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Summary

Background: Throughout the COVID-19 pandemic, the SARS-CoV-2 virus has contin-
ued to evolve, with new variants outcompeting existing variants and often leading to different
dynamics of disease spread.

Methods: In this paper, we performed a retrospective analysis using longitudinal se-
quencing data to characterize differences in the speed, calendar timing, and magnitude of 13
SARS-CoV-2 variant waves/transitions for 215 countries and sub-country regions, between
October 2020 and October 2022. We then clustered geographic locations in terms of their
variant behavior across all Omicron variants, allowing us to identify groups of locations ex-
hibiting similar variant transitions. Finally, we explored relationships between heterogeneity
in these variant waves and time-varying factors, including vaccination status of the popula-
tion, governmental policy, and the number of variants in simultaneous competition.

Findings: This work demonstrates associations between the behavior of an emerging
variant and the number of co-circulating variants as well as the demographic context of the
population. We also observed an association between high vaccination rates and variant
transition dynamics prior to the Mu and Delta variant transitions.

Interpretation: These results suggest the behavior of an emergent variant may be sen-
sitive to the immunologic and demographic context of its location. Additionally, this work
represents the most comprehensive characterization of variant transitions globally to date.

Funding: Laboratory Directed Research and Development (LDRD), Los Alamos Na-
tional Laboratory
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Research in context

Evidence before this study. SARS-CoV-2 variants with a selective advantage are continuing
to emerge, resulting in variant transitions that can give rise to new waves in global COVID-19
cases and changing dynamics of disease spread. While variant transitions have been well studied
individually, more work is needed to better understand how variant transitions have occurred
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in the past and how properties of these transitions may relate to vaccination rates, natural
immunity, and population demographics.

Added value of this study. Our retrospective study integrates metadata based on 12.8 mil-
lion SARS-CoV-2 sequences available through the Global Initiative on Sharing All Influenza
Data (GISAID) with clinical and demographic data to characterize heterogeneity in variant
waves /transitions across the globe throughout the COVID-19 pandemic. We demonstrate that
properties of the variant transitions (e.g., speed, timing, and magnitude of the transition) are
associated with vaccination rates, prior COVID-19 cases, and the number of co-circulating
variants in competition.

Implications of all the available evidence. Our results indicate that there is substantial
heterogeneity in how an emerging variant may compete with other viral variants across locations,
and suggest that each location’s contemporaneous immunologic landscape may play a role in
these interactions.

1 Introduction

Since the first SARS-CoV-2 viral sequence became available in January of 2020, there have
been over 630 million confirmed cases of COVID-19 globally?2, leading to over 6.5 million deaths.
SARS-CoV-2 is continuously evolving, and global transitions to newly emergent variants can
generate waves of disease spread. The selective advantage of a new variant over existing variants
is often associated with increased infectivity (e.g., through enhanced receptor binding or spike
processing) and/or increased resistance to neutralizing antibodies induced by vaccination, prior
infection, or both.3:4:5:6:7:8:9,10 Prior infections with different variants can be associated with dif-
fering protection against newly emergent variants,! and we hypothesize that vaccination rates
and the history of prior infecting variants may impact the rate at which an emerging variant
out-competes existing variants to become the dominant form of the virus in a given country or
state.

To explore this hypothesis and characterize heterogeneity in the speed, timing, and mag-
nitude of variant transitions globally, we performed a retrospective analysis of over 12.8 mil-
lion SARS-CoV-2 sequences reported to the Global Initiative on Sharing All Influenza Data
(GISAID) between October 2020 and October 2022.'2 We used multinomial regression spline
modeling to estimate and summarize variant transition dynamics across 215 countries and sub-
country regions and 13 SARS-CoV-2 variant waves. In a sub-analysis, we also characterize
recently emergent Omicron sublineages BA.2.75, XBB.1/XBB, and BQ.1'Y using GISAID data
collected through November 3rd, 2022. Our results illustrate large heterogeneity in variant
transitions between locations. For Omicron, we clustered geographic locations in terms of their
variant behavior, allowing us to identify groups of locations with similar transition dynamics.
We then leveraged clinical and demographic data to explore how properties of variant waves
relate to time-varying factors, including vaccination status of the population, governmental
policy, and the number of variants in competition. This work demonstrates an association be-
tween the behavior of an emerging variant and the immunologic and demographic context of
the population. Additionally, this work represents the most comprehensive characterization of
SARS-CoV-2 variant transitions globally to date.

