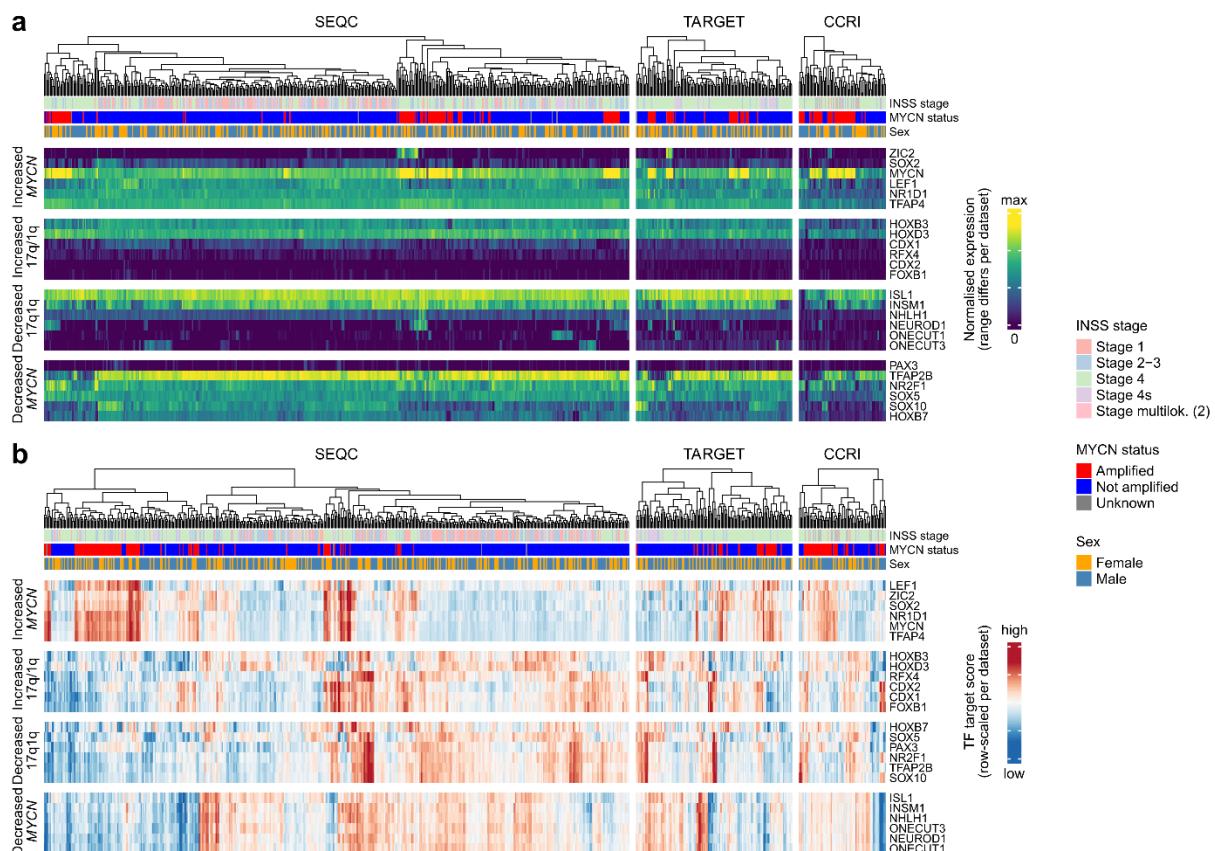
g) Bubble plots showing the outputs of a fast gene set enrichment analysis (*fgsea*¹⁵⁶) of open chromatin in external data compared to our chromatin modules. Each sub-panel indicates data from a different source (from left to right) including three collections of NB cell lines^{75,157,158} (GSE138293, GSE224241, GSE136279), two adult cancer cell lines^{159,160} (GSE202511, GSE228832), and a meta-analysis of human tissue data¹⁶¹ (<https://epigenome.wustl.edu/epimap>). The epigenetic type^{44,45} and *MYCN* amplification status of each NB cell line are indicated.

Abbreviations: WT, wild-type H7 hESCs; R1-R9, chromatin modules identified in **Fig. 7e**; NES, normalised enrichment score; n.s., not significant.

