

1 **PRE-PRINT RESEARCH ARTICLE**

2 **Overexpression of PSR1 in *Chlamydomonas reinhardtii* induces luxury phosphorus uptake**

3 Stephen P. Slocombe^{1†‡}, Tatiana Zúñiga-Burgos^{1,2†}, Lili Chu^{1†‡}, Payam Mehrshahi³,
4 Matthew P. Davey^{3§}, Alison G. Smith³, Miller Alonso Camargo-Valero^{2,4}, Alison Baker^{1*}

5 ¹ School of Molecular and Cellular Biology, Centre for Plant Sciences and Astbury Centre
6 for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds,
7 Leeds LS2 9JT, UK

8 ² BioResource Systems Research Group, School of Civil Engineering, University of Leeds,
9 Leeds LS2 9JT, UK

10 ³ Department of Plant Sciences, Downing Street, Cambridge CB2 3EA

11 ⁴ Departamento de Ingeniería Química, Universidad Nacional de Colombia, Campus la
12 Nubia, Manizales, Colombia

13 *Corresponding author.

14 †Contributed equally to this work.

15 ‡Current address: School of Biosciences, Geography and Physics, Faculty of Science and
16 Engineering, University of Swansea, Singleton Park, Sketty, Swansea SA2 8PP

17 §Current address: Scottish Association for Marine Sciences (SAMS) Oban, PA37 1QA, UK

18 **Keywords:** Biomass, Micro-algae, Polyphosphate, Transcription, Wastewater remediation,
19 factor

20 **Abstract**

21 Remediation using micro-algae offers an attractive solution to environmental phosphate
22 (P_i) pollution. However, for maximum efficiency, pre-conditioning of algae to induce
23 'luxury phosphorus (P) uptake' is needed. Here we show that natural pre-conditioning can
24 be mimicked through over-expression of a single gene, the global regulator PSR1 (Myb
25 transcription factor: Phosphate Starvation Response 1), raising P levels to 8% dry cell
26 weight from 2% in control. Complete removal of P_i occurred in log phase, unlike the
27 control. This was associated with increases in PolyP granule size and uptake of Mg^{2+} , the
28 principal counterion. Hyper-accumulation of P depended on a feed-forward mechanism,
29 where a small set of 'Class I' genes were activated despite abundant external P_i levels.
30 This drove a reduction in external P_i levels, permitting more genes to be expressed (Class
31 II), leading to more P_i -uptake. These discoveries enable a bio-circular approach of
32 recycling nutrients from wastewater back to agriculture.

33 **Teaser**

34 Manipulating a single gene drove uptake of P and a Mg^{2+} counter-ion for increased PolyP
35 accumulation.

48 **MAIN TEXT**

49 **Introduction**

50 Unlike other macronutrient cycles, the geochemical phosphorus (P) cycle lacks an
51 atmospheric form for replenishment of soils. This has led to an increasing demand from
52 intensive agriculture for mined reserves that are applied as fertilizer. However, inefficient
53 utilization by crops can result in eutrophication of water bodies from agricultural runoff (1).
54 Sources of wastewater (i.e. sewage/industrial output) represent a potential source of P, yet
55 sewage treatment plants (STW's) rarely recycle it back to agriculture or entirely prevent the
56 pollution of waterways (2). Circular bioeconomy solutions are needed, and microalgae have
57 a long history in wastewater treatment (3–5). Unlike vascular plants, microalgae accumulate
58 P in Polyphosphate granules (PolyP) which can act as a slow-release fertilizer (6). This
59 allows algal biomass to be employed in this role, returning P to soils in a controlled manner
60 to minimize runoff (7–9). Algae-based solutions have several problems however, including
61 seasonal or climate growth limitations, and there are concerns over the amount of additional
62 land area required for the algal growth. Nevertheless, improvements in P-uptake rates and
63 the P content in biomass could increase the efficiency of the remediation process
64 dramatically (3, 9).

65 Under active growth in P-replete conditions, P resources are assimilated into phospholipids
66 and nucleic acids for cell division (10, 11). Producing PolyP would be a diversion from
67 these sinks so presumably cellular processes prevent this happening (10). However, luxury
68 uptake of P can be triggered by restricting other nutrients (e.g. N, S or Zn), resulting in
69 accumulation of PolyP granules in acidocalcisomes (12). Alternatively, if P-starvation
70 precedes P-resupply then hyper-accumulation, or 'P-overplus' occurs upon reintroduction
71 of inorganic phosphate (Pi), and this is part of the Phosphate Starvation Response (13). This
72 response, best understood in *Chlamydomonas reinhardtii*, acts to conserve P, enhance
73 uptake and exploit alternative external P resources (for continued growth) and primes the
74 cell for P hyper-accumulation (14). The actual priming phenomenon, which was first
75 recognized in *Micromonas* spp. (15), is understood to be a strategic response to fluctuating
76 supplies of P (13).

77 Relying on these natural mechanisms to ensure algal PolyP accumulation in any form of
78 wastewater remediation would require stress pre-conditioning or strict control of nutrients;
79 a process that is already constrained to fit into existing wastewater treatment pipelines (e.g.
80 STW's) (4). An alternative is to exert molecular control over the Phosphate Starvation
81 Response. This includes conservation measures such as replacement of phospholipids with
82 sulfolipids (16) and shifts in Pi importer gene expression (e.g. repression of *PTA* 1,3 and
83 elevation of *PTB* 2-5,8) that result in substantial increases in uptake rate and affinity for Pi
84 (17, 18). Additionally, there is an induction of periplasmic phosphatase activity (e.g. *PHOX*)
85 to release Pi from external organic Pi sources (such as glucose-1-P). Finally, there is
86 increased capacity for PolyP synthesis such as the upregulation of *VTC1*, *VCX1* that encodes
87 respectively a subunit of the transmembrane PolyP synthesis complex and vacuolar Ca-
88 importer (18).

89 The great majority of the above changes are dependent on a single gene: *PSR1* (Phosphate
90 Starvation Response 1), which encodes a Myb-type transcription factor. This was
91 determined by the effects of a non-lethal knockout mutant *psr1-1* (14, 16–18) which appears
92 to have a complete loss-of-function: see Suppl. info in (19). The *PSR1* gene has global
93 influences, including induction of storage lipid synthesis associated with S-, N- (19) and P-

94 deprivation (16). These last two studies focused primarily on organic storage products and
95 found that over-expression of PSR1 led to starch increases (and expression of associated
96 genes) along with increased cell size (16). High levels of storage lipid in a sub-population
97 of large-celled ‘liporotund’ was also observed (19). Reports of a transient 5-fold increase
98 in P-content per cell were noted in one of the PSR1 over-expression studies (16). A complete
99 analysis of the P-uptake and P-storage characteristics, including PolyP content or the gene
100 expression changes promoted by PSR1-overexpression, is absent from the wider literature.

101 Our aim in this study was to focus on the effect of PSR1-overexpression on P-uptake in *C.*
102 *reinhardtii*, paying close attention to removal rates and cellular levels of PolyP. We were
103 also interested in relating the dynamics of P-uptake and PolyP synthesis to global patterns
104 of gene-expression. This would reveal how P-homeostasis can be manipulated for
105 harnessing the true potential of microalgae for remediation.

106 Results

107 PolyP accumulation is increased with PSR1-OE

108 Growth under replete conditions led to transiently enhanced PolyP accumulation and
109 granule size with PSR1-OE (Fig. 1). This was achieved by constitutive PSR1-over
110 expression (PSR1-OE) in *C. reinhardtii* strain UVM4 (20). A C-terminal PSR1-YFP fusion
111 (predicted size 1048 amino acids or 109.4 kDa) (see Methods, fig. S1-3, table S1, 2) was
112 expressed in three independently-transformed lines (8-27, 8-2 and 8-42) (fig. S4). Confocal
113 analysis indicated nuclear targeting of the PSR1-YFP fusion in line 8-27 (Fig. 1B-D) and
114 line 8-42 (fig. S5B-D) whereas PolyP granules were located to the acidocalcisomes or
115 vacuolar bodies (Fig. 1E for 8-27; fig S5E for 8-42). In transgenic line 8-27, PolyP granules
116 were found to be much larger in day 2 of culture (Fig. 1L) compared with the UVM4 control
117 (Fig. 1I). The signal was diffuse in both lines at this stage however. By day 3, granules had
118 become smaller and more numerous in both lines although the signal was greater in the
119 control (Fig. 1J cf. Fig. 1M). By day 6 the signal was diffuse and weak in both lines (Fig.
120 1K, N) (multiple images shown in fig. S6).

121 Growth rate is unaffected by PSR1 overexpression

122 No significant changes in growth rate (fig. S7A) or biomass dry weight (DW) concentration
123 (Fig. 2A) were noted between control and transgenics. The three PSR1-OE lines (8-2, 8-27,
124 8-42) were compared with an untransformed UVM4 control in batch culture (25°C under
125 continuous light in TAP medium: 1 mM P or ~30 mg/L P). Exponential growth indicative
126 of log phase was evident from d0 to d2, with no recorded lag-phase, and stationary phase
127 was evident from d4 (fig. S7A). Maximum growth rates were 1.4 d⁻¹ (t_d ~ 0.5 d) with
128 maximum biomass productivity at 0.18-0.19 g DW L⁻¹ d⁻¹ (Table 1).

129 Enhanced removal of phosphate from the medium in PSR1-OE lines

130 Uptake rates for PO₄³⁻ were substantially improved with PSR1-OE leading to depletion from
131 the medium and uptake of Mg²⁺ was also enhanced (Fig. 2, Table 1). The removal process
132 was incomplete in the control however.

133 In UVM4, removal of PO₄³⁻ and NH₄⁺ from growth media was down to 30% of starting
134 levels by day 7 (Fig. 2B and fig. S7D), SO₄²⁻ to 50% and Mg²⁺ to 80% (fig. S7E, Fig. 2C)
135 and there was little change in K⁺ and Ca²⁺ levels (fig. S7F, G). Parameters that did alter

137 reflected sigmoidal increases in biomass in UVM4 (**Fig. 2A**). This was apparent for pH
138 increases and reductions in PO_4^{3-} , NH_4^+ , SO_4^{2-} and Mg^{2+} (**Fig. 2B, C**, fig. S7C-E)

139 With the exception of PO_4^{3-} and Mg^{2+} , inorganic ions showed no significant change in the
140 transgenic lines against control (**Fig. 2B, C**, fig. S7). Here, the maximum removal rates
141 (R_{MAX}) for PO_4^{3-} and Mg^{2+} were respectively 3- and 4-fold higher for the strongest line (8-
142 27) (**Table 1**). This led to a complete removal of PO_4^{3-} from the medium by 3.5 d (**Fig. 2B**).
143 Medium Mg^{2+} levels followed PO_4^{3-} very closely in all the lines except that Mg^{2+} baselined
144 to 5-6 mg/L instead of zero (**Fig. 2C**). In the other PSR1-OE lines (8-2 and 8-42) R_{MAX} (P)
145 was enhanced to a lesser degree (1.9 and 1.5 fold cf. control respectively), and complete
146 removal of PO_4^{3-} from the medium was accomplished later (but not in UVM4) (d4.5 and
147 d5- 6 respectively) (**Table 1, Fig. 2B**).

148 **Hyper-accumulation of biomass P is linked to transience**

149 Rapid P-removal was associated with a greater amplitude and transience of the biomass P
150 peak (**Fig. 2D**). In PSR1-OE line 8-27, the PO_4^{3-} content in the dried algal biomass reached
151 an early maximum of 8% DW (P) at d2. Line 8-2 peaked later at 4% DW (P) on d5. Line 8-
152 42 reached 3% DW (P) at d4-7 with no distinct peak and the control showed no change at
153 all over time, at 2% DW (P). The higher levels of biomass P in the three transgenic lines
154 were all significantly greater than control levels (Tukey HSD test, fig. S8).

155 **The Phosphate Starvation Response was weak in the UVM4 control**

156 Under batch culture on P-replete medium (TAP) there is a backdrop of growth limitations
157 and stresses that develop as biomass increases. Gene inductions associated with P-stress
158 were found to be much less evident than for other stresses (**Fig. 3A**).

159 To examine gene expression, RNA sequencing was performed on time points (d2, 3, 6) from
160 the batch culture experiment in **Fig. 2** for lines 8-27, 8-42 and UVM4 (data S1). In **Fig. 3A**,
161 analysis focused on the UVM4 control as it transitions from log-phase to early stationary
162 phase (top 200 genes; full set in fig. S9 and data S1). Apart from the unknown genes, the
163 largest functional group were regulatory or associated with sexual reproduction, motility or
164 stress responses (30-40%). Genes linked to nutrient limitation or acquisition amounted to
165 20-30% of the total. Those genes classed as metabolic enzymes or cell structure-related
166 were under 20% of total.

167 The impact of a particular stress can be estimated from expression changes in associated
168 genes (e.g. gene numbers, magnitudes or early timing). By these criteria, responses to Fe,
169 C, N and S limitation in UVM4 were much greater than those for P **Fig. 3A** (Data S1).
170 Early-induced examples were Fe (FEA1), S (SLT3), or C (CAH8), with mostly late-
171 inductions for N (NIT3, NAR1.2, and GLN3) or P (PTB12) (Data S1). Early gene-induction
172 responses potentially attributable to N/P were AAH1 (amino acid catabolism) and GDP7
173 (phosphodiesterase, the only early up-regulated P gene) (Data S1). A few (5) down-
174 regulated early response genes were evident for P included PTA3 (P-transport) and a HAD1
175 (P-hydrolase) (Data S1). Early down-regulation of many protein translation genes (19) were
176 followed by late reductions in photosynthetic (12) and metabolic genes (25) (**Fig. 3A**).

179 **PSR1 over-expression mimicked P-stress gene induction not repression**

180 The key question was whether the enhanced acquisition of P by PSR1-OE seen under replete
181 batch culture conditions in our experiment was associated with the same gene regulation
182 patterns noted in the literature under P-starvation. We found that in terms of replicating the
183 P-stress response, PSR1-OE was most effective at driving gene induction than repression.

184 To address this, our data were compared with a published dataset from a P-starvation
185 experiment (P-STRESS) (Data S1) (16). The two experiments differed in design where
186 PSR1-OE reflected the evolving changes in the culture during growth whereas in P-
187 STRESS, cells were transferred from P replete to P deficient media at a specific time point.
188 Each approach has advantages and disadvantages, but a comparison was essential to validate
189 the behavior of individual genes or their groups.

190 Both datasets were time-courses therefore, the fold-change (FC) magnitudes were compared
191 in a Venn diagram with a biological significance cutoff of 2-fold (**Fig. 3B**). This cutoff
192 generated a subset of 248 genes (OE-248) for our data (98% being significant by Bonferroni
193 correction criteria: p-adj<0.1; 68%, p-adj<0.05; Data S1) whereas a subset of ~4k was
194 generated with the P-STRESS data (PS-4354 in **Fig. 3B**) (Data S1). It is important to note
195 that the OE-248 set was a pool of all the significantly affected genes in at least one of the
196 two PSR1-OE lines examined relative to the control.