2 Methods

2.1 Data sourcing and processing

Analyzed data streams (summarized in Supp. Figure A.1) are described below. All data
were aggregated by date and location. We defined spatial locations at the country level and,
for select countries having sufficient data, the sub-country region level.
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GISAID SARS-CoV-2 data

Data for over 12.8 million SARS-CoV-2 sequences reported to GISAID by 10/01/2022 (https:
//gisaid.org) were obtained through the COVID-19 Viral Genome Analysis Pipeline https://
cov.lanl.gov. We resolved location name inconsistencies and removed sequences with evident
entry errors. We then categorized the sequences by variant (e.g., Alpha, Delta) based on
each sequence’s Pango nomenclature SARS-CoV-2 lineage designation '3, after excluding records
designated “None” or “Unassigned”. Pango sub-lineage groupings as of 10/01/2022 are provided
in Supp. Table A.2. Figure 1 illustrates the reported variant proportions over time globally
and for four example countries. In an emerging variants sub-analysis focusing on Omicron
BA.2.75, XBB, and BQ.1 Pango lineages (defined in Supp. Table A.2), we used updated
GISAID data with sequences reported by 11/03/2022.

Clinical and demographic data

Daily confirmed COVID-19 case and death data were obtained from the Johns Hopkins Center
for Systems Science and Engineering (CSSEGIS), along with daily Oxford COVID-19 Gov-
ernment Response indicator (O=none, 100=strict) and WorldPop age, population density, and
population information for each location.?!41® Daily model-predicted mask usage (%) based
on survey data was obtained from the Institute for Health Metrics and Evaluation (IHME) at
the University of Washington. '® Population percent with less than secondary education and the
average disposable income (in dollars) were obtained from the Organization for Economic Co-
operation and Development (OECD).'” When missing, region-level OECD data were assigned
the reported country-level value. Additional information is provided in Supp. Table A.1.

2.2 Characterizing speed, timing, and magnitude of SARS-CoV-2 variant
transitions across locations and variant categories

The variant landscape in a given population is dynamic, with the number of competing vari-
ants changing through time (Figure 1). We propose a model for the variant proportions over
time for each location that directly accounts for multiple competing variants. Several similar
(but often less flexible) models of SARS-CoV-2 variant transitions have been proposed else-
where. 18:19:20,21,22.23 Yenending on data availability, our primary analysis considered up to 13
variant Pango lineage categories for each location, including Alpha, Beta, Iota, Gamma, Mu,
Epsilon, Delta, Omicron BA.1 (excluding BA.1.1), Omicron BA.1.1, Omicron BA.2 (excluding
BA.2.12.1), Omicron BA.2.12.1, Omicron BA.4, and Omicron BA.5, as well as ”others”.

Let y;j(t) be the observed number of sequences for location ¢ and day t attributed to
variant /sub-variant j, and let y;o(¢) represent the number of sequences in the “other” cate-
gory. For each day, we defined the true proportion of sequences attributed to variant j as
pij(t), with pio(t) representing “other.” We assumed an independent multinomial distribution
for variant composition of sequencing, with proportions modeled as:

ij (t ;
log [PJ( )} = hyj(t) for all j =1,...,J such that
pio(t)
ehij(t)

1+ Zg:l ehik(t) ’

P(variant = j| location = i,day = t) = (Eq. 1)

