

1 **Epigenetic and genetic differentiation between *Coregonus* species pairs**

2 Clare J Venney¹, Claire Mérot^{1,2}, Eric Normandeau¹, Clément Rougeux¹, Martin Laporte^{1,3},

3 Louis Bernatchez^{1,4}

4 1. Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada

5 2. UMR 6553 Ecobio, OSUR, CNRS, Université de Rennes, Rennes, France

6 3. Ministère des Forêts, de la Faune et des Parcs (MFFP), Québec, Québec

7 4. This author is deceased.

8 Author for correspondence: Clare Venney (clarevenney@gmail.com)

9 **Abstract**

10 Phenotypic diversification is classically associated with genetic differentiation and gene
11 expression variation. However, increasing evidence suggests that DNA methylation is involved
12 in evolutionary processes due to its phenotypic and transcriptional effects. Methylation can
13 increase mutagenesis and could lead to increased genetic divergence between populations
14 experiencing different environmental conditions for many generations, though there has been
15 minimal empirical research on epigenetically induced mutagenesis in diversification and
16 speciation. Whitefish, freshwater members of the salmonid family, are excellent systems to study
17 phenotypic diversification and speciation due to the repeated divergence of benthic-limnetic
18 species pairs serving as natural replicates. Here we investigate whole genome genetic and
19 epigenetic differentiation between sympatric benthic-limnetic species pairs in lake and European
20 whitefish (*Coregonus clupeaformis* and *C. lavaretus*) from four lakes (N=64). We found
21 considerable, albeit variable, genetic and epigenetic differences between species pairs. All SNP
22 types were enriched at CpG sites supporting the mutagenic nature of DNA methylation, though
23 C>T SNPs were most common. We also found an enrichment of overlaps between outlier SNPs
24 with the 5% highest F_{ST} between species and differentially methylated loci. This could possibly
25 represent differentially methylated sites that have caused divergent genetic mutations between
26 species, or divergent selection leading to both genetic and epigenetic variation at these sites. Our
27 results support the hypothesis that DNA methylation contributes to phenotypic divergence and
28 mutagenesis during whitefish speciation.

29 **Keywords:** DNA methylation, speciation, whitefish, mutagenesis, genetic divergence, genetic
30 assimilation

31 **Significance statement**

32 DNA methylation is an epigenetic mark known to change in response to the environment
33 and induce genetic modifications such as point mutations, though its implications for evolution
34 and speciation have not been thoroughly studied. We find considerable but variable genetic and
35 epigenetic variation between whitefish benthic-limnetic species pairs, highlighting the potential
36 for DNA methylation to contribute to mutagenesis and genetic evolution. Our study provides
37 evidence that DNA methylation could have contributed to whitefish speciation, both through
38 initially plastic methylation changes and by driving genetic divergence between species pairs.

39

40 **Introduction**

41 Speciation has long been a focus of evolutionary biology, with recent research expanding
42 into the role of genomics in reproductive isolation, phenotypic diversification, and species
43 divergence (Seehausen et al. 2014; Marques et al. 2019). Speciation can occur rapidly despite
44 slow mutation rates, sometimes due to new combinations of standing genetic variation (Marques
45 et al. 2019). Phenotypic plasticity can also promote speciation, particularly when allopatric
46 populations acclimate to their respective environments, phenotypes are partially genetically
47 controlled, and capacity for plasticity is lost over time (Pfennig et al. 2010). Phenotypic changes
48 can occur through altered gene expression (Whitehead & Crawford 2006) which can lead to
49 phenotypic divergence and speciation, as documented between Arctic charr ecotypes (*Salvelinus*
50 *alpinus*; Gudbrandsson et al. 2018; Jacobs and Elmer 2021), between Chinook and Coho salmon
51 and their hybrids (*Oncorhynchus tshawytscha* and *O. kisutch*; Mckenzie et al. 2021), and
52 between sympatric lake whitefish species (*Coregonus* sp.; Derome et al. 2006; St-Cyr et al.
53 2008; Rougeux et al. 2019b). Transcriptomic variation associated with lip size has been
54 identified in the Midas cichlid species complex (*Amphilophus citrinellus*; Manousaki et al. 2013)
55 and sequence variation in transcribed regions has been reported between *A. astorquii* and *A.*
56 *zaliosus* (Elmer et al. 2010). Transcriptomic differences generally increase with taxonomic
57 distance for closely related species (Whitehead & Crawford 2006) and may contribute to
58 phenotypic differences among species (Whitehead & Crawford 2006; Pavey et al. 2010).
59 Therefore, the mechanisms underlying adaptive phenotypic differences during speciation likely
60 involve both phenotypic plasticity and genetic variants.

61 There has been increasing interest in the role of DNA methylation as a plastic mechanism
62 contributing to speciation (Vogt 2017; Ashe et al. 2021). DNA methylation is the addition of a

63 methyl group to the cytosine of CpG sites in vertebrates (a cytosine followed by a guanine in the
64 DNA sequence), often resulting in altered transcription without a change in DNA sequence (Bird
65 2002). DNA methylation is sensitive to the environment and epigenetic marks are known to be
66 affected by several factors such as temperature (Ryu et al. 2020; Beemelmanns et al. 2021;
67 McCaw et al. 2020; Venney et al. 2022), salinity (Hu et al. 2021; Artemov et al. 2017; Heckwolf
68 et al. 2020), and rearing environment (Leitwein et al. 2021; Le Luyer et al. 2017; Wellband et al.
69 2021; Berbel-Filho et al. 2020; Venney et al. 2020). DNA methylation can alter phenotype
70 (Anastasiadi et al. 2021; Vogt 2021), with evidence for phenotypically-linked epigenetic
71 divergence associated with spawning tactics in capelin (*Mallotus villosus*; (Venney et al. 2023)
72 and between four sympatric Arctic charr morphs (Matlosz et al. 2022). Due to the potential role
73 of DNA methylation in plasticity and phenotypic diversification, it may contribute to speciation
74 (Vogt 2017; Ashe et al. 2021; Stajic & Jansen 2021; Laporte et al. 2019). A recent simulation
75 study showed that epigenetic plasticity can promote speciation when it reduces the fitness of
76 migrants and hybrids but can prevent genetic adaptation and speciation if epigenetic adaptation
77 occurs, precluding the need for genetic adaptation (Greenspoon et al. 2022). Empirical evidence
78 for the role of DNA methylation in reproductive isolation and speciation is also emerging
79 (Laporte et al. 2019). Methylation differences detected through methylation-sensitive amplified
80 polymorphism, but not genetic differences, were predictive of behavioural isolation between 16
81 species of darters (*Ulocentra*, *Nanostoma*, and *Etheostoma*; Smith et al. 2016). Another study
82 showed considerable epigenetic differences between six phenotypically divergent species of
83 Lake Malawi cichlids (Vernaz et al. 2022). DNA methylation can affect transcription (Li et al.
84 2019) and phenotype (Anastasiadi et al. 2021; Vogt 2021) and could result in initial plastic
85 phenotypic responses that lead to phenotypic diversification and speciation over generations.

86 DNA methylation is also mutagenic and can generate polymorphism. This is partially due
87 to the spontaneous hydrolytic deamination of methylated cytosine to uracil which is rapidly
88 converted to a thymine tautomer if not corrected by DNA repair enzymes (Gorelick 2003).
89 Spontaneous deamination is ~3.5 times more likely to occur at methylated cytosines than
90 unmethylated ones (Jones et al. 1992; Gorelick 2003). Different enzymes are involved in base
91 repair of methylated vs unmethylated cytosines, leading to methylated cytosines having mutation
92 rates ~20 000 times higher than unmethylated ones after accounting for DNA repair efficiency
93 (Gorelick 2003). It is estimated that ~8 deamination events occur per day in the ~6 billion bp
94 diploid human genome (Jones et al. 1992) providing a consequential source of novel mutations,
95 particularly in larger genomes. C>T transitions are the most common and explainable
96 epigenetically induced mutation, though there is also evidence for increased C>A and C>G
97 mutations at CpG sites due to mutagen exposure (Tomkova & Schuster-Böckler 2018). On the
98 other hand, DNA methylation can also shield sites from mutagenesis depending on the stimulus
99 or trigger, though the intricacies of when mutagenesis is favoured or prevented remain unclear
100 (Tomkova & Schuster-Böckler 2018). A study in human cell lines (*Homo sapiens*) showed that
101 cytosines with intermediate levels of methylation (20-60%) had the highest mutation rate, even
102 compared to fully methylated sites (Xia et al. 2012). The shielding properties of DNA
103 methylation could also be due to the inability to discern DNA methylation from other
104 methylation-related marks. In particular, 5-methylcytosine can be converted to 5-
105 hydroxymethylcytosine during demethylation (Li et al. 2019). The two cannot be differentiated
106 through bisulfite sequencing (Li et al. 2019), though 5-hydroxymethylcytosine may protect CpG
107 sites from mutation (Tomkova & Schuster-Böckler 2018). It is also possible that higher
108 nucleotide diversity at CpG sites is associated with greater methylation variation at those sites,

109 suggesting weaker selective constraint at those sites (Ord et al. 2023). Conversely, highly
110 methylated sites may be under greater selection to maintain consistently high methylation levels
111 (Ord et al. 2023). Therefore, DNA methylation can not only lead to transcriptional and
112 phenotypic changes but may also influence mutation rates. DNA methylation has thus been
113 proposed as a mechanism for genetic assimilation of phenotypes, i.e., when an environmentally
114 induced phenotype becomes stable and genetically encoded, even in the absence of the original
115 stimulus (Danchin et al. 2019; Nishikawa & Kinjo 2018). However, empirical evidence for
116 methylated sites inducing point mutations and contributing to evolution remains sparse.

117 The two whitefish sister taxa, lake whitefish (*Coregonus clupeaformis*) in North America
118 and the European whitefish species complex (*C. lavaretus*) in Europe, are well-characterized and
119 relevant systems to study phenotypic diversification and speciation. Lake and European
120 whitefish have evolved separately since they became geographically isolated ~500 000 years ago
121 (Bernatchez & Dodson 1994, 1991; Jacobsen et al. 2012). Both show repeated independent
122 divergence of sympatric species complexes consisting of a putatively ancestral benthic and
123 derived limnetic species originating from different glacial refugia during the last glaciation
124 period (Østbye, Bernatchez, et al. 2005; Bernatchez et al. 2010; Bernatchez & Dodson 1991;
125 Rougeux et al. 2017; Pigeon et al. 1997) which came into secondary contact ~12 000 years ago
126 when colonizing postglacial lakes (Rougeux, Gagnaire, Praebel, et al. 2019; Rougeux et al.
127 2017). In North America, the derived limnetic species evolved to colonize the limnetic zone,
128 leading to differences in diet (Bernatchez et al. 1999), reduced size (Bernatchez et al. 1999),
129 slower growth (Trudel et al. 2001), more slender body morphology (Laporte et al. 2015, 2016),
130 higher metabolic rate (Trudel et al. 2001; Dalziel et al. 2015), and more active swimming
131 behaviour (Rogers et al. 2002). Benthic and limnetic species often coexist in Europe, though

132 some Fennoscandinavian and alpine lakes contain up to six sympatric whitefish species (De-
133 *Kayne et al. 2022; Østbye, Næsje, et al. 2005*). In both North America and Europe, sympatric
134 whitefish are generally reproductively isolated with variable amounts of gene flow depending on
135 the lake (Rougeux et al. 2017; Rogers & Bernatchez 2006) which translates into genetic
136 differentiation (Mérot et al. 2023; Rougeux, Gagnaire, Praebel, et al. 2019; Rogers & Bernatchez
137 2007; Bernatchez et al. 2010; Dion-Côté et al. 2017; Rougeux et al. 2017; Østbye, Næsje, et al.
138 2005; De-Kayne et al. 2022; Siwertsson et al. 2013; Østbye et al. 2006), differential transposable
139 element methylation (Laporte et al. 2019), and transcriptional differences (Rougeux, Gagnaire,
140 Praebel, et al. 2019; Derome et al. 2006; Jeukens et al. 2009). Benthic-limnetic species pairs in
141 different lakes thus present a naturally replicated system in which to study the molecular
142 mechanisms associated with speciation.