197 Good agreement was seen between the PSR1-OE and P-STRESS data sets: 60% of the
198 PSR1-OE set was also altered in the P-STRESS set (**Fig. 3B**). This validation of the OE-
199 248 gene pool was important given differences in the behavior of the two PSR1-OE lines.
200 A higher proportion of genes were co-expressed in the P-STRESS dataset for the strongest
201 line 8-27, (48% cf. 18% in 8-42). There was relatively low agreement between the two
202 transgenic lines at only 15% of the OE-248 genes (**Fig. 3B**). Neither PSR1-OE line showed
203 a co-expression bias towards early- or late-expressed P-STRESS genes (**Fig. 3B**). A bias
204 was seen towards gene upregulation in the OE-248 dataset (71%) compared with
205 downregulation (29%), but not within the P-STRESS dataset (fig. S10 A, B). Upregulated
206 PSR1-OE genes were more likely to follow suit in the P-STRESS data set (55%) than
207 downregulated PSR1-OE genes (27%). These findings also held when a smaller set of
208 highly expressed genes from the P-STRESS dataset were compared to the OE-248 genes,
209 for numerical equivalence (fig. S10 C, D).

210 **Functional gene categories were regulated differently**

211 Comparing the OE-248 data set with the published P-STRESS data, subdivided the former
212 gene list into six different Venn diagram categories which were condensed into four
213 regulatory classes (I-IV) that differed in gene function profile (**Fig. 3B**).

214 Regulatory genes dominated in a functional analysis of OE-248 at nearly 50% (either
215 induced or repressed) (**Fig. 3B**, left donut). Nutrient assimilation/partitioning genes
216 accounted for one third of the changes, where half of the induced genes related to P-stress.
217 Unknowns comprised about 25% and metabolic/structural genes had minor representation.
218 For simplicity, each Venn diagram sector was labelled according to the gene groups
219 comprising it i.e. A (line 8-27), B (line 8-42), C (P-STRESS early) and D (P-STRESS late)
220 (**Fig 3B**).

221 **Class I genes** comprised Venn set ABC/D, a small but robustly substantiated group of 18
222 genes that were differentially expressed in both transgenic lines (A, B) and the P-STRESS
223 dataset: early (C) or late (D) or both). It was mostly regulatory genes and P-transport genes
224 (e.g. PTB 2-4, PTA1, 3 in **Table 2**) in this grouping (**Fig. 3B**, right donuts). A notable
225 exception was a strongly up-regulated peptidase, GAT1 (**Table 3**).

226 **Class II genes** were only altered in the strongest PSR1-OE line (8-27) and comprised the
227 two largest Venn subsets: set AC/D (also present in the P-STRESS dataset) and set A
228 (specific to OE-248) (**Fig. 3B**). There was a similar split between regulation and nutrition
229 as noted in Class I but also more diverse gene functions. P-stress/assimilation genes were a
230 substantial category among the induced genes in this class but the majority were P-salvage
231 or P-scavenging (e.g. PHO5/X, SQD3 and GPD2) (**Table 2**). Relatively few potential P-
232 transporters were present (i.e. PSTS, PTB12) but significantly, there were four genes linked
233 to PolyP synthesis (**Table 2**).

234 **Class III genes** were only altered in expression in the weaker OE line 8-42 (Venn subset B
235 and BC/D). A slightly smaller group of functionally diverse genes that included two induced
236 S-assimilation genes (SIR and SUTA) and two repressed P-uptake genes (ERM1, 7) (**Fig.**
237 **3B**) (**Table 3**).

238 **Class IV genes** (Venn set AB) comprised a small number of genes that were affected in
239 both PSR1-OE lines but absent from the published P-STRESS set (and therefore novel)
240 (**Fig. 3B**). They consisted entirely of regulatory pathway genes and unknowns, with a bias
241 towards early gene repression rather than induction (**Table 3**).

242 **Positive autoregulation mechanism revealed for PSR1**

243 The strongest P-uptake response (line 8-27) appeared to be driven by an early peak in
244 activity of transgene PSR1 mRNA (i.e. late log-phase: d 2-3). In both PSR1-OE lines there
245 was an increase in the endogenous PSR1 gene activity along with increases in P-uptake.

246 The relationship between the PSR1 protein and mRNA levels are shown in **Fig. 4A, B** with
247 reference to physiological data from **Fig. 2**. PSR1 mRNA levels are shown with a
248 breakdown of the wild type-specific (5'UTR or 3'UTR) and transgene-specific (YFP)
249 fragments alongside the complete PSR1 gene mRNA (5'UTR, CDS and 3'UTR) which was
250 a combination of wild-type and transgene signals (**Fig. 4B**). The strength of the P-uptake
251 response across the lines was in proportion to PSR1 mRNA and PSR1-YFP fusion protein
252 levels (**Fig. 4A, B**). Activation of endogenous wild-type PSR1 was ~10-fold at d3 for line
253 8-27 (3'UTR or 5'UTR PSR1) in relation to UVM4 (**Fig. 4B**).

254 The PSR1-YFP fusion protein levels peaked in both transgenic lines at d2-3, although this
255 was only pronounced in line 8-27 (**Fig. 4A**). Total PSR1 mRNA signal showed an early
256 increase which levelled out in this line, whereas in 8-42 and UVM4 the increase was a late
257 response (**Fig. 4B**). These observations based on RPKM levels agreed with the FC data in
258 **Table 2** showing an early 10-fold induction of PSR1 in 8-27 PSR1 over UVM4 at d2/3
259 which decreased to 3-fold for d6. This compared with a constant 3-fold relative increase for
260 8-42 v. UVM4 over time (p-adj <0.05). In line 8-27, the transgene-specific YFP mRNA
261 RPKM (**Fig. 4B**) matched the YFP antibody signal (**Fig. 4A**), indicating dependence of
262 protein levels on mRNA levels.

263

264 **Expression patterns also placed target genes for PSR1 into four regulatory classes**

265 The key gene expression changes (~50 genes out of OE-248) fell into four regulatory classes
266 based on multivariate analyses of their expression patterns within our dataset. This outcome
267 was in agreement with the above Venn comparison of the OE-248 list with the P-STRESS
268 dataset, producing a similar result by independent means.

269 Target genes showing substantial expression changes with PSR1-OE are listed in **Tables 2**
270 and **3** (full OE-248 list in data S1). Exemplar genes (summarized below) were taken from
271 these lists including one or two of the best induced or repressed responses for regulatory
272 classes I-IV (see above) and their gene expression levels (RPKM) are shown in **Fig. 4C, D**,
273 alongside the data for PSR1 (**Fig. 4B**). Although these genes were all significantly linked to
274 PSR1-OE (p-adj<0.05), their expression patterns were radically different from each other.
275 This was investigated systematically by multivariate analysis (**Fig. 5A, B**) using the same
276 OE-248 dataset as shown in the Venn analysis in **Fig. 3B** except that the full time course
277 FC data was used instead of the magnitudes. This data-separation analysis identified the key
278 genes in terms of (i) their differential expression strength (i.e. distance from origin); (ii)
279 induction or repression (i.e. PC1, x-axis where approximately, induction $x>0$; repression
280 $x<0$) and (iii) transgenic line (i.e. PC2, y-axis where data bi-plots cluster according to the
281 algal line) (**Fig. 5A, B**).

282 The data were color-coded according to gene function processes (**Fig. 5A**) or the six Venn
283 diagram subsets (**Fig. 5B**). In **Fig. 5A**, the genes displayed clustering according to gene
284 function particularly differentiating P-transport (mid-blue) from P-salvage genes (orange)
285 (**Fig. 5A**). In **Fig. 5B**, the genes were seen to fall into clusters which supported the four gene
286 Classes I-IV derived from the Venn comparison with the P-STRESS dataset as shown in
287 **Fig. 3B**. There were a handful of exceptions (e.g. GAT1, MEKK and HMG1) that could
288 now be more accurately reassigned to different classes according to the PCA analysis (**Fig.**
289 **5B**). The findings for the four classes are summarized as follows:

290 **Class I** genes (Venn ABC/D) clustered with, or directly opposed, PSR1 gene activity,
291 indicating a strong positive or negative correlation (FC data in **Fig. 5A, B**). This was
292 supported by the high Pearson's correlation coefficients for Class I gene to PSR1 (RPKM)
293 (**Tables 2, 3**). This group also associated with PC1, which explained 70% of the variation,
294 consistent with a strong influence. MEKK, a novel early-induced regulatory gene (**Table**
295 **3**), was re-assigned to Class I from the Venn AB set based on the PCA (**Fig. 5**). The P-stress
296 induced transporter PTB2 (**Table 2**) was a highly expressed Class I gene (RPKM) (**Fig.**
297 **4C**). PTB2 was induced in proportion to the PSR1 mRNA levels (**Fig. 4C** cf. **Fig. 4B**) as
298 implied by its association with PSR1 in the PCA (**Fig. 5A, B**). Also in Class I, transporter
299 gene PTA1 (**Table 2**) showed a similar dependence of induction on PSR1 levels, although
300 a temporal pattern of early induction followed by repression was seen in all lines (**Fig. 4C**).
301 XBAT31 (**Table 3**) was decreased in proportion to PSR1 levels, where the temporal pattern
302 was late repression (**Fig. 4D**).

303 **Class II** genes consisted of mostly P-scavenging genes that were highly induced in the
304 strongest line only (8-27) (set AC/D) (**Fig. 5A, B**). The most dynamic “up” gene in the OE-
305 248 dataset: PHO5/PHOX (an exophosphatase) (**Table 2**) showed transient induction in line
306 8-27, peaking at low PE levels but only to moderate RPKM levels compared with PTB2
307 (**Fig. 4C**). Regulated in a similar but less dynamic manner, was CAX1/VCX1 (putative
308 PolyP synthesis gene) (**Fig. 4C**). There were 3 genes strongly in opposition to the 8-27 bi-
309 plots (HMG1, GST8, BAR) and therefore, highly repressed in this line only (from sets A

310 and AB) (**Fig. 5A, B, Table 3**). Irregular gene HMG1 was significantly increased in 8-42
311 but significantly decreased in line 8-27 (**Table 3, Fig 4C**). Originally placed in Venn subset
312 AB, it was reassigned to Class II based on the PCA (**Fig. 5**).

313 **Class III** genes comprised highly induced/repressed genes associated only with line 8-42
314 (sets B or BC/D) including ZAF1, the most dynamic “up” gene in line 8-42, albeit late-
315 expressed (**Fig. 4D, 5A, Table 3**). ZAF1 belonged to set BC/D and was therefore validated
316 by its appearance in the P-STRESS dataset (although it was repressed here, **Data S1**), yet
317 was unaltered in the stronger PSR1-OE line 8-27 (**Fig. 5**). ERM7 a Ca-dependent P-
318 transporter channel was significantly repressed in line 8-42 only (**Table 2**) (**Fig. 5**). Class
319 III genes included a high proportion of genes that were ectopically upregulated with P-stress
320 in the absence of PSR1 in the P-STRESS data set (38% cf. 15% for the full OE-248 set)
321 (Fig. S11, **Table 2 and 3, Data S1**).

322 **Class IV** genes consisted primarily of those from Venn diagram set AB, which showed
323 equal responses in both lines (e.g. LTI1, ZF1, PBP1 and CSB57) (**Table 3**). In other words,
324 they were equidistant from the two bi-plot clusters in **Fig. 5A-B** and showed similar
325 expression data (FC) in **Table 3**. This was evident despite the differences in PSR1-OE
326 levels. Although the GAT1 peptidase (**Fig. 4D**) and ZF4 were in Venn set ABC/D, they
327 gravitated in the PCA towards Class IV (**Fig. 5B**). Functionally, GAT1 a peptidase, was not
328 obviously linked to P-homeostasis (**Fig. 5A**).

329 **Genes that respond to stresses other than P-related are regulated differently**

330 Further multivariate analyses revealed that genes for P-stress mitigation (e.g. P-transport,
331 P-sparing or P-salvage) consisted of mostly early timing responses towards PSR1-OE
332 whereas those associated with other stresses were late responses (**Fig. 6**). This allowed a
333 hypothetical model to be drawn up including a feed forward mechanism for P-uptake (**Fig.**
334 7).

335 To probe the entire OE-248 dataset, expression change magnitude was factored out to focus
336 on temporal factors using normalized RPKM data (Data S1). This also allowed co-analysis
337 with physiological measurements (PI, (internal P_i), PE (external P_i) and N (medium N)).
338 Both PCA (**Fig. 6A**) and correlation coefficient analyses (**Fig. 6B**) clustered genes into
339 discrete functional categories. For instance for the PCA: S-assimilation (2), C-assimilation
340 (3), storage (2), putative PolyP synthesis (4) and P-salvage (8) functions and other stress-
341 related functions (18 genes). In **Fig. 6A**, virtually all the genes for P-stress (early induction)
342 were separated from those for all the other stress responses (N, S, C, Fe, Zn, Cofactor,
343 motility, DNA-repair etc.) which were late induced (d6) (**Fig. 6A**, fig S12A). The latter
344 group amounted to mostly weaker changes (signaled by their closer clustering to the origin
345 in the earlier PCA in **Fig. 5A**) but with some exceptions (e.g. HMG1 and GST8), which
346 underwent larger changes (**Fig. 5A cf. Fig. 6A**). Along the PC1 axis, PSR1, P-transport and
347 P-salvage genes (left) were separated from those PolyP synthesis, which associated closely
348 with internal P levels (PI) (bottom right, **Fig. 6A**). Repressed genes in opposition to PSR1
349 (e.g. XBAT31, 3) associated with PE or N (on the right, **Fig. 6A**).

350 In **Fig. 6B**, correlation coefficients for P-levels: PE and PI, were plotted for the gene RPKM
351 data. A strong bias was seen towards genes that clustered with PSR1. PSR1 itself showed a
352 close negative PE correlation ($p<0.05$, **Table 2**) and a weak positive PI correlation (NS,
353 **Data S1**). These genes were primarily linked to line 8-27 (Venn subsets ABC/D, AC/D or
354 A) i.e. Class I and II (fig S12B). A few genes showed regulation in the opposite direction

355 (e.g. FDX5, XBAT31, 3; also Class I and II) which were repressed by PSR1 and correlated
356 positively with PE (**Fig. 6B**, fig S12B). A significant positive correlation was seen with PI
357 for the four putative PolyP synthesis genes along with PHL1, a nucleotide triphosphate
358 hydrolase and regulatory genes such as LAR1 (**Fig. 6B**) (**Data S1**). Many (13) Class IV
359 genes (Venn AB) correlated with PI only (e.g. NOR2 $P < 0.05$, rest NS). Some (5) correlated
360 with PSR1 and/or PE (**Fig. 6B**, fig S12B; note MEKK re-assigned to Class I).

361 **Discussion**

362 The ability to switch on luxury-P uptake would greatly facilitate microalgae-based
363 wastewater treatment. Achieving hyperaccumulation of P even when the element is plentiful
364 would avoid the need for stress preconditioning. This would simplify the process of fitting
365 algae into the existing wastewater plants (3). An important question was whether this could
366 be achieved by increasing the levels of a single regulatory gene. To test this, we
367 overexpressed PSR1, a global regulator of the P-stress response, generating a spectrum of
368 PSR1 over-expression levels. In the strongest over-expresser line (8-27), P-uptake rates
369 were increased 3-fold and maximum biomass P levels, stored as PolyP, were increased 4-
370 fold to 8%DW. Complete removal of culture P was brought forward by at least 3 d during
371 batch culture where the control strain had removed only about 70% after 7d. This was
372 achieved by late log phase at relatively low biomass concentration (0.2 mg DW L⁻¹),
373 uncoupling P-uptake from biomass production.

374 With biomass P at 8%DW and no P left in the medium however, further growth was
375 accompanied by a near complete remobilization of PolyP reserves back to control levels.
376 This remobilization of P was probably inevitable since it would be required to sustain 2-3
377 further cell divisions to reach stationary phase at the same rate as the control (10). A better
378 understanding of the genetic mechanisms of PSR1 action could help to address the
379 transience of PolyP reserves, a potential shortcoming.