This model is similar to one in Figgins and Bedford??, who noted convenient parameter inter-
pretations but poor data fits when h;;(¢) is linear in t. We posited a more flexible cubic spline
model for each h;j(t), with a knot at the median of ¢t. Multiple knots and additional linear
terms did not further improve the results. Resulting fitted variant proportions are illustrated
in Figure 1.
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Figure 1: Daily variant composition of all SARS-CoV-2 sequences reported to GISAID globally and for four
example countries (points) along with fitted variant proportions (lines) from the primary analysis. Fitted lines
show the point estimates obtained from fitting the multinomial model in Eq. 1. The size of the plotted points
correspond to the total number of sequenced samples, relative to the daily maximum within each country. Variants
in the emerging variants sub-analysis are not shown separately.
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Noting that %ﬁ(t) = pi;(t) [dhfji(t) - Zi:l {ﬁik(t) dhzl’;(t) H, we summarized fitted p;;(t) us-
ing the following metrics:

dpi;(t dp;;(t

k;j = max Pis (1) , tij = argmax i) _ toij, and w;; = max (p;;(t)), (Eq. 2)
t dt ¢ dt t

where k;; represents the maximum slope of the variant transition curve (i.e., transition speed),

ti; is the relative timing in days at which the maximum slope is achieved (i.e., transition timing),

and u;; is the maximum fitted variant prevalence (i.e, transition peak prevalence). The earliest

dt
and smaller ¢;; corresponds to steeper and earlier variant transitions, respectively.

Supp. Figure A.2 provides our criteria for determining which location and variant com-
binations were modeled. After fitting Fq. 1, we excluded some locations based on visual
evaluation of the fits. Out of 590 country/regions considered, 215 locations (and a total of
1,580 variant transitions) were included in the primary analysis (Supp. Figure A.4).

Emergent Omicron Pango lineage groupings were not considered in our primary analysis due
to insufficient data. In a special emerging variants sub-analysis, we fit Fq. 1 and calculated sum-
mary metrics to characterize currently-available data for the Omicron BA.2.75, XBB/XBB.1,
and BQ).1 variants; these estimates may change substantially as more data are collected. Unless
otherwise stated, all analyses used Alpha through Omicron BA.5 variant groupings.

transition time is set to zero for each variant j, with ¢p;; = min (argmaxt (dﬁ ij(t))). Higher k;;

2.3 Clustering locations in terms of similarity in SARS-CoV-2 variant tran-
sition profiles

To characterize location similarities across Omicron transitions, we performed a hierarchical
clustering analysis. Since the included sub-variants differed by location, we again summarized
Eq. 2 metrics by fitting the following regression model:

5 I-1
g(E(metric)) = a + Z B;Z(Omicron subvariant j) + Z viZ(location = q). (Eq. 3)
j=1 i=1

Estimated ;’s capture the average difference between each location and the reference location
(USA, due to large sample size) in terms of the summary metric across Omicron transitions. We
chose Gaussian (log;((k)), Poisson (t), and Beta (u) regressions using canonical link functions g.
Clustering was performed only for 155 locations with at least 4 included Omicron sub-variants.
Emerging Omicron sub-variants were not separated out in this analysis.

We then performed a Wald agglomerative hierarchical clustering on ~ estimates from FEgq.
3 using the R package cluster?*. In defining the number of clusters, we compared cluster size,
within cluster sum of squares, intra-cluster variance, and how South Africa was clustered (since
its transition dynamics were distinctive). Supp. Figure B.1 illustrates the resulting 7 clusters
in terms of their Eq. & coefficients.

2.4 Exploring relationships between variant transition metrics and contem-
poraneous disease landscape

We obtained location attributes at the time each p;;(t) first reached 5%. We chose 5% to focus
on the critical time when the new variant is gaining a foothold locally but clinical surveillance
would likely not have been appreciably impacted. Characteristics of interest included demo-
graphics (e.g., population density), COVID clinical landscape (e.g., case burden and vaccination
rates), and current COVID-related public policy (e.g., Governmental response indicator). We
also identified two proxies for existing variant competition at the time of the new variant emer-
gence in each location: 1) the number of co-circulating SARS-CoV-2 variants/sub-variants with
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at least 5% prevalence and 2) the competition ratio, defined as the maximum percent increase
in existing variants’ prevalences between p;;(t) = 0.02 and 0.05.2° Additionally, we included the
timing and height of the most recent prior COVID-19 case wave peak (Supp. Section A).

