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Abstract

Extracellular matrix (ECM) is a key component of the cellular microen-
vironment and critical in multiple disease and developmental processes.
Representing ECM and cell-ECM interactions is a challenging multiscale
problem as they span molecular-level details to tissue-level dynamics.
While several computational frameworks exist for ECM modeling, they
often focus on very detailed modeling of individual ECM fibers or repre-
sent only a single aspect of the ECM. Using the PhysiCell agent-based
modeling platform, we developed a framework of intermediate detail
with the ability to capture bidirectional cell-ECM interactions. We rep-
resent a small region of ECM, an ECM element, with three variables
describing its local microstructure: anisotropy, density, and overall fiber
orientation. To spatially model the ECM, we use an array of ECM
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elements. Cells remodel local ECM microstructure and in turn, local
microstructure impacts cellular motility. We demonstrate the utility of
this framework and reusability of its core cell-ECM interaction model
through examples in cellular invasion, wound healing, basement mem-
brane degradation, and leader-follower collective migration. Despite the
relative simplicity of the framework, it is able to capture a broad range
of cell-ECM interactions of interest to the modeling community. Fur-
thermore, variables representing the ECM microstructure are accessible
through simple programming interfaces. This allows them to impact cell
behaviors, such as proliferation and death, without requiring custom code
for each interaction, particularly through PhysiCell’s modeling gram-
mar, enabling rapid modeling of a diverse range of cell-matrix biology.
We make this framework available as a free and open source software
package at https://github.com/PhysiCell-Models/collective-invasion.

Keywords: extracellular matrix, agent-based modeling, collective migration,
stigmergy, fibrosis, cancer and basement membrane invasion

1 Introduction

Extracellular matrix (ECM), the material in which cells live, plays a role in
a host of biological processes, from facilitating cell-cell communication to tis-
sue development and organization. It is diverse with composition-dependent
biomechanical and biochemical properties that vary greatly across locations
within the body [1]. It is a living material, actively maintained and modified
by cells such as fibroblasts in wound healing and cancer cells in local cellular
invasion [1–3]. Its properties are formed from multiple interacting fibers, for
example, through chemical crosslinking of ECM components [2]. These fibers
are composed of proteins and polysaccharides which are typically organized
into several large families: proteoglycans, laminins, fibronectin, and fibrous pro-
teins, each of which can be further grouped by physical and chemical properties
[1]. Fibrous proteins include the collagens, the primary structural component
of interstitial ECM, and elastin, which provides elastic properties to the ECM.
Basement membrane ECM, which surrounds and separates functional units of
tissue, is typically composed of collagens interwoven with laminins [2]. Addi-
tionally, the ECM includes signaling molecules and many attachment points for
cell-ECM interaction [2, 3]. While cells generate and maintain ECM, ECM also
impacts cellular behavior. In particular, matrix density can hinder or enhance
cell migration depending on cell type [4, 5]. Additionally, ECM fiber orien-
tations can guide cellular migration through contact guidance, in which cells
follow ECM, reorienting their motion to travel parallel to ECM fibers [6–12].
For example, Carey et al. observed that fiber alignment induced anisotropic
cell morphodynamics and spatial probing, guiding them along the axis of align-
ment [13]. Furthermore, ECM-based signaling, both through mechanosensing

https://github.com/PhysiCell-Models/collective-invasion
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and cell receptor binding to ECM molecules, can impact cell cycle and death
[14]. Cell differentiation can also be impacted by ECM [15]. Finally, changes
in ECM microstructure are associated with disease processes, in particular
aspects of cancer progression, cancer metastasis, and scarring [9, 10, 16, 17].

Given the importance of ECM in biological processes, there are multiple models
and frameworks for exploring ECM and cell-matrix interactions across a range
of contexts such as cancer, wound healing, and fibrosis [18–21]. To provide a
brief overview of previous works, we place these efforts in four categories: dis-
crete force-based, continuous force-based, ECM density, and multicomponent
that have both ECM density and orientation.

Examples of the discrete force-based frameworks include Schlüter et al. and
Noël et al. where migrating cells and individual matrix fibers are embodied
as agents with direct forces dictating motility and realignment respectively
[22, 23]. Macnamara et al. also adopt this paradigm and couple it with a
model of blood vessel-cell interactions [24]. Other representations calculate
forces over a network of individual spring-like elements. Zhu et al. construct
ECM from a hook-and-spring network and Tozluoğlu et al. model individual
fiber filaments as hook-and-spring networks [25, 26]. Tsingos et al. model a
network of ECM fibers as a bead-spring chain model and couple this with a
cellular-Potts agent-based model [27, 28].

Continuous force-based models represent ECM as a continuously deformable
material. Examples include van Oers et al., who use a finite element model
of ECM coupled with a cellular-Potts model of cells and look at how stiffness
and deformability of the ECM impact cell migration [29]. Ahmadzadeh et al.
use a stress-strain relationship to deform fibers and incorporate cell adhesions
to investigate cellular level motility and morphology [30].

ECM density approaches often use partial-differential equations (PDEs) to
model ECM density. Anderson and Chaplain use a continuous method that
leads to a hybrid discrete-continuous model to study the interplay between
angiogenesis and ECM [31]. Zeng et al. use a fibronectin concentration in devel-
opmental biology applications [32]. Daube et al. use a PDE for a scalar ECM
density field in the context of sprouting angiogenesis in tumors [33]. Trucu
et al. model invasion as a moving boundary problem with ECM represented
as a scalar field [34]. Building off that work, Shuttleworth et al. add non-local
effects as well as ECM orientation and degradation to the invasive boundary
[35, 36]. Gonçalves and Garcia-Aznar represent the ECM as a density and use
experimental migration data to explore tumor spheroids [37]. Lastly, Ruscone
et al. study cancer invasion using PhysiBoSS [38, 39], an implementation of
PhysiCell [40] with the MaBoSS Boolean network simulator [41], producing a
model incorporating intracellular signaling activated by contact with a bulk
ECM [42].
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Finally, there are models that explicitly represent fiber orientation or fiber
orientation and density. Chauvier et al. and Hillen et al. use transport mod-
els to look at ECM [43, 44]. This work was extended by Painter to introduce
a macroscopic ECM density and fiber orientation which was then applied to
model tumor invasion [45]. Other authors model ECM directly as a phase in
a cellular-Potts model exploring angiogenesis, tumor invasion, and impacts of
cytoplasm and nucleus interaction on migration [46–48]. Some authors also
form long-range fibers by viewing sets of contiguous points occupied by ECM
as fibers. They can then more directly represent fiber orientation and length in
addition to density [49, 50]. Park et al. use a modified Vicsek (flocking) model
[51] to explore contact inhibition of locomotion in the formation of hetero-
geneous ECM fiber orientations [52]. Suveges et al. use a hybrid agent-based
model and two phase continuous-ECM field approach (oriented, fibrous phase
and non-fibrous phase) to study collective migration on oriented ECM [53].
Dallon, Sherratt and collaborators have multiple studies on ECM that include
a concept of density and orientation and focus primarily on wound healing and
scar formation. The models can be split into hybrid models (discrete cells and
continuous ECM) or fully continuous models. Examples of the continuous mod-
els include reaction-diffusion and integro-partial differential equation models of
wound healing [54, 55]. The hybrid-discrete continuous models include a model
of ECM fiber reorientation, an extension to include ECM density, and a third
extension to include the impacts of time varying transforming growth factor
β profiles on all models including ECM contact guidance [56–58]. For addi-
tional details on these foundational works in modeling the ECM and wound
healing, see Sherrat and Dallon’s review [59]. In a later paper, the model is
further extended to combine chemotactic and ECM contact guidance, still in
the context of wound healing [60]. Finally, in work similar to Dallon, Sher-
ratt, and colleagues, Martinson et al. model a field of discrete ECM puncta
(dots of immature proto-fibrous ECM) and neural crest cell-driven maturation
and alignment of the puncta fibers. Using both number of ECM puncta and
their orientations to alter cell motion, they study how these factors influence
collective migration of neural crest cells [61].

In this work, we draw on these prior modeling approaches to capture essen-
tial aspects of bidirectional, local cell-ECM interactions. We divide the ECM
into volumetric elements which track overall local ECM density, fiber orien-
tation, and fiber-fiber alignment (anisotropy), properties collectively referred
to as the local microstructure. Individual cell agents can remodel each of
these properties, while these properties can influence cell behaviors includ-
ing migration speed, chemotactic response, motility direction, proliferation,
death, secretion, and differentiation. This mesoscale approach spans between
a coarser ECM density field and more fine-grained approaches that might
represent each fiber. It yields a higher dimensional characterization of ECM
than ECM density alone, allowing a more diverse class of modeling assump-
tions, but eliminates the complexity of discrete force-based frameworks and
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high-order PDE models (particularly those with tensorial terms), simplify-
ing integration with a broader class of cell behaviors than in prior works. It
opens the possibility of linking important aspects of cell biology such as secre-
tion, phagocytosis, effector attack, differentiation, proliferation, death, and cell
fusion to this higher-dimensional set of ECM properties as they vary both spa-
tially and over time. We implement this as a framework that can be readily
used to incorporate local ECM effects into agent-based models, pairing it with
the open source package PhysiCell [40]. To demonstrate the versatility of the
framework, we present four sample models focused on cell migration and local
degradation, deposition, and reorientation of matrix. In the first example, to
test the framework’s ability to capture the complex effects of prior models,
we replicate aspects of a study from Painter in which a front of tumor cells
invade different scenarios of ECM configurations [45]. For the second example,
we model wound-related fibrosis where activated fibroblasts generate a region
of high ECM density that cells cannot enter or leave. In the third, recruited
fibroblasts degrade a basement membrane and allow a tumor to progress from
locally confined to local invasion. The final example is a model of collective
migration which can produce both stigmergy (indirect coordination of migra-
tion through changes in the environment) and leader-follower migration, with
more aggressive leader cells enabling mixed clusters of cells to invade surround-
ing tissue. Overall, our framework builds on previous work and is especially
inspired by Dallon et al. [56], who developed a model of cell-ECM interactions
focused on wound healing. We generalized a similar model into an extensible
framework that can be rapidly adapted to new problems, in particular through
use of emerging rules-based formulations [62].

We present our work as follows: Section 2 introduces the ECM representation
and cell-ECM interactions and implementation details. Sections 3.1, 3.2, 3.3,
3.4 present the example models. Section 4 discusses findings, limitations, and
future directions for the framework. Our supplementary material (Section 7)
covers the cell-ECM interaction model in detail as well as details of cell-cell
and cell-environment mechanics [40], PhysiCell rules [62], and example model
parameters.

2 Methods: Framework description

In this section, we first provide the conceptual background and formulation
of the ECM and cell-ECM interactions framework (the ECM model). Then,
we illustrate the framework with a series of computational results highlight-
ing important aspects of the framework. Finally, we give an overview of the
computational details.
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2.1 ECM and cell-ECM interaction models

To enable explorations of ECM-mediated cellular communication and inter-
actions, we developed a three variable ECM representation (orientation,
anisotropy and density) and interaction rules for cells and the ECM. We use
an agent-based approach to represent cells and a continuum model to repre-
sent the fine structure of ECM. Broadly, individual ECM elements are locally
remodeled, or modified, by cell migration and ECM production and degrada-
tion and cell motility, proliferation, death, and other behaviors can be impacted
by ECM element variables.