380 We found that during batch culture of the control strain (UVM4) in replete medium (TAP),
381 only minor reductions in nutrients were associated with significant gene expression changes
382 but Phosphate Stress Response genes (16) were under-represented compared with other
383 nutrient stress genes (C, S, N, Fe etc.). Early reductions seen in protein translation gene
384 expression may have represented a general response, including P-stress. C-stress was a
385 prominent factor in our UVM4 data and has recently been shown to lead to a TOR-kinase
386 linked drop in key amino acids in *C. reinhardtii* (21), probably impacting translation.

387 Against this backdrop, P-uptake levels were drastically altered to different degrees in
388 different transgenic PSR1 over-expresser lines. Evidence strongly pointed towards over-
389 expression of PSR1 as driving the increased P-uptake levels. For instance, PSR1 gene
390 mRNA levels were found to have a strong negative correlation with external P levels (PE)
391 and were in proportion to P-uptake rates in PSR1-OE lines. Transgenic over-expression of
392 PSR1 increased the endogenous wild type PSR1 gene mRNA levels and also mimicked the
393 induction of a cohort of genes associated with reported P-stress (13, 16) and P-resupply
394 (22). Altogether 248 genes were found to be significantly altered in gene expression relative
395 to the control (UVM4). Of these, 60% (146) were also seen in one univariate P-stress
396 experiment (16) (but not necessarily described) and the remaining 40% (102) were novel.
397 Despite these similarities, there were major differences in the way four different sub-classes
398 of these genes were affected by PSR1 overexpression. These differences were associated
399 with specific gene functional processes implying that different environmental cues (internal

400 and external P levels and other nutrient stresses) were modifying the gene responses to
401 varying extents (**Fig. 7A**).

402 **Proposed feed-forward model accounting for the rapid P-uptake**

403 Evidence suggested that a relatively small group of genes (Class I) were driving the
404 expression of a larger set of genes (Class II) by a feed-forward loop mechanism (**Fig. 7B**).
405 This was inferred from multivariate analyses and the timing of specific genes. For instance
406 Class I genes, consisting of P-transporters (PTA1, 3, 4; PTB2-4) and several putative
407 regulatory genes (e.g. LAR1, SPL9, Bzip1, MRK1, MEKK) were elevated early, in the
408 presence of high external P_i levels (PE). These genes were upregulated in more than one
409 transgenic PSR1 over-expression line and were strongly associated with PSR1 expression
410 levels either by correlation (**Tables 2, 3**) or PCA (**Fig. 5A, B**). PSR1 RNA levels in turn
411 were proportionate to P uptake rates in the 3 lines (UVM4, 8-42 and 8-27) and also inversely
412 correlated well with PE.

413 The timing of putative P-transporter genes supported the model, whereby low P-affinity
414 transporter genes were progressively induced and supplanted by those with higher affinity
415 or active transport by PSR1-OE: 1st PTA1,3,4 (d2 peak, low affinity; Class I), 2nd PTB2-4
416 (d2-d3 peak, high affinity; Class I) and 3rd PSTS (active transport: a putative subunit of a
417 prokaryotic type ATP BINDING CASSETTE (ABC) transporter) and PTB12 (high affinity)
418 (both d3 peak; Class II) (**Table 2, Data S1**) (17). Of the PTB genes, only Class I PTB2-4
419 (cf. PTB5, 6) showed abundant transcript levels (RPKM) as well as high FC's and were
420 presumably the key players (**Fig. 4, Data S1**). The induction of enzyme activity levels for
421 PTB (higher P-affinity) has been noted with P-stress (17, 23)

422 The model proposes that most of the P-stress related genes (Class II) were inhibited by PE,
423 until levels had been sufficiently reduced by the action of the small group of Class I genes
424 (**Fig. 7B**). This is supported by the behavior of the PHO genes which encode P-scavenging
425 exophosphatases repressed by P (18). In our multivariate analyses (**Fig. 5A, B**) these co-
426 clustered with a large group of PSR1-dependent genes responsible for much of the P-stress
427 response characterized as Class II. These genes tended to peak in expression after the
428 transient apogee of P-biomass, for instance one of the strongest relative gene expression
429 (FC) changes was PHO5/X (Class II) which peaked at d3 whereas PTB3,4 peak at d2 (Class
430 I) (**Table 2**). PHO5/X is also one of the most strongly altered genes in P-stress experiments
431 (16, 18). The feed-forward aspect of the model is also supported by the induction of Class
432 II putative P-transporters (PSTS, PTB12) which could reinforce reductions in PE driven by
433 Class I genes. This could provide an explanation for the rapid P-uptake seen in the
434 transgenic lines, along with complete removal of P.

435 Assembling a gene model of the P-stress sensing apparatus integrated the findings in this
436 work with knowledge in the literature, revealing gene targets for improving replication of
437 the luxury P-uptake response (**Fig. 7C**). The model incorporates the well-known Inositol
438 PolyP (InsP₇, 8) pathway, which is presumed to operate in *C. reinhardtii* for the detection
439 of internal P_i (24). It is proposed that for Class I genes, increasing PSR1 levels overcomes
440 InsP₇, 8-mediated inhibition that is signaling an ample P-supply, perhaps by titrating out
441 the SPX1 protein. In vascular plants the PSR1 homologue PHR1 co-ordinates multiple
442 aspects of the response to low phosphate (25). Under high P it is prevented from binding its
443 target site in the promoter of downstream genes by inositol P dependent binding to SPX1
444 (26, 27). In the current study the SPX1 gene was itself increased by PSR1 overexpression
445 but this was not an early response and was also relatively weak (**Table 2**). In this model,

446 PSR1-dependent Class II genes (e.g. PHO5/X) are regulated by this pathway as well as a
447 PSR1-independent pathway for sensing P-levels (**Fig. 7C**). This would render the genes
448 initially insensitive to PSR1 increases until PE levels decreased. Intriguingly, an external P-
449 receptor has been proposed in diatoms on the basis of Ca-mediated signaling for P (28)
450 culminating in gene expression changes through unknown means (Factor X) (**Fig. 7C**). This
451 mechanism could also explain the occurrence of a minority of PSR1-independent genes that
452 are reportedly altered in P-stress (Fig. S11, Data S1) (16). According to the model, these
453 would be regulated by the external P sensor pathway only. Additionally, the TOR signaling
454 complex, which integrates nutrient status to control growth and various anabolic or catabolic
455 pathways, has been placed downstream of PSR1 (via LTS8) (29). TOR also interacts with
456 the VIP1 kinase which produces InsP_{7,8} so could potentially act upstream of PSR1 via
457 SPX1 (**Fig. 7C**) (30).

458 **Mg²⁺ as a dynamic counterion for PolyP accumulation**

459 Achieving a greater retention of the high P in biomass levels could be desirable, even if this
460 incurred a growth penalty; providing an incentive to explore the underlying molecular
461 changes involved in uptake and remobilization of PolyP. High P-uptake driven by ectopic
462 PSR1 increases was associated with a transient accumulation of very large PolyP granules.
463 This was closely associated with a rapid uptake of Mg²⁺, suggesting that this cation, rather
464 than Ca²⁺, was acting as a principal counter-ion in PolyP storage under these circumstances.
465 Both are the predominant cations associated with PolyP in *C. reinhardtii* and higher
466 measured levels of Mg²⁺ cf. Ca²⁺ have been reported in isolated PolyP granules (31) but in
467 another report, they were roughly equal (32). We noted a 2:1 molar ratio of P: Mg²⁺ for the
468 uptake rates (R_{MAX}) (**Table 1**). This lent credence to the idea that Mg²⁺ was the sole
469 counterion, since one divalent cation would bind two P groups in the polymer, given that
470 each P group carries one negative charge (OH⁻) (6). Although a shortage of Mg²⁺ might
471 explain the instability or diffuse appearance of enlarged PolyP granules, Mg²⁺ levels were
472 not actually depleted beyond a low baseline of 3 mg/L, whereas P was depleted below
473 detection.

474 **Accounting for the transience of stored PolyP**

475 Another factor that could have impacted PolyP stability was the transcriptional control of
476 the synthesis pathway. Several Class II genes were putatively associated with PolyP
477 production, for instance the CDF family cation transporter MTP4 (35-fold) and Chromate
478 ion transporters CIT1, 2 (5-fold) which could be responsible for the rapid Mg²⁺ uptake.
479 However, a Ca²⁺/H⁺ vacuolar antiporter (CAX1/VTC1) along with three putative PolyP
480 synthesis genes (VTC1, VTC1L and VTC4) were also induced but by lower levels (2-3
481 fold). Interestingly, a triphosphate hydrolase (PLH1) (6-fold) co-clustered with this latter
482 group of genes, where all exhibited a close positive correlation with internal Pi levels).

483 It was important to note that many of the Class II genes showed transient expression peaks
484 with PSR1 over expression, and this could contribute to PolyP remobilization. The sharp
485 decrease (particularly evident for genes such as PHO5/X) could be due to a negative
486 feedback mechanism and/or a high sensitivity to decreases in PSR1-YFP protein levels. The
487 latter possibility was supported by use of protein translation inhibitors in relation to PHO5/X
488 (16). Once P was removed from the medium, a drop in PSR1-YFP fusion protein was
489 evident in both transgenic PSR1-OE lines, particularly striking in the case of the strongest
490 OE line. This points towards eventual post-translational down-regulation of PSR1-YFP
491 protein levels, as a contributory factor, towards the end of the experiment because late

492 decreases in the transgene mRNA were only moderate (down 50%) and only seen in the
493 strongest line. In the transgene construct, expression was driven by a *C. reinhardtii* PSAD
494 light-regulated promoter. The wild-type PSAD gene levels dropped by 35-40% over the
495 experiment (**Data S1**) but this was seen in all lines so it cannot account for changes that
496 occurred in one line only. The endogenous PSR1 gene continued to increase in expression,
497 as external P was depleted, in all lines (**Fig 4B**). In the literature however, upregulation of
498 the PSR1 gene mRNA has been shown to be transient in univariate stress experiments (P,
499 N, S) (14, 16, 19).

500 There was further evidence from our work and others that might also account for the
501 transience of some Class II gene expression. For instance, THB2 (a Class I regulatory gene)
502 was late-repressed by PSR1 over expression. This truncated hemoglobin is thought to act as
503 an NO scavenger (33). In addition, there was also late induction of NOS1 (3-fold) a possible
504 flavodoxin/nitric oxide synthase with a ferrodoxin reductase-type FAD-binding domain.
505 Together these changes were consistent with observed increases in NO associated with P-
506 stress (33). Switching off THB2 reportedly represses P-stress induction of genes such as
507 PHO5/X thus providing a possible negative feedback mechanism accounting for the
508 transient nature of many of the Class II genes as well as PolyP (33, 34). Poly P synthesis
509 and mobilization are also regulated directly at the enzymatic level by inositol phosphates
510 (InsP7, 8) binding to SPX domains attached to VTC proteins and PTC1 (**Fig. 7C**) (at least
511 in yeast) (35, 36). Therefore, PolyP remobilization and lack of PolyP synthesis could be
512 transduced by this mechanism in the absence of PE (35, 36).

513 **PSR1 influences ‘other nutrient stress’ genes and general stress responses**

514 The global nature of PSR1 gene regulation beyond P-homeostasis has been indicated (19).
515 Likewise, new roles for PolyP production in mitigating other stresses (e.g. S) through
516 utilization of excess ATP have been noted (37). In this context, we found that PSR1 over-
517 expression also led to changes in genes that could alleviate other nutrient stresses (C, N, S,
518 Zn, Fe and vitamin cofactors) or heralded general stress responses in *C. reinhardtii* (e.g.
519 DNA-repair, reproduction, motility, defense, storage products etc.). Most of these genes
520 were regulated later than the P-stress genes however, and generally the responses were
521 weaker but with exceptions (e.g. GST8, HMG1, LTI1 and GAT1). Some of these genes fell
522 into **Class II** (possibly affected by PE), for instance GST8 a glutathione S-reductase
523 (oxidative stress) and HMG-CoA reductase (HMG1) that were both strongly repressed with
524 PSR1-overexpression. Reduction of sterol synthesis (i.e. ergosterol) could be a consequence
525 of repressing the reductase, and this is a known stress response in other organisms (38). The
526 GAT1 peptidase (early response) may act to alleviate N-stress and a potential drop in key
527 amino acids as reported for C-stress (TOR-kinase mediated) (21).

528 Many of the ‘other nutrient stress’ genes fell into **Class III or IV** type regulation where
529 nutrient factors other than P were proposed to impact gene expression (**Fig. 7C**). For
530 instance, in Class III (e.g. S-stress: SUTA and SIR; low-C stress: LCI12), genes were
531 paradoxically strongly regulated with weaker PSR1 over-expression increases and these
532 were generally late responses. Induced genes responsible for cofactor auxotrophy such as
533 METE (bypasses a requirement for vitamin B₁₂) also fell into this class (39). Interestingly,
534 the aforementioned S-stress function genes induced by PSR1 overexpression were not
535 among the most strongly induced genes reported for a univariate S-stress experiment (40),
536 whereas ATS1, which was induced strongly in this report showed significant repression in
537 our work (**Table 3**). Therefore, a somewhat different complement of genes was being
538 influenced by PSR1 over-expression in our work.

539 A very high proportion of genes in **Class III** (38%) showed reported enhanced expression
540 changes with P-stress in the absence of PSR1 (ectopic change) (Fig. S11, Data S1) (16).
541 This was mostly ectopic induction where presumably PSR1 opposes induction and here, the
542 proposed PSR1-independent P-stress mechanism might be responsible for the increase. We
543 note that conversely, the Class III ZAF1 gene was repressed in a PSR1-independent fashion
544 by P-stress (Fig. S11, Data S1) (16) but we found it strongly induced in the weak PSR1-
545 over expression line. Therefore, it could instead be induced by PSR1 but repressed by a
546 PSR1-independent P-stress mechanism (**Table 3**). We propose that in Class III there might
547 be a conflict between the two (or more) mechanisms of P-stress perception that could act to
548 shift the focus more exclusively to P-homeostasis genes when this particular stress
549 dominates (**Fig. 7C**). This is consistent with our observed dampening down of Class III gene
550 expression changes when PSR1 is over-expressed at higher levels, perhaps because PE is
551 reduced faster.

552 Much of the **Class IV** gene expression did not correlate with PSR1 levels or external P and
553 might depend more on other nutrient stresses (represented in **Fig. 7C** by unknown Factor
554 Y). With Class III and IV, late responses prevailed therefore PSR1-dependent control might
555 be exerted via an intermediary gene, perhaps one of the regulatory genes in Class I, and this
556 would permit complex modes of regulation.