For each variant, we calculated the Spearman correlation between the Fq. 2 metrics and
location characteristics along with cross-correlations of transition summary metrics across vari-
ant waves. For each summary metric, we then performed random forest modeling to study the
adjusted location-transition associations. We used the R package randomForest?®, with missing
predictor data handled using proximity-based imputation. Out-of-bag importance metrics were
calculated based on 10,000 regression trees. We also fit regression models for each of log;(k), ¢,
and u, using Gaussian, Poisson, and Beta regression, respectively. Prior to regression modeling,
missing data were handled by multiple imputation using the R package mice?”. All models
were also adjusted for variant/sub-variant. Supp. Figures A.3 and D.1 describe the data
missingness and model goodness of fit. Modeling results based only on locations with complete
data are provided in Supp. Figure D.2.

3 Results

3.1 Characterizing speed, timing, and magnitude of SARS-CoV-2 variant
transition profiles across locations and Pango lineage groups

Figure 2 summarizes the fitted variant transitions from the primary analysis, along with three
emerging Omicron sub-variants. Supp. Figures C.1-C.3 map estimates for several variants of
interest. The Beta, Gamma, Mu, Epsilon, and Iota variants were associated with lower variant
prevalence (u) and transition speeds (k), except for the Gamma transition in South America
and the Beta transition in Southern Africa. Delta and Omicron BA.1, BA.1.1, BA.2, and BA.5
variants tended to have fast (high k) transitions, although there was substantial variability in
terms of speed and prevalence attained by Omicron BA.1 and BA.1.1 globally. The Omicron
BA.1.1 variant achieved a strong presence in the Americas, reaching a prevalence of about 75%
in the USA, where it had a relatively early start (Figure 1b). Alpha had a slow and small
transition in South America, likely due to competition with Gamma and Mu, and in South
Africa, where it was competing with Beta. In contrast, the transition speed and maximum
prevalence had little heterogeneity for the Delta, exhibiting a rapid and total transition in most
locations. Omicron BA.4 and BA.5 were first observed in South Africa and spread globally at
roughly the same time (Figure 2); however these lineages had profoundly different trajectories
in terms of their maximum transition slopes, maximum prevalence, and their relative time to
transition, suggesting selective advantage of BA.5 over BA.4 (Figure 2). Of note, the founder
forms and early expansions of BA.4 and BA.5 carried identical Spike sequences,?® implicating
changes outside of the spike protein in the observed differences. All three newly emerging
Omicron variants (BA.2.75, XBB/XBB.1, and BQ.1) had transition slopes on par with the
earlier Omicron sub-variants. Among the small number of locations that had reached their
maximum transition slope by our last day of sampling (11/03/2022), XBB/XBB.1 and BQ.1
generally had higher transition slopes than BA.2.75.

The date of “first” appearance (i.e., the first day with at least two sequences) provides
insight into the relative timing of each variant’s global spread. Some variants (e.g., Beta and
Epsilon) were first sequenced in the originating country long before they were more commonly
sequenced globally. In contrast, the Omicron sub-variants were observed globally very quickly
after their discovery.

The relative timing of the maximum transition slope, ¢, is defined in terms of days since
the earliest global transition for each variant. This metric is distinct from the first variant
appearance, since a variant can circulate at low levels for a long time before gaining a foothold
in a given location. Therefore, ¢ provides a better metric for the variant transition timing. The
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Beta and Delta waves hit much earlier in their originating countries (South Africa and India,
respectively) than they did globally, with some countries’ Delta variant transition occurring
over 6 months later. In contrast, the Omicron BA.1, BA.1.1, and BA.5 waves occurred more
quickly and with much less variability globally. Low transition timings for Mu, Epsilon, and
Tota are due to limited localized spread.