143 We assessed the role of genomic and epigenomic variation in whitefish speciation by
144 performing whole genome sequencing (WGS) and whole genome bisulfite sequencing (WGBS)
145 for four benthic-limnetic species pairs (N=64 individuals sequenced in both datasets): lake
146 whitefish from Cliff and Indian Lake, Maine, USA, and European whitefish from Langfjordvatn
147 Lake, Norway and Zurich Lake, Switzerland (Figure 1). The objectives of this study were to (i)
148 determine the extent of whole genome genetic divergence between benthic-limnetic whitefish
149 species pairs, (ii) measure the level of polymorphism at CpG sites relative to the rest of the
150 genome, (iii) characterize whole genome differences in DNA methylation among limnetic-
151 benthic whitefish species pairs, and (iv) assess whether there was an enrichment of outlier SNPs
152 at differentially methylated loci (DMLs), which would support the hypothesis that epigenetically
153 influenced mutagenesis may be creating genetic variation and be involved in speciation. As such,

154 our results provide novel support for the role of DNA methylation in interspecies variation,
155 driving mutagenesis, and genetic evolution between species.

156 **Results**

157 *Genetic divergence between benthic-limnetic species pairs*

158 The extent of genetic differentiation between benthic and limnetic species varied among
159 lakes. In North America, moderate to high divergence between lakes both within and between
160 species was observed, with greater genome-wide F_{ST} between species in Cliff Lake than Indian
161 Lake (Table 1A). In Europe, F_{ST} estimates for Langfjordvatn Lake and Zurich Lake showed
162 greater differentiation between lakes than between species (Table 1B). In all lakes, genetic
163 differentiation is widespread along the genome (Figure S1). Genetic differentiation between
164 benthic-limnetic species pairs have been comprehensively covered in earlier studies (Gagnaire et
165 al. 2013; Rougeux, Gagnaire & Bernatchez 2019; Rougeux, Gagnaire, Praebel, et al. 2019;
166 Mérot et al. 2023).

167 *Elevated rate of polymorphism in CpG sites*

168 We analyzed from 11 861 765 to 30 919 358 SNPs per lake at approximately 4X
169 coverage per sample (Table 2) to assess whether SNPs were enriched in CpG sites relative to the
170 rest of the genome to investigate the prediction that CpG sites are mutagenic. We also tested
171 whether the enrichment was specific to (i) C/T and G/A SNPs (to account for the G position of
172 CpG sites), (ii) C/G and G/C SNPs, and (iii) C/A and G/T SNPs. Permutation tests showed that
173 SNPs were significantly enriched in CpG sites for all four lakes ($p < 0.0001$; Table 2), with none
174 of the 10 000 permutations per test reaching or exceeding the observed rate of polymorphism at
175 CpG sites. Between 10.5 and 12.3% of SNPs occurred in CpG sites for each lake in contrast with

176 an average of 3.8% of polymorphic sites across the genome. This means that 2.8 to 3.2 times
177 more SNPs occur in CpG sites than in the rest of the genome. There was significant enrichment
178 for all SNP types in CpG sites according to Pearson's chi-squared tests ($p < 0.001$; Table 2). C/T
179 and G/A SNPs were most common in CpG sites, with 3.0 to 3.4 times more C/T SNPs occurring
180 in CpG sites than in all C and G sites across the genome. The other SNP types were slightly less
181 enriched, with an enrichment of 1.1 to 1.2 times more C/G and G/C SNPs and 1.2 to 1.3 times
182 more C/A and G/T SNPs in CpG sites relative to the rest of the C and G sites in the genome
183 (Table 2).

184 *Epigenetic differentiation between benthic and limnetic whitefish*

185 We assessed the level of epigenetic differentiation between benthic-limnetic species pairs
186 by performing differential methylation analysis for each lake. After all quality trimming, we
187 analyzed between 12 449 354 and 18 999 942 CpG sites per lake with approximately 7.5 to 8.1X
188 coverage per sample (see Table 3 for detailed information). We identified variable but significant
189 epigenetic differentiation between benthic-limnetic species pairs in all lakes: 38 060
190 differentially methylated loci (DMLs, i.e., CpG sites) and 2 891 differentially methylated regions
191 (DMRs, i.e., prolonged regions of the DNA with differences in methylation between species) in
192 Cliff Lake, 24 949 DMLs and 2 300 DMRs in Indian Lake, 3 537 DMLs and 367 DMRs in
193 Langfjordvatn Lake, and 7 140 DMLs and 703 DMRs in Zurich Lake (Figure 2, Table 3, Tables
194 S1-S8). The DMRs covered between 2 296 and 24 524 CpG sites in each lake (Table 3). Overall
195 epigenetic differentiation between species was greater in North America than in Europe,
196 consistent with higher interspecies genetic differentiation as measured by F_{ST} in North America
197 relative to Europe.

198 *Enrichment for overlaps between outlier SNPs and DMLs*

199 For each lake, we assessed whether the most differentiated SNPs (5% highest F_{ST}) in
200 each lake overlap more often than expected by chance with CpG sites identified as DMLs
201 between species. Such overlaps in genetic and epigenetic differentiation could represent potential
202 sites of ongoing genetic divergence where divergent methylation patterns could be undergoing
203 epigenetically influenced mutagenesis into stable genetic variants between species. We
204 considered only polymorphic CpG sites in this analysis to account for the elevated mutation rate
205 at CpG sites. Pearson's chi-squared tests showed that the number of outlier SNP-DML overlaps
206 was much greater than expected based on the combined probability of finding both an outlier
207 SNP and a DML in a polymorphic CpG site (Table 3; see methods). We found between an 8.4 to
208 a 65.9-fold enrichment of overlaps depending on lake. The enrichment was greater in North
209 America (65.9-fold in Cliff Lake and 29.4-fold in Indian Lake) than in Europe (8.4-fold in
210 Langfjordvatn Lake and 15.9-fold in Zurich Lake).

211 Gene ontology enrichment analysis for the outlier SNP-DML overlaps showed
212 enrichment for 12 terms mostly involved in immune function in Cliff Lake, no terms in Indian
213 Lake, five molecular function terms in Langfjordvatn Lake, and 10 terms in Zurich Lake
214 associated with DNA binding and transcription (Table 4).

215 *Gene-level parallelism for epigenetic variation among lakes*

216 We assessed parallelism in the previously identified DMLs, DMRs, and outlier SNP-
217 DML overlaps between benthic and limnetic species among lakes. We were unable to compare
218 exact genomic locations for these markers since we used different reference genomes for
219 European and lake whitefish. Instead, we determined which markers directly overlapped with

220 gene transcripts in the annotated whitefish genomes and considered parallelism in genes across
221 lakes (Figure 3). There was some parallelism in the genes associated with DMLs and DMRs (111
222 and three common genes among all four lakes representing 2.0% and 0.23% of genes,
223 respectively), especially shared between two or three lakes. There was little parallelism with
224 respect to outlier SNP-DML overlaps with common genes among all lakes.

225 **Discussion**

226 Recent speciation research has expanded to include epigenetic mechanisms such as DNA
227 methylation (Pál & Miklós 1999; Richards et al. 2010; Greenspoon et al. 2022; Ashe et al. 2021)
228 which could contribute to phenotypic diversification and reproductive isolation (Laporte et al.
229 2019). Here we provide evidence for genetic and epigenetic differentiation between sympatric
230 benthic-limnetic whitefish species pairs from two continents with limited epigenetic parallelism
231 (i.e., shared genes) between lakes. We show that polymorphism is enriched at CpG sites,
232 including high overlap of outlier SNPs and CpG sites showing differential methylation between
233 species which may represent sites of ongoing mutagenesis. Together, our results provide support
234 for the proposed contributions of DNA methylation to phenotypic diversification (Anastasiadi et
235 al. 2021; Vogt 2021), mutagenesis (Tomkova & Schuster-Böckler 2018), and speciation (Pál &
236 Miklós 1999; Richards et al. 2010; Greenspoon et al. 2022; Ashe et al. 2021).

237 *Considerable but variable genetic divergence between species and lakes*

238 We observed genetic differentiation between species in all four lakes, consistent with
239 previous studies (Rougeux et al. 2017; Bernatchez et al. 2010; Dion-Côté et al. 2017; Rogers &
240 Bernatchez 2007; Rougeux, Gagnaire, Praebel, et al. 2019; Østbye, Næsje, et al. 2005; Østbye et
241 al. 2006; Siwertsson et al. 2013; De-Kayne et al. 2022; Feulner & Seehausen 2019; Mérot et al.

242 2023). There was greater genetic differentiation between species in Cliff Lake than Indian Lake
243 in North America, as previously reported in our sister study which reported on the same lake
244 whitefish data and conclusions (Mérot et al. 2023) and in another study with lower genomic
245 resolution (Gagnaire et al. 2013). Genetic differentiation was greater between lakes than between
246 species in Europe (Table 1B), likely due to the Zurich Lake and Langfjordvatn Lake populations
247 having occupied two different glacial refugia during the last glaciation period (Østbye,
248 Bernatchez, et al. 2005). However, our within-lake genome-wide F_{ST} estimates are slightly low
249 compared to other estimates between European whitefish species pairs (0.037 to 0.12 based on
250 RAD sequencing (Feulner & Seehausen 2019), 0.042 to 0.096 based on 16 microsatellite loci
251 (Siwertsson et al. 2013) and 0.01 to 0.075 based on six microsatellite loci (Østbye et al. 2006)),
252 likely due to the use of whole genome vs. targeted or reduced representation methods and the
253 low MAF filter ($MAF > 0.05$) including many low frequency SNPs in this analysis. Variable
254 interspecies F_{ST} between lakes is consistent with varying degrees of reproductive isolation/gene
255 flow between species in different systems (Lu & Bernatchez 1999; Gagnaire et al. 2013; De-
256 Kayne et al. 2022; Rougeux, Gagnaire & Bernatchez 2019; Østbye et al. 2006). They are also
257 consistent with estimated lake whitefish divergence history in Cliff and Indian Lakes (32 000
258 years in allopatric speciation and 9 200 years since secondary contact for Cliff, 29 000 years in
259 allopatric speciation and 8 500 years since secondary contact for Indian) (Rougeux et al. 2017).
260 European whitefish divergence is estimated to have occurred over a longer timeline (121 000
261 years in allopatry and 12 000 years since secondary contact for Langfjordvatn, 107 000 years in
262 allopatry and 28 600 years since secondary contact for Zurich) (Rougeux, Gagnaire &
263 Bernatchez 2019). Despite European whitefish having a longer period of allopatric speciation,
264 lake whitefish show greater genetic divergence. The variation in interspecies genetic divergence

265 between lakes could be due to the extent of differences between the species' trophic niches, with
266 species occupying vastly different trophic niches also showing greater morphological differences
267 (Lu & Bernatchez 1999). Overall, genetic differentiation between species was widespread along
268 the genome consistent with previous work (De-Kayne et al. 2022; Feulner & Seehausen 2019;
269 Mérot et al. 2023), though large-effect loci (De-Kayne et al. 2022) and genomic islands of
270 divergence (Gagnaire et al. 2013) have also been reported. This genome-wide genetic
271 differentiation between species may be associated with phenotypic divergence and reproductive
272 isolation between species (Coyne & Orr 2004).

273 *Epigenetic divergence between whitefish species pairs*

274 We found considerable epigenetic divergence in liver tissue between species, though the
275 extent of divergence varied between lakes and was greater in North America than in Europe
276 (Figure 2, Table 3). Our results support the idea that DNA methylation could provide an
277 additional mechanism for phenotypic diversification and speciation, similar to results in lake
278 whitefish showing differential methylation of transposable elements between species in liver
279 tissue, which can affect transposable element activity (Laporte et al. 2019). These methylation
280 changes may have arisen due to environmental differences between benthic and limnetic habitats
281 which could contribute to character displacement between species since the environment can
282 have profound effects on the methylome. Previous studies have shown that methylation is
283 affected by temperature (Ryu et al. 2018; Venney et al. 2022; Metzger & Schulte 2017; McCaw
284 et al. 2020; Anastasiadi et al. 2017), salinity (Heckwolf et al. 2020; Artemov et al. 2017), rearing
285 environment (Leitwein et al. 2021; Le Luyer et al. 2017; Wellband et al. 2021; Gavery et al.
286 2018), and other factors in various systems. Differences in habitat use can influence DNA
287 methylation, as observed between capelin (*Mallotus villosus*) utilizing beach- and demersal-

288 spawning life history tactics (Venney et al. 2023), among sympatric Arctic charr morphs
289 occupying different habitats and dietary niches (Matlosz et al. 2022), between phenotypically
290 divergent cichlid species (Vernaz et al. 2022), and in freshwater snails (*Potamopyrgus*
291 *antipodarum*) which exhibit differences in shell shape associated with water current speed
292 (Thorson et al. 2017).