557 Conclusions

558 In this study we demonstrated that over-expressing a single gene (PSR1) led to a remodeling
559 of metabolism that induced luxury P uptake. We found that enhanced P-uptake was
560 accompanied by an accumulation of large PolyP storage granules. Our data strongly
561 implicated Mg²⁺ as the principal counter ion for P-storage in this form. We also identified a
562 possible feed-forward mechanism where ectopic PSR1 promotes induction of a small set of
563 ‘*driver genes*’ at high P-levels. These go on to reduce external P levels, allowing the
564 induction of P-repressed genes responsible for further P-uptake so that luxury uptake of P
565 was induced. As expected for a transcription factor, RNAseq analysis showed key genes
566 were induced/repressed. Clearly there are other regulatory mechanisms that might operate
567 at post-transcriptional levels but our results provide a foundation to build on our proposed
568 models. Although only one out of three transgenic lines showed strong PSR1 over-
569 expression, this was a strength that allowed correlation of responses to levels of PSR1
570 expression. It could also be seen as a limitation, however published corroborative data was
571 used to compare and substantiate findings. We carried out over-expression of PSR1 in only
572 one engineered *C. reinhardtii* UVM4 strain lacking a cell wall and aspects of gene silencing
573 to favor transgenic expression (41). Like many *C. reinhardtii* strains it carries *Nit1*, 2
574 mutations preventing use of nitrate (20, 42). Nevertheless, recent data suggests that these
575 potential problems can be overcome to give high productivity in UVM4 (43). Furthermore,
576 our technology is also likely to be transferrable since a related *Chlamydomonas* sp. has
577 shown good growth on wastewater (44) and PSR1 homologs carrying out P-starvation
578 responses have been found in diverse taxa, such as the marine diatoms and higher plants
579 (27, 45). Although we found hyper-accumulation to be transient, semi-/continuous cultures
580 could be employed to hold the culture at peak biomass P. Alternatively, the moderate over-
581 expresser lines also showed slower remobilization. Turnover could also be blocked by
582 stacking mutations in PolyP remobilization genes such as *PTC1* (35, 36). Collectively, these
583 results will accelerate progress towards circular bioeconomy algal solutions for wastewater
584 treatment or eutrophic waterbody bioremediation.

586 **Materials and Methods**

587 **Algal strains, culture and harvesting**

588 *C. reinhardtii* strain UVM4 (20) and its derived transformants were cultured in an Algaetron
589 AG230 (Photo Systems Instruments, Czech Republic). The cells were grown in Tris Acetate
590 Phosphate (TAP) media without Na_2SeO_3 (46) in $100\mu\text{mol}$ photons $\text{m}^{-2} \text{ s}^{-1}$ constant light at
591 25°C . For the microscopy, cell lines were grown in bijou containers for 3-4 d without
592 shaking. For the growth experiments in batch culture, liquid cultures were inoculated from
593 a 3-4 d starter culture for an initial $\text{OD}_{750\text{nm}}$ of 0.005 in 250 mL conical flasks, which were
594 shaken at 150 rpm and growth was monitored for 7 d. The transgenic lines *C. reinhardtii*
595 LC8-27, LC8-42 and LC8-2 were grown in parallel with a non-transformant control strain
596 (*C. reinhardtii* UVM4), in triplicate. Samples (1-30 mL) were centrifuged at 5000 g for 10
597 min and the supernatants were filtered (22 μm pore size Millex-GP Syringe Filter Unit,
598 Merck) and frozen at -20°C for measuring medium composition. The biomass pellets were
599 washed twice with deionized H_2O , flash frozen with liquid nitrogen and stored at -80°C .

600 **Generating the PSR1-OE construct and the transgenic lines**

601 The transgenic lines *C. reinhardtii* LC8-27, LC8-42 and LC8-2 were independent
602 transformants designed to overexpress the PSR1 gene. Constitutive over-expression of the
603 PSR1 gene (PSR1-OE) in algae was driven by the PSAD gene promoter of *C. reinhardtii*,
604 followed by the RBCS intron, to maximize expression. The DNA construct was assembled
605 as follows: the PSR1 gene (Cre12.g495100.t1.1) with an inserted 3xHA-tag was synthesized
606 (Genscript Biotech Corporation, UK) and cloned into pUC57 via the *Stu*I restriction site.
607 This plasmid was then used as a template for Golden Gate-based cloning (MoClo Plant Kit,
608 Addgene) (47). The following level 0 plasmids were used: pCM0-001 (PSAD prom),
609 pCM0-024 (RBCS2 intron), pCM0-044 (mVenus, incl. Strep-tag), pCM0-114 (PSAD term)
610 all from (47) and L0_PSR1 (PSR1 cloned into pAGM1287 (MoClo Plant Kit) in this study).
611 For the generation of level 2 plasmids for *C. reinhardtii* transformation, the following level
612 1 plasmids were used: pAGM4673 (L2 backbone, MoClo Plant Kit), pICH41822 (L2 end-
613 linkers MoClo Plant Kit), pICH54011, pICH54022, pICH54033, pICH54044 (Dummies,
614 MoClo Plant Kit), pCM1-27 (ParoR_r) (47) and L1_PSR1 (PSADprom-RBCS2intr-PSR1-
615 mVenus-PSADterm, this study). All restriction/ligation reactions were performed using
616 BpiI (BbsI) (Fisher Scientific) or BsaI-HF (NEB) together with T4 ligase (NEB) in a total
617 volume of 20 μL containing 1x BSA, 1x T4 ligase buffer, 5U restriction enzyme, 200U T4
618 ligase. The typical ratio between destination plasmid and entry plasmid/parts was 1:2, using
619 75 ng of the acceptor plasmid. Level 1 assembly reaction: 20 sec 37°C , 26x (3 min 37°C , 4
620 min 16°C), 5 min 50°C , 5 min 80°C , hold 16°C . Level 2 assembly reaction: 45x (2 min
621 37°C , 5 min 16°C), 5 min 50°C , 10 min 80°C , hold 16°C . All plasmid concentrations and
622 quality were determined using a NanoDrop (ND-1000, Labtech). Correct assembly was
623 confirmed by sequencing (Genewiz). Primers and DNA constructs are listed in Tables S1,
624 2.

625 **Genetic transformation of *C. reinhardtii***

626 For *C. reinhardtii* transformation, UVM4 was grown in liquid TAP for 2 days until mid-
627 logarithmic phase ($1-4 \times 10^6$ cells/mL). Cells were collected by centrifugation (2500 g, 10
628 min) and the pellet was washed twice with ice-cold EP buffer (electroporation buffer: 40
629 mM sucrose, 10 mM mannitol and 10 mM CHES pH 9.25). The pellet was resuspended in
630 EP buffer to a final volume of 1×10^8 cells/mL. Transformation was performed by

631 electroporation using a NEPA21 (Nepa Gene Co. Ltd.) and 0.2 cm cuvettes (Nepa Gene Co.
632 ltd.) at the following settings: 2x poring pulse 300 V, 4 ms length, 50 ms interval, 10%
633 decay rate, polarity +; 1x transfer pulse 20 V, 50 ms length, 50 ms interval, 40% decay rate,
634 polarity +/--. For each transformation, 25 μ L cells (2.5×10^6 cells) and 5 μ L Plasmid-DNA
635 (500 ng) were used. After transformation, the cells were kept at dim light (2-3 μ E) for 16 h
636 and plated on fresh TAP plates containing 10 μ g/mL Paramomycin (Sigma). Plates were
637 incubated for 10 d at 30-50 μ E constant light. Colonies were picked and sub-cultured
638 weekly, for 3 weeks in liquid TAP + Paromomycin. Surviving colonies were screened by
639 Colony PCR where 100 μ L of cell suspension of each colony was collected by
640 centrifugation (15,000 g 1min). Pellets were resuspended in 50 μ L 5% Chelex-100 (Sigma).
641 Samples were boiled for 10 min, cooled down on ice, vortexed and centrifuged again. 1 μ L
642 supernatant in a total reaction volume of 20 μ L was used as template and PCR was
643 performed using Q5 polymerase (NEB). Primers are listed in **Table S1**. Stably transformed
644 lines were screened by western blotting for levels of intact fusion protein.

645 Protein extraction and Western blot analysis

646 Total protein was extracted according to (48) and the equivalent of 10 μ g of chlorophyll
647 was loaded per lane on a Tris-Glycine based SDS-gel (Mini-Protean[®] TGX, Bio-Rad or
648 Novex[™] 8%, Thermo Fisher) and transferred onto a PVDF membrane using the Trans-
649 Blot[®] Turbo[™] Transfer System (Bio-Rad). Chlorophyll was determined as below. The
650 membrane was blocked for 1h in 5% (w/v) skimmed dry milk in TBS-T. To reduce
651 background cross reaction the primary anti-GFP antibody (1:5000, ab6556, Abcam) was
652 preincubated with a membrane containing protein extract of UVM4 before being added in
653 3% milk TBST for incubation overnight at 4°C. The membrane was washed 3x in TBST
654 for 10 min and incubated with the HRP-conjugated secondary anti-Rabbit antibody (1:5000,
655 111-035-144, Jackson Immuno Research) in 3% milk TBST for 1 h at room temperature.
656 ECL detection was performed using the SuperSignal[™] West Pico Chemiluminescent
657 Substrate (Thermo Scientific).

658 Chlorophyll measurements

659 Chlorophyll concentration was determined by pelleting 0.1-1mL *C. reinhardtii* cell culture
660 (max. speed, 10 min) and resuspending the pellet in 1mL 80% acetone in MeOH. After a
661 second centrifugation step for 5 min, absorbance was read at 663.6 nm, 646.6 nm and 750
662 nm using a spectrophotometer (Jenway 6715UV/Vis, Geneflow) (49).

663 Confocal Microscopy

664 Culture samples of 200 μ L were collected and 2 μ L of DAPI stain (1 mM) was added, and
665 samples were incubated in the dark for 4 h. For nuclear targeting, live cell images were
666 captured with a Zeiss LSM880 + Airyscan Inverted Microscope (Carl Zeiss) using a Plan-
667 Apochromat 40x/1.4 Oil DIC M27 objective. Filters were set as follows: Venus Ex. 514
668 nm, Em. 520-550 nm; DAPI Ex. 405 nm, Em. 420-475 nm (DAPI-DNA) and 535-575 nm
669 (DAPI-polyP). Chlorophyll autofluorescence was captured with the 514 nm laser at 670-
670 720 nm. Visualization of PolyP from the time course experiment was carried out as above
671 with the following differences. After DAPI incubation, samples were fixed with
672 glutaraldehyde: 25% (SIGMA) stock was added at 20 μ L/mL of culture and incubated for
673 20 min before being flash frozen with liquid nitrogen and stored at -70°C for later analyses.
674 A Plan-Apochromat 63x/1.4 Oil DIC M27 objective was used (Zeiss LSM880+ Airyscan
675 Upright Microscope, Carl Zeiss). Time course DAPI-polyP images were obtained as 6-8 Z-
676 stacks and further processed as a Z-projection using the software Fiji (Image J) (50).

677 **Analysis of medium composition**

678 Filtered supernatant samples were diluted 5-50 fold in dH₂O and tested for soluble
679 phosphate concentration (PO₄³⁻-P) according to (51). Ammonium concentration in filtered
680 media samples (NH₄⁺-N) was determined using the Hach® cuvette test LCK-304. Samples
681 were diluted 50x-100x, due to interference by components of TAP media. IC measurements
682 were made as follows: anion and cation analyses were performed using an ion
683 chromatographer (Metrohm 850 Professional IC), with an 896 Professional Detector. Sterile
684 filtered supernatant samples were diluted between 10-20X. The anion pump injector used
685 20 µL of the diluted sample and was analyzed with a Metrosep A Supp 5-150/4.0 separation
686 column (flow rate of 0.7 ml/min). The cation pump injector used 10 µL of the diluted
687 sample, which was analyzed with a Metrosep C4-100/4.0 separation column (flow rate of
688 0.9 ml/min).

689 **Biomass composition analysis**

690 For phosphate in biomass, pellets were dried under vacuum using a SpeedVac Plus
691 (SC210A – Thermo Savant Instruments) overnight, and dry weight was determined. A
692 second drying period (overnight) ensured that dry weight data was accurate. The dry pellets
693 were digested with an oxidizing reagent at 100°C for 60 min, using a Hach Lange LT200
694 Dry Thermostat (51). The digested samples were diluted 10X-25X and tested as mentioned
695 above.

696 **RNA extraction and sequencing**

697 RNA was extracted by grinding frozen algal pellets in liquid nitrogen, followed by
698 extraction with a Qiagen plant RNA mini kit (Qiagen). Subsequent RNA sequencing work
699 was carried out by the Next Generation Sequencing Facility (Leeds Institute of Biomedical
700 & Clinical Sci.). RNA quality was checked using a 2100 Bioanalyzer and Expert software
701 (Agilent). 100 ng total RNA of each sample was used to generate a TruSeq stranded RNA
702 Illumina compatible library from which rRNA was removed using rRNA-specific depletion
703 reagents. After size selection and adaptor removal with AMPure beads (Beckan Coulter),
704 library concentrations were determined by qPCR before combining to make an equimolar
705 pool that was sequenced (75bp single end sequencing read HiSeq3000 lane; Agilent; Santa
706 Clara, USA).

707 **RNAseq analysis**

708 RNAseq data was processed using software on the Galaxy Server (<https://usegalaxy.org>)
709 except as noted. The reference genome and gene annotation files were obtained from JGI
710 (<https://genome.jgi.doe.go>). Sequence data were checked for lower quality bases and
711 adaptor sequences with FastQC
712 (<https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>) before and after trimming
713 using Trimmomatic. The trimmed sequencing reads were aligned using Hisat2 to the
714 reference genome file Chlamydomonas_reinhardtii_JGI_v5.5. Reads were counted with
715 FeatureCounts using the gene annotation file Creinhardtii_281_v5.5.gene_exons.gff3. For
716 determining gene expression levels, these counts were converted to RPKM in Microsoft
717 Excel, normalizing to gene length and total reads (Data S1). To obtain relative gene
718 expression data values (Fold change: FC) as log₂ (FC) with associated significance (P-adj
719 values), FeatureCount files for replicate (n=3) cultures were compared for experimental v.
720 controls using DESeq2 (Data S1). For determining RPKM for elements of the transgenic

721 construct (e.g. YFP) or wild-type specific components of the PSR1 gene (e.g. 3'UTR) in
722 the genome, trimmed files (Trimmomatic) were converted to FASTA files (Fastq to Fasta
723 converter). The sequences within were renamed numerically with Rename sequences
724 (numeric counter) and a blast dbase created for each file using Makeblastdb(nucleotide)
725 before carrying out blastn with the appropriate gene fragments to obtain the counts, which
726 were converted to RPKM as above.

727 Further transcriptomic data analyses

728 Version 5.6 gene annotation data for *C. reinhardtii* was downloaded from JGI
729 (<https://genome.jgi.doe.go>) and assigned to the curated transcriptomic data in Microsoft
730 Excel. Time course data was processed as follows: for investigating changes in the control
731 UVM4, relative gene expression data was derived for d6 v d2 (late) and d3 v d2 (early) as
732 above. In each case genes were ranked in Microsoft Excel by the up and down values to
733 obtain four sets of significantly regulated genes (>2-fold P-adj<0.05). Panther gene
734 ontology codes from the annotation were used to analyze gene function for the four gene
735 sets at <http://www.pantherdb.org/>. In addition, the top 200 ranked genes by FC for each set
736 were manually curated into gene functional roles (and unknowns) which were formulated
737 to match the specific requirements of this study using data supplied on the JGI genome
738 browser (<https://genome.jgi.doe.go>) for each gene accession (Data S1).

739 For investigating the transgenic PSR1-OE lines, FC were obtained for each line relative to
740 UVM4 for d2, 3 and 6. Here, a list of biologically significant genes (OE-248) was obtained
741 by including those where at least one time point was up or down by >2-fold for at least one
742 transgenic line. In this case, each gene was designated either up or down according to which
743 change had the greatest magnitude. Similar treatment was applied to the P-STRESS dataset
744 (16) (time-points d3 and d5) so the two datasets could be compared by Venn diagram
745 analysis (Data S1). In the latter case, P-adj values were not available hence the use of the
746 FC cutoff. The OE-248 set was curated into functional roles and processes as above,
747 annotating genes if necessary and considering *C. reinhardtii* biology (Data S1).