Figure 2: Distribution of highest variant transition speeds (k), relative timings (¢), and highest variant preva-
lences (u) across 215 locations, with text annotations indicating the countries having the highest and/or lowest
value. Large circles correspond to global estimates based on analyzing all locations together. For emerging vari-
ants Omicron BA.2.75, XBB.1/XBB, and BQ.1, medium- and small-sized circles provide estimates for locations
that have and have not reached their maximum fitted slope by 11/03/2022, respectively. For these transitions,
maximum slope estimates are expected to substantially increase as more data become available. Many maximum
variant prevalences are also likely to increase as more data are collected for all locations. Small global estimates
of k for Mu (0.34) and Beta (0.26) variants are not shown. These results demonstrate substantial heterogeneity
in variant transition dynamics between locations.
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3.2 Clustering locations in terms of similarity in SARS-CoV-2 variant tran-
sition profiles

To evaluate whether groups of geographic locations tended to have shared patterns across Omi-
cron transitions (in the primary analysis), we performed hierarchical clustering, using data
through September, 2022. The resulting seven clusters are illustrated in Figure 3.

The first cluster (mostly the United States) was distinctive due to its pronounced and early
BA.2.12.1 transition and substantial BA.1.1 transition. The second (Eastern Europe, Russia,
and part of South America), third (primarily Western Europe and Australia) and fourth (The
United Kingdom, Mexico, Canada, and part of South America) clusters tended to be compara-
tively similar on average, with the fourth cluster having slightly higher BA.2.12.1 prevalences on
average. The fifth and sixth clusters, consisting of China and India, were distinctive in that the
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Omicron transitions were dominated by Omicron BA.2 only, with comparatively low prevalence
of all other variants, including Omicron BA.5. BA.5 had just begun to increase in India when
the BA.2 sublineage BA.2.75 rapidly became the dominant form regionally (Figures 1 and 2).
The seventh South Africa cluster led the world in earliest Omicron transitions. Omicron BA.1
and BA .4 transitions were particularly rapid and large in South Africa, which had a compara-
tively low rate of BA.1.1 expansion despite its earliest detection there. As illustrated in Supp.
Figure B.1, the China, India, and South Africa clusters were clear outliers.

3.3 Exploring relationships between variant transitions and contemporane-
ous disease landscape

The clustering analysis indicated that Omicron variant transitions tended to be more similar
between some location pairs than others, suggesting there may be a link between transition dy-
namics and location characteristics. In Supp. Figure C.6, we explored correlations between
transition summary metrics and location characteristics (Supp. Figure C.6).

In Figure 4, we investigate the relationship between the maximum transition slope and the
number of co-circulating variants when each variant reached 5% prevalence. A higher number of
co-circulating variants was significantly associated with lower transition speeds for many vari-
ants after multiple testing adjustment, including Delta, Epsilon, Gamma, and Omicron BA.1,
BA.2, and BA.5.

In Figure 5, we plot variant transition summary metrics as a function of population vacci-
nation rates. Supp. Figure C.7 provides correlation estimates by variant. Higher vaccination
rates were associated with later and slower global spread before the Mu and Delta variants
emerged, when vaccination rates were generally low. For Omicron, however, vaccination rates
were at most weakly associated with the speed and timing of variant transitions.

We then estimated the adjusted associations between location characteristics and the transi-
tion summary metrics using both random forest and regression modeling (Figure 6). We used
two modeling approaches, since each contributes a different element of the story. Random for-
est modeling accounts for complicated interactions between variables, while regression provides
interpretable parameter estimates. All models also adjusted for variant, which was generally
the most important predictor of each summary metric (not shown).