2.1.1 Extracellular matrix representation

Our model is intended to capture key aspects of a small region, or element, of
ECM. We conceive of an element of ECM as having three variables: an average
fiber orientation (orientation), a relative local fiber-fiber alignment correla-
tion (anisotropy), and a quantity that captures the relative amount of ECM
material present in an element (density). Assembling many of these elements
together makes a whole ECM. Figure 1a shows an ECM, which is comprised
of tiled ECM elements. The inset shows a single element. It is conceived of
as containing many fibers (for illustrative purposes, shown as grey line seg-
ments). However, the individual fibers are unmodeled and instead an ensemble
of fibers are represented through an average orientation and anisotropy (the
black double-headed arrow and its length) and volumetric density (illustrated
as number of fibers per element in the schematic).

Mathematically, we center an element at a location x in space and define the
element variables as follows:

• Orientation: f(x), the average local fiber direction, represented as a unit
length three-dimensional vector

• Anisotropy: a(x), average local fiber-fiber alignment correlation (range 0
- 1). At zero, there is no correlation and at one, locally there is complete
fiber-to-fiber correlation

• Density: ρ(x), volume fraction of fibers, which we will refer to as the aver-
age local fiber density (range 0 - 1). Zero refers to complete absence of
fibers and one to completely packed with fibers without void space.

Without a loss of generality, for our simulations and implementation, we
arrange the elements in a Cartesian grid.

2.1.2 Cell-based modeling framework

We use the PhysiCell tissue modeling system as our agent-based modeling
framework [40, 62]. PhysiCell uses a center-based, off-lattice representation
of cells and implements physical cell-cell mechanics. It takes a phenotypic
approach to encoding cell behaviors with each cell-agent carrying its own
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Fig. 1: Schematic of ECM model and motility-based cell-ECM interactions: 1a Illustra-
tion of ECM, composed of tiled ECM elements. We conceive of an element of ECM as containing
many fibers. However, rather than modeling each of those fibers, we instead model the ensem-
ble, or mean, properties of the set of fibers in a given volume. We show a schematic of a single
element containing many fibers (grey line segments, for illustration purposes only) which we quan-
tify by an overall (average) fiber orientation and anisotropy (amount of self-alignment), shown by
the black double-headed arrow and its length. 1b An element’s overall fiber orientation impacts
a cell’s motility, providing a preferred angle of travel through the element (dashed red arrow).
The degree of influence is related to the amount of anisotropy and the cell’s ability to sense and
respond to the ECM cues. 1c Cell movement (cell direction - red arrow) remodels ECM by align-
ing its element’s orientation and anisotropy. Cells align an element’s orientation parallel to their
direction of travel and increase anisotropy proportional to cell speed.

parameters and behaviors. Additional details of the mechanics and rules used
in PhysiCell are in Supplementary Material Sections 7.3 and 7.4 respectively.
To model the diffusive microenvironment, we use BioFVM, which comes with
PhysiCell. BioFVM is a diffusion solver that uses a Cartesian representa-
tion of space and finite volume method to efficiently handle multiple diffusing
substrates over tissue-scale sized domains [63].

2.1.3 Cell-ECM interactions

We also model interactions between cells and the ECM. The conceptual model
is below with the detailed mathematical model provided in Supplementary
Material Sections 7.1, 7.2 , and 7.4.

ECM impacts cell migration (Figure 1b):
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• Fiber orientation provides directional cues [6–12].
• Anisotropy gives a strength of directional cue: high anisotropy increases

an ECM element’s influence on direction of cell migration [12].
• Density influences cell speed: too little ECM, cells have nothing to

attach to; too much, cells cannot pass [4, 5].

Cell migration and movement impact microstructure (Figure 1c):
• Direction of cell migration reorients an ECM elements’s orientation

[1–3].
• Cell-ECM element contact increases ECM anisotropy proportional to

cell speed [1–3].
• Cells remodel ECM density towards a target value [1–3].

This model is motivated by findings in the developmental, disease, and tumor
biology literature as well as inspired by previous modeling efforts [1, 9, 10,
56, 64]. The cell-ECM interactions are specified at the cellular level, enabling
a variety of cell-ECM interactions, in particular changes in cell motility and
ECM remodeling capabilities [6, 10, 64]. Additionally, ECM variables can be
used to impact other cellular behaviors such as proliferation and death. Finally,
we note and will demonstrate that these features can be integrated with others
such as sensitivity to chemical cues and cell-cell adhesion to obtain an even
richer range of cell behaviors.

2.2 Individual features of the cell-ECM interaction model

In this proof of concept section, results isolate and demonstrate a single or
small number of aspects of the cell-ECM interaction model presented in Section
2.1. To aid in isolating only ECM-to-cell and cell-to-ECM effects, we disabled
cell-cell mechanical interactions by setting cell-cell adhesion and repulsion
(Ccca and Cccr in Supplementary Material Equations 22 and 24 respectively)
to zero. We used multiple cells per result to highlight the uniformity of inter-
actions across the computational domain and as a visual aid rather than to
explore how cell-cell interactions may impact the simulations.

2.2.1 Cells alter microstructure, producing directional
signals in the ECM

Combing the ECM: Local ECM fiber orientation and alignment
remodeling produces extended paths in the ECM

Remodeling of the ECM elements can produce paths that ECM sensitive cells
can then follow. In Figure 2a, a column of cells move deterministically from left
to right across a field of un-oriented ECM aligning it in the direction of travel.
Each ECM element is initialized with a random orientation and anisotropy of
0.9. Remodeling cells move across the domain, producing individual changes
in ECM elements as they travel. After reaching the simulation boundary, the
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cells reset to the opposite boundary, and remodeling continues. In this case,
after four remodeling passes (transits) through the matrix, the ECM is aligned
almost completely parallel to the direction of travel with the additional effect
of a slight increase in anisotropy, demonstrating ECM reorientation, and pro-
ducing oriented paths across the domain. Note that we run this simulation in
2-D to aid in visualization and to demonstrate uniformity across the domain.
A video is linked in the Supplementary Material (Section 7.6).

2.2.2 Cells read signals in the ECM, impacting their
migration

All results in this section were produced with anisotropy set uniformly to 1.0,
the maximum and most impactful value, and density uniformly set to 0.5,
the value producing maximum cell speed (ρideal from Supplementary Material
Equation 17). Additionally, the chemical and physical (ECM) environments
are static in these cases, meaning no changes in chemical substrate values or
ECM remodeling occurs. This ensures that only dynamics between a cell and
the ECM or respectively among a cell, ECM, and chemical field impact the
results. In this set of simulations, the cells are highly sensitive to ECM (s = 1.0
from Supplementary Material Equation 9) as well as to the chemical gradient
(b = 1.0 from Supplementary Material Equation 15) when present.

Cells can closely follow paths in the ECM

Supplementary Figure 3 shows influence of ECM on cell migration (ECM
contact guidance) combined with a chemotactic field going to the right. The
leftmost subfigure shows the initial cell positions as well as the ECM element
fiber orientations (45◦ and -45◦ from the x-axis in the top and bottom sections
of the domain respectively). Without ECM influence, the cells would simply
move to the right. Instead, the ECM biases the cell paths away from the path
set by the gradient. The middle and rightmost images include the cell’s posi-
tional history, shown as arrows trailing the blue and red cells (note in this
and in all images in this section, the cell color is simply for visual contrast).
A video is linked in the Supplementary Material (Section 7.6).

Lacking additional directional cues, cells perform approximate 1-D
random motion along ECM paths

Figure 2b shows the results of cell motion on circular ECM. We show the ini-
tial cell configuration as well as the ECM element orientations on the left with
the middle and right images including cell positional history at 15 hours and
41.7 hours simulated time respectively. Our ECM model does not encode a pre-
ferred direction. Instead, without an externally set direction (e.g. a chemotactic
direction), cells select a random direction (see the end of Supplementary Mate-
rial Section 7.1). However, contact guidance limits cell motion to be along the
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-
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Fig. 2: Highlights of individual aspects of the cell-ECM interactions: (2a - Modify-
ing ECM microstructure) A line of ECM remodeling cells (blue circles), driven by a constant
chemical gradient (black arrow), move in the positive x-direction, reorienting the initially ran-
domly oriented ECM element orientations (black line segments) (left-most image in 2a). Upon
reaching the simulation boundary, the cells reset to the opposite boundary, and remodeling con-
tinues (middle - 1.53 passes). At four passes (left region of the right-most image in 2a), each
ECM element is almost completely reoriented parallel to the direction of travel of the cells and
anisotropy has increased from 0.90 to ∼0.92. Note, we run this in 2-D to aid in visualization and
demonstrate uniformity across the domain. 2b, 2c - Following ECM. Both simulations use ECM
elements that are highly anisotropic (a uniformly set to 1.0) and element orientations arranged to
form approximate concentric circles. The simulation in 2b begins with ECM sensitive cells almost
equally spaced along the line y=0 (leftmost image - cells shown in red and blue; color is for visual
contrast only). Cells follow the ECM circles in an approximate 1-D random walk due to ECM
following and the lack of an external driving direction (e.g. chemotaxis), forming circular arcs
(small black arrows marking cell position history every 6 minutes). The piecewise linear represen-
tation of the circular ECM tracks are more accurate as distance from the center increases (and
curvature decreases). Because of this, cells following the farther piecewise linear tracks stay closer
to the theoretical circular paths. The simulation in 2c contrasts with 2b by providing an addi-
tional environmental cue - a chemical gradient. As the ECM sensitive cells integrate both signals,
in contrast to 2b, their motion is no longer random and they travel uniformly in the direction
of the gradient. With a circular initial configuration (left), the cells follow each other along the
same circle (middle and right), coming to a point of relative stability where the ECM orientation
is exactly perpendicular to the chemical field. Note that the ECM is static in 2b and 2c and does
not vary across time. Videos are available. See links here.
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circular ECM paths. Thus, we observe approximate 1-D random motion along
the ECM circles in this proof of concept simulation. Because of the curved
tracks and error due to ECM discretization in highly curved regions (center
of domain in this case), contrasting with Supplementary Figure 3, some cells
move off their initial paths out to ECM circles of higher radius. We expand
on this phenomenon in the discussion (Section 4). Due to the high impacts
of ECM discretization at the center of the domain, for this simulation, we
exclude the central region with radius of 80 µm or less. A video is linked in
the Supplementary Material (Section 7.6).

Cells can integrate environmental signals and follow non-linear
paths

Figure 2c shows the results of cell motion transiting circular ECM with an
additional cue supplied by a chemical gradient. This additional information
causes the cells to follow the ECM circle on which they were initially placed to
the right (the direction of the chemical gradient). Note that at locations where
the chemical gradient and ECM orientation are perpendicular, cells are in a
quasi-stable state as the two directional cues cancel. This meta-stable state is
seen in the lagging cell in the middle plot of Figure 2c. Note that all other
cells in this plot, except the lagging blue cell on the left side of the image,
have moved many cell lengths from their initial positions. This cell began at
the x-axis, which defines a line in which all units of ECM have an orientation
perpendicular to the chemical field. Likewise, all the cells converge at the x-
axis, where their initial ECM contour becomes perpendicular to the chemical
field. Unlike in Figure 2b, with cells placed further from the origin and in a
region of lower curvature, we do not observe “track jumping”. A video is linked
in the Supplementary Material (Section 7.6).

2.3 Computational method details and data availability

This work is implemented and run in PhysiCell 1.12.0 [40]. It also uses the
recently introduced PhysiCell rules [62]. All code is available with a permissive
BSD license, including the ECM extensions and sample models, at GitHub with
the latest release located here. The code is cross-platform capable and has been
successfully compiled and executed on Ubuntu 22.04, Windows Server 2022,
and MacOS 12. All simulation data for this paper is available for download at
Zenodo. A free, interactive cloud-hosted version of the leader-follower model
(see Section 3.4) is available at nanoHUB (note - sign up is required).