293 DNA methylation can also be influenced by genetic variation (Richards 2006; Lallias et
294 al. 2021), therefore epigenetic differences may in part be driven by genetic divergence between
295 species. Given the greater epigenetic divergence and F_{ST} between species pairs in North America
296 than in Europe, it is possible that the methylation differences are a function of genetic divergence
297 between species. Parallel transcriptional differences were previously reported between benthic-
298 limnetic whitefish species pairs in both captive and natural conditions, indicating that some
299 transcriptional differences between species are under genetic control and may have been subject
300 to selection (St-Cyr et al. 2008). Transcriptional divergence between benthic-limnetic species
301 pairs was also shown in 48 of 64 samples used in this study (6 samples per species per lake) and
302 differences were often parallel across lakes in both lake whitefish and European whitefish (see
303 Rougeux, Gagnaire, Praebel, et al. 2019). We generally observed similar ratios of interspecies
304 DMRs among lakes from our study and differentially expressed gene (DEG) counts in the earlier
305 transcriptome study by Rougeux et al. (2 891 DMRs and 3 175 DEGs in Cliff Lake, 2 300 DMRs
306 and 238 DEGs in Indian Lake, 367 DMRs and 276 DEGs in Langfjordvatn Lake, and 703 DMRs
307 and 1 392 DEGs in Zurich Lake). This indicates that Cliff Lake and Zurich Lake have greater
308 epigenomic and transcriptomic differences between species relative to the other lakes, though
309 there are considerably more DMRs than DEGs in Indian Lake, possibly due to greater genetic
310 and epigenetic differentiation between species. Thus, DNA methylation divergence between

311 species may be due to differences in habitat and genetic background and could provide a
312 mechanistic basis for phenotypic diversification between these nascent species pairs due to its
313 effects on transcription (Bird 2002) and phenotype (Anastasiadi et al. 2021; Vogt 2021).

314 *Mutational enrichment at CpG sites supports epigenetically influenced mutagenesis*

315 Our results suggest that polymorphism is enriched at CpG sites, possibly due to the
316 mutagenic nature of DNA methylation (Flores et al. 2013; Tomkova & Schuster-Böckler 2018;
317 Ashe et al. 2021) generating genetic variation between species pairs. We show that CpG sites,
318 the main sites where DNA methylation occurs in vertebrate genomes, have higher levels of
319 polymorphism compared to the rest of the genome (Table 2). This suggests that DNA
320 methylation may be inducing point mutations that could accumulate between species over
321 generations. We observed a 2.8- to 3.2-fold polymorphism enrichment at CpG sites which is
322 comparable to the previously reported 3.5-fold increased mutation in methylated relative to
323 unmethylated cytosines (Gorelick 2003; Jones et al. 1992). It is likely that more mutations have
324 occurred yet were not detected due to selection against them since epigenetically induced
325 mutations are generally inferred to be deleterious based on mismatches between experimentally
326 observed epigenetically induced mutation rate and the observed rates of these mutations in
327 populations (Danchin et al. 2019). However, some mutations could be retained through random
328 genetic drift if neutral or mildly deleterious, or selected for if they prove beneficial, leading to
329 increased frequency of the novel mutation over time. While epigenetically induced C>T
330 transitions are most common due to spontaneous deamination of cytosines to uracil (Tomkova &
331 Schuster-Böckler 2018), we show that there is significant enrichment of all types of point
332 mutations at CpG sites (Table 2). The exact mechanisms behind spontaneous C>A and C>G
333 mutations without the involvement of mutagens are less clear in the context of epigenetically

334 influenced mutagenesis (Tomkova & Schuster-Böckler 2018), though we provide evidence that
335 all types of polymorphism are enriched at CpG sites.

336 *Co-occurrence of genetic and epigenetic divergence at CpG sites*

337 Our results showed that SNPs with high F_{ST} between species are enriched at DMLs.
338 These sites could potentially reflect ongoing mutagenesis or genetic assimilation contributing to
339 genetic evolution between benthic-limnetic species pairs, wherein one species is in the process of
340 losing the CpG site. While the ancestral species is unknown, it is also possible that some of these
341 sites have mutated from a non-CpG site to a CpG site (e.g., from TpG to CpG), though a
342 causative mechanism for this is not immediately clear. The outlier SNP-DML overlaps showed
343 both differential liver methylation between species (i.e., when CpG sites are still present in both
344 species) and high genetic differentiation between species (i.e., when one species has partially
345 assumed the “assimilated” state and a cytosine has mutated to another nucleotide). There was a
346 greater enrichment for outlier SNP-DML overlaps in North America than Europe (see Table 3)
347 consistent with greater genetic differentiation and more pronounced reproductive isolation
348 between species pairs in North America, though this could also reflect differences in mutational
349 signatures between species (e.g., Goldberg and Harris 2022). It is also likely that the degree of
350 enrichment would differ among tissues and through ontogeny since the methylome is tissue-
351 specific (Venney et al. 2016; Christensen et al. 2009; Gavery et al. 2018) and affected by age
352 (Venney et al. 2016; Christensen et al. 2009). Gene ontology analysis of the overlaps showed
353 that they occurred in genes associated with behaviour, immune function, metabolism, DNA
354 binding, cellular processes, oxio-reductase activity, and transcription factor activity depending
355 on the lake (Table 4), though there were no shared GO terms among lakes in our study.
356 Nevertheless, our findings were consistent with previous transcriptomic studies in whitefish

357 showing enrichment of similar functions in DEGs (Rougeux, Gagnaire, Praebel, et al. 2019; St-
358 Cyr et al. 2008), with potential implications for immune function and growth (Rougeux,
359 Gagnaire, Praebel, et al. 2019). To our knowledge, this one of the first studies to relate epigenetic
360 divergence and putatively epigenetically induced polymorphism to speciation, providing support
361 for previous theories on the role of DNA methylation in genetic assimilation. Stajic et al. (2019)
362 previously showed that mutational assimilation was dependent on the capacity of *S. cerevisiae* to
363 modify histone acetylation, showing the involvement of epigenetic mechanisms in genetic
364 assimilation. A recent study in threespine stickleback (*Gasterosteus aculeatus*) showed that
365 DMLs between freshwater and marine stickleback were also associated with high nucleotide
366 diversity (Ord et al. 2023). Interestingly, a study in great apes (*Homo*, *Pan*, *Gorilla*, and *Pongo*
367 sp.) found that mutational signatures across the genome differed between species and that
368 epigenetically induced mutations were influenced by chromatin state and cytosine
369 hydroxymethylation (Goldberg & Harris 2022). The role of epigenetic processes in inducing
370 mutagenesis is becoming clearer, though we provide some initial support for DNA methylation
371 influencing mutagenesis in the context of ecological speciation.

372 While the idea of genetic assimilation is exciting, there are other explanations for the
373 association between outlier SNPs and DMLs. An alternative hypothesis is that both DNA
374 methylation and genetic polymorphism at the same CpG site could have similar effects on
375 transcription and thus provide two different, simultaneous molecular mechanisms for controlling
376 transcription at the same site in different individuals. Genetic variation at proximal linked sites
377 could also determine methylation state at these genetically and epigenetically differentiated CpG
378 sites, though it is unclear why this would cause an enrichment of outlier SNP-DML overlaps
379 given widespread genomic differentiation between species in all lakes. It is also possible that

380 selection maintains both genetic and epigenetic state at these sites and the two are not related.
381 Future long-term experimental evolution studies have the potential to distinguish between these
382 possibilities and facilitate real-time observation of epigenetically induced mutagenesis and
383 genetic assimilation.

384 *A hypothetical role for DNA methylation in whitefish speciation*

385 When environments change and then remain stable (e.g., in range expansions, habitat
386 colonization, or shifts to novel habitat use), DNA methylation may serve as an initial plastic
387 response to the new environment, with the new methylation state being maintained by natural
388 selection (Ashe et al. 2021). Given the rapid postglacial speciation rate (~3-4K generations)
389 between benthic and limnetic species in all lakes, methylation differences could have arisen
390 quickly, contributing to the multi-trait rapid evolution that occurred between species. Over time,
391 epigenetically influenced mutagenesis could have led to methylation changes inducing genetic
392 divergence (Danchin et al. 2019; Ashe et al. 2021). Therefore, epigenetically induced
393 mutagenesis could have contributed to genetic differentiation between benthic and limnetic
394 whitefish. Divergent selection could then have acted on both epigenetic and genetic marks if they
395 affected phenotype. This is consistent with heritable differences in behaviour (e.g., Rogers et al.
396 2002) and minimal plasticity in morphological traits differentiating benthic and limnetic lake
397 whitefish (Laporte et al. 2016). Transcriptomic differences between benthic-limnetic species
398 pairs were also stable across environments in lake whitefish (St-Cyr et al. 2008) and related to
399 parallel genetic differences between species in both lake and European whitefish (Rougeux,
400 Gagnaire, Praebel, et al. 2019), suggesting that these putatively adaptive traits might be
401 genetically controlled. However, further study would be needed for any direct test of

402 environmental differences between species pairs or a link between (epi)genetic variation and
403 phenotype.

404 *Conclusions*

405 We found substantial genetic and epigenetic divergence between independently derived
406 benthic-limnetic species pairs in lake and European whitefish. We provide evidence that DNA
407 methylation may lead to increased polymorphism due to its mutagenic nature, potentially
408 contributing to early phenotypic diversification, genetic divergence, and speciation. We
409 characterized potential sites of ongoing genetic assimilation wherein differential methylation
410 levels between species may be influencing polymorphism and resulting in divergent genetic
411 variation between benthic-limnetic species pairs. As such, our results shed light on the diverse
412 ways DNA methylation can contribute to plasticity and evolution, from plastic responses to
413 environmental changes to the induction of mutagenesis leading to genetic divergence. Future
414 studies using experimental evolution or evolve and resequence approaches are needed to confirm
415 the mutagenic nature of DNA methylation and its role in genetic assimilation.

416 **Materials and Methods**

417 *Sample preparation and sequencing*

418 We sampled limnetic-benthic whitefish species pairs from two lakes in North America
419 and two lakes in Europe: lake whitefish (*C. clupeaformis*) from Cliff and Indian Lake, Maine,
420 USA, and European whitefish (*C. lavaretus*) from Langfjordvatn Lake, Norway and Zurich
421 Lake, Switzerland (Fig. 1). Animal care was performed humanely under Université Laval animal
422 care permit 126316. Fish were caught with gillnets, humanely euthanized, and immediately
423 dissected to obtain fresh tissue samples. Liver tissue was sampled from 64 fish, including six per

424 lake previously used in Rougeux et al. (2019): eight individuals per species per lake except for
425 Indian Lake where we sampled seven benthic and nine limnetic fish. Samples were stored either
426 at -80°C or in RNAlater; all samples from Europe were stored in RNAlater. Liver tissue was
427 chosen due to its homogeneous tissue characteristics and involvement in growth and metabolism
428 (Trefts et al. 2017).

429 Genomic DNA was isolated using a modified salt extraction protocol (Aljanabi &
430 Martinez 1997). DNA was checked on a 1% agarose gel and quantified on a NanoDrop
431 spectrophotometer. WGS and WGBS libraries were built at the McGill University and Genome
432 Quebec Innovation Centre (Montreal, Canada) using in-house protocols. WGS was performed
433 using paired end 150 bp sequencing on an Illumina HiSeq4000 with estimated 5X coverage. The
434 North American samples were previously sequenced in Mérot et al. (2022), and WGBS was
435 performed in this study only using paired end 150 bp sequencing on the Illumina HiSeqX with
436 samples randomly distributed across 16 lanes (four per lane) with ~10X coverage.