748 Statistical analysis and Data processing

749 Statistical differences were evaluated by one-way ANOVA and by Tukey HSD test with a
750 p-value of 0.05; both were performed using the software OriginPro (Version 2021,
751 OriginLab Corporation, Northampton, MA, USA).

752 The growth rates and doubling times for each line were calculated according to (52). The
753 specific growth rate ($\mu = d'$) was calculated for the exponential growth phase as follows:
754 $\mu = (\ln(y_1/y_0))/(t_1-t_0)$, where y_1 and y_0 correspond to the biomass concentration values at the
755 beginning and at the end of the exponential phase, respectively, and t_1 and t_0 are the days
756 where y_1 and y_0 were obtained. The doubling time (d) was calculated as $\ln(2)/\mu$. Biomass
757 productivity ($g L^{-1} d^{-1}$) was determined with the equation $Bp = (Bc_f - Bc_i)/t$, where Bc_i and
758 Bc_f are the biomass concentration initial and final values for the cultivation time ($t=7$ d),
759 respectively. The nutrient uptake and removal rates for each line were calculated according
760 to (53). The maximum nutrient removal rates R_{max} ($mg N L^{-1} d^{-1}$) were obtained by
761 calculating the daily removal of a specific nutrient ($CN_d - CN_{d-1}$) where CN_d is the nutrient
762 concentration at a specific day and CN_{d-1} is the nutrient concentration on the day before, and
763 finally selecting the highest removal rate observed on a specific day during the experiment.
764 The nutrient consumption was calculated as $V (mg N g^{-1} dw) = (CN_0 - CN_1)(Bc_1 - Bc_0)$, where
765 CN_0 and CN_1 are the media nutrient concentration values and Bc_1 and Bc_0 are the biomass

766 concentrations at the early ($t_0=d1$) and late exponential phase ($t_1=d4$). The nutrient uptake
767 rate k (d^{-1}) was obtained by dividing the nutrient consumption by the specific growth rate μ .

768 Multivariate analyses by PCA and Pearson's correlation coefficient plots were carried out
769 using PAST v4.08 (54). PCA was carried out on mean ($n=3$) values for $\log_2(FC)$ values
770 (Data S1) for two transgenic lines (8-27, 8-42) v. UVM4 control (6 data points per gene: 3
771 time points, 2 transgenic lines). PCA was also carried out on RPKM data (Data S1) for the
772 above 3 lines, along with PI, PE and N data using data means ($n=3$) (9 data points per gene:
773 3 time points, 3 lines). Pearson's correlation coefficients were also determined from these
774 RPKM data in relation to the PI, PE and N data (Data S1).

775 References

- 776 1. P. J. A. Withers, K. G. Forber, C. Lyon, S. Rothwell, D. G. Doody, H. P. Jarvie, J. Martin-
777 Ortega, B. Jacobs, D. Cordell, M. Patton, M. A. Camargo-Valero, R. Cassidy, Towards
778 resolving the phosphorus chaos created by food systems. *Ambio.* **49**, 1076–1089 (2020).
- 779 2. J. Elser, E. Bennett, Phosphorus cycle: A broken biogeochemical cycle. *Nature.* **478**, 29031
780 (2011).
- 781 3. S. P. Slocombe, T. Zúñiga-Burgos, L. Chu, N. J. Wood, M. A. Camargo-Valero, A. Baker,
782 Fixing the Broken Phosphorus Cycle: Wastewater Remediation by Microalgal
783 Polyphosphates. *Front. Plant Sci.* **11**, 982 (2020).
- 784 4. A. E. Solovchenko, T. T. Ismagulova, A. A. Lukyanov, S. G. Vasilieva, I. V. Konyukhov,
785 S. I. Pogosyan, E. S. Lobakova, O. A. Gorelova, Luxury phosphorus uptake in microalgae.
786 *J. Appl. Phycol.* **31**, 2755–2770 (2019).
- 787 5. C. J. A. Ridley, B. M. Parker, L. Norman, B. Schlarb-Ridley, R. Dennis, A. E. Jamieson,
788 D. Clark, S. C. Skill, A. G. Smith, M. P. Davey, Growth of microalgae using nitrate-rich
789 brine wash from the water industry. *Algal Res.* **33**, 91–98 (2018).
- 790 6. M. R. W. Brown, A. Kornberg, Inorganic polyphosphate in the origin and survival of
791 species. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 16085–16087 (2004).
- 792 7. T. M. McBeath, E. Lombi, M. J. McLaughlin, E. K. Büinemann, Polyphosphate-fertilizer
793 solution stability with time, temperature, and pH. *J. Plant Nutr. Soil Sci.* **170**, 387–391
794 (2007).
- 795 8. N. Siebers, D. Hofmann, H. Schiedung, A. Landsrath, B. Ackermann, L. Gao, P. Mojzeš,
796 N. D. Jablonowski, L. Nedbal, W. Amelung, Towards phosphorus recycling for agriculture
797 by algae: Soil incubation and rhizotron studies using ^{33}P -labeled microalgal biomass.
798 *Algal Res.* **43**, 101634 (2019).
- 799 9. A. Baker, S. A. Ceasar, A. J. Palmer, J. B. Paterson, W. Qi, S. P. Muench, S. A. Baldwin,
800 Replace, reuse, recycle: Improving the sustainable use of phosphorus by plants. *J. Exp. Bot.*
801 **66**, 3523–3540 (2015).
- 802 10. V. Zachleder, K. Bisova, M. Vitova, in *The Physiology of Microalgae*, M. A. Borowitzka,
803 J. Beardall, J. A. Raven, Eds. (Springer, New York, 2016;
804 <http://link.springer.com/10.1007/978-3-319-24945-2>), pp. 3–46.

- 805 11. N. N. Rao, M. R. Gómez-García, A. Kornberg, Inorganic Polyphosphate: Essential for
806 Growth and Survival. *Annu. Rev. Biochem.* **78**, 605–647 (2009).
- 807 12. U. Goodenough, A. A. Heiss, R. Roth, J. Rusch, J. H. Lee, Acidocalcisomes:
808 Ultrastructure, Biogenesis, and Distribution in Microbial Eukaryotes. *Protist.* **170**, 287–313
809 (2019).
- 810 13. J. Moseley, A. R. Grossman, Phosphate Metabolism and Responses to Phosphorus
811 Deficiency. *Chlamydomonas Sourceb. 3-Vol set.* **2**, 189–215 (2009).
- 812 14. D. D. Wykoff, A. R. Grossman, D. P. Weeks, H. Usuda, K. Shimogawara, Psr1, a nuclear
813 localized protein that regulates phosphorus metabolism in Chlamydomonas. *Proc. Natl.
814 Acad. Sci.* **96**, 15336–15341 (1999).
- 815 15. P. A. Aitchison, V. S. Butt, The relation between the synthesis of inorganic polyphosphate
816 and phosphate uptake by Chlorella vulgaris. *J. Exp. Bot.* **24**, 497–510 (1973).
- 817 16. A. K. Bajhaiya, A. P. Dean, L. A. H. Zeef, R. E. Webster, J. K. Pittman, PSR1 is a global
818 transcriptional regulator of phosphorus deficiency responses and carbon storage
819 metabolism in Chlamydomonas reinhardtii. *Plant Physiol.* **170**, 1216–1234 (2016).
- 820 17. K. Shimogawara, D. D. Wykoff, H. Usuda, A. R. Grossman, Chlamydomonas reinhardtii
821 mutants abnormal in their responses to phosphorus deprivation. *Plant Physiol.* **120**, 685–
822 693 (1999).
- 823 18. J. L. Moseley, C. W. Chang, A. R. Grossman, Genome-based approaches to understanding
824 phosphorus deprivation responses and PSR1 control in Chlamydomonas reinhardtii.
825 *Eukaryot. Cell.* **5**, 26–44 (2006).
- 826 19. C. Y. Ngan, C. H. Wong, C. Choi, Y. Yoshinaga, K. Louie, J. Jia, C. Chen, B. Bowen, H.
827 Cheng, L. Leonelli, R. Kuo, R. Baran, J. G. Garcíá-Cerdán, A. Pratap, M. Wang, J. Lim, H.
828 Tice, C. Daum, J. Xu, T. Northen, A. Visel, J. Bristow, K. K. Niyogi, C. L. Wei, Lineage-
829 specific chromatin signatures reveal a regulator of lipid metabolism in microalgae. *Nat.
830 Plants.* **1**, 1–12 (2015).
- 831 20. J. Neupert, D. Karcher, R. Bock, Generation of Chlamydomonas strains that efficiently
832 express nuclear transgenes. *Plant J.* **57**, 1140–1150 (2009).
- 833 21. M. J. Mallén-Ponce, M. E. Pérez-Pérez, J. L. Crespo, Photosynthetic assimilation of CO(2)
834 regulates TOR activity. *Proc. Natl. Acad. Sci. U. S. A.* **119** (2022),
835 doi:10.1073/pnas.2115261119.
- 836 22. M. Plouviez, E. Fernández, A. R. Grossman, E. Sanz-Luque, M. Sells, D. Wheeler, B.
837 Guiyesse, Responses of Chlamydomonas reinhardtii during the transition from P-deficient
838 to P-sufficient growth (the P-overplus response): The roles of the vacuolar transport
839 chaperones and polyphosphate synthesis. *J. Phycol.* **57**, 988–1003 (2021).
- 840 23. D. D. Wykoff, A. R. Grossman, D. P. Weeks, H. Usuda, K. Shimogawara, Psr1, a nuclear
841 localized protein that regulates.pdf. *Proc. Natl. Acad. Sci.* **96**, 15336–15341 (1999).
- 842 24. L. Lorenzo-Orts, D. Couto, M. Hothorn, Identity and functions of inorganic and inositol
843 polyphosphates in plants. *New Phytol.* **225**, 637–652 (2020).

- 844 25. V. Rubio, F. Linhares, R. Solano, A. C. Martín, J. Iglesias, A. Leyva, J. Paz-Ares, A
845 conserved MYB transcription factor involved in phosphate starvation signaling both in
846 vascular plants and in unicellular algae. *Genes Dev.* **15**, 2122–2133 (2001).
- 847 26. R. Wild, R. Gerasimaite, J. Y. Jung, V. Truffault, I. Pavlovic, A. Schmidt, A. Saiardi, H.
848 Jacob Jessen, Y. Poirier, M. Hothorn, A. Mayer, Control of eukaryotic phosphate
849 homeostasis by inositol polyphosphate sensor domains. *Science*. **352**, 986–990 (2016).
- 850 27. M. I. Puga, I. Mateos, R. Charukesi, Z. Wang, J. M. Franco-Zorrilla, L. de Lorenzo, M. L.
851 Irigoyen, S. Masiero, R. Bustos, J. Rodríguez, A. Leyva, V. Rubio, H. Sommer, J. Paz-
852 Ares, SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in
853 *Arabidopsis*. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 14947–14952 (2014).
- 854 28. K. E. Helliwell, E. L. Harrison, J. A. Christie-Oleza, A. P. Rees, F. H. Kleiner, T. Gaikwad,
855 J. Downe, M. M. Aguiló-Ferretjans, L. Al-Moosawi, C. Brownlee, G. L. Wheeler, A Novel
856 Ca(2+) Signaling Pathway Coordinates Environmental Phosphorus Sensing and Nitrogen
857 Metabolism in Marine Diatoms. *Curr. Biol.* **31**, 978-989.e4 (2021).
- 858 29. I. Couso, M. E. Pérez-Pérez, M. M. Ford, E. Martínez-Force, L. M. Hicks, J. G. Umen, J.
859 L. Crespo, Phosphorus Availability Regulates TORC1 Signaling via LST8 in
860 *Chlamydomonas*. *Plant Cell*. **32**, 69–80 (2020).
- 861 30. I. Couso, A. L. Smythers, M. M. Ford, J. G. Umen, J. L. Crespo, L. M. Hicks, Inositol
862 polyphosphates and target of rapamycin kinase signalling govern photosystem II protein
863 phosphorylation and photosynthetic function under light stress in *Chlamydomonas*. *New
864 Phytol.* **232**, 2011–2025 (2021).
- 865 31. F. A. Ruiz, N. Marchesini, M. Seufferheld, Govindjee, R. Docampo, The Polyphosphate
866 Bodies of *Chlamydomonas reinhardtii* Possess a Proton-pumping Pyrophosphatase and Are
867 Similar to Acidocalcisomes. *J. Biol. Chem.* **276**, 46196–46203 (2001).
- 868 32. Y. Komine, L. L. Eggink, H. Park, J. K. Hoober, Vacuolar granules in *Chlamydomonas
869 reinhardtii*: Polyphosphate and a 70-kDa polypeptide as major components. *Planta*. **210**,
870 897–905 (2000).
- 871 33. A. Grinko, R. Alqoubaili, T. Lapina, E. Ermilova, Truncated hemoglobin 2 modulates
872 phosphorus deficiency response by controlling of gene expression in nitric oxide-
873 dependent pathway in *Chlamydomonas reinhardtii*. *Planta*. **254**, 39 (2021).
- 874 34. V. Filina, A. Grinko, E. Ermilova, Truncated Hemoglobins 1 and 2 Are Implicated in the
875 Modulation of Phosphorus Deficiency-Induced Nitric Oxide Levels in *Chlamydomonas*.
876 *Cells*. **8** (2019), doi:10.3390/cells8090947.
- 877 35. L. Wang, X. Jia, Y. Zhang, L. Xu, B. Menand, H. Zhao, H. Zeng, L. Dolan, Y. Zhu, K. Yi,
878 Loss of two families of SPX domain-containing proteins required for vacuolar
879 polyphosphate accumulation coincides with the transition to phosphate storage in green
880 plants. *Mol. Plant*. **14**, 838–846 (2021).
- 881 36. S. Austin, A. Mayer, Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained
882 Through the INPHORS Signaling Pathway. *Front. Microbiol.* **11**, 1367 (2020).
- 883 37. E. Sanz-Luque, S. Saroussi, W. Huang, N. Akkawi, A. R. Grossman, Metabolic control of