On consumer-grade hardware (2019 Macbook Pro), typical wall times were
13 minutes for the longer fibrosis simulation and 10 minutes for the inva-
sive carcinoma and leader-follower simulations. The invasive cellular front had
typical wall times of 3-4 minutes. On high-performance computing hardware,
mean wall times were 4 minutes for the fibrosis simulation, 3.2 minutes for
the basement membrane degradation and leader-follower collective migration

https://github.com/PhysiCell-Models/collective-invasion/
https://github.com/PhysiCell-Models/collective-invasion/releases/
https://doi.org/10.5281/zenodo.13770006
https://nanohub.org/tools/physicellecm
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simulations, and 1 minute for the invasive cellular front. The simulations start
with 412 (fibrosis), 517 (basement membrane degradation) and 703 (leader-
follower) cells and simulate 15 days, 10 days, and 10 days respectively. The
fibrosis model has a decreasing number agents as the simulation progresses but
also simulates 50% more time, hence its longer run time. The invasive cellular
front starts with 30 cells, building to 900 cells when the simulations completes
at 5 days.

We performed initial model exploration using DAPT 0.9.2. DAPT is a straight-
forward way to organize model exploration on a mixed compute resources for
small teams. For more information see Duggan et al. [65].

We used xml2jupyter to transform this command line C++ code into a
Jupyter notebook-based graphical user interface [66]. The resulting interface
is deployed at nanoHUB.

3 Framework examples: Invasive cellular front,
fibrosis, basement membrane degradation,
and collective migration

We present four modeling vignettes to demonstrate framework features and
ability to represent a range of biological phenomena, with a focus on ECM
remodeling and cell motility. To help isolate dynamics due to physical interac-
tions and cell motility, the presented examples do not include cell proliferation
and death (except where required) as features. We use the default cell def-
inition from PhysiCell, varying relevant parameters and behaviors as noted
in each example. To examine the robustness of the simulations to stochastic
variation, we ran each primary model 21 times and include a representative
example for each modeling vignette.

For the chemical microenvironment, we use default settings unless noted oth-
erwise. We pre-condition the domain by running the diffusion solver for 10
simulated minutes before starting the simulation. For ECM, we use the model
described in Section 2.1. We place the ECM elements overlaying the BioFVM
voxels exactly; the two meshes have a shared origin and coordinate system.
See each example for exact microenvironment set up.

Finally, we note that the models were developed as 2-D simulations with cells
confined to a single layer of 3-D voxels.

3.1 Invasive cellular front pushing into ECM

As a test of this framework’s ability to express prior complex models, we repro-
duced aspects of Painter’s 2009 computational study [45], in particular the first
example: a model of an expanding tumor pushing cells into surrounding, struc-
tured ECM, as illustrated in Figure 10 of Painter 2009. In that work, a constant

https://github.com/BenSDuggan/DAPT/releases/tag/v0.9.2
https://nanohub.org/tools/physicellecm
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influx of cells was introduced on a domain boundary, with cells exhibiting
strong ECM contact-guidance motility. The ECM orientations were either ran-
dom, parallel to the domain edge, perpendicular to the domain edge, or a mix
of parallel and perpendicular orientation. The work found that randomly and
perpendicularly oriented matrices permitted faster invasion compared to the
parallel setting and that the mixed setting produced a heterogenous pattern of
invasion, with fastest invasion where the ECM was perpendicular to the inter-
face. We tested whether the framework could be adapted to these scenarios
and qualitatively reproduce their findings.

To emulate these scenarios in our agent-based system, we introduced a constant
flux of cells (instantiate 30 new cells every 180 minutes along domain edge) at
the bottom edge of a 600 µm by 1000 µm domain and simulated for 5 days (final
cell count of 900). The cells had cell-cell adhesion (Ccca) and repulsion strength
(Cccr) of 0.4 and 25.0 µm

min respectively, base speed Smax of 1.25 µm
min , and ECM

sensitivity, s, of 1.0. The cells were set to not remodel ECM (ECM is static) and
the ECM was highly anisotropic (a = 1.0 throughout domain). In this scenario,
cell-cell repulsion and base cell speed are increased relative to the default values
of 10 µm

min and 1.0 µm
min . For additional parameter and simulation details, see

Supplementary Material (Section 7.5.1). See Supplementary Material Section
7.3 for details on the cell-cell adhesion model. We quantified the speed of the
invasive front through histograms of cell positions in the y-axis (40 bins of 25
µm each) then determined the histogram bin containing the 95th percentile of
cell count at five simulated days. We produced stochastic replicates for each
scenario.

Consistent with the work by Painter, cells traveled further in matrices with
perpendicular and random ECM orientations compared to the parallel set-
ting. Over the 21 replicates, the fastest advances of the invasive front occurred
when the ECM orientations were perpendicular to the front followed by the
random orientations and finally parallel orientations. Summary statistics and
visual comparison across replicates are shown in the Supplementary Materials
(Supplementary Table 19 and Supplementary Figure 4). Figure 3 shows repre-
sentative examples of the stochastic replicates we conducted. The changes in
the invasive front across scenarios can be seen in both the deeper penetration
of cells into the domain in the perpendicular and random cases as well as the
cell count contours (black-white horizontal bars) in Figure 3. Furthermore, the
cell number profiles (insets in upper right of the random, parallel, and per-
pendicular ECM scenario plots) also show differences. In the more restrictive
case of parallel ECM, a relatively sharp boundary is formed, as seen in the
changing slope of the cell count profile, compared to the more shallow slope
of the profiles in the random and perpendicular cases. Additionally, the ran-
dom orientation gives front shapes similar to a diffusive front (e.g., similar to
those seen in Fisher’s equations [67]), whereas the scenario with perpendicu-
lar orientation spreads faster suggestive of superdiffusive phenomena [68, 69].
Finally, in the mixed orientation scenario, we see that invasion was fastest in
the region with orientations perpendicular to the interface and slowest in the
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regions of parallel orientations, matching Painter 2009 [45]. See Figure 3, with
links to videos available in the Supplementary Material (Section 7.6) and full
stochastic replicates available in the data supplement at Zenodo.

Fig. 3: Invasive cellular front pushing into ECM: To reproduce aspects of Painter 2009’s first
modeling example of an expanding tumor [45], we produced four ECM orientation configurations
- random, parallel to advancing front, perpendicular to advancing front, and the mixed case of
both parallel and perpendicular. In all cases, the ECM was static (no ECM remodeling) and cells
entered the simulation at the bottom edge of the domain, moving with random, contact-guided
motility. 30 cells were introduced every 180 minutes with no flux conditions at the boundaries. We
show each simulation at five days simulated time. To assess cell penetration into the domain, we
produce histograms of cell positions in the y-axis (40 bins of 25 µm each). The horizontal contours
are shaded according to the histogram bin counts. The insets in the upper right of the random,
parallel, and perpendicular conditions show the binned cell counts viewed in profile. The dashed
blue line indicates the center of the strip where 95% of total cell count is passed. ECM orientation
shown in grey line segments.

3.2 Wound healing: ECM deposition, fibrosis, and
enclosure of a wound

We produced a simple model of fibrosis. We model the recruitment of cells to
clear an injury - first macrophages and subsequent recruitment of fibroblasts to
rebuild the ECM in the area of the injury [17, 70, 71]. Fibroblasts are activated
in the presence of macrophages, depositing ECM, leading to formation of a
circle of very high ECM density and subsequent exclusion of cells from the
wounded area.

Model results and cellular behaviors

We use three cell types - distressed/dead cells, macrophages, and fibroblasts
similarly to [72]. The key rules of the model are summarized in Table 1. The
distressed cells die immediately and release debris after having already begun
to release debris prior to dying (Figure 4a). This is similar to an injury or some
other insult that could cause a small region of cells to die at once. The debris
recruit macrophages (shown in red) which chemotax up the debris gradient
(not shown). Upon reaching the damaged cells, macrophages phagocytose the

https://doi.org/10.5281/zenodo.13770006
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Table 1: Fibrosis model: principle behaviors, parameters, and systems effects. See Supplemen-
tary Material (Section 7) for parameter definitions.

Cell type Behavior Key parameter(s) Key effects

Distressed
cells

Secrete debris Debris secretion rate Recruits macrophages
to dead cells

Death NA - cells die
immediately at start
of simulation

Begins fibrotic cascade

Macrophages Chemotaxis up debris
gradients

Bias Enables macrophages
to find dead cells

ECM density response ρl, ρideal, ρh Cell speed is reduced
as ECM density moves
away from ideal value
(0.5)

Consume debris Debris uptake rate Aids in generating
gradient

Consume dead cells Dead phagocytosis
rate, phagocytosis rule
saturation value and
half-maximum

Enables clearance of
cells

Secretion of
inflammatory signal

Signal rule saturation
and half-maximum
values

Recruits fibroblasts to
region of damaged cells

Fibroblasts Chemotaxis up
inflammatory
gradients

Bias Enables fibroblasts to
find macrophages

ECM density response ρl, ρideal, ρh Cell speed is reduced
as ECM density moves
away from ideal value
(0.5)

Degrading/depositing
ECM density

ECM density target
value, ECM density
secretion rule
saturation, and
half-maximum values

Can trap cells if
deposited at high
enough amount

dead cells and also send out an inflammatory signal to initiate additional tissue
repair. This signal recruits fibroblasts (yellow) via chemotaxis, which attempt
to repair the damaged tissue by secreting ECM materials and increase den-
sity (yellow-to-red filled contours) above ρideal, the ECM density of maximum
cell speed (Figure 4b,c,d). As fibroblasts and macrophages remain in contact,
ECM continues to be produced. This eventually leads to the entrapment of the
recruited cells. As the dead cells continue to shrink due to their death process,
a cyst-like relatively cell- and ECM-free region forms, enclosed within a circle
of impenetrable ECM (Figure 4e,f). See the Supplementary Material Table 7
for additional details. A video of results presented in Figure 4 is linked in the
Supplementary Material (Section 7.6).

Of the 21 stochastic replicates, 15 generated a completely enclosed region
(such as the representative example in Figure 4) and six resulted in a partially
enclosed region. See the simulation data set at Zenodo for individual results.

https://doi.org/10.5281/zenodo.13770006
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Fig. 4: Fibroblast ECM secretion leads to cyst formation: Tissue injury, modeled as sudden
death of a number of cells (blue cells) attracts macrophages (red) to remove dead cells (a, b). The
macrophages recruit fibroblasts (yellow), which secrete ECM as part of the tissue repair process
(c, d). However, prolonged contact with macrophages leads to continued secretion of ECM. This
produces a region of impenetrable ECM which both traps the macrophages and fibroblasts and
leads to a region that is relatively cell-free as the dead cells continue in their death process (e,
f). Initial configuration - dead cells 175 µm circle with macrophages and fibroblasts randomly
placed outside of the distressed region. Yellow cells: fibroblasts. Red cells: macrophages. Blue
cells: distressed/dead cells. Yellow-to-red contour plot: ECM density. Black arrows: cell positional
history, going back eight time points (sampled every 30 minutes). This is available as a video. See
link here.