Even after adjusting for location characteristics and multiple testing, vaccination status was
significantly associated with variant transition dynamics pre-Mu/Delta. In particular, one stan-
dard deviation higher vaccination rate per 100 was associated with a 51% (95% CI: 36-69%)
later time to variant transition. Higher vaccination rates per 100 were also associated with
lower transition peak prevalences pre-Mu/Delta. These strong associations were not observed
during the Omicron waves and were not observed or were attenuated during the Mu and Delta
waves.

A higher number of co-circulating variants was strongly associated with slower and lower
peak-prevalence variant transitions (p-value < 0.0001 for each). A higher prior COVID-19 case
rate per million, a shorter time since the last case wave peak, and lower population density were
all significantly associated with later variant transitions. Locations with higher proportions of
the population over 65 tended to have higher peak variant prevalences.
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Figure 3: Hierarchical clustering of & (maximum transition slope), t (relative timing of transition), and u (maxi-
mum prevalence) across all Omicron variant waves included in the primary analysis. The semi-transparent circles
overlaid on the map provide estimates for included sub-national region locations. Some sub-national regions
outside of contiguous national boundaries (e.g., Greenland, a sub-region of Denmark) are instead filled in with
the appropriate color to reflect the regional value. Countries shown in grey are those for which data were either
unavailable or insufficient. The heatmap illustrates the estimated summary metrics for all locations and all Omi-
cron variant transitions considered. South Africa, India, and China were notable for their distinctive transition
dynamics.
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Figure 4: Global estimates of k, the maximum slope of the variant transition curve, by the number of co-
circulating variants (including the variant itself) at the time of variant 5% prevalence. Kendall’s 7, correlation
and corresponding 95% confidence intervals are also provided. Bolded correlation estimates are significantly
non-zero, after adjusting for multiple testing using a Bonferroni correction (14 tests). A higher number of co-
circulating variants was significantly associated with lower transition speed for many variants.

Number of variants E 2 ‘ 3 ‘ 4+

Overall 1,: —0.17, 95% CI (-0.21, -0.13)

o

log10(maximum slope of transition)
el —
-
~—
—{l-
— i —
S -~ — -
_m

To -0.17 -0.4 -019 -046 -031 -0.14 -0.2 -0.36 -0.16 -0.23 0.05 -0.13 -0.23
Lower -029 -068 -0.29 -0.61 -051 -0.41 -0.5 -0.47 -0.3 -0.36 -0.07 -028 -0.35
Upper -0.04 -0.12 -0.08 -0.31 -0.11 0.13 0.11 -0.26 -0.02 -0.1 0.17 0.02 -0.11

A\y;ha Be'ta Délta Epslllon Gar}\ma Io'ta l\/iu Om\'cron Om|'cr0n Omllcron Omllcron Orm'cron Omllcron
BA.1 BA.1.1 BA.2 BA.2.12.1 BA.4 BA.5

Number of circulating variants at time of variant 5%
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higher transition speed and later transitions prior to the Mu/Delta variants. We did not observe a significant
association between vaccination and transition properties for Omicron sub-variants, after correcting for multiple
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Figure 6: Relative importance (a) and regression model coeflicient estimates (b) of two adjusted models for
associations between location characteristics and variant transition summaries. A comparison of random forest-
predicted summary metrics to estimates from Eg. 2 is shown in (c¢). Red circles in (b) denote associations
statistically significant at the 0.05 level after Bonferroni multiple testing correction. Vaccination rates, cumulative
prior cases per million, population density, population age, the time since the last case wave peak, and the number
of co-circulating variants were all significantly associated with variant transition dynamics after adjusting for other
location characteristics and accounting for multiple testing.!
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4 Discussion