- 884 acclimation to nutrient deprivation dependent on polyphosphate synthesis. *Sci. Adv.* **6**,
885 eabb5351 (2020).
- 886 38. F. M. Montañés, A. Pascual-Ahuir, M. Proft, Repression of ergosterol biosynthesis is
887 essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and
888 Rox1 transcription factors. *Mol. Microbiol.* **79**, 1008–1023 (2011).
- 889 39. K. E. Helliwell, A. D. Lawrence, A. Holzer, U. J. Kudahl, S. Sasso, B. Kräutler, D. J.
890 Scanlan, M. J. Warren, A. G. Smith, Cyanobacteria and Eukaryotic Algae Use Different
891 Chemical Variants of Vitamin B12. *Curr. Biol.* **26**, 999–1008 (2016).
- 892 40. D. González-Ballester, D. Casero, S. Cokus, M. Pellegrini, S. S. Merchant, A. R.
893 Grossman, RNA-Seq analysis of sulfur-deprived chlamydomonas cells reveals aspects of
894 acclimation critical for cell survival. *Plant Cell* **22**, 2058–2084 (2010).
- 895 41. J. Neupert, S. D. Gallaher, Y. Lu, D. Strenkert, N. Segal, R. Barahimipour, S. T. Fitz-
896 Gibbon, M. Schröda, S. S. Merchant, R. Bock, An epigenetic gene silencing pathway
897 selectively acting on transgenic DNA in the green alga Chlamydomonas. *Nat. Commun.*
898 **11**, 6269 (2020).
- 899 42. T. Pröschold, E. H. Harris, A. W. Coleman, Portrait of a species: Chlamydomonas
900 reinhardtii. *Genetics* **170**, 1601–1610 (2005).
- 901 43. R. A. Freudenberg, T. Baier, A. Einhaus, L. Wobbe, O. Kruse, High cell density cultivation
902 enables efficient and sustainable recombinant polyamine production in the microalga
903 Chlamydomonas reinhardtii. *Bioresour. Technol.* **323**, 124542 (2021).
- 904 44. V. Klassen, O. Blifernez-Klassen, J. Bax, O. Kruse, Wastewater-borne microalga
905 Chlamydomonas sp.: A robust chassis for efficient biomass and biomethane production
906 applying low-N cultivation strategy. *Bioresour. Technol.* **315**, 123825 (2020).
- 907 45. A. Kumar Sharma, A. Mühlroth, J. Jouhet, E. Maréchal, L. Alipanah, R. Kissen, T.
908 Brembu, A. M. Bones, P. Winge, The Myb-like transcription factor phosphorus starvation
909 response (PtPSR) controls conditional P acquisition and remodelling in marine
910 microalgae. *New Phytol.* **225**, 2380–2395 (2020).
- 911 46. J. Kropat, A. Hong-Hermesdorf, D. Casero, P. Ent, M. Castruita, M. Pellegrini, S. S.
912 Merchant, D. Malasarn, A revised mineral nutrient supplement increases biomass and
913 growth rate in Chlamydomonas reinhardtii. *Plant J.* **66**, 770–780 (2011).
- 914 47. P. Crozet, F. J. Navarro, F. Willmund, P. Mehrshahi, K. Bakowski, K. J. Lauersen, M.-E.
915 Pérez-Pérez, P. Auroy, A. Gorchs Rovira, S. Sauret-Gueto, J. Niemeyer, B. Spaniol, J.
916 Theis, R. Trösch, L.-D. Westrich, K. Vavitsas, T. Baier, W. Hübner, F. de Carpenter, M.
917 Cassarini, A. Danon, J. Henri, C. H. Marchand, M. de Mia, K. Sarkissian, D. C.
918 Baulcombe, G. Peltier, J.-L. Crespo, O. Kruse, P.-E. Jensen, M. Schröda, A. G. Smith, S.
919 D. Lemaire, Birth of a Photosynthetic Chassis: A MoClo Toolkit Enabling Synthetic
920 Biology in the Microalga Chlamydomonas reinhardtii. *ACS Synth. Biol.* **7**, 2074–2086
921 (2018).
- 922 48. T. M. Wittkopp, S. Schmollinger, S. Saroussi, W. Hu, W. Zhang, Q. Fan, S. D. Gallaher,
923 M. T. Leonard, E. Soubeyrand, G. J. Basset, S. S. Merchant, A. R. Grossman, D. Duanmu,
924 J. C. Lagarias, Bilin-Dependent Photoacclimation in Chlamydomonas reinhardtii. *Plant*

- 925 *Cell.* **29**, 2711–2726 (2017).
- 926 49. N. J. Wood, A. Baker, R. J. Quinnell, M. A. Camargo-Valero, A Simple and Non-
927 destructive Method for Chlorophyll Quantification of Chlamydomonas Cultures Using
928 Digital Image Analysis. *Front. Bioeng. Biotechnol.* **8**, 746 (2020).
- 929 50. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S.
930 Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein,
931 K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source platform for biological-image
932 analysis. *Nat. Methods.* **9**, 676–682 (2012).
- 933 51. J. Koistinen, M. Sjöblom, K. Spilling, K. Spilling, Ed., Determining inorganic and organic
934 phosphorus . **1980** (2020), pp. 87-94 BT-Biofuels from Algae.
- 935 52. O. Osundeko, H. Davies, J. K. Pittman, Oxidative stress-tolerant microalgae strains are
936 highly efficient for biofuel feedstock production on wastewater. *Biomass and Bioenergy.*
937 **56**, 284–294 (2013).
- 938 53. A. Lavrinovičs, F. Murby, E. Zīverte, L. Mežule, T. Juhna, Increasing Phosphorus Uptake
939 Efficiency by Phosphorus-Starved Microalgae for Municipal Wastewater Post-Treatment.
940 *Microorganisms.* **9** (2021), doi:10.3390/microorganisms9081598.
- 941 54. Ø. Hammer, D. A. T. Harper, P. D. Ryan, PAST: Paleontological Statistics software
942 packages for education and data analysis. *Palaeontol. Electron.* **4**, 1–9 (2001).

943 Acknowledgments

944 We would like to thank Ms. Carolina Lascelles, Ms. Morag Raynor and Dr. Ian Carr of the
945 Next Generation Sequencing Facility (Leeds Institute of Biomedical & Clinical Sci.) for
946 their hard work and advice. We are grateful Dr. Ruth Hughes and the Bio-imaging facility
947 (University of Leeds) for helpful assistance. We are indebted to Dr. David Elliot for
948 performing the ICMS analysis of ions in culture media. *Chlamydomonas reinhardtii* strain
949 UVM4 was kindly provided by Prof. Dr. Ralph Bock.

950 **Funding:** This work was supported by:

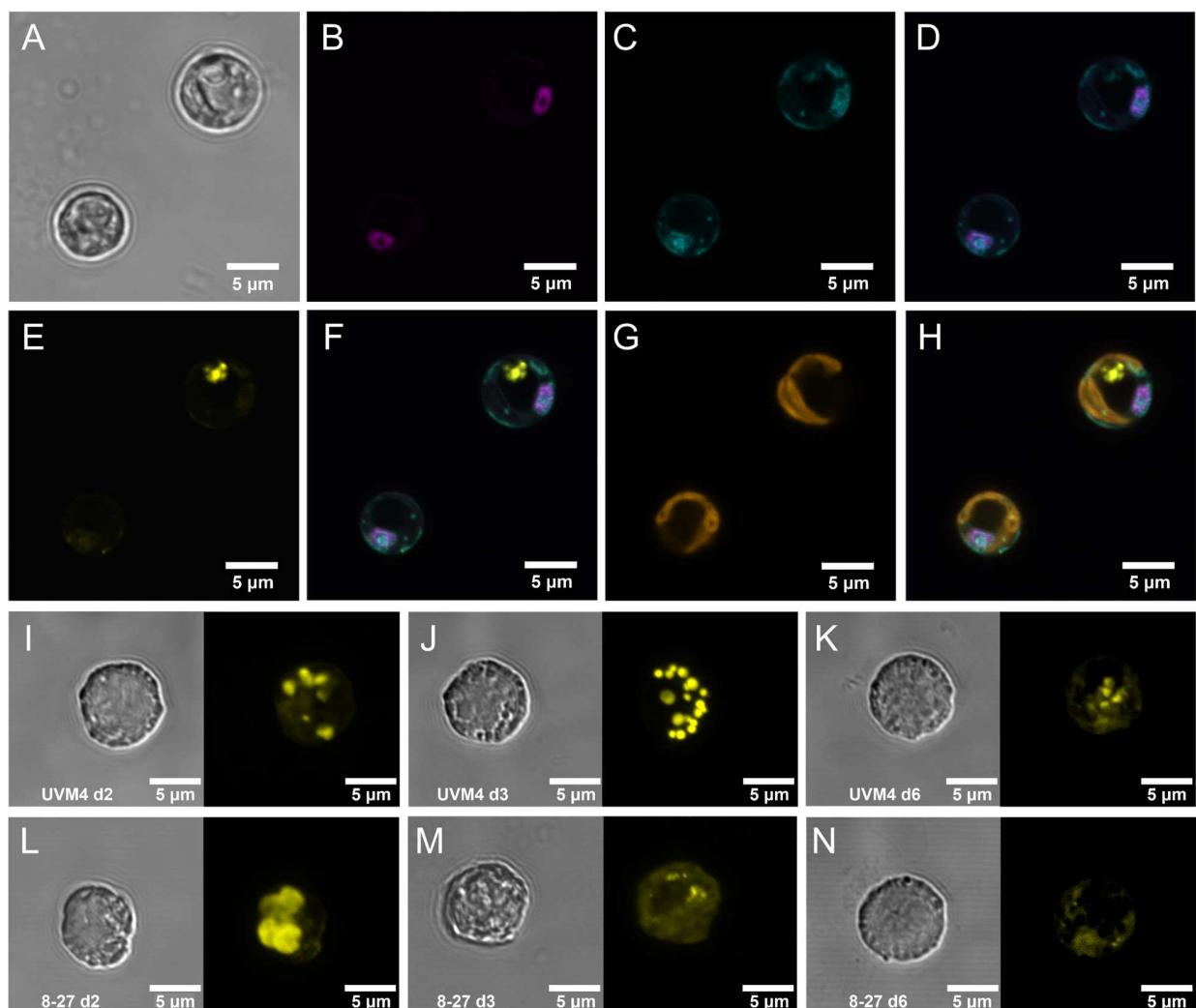
951 UK Research and Innovation (UKRI) BBSRC (BB/N016033/1).

952 ESRC funded GCRF Water Security and Sustainable Development Hub (ES/S008179/1)
953 for the financial support provided to Miss Tatiana Zúñiga-Burgos.

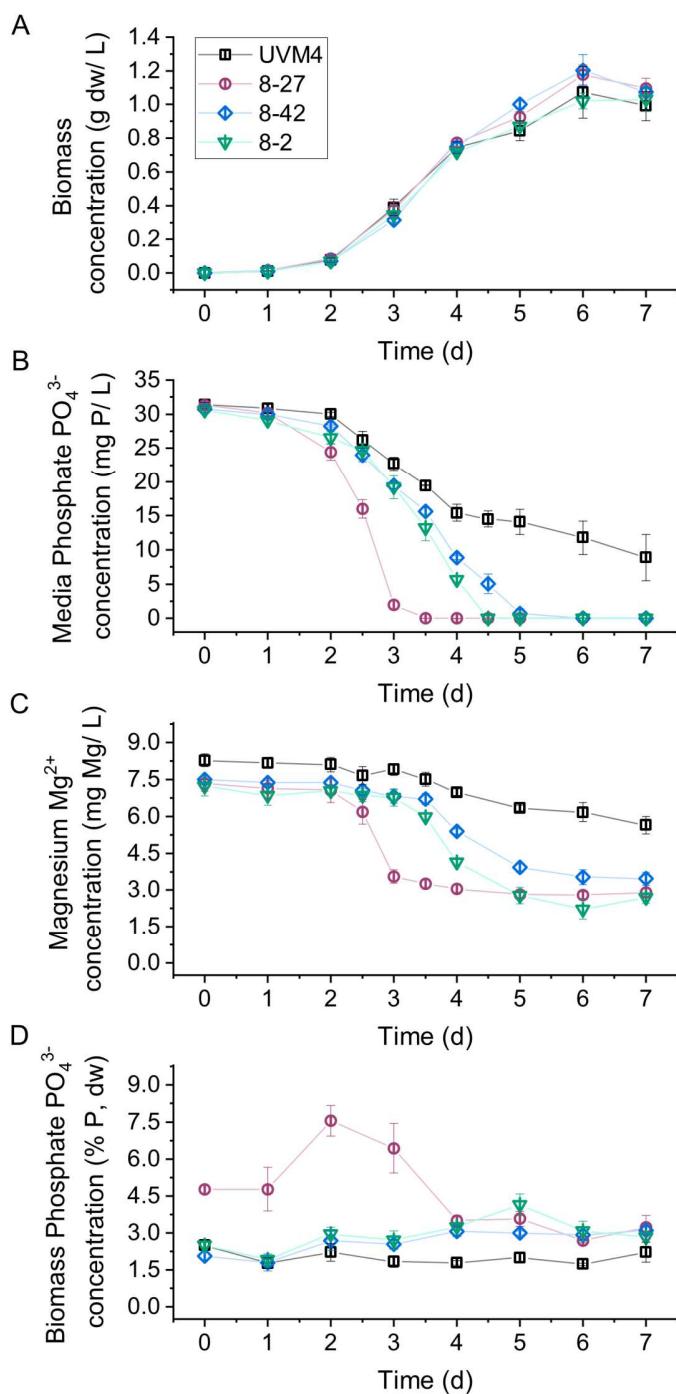
954 The confocal microscopes in the Bioimaging Facility at the University of Leeds were funded
955 by Wellcome Trust grant WT104918MA.

956 Author contributions:

957 Project concept: AB, MACV
958 Transgenic constructs and transformation: LC, PM, MPD
959 Confocal microscopy: TZB, LC
960 Physiology experiments: TZB, SPS, LC
961 Western blotting, ICMS & assays: TZB
962 RNA-seq analyses & models: SPS


963 Investigation: TZB, SPS, LC
964 Supervision: AB, MACV, AGS
965 Figures: SPS, TZB
966 Writing—original draft: SPS, TZB
967 Writing—review & editing: SPS, AB, MPD, AGS, PM, TZB, MACV, LC
968