Tissue microenvironment

We use two diffusive chemical fields in this simulation. Debris is emitted by
distressed and dead cells and has a very small diffusion coefficient and no decay,
representing the slow movement of cellular debris and lack of decomposition
on the simulated time scales (macrophage consumption is the only removal
process). This field represents the materials that distressed and dead cells
release as part of the death process. We also simulate an inflammatory signal,
released by macrophages as part of their response to contact with dead cells. It
has a characteristic length scale of 32 µm, or approximately 2.5 cell diameters.
Both fields have no flux conditions.

The ECM density begins uniform with a value of 0.5 throughout the domain.
Fibroblasts modify the density when recruited by macrophages. We note that
in this simulation, only ECM density impacts cell motility, as the motile cell
populations are modeled as being insensitive to ECM orientation cues.

See the Supplementary Material Tables 8 and 9 for additional details.
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Tissue

Distressed cells are placed at the center of the computational domain in a cir-
cular region of radius 175 µm. Cells are initialized at approximate equilibrium
spacing with six neighbors (hexagonal packing). Fibroblasts and macrophages
are placed randomly throughout the domain, excluding the 200 by 200 µm
square containing the distressed cells. Initial cell positions were held consis-
tent across stochastic replicates. See the Supplementary Material Table 10 for
additional details.

Comparison to previous modeling efforts

Comparing to previous work in the field, Dallon et al. 2001 studied the impacts
of TGF-β on collagen deposition in wound healing [58]. In their model, fibrob-
lasts deposit collagen (ECM density) in response to TGF-β. Comparing results
between baseline TGF-β and increased TGF-β, they find more collagen depo-
sition resulting in slower agents and less penetration of cells into the wound.
While caused by a different dynamic (concentration of a signaling molecule
versus contact with a different cell type), this is comparable to the slowing of
the fibroblasts as they increase ECM density followed by the inability of them
to penetrate fully to the center of the wound. Note also that in this simple
example, we are not modeling contact guidance whereas Dallon et al. do [58].

3.3 Basement membrane disruption precipitating
transition from local to invasive carcinoma

Here, we model the transition from a ductally-confined cancer to a locally
invasive cancer, inspired by the transition of ductal carcinoma in situ (DCIS)
to invasive carcinoma [73]. Cancer cell recruited fibroblasts degrade basement
membrane (represented as high density ECM) enabling subsequent cellular
invasion [9, 74, 75].

Model results and cellular behavior details

In this model, there are two cell types - cancer cells and fibroblasts. The key
rules of the model are summarized in Table 2. In this case, we simulate the
duct’s longitudinal cross section. We start with an outgrowth of cancer cells
(half circle of blue agents). The cells have grown into the fluid-filled region of
low ECM density - the duct lumen. They are on a band of very dense ECM (ρ
= 1 - dark horizontal band in Figure 5a) which represents the duct’s basement
membrane. The basement membrane is surrounded by stroma - with ECM
density of 0.5 (Figure 5a). The cancer cells emit a tissue remodeling factor,
modeled as an inflammatory factor, that attracts fibroblasts via chemotaxis
with high bias (field not visualized). The fibroblasts alter the ECM and base-
ment membrane, increasing anisotropy in the stromal region and degrading the
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Table 2: Invasive carcinoma model: principle behaviors, parameters, and systems effects. See
Supplementary Material (Section 7) for parameter definitions.

Cell type Behavior Key parameter(s) Key effects

Cancer cells Secrete inflammatory
signal

Secretion rate, target
value, and secretion
rule parameters

Recruits fibroblasts

ECM following ECM sensitivity Enables invasion of
stroma

ECM density response ρl, ρideal, ρh Cell speed is reduced
as ECM density moves
away from ideal value
(0.5)

Chemotaxis up oxygen
gradients

Bias Enables escape

Decrease in cell-cell
adhesion on contact
with fibroblast

Adhesion rule
saturation and
half-maximum values

Enables cells to more
readily escape the
tumor mass

Decrease in cancer cell
affinity on contact
with fibroblast

Affinity rule
saturation and
half-maximum values

Enables cells to more
readily escape the
tumor mass

Fibroblasts Chemotaxis up
inflammatory
gradients

Bias Enables fibroblasts to
find cancer cells

ECM density response ρl, ρideal, ρh Cell speed is reduced
as ECM density moves
away from ideal value
(0.5)

Degrading/depositing
ECM density

ECM density target
value

Removal of barriers to
cell movement

Altering ECM
orientation and
fiber-fiber alignment

ECM reorientation
rate and anisotropy
growth rate

Provides paths for cell
escape

Decrease speed on
contact with cancer
cells

Speed inhibition rule
saturation value and
half-maximum

Slows cell speed
enabling remodeling
to occur

basement membrane to a lower ECM density (ρtarget = 0.5) as they move into
the tumor (Figures 5b, c, and d). Due to close proximity of fibroblasts, cancer
cells alter their adhesion and affinity to each other [76], and escape, follow-
ing the oxygen gradient originating at the lower simulation domain boundary
(Figures 5e, f). Because the cancer cells follow ECM, they preferentially move
along the groomed ECM paths, or portions of high anisotropy, but also tran-
sit the ungroomed ECM in their movement out of their location of origin
(Figures 5g,i). See the Supplementary Material Table 11 for additional details.
A video of results presented in Figure 5 is linked in the Supplementary Material
(Section 7.6)

All 21 stochastic replicates generated qualitatively similar results - basement
membrane degradation and subsequent invasion of stroma. Figure 5 is a
representative example. See the data supplement for individual results.
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Fig. 5: Dense ECM can form barriers while ECM degradation can lead to cell invasion:
Beginning with a fluid-filled lumen, a layer of dense, impenetrable ECM, and stromal tissue (a), we
see that ECM modifying fibroblasts remodel the tissue locally (b, c, d), enabling cell escape into
surrounding tissue (e, f, g, i). Initial configuration - cancer cells in half circle (175 µm radius) with
fibroblasts randomly placed outside duct. Red cells: fibroblasts. Blue cells: cancer cells. Yellow-to-
red contour plot: ECM density and anisotropy (alpha = 0.5). Black arrows: cell positional history,
going back eight time points (sampled every 30 minutes). This is available as a video. See link here.

Tissue microenvironment

We use two diffusive chemical fields in this simulation. Inflammatory signal is
secreted by the cancer cells and has a diffusion length scale of 100 µm in regions
of high fibroblast density. We also simulate a nutrient field, modeled as oxygen
(length scale of 1000 µm in open tissue and 100 µm in cell dense regions)
coming into the duct from the bottom of the simulation. The inflammatory
signal has no flux boundary conditions while the oxygen has mixed conditions:
a constant value (Dirichlet condition) at the bottom of the domain and no flux
conditions at the other boundaries.

The ECM begins with three zones. The top of the simulation, in which the
cancer cells start, represents the interior portion of a duct (the lumen). We
model it as completely fluid-filled with ECM density set to zero. The duct
is surrounded by a region of very dense ECM which represents the basement
membrane. Finally the duct itself is surrounded by stroma, which we model
with an ECM density of 0.5. We are viewing the duct in a longitudinal cross
section, rather than axially.

See the Supplementary Material Tables 12 and 13 for additional details.

Tissue

Cancer cells are placed in the upper half of the domain in a half circular
region of radius 175 µm with its main diameter in contact with the region of
dense ECM (basement membrane). Cells are initialized at approximate equilib-
rium spacing with six neighbors (hexagonal packing). Fibroblasts are randomly
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placed throughout the lower portion of the domain, with placement held con-
sistent across stochastic replicates. See the Supplementary Material Table 14
for additional details.

Comparison to previous literature

Comparing to previous modeling results, Kim and Othmer investigated stromal
invasion enabled by basement membrane degradation [77]. In their model, also
inspired by DCIS, the tumor cells themselves degrade the basement membrane
by secreting proteolytic enzymes. In their model, as in ours, the breakdown of
the ECM surrounding the mass of cells led to cellular invasion. In their case,
they observed that a front of leading cells form as the basement membrane was
broken down compared to our more dispersed breakdown of basement mem-
brane and invasion. However, they had a point source of attractant compared
to our line source. Furthermore, our basement membrane is broken in several
locations and our tumor cells follow contact guidance. Both of these features
tend to promote a spreading of the tumor cells compared to Kim and Othmer’s
scenarios.

3.4 ECM contact guidance enables leader-follower
migration

To address questions centered on the mechanisms of multicellular invasion, we
developed a tissue simulation focusing on collective cell migration. It is inspired
by the cancer biology literature [64, 78] and builds off previous cell-based
spheroid modeling work [40]. Mimicking Cheung et al. [64], we include two cell
phenotypes: more aggressive leader cells and less aggressive follower cells. Their
observations suggest some form of communication between the leaders and
followers; we model that communication as signals written in and read from
ECM microstructure. We use our cell-ECM interaction model with leaders
writing signals (remodeling microstructure) and followers reading those signals
(contact guidance). Model details follow as well as more detailed accounting
of the simulations that lead up to collective migration.

3.4.1 Leader-follower model details

Cellular modeling

We model two different phenotypes - leader cells and follower cells. In our
example, these cells represent invasive and non-invasive cancer cells, respec-
tively, but they could represent other types of cells that exhibit similar
behaviors (more motile and less motile sub-phenotypes). The key rules of the
leader-follower model are summarized in Table 3. In particular, leader cells
follow oxygen gradients with a high chemotactic bias and encode their move-
ments via changes to ECM microstructure, specifically altering ECM element
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Table 3: Cell-based model: principle behaviors, parameters, and systems effects. See Supple-
mentary Material (Section 7) for parameter definitions.

Phenotype Behavior Key parameter(s) Key effects

Leader cells Altering ECM
orientation and
fiber-fiber alignment

ECM reorientation
rate and anisotropy
growth rate

Produces signals in
ECM, providing paths
for cell escape

Chemotaxis Bias Enables production of
coherent paths

Cell-cell adhesion and
repulsion

Ratio of adhesion
strength to repulsion
strength

Enables collective cell
migration

Follower cells ECM following ECM sensitivity Allows cells to read
signals in the ECM

Chemotaxis Local anisotropy Enables coherent
migration

Cell-cell adhesion and
repulsion

Ratio of adhesion
strength to repulsion
strength

Enables collective cell
migration

Random motion Local anisotropy Enables finding of
paths in the ECM

orientation and anisotropy (see Section 7.1 for mathematical details). Follow-
ers’ movements are influenced by signals in the ECM (contact guidance) and
are chemotactic with bias equal to local value of a (Chemotaxis Model II -
Equation 16) following previous works that used chemotactic bias [60, 61].
They read signals in the ECM with a high sensitivity (s = 1.0) and are inca-
pable of remodeling ECM. Thus, in highly anisotropic ECM, followers use
contact guidance and chemotax, while in unaligned ECM, they move randomly.
Combining leader and follower behavior together, leaders effectively signal
paths which followers read through contact guidance. See the Supplementary
Material Table 15 for additional parameter values.

Tissue microenvironment

We simulate avascular tissue with a diffusing oxygen-like field coming from
the domain boundaries (Dirichlet conditions). Cells uptake oxygen and there
is decay in the cellular milieu. As in the basement membrane example, we
use a diffusion length scale of 100 µm for regions of high cell density. See
Supplementary Material Table 16 for additional details.

The ECM is initialized uniformly with anisotropy of 0.0, ECM density of 0.5
(no impact on cell speed), and random fiber orientations. See Supplementary
Material Table 17 for additional details.

Tissue

Cells are placed at the center of the computational domain in a circular region
of radius 175 µm and were randomly assigned to be either followers or leaders
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(95% followers, 5% leaders). Cells are initialized at equilibrium spacing with six
neighbors (hexagonal packing), with placement held constant across stochastic
replicates. See the Supplementary Material Table 18 for additional details.