Supplementary Figure 13

2102
2103
2104 **Supplementary Figure 13 (related to Fig. 8). Analysis of transcription factor target sets and gene-
2105 regulatory networks.**

2106 a) Top 2500 targets of selected TFs as predicted by *GRNboost2* algorithm⁸³ based on our scRNA-
2107 seq data. Putative targets without support in our ATAC-seq data (motif for TF in ≥ 1 peak near
2108 the gene) have been removed. We also calculated the Pearson correlation coefficient (r)
2109 between each TF and target gene to determine the direction of the putative interaction ($r > 0.1$,
2110 “activating”; $r < -0.1$, “inhibitory”; others, “marginal”). The top TFs in the target lists have been
2111 highlighted. TF target gene sets are reported in **Supplementary Table 15**.


2112 b) Average expression (Seurat module score) of the target gene sets (matching “activating” targets
2113 of the TFs in panel a in our integrated scRNA-seq dataset (cp. **Fig. 3d**).

2114 c) Gene-regulatory networks diagram visualising putative TF to target interactions for the genes
2115 in gene sets D9_1 to D9_4 (cp. **Fig. 3e,f**) and enriched TF targets (cp. **Fig. 8d**) In these
2116 diagrams, each node represents a TF or target gene, and each edge is a link between a TF and a
2117 target. Node size is proportional to the mean target score of the indicated TFs (fixed size for
2118 non-TF nodes).

2119 **Abbreviations:** TF, transcription factor; r, Pearson correlation coefficient.

2120

Supplementary Figure 14

2121
2122
2123
2124

Supplementary Figure 14 (related to Fig. 8). Expression of transcription factors and their target genes in public RNA-seq datasets.

2125 a) Expression of 24 selected TFs (from **Fig. 8e**) in public bulk RNA-seq data from three NB
2126 tumour compendia (SEQC, TARGET, CCRI). The heatmaps display the normalised transcript
2127 counts per gene and sample, colours have been scaled from 0 to the maximum per source dataset
2128 (dark blue to yellow). The INSS stage, *MYCN* amplification status, and sex of each sample are
2129 indicated by the colour bars on top. Some of the examined TFs are not or very weakly expressed
2130 in the investigated samples from tumours.

2131 b) Heatmaps for the same data and TFs as in panel a, but here heatmap values indicate the TF
2132 target score (Seurat module score), a summary of the expression of putative target genes of each
2133 TF in the respective sample. TFs with high activity in 17q1qMYCN cells (the 6 TFs on top) are
2134 active in *MYCN*-amplified samples.

2135 **Abbreviations:** INSS, International Neuroblastoma Staging System; TF, transcription factor.

2136 **Supplementary tables and files**

2137

2138 **Supplementary Table 1 (related to Figs. 1, 2, 3, 4, 7, 8). scRNA-seq, WES, and ATAC-seq**
2139 **dataset overview**

2140 **Supplementary Table 2 (related to Fig. 1). scRNA-seq cluster marker genes (WT)**

2141 **Supplementary Table 3 (related to Fig. 1). scRNA-seq markers of SCP-SYM-MES transition**
2142 **states**

2143 **Supplementary Table 4 (related to Fig. 2, 4). Whole-exome sequencing SNVs.**

2144 **Supplementary Table 5 (related to Fig. 2, 4). Whole-exome sequencing CNAs.**

2145 **Supplementary Table 6 (related to Fig. 3). scRNA-seq MUT vs. WT differentially expressed**
2146 **genes**

2147 **Supplementary Table 7 (related to Fig. 3). scRNA-seq MUT vs. WT enrichment results**

2148 **Supplementary Table 8 (related to Fig. 3). scRNA-seq cluster marker genes (WT+MUT)**

2149 **Supplementary Table 9 (related to Fig. 3). scRNA-seq genes correlated to mutations**

2150 **Supplementary Table 10 (related to Fig. 6). Tumour-in vitro markers**

2151 **Supplementary Table 11 (related to Fig. 6). Survival analyses**

2152 **Supplementary Table 12 (related to Fig. 7). ATAC-seq regions (peaks) and chromatin modules**

2153 **Supplementary Table 13 (related to Fig. 7). ATAC-seq differential accessibility analysis**

2154 **Supplementary Table 14 (related to Fig. 7). ATAC-seq chromatin module enrichment results**

2155 **Supplementary Table 15 (related to Fig. 8). Transcription factor target genes**

2156 **Supplementary Table 16 (related to Fig. 8). Transcription factor enrichments**