437 *Whole genome sequencing analysis*

438 Reads were trimmed and quality filtered with fastp (Chen et al. 2018). The North
439 American samples were aligned to the *Coregonus clupeaformis* genome (ASM1839867v1;
440 (Mérot et al. 2023) and the European samples were aligned to the European whitefish genome
441 (*Coregonus* sp. Balchen; LR778253.1; De-Kayne et al. 2020) using BWA-MEM (Li 2021).
442 Aligned reads were filtered to require mapping quality over 10 with Samtools v1.8 (Li et al.
443 2009). Duplicate reads were removed with MarkDuplicates (PicardTools v1.119.,
444 <http://broadinstitute.github.io/picard>). We realigned around indels with GATK IndelRealigner
445 (McKenna et al. 2010) and soft clipped overlapping read ends using clipOverlap in bamUtil

446 v1.0.14 (Breese & Liu 2013). The pipeline is available at
447 https://github.com/enormandeau/wgs_sample_preparation.

448 Bam alignments were analysed with the program ANGSD v0.931 (Korneliussen et al.
449 2014) which accounts for genotype uncertainty and is appropriate for low and medium coverage
450 WGS (Lou et al. 2021). Reads were filtered to remove low-quality reads and to keep mapping
451 quality above 30 and base quality above 20. We ran ANGSD on each lake separately to detect
452 polymorphic positions (SNPs), estimate the spectrum of allele frequency, minor allele frequency
453 (MAF), and genotype likelihoods. Genotype likelihoods were estimated with the GATK method
454 (-GL 2). The major allele was the most frequent allele (-doMajorMinor 1). We kept positions
455 covered by at least one read in at least 75% of individuals, with a total coverage below 400 (25
456 times the number of individuals) to avoid including repeated regions in the analysis. After such
457 filtering, we exported a list of covered positions for each lake for further analysis, including
458 1 998 994 058 positions in Cliff Lake, 1 981 247 030 in Indian Lake, 1 658 793 591 in
459 Langfjordvatn, and 1 702 852 520 in Zurich Lake.

460 From this list of variant and invariant positions, we extracted a list of SNPs as the
461 variable positions with an MAF above 5% and subsequently used this list with their respective
462 major and minor alleles for most analyses (i.e., F_{ST} between benthic and limnetic, overlap with
463 CpG sites). Differentiation between benthic and limnetic species in each lake was measured with
464 F_{ST} statistics, using ANGSD to estimate joint allele frequency spectrum, realSFS functions to
465 compute F_{ST} in sliding windows of 100 KB with a step of 25 KB. Positions were restricted to the
466 polymorphic SNPs (>5% MAF) previously polarized as major or minor allele (options –sites and
467 –doMajorMinor 3), and which were covered in at least 75% of the samples in each species. F_{ST}

468 estimates for Cliff Lake and Indian Lake in North America were previously published in Mérot
469 et al. (2022). F_{ST} estimates between lakes were performed with the same analyses at the
470 continent level to ensure a consistent polarisation of the major allele. The ANGSD pipeline is
471 available at https://github.com/clairemerot/angsd_pipeline.

472 *Frequency of SNPs in CpG sites*

473 We determined whether CpG sites were more polymorphic than the rest of the genome,
474 which would be indicative of CpG methylation influencing mutagenesis (Jones et al. 1992;
475 Gorelick 2003). We used fastaRegexFinder.py (<https://github.com/dariober/bioinformatics-cafe/blob/master/fastaRegexFinder/>) to find all CpG sites in each reference genome. Next, we
476 restricted the CpG site lists to include only sites with sufficient coverage in the WGS data using
477 bedtools *intersect* (Quinlan & Hall 2010) with the list of covered positions for each lake exported
478 earlier (>75% of samples covered). We used regioneR (Gel et al. 2016) to determine how many
479 SNPs fell within CpG sites using the *numOverlaps* command. We assumed a uniform
480 distribution of SNPs across the genome as a null hypothesis for both tests, thus a higher
481 proportion of SNPs in CpGs relative to average polymorphism in the genome would indicate an
482 enrichment of point mutations in CpGs.

$$\frac{n(\text{SNPs in CpGs})}{n(\text{CpG nucleotides}) \text{ covered by WGS data}} \text{ v. s. } \frac{n(\text{SNPs})}{\text{length of genome covered by WGS data}}$$

484 We also used a permutation test to determine if the enrichment of SNPs in CpG sites
485 would occur by chance over 10 000 iterations. We determined the proportion of the genome
486 made up of CpG sites by dividing the number of CpG nucleotides by the total length of the
487 genome with sufficient WGS coverage. We assumed a uniform distribution of SNPs across the

488 genome as a null hypothesis for both tests, thus a higher proportion of SNPs in CpG sites relative
489 to the proportion of the genome made up of CpG sites would indicate an enrichment of point
490 mutations in CpGs.

$$\frac{n(\text{SNPs in CpGs})}{n(\text{SNPs})} \text{ v. s. } \frac{n(\text{CpG nucleotides covered by WGS data})}{\text{length of genome covered by WGS data}}$$

491 We tested whether there was an enrichment of specific SNP substitution types as C/T
492 polymorphisms are expected to be more common due to deamination of methylated cytosines
493 (Tomkova & Schuster-Böckler 2018; Gorelick 2003; Jones et al. 1992). For this analysis, we
494 only considered C and G sites in the genome due to the increased mutagenicity of these
495 nucleotides (Kiktev et al. 2018). We split the list of SNPs into three separate files for each
496 possible mutation: (i) all C/T and G/A SNPs (where G/A SNPs would indicate a C/T mutation at
497 the G position in the reverse complement of the DNA), (ii) all C/A and T/G SNPs, and (iii) all
498 C/G SNPs. We also generated a list of all C and G sites in the genome with sufficient WGS
499 coverage. We compared the rate of finding each SNP type in a CpG site to the rate of finding that
500 SNP type in C and G sites, then used Pearson's chi-squared test to determine if the proportions
501 were significantly different. All scripts are available at
502 https://github.com/cvenney/ga_permutation.

$$\frac{n(\text{specific SNPs in CpGs})}{n(\text{CpG nucleotides})} \text{ v. s. } \frac{n(\text{specific SNPs in genome})}{n(\text{C and G sites in the genome covered by WGS data})}$$

503 *Whole genome DNA methylation tabulation*

504 Raw methylation data were trimmed using fastp (Chen et al. 2018) to remove sequences
505 with phred quality less than 25, length less than 100 bp, and to remove the first and last
506 nucleotides which have high sequencing error rate. After trimming, lake and European whitefish

507 methylation data were analysed separately. Trimmed sequences were aligned to the same
508 reference genomes as described in the WGS methods using bwa-meth
509 (<https://github.com/brentp/bwa-meth>). Alignments with mapping quality greater than 10 were
510 outputted to a BAM file using samtools (Li et al. 2009) and duplicate sequences were removed
511 using Picard tools. Methyldackel's *mbias* function was used to inform trimming of biased
512 methylation calls at the beginning and end of reads (<https://github.com/dpryan79/MethylDackel>).
513 CpG-specific methylation calling was performed on bias-trimmed data using methyldackel's
514 *extract* function while removing any detected variant sites where SNPs could affect methylation
515 calling in that individual (*--maxVariantFrac 0.1 --minOppositeDepth 1*). The pipeline is
516 available at https://github.com/enormandeau/bwa-meth_pipeline.

517 *Individual-level whitelisting of methylation data using SNP data*

518 C/T SNPs cannot be discerned from true methylation reads because bisulfite conversion
519 leaves methylated cytosine unchanged but converts unmethylated cytosine to uracil which is
520 sequenced as a thymine. Therefore, CpG sites which overlap with C/T or G/A SNPs must be
521 removed from the analysis. We used an individual-level approach where we filtered CpG sites
522 separately for each sample based on that sample's genotype (Figure 1), in addition to
523 methylDackel's built-in *--maxVariantFrac* SNP removal function described above. Therefore,
524 we filter problematic SNPs out of this dataset using both the SNP and the methylation data.
525 Relying on our WGS data, we thus created a whitelist of CpG sites for each sample, keeping the
526 sites homozygous for C and G and masking individuals heterozygous or homozygous for the T
527 or A allele at that site. To do so, we kept CpG sites that were covered in at least 12 individuals in
528 a given lake (75% of samples for each lake). Then we filtered the whitelists, requiring sites to be
529 either (i) non-variant positions, (ii) not a C/T SNP for the C position of the CpG in the lake, (iii)

530 not a G/A SNP for the G position of the CpG in the lake, or (iv) a C/T SNP or a G/A SNP in
531 other individuals within the lake, but where this individual has a likelihood greater than 0.7 to be
532 a C/C and G/G homozygote. This resulted in individual-level SNP masking for each sample
533 where CpG sites with C/T and G/A SNPs were removed in heterozygous individuals, but not
534 blindly across all samples (see Figure 1 for a visual representation). C/C homozygotes and
535 individuals with C/A and C/G SNPs at a given CpG site were retained in the analysis as these
536 genotypes do not affect methylation calling. BedGraph files were filtered to include only CpG
537 sites covered in the whitelist (i.e., where both the C and G positions were whitelisted). The
538 pipeline for SNP masking and subsequent methylation analysis is available at
539 https://github.com/cvenney/ga_methyl.

540 *Coverage filtration and differential methylation analysis*

541 Whitelisted bedGraph files were filtered to exclude CpG sites with less than five and
542 more than 100 reads. The files were imported into R (R Core Team 2022) where we kept only
543 CpG sites with sufficient coverage in at least four limnetic and four benthic samples in the lake.
544 BedGraph files were reformatted for further analysis with DSS (Park & Wu 2016). We then
545 assessed the level of epigenetic differentiation between benthic-limnetic species pairs by
546 performing differential methylation analysis for each lake. Methylation data were smoothed over
547 500 bp regions using the built-in moving average algorithm in DSS to control for spatial
548 correlation of methylation levels among proximal CpGs. We ran generalized linear models in
549 DSS to identify differentially methylated loci (DMLs; i.e., CpG sites with significantly different
550 methylation levels between limnetic and benthic species) and differentially methylated regions
551 (DMRs; regions of the genome showing differences in methylation levels between experimental
552 groups) between species. DMLs were considered significant if the false discovery rate (FDR)

553 corrected p-value was less than 0.05. DMRs were identified in DSS as regions with many
554 statistically significant DMLs with p-values less than 0.05.

555 *Overlap between DMLs and outlier SNPs*

556 We assessed whether there was an enrichment of outlier SNP-DML overlaps compared to
557 the number of overlaps expected by chance given the frequency of polymorphic DMLs and the
558 frequency of outlier SNPs in CpG sites. Enrichment could indicate epigenetically influenced
559 mutagenesis and genetic assimilation of methylation changes into stable genetic variants. We
560 generated a list of highly differentiated SNPs for each lake, retaining only the top 5% of SNPs
561 with the greatest F_{ST} between species, hereafter called “outlier SNPs”. DML test files were
562 converted to bed format for input into bedtools, then *intersect* was used to determine the number
563 of overlaps between outlier SNPs and DMLs. We used only CpG sites that were (i) covered by
564 WGS data, (ii) covered by WGBS data, and (iii) polymorphic to account for the observed
565 elevated mutation rate in CpG sites compared to the rest of the genome. We then used Pearson’s
566 chi-squared test to determine if there was an enrichment of observed DML-outlier SNP overlaps
567 in polymorphic CpG sites compared to the expected rate of finding overlaps.

$$\frac{n(\text{DMLs in SNPs})}{n(\text{polymorphic CpG sites})} \times \frac{n(\text{outlier SNPs in covered CpG sites})}{n(\text{polymorphic CpG sites})} \text{ vs. } \frac{n(\text{overlaps between DMLs and outlier SNPs})}{n(\text{polymorphic CpG sites})}$$

568 We also performed gene ontology (GO) enrichment analysis for the outlier SNP-DML
569 overlaps for each lake. The whitefish genomes were first annotated with the GAWN pipeline
570 (<https://github.com/enormandeau/gawn>) using the *Salvelinus namaycush* (GCF_018398675.1)
571 transcriptome from GenBank, which is more complete than the available whitefish
572 transcriptomes. We subsetted the annotation to include only the genes covered by both SNP and

573 methylation data which represents the list of genes that could possibly contribute to enriched
574 terms based on our data. We then retrieved the genes that overlapped the SNP-DML overlap
575 positions for each lake and proceeded to GO enrichment tests using the pipeline at
576 https://github.com/enormandeau/go_enrichment). Results were filtered to remove broad terms
577 (depths 0 and 1) and to require a Benjamini-Hochberg FDR corrected p-value of 0.1 or less.