3.4.2 Leader-follower results

Signal generation and reading are required for collective behavior

We begin the exploration as a proof of concept with simplified dynamics: leader
cells exhibit the limit or extreme behavior of instant ECM microstructure
remodeling, using Supplementary Material Equations 1 and 2. (The previous
examples, Sections 3.2 and 3.3, used continuous or non-instant remodeling -
Supplementary Material Equations 3 and 5.) We use these simplified dynam-
ics to aid exploration, not to suggest that cells necessarily modify ECM much
faster than they move. Additionally, to show there is impact from the cell-
ECM interactions, we isolate two model behaviors, the ability to write (matrix
remodeling) and read signals (contact guidance), while disabling cell-cell adhe-
sion. In Figure 6, we observe similar results with ECM writing only (left
column: follower ECM sensitivity s set to zero) and ECM reading only (middle
column: leader remodeling rates set to zero). In both cases, leaders separate
from the initial disc of cells and reach the simulation boundary at approxi-
mately 16 hours while followers remain roughly in the center of the domain.
Only with both writing and reading (right column) were most cells able to
escape the domain center and invade their surroundings. The guidance pro-
vided by the ECM combined with the chemotactic behavior of followers on
groomed ECM enables them to follow the leaders’ paths out of the center of
the domain. This results in stigmergy, wherein agents alter their environment
and in doing so, effectively signal preferred paths to other agents. Links to
simulation videos are in Section 7.6.

Note that we hold the initial configuration of each simulation variation
constant to isolate motility effects only.

Cell-cell adhesion enables collective migration

Adding cell-cell adhesion (see Supplementary Material Section 7.3 for details
on the cell-cell adhesion model) to provide more realism to the simulation,
while still using the limit assumption of instant signal writing, we observed
a range of dynamics and cellular patterning, including collective migration in
which phenotypically heterogeneous cells gather in clusters and move together
while roughly maintaining the same composition over time. We see that ECM-
mediated communication can still produce stigmergy (Figure 7a) when speed
is high enough to overcome cell-cell adhesion. In Figure 7b, we see leaders
migrated to the leading edge of cell clusters. Due to a balance between cell
motility and cell-cell adhesion, cells stay in contact with each other, produc-
ing leader-follower collective invasion. Finally, when cell speed is even lower,
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Fig. 6: Communication of cell path through environmental modification produces stig-
mergic cell behavior: Modification of the environment (left) and reading of the environmental
signals (middle) separately do not produce collective behavior. With both together (right column)
we observe that most cells escape the domain center and invade their surroundings through the
combined effects of following leaders’ paths (stigmergy) and chemotaxis. Writing only: s, ECM
sensitivity, for followers set to zero. Reading only: rf0 and ra0 , reorientation and realignment
rates, for leaders set to zero. Initial configuration - 703 agents (5 % leaders) in 175 µm circle. Yel-
low agents: followers. Blue agents: leaders. Red contour plot: ECM anisotropy - uniformly equal
to one in remodeled ECM elements. Line segments: ECM orientation. Black arrows: cell positional
history, going back 12 time points (sampled every 6 minutes). Videos are available. See links here.

adhesion takes over cell mechanics and relative cell positions are constant
over the computational experiment (Figure 7c) while there is a small overall
displacement of the whole cell mass (see video). Links to simulation videos
are in Section 7.6. Note that cell-cell adhesion is of equal strength across all
possible combinations of interactions (follower-follower, follower-leader, and
leader-leader). Also, due to our interests in highlighting cell-ECM interactions,
we have excluded exploring other possible ways to enable collective migration
such as cell-cell repulsion with cell proliferation.

Collective migration is retained in the context of non-instant
signal generation

Having shown that the cell-ECM model can produce a range of behaviors in
the limit of instant signal generation, we now relax this assumption and let sig-
nal generation occur over a period of time instead of instantly. We give ECM
reorientation and anisotropy non-instant rates of change and update them
with Supplementary Material Equations 3 and 5, as in the previous example
models. See Section 7.1 for additional details. Figure 8 contrasts the results of
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Fig. 7: Multiple behaviors are produced with the leader-follower model by including
cell-cell adhesion: With cell-cell adhesion on (adhesion = 10 µm

min ) across all cell-cell interac-
tions), multiple behavioral regimes are observed in the limit case of instant remodeling. In (a)
with Smax (maximum cell migration speed) at 0.8 µm

min , we see stigmergy with followers (yellow
cells) following trails left by leaders (blue cells), as in Figure 6. (b) Decreasing Smax to 0.5 µm

min
yields collective migration. In (c) with Smax at 0.1 µm

min , cell-cell adhesion cannot be overcome
and the cell positions are frozen in the initial configuration. Initial configuration - 703 agents (5
% leaders) in 175 µm circle. Adhesion set to 10 µm

min . Yellow agents: followers. Blue agents: lead-
ers. Red contour plot: ECM anisotropy - uniformly equal to one in remodeled ECM elements.
Line segments: ECM orientation. Black arrows: cell positional history, going back 12 time points
(sampled every 6 minutes in a, every 30 minutes in b, and every 120 minutes in c). Videos are
available. See links here.

the limit of instant signal writing with non-instant signal writing. Figure 8a
shows two time points using the limit model, with cell speed of 0.5 µm/min
and adhesion value of 10 µm/min (the same parameters as Figure 7b). In the
earlier time point (top), we see what was the initial cluster of cells broken
into several smaller clusters moving out from the center of the domain. In
the next time point, we see that heterogenous clusters have continued towards
the simulation boundary (with some reaching it) while clusters of followers
remain in the middle. In Figure 8b, relaxing instantaneous signal writing,
we observe that collective migration still occurs. Leaders alter ECM with the
amount of microstructure change, and thus signal strength, depending on cel-
lular residence time, speed, and density, leading to a range of anisotropy values.
Leaders remain in contact with followers and lead them out of the center
of the domain. However, because altering ECM microstructure (in particular
increasing anisotropy) is no longer instant, the signals to followers are not as
strong compared to 8a. We observe that fewer cells are at the periphery of
the domain when remodeling is slower (finite). The relative lack of strong sig-
nals in the non-instant scenario leads to less chemotactically biased migration
(more random migration) in the follower population, decreasing the uniformity
of velocities across a cluster of cells. Thus, as the cells adhere to each other
but attempt to move in divergent directions, overall cell speed is effectively
reduced (see Supplementary Material Equation 21). The more uniform the cell
velocities, the closer to Smax the average speed of a cluster will be. Overall, the
lack of uniformity leads to less coherent migration in which the consistently
chemotactically-driven leaders break away and are then able to proceed ahead
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of the followers. For more details see Section 7.3 and Equation 19. The remain-
ing followers then continue out behind the leaders via stigmergic behavior. See
Supplementary Section 7.6 for links to videos.

We performed stochastic replicates on the continuous remodeling collective
migration simulation of which Figure 8b is a representative example. All
21 stochastic replicates generated similar results - leader-follower type inva-
sion followed by continued stigmergic movement of followers along the leader
generated ECM paths. See the data repository at Zenodo for individual results.

We observed that collective migration behavior in the finite signal writing
scenario is sensitive to remodeling parameters and is lost with a less than order
of magnitude change in fiber realignment and reorientation rates as seen in
Supplementary Material Figure 5. Fiber reorientation and realignment rates
varying by a factor of four are enough to change the behavior. This model could
be further tuned, matching to data related to cell speeds and patterning, to
suggest conditions under which collective leader-follower migration may occur
in non-computational model systems.

Examining Figures 6 and 7, in Figure 6 (without cell-cell adhesion), fol-
lower cells engage in stigmergy (right panel) while frequently straying from
leader-cell created paths. In contrast, in Figure 7a (with cell-cell adhesion),
straying is less frequent, implying that cell-cell adhesion enhances stigmergy,
an observation deserving further study.

This model could also explore “wisdom-of-the-crowd” effects in noisily oriented
ECM. Prior work has shown that the cell clusters average out noise in chemo-
tactic gradients better than single cells [79]. Additionally, cell-ECM sensitivity,
ECM anisotropy, and cell-cell adhesion could be varied to study impacts of
other aspects of cell-ECM and cell-cell interactions on these effects.

Finally, we note that in this example model, we did not explore asymmetric
rates of cell-cell attachment. Spring-like attachments with different rates of
attachment versus detachment may better mimic cell-cell adhesion [80]. This
enhanced adhesion might enable leaders to better pull cells and produce collec-
tive migration, perhaps eliminating the need for the followers’ oxygen-driven
directional cue.

Comparison to other works

Comparing to previous biological and modeling work in the field, Ilina et al.
studied collective migration and cancer metastasis, attempting to understand
connections between cell-cell adhesion, cell density, and ECM confinement[81].
Their in vitro and in vivo experimental results showed that collective migra-
tion occurs with high cell-cell adhesion but also with low cell-cell adhesion
(for example with knocked down E-cadherin expression) in the context of high
ECM density, which corresponds to relatively decreased speed. Furthermore,
the phenomena of collective behavior was investigated with an agent-based

https://doi.org/10.5281/zenodo.13770006
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model of cells transiting along a collagen ECM and plastic culture dish inter-
face. In particular, the authors found that low cell-cell adhesion and low ECM
density, which led to higher cell speed, were associated with individual cell
migration, while high ECM density (lower cell speed due to ECM confinement)
or sufficiently high cell-cell adhesion both enabled collective migration. The
high ECM density/low cell-cell adhesion lacked local cell to cell velocity corre-
lations compared to the low ECM density/high cell-cell adhesion. They suggest
that the system’s jamming-unjamming phase transitions, which describe the
shift between a solid-like state (cells are jammed and largely immobile) and a
fluid-like state (cells are unjammed and can move individually or collectively),
may have several phases. These include a jammed phase, two mobile phases
corresponding to the two collective migration regimes (one with low cell-cell
adhesion and another with high cell-cell adhesion), and finally an unjammed
gas-like phase. While we did not look at ECM-based cell confinement, this
bears similarity to our results in Figure 7, with the gas phase corresponding to
7a (ECM of sufficiently low density to not confine cells), 7b corresponding to
the active nematic regime, and 7c being jammed, but in this case strictly due
to cell-cell adhesion. Following up on Ilina et al., Kang et al. studied collective
cell migration in tumor spheroids with a hybrid vertex-particle-based model,
culminating in a phase diagram of cell jamming [82]. They found that in the
regime of low cell speed and higher ECM density (more regions of excluded vol-
ume within the domain), cells remained clumped together (solid phase) until
a sufficient speed was reached to enable collective movement (liquid phase).
Finally, with lower ECM density (relatively less volume exclusion for cells) and
higher cell speeds a gas-like phase was observed. Again, these results are sim-
ilar to our results in Figure 7 with the gas phase corresponding to Figure 7a,
liquid phase to 7b and solid to 7c. Interestingly, both [81] and [82] either hint
at or produce phase diagrams. Future work with this example model could
explore the transitions between the subplots of Figure 7 as a phase diagram,
in addition to considering aspects of cell confinement through use of a non-
uniform initialization of the ECM and the possible role of heterogenous local
chemotactic gradients in the formation of ECM paths.