Although highly efficacious COVID-19 vaccines were developed with unprecedented speed and
have substantially helped temper the impact of the pandemic, the continuing evolution of SARS-
CoV-2 has been associated with new waves of disease spread and with viral variants that have
become progressively more infectious and resistant to protective antibodies.”® A variant with
a selective advantage can quickly become the most prevalent viral after its emergence and can
radically change the clinical landscape of virus transmission. An emerging variant’s relative
selective advantage is reflected in the speed, timing, and magnitude with which the emerging
variant out-competes existing variants in a given country. In this work, we characterized variant
transitions across 13 SARS-CoV-2 variants and 215 countries and sub-country regions through-
out the COVID-19 pandemic. We also explored relationships between properties of the variant
transitions and contemporaneous disease landscape (e.g. vaccination rates, natural immunity
due to past infections, and demographics). Through an emergent variant sub-analysis, we also
illustrated how these metrics can be used to monitor ongoing variant transitions. In this early
analysis, we found that the transitions to BQ.1 and XBB in countries where they have already
become established was relatively rapid when compared to prior Omicron variant transitions
(Figure 2). Although this analysis is preliminary and by necessity based on a small number
of countries, it is consistent with a selective advantage, providing further impetus for current
efforts to better resolve biological characteristics of these viral lineages.

In this paper, we demonstrated that historical variant transition dynamics differed substan-
tially between locations (Figure 2) and were associated with vaccination rates, prior infection
rates, the time since the last COVID-19 peak, population demographics, and the number of
co-circulating variants in competition with the emergent variant (Figure 4-6). In particular,
stronger natural immunity (due to higher prior infection rates and a shorter time since the
last COVID-19 peak) was strongly associated with later variant transitions relative to other
countries, suggesting that the new variant transitions may be slower in locations with a large
recent disease burden, consistent with protective antibodies being at higher levels due to recent
stimulation, and potentially being more cross-reactive if they were elicited by a variant that
was more closely related to a newly emergent form.

The association between vaccination rates is particularly interesting; while higher vaccina-
tion rates were associated with slower transitions prior to Delta and Mu, the Delta and Mu
variants were key inflection points. Among Omicron variants, the association was strongly
attenuated (Figure 5), consistent with Omicron’s resistance to vaccine-elicited neutralizing
antibodies, which are a key aspect of protection from infection.”®1! The ability of bivalent vac-
cines to offer additional protection against Omicron-related infections is still being resolved, 293
and the neutralizing antibody sensitivity of emergent variants may impact the ability of vaccine
boosters to slow transition times to new variants going forward.

The analyses in this paper are subject to many potential biases. Firstly, the SARS-CoV-2
sequences that are available may not be representative of circulating variants. For example,
sequencing efforts may over-sample a large outbreak or over-sample cases tied to an emerging
variant. Future work should explore strategies for quantifying biases in GISAID sequence re-
porting by location over time. To add additional complication, data quality issues such as strings
of ambiguous base calls can result in Pango designation mis-assignments, and changing Pango
lineage designations as the virus evolves can obfuscate emerging variant transitions. Confirmed
COVID-19 case and vaccination data are also imperfect, with substantial under-reporting that
likely varies over time. Missing data also presents a challenge, and the imputation methods we
have used to address the missing data have implicit assumptions about the representativeness
of the observed data.

Although there has been a remarkable global effort to track and understand transitions
during the pandemic, still SARS-CoV-2 and COVID-19 data streams are biased toward higher-
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income countries, since low- and middle-income countries tend to have less complete data and to
submit fewer sequences to GISAID. Because we had inclusion requirements based on complete-
ness and volume of sequence submissions, many variant-by-location combinations were omitted.
As a result, our analyses are implicitly biased toward data collected in higher-income countries,
as shown in Supp. Figure A.4a.

Overall, this analysis highlights the complicated relationships between variant transitions
and the contemporaneous immunologic and clinical context. Additionally, our results demon-
strate substantial heterogeneity in how an emerging variant interacts with co-circulating variants
across locations. Future work may be able to leverage this heterogeneity and data on historical
variant transitions to help forecast how emergent variants may behave in the future, potentially
using observed transitions in the variant’s country of origin to forecast the variant’s future
transition properties in other countries.
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