578 *Parallelism across lakes*

579 We tested for parallelism in (epi)genetic variation among lakes for DMLs, DMRs, and
580 outlier SNP-DML overlaps between benthic and limnetic species. Genomic positions of genes
581 were identified using the annotated whitefish genomes from GO enrichment. Bedtools *intersect*
582 was used to find direct overlaps between the gene positions and the markers of interest for each
583 lake. Overlaps for each type of marker were visualized using UpSetR (Conway et al. 2017).

584 **Acknowledgements**

585 We dedicate this article to the memory of Louis Bernatchez, who passed away in
586 September 2023 during the review process. Louis had a tireless passion for science and
587 whitefish, made outstanding contributions to the field, and was a wonderful mentor and friend.
588 We thank Kim Præbel, Shripathi Bhat and the Freshwater ecology group at UiT (Tromsø) for
589 providing samples from Norway, and Ole Seehausen for providing samples from Switzerland.
590 This work was supported by a Discovery research grant from the Natural Sciences and
591 Engineering Research Council of Canada (NSERC) to L.B. CJV is supported by an NSERC
592 postdoctoral fellowship.

593 **Data availability statement**

594 European whitefish and lake whitefish whole genome sequencing data are available
595 through SRA accessions PRJNA906116 and PRJNA820751, respectively. Whole genome
596 bisulfite sequencing data are available through SRA accession PRJNA559821. All scripts are
597 available on GitHub as indicated in the methods.

598 **References**

- 599 Aljanabi SM, Martinez I. 1997. Universal and rapid salt-extraction of high quality genomic DNA
600 for PCR-based techniques. *Nucleic Acids Res.* 25:4692–4693.
- 601 Anastasiadi D, Díaz N, Piferrer F. 2017. Small ocean temperature increases elicit stage-
602 dependent changes in DNA methylation and gene expression in a fish, the European sea bass.
603 *Sci. Rep.* 7:12401. doi: 10.1038/s41598-017-10861-6.
- 604 Anastasiadi D, Venney CJ, Bernatchez L, Wellenreuther M. 2021. Epigenetic inheritance and
605 reproductive mode in plants and animals. *Trends Ecol. Evol.* 36:1124–1140. doi:
606 10.1016/j.tree.2021.08.006.
- 607 Artemov A V. et al. 2017. Genome-wide DNA methylation profiling reveals epigenetic
608 adaptation of stickleback to marine and freshwater conditions. *Mol. Biol. Evol.* 34:2203–2213.
609 doi: 10.1093/molbev/msx156.
- 610 Ashe A, Colot V, Oldroyd BP. 2021. How does epigenetics influence the course of evolution?
611 *Philos. Trans. R. Soc. B Biol. Sci.* 376:20200111. doi: 10.1098/rstb.2020.0111.
- 612 Beemelmanns A et al. 2021. DNA methylation dynamics in Atlantic salmon (*Salmo salar*)
613 challenged with high temperature and moderate hypoxia. *Front. Mar. Sci.* 7:3. doi:
614 10.3389/fmars.2020.604878.
- 615 Berbel-Filho WM et al. 2020. Environmental enrichment induces intergenerational behavioural
616 and epigenetic effects on fish. *Mol. Ecol.* 29:2288–2299. doi: 10.1111/mec.15481.
- 617 Bernatchez L et al. 2010. On the origin of species: insights from the ecological genomics of lake
618 whitefish. *Philos. Trans. R. Soc. B Biol. Sci.* 365:1783–1800. doi: 10.1098/rstb.2009.0274.
- 619 Bernatchez L, Chouinard A, Lu G. 1999. Integrating molecular genetics and ecology in studies
620 of adaptive radiation: whitefish, *Coregonus* sp., as a case study. *Biol. J. Linn. Soc.* 68:173–194.
- 621 Bernatchez L, Dodson JJ. 1994. Phylogenetic relationships among Palearctic and Nearctic
622 whitefish (*Coregonus* sp.) populations as revealed by mitochondrial DNA variation. *Can. J. Fish.
623 Aquat. Sci.* 51:240–251. doi: 10.1139/f94-310.
- 624 Bernatchez L, Dodson JJ. 1991. Phylogeographic structure in mitochondrial DNA of the lake

- 625 whitefish (*Coregonus clupeaformis*) and its relation to Pleistocene glaciations. *Evolution* (N. Y.).
626 45:1016–1035. doi: 10.1111/j.1558-5646.1991.tb04367.x.
- 627 Bird A. 2002. DNA methylation patterns and epigenetic memory. *Genes Dev.* 16:6–21. doi:
628 10.1101/gad.947102.6.
- 629 Breese MR, Liu Y. 2013. NGSUtils: a software suite for analyzing and manipulating next-
630 generation sequencing datasets. *Bioinformatics*. 29:494–496. doi:
631 10.1093/bioinformatics/bts731.
- 632 Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor.
633 *Bioinformatics*. 34:i884–i890. doi: 10.1093/bioinformatics/bty560.
- 634 Christensen BC et al. 2009. Aging and environmental exposures alter tissue-specific DNA
635 methylation dependent upon CpG island context. *PLoS Genet.* 5:e1000602. doi:
636 10.1371/journal.pgen.1000602.
- 637 Conway JR, Lex A, Gehlenborg N. 2017. UpSetR: An R package for the visualization of
638 intersecting sets and their properties. *Bioinformatics*. 33:2938–2940. doi:
639 10.1093/bioinformatics/btx364.
- 640 Coyne JA, Orr HA. 2004. *Speciation*. Sinauer: Sunderland.
- 641 Dalziel AC, Martin N, Laporte M, Guderley H, Bernatchez L. 2015. Adaptation and acclimation
642 of aerobic exercise physiology in lake whitefish ecotypes (*Coregonus clupeaformis*). *Evolution*
643 (N. Y.). 69:2167–2186. doi: 10.1111/evo.12727.
- 644 Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S. 2019. Epigenetically facilitated mutational
645 assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. *Biol. Rev.* 94:259–
646 282. doi: 10.1111/brv.12453.
- 647 De-Kayne R et al. 2022. Genomic architecture of adaptive radiation and hybridization in Alpine
648 whitefish. *Nat. Commun.* 13:1–13. doi: 10.1038/s41467-022-32181-8.
- 649 De-Kayne R, Zoller S, Feulner PGD. 2020. A de novo chromosome-level genome assembly of
650 *Coregonus* sp. “Balchen”: one representative of the Swiss Alpine whitefish radiation. *Mol. Ecol.*
651 *Resour.* 20:1093–1109. doi: 10.1111/1755-0998.13187.

- 652 Derome N, Duchesne P, Bernatchez L. 2006. Parallelism in gene transcription among sympatric
653 lake whitefish (*Coregonus clupeaformis* Mitchell) ecotypes. *Mol. Ecol.* 15:1239–1249. doi:
654 10.1111/j.1365-294X.2005.02968.x.
- 655 Dion-Côté AM et al. 2017. Standing chromosomal variation in lake whitefish species pairs: the
656 role of historical contingency and relevance for speciation. *Mol. Ecol.* 26:178–192. doi:
657 10.1111/mec.13816.
- 658 Elmer KR et al. 2010. Rapid evolution and selection inferred from the transcriptomes of
659 sympatric crater lake cichlid fishes. *Mol. Ecol.* 19:197–211. doi: 10.1111/j.1365-
660 294X.2009.04488.x.
- 661 Feulner PGD, Seehausen O. 2019. *Genomic insights into the vulnerability of sympatric whitefish
662 species flocks*. doi: 10.1111/mec.14977.
- 663 Flores KB, Wolschin F, Amdam G V. 2013. The role of methylation of DNA in environmental
664 adaptation. *Integr. Comp. Biol.* 53:359–372. doi: 10.1093/icb/ict019.
- 665 Gagnaire PA, Pavey SA, Normandeau E, Bernatchez L. 2013. The genetic architecture of
666 reproductive isolation during speciation-with-gene-flow in lake whitefish species pairs assessed
667 by RAD sequencing. *Evolution (N. Y.)*. 67:2483–2497. doi: 10.1111/evo.12075.
- 668 Gavery MR, Nichols KM, Goetz GW, Middleton MA, Swanson P. 2018. Characterization of
669 genetic and epigenetic variation in sperm and red blood cells from adult hatchery and natural-
670 origin steelhead, *Oncorhynchus mykiss*. *G3 Genes, Genomes, Genet.* 8:3723–3736. doi:
671 10.1534/g3.118.200458.
- 672 Gel B et al. 2016. RegioneR: an R/Bioconductor package for the association analysis of genomic
673 regions based on permutation tests. *Bioinformatics*. 32:289–291. doi:
674 10.1093/bioinformatics/btv562.
- 675 Goldberg ME, Harris K. 2022. Mutational signatures of replication timing and epigenetic
676 modification persist through the global divergence of mutation spectra across the great ape
677 phylogeny. *Genome Biol. Evol.* 14:1–18. doi: 10.1093/gbe/evab104.
- 678 Gorelick R. 2003. Evolution of dioecy and sex chromosomes via methylation driving Muller's
679 ratchet. *Biol. J. Linn. Soc.* 80:353–368. doi: 10.1046/j.1095-8312.2003.00244.x.

- 680 Greenspoon PB, Spencer HG, M'Gonigle LK. 2022. Epigenetic induction may speed up or slow
681 down speciation with gene flow. *Evolution (N. Y.)*. 76:1170–1182. doi: 10.1111/evo.14494.
- 682 Gudbrandsson J et al. 2018. Differential gene expression during early development in recently
683 evolved and sympatric Arctic charr morphs. *PeerJ*. 2018:1–35. doi: 10.7717/peerj.4345.
- 684 Heckwolf MJ et al. 2020. Two different epigenetic information channels in wild three-spined
685 sticklebacks are involved in salinity adaptation. *Sci. Adv.* 6. doi: 10.1126/sciadv.aaz1138.
- 686 Hu J et al. 2021. Heritability of DNA methylation in threespine stickleback (*Gasterosteus*
687 *aculeatus*). *Genetics*. 217. doi: 10.1093/GENETICS/IYAB001.
- 688 Jacobs A, Elmer KR. 2021. Alternative splicing and gene expression play contrasting roles in the
689 parallel phenotypic evolution of a salmonid fish. *Mol. Ecol.* 30:4955–4969. doi:
690 10.1111/mec.15817.
- 691 Jacobsen MW et al. 2012. Mitogenome sequencing reveals shallow evolutionary histories and
692 recent divergence time between morphologically and ecologically distinct European whitefish
693 (*Coregonus* spp.). *Mol. Ecol.* 21:2727–2742. doi: 10.1111/j.1365-294X.2012.05561.x.
- 694 Jeukens J, Bittner D, Knudsen R, Bernatchez L. 2009. Candidate genes and adaptive radiation:
695 insights from transcriptional adaptation to the limnetic niche among coregonine fishes
696 (*Coregonus* spp., *Salmonidae*). *Mol. Biol. Evol.* 26:155–166. doi: 10.1093/molbev/msn235.
- 697 Jones PA, Rideout WM, Shen J-C, Spruck CH, Tsai YC. 1992. Methylation, mutation and
698 cancer. *BioEssays*. 14:33–36.
- 699 Kiktev DA, Sheng Z, Lobachev KS, Petes TD. 2018. GC content elevates mutation and
700 recombination rates in the yeast *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci. U. S. A.*
701 115:E7109–E7118. doi: 10.1073/pnas.1807334115.
- 702 Korneliussen TS, Albrechtsen A, Nielsen R. 2014. ANGSD: analysis of next generation
703 sequencing data. *BMC Bioinformatics*. 15:1–13. doi: 10.1186/s12859-014-0356-4.
- 704 Lallias D et al. 2021. Sources of variation of DNA methylation in rainbow trout: combined
705 effects of temperature and genetic background. *Epigenetics*. 16:1031–1052. doi:
706 10.1080/15592294.2020.1834924.