Finally, while the collective migration example was inspired by the cancer
biology literature [64, 78], Martinson et al. [61] produced a similar model. In
this work, they model neural crest cell invasion, also using ECM remodeling
cells to lead clusters of ECM following cells into tissue. While varying in some
aspects (such as using haptotaxis and only cell-cell repulsion), their use of a
similar leader-follower model in developmental biology hints at this model’s
and the framework’s applicability to more general leader-follower migration
models.
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Fig. 8: Collective migration is retained in the context of non-instant signal writing:
In (a), which is the limit case of instant signal generation (same parameter settings as Fig 7b),
we observe mixed clumps of both leader (blue) and follower (yellow) cells migrating together
(leader-follower collective migration). In 8b, we relax instant remodeling and still observe leader-
follower collective migration: leaders travel at the front of mixed clusters of leader and follower
cells, leading them out of the center of the domain. They do not stay in contact as long as in 8a
but strong enough paths are generated to enable followers to continue out via stigmergy. Fiber
realignment rate: 0.004 min−1, fiber reorientation rate: 4 min−1. Initial configuration - 703 agents
(5 % leaders) in 175 µm circle. Adhesion set to 10 µm

min . Yellow agents: followers. Blue agents:
leaders. Contour plots: ECM anisotropy - (8a) uniformly equal to one in remodeled ECM elements
and (8b) color bar. Line segments: ECM orientation. Black arrows: cell positional history, going
back 12 time points (sampled every 6 minutes). Videos are available. See links here.

4 Discussion

In this work, we presented a framework designed to capture salient aspects of
bidirectional local cell-ECM interactions using a relatively simple mathemati-
cal model. Drawing on previous works, we developed a model of extracellular
matrix using a mesh of voxels (ECM elements), each described by a lim-
ited set of features: overall anisotropy, overall orientation, and overall density.
We added cell-ECM interactions including ECM-mediated changes in cellular
motility (tunable contact guidance and ECM dependent cell migration speed)
and cell-mediated local microstructure remodeling (changes to ECM element
anisotropy, overall fiber orientation and density). Furthermore, through the
use of PhysiCell rules [62], additional bidirectional interactions are possi-
ble without the need to write, compile, and test custom interaction code.
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We demonstrated the framework with four examples that focus on cell
motility-ECM interactions: an invasive cellular front, wound healing, base-
ment membrane degradation, and collective migration. Each of these examples
uses the same core framework with changes in source code only for simula-
tion initialization. We make this newly implemented mesoscale, bidirectional
cell-ECM interaction framework freely accessible to the community aiming to
encourage and enable sharing of expertise among multiple problem domains
(e.g., tumor biology, developmental biology, wound healing, angiogenesis, fibro-
sis). Furthermore, our approach opens up rich explorations of cell-matrix
biology by allowing direct links between a broad array of cell behaviors and
ECM variables, without requiring additional coding. This represents a key
methodological advance in this work: enabling the exploration of a large set of
relationships between cell behaviors and ECM state.

With this base framework constructed, there are opportunities for extensions.
Future models could initialize the ECM variables from high-resolution ECM
data based upon analysis of the mean and variation in fiber angles (for orien-
tation and anisotropy) and amount of material present (for fiber density). We
note that our framework currently captures local interactions between single
ECM elements and single cells; it does not incorporate larger-scale interac-
tions. This contrasts with other frameworks and models that represent the
network like connections within a spatially-coupled ECM or distribute cellu-
lar remodeling and contact guidance among multiple ECM elements (e.g. -
[25, 29, 56]). To address non-local remodeling of ECM, future efforts will focus
on incorporating the option for a continuous, force-based ECM model, for
example as a visco-poroelastic material using a finite element approach, then
sampling the variables established in this work on the ECM element grid. To
address the current limit of remodeling only a single ECM element, we aim
to explore approaches to spread remodeling over multiple, adjacent ECM ele-
ments, for example with Gaussian smoothing or other techniques as well as
enabling ECM influence on cell behavior from multiple ECM elements [56, 61].
Similarly, we aim to extend bidirectional cell-ECM interactions to allow cells
spanning multiple elements to influence and be influenced by each element.

As noted in Section 2.2.2, due to ECM discretization, cells may miss ECM
cues in regions of rapidly changing ECM orientation (high amounts of path
curvature) as observed in Figure 2b. ECM following is a function of cell speed,
curvature in an ECM path, and element size. To reduce the effect of the dis-
cretization, as needed, ECM element size can be decreased by modelers noting
that decreasing element size will be balanced by decreasing the area of influ-
ence in the bidirectional cell-ECM interaction and will increase computational
costs. The current default size of 20 µm per side was selected to be on the
order of the size of the cell, as in a previous work [40]. This enables cells to
modify a volume about equal to their volume, forming paths about one cell
width in diameter (with our cell diameter of ≈ 17 µm). Future versions of the
framework that include spreading the bidirectional cell-ECM influence over a
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region (discussed above) might ameliorate discretization effects by effectively
smoothing the path.

In the initial version of the framework, we aimed to have simple constitutive
relationships that produced a range of emergent behaviors showing the util-
ity of the underlying framework variables and relationships. As an example,
we model the anisotropy as only stable or increasing. This limits the abil-
ity to capture multiple, extensive remodelings of an ECM element. Future
extensions to the framework could model both growth and decline in fiber-
fiber alignment. Another possible extension is stochastic contact guidance
where cell direction is sampled from a distribution rather than set deter-
ministically. This approach was recently implemented using the von Mises
distribution [61], showing its feasibility and interest within the community.
Moreover, in future releases, we plan to generalize the framework architecture
to enable modelers to easily replace built in constitutive relationships with
their own relationships. Furthermore, architecture that allows easy exchange
of one constitutive relationship for another would enable useful comparisons
among model relationships. Future work could include comparing simulation
outcomes, numerics, and computational performance of cell-ECM interac-
tion formulations as similarly investigated for cell-cell mechanics constitutive
relationships [83].

Finally, we note that the sample models were developed as 2-D simulations
(single slice of a 3-D environment), and could be, by reasonable extension of
the cell-ECM interaction models to 3-D, be extended to 3-D. Also, while we
have demonstrated this framework for a generalized ECM or single ECM com-
ponent, the framework could readily be expanded to support a vector of ECM
components. These extensions are additional future work for the framework.
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7 Supplementary Material

7.1 Cell remodeling of ECM microstructure

Here we detail the mathematical models for updating ECM element variables
anisotropy, orientation, and density. The ECM elements and cells are conceived
of as being in close contact; cells alter the ECM element they are physically
in. To formalize which ECM element a cell modifies out of the many possible
options (see Figure 1a), we define cells as interacting with whichever element
their center coordinates are the closest to, as in [40]. To do this, suppose cell
i is at position xi. We remodel the ECM element whose center x∗i is closest to
xi.

We start with outlining two related methods for altering ECM microstructure
- the limit case of instantaneous remodeling and the non-instantaneous case.

Instant anisotropy and orientation remodeling

To explore an extreme case of ECM microstructure modification/ECM medi-
ated communication, we model anisotropy and ECM element orientation as
being immediately updated when contacted by a remodeling cell, resulting in
the following relationships to update a and f :

a(x∗i ) = 1 (1)

f(x∗i ) = dremodeler. (2)

Because of the underlying updates to f (see next subsection), this permanently
writes with high signal strength the motility direction of the first cell to pass
through a particular ECM element.

Non-instantaneous microstructure remodeling

Anisotropy

Anisotropy is represented by a scalar ranging from 0 to 1, representing “com-
plete lack of anisotropy” (or a disordered state) to “complete anisotropy” (a
highly ordered, oriented state). The rate of change in anisotropy over time is
given as:

da(x∗i )

dt
= ra(1− a(x∗i )). (3)

ra is specified as:
ra = ra0

scell (4)

where ra0
is a base rate of change and scell is the migration speed of the cell

changing the ECM element’s anisotropy.
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Orientation

We model changes to fiber orientation as follows:

df(x∗i )

dt
= −rf

(
f(x∗i )−

dremodeler

||dremodeler||

)
(5)

with
rf = rf0scell(1− a). (6)

rf0 is the base rate of change, dremodeler is the direction of the remodeling cell,
and scell is cell speed. f is normalized after each update. Note that when a =
1, orientation cannot change. Also, we select to remodel f such that it takes
on the smallest angle between it and dremodeler.

Density

Density ranges from 0 to 1, representing a region lacking ECM material to
a very dense region completely filled with ECM material, respectively. Cells
change ECM density locally through the following relationship:

dρ(x∗i )

dt
= rdensity(ρtarget − ρ(x∗i )) (7)

where rdensity is the cell’s characteristic rate of deposition/degradation of
ECM and ρtarget is the cell’s target for ECM density. This parallels chemical
substrate secretion by cells in PhysiCell [40]

7.2 ECM microstructure influence on cell motility

Cell motion, in particular, cell speed and direction, can be altered via cell-ECM
interactions. ECM element orientation and anisotropy are combined with a
cell’s preferred direction to produce the cell motility vector. Independently, cell
speed is influenced by ECM density enabling ECM to block or guide cell paths.
We lay out the orientation and anisotropy influences first, then the influence of
density. As with remodeling ECM microstructure, we define cells to be affected
by and read whichever element their center coordinates are nearest as in [40].

7.2.1 ECM orientation and anisotropy

We developed a method to calculate dactual, a cell’s actual motility direction,
based on the cell’s preferred direction dpreferred, a cell specific ECM sensitivity
s, and local anisotropy and orientation. As illustrated in SM Figure 1, we
want to constrain cell motion to the sector spanning the ECM orientation
(f) and the cell’s intended direction of travel (dpreferred) in a way that does
not bias direction of travel along the fibers. We use f and dpreferred to form
an orthonormal basis set that spans the cell’s potential directions (the sector
produced by the angle θ in Figure 1d). We calculate dactual by blending the
basis vectors using the cell’s ECM sensitivity parameter s and local ECM
element’s anisotropy a as follows:
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Supplementary Figure 1: Schematic for mathematical model of cell motility and ECM orientation
interactions. Cell shown in blue. See 8, 10, and 12 for variable explanations.

dactual = (1− γ)C1d⊥ + C2f , (8)

where γ is the effective ECM influence parameter. This captures both cell
sensitivity and magnitude of ECM fiber alignment (signal strength):

γ = a(xi
∗) · si. (9)

si and a(x∗i ) are the sensitivity of cell i and anisotropy at that location respec-
tively. The other terms in SM Equation 8, the coefficients C1 and C2 and basis
vector d⊥, are calculated by decomposing dpreferred and basic trigonometry.
For brevity, we will drop location and indexing of cells unless needed for clarity.

We find d⊥, using the trigonometric relationship A · B = ||A||||B||cos θ.
Letting f and dpreferred be unit vectors and θ being the angle between them,
the relationship simplifies to:

dpreferred · f = cos θ. (10)

Scaling f by that dot product, we get the component of dpreferred that
points along f . Subtracting that result from dpreferred, we obtain a vector
perpendicular to f as follows:

d
′

⊥ = dpreferred − (dpreferred · f)f (11)

with normalization producing the unit vector d⊥ seen in SM Equation 8 and
SM Figure 1.

Note also that dpreferred can be decomposed as follows:

dpreferred = C1d⊥ + C2f (12)
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with C1 and C2 the same as in SM Equation 8. They are determined via dot
product and again, we take advantage of the terms being unit vectors:

dpreferred · d⊥ = (C1d⊥ + C2f) · d⊥
= C1d⊥ · d⊥ + C2f · d⊥
= C1. (13)

Likewise, dotting both sides of SM Equation 12 by f , we obtain C2 as follows:

dpreferred · f = (C1d⊥ + C2f) · f
= C1d⊥ · f + C2f · f
= C2. (14)

With that, all required parts of SM Equation 8 are determined, letting dactual

be calculated. Note that if the effective influence parameter γ is zero, SM
Equation 8 becomes SM Equation 12, meaning dactual will equal dpreferred.
Likewise, when γ is one, its maximum value, dactual equals f .