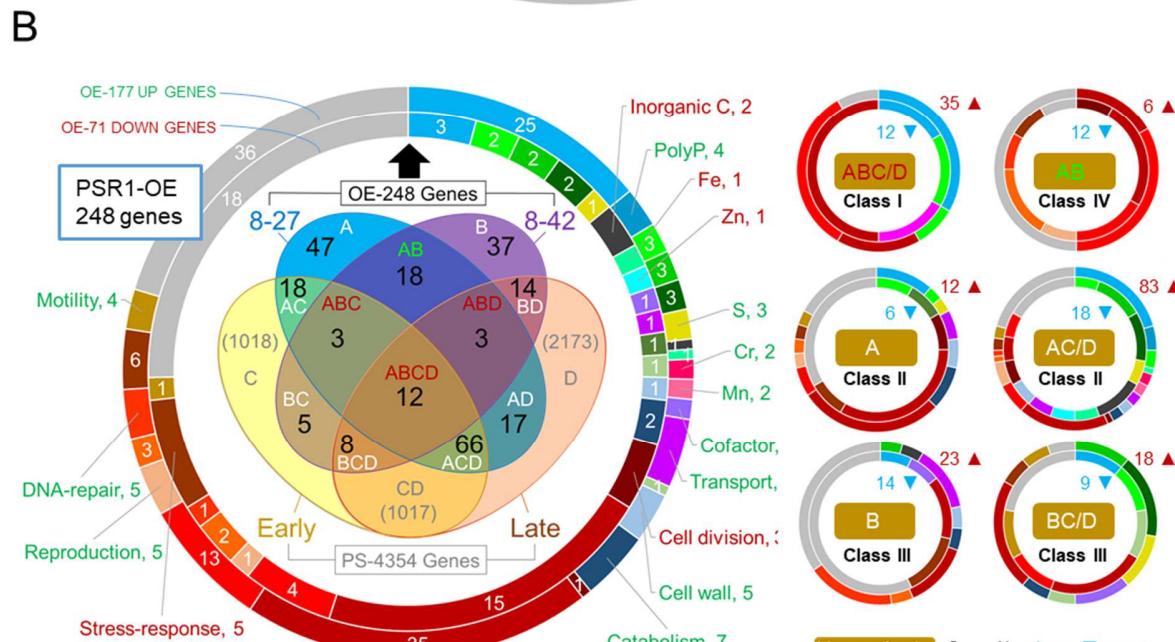
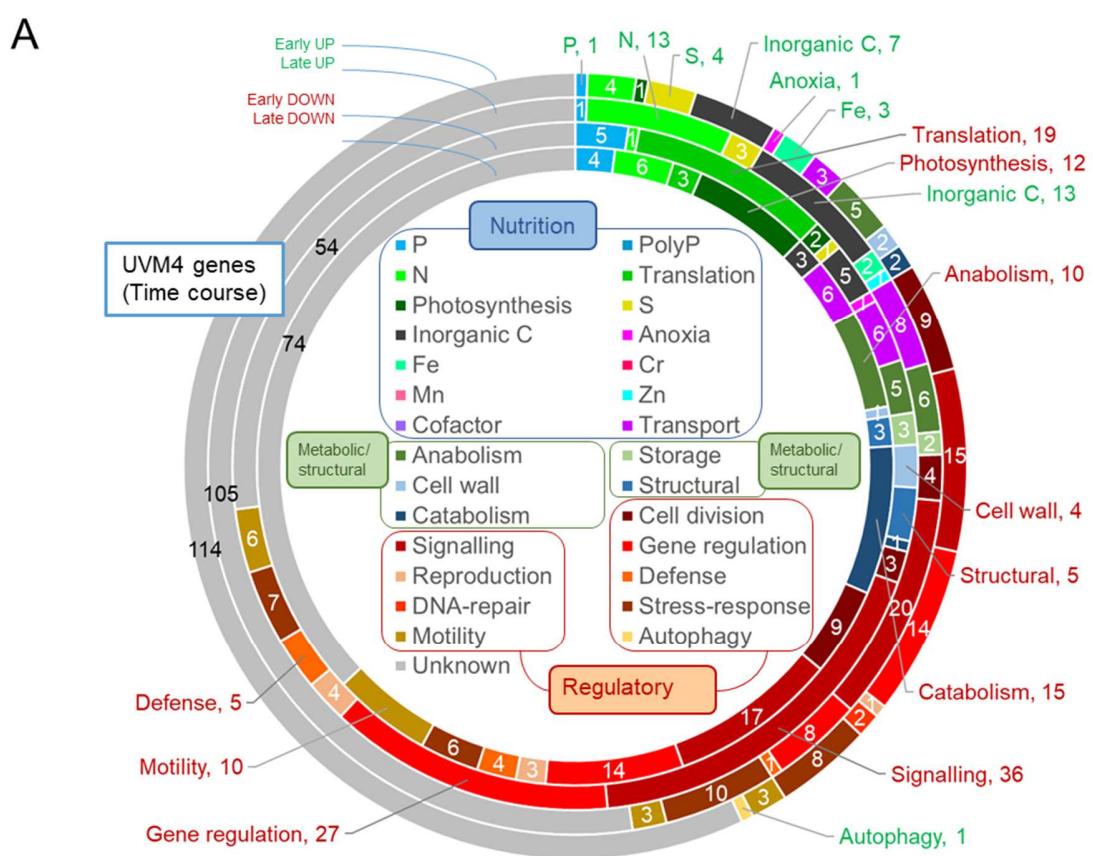
969 **Competing interests:** Authors declare that they have no competing interests.
970


971 **Data and materials availability:** All data are available in the main text or supplementary
972 materials except for the RNAseq reads which are openly available from the University of Leeds
973 Data Repository: <https://doi.org/10.5518/1217>
974

975
976 **Figures and Tables**
977

978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

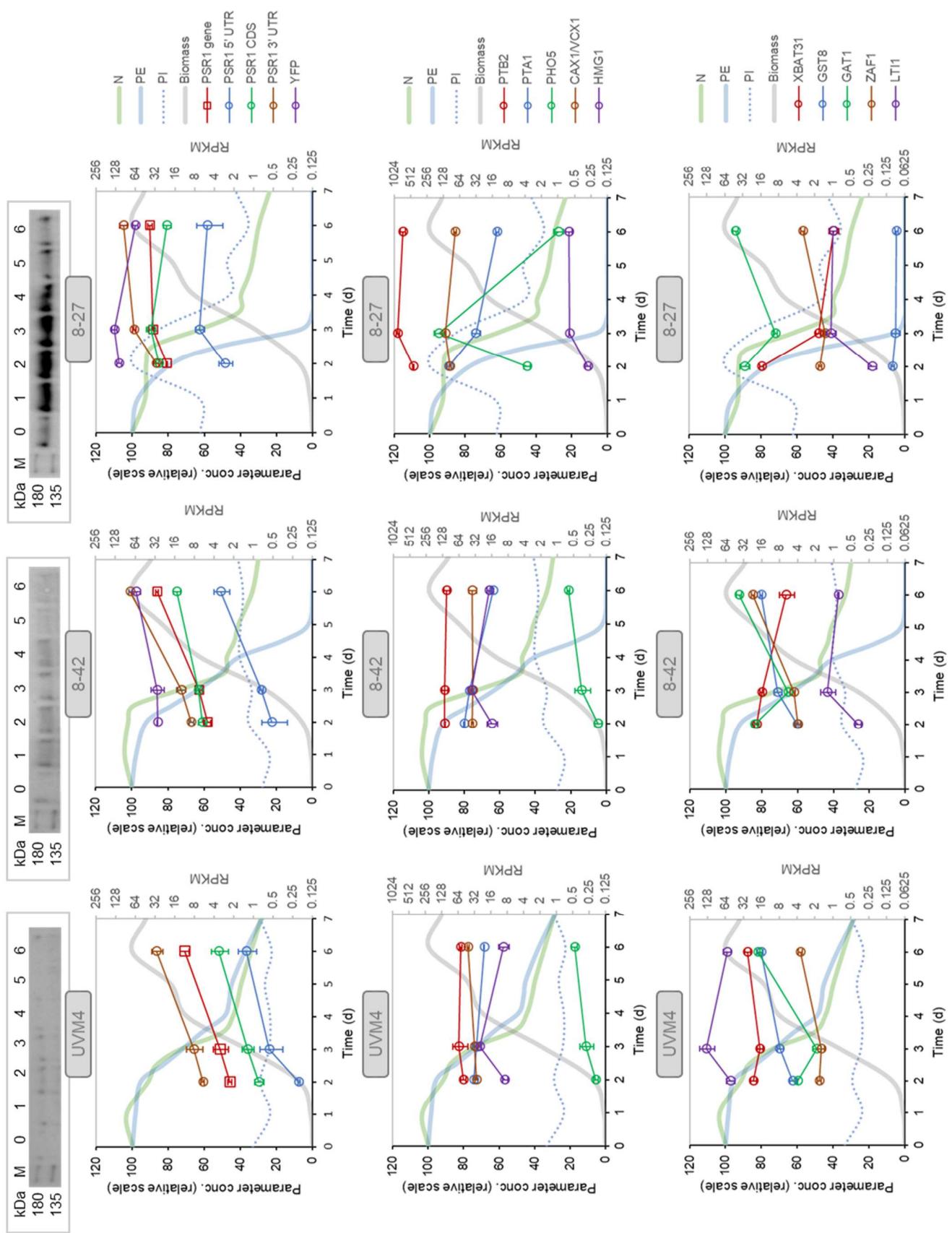
Fig. 1. Intracellular localization of PSR1-YFP fusion protein and associated increases in PolyP storage granules. Intracellular localization, as determined by fluorescence confocal microscopy, of the PSR1-YFP fusion protein shown in (A-H) for two representative cells from PSR1-OE line 8-27 grown in TAP media. (A) bright-field images indicating cell diameter. (B) Venus-YFP signal (Emission λ 520-550 nm: magenta) indicating targeting to the nucleus which was identified by DAPI-DNA fluorescence (Emission λ 420-475 nm: cyan) (C), followed by co-localization of the DAPI and YFP signals in the merged image (D). The PolyPhosphate (PolyP) granules are indicated by the DAPI-PolyP (Emission λ 535-575nm: yellow) (E). These are visible as separate entities from the DNA-DAPI stain in the merged image (F). Chlorophyll UV-fluorescence (Emission λ 670-720 nm: orange) indicating the single large cup-shaped chloroplast (G) and the merged image (H) placing the PolyP signal to the periphery of the dark central region of the cell (vacuole). Displayed in (I-N) are differences in the accumulation of PolyP granules in cells from a batch culture time course in TAP media (Fig. 2) comparing Replicate 1's of the control line UVM4 (I-K) and the PSR1-OE line 8-27 (L-N) at three different time points (indicated). Each panel is split between bright field (left) and the DAPI-PolyP signal (right) (Emission λ 535-575nm). A representative cell image was taken from multiple cell images (fig S6).

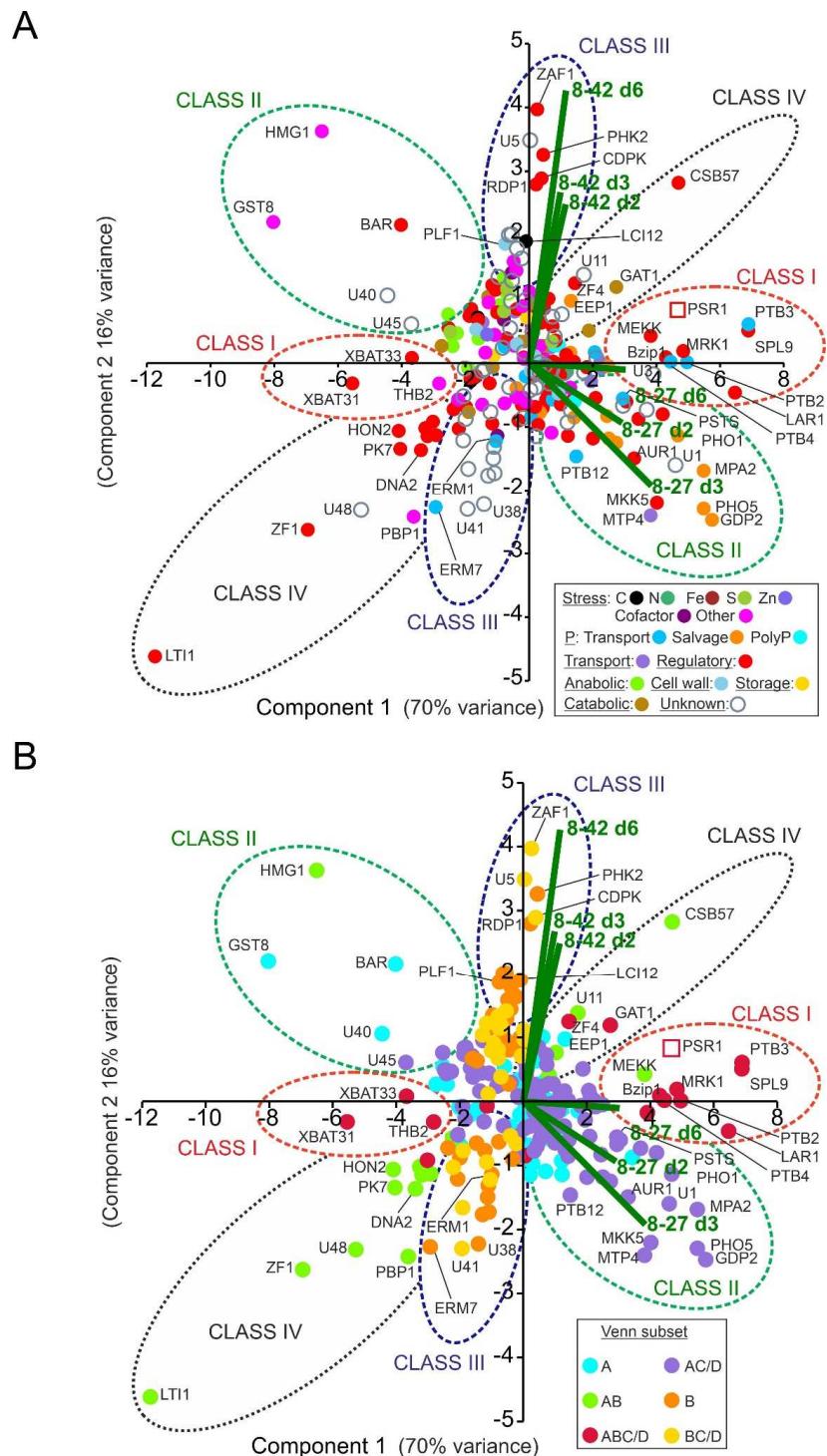
1024

1025 **Fig. 2. Enhanced phosphate removal and accumulation in PSR1-OE lines.** Measurements are
1026 shown of post-filtration culture medium composition and biomass composition at different stages
1027 of algal growth. Three transgenic PSR1-OE-lines, along with untransformed UVM4 background
1028 control, were cultivated under small-scale batch culture conditions in TAP media (30 mg/L P ~
1029 1mM) in continuous light. The following parameters were monitored over time (A) Biomass DW
1030 concentration; (B) PO_4^{3-} in media determined by colorimetric assay; (C) Mg^{2+} concentration in
1031 media determined by ICMS and (D) PO_4^{3-} mass concentration in biomass by assay. Measurements
1032 of pH, Chlorophyll, N (ammonium), SO_4^{2-} and Ca^{2+} are shown in fig. S7.

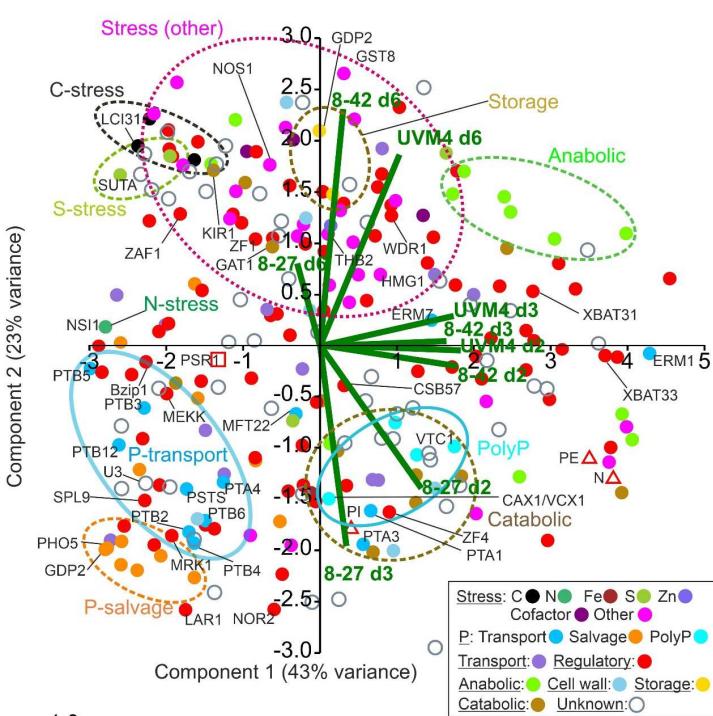
1033


Figure 3

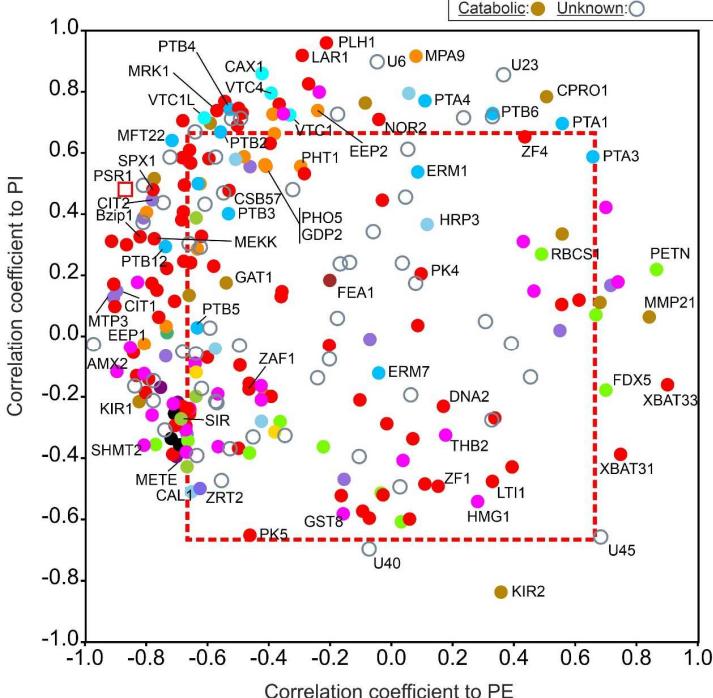
KEY DONUT (left): PSR1-OE 248 genes only; **VENN (left):** Both PSR1-OE lines (248 genes) compared with P-STRESS (4354 genes) (timecourse); **DONUTS (right):** PSR1-OE 248 genes subdivided by Venn subset. **Class I:** Both lines, both datasets only; **Class II:** Line 8-27 not line 8-42; **Class III:** Line 8-42, not line 8-27; **Class IV:** Both lines, PSR1-OE only.