- 707 Laporte M et al. 2019. DNA methylation reprogramming, TE derepression, and postzygotic
708 isolation of nascent animal species. *Sci. Adv.* 5:1–9. doi: 10.1126/sciadv.aaw1644.
- 709 Laporte M et al. 2015. RAD-QTL mapping reveals both genome-level parallelism and different
710 genetic architecture underlying the evolution of body shape in lake whitefish (*Coregonus*
711 *clupeaformis*) species pairs. *G3 Genes, Genomes, Genet.* 5:1481–1491. doi:
712 10.1534/g3.115.019067.
- 713 Laporte M, Dalziel AC, Martin N, Bernatchez L. 2016. Adaptation and acclimation of traits
714 associated with swimming capacity in lake whitefish (*Coregonus clupeaformis*) ecotypes. *BMC*
715 *Evol. Biol.* 16:1–13. doi: 10.1186/s12862-016-0732-y.
- 716 Leitwein M et al. 2021. Epigenomic modifications induced by hatchery rearing persist in germ
717 line cells of adult salmon after their oceanic migration. *Evol. Appl.* 14:2402–2413. doi:
718 10.1111/eva.13235.
- 719 Li H. 2021. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
720 *Mol. Ecol.* 30:5966–5993.
- 721 Li H et al. 2009. The sequence alignment/map format and SAMtools. *Bioinformatics.* 25:2078–
722 2079. doi: 10.1093/bioinformatics/btp352.
- 723 Li L, Gao Y, Wu Q, Cheng ASL, Yip KY. 2019. New guidelines for DNA methylome studies
724 regarding 5-hydroxymethylcytosine for understanding transcriptional regulation. *Genome Res.*
725 29:543–553. doi: 10.1101/gr.240036.118.
- 726 Lou RN, Jacobs A, Wilder A, Therkildsen NO. 2021. A beginner’s guide to low-coverage whole
727 genome sequencing for population genomics. *Mol. Ecol.* 30:5966–5993.
728 <https://www.authorea.com/users/380682/articles/496574-a-beginner-s-guide-to-low-coverage->
729 [whole-genome-sequencing-for-population-genomics](https://www.authorea.com/users/380682/articles/496574-a-beginner-s-guide-to-low-coverage-).
- 730 Lu G, Bernatchez L. 1999. Correlated trophic specialization and genetic divergence in sympatric
731 lake whitefish ecotypes (*Coregonus clupeaformis*): support for the ecological speciation
732 hypothesis. *Evolution (N. Y.)*. 53:1491–1505. doi: 10.1111/j.1558-5646.1999.tb05413.x.
- 733 Le Luyer J et al. 2017. Parallel epigenetic modifications induced by hatchery rearing in a Pacific
734 salmon. *Proc. Natl. Acad. Sci.* 114:12964–12969. doi: 10.1101/148577.

- 735 Manousaki T et al. 2013. Parsing parallel evolution: ecological divergence and differential gene
736 expression in the adaptive radiations of thick-lipped Midas cichlid fishes from Nicaragua. *Mol.*
737 *Ecol.* 22:650–669. doi: 10.1111/mec.12034.
- 738 Marques DA, Meier JI, Seehausen O. 2019. A combinatorial view on speciation and adaptive
739 radiation. *Trends Ecol. Evol.* 34:531–544. doi: 10.1016/j.tree.2019.02.008.
- 740 Matlosz S et al. 2022. DNA methylation differences during development distinguish sympatric
741 morphs of Arctic charr (*Salvelinus alpinus*). *Mol. Ecol.* 31:4739–4761. doi: 10.1111/mec.16620.
- 742 McCaw BA, Stevenson TJ, Lancaster LT. 2020. Epigenetic responses to temperature and
743 climate. *Integr. Comp. Biol.* 60:1469–1480. doi: 10.1093/icb/icaa049.
- 744 McKenna A et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing
745 next-generation DNA sequencing data. *Genome Res.* 20:1297–1303. doi:
746 10.1101/gr.107524.110.20.
- 747 Mckenzie JL et al. 2021. Incomplete reproductive isolation and strong transcriptomic response to
748 hybridization between sympatric sister species of salmon. *Proc. R. Soc. B Biol. Sci.*
749 288:20203020.
- 750 Mérot C et al. 2023. Genome assembly, structural variants, and genetic differentiation between
751 lake whitefish young species pairs (*Coregonus* sp.) with long and short reads. *Mol. Ecol.*
752 32:1458–1477. doi: 10.1111/mec.16468.
- 753 Metzger DCH, Schulte PM. 2017. Persistent and plastic effects of temperature on DNA
754 methylation across the genome of threespine stickleback (*Gasterosteus aculeatus*). *Proc. R. Soc.*
755 *B Biol. Sci.* 284:20171667. doi: 10.1098/rspb.2017.1667.
- 756 Nishikawa K, Kinjo AR. 2018. Mechanism of evolution by genetic assimilation. *Biophys. Rev.*
757 10:667–676. doi: 10.1007/s12551-018-0403-x.
- 758 Ord J, Gossmann TI, Adrian-Kalchhauser I. 2023. High nucleotide diversity accompanies
759 differential DNA methylation in naturally diverging populations. *Mol. Biol. Evol.* 40:1–16. doi:
760 10.1093/molbev/msad068.
- 761 Østbye K et al. 2006. Parallel evolution of ecomorphological traits in the European whitefish

- 762 *Coregonus lavaretus* (L.) species complex during postglacial times. *Mol. Ecol.* 15:3983–4001.
763 doi: 10.1111/j.1365-294X.2006.03062.x.
- 764 Østbye K, Bernatchez L, Næsje TF, Himberg KJM, Hindar K. 2005. Evolutionary history of the
765 European whitefish *Coregonus lavaretus* (L.) species complex as inferred from mtDNA
766 phylogeography and gill-raker numbers. *Mol. Ecol.* 14:4371–4387. doi: 10.1111/j.1365-
767 294X.2005.02737.x.
- 768 Østbye K, Næsje TF, Bernatchez L, Sandlund OT, Hindar K. 2005. Morphological divergence
769 and origin of sympatric populations of European whitefish (*Coregonus lavaretus* L.) in Lake
770 Femund, Norway. *J. Evol. Biol.* 18:683–702. doi: 10.1111/j.1420-9101.2004.00844.x.
- 771 Pál C, Miklós I. 1999. Epigenetic inheritance, genetic assimilation and speciation. *J. Theor. Biol.*
772 200:19–37. doi: 10.1006/jtbi.1999.0974.
- 773 Park Y, Wu H. 2016. Differential methylation analysis for BS-seq data under general
774 experimental design. *Bioinformatics*. 32:1446–1453. doi: 10.1093/bioinformatics/btw026.
- 775 Pavey SA, Collin H, Nosil P, Rogers SM. 2010. The role of gene expression in ecological
776 speciation. *Ann. N. Y. Acad. Sci.* 1206:110–129. doi: 10.1111/j.1749-6632.2010.05765.x.
- 777 Pfennig DW et al. 2010. Phenotypic plasticity's impacts on diversification and speciation.
778 *Trends Ecol. Evol.* 25:459–467. doi: 10.1016/j.tree.2010.05.006.
- 779 Pigeon D, Chouinard A, Bernatchez L. 1997. Multiple modes of speciation involved in the
780 parallel evolution of sympatric morphotypes of lake whitefish (*Coregonus clupeaformis*,
781 Salmonidae). *Evolution (N. Y.)*. 51:196–205. doi: 10.1111/j.1558-5646.1997.tb02401.x.
- 782 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic
783 features. *Bioinformatics*. 26:841–842. doi: 10.1093/bioinformatics/btq033.
- 784 R Core Team. 2022. R: A language and environment for statistical computing. <https://www.r-project.org>.
- 785
- 786 Richards CL, Bossdorf O, Pigliucci M. 2010. What role does heritable epigenetic variation play
787 in phenotypic evolution? *Bioscience*. 60:232–237. doi: 10.1525/bio.2010.60.3.9.
- 788 Richards EJ. 2006. Inherited epigenetic variation - revisiting soft inheritance. *Nat. Rev. Genet.*

- 789 7:395–402.
- 790 Rogers SM, Bernatchez L. 2007. The genetic architecture of ecological speciation and the
791 association with signatures of selection in natural lake whitefish (*Coregonus* sp. Salmonidae)
792 species pairs. *Mol. Biol. Evol.* 24:1423–1438. doi: 10.1093/molbev/msm066.
- 793 Rogers SM, Bernatchez L. 2006. The genetic basis of intrinsic and extrinsic post-zygotic
794 reproductive isolation jointly promoting speciation in the lake whitefish species complex
795 (*Coregonus clupeaformis*). *J. Evol. Biol.* 19:1979–1994. doi: 10.1111/j.1420-9101.2006.01150.x.
- 796 Rogers SM, Gagnon V, Bernatchez L. 2002. Genetically based phenotype-environment
797 association for swimming behavior in lake whitefish ecotypes (*Coregonus clupeaformis*
798 Mitchell). *Evolution (N. Y.)*. 56:2322–2329.
- 799 Rougeux C, Bernatchez L, Gagnaire PA. 2017. Modeling the multiple facets of speciation-with-
800 gene-flow toward inferring the divergence history of lake whitefish species pairs (*Coregonus*
801 *clupeaformis*). *Genome Biol. Evol.* 9:2057–2074. doi: 10.1093/gbe/evx150.
- 802 Rougeux C, Gagnaire PA, Bernatchez L. 2019. Model-based demographic inference of
803 introgression history in European whitefish species pairs’. *J. Evol. Biol.* 32:806–817. doi:
804 10.1111/jeb.13482.
- 805 Rougeux C, Gagnaire PA, Praebel K, Seehausen O, Bernatchez L. 2019. Polygenic selection
806 drives the evolution of convergent transcriptomic landscapes across continents within a Nearctic
807 sister species complex. *Mol. Ecol.* 28:4388–4403. doi: 10.1111/mec.15226.
- 808 Ryu T et al. 2020. An epigenetic signature for within-generational plasticity of a reef fish to
809 ocean warming. *Front. Mar. Sci.* 7:1–15. doi: 10.3389/fmars.2020.00284.
- 810 Ryu T, Veilleux HD, Donelson JM, Munday PL, Ravasi T. 2018. The epigenetic landscape of
811 transgenerational acclimation to ocean warming. *Nat. Clim. Chang.* 8:504–509. doi:
812 10.1038/s41558-018-0159-0.
- 813 Seehausen O et al. 2014. Genomics and the origin of species. *Nat. Rev. Genet.* 15:176–192. doi:
814 10.1038/nrg3644.
- 815 Siwertsson A et al. 2013. Discrete foraging niches promote ecological, phenotypic, and genetic