In the case that dpreferred is parallel to f , d
′

⊥ from SM Equation 11 is the zero
vector. We assume the norm of the zero vector to be zero. With that set, the
calculations will proceed as normal.

Note that there are two possibilities on how to interpret dactual:

A: The cell senses its environment, determines direction of travel along the
fibers, and all cell effort goes into that motion.

B: The cell attempts to move both along the fibers and along its preferred
direction, wasting effort in the process.

These two interpretations lead to either normalizing dactual (Option A) or let-
ting the cell direction vector lose magnitude by not normalizing dactual (Option
B). For the purposes of this work, we choose Option B and do not normalize
dactual.

Constitutive relations to determine dpreferred

To determine dpreferred in SM Equation 8, we use either the motility model of
[40]’s motility model or an adaptation that directly incorporates anisotropy.

Model I: Chemotaxis based motility

To determine dpreferred for chemotactically motivated cells, we use the following
equation from [40]:

dpreferred = (1− b) · drandom + b · dchemotaxis (15)

where drandom is a randomly generated unit vector, dchemotaxis is a unit length
microenvironment-derived direction, such as the gradient of a cell-required
substrate, and the scalar b, running from 0 - 1, is the directional bias parameter
that sets the balance between random (b=0) and completely biased cell motility
r, (b=1). dpreferred is the cell-selected motility direction and may be combined
with local fiber orientation to produce the final cell motility direction.
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Model II: ECM and chemotaxis based motility

To couple chemotactic behavior with reading of ECM signals, we reformulated
Equation 15 and replace the chemotactic bias with the local ECM anisotropy:

dpreferred = (1− a) · drandom + a · dchemotaxis (16)

Here, a replaces the bias parameter in setting the random versus chemotactic
behavior. When combined with the cell-ECM interactions, this model effec-
tively enables a cell to only be chemotactic when in an element of anisotropic
ECM.

In either model, dpreferred is updated stochastically, with an average update
interval equal to the cell’s persistence time.

7.2.2 ECM density

We use the following relationship to incorporate the influence of ECM density
ρ on cell speed:

scell =



0 if ρ ≤ ρl

Smax
ρ−ρl

ρideal−ρl if ρl < ρ ≤ ρideal

Smax
ρ−ρh

ρideal−ρh if ρideal < ρ < ρh

0 if ρ ≥ ρh

(17)

Supplementary Figure 2: Constitutive relationship between cell speed and density. This is the
graphical form of SM Equation 17 with parameters used for the example models.
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where ρ is the local ECM density, Smax is the maximum cell migration speed,
ρl is the ECM threshold density above which cells have non-zero speed, ρh is
the ECM threshold density above which cells cannot move, and ρideal is the
ECM density of maximum speed. Supplementary Figure 2 shows the tent-like
shape of SM Equation 17 with the parameters used in our example models.

This form simulates a cell that in a fibrous environment cannot move either
when density is too low, due to a lack of fibers to grab onto for propulsion, or
when density is too high, meaning the ECM is too dense for the cell to pass
through. Other polynomials or curves derived from fitting to data could be
used in place of this form. We choose it to be a minimum example of a tunable,
potentially asymmetric curve with a local maximum.

7.2.3 Combined ECM microstructure and chemical
environment influence on cell motility

Combining all these influences together produces the equation for cell velocity
due to cell motility (locomotion):

vloc = scelldactual (18)

where scell is from SM Equation 17 and dactual is from SM Equation 8.

7.3 Cell velocity and cell-cell adhesion and repulsion
model

In PhysiCell, the agent-based modeling framework in which our examples and
ECM model are built, cell velocities and positions update based on several
forces - cell-cell forces as well as cell-environmental forces and cell-locomotive
force. In this current work, we focused on cell-cell forces (cell-adhesion and
repulsion) as well as cell locomotive forces. To discuss this, we follow the
explanation from [40], beginning with the cell equation of motion. See [40] and
[84] for additional details and discussion.

Given a cell i at position xi(t), velocity vi(t) and a set of neighboring cells
N (i), PhysiCell models cell motion with this equation:

miv̇i =
∑
j∈N

(Fijcca + Fijccr) + Fidrag + Filoc (19)

where Fcca and Fccr are the cell-cell adhesive and repulsive (cell resistance to
deformation) forces, Fdrag represents dissipative, drag-like forces such as vis-
cous drag, and Floc is cell generated, or motile, force. Note that as appropriate,
additional force terms can be added (see [40] and [84]).

Examining this term by term, drag is modeled as follows [40, 84, 85]:



Springer Nature 2021 LATEX template

46 A simple framework for agent-based modeling with extracellular matrix

Fdrag = νvi. (20)

Here, ν is a drag coefficient. This differs from the formulation in [40], which also
included a drag term for ECM interactions. Since we model ECM interactions
explicitly in the update for cell locomotive force, we do not it include it here.
The formulation makes the inertialess assumption (miv̇i ≈ 0) [40, 84, 86,
87] which assumes that any changes to forces on the cell rapidly equilibrate.
Making these substitutions in Equation 19 and solving for vi, we get:

vi =
1

ν

∑
j∈N

(Fijcca + Fijccr) + Filoc

 . (21)

As noted in [84], this assumption yields the interpretation of each term as the
terminal velocity of the cell, given that only the force of interest and drag are
acting on the cell. The locomotive force and its contribution to cell velocity is
covered in the previous section (7.2). The forces Fcca and Fccr are then modeled
using interaction potentials that are functions of maximum adhesion distance,
cell geometry (radius), adhesion and repulsion parameters, and distance to
other cells. The adhesion function is:

Fijcca = −C∗ccaAiAj∇φncca,Ri,A+Rj,A(xj − xi), (22)

where C∗cca is the cell-cell adhesion parameter, Ai and Aj are the cell-cell rel-
ative adhesion parameters (bounded inclusively between 0 and 1), φ is the
potential function, ncca a parameter setting the shape of the potential func-
tion, and Ri,A and Rj,A are the maximum adhesion distances of cells i and j
respectively. Note that this gives C∗cca units of force. To define the mechanics
parameter in PhysiCell, we divide through by ν giving:

Ccca =
1

ν
C∗cca (23)

with Ccca taking on units of speed, as expected for SM Equation 21.

This is the repulsion function:

Fijccr = −C∗ccr∇ψnccr,Ri+Rj(xj − xi), (24)

where C∗ccr is the cell-cell repulsion parameter, nccr is a parameter setting the
shape of the potential function, and Ri and Rj are the cell radii of the two
interacting cells i and j. As above with C∗cca, we divide C∗ccr by ν:

Cccr =
1

ν
C∗ccr (25)

giving Cccr units of speed.
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Finally, PhysiCell uses the following potential functions for adhesion and
repulsion respectively:

∇φn,RA
(r) =


(

1− |r|
RA

)n+1
r
|r| if |r| ≤ RA

0 otherwise,

(26)

and:

∇ψn,R(r) =


−
(

1− |r|R
)n+1

r
|r| if |r| ≤ R

0 otherwise.

(27)

Note that to compute the velocity updates, only the gradients of the potentials
are required. r is the vector displacement between the interacting cells’ centers,
RA is the sum of i and j’s interaction distances, and R is the sum of the two
cells’ diameters.

7.4 PhysiCell rules

PhysiCell rules is a new extension to PhysiCell [62]. It uses a grammar to
encode a mathematical representation of cell-based rules or hypotheses for
an arbitrary number of signals (e.g. - contact with other cells, a substrate
concentration, ECM density) increasing or decreasing a cell behavior (e.g. - cell
speed, cell-cell adhesion, ECM production rate). The base form is as follows:

b(s) = b0 + (bM − b0)R(s) (28)

where b0 is the base level of a rate or other parameter modifiable at the cell
level, bM is the maximum quantity expected, and R(s) is the functional rela-
tionship between the behavior b and signal s. In our examples, we use the
default functional form for R(s) - Hill functions. Each Hill function requires
a half-maximum saturation value and Hill exponent. As more than one signal
may influence a behavior and the influence may be excitatory or inhibitory,
Johnson et al. generalize the response of behavior b to a vector of u and d up
and down signals respectively. These are used to produce the general form of
Equation 28:

b(u,d) = (1−D) ((1− U)b0 + U · bM) +D · bM (29)

where D and U are the total up and down responses to vectors of signals u
and d.
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7.5 Model parameters

We performed a joint parameter sweep to determine the cell-cell adhesion and
cell speeds using a preliminary version of the collective invasion model. Those
initial values were modified for the additional example models. Similarly, the
fiber realignment and reorientation rates were initially determined through sin-
gle variable parameter sweep of preliminary versions of the collective invasion
model. Parameters related to oxygen fields are from previous literature. Addi-
tional parameter values were selected to enable emergent behavior to occur at
a time scale on the order of simulated days.

7.5.1 Invasive cellular front parameter details

See Tables 4 to 6 for the invasive cellular front parameters. Note there is no
chemical environment or rules for this model.

Parameter Value
Adhesion strength 0.4 µm/min
Repulsion strength 25.0 µm/min
Base cell speed 1.25 µm/min
ρideal 0.5
ρh 1.0
ρl 0.0
ECM sensitivity 1.0
Rate of proliferation 0 min−1

Rate of death 0 min−1

Chemotactic bias 0.0
Persistence time 10 min
Fiber realignment rate (rate of change in
anisotropy)

0.0 min−1

Fiber reorientation rate 0.0 min−1

Density modification rate 0.0 min−1

Table 4: Cell-level parameters specific to the invasive cellular front model.

Parameter Value
Initial anisotropy 1.0
Initial density 0.5
Initial orientation random, horizontal, vertical, or mixed horizontal and vertical

Table 5: ECM initial conditions for invasive cellular front model.

Parameter Value
Computational domain size 600 µm by 1000 µm
Number of cells added per cell addition step 30 cells
Cell addition step size 180 min

Table 6: Tissue level parameters for invasive cellular front model.
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7.5.2 Fibrosis parameter details

See Tables 7 to 10 for the fibrosis model parameters. Rules are below.

Fibrosis cell rule details

In fibroblast cells:

• Contact with macrophage increases custom:ECM production rate (ECM
density production) rate from 0.0001 min−1 towards 0.001 min−1 with a
Hill response, with half-maximum 0.1 contacts and Hill power 10.

In dead cells:

• None

In macrophage cells:

• Contact with dead cell increases inflammatory signal secretion from 0
towards 10 min−1 with a Hill response, with half-maximum 0.1 contacts
and Hill power 10.

• Volume decreases phagocytose dead cell from 0.0005 min−1 towards
0.0001 min−1 with a Hill response, with half-maximum 2494 µm3 and Hill
power 10.

7.5.3 Basement membrane degradation parameter details

See Tables 11 to 14 for the invasive carcinoma parameters. Rules are below.

Basement membrane degradation rule details

In fibroblast cells:

• Contact with cancer cell decreases custom:rules based speed multiplier,
a dimensionless multiplier that reduces or increases base cell speed, from
1 towards 0.5 with a Hill response, with half-maximum 0.1 contacts and
Hill power 4.

In cancer cells:

• contact with fibroblast decreases inflammatory signal secretion from 50
min−1 towards 1 with a Hill response, with half-maximum 0.5 contacts
and Hill power 4.

• Contact with fibroblast decreases adhesive affinity to cancer cell

from 1 towards 0.25 with a Hill response, with half-max 0.1 and Hill power
4.