- 816 divergence in sympatric whitefish (*Coregonus lavaretus*). *Evol. Ecol.* 27:547–564. doi:
817 10.1007/s10682-012-9607-x.
- 818 Smith TA, Martin MD, Nguyen M, Mendelson TC. 2016. Epigenetic divergence as a potential
819 first step in darter speciation. *Mol. Ecol.* 25:1883–1894. doi: 10.1111/mec.13561.
- 820 St-Cyr J, Derome N, Bernatchez L. 2008. The transcriptomics of life-history trade-offs in
821 whitefish species pairs (*Coregonus* sp.). *Mol. Ecol.* 17:1850–1870. doi: 10.1111/j.1365-
822 294X.2008.03696.x.
- 823 Stajic D, Jansen LET. 2021. Empirical evidence for epigenetic inheritance driving evolutionary
824 adaptation. *Philos. Trans. R. Soc. B Biol. Sci.* 376:20200121. doi: 10.1098/rstb.2020.0121.
- 825 Stajic D, Perfeito L, Jansen LET. 2019. Epigenetic gene silencing alters the mechanisms and rate
826 of evolutionary adaptation. *Nat. Ecol. Evol.* 3:491–498. doi: 10.1038/s41559-018-0781-2.
- 827 Thorson JLM et al. 2017. Epigenetics and adaptive phenotypic variation between habitats in an
828 asexual snail. *Sci. Rep.* 7:1–11. doi: 10.1038/s41598-017-14673-6.
- 829 Tomkova M, Schuster-Böckler B. 2018. DNA modifications: naturally more error prone? *Trends
830 Genet.* 34:627–638. doi: 10.1016/j.tig.2018.04.005.
- 831 Trefts E, Gannon M, Wasserman DH. 2017. The liver. *Curr. Biol.* 27:R1147–R1151. doi:
832 10.1016/j.cub.2017.09.019.
- 833 Trudel M, Tremblay A, Schetagne R, Rasmussen JB. 2001. Why are dwarf fish so small? An
834 energetic analysis of polymorphism in lake whitefish (*Coregonus clupeaformis*). *Can. J. Fish.
835 Aquat. Sci.* 58:394–405. doi: 10.1139/cjfas-58-2-394.
- 836 Venney CJ et al. 2023. Genome-wide DNA methylation predicts environmentally driven life
837 history variation in a marine fish. *Evolution (N. Y.)*. 77:186–198. doi:
838 <https://doi.org/10.1093/evolut/qpac028>.
- 839 Venney CJ et al. 2022. Thermal regime during parental sexual maturation, but not during
840 offspring rearing, modulates DNA methylation in brook charr (*Salvelinus fontinalis*). *Proc. R.
841 Soc. B Biol. Sci.* 289:20220670. doi: 10.1098/rspb.2022.0670.
- 842 Venney CJ, Johansson ML, Heath DD. 2016. Inbreeding effects on gene-specific DNA

- 843 methylation among tissues of Chinook salmon. *Mol. Ecol.* 25:4521–4533. doi:
844 10.1111/mec.13777.
- 845 Venney CJ, Wellband KW, Heath DD. 2020. Rearing environment affects the genetic
846 architecture and plasticity of DNA methylation in Chinook salmon. *Heredity (Edinb)*. 38–49.
847 doi: 10.1038/s41437-020-0346-4.
- 848 Vernaz G et al. 2022. Epigenetic divergence during early stages of speciation in an African crater
849 lake cichlid fish. *Nat. Ecol. Evol.* 1–12. doi: 10.1038/s41559-022-01894-w.
- 850 Vogt G. 2021. Epigenetic variation in animal populations: sources, extent, phenotypic
851 implications, and ecological and evolutionary relevance. *J. Biosci.* 46:1–24. doi:
852 10.1007/s12038-021-00138-6.
- 853 Vogt G. 2017. Evolution of epigenetic mechanisms in animals and their role in speciation. In:
854 *Handbook of Epigenetics: The New Molecular and Medical Genetics*. Elsevier Inc. pp. 409–426.
855 doi: 10.1016/B978-0-12-805388-1.00027-4.
- 856 Wellband K, Roth D, Linnansaari T, Curry RA, Bernatchez L. 2021. Environment-driven
857 reprogramming of gamete DNA methylation occurs during maturation and is transmitted
858 intergenerationally in Atlantic salmon. *G3 Genes, Genomes, Genet.* 11:jkab353. doi:
859 10.1093/g3journal/jkab353.
- 860 Whitehead A, Crawford DL. 2006. Variation within and among species in gene expression: raw
861 material for evolution. *Mol. Ecol.* 15:1197–1211. doi: 10.1111/j.1365-294X.2006.02868.x.
- 862 Xia J, Han L, Zhao Z. 2012. Investigating the relationship of DNA methylation with mutation
863 rate and allele frequency in the human genome. *BMC Genomics.* 13 Suppl 8:S7. doi:
864 10.1186/1471-2164-13-s8-s7.
- 865

866 **Tables**

867 **Table 1:** Pairwise F_{ST} matrices for (A) *C. clupeaformis* and (B) *C. lavaretus* reveal variable but
868 considerable genetic divergence between lakes and species.

A)		Cliff benthic	0.175		
		Indian limnetic	0.084	0.162	
		Indian benthic	0.146	0.182	0.098
			Cliff limnetic	Cliff benthic	Indian limnetic
B)		Langfjordvatn benthic	0.034		
		Zurich limnetic	0.240	0.242	
		Zurich benthic	0.237	0.239	0.043
			Langfjordvatn limnetic	Langfjordvatn benthic	Zurich limnetic

869

870

871 **Table 2:** Pearson's chi-squared test results for the rate of polymorphism in CpG sites (i) for all
872 SNP types relative to the rate of polymorphism across the entire genome, and (ii) for specific
873 SNP types relative to all C and G positions in the genome. Fold change indicates the ratio
874 between observed and expected polymorphism rates.

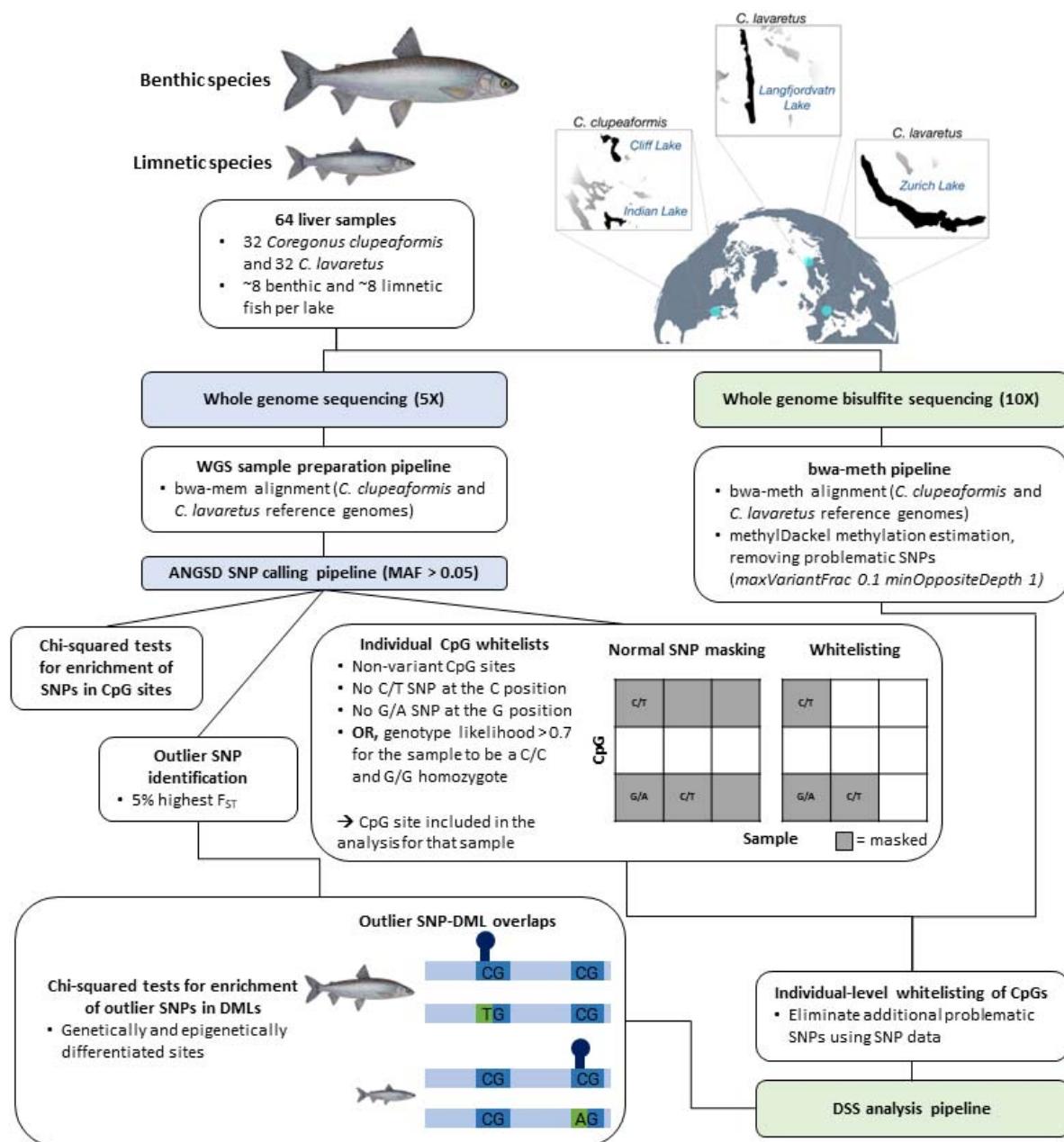
SNP Type	Value	Cliff	Indian	Langfjordvatn	Zurich
All	SNPs	11 861 765	12 727 697	30 919 358	24 221 888
	SNPs in CpGs	1 250 313	1 349 717	3 795 855	2 879 669
	Polymorphic CpGs (%)	10.5	10.6	12.3	11.9
	Polymorphic sites (%)	3.8	3.8	3.8	3.8
	Fold change	2.8	2.8	3.2	3.1
	p-value (Chi-squared test)	< 0.001	< 0.001	< 0.001	< 0.001
	p-value (permutation test)	< 0.001	< 0.001	< 0.001	< 0.001
C/T and G/A	SNPs	2 804 547	3 080 961	8 321 890	6 251 941
	SNPs in CpGs	750 311	819 314	2 487 283	1 834 278
	SNPs in CpGs (%)	0.98	1.09	3.94	2.81
	SNPs in all Cs and Gs (%)	0.32	0.36	1.17	0.85
	Fold change	3.0	3.0	3.4	3.3
	p-value (Chi-squared test)	< 0.001	< 0.001	< 0.001	< 0.001
C/G and G/C	SNPs	956 737	1 012 702	2 253 168	1 810 523
	SNPs in CpGs	95 721	100 779	239 633	198 157
	SNPs in CpGs (%)	0.13	0.13	0.38	0.30
	SNPs in all Cs and Gs (%)	0.11	0.12	0.32	0.25
	Fold change	1.1	1.1	1.2	1.2
	p-value (Chi-squared test)	< 0.001	< 0.001	< 0.001	< 0.001
C/A and G/T	SNPs	2 124 638	2 314 058	5 422 615	4 126 260
	SNPs in CpGs	234 886	248 499	590 917	476 256
	SNPs in CpGs (%)	0.31	0.33	0.94	0.73
	SNPs in all Cs and Gs (%)	0.25	0.27	0.76	0.56
	Fold change	1.3	1.2	1.2	1.3
	p-value (Chi-squared test)	< 0.001	< 0.001	< 0.001	< 0.001

875

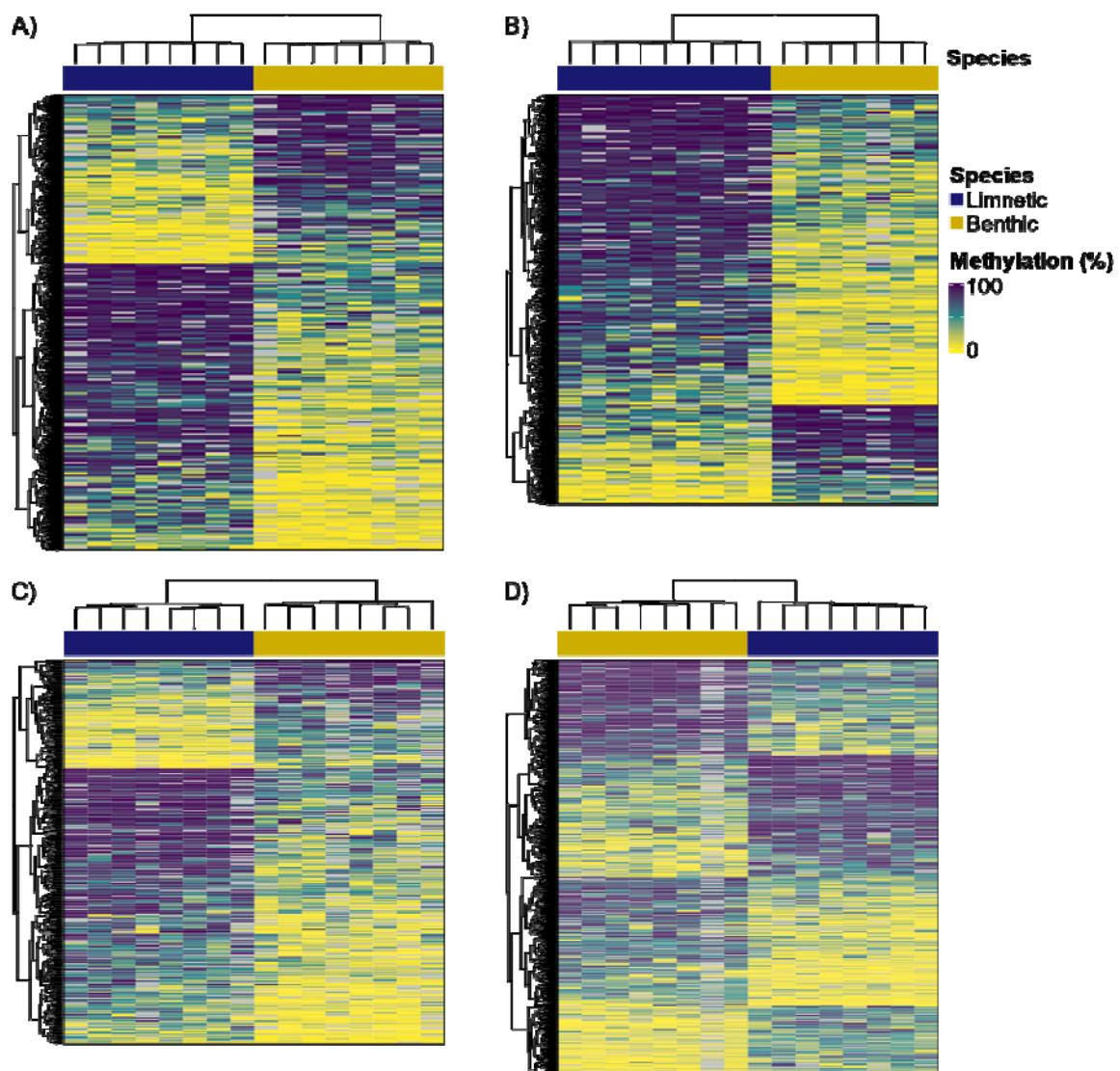
876 **Table 3:** Statistics from differential methylation analysis, including coverage depth and number
877 of CpGs analysed after all coverage trimming, number of DMLs and DMRs identified using a
878 significance level of $p < 0.05$, and information on outlier SNP-DML overlaps and Pearson chi-
879 squared test results.

Statistic	Cliff	Indian	Langfjordvatn	Zurich
Average coverage depth (WGBS)	7.5	7.6	8.1	8.1
Total CpGs analyzed	16 668 063	18 999 942	12 449 354	17 896 958
DMLs	38 060	24 949	3 537	7 140
% CpGs that are DMLs	0.2	0.1	0.03	0.04
DMRs	2891	2300	367	703
CpGs in DMRs	24524	19566	2296	4547
%CpGs in DMRs	0.15	0.10	0.02	0.03
Outlier SNPs (5% highest F_{ST})	593088	636384	1545963	1211091
Outlier SNP-DML overlaps	180	178	45	132
Expected frequency of overlaps	1.38e-05	2.62e-05	9.12e-06	1.30e-05
Observed frequency of overlaps	9.08e-04	7.71e-04	7.65e-05	2.07e-04
Fold enrichment	65.9	29.4	8.4	15.9
p-value	<0.001	<0.001	<0.001	<0.001

880

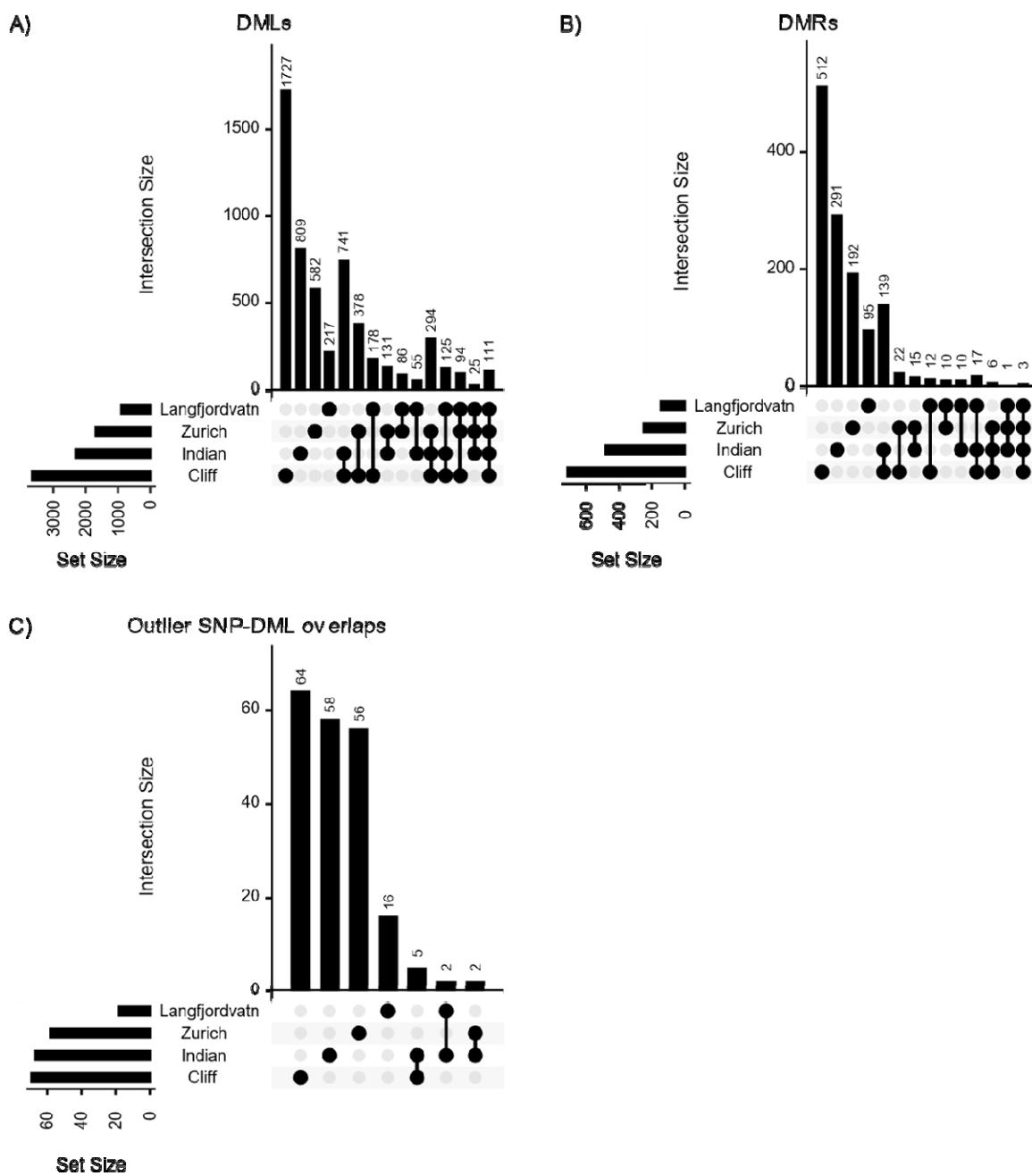

881 **Table 4:** Gene ontology results for outlier SNP-DML overlaps in lake and European whitefish.
 882 There were 12 enriched terms from Cliff Lake, none from Indian Lake, five from Langfjordvatn
 883 Lake, and 10 from Zurich Lake. Significant results had a Benjamini-Hochberg false discovery
 884 rate corrected p-value less than 0.1 and were filtered for GO term depth greater than 1 to remove
 885 broad terms.

GO term	Subontology	GO term name	GO term depth	p-value (BH-FDR)
Cliff Lake				
GO:0050912	BP	detection of chemical stimulus involved in sensory perception of taste	5	0.047
GO:0002414	BP	immunoglobulin transcytosis in epithelial cells	6	0.044
GO:0001580	BP	detection of chemical stimulus involved in sensory perception of bitter taste	6	0.047
GO:0002415	BP	immunoglobulin transcytosis in epithelial cells mediated by polymeric immunoglobulin receptor	7	0.044
GO:0071745	CC	IgA immunoglobulin complex	3	0.003
GO:0042571	CC	immunoglobulin complex, circulating	3	0.009
GO:0071746	CC	IgA immunoglobulin complex, circulating	4	0.003
GO:0071749	CC	polymeric IgA immunoglobulin complex	5	0.003
GO:0071751	CC	secretory IgA immunoglobulin complex	6	0.003
GO:0019763	MF	immunoglobulin receptor activity	4	0.042
GO:0005154	MF	epidermal growth factor receptor binding	5	0.013
GO:0001792	MF	polymeric immunoglobulin receptor activity	5	0.013
Langfjordvatn Lake				
GO:0016840	MF	carbon-nitrogen lyase activity	3	0.052
GO:0016842	MF	amidine-lyase activity	4	0.014
GO:0016715	MF	oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen, reduced ascorbate as one donor, and incorporation of one atom of oxygen	4	0.015
GO:0004504	MF	peptidylglycine monooxygenase activity	5	0.001
GO:0004598	MF	peptidylamidoglycolate lyase activity	5	0.001
Zurich Lake				
GO:0003700	MF	DNA-binding transcription factor activity	2	0.027
GO:0000981	MF	DNA-binding transcription factor activity, RNA polymerase II-specific	3	0.030
GO:0001067	MF	transcription regulatory region nucleic acid binding	4	0.051
GO:0043565	MF	sequence-specific DNA binding	5	0.051
GO:0003690	MF	double-stranded DNA binding	5	0.090
GO:1990837	MF	sequence-specific double-stranded DNA binding	6	0.061


GO:0000976	MF	transcription cis-regulatory region binding	7	0.051
GO:0000987	MF	cis-regulatory region sequence-specific DNA binding	8	0.010
GO:0000977	MF	RNA polymerase II transcription regulatory region sequence-specific DNA binding	8	0.030
GO:0000978	MF	RNA polymerase II cis-regulatory region sequence-specific DNA binding	9	0.010

887 **Figures**

888 **Fig. 1:** Overview of the sampling design and analysis for sympatric benthic-limnetic species
889 pairs sampled from four lakes. Lake whitefish (*C. clupeaformis*) were sampled from two lakes in
890 North America (Cliff Lake and Indian Lake in Maine, USA) and European whitefish (*C.*
891 *lavaretus*) were sampled from two lakes in Europe (Langfjordvatn Lake, Norway and Zurich
892 Lake, Switzerland). The analysis pipelines for whole genome sequencing and whole genome
893 bisulfite sequencing are outlined in the flowchart. C/T and G/A SNPs that affect methylation
894 calling are filtered (1) during methylation calling based on settings in methylDackel, and (2)
895 through our whitelisting approach which uses the SNP data for an additional layer of stringent
896 filtration. The *C. clupeaformis* samples were previously analysed in Mérot et al. (2022).



898 **Fig. 2:** Differential methylation analysis comparing limnetic-benthic species pairs identified (A)
899 2 891 DMRs in Cliff Lake, (B) 2 300 DMRs in Indian Lake, (C) 367 DMRs in Langfjordvatn
900 Lake, and (D) 703 DMRs in Zurich Lake. Limnetic (navy) and benthic (gold) species are
901 generally neatly differentiated in the dendograms based on Euclidean distance shown on the x-
902 axes. Percent methylation is displayed for each DMR from 0% (yellow) to 100% (indigo) with
903 clear DNA methylation differences between species. Each column represents a sample and each
904 row represents a DMR.

905

906 **Fig. 3:** Parallelism among lakes was assessed at the gene level based on the number of unique
907 genes overlapping (A) DMLs, (B) DMRs, and (C) outlier SNP-DML overlaps. Missing
908 comparisons indicate that no genes are shared between those lakes. The connected dots on the x-
909 axis represent the populations considered in each comparison and the intersection size shows the
910 number of parallel genes for each comparison. Set size gives the number of unique genes
911 overlapping the marker in each lake.