• Contact with fibroblast decreases cell-cell adhesion from 0.5 µm/min
towards 0.25 µm/min with a Hill response, with half-max 0.1 contacts
and Hill power 4.
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Parameter Value
Adhesion strength Fibroblast and macrophage - 5.0

µm/min, Dead cell - 10.0 µm/min
Repulsion strength 25.0 µm/min
Base cell speed Fibroblast and macrophage - 0.5

µm/min, Dead cell - 0.0 µm/min
ρideal All - 0.5
ρh All - 1.0
ρl All - 0.0
ECM sensitivity All - 0.0
Debris secretion rate Dead cells - 1.0 min−1

Debris target Dead cells - 10
Debris uptake Macrophages - 1.0 min−1

Inflammatory signal secretion rate Macrophages - see Fibrosis rules
(Section 7.5.2)

Inflammatory signal target Macrophages - 1.0
Rate of proliferation All - 0 min−1

Rate of death All - 0 min−1 (dead cells begin the
simulation already in a death

process)
Transition rate from death state to
removed from simulation

Dead cells - 0.001938 min−1

Chemotactic bias Fibroblasts and macrophages - 0.5
Persistence time 10 min
Fiber realignment rate (rate of change in
anisotropy)

Fibroblast - 0.004 min−1

Fiber reorientation rate Fibroblast - 4 min−1

ρtarget Macrophages - 0.5, Fibroblast - 1.0
Density modification rate Macrophages - 0.0 min−1, Fibroblast

- see Fibrosis rules (Section 7.5.2)

Table 7: Cell-level parameters specific to the fibrosis model.

Parameter Value
Inflammatory signal diffusivity 1,000 µm2/min
Inflammatory signal decay constant 1.0 min−1

Debris diffusivity 1.0 µm2/min
Debris decay constant 0.0 min−1

Boundary condition type No flux

Table 8: Biotransport and chemical microenvironment parameters for fibrosis model.

Parameter Value
Initial anisotropy 0
Initial density 0.5
Initial orientation random

Table 9: ECM initial conditions for fibrosis model.

Parameter Value
Initial region of distressed/dead cell radius 175 µm
Computational domain size 1600 µm by 1600 µm
Pre-mechanics microenvironment condition-
ing duration

10 min

Table 10: Tissue level parameters for fibrosis model.
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Parameter Value
Adhesion strength Cancer cell - 0.5 µm/min,

Fibroblast - see Invasive carcinoma
rules (Section 7.5.3)

Repulsion strength 6.25 µm/min
Base cell speed Cancer cell - 0.25 µm/min,

Fibroblast - see Invasive carcinoma
rules (Section 7.5.3)

ρideal Both - 0.5
ρh Both - 1.0
ρl Both - 0.0
Oxygen uptake Both - 10 min−1 [63, 84]
ECM sensitivity Cancer cell - 1.0, Fibroblast - 0.0
Inflammatory signal uptake Fibroblast - 1.0 min−1

Inflammatory signal secretion rate Cancer cell - See Invasive carcinoma
rules (Section 7.5.3)

Inflammatory signal target value Cancer cell - 1.0
Rate of proliferation Both - 0 min−1

Rate of death Both - 0 min−1

Chemotactic bias Fibroblasts - 0.95, cancer cells - 0.5
Persistence time 10 min
Fiber realignment rate (rate of change in
anisotropy)

Fibroblast - 0.02 min−1

Fiber reorientation rate Fibroblast - 4 min−1

ρtarget Both - 0.5
Density modification rate Cancer cell - 0 min−1, Fibroblast -

0.001 min−1

Table 11: Cell-level parameters specific to the basement membrane degradation model.

Parameter Value
Oxygen diffusivity 100,000 µm2/min [88]
Oxygen decay constant 0.1 min−1 [63, 84]
Oxygen boundary condition type Mixed
Oxygen boundary condition value 38 mmHg oxygen (Dirichlet) [89], 0

mmHg/min−1

Inflammatory signal diffusivity 1000 µm2/min
Inflammatory signal decay constant 0.1 min−1

Inflammatory signal boundary condition
type

No flux

Table 12: Biotransport and chemical microenvironment parameters for basement membrane
degradation model.

Parameter Value
Initial anisotropy 0
Initial density 0.0 in lumen, 1.0 in basement membrane, 0.5 outside of duct
Initial orientation random

Table 13: ECM initial conditions for the basement membrane degradation model.

Parameter Value
Initial tumor radius 175 µm
Computational domain size 1600 µm by 1600 µm
Pre-mechanics microenvironment condition-
ing duration

10 min

Table 14: Tissue level parameters for basement membrane degradation model.
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7.5.4 Collective migration parameter details

See Tables 15 to 18 for collective migration parameters. Note there are no cell
rules for this model.

Parameter Value Range
Adhesion strength varies 0, 10 µm/min
Repulsion strength 25.0 µm/min -
Base cell speed varies 0.1, 0.5, 0.8 µm/min
ρideal 0.5 -
ρh 1.0 -
ρl 0.0 -
ECM sensitivity varies 0.0 (no reading), 1.0

(all other simulations),
0 for leaders (all simu-
lations)

Oxygen uptake 10 min−1 [63, 84] -
Rate of proliferation 0 min−1 -
Rate of death 0 min−1 -
Chemotactic bias Leaders - 0.95,

followers - dynamic
-

Persistence time 10 min -
Fiber realignment rate (rate of
change in anisotropy)

varies 0.0 (no writing), 0.001
(loss of collective
migration scenario),
0.004 min−1, 0
for followers (all
simulations)

Fiber reorientation rate varies 0.0 (no writing), 1 (loss
of collective migration
scenario), 4 min−1, 0
for followers (all simu-
lations)

ρtarget 0.5 -
Density modification rate 0.0 -

Table 15: Cell-level parameters specific to the collective migration model. Unless otherwise stated,
parameters are at default values.

Parameter Value
Oxygen diffusivity 100,000 µm2/min [88]
Oxygen decay constant 0.1 min−1 [63, 84]
Boundary condition type Dirichlet
Boundary condition value 38 mmHg oxygen [89]

Table 16: Biotransport and chemical microenvironment parameters for collective migration
model.
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Parameter Value
Initial anisotropy 0
Initial density 0.5
Initial orientation random

Table 17: ECM initial conditions for all collective migration simulations.

Parameter Value
Initial organoid radius 175 µm
Computational domain size 1600 µm by 1600 µm
Pre-mechanics microenvironment condition-
ing duration

10 min

Cell fraction of leaders 0.05

Table 18: Tissue level parameters for collective migration model.

7.6 Links to supplementary videos

• Writing to ECM (local microstructure remodeling) - Cell-based ECM
reorientation (Figure 2a)

• Reading ECM (contact guidance) - Circular ECM with no gradient
(Figure 2b)

• Reading ECM (contact guidance) - Circular ECM with chemical gradient
(Figure 2c)

• Invasive cell front - randomly oriented ECM (Figure 3)
• Invasive cell front - parallel-oriented ECM (Figure 3)
• Invasive cell front - perpendicular-oriented ECM (Figure 3)
• Invasive cell front - mixed ECM (Figure 3)
• Wound healing and fibrosis (Figure 4)
• Basement membrane degradation and transition of in situ carcinoma to

invasion (Figure 5)
• Writing signals to ECM only (no reading/contact guidance) (Figure 6a)
• Reading signals from ECM only (no writing/microscale remodeling)

(Figure 6b)
• Local microstructure remodeling (reading) and writing (contact guidance)

leads to stigmergy (Figure 6c)
• Leader-follower - instant remodeling - higher cell speed (Figure 7a)
• Leader-follower - instant remodeling - medium cell speed (Figures 7b, 8a,

SM4a)
• Leader-follower - instant remodeling - lower cell speed (Figure 7c)
• Collective migration - Non-instant signal writing (Figure 8b)
• Reading ECM (contact guidance) - split ECM pattern with chemical

gradient (SM Figure 3)
• Collective migration - Loss of collective migration due to decreased

remodeling rates (SM Figure 4b)

https://youtube.com/watch?v=vDugStL0VrU
https://youtube.com/watch?v=vDugStL0VrU
https://youtube.com/watch?v=0ycAxfRqN6g
https://youtube.com/watch?v=0ycAxfRqN6g
https://youtube.com/watch?v=qnTCkO7TDjk
https://youtube.com/watch?v=qnTCkO7TDjk
https://youtube.com/watch?v=vYpfcu8AdyI
https://youtube.com/watch?v=e_9I6a3pVKQ?feature=share
https://youtube.com/watch?v=U2hHjfzhB88?feature=share
https://youtube.com/watch?v=D_KmGPOhb58?feature=share
https://youtube.com/watch?v=zMAUenZLEbg
https://youtube.com/watch?v=sDRcUmwYHuQ
https://youtube.com/watch?v=sDRcUmwYHuQ
https://www.youtube.com/watch?v=9X6L-N_S6RY
https://youtube.com/watch?v=F9YSN94XHuc
https://youtube.com/watch?v=F9YSN94XHuc
https://youtube.com/watch?v=xf6nygI_pQI
https://youtube.com/watch?v=xf6nygI_pQI
https://youtube.com/watch?v=3xARWenwcF8
https://youtube.com/watch?v=Dj7_Svhyb5Y
https://youtube.com/watch?v=Dj7_Svhyb5Y
https://youtube.com/watch?v=UjoddD0Bzq4
https://www.youtube.com/watch?v=in9Ec7PiB-Y
https://youtube.com/watch?v=E2eOsLTDHVs
https://youtube.com/watch?v=E2eOsLTDHVs
https://www.youtube.com/watch?v=KQeMp7Rc26A
https://www.youtube.com/watch?v=KQeMp7Rc26A
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7.7 Supplementary Figures and invasive front results
details

Time: 0 min

Gradient-

Time: 6 hr

-

Time: 15 hr

-

Supplementary Figure 3: Highlight of individual aspects of the ECM-cell interactions:
ECM orientation and cell chemotaxis A combination of cues directing cell motility: ECM
orientation (45◦ in the top of the domain and -45◦ in the bottom) and chemical gradient (to the
right). The small black arrows trailing the cells show the positional history of each cell. The cell
position is marked every six simulated minutes. Red and blue cells are identical; the coloring was
added only for visual contrast. This is available as a video. See link the to video here.

Scenario Mean (µm) Standard Deviation (µm)
Random -124.4 12.5
Parallel -162.0 0.0
Perpendicular 1.8 21.2

Table 19: Summary statistics of stochastic replicates of the invasive front simulation. We present
the mean and standard deviation of the bin centers (y-coordinate) containing the 95th percentile
of the cell count across all 21 replicates per scenario. For reference, the y-coordinates in this
simulation runs from -500 µm to 500 µm.
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Supplementary Figure 4: Extent of invasive front in invasive front scenarios: Jitter and
box and whisker plots of results across the random, parallel, and perpendicular ECM orientation
scenarios. Each circle shows the y-position of the histogram bin containing the 95th percentile of
cell count at five simulated days. The red circle marks each distributions’ mean. Box and whiskers
mark distribution quartiles.
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Supplementary Figure 5: Collective migration requires sufficiently fast remodeling param-
eters: Collective cell migration is observed in (a), which has instantaneous ECM remodeling,
whereas (b), which has relaxed the instantaneous signal writing and slower rates of remodeling

than those in Figure 8b, lacks collective migration. Fiber realignment rate: 0.001 min−1, fiber
reorientation rate: 1 min−1. Videos are available. See the links here.
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