1037 **Fig. 3. Gene function analysis of transcriptome data.** Shown in the upper donut chart (**A**) are
1038 relative gene changes occurring within the background strain UVM4 during batch culture,
1039 comparing early (d 3 v. d 2) and late (d 6 v. d 2) for up or down changes. Here gene functional roles
1040 are shown for the top 200 expression changes in each up/down category (inset). (**B**) Shown an
1041 analysis of the FC magnitude expression data for 248 genes (OE-248) having a biologically
1042 significant change (>2-fold cutoff) in one or more transgenic lines relative to the UVM4. The large
1043 donut chart (left) shows the gene functional analysis for OE-248 for the up (177) or down (71)
1044 regulated genes. The Venn diagram (inset) shows a comparison of OE-248 with PS-4354
1045 comprising 4354 genes obtained from the P-STRESS dataset (>2-fold FC cutoff) for “early” (d3)
1046 and “late” (d5). Gene number per Venn sector is indicated (in black for OE-248) and each sector is
1047 labelled as follows: A (8-27), B (8-42), C (P-STRESS d3) and D (P-STRESS d5). Smaller donut
1048 charts (right) shows the gene functional analysis for the six principal Venn sector subsets. These are
1049 labelled Class I-IV according to the key (inset). Gene numbers and direction of regulation are
1050 indicated (▼▲).

1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066


1068 **Fig. 4. Expression levels of PSR1 and exemplar gene targets elicited by PSR1-OE.** (A) Inset
1069 panels display the western blot signal for anti-YFP antibody showing bands corresponding to the
1070 PSR1-YFP fusion protein. Equal chlorophyll loadings (10 µg) were loaded for the batch culture
1071 time course, where d0 refers to the starter culture prior to dilution. Gene expression levels
1072 determined by RPKM counts are compared over time in batch culture for the transgenic lines (8-
1073 27, 8-42) and the background control (UVM4). These data are compared to the physiological data
1074 (Fig. 2) normalized as follows: N, PE to d0 levels; biomass concentration to maximum in algal line;
1075 PI to maximum in experiment. PSR1 mRNA expression is shown (B) for the full PSR1 gene
1076 sequence and PSR1 CDS (both having combined wild-type and transgene inputs); wild-type-
1077 specific fragments (5'UTR and 3'UTR) and construct-specific fragments (YFP). (C-D) Exemplar
1078 PSR1-OE affected genes are shown illustrating the different classes (Class I-IV) and direction
1079 (up/down) of gene regulation: (C) Class I-induced (PTB2, PTA1), Class II-induced (PHO5,
1080 CAX1/VCX1), Class II-irregular (HMG1); (D) Class I-repressed (XBAT31), Class II-repressed
1081 (GST8), Class III-induced (ZAF1), Class IV-induced (GAT1) and Class IV-repressed (LTI1). Note
1082 all exemplar genes were also affected in the P-STRESS data set (>2-fold change) (16). See **Table**
1083 **2** and **3** for the FC data; full RPKM data in Data S1. Error bars indicate SE, n=3 culture replicates.

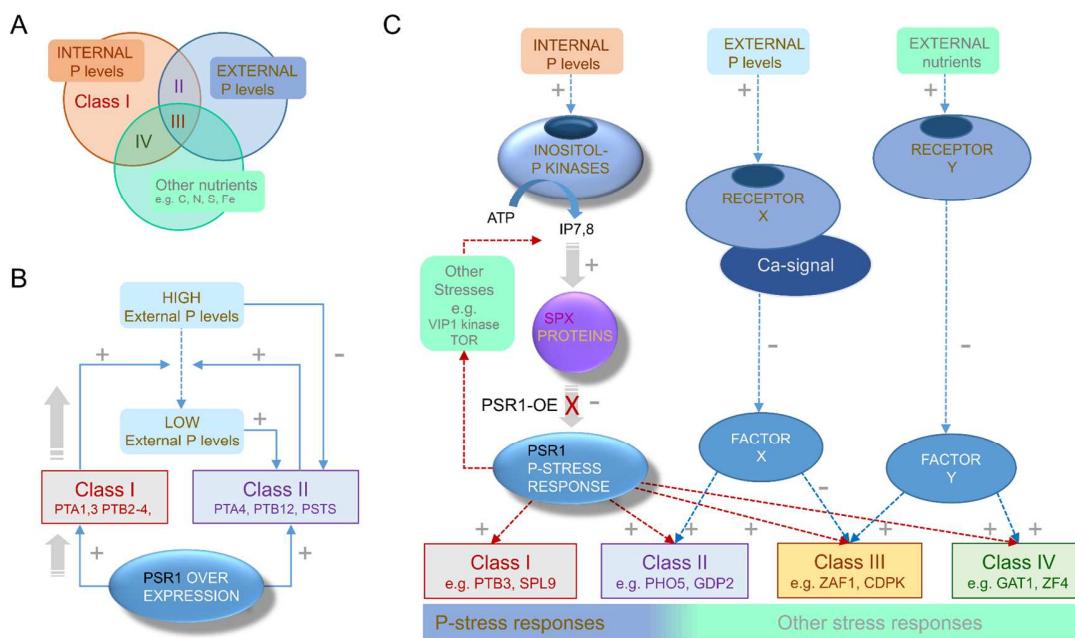
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100



1102 **Fig. 5. Multivariate analysis of PSR1-OE gene expression data.** Shown are patterns of gene
 1103 expression for OE-248 gene set (significantly regulated genes in line 8-27 or 8-42 relative to UVM4
 1104 with >2-fold cutoff). **(A)** Data points are color-coded for the 17 gene functional processes shown
 1105 (inset). **(B)** The same chart is coded instead for the six Venn diagram sector subsets (inset) as
 1106 described in **Fig. 3B**. In **(A, B)** the mean (n=3) relative gene expression time course data for the
 1107 two transgenics v. UVM4 ($\log_2(\text{FC})$: fold-change) for d2, 3 and 6; i.e. 6 data points per gene) were
 1108 analyzed by PCA. Biplots for each of these six data points are shown (–) and key gene expression
 1109 changes are labelled. Clusters of genes are encircled and labelled Class I-IV. The data point for the
 1110 complete PSR1 gene mRNA (not specific to endogenous gene or transgene) is shown (□).

A

B



1111

1112

1113 **Fig. 6. Temporal regulation of PSR1-OE gene expression.** Patterns of gene expression focusing
1114 on temporal factors are shown for the OE-248 set. Data points are color-coded for the 17 gene
1115 functional processes shown (inset). (A) PCA analysis is shown for normalized mean (n=3) RPKM
1116 data along with the PE, PI and N measurements (Δ). The biplots for the nine data sets (UVM4
1117 control and both lines: time points d2, 3, 6; i.e. 9 data points per gene) are shown (-). Clusters
1118 highlighting one specific gene functional process are encircled. (B) Plots of Pearson's correlation
1119 coefficients for RPKM data v. PI and v. PE for each OE-248 gene. Coefficients outside the boxed
1120 region (---) were significant for PI or PE ($P < 0.05$). In all cases mean data was from n=3 culture
1121 replicates.

1122

1123

1124

1125

1126 **Fig. 7. Proposed regulatory networks for PSR1-dependent genes. (A)** Venn diagram illustrating
1127 the three nutrient factors or stresses that appear to influence the four Class I-IV subdivisions of the
1128 OE-248 set of genes that show significant expression changes (classes defined in **Fig. 5A, B**). Each
1129 Class I-IV is shown occupying a sector in the Venn diagram indicating the principal nutrient factor
1130 or stress that is proposed to influence it. **(B)** Proposed feed-forward mechanism explaining
1131 enhanced P-uptake driven by PSR1-OE on Class I genes under initially high PE conditions.
1132 Activation of Class I P-transporter genes (+) reduces the PE levels which are inhibitory (-) towards
1133 Class II genes. Subsequent activation of Class II genes which include P-transporters, further reduces
1134 PE. **(C)** Proposed signal network for transducing changes in PI, PE and other nutrient factors or
1135 stresses (e.g. C, N, S, Zn etc.) towards gene induction for the four different regulatory Classes I-IV.
1136 Class I genes are regulated principally by PSR1-mediated perception of PI and can be activated by
1137 PSR1-OE in the presence of high PE. Class II genes are PSR1-dependent but require agreement
1138 between PI and PE sensing mechanisms. Class III are PSR1-dependent but are inhibited by low PE
1139 and activated by low levels of other nutrients or stresses. Class IV are PSR1-dependent but activated
1140 by low levels of other nutrients or other stresses and are unaffected by PE levels.

1141

1142

1143

1144

1145

1146

1147

1148

1149

Table 1. Physiological parameters during PSR1-OE in batch culture over time (7 d)

Parameter	Units	UVM4	8-27	8-42	8-2
Specific growth rate	d^{-1}	1.44 (± 0.04)*	1.33 (± 0.03)	1.42 (± 0.01)	1.42 (± 0.02)
Doubling time	d	0.48 (± 0.01)	0.52 (± 0.01)	0.49 (± 0.01)	0.49 (± 0.01)
Biomass productivity	$g\text{ DW L}^{-1} d^{-1}$	0.14 (± 0.01)	0.16 (± 0.01)	0.15 (± 0.01)	0.15 (± 0.01)
PO_4^{3-} uptake rate†	$mmol\text{ P gDW}^{-1} d^{-1}$	0.48 (± 0.08)	0.97 (± 0.04)	0.65 (± 0.02)	0.75 (± 0.01)
Mg^{2+} uptake rate	$mmol\text{ Mg gDW}^{-1} d^{-1}$	0.09 (± 0.01)	0.33 (± 0.03)	0.16 (± 0.01)	0.22 (± 0.04)
PO_4^{3-} R_{max}	$mm\text{ P L}^{-1} d^{-1}$	0.23 (± 0.05)	0.73 (± 0.02)	0.34 (± 0.02)	0.44 (± 0.07)
Mg^{2+} R_{max}	$mm\text{ Mg L}^{-1} d^{-1}$	0.08 (± 0.01)	0.29 (± 0.04)	0.12 (± 0.03)	0.22 (± 0.02)
P/Mg R_{max} Molar ratio	-	2.88	2.52	2.83	2.00
Time of R_{max}	d	4	3	4	4
Biomass P _{max}	%P DW	2.21 (± 0.41)	7.55 (± 0.62)	3.11 (± 0.16)	4.14 (± 0.75)
Time of Biomass P _{max}	d	7	2	7	5

1150 *S.E. of mean (n=3). †Uptake rate calculated for log phase which was taken as d1-4.

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

Table 2. Key genes with roles linked to P-homeostasis

Gene	Accession	Class	Description	Correlation	Fold-change (FC)					
					Line 8-27			Line 8-42		
P-transport				PSR1	d2	d3	d6	d2	d3	d6
PTB3	Cre07.g325740	I (ABCD)	Na ⁺ /Pi symporter	0.81*	26.4	26.7	8.4	4.9	2.8	3.2
PTB2	Cre07.g325741	I (ABCD)	Na ⁺ /Pi symporter	0.82	8.7	11.6	9.0	2.7	2.0	1.7
PTB4	Cre02.g144750	I (ABCD)	Na ⁺ /Pi symporter	0.80	9.9	7.2	8.1	2.2	1.5	1.9
PSTS	Cre01.g044300	II (ACD)	ABC transporter	0.83	2.8	7.9	4.6	1.3	1.2	1.3
PTB12	Cre02.g144650	II (ACD)	Na ⁺ /Pi symporter	0.79	1.1	7.0	3.0	0.9	0.9	0.6
PTB6	Cre16.g655200	II (A)	Na ⁺ /Pi symporter	0.07	4.4	0.9	0.9	1.1	0.9	1.0
MFT22	Cre07.g354150	II (ACD)	Major facilitator permease	0.96	3.0	3.9	2.7	1.5	1.2	1.7
PTA4	Cre16.g686850	II (A)	H ⁺ /P symporter	0.28	3.7	2.1	1.2	1.1	1.1	0.86
PTA1	Cre02.g075050	I (ABCD)	H ⁺ /Pi symporter	-0.17	2.9	0.8	0.5	2.0	1.5	0.7
PTB5	Cre02.g144700	II (ACD)	Na ⁺ /Pi symporter	0.73	1.3	2.6	2.6	0.9	0.9	1.1
PTA3	Cre16.g686750	I (ABC)	H ⁺ /Pi symporter	-0.23	2.1	1.4	1.7	1.6	1.2	0.37
ERM7	Cre12.g532151	III (B)	Ca-dependent channel	-0.02	0.60	0.65	0.72	0.29	0.32	0.30
P-salvage/sparing										
PHO5	Cre04.g216700	II (ACD)	Exophosphatase	0.47	11.2	95.7	2.0	0.9	1.2	1.2
GDP2	Cre16.g683900	II (ACD)	PLC-like phosphodiesterase	0.47	11.0	76.6	4.2	NA	1.0	0.9
MPA2	Cre09.g404900	II (ACD)	Metallo phosphatase	0.50	18.6	20.7	7.7	1.6	1.2	0.9
PHO1	Cre08.g359300	II (ACD)	Exophosphatase	0.54	14.7	11.9	6.1	1.2	1.3	1.3
PWR12	Cre16.g693819	II (ACD)	PD-(D/E)XK nuclease	0.77	1.5	2.8	5.9	1.4	1.6	1.6
EEP2	Cre06.g295100	II (AD)	Nuclease/phosphatase	0.41	4.4	5.7	3.6	0.8	0.8	1.2
Phospho1	Cre02.g114500	II (ACD)	Phospholipid phosphatase	0.93	3.7	5.2	2.7	1.7	1.3	1.6
SPD2†	Cre04.g218200	II (AC)	Sphingomyelin phosphodiesterase	0.83	1.5	4.2	3.2	0.9	1.2	0.8
SQD3	Cre16.g689150	II (ACD)	Sulpholipid synthase	0.79	1.1	2.7	3.2	1.0	1.0	1.2
PHT1	Cre08.g364100	II (ACD)	Phytase	0.35	1.7	3.3	0.9	0.7	1.3	0.9
P-homeostasis										
PSR1‡	Cre12.g495100	I (ABCD)	Global regulator Myb	1.00	11.6	11.1	3.3	3.1	3.0	2.7
SPX1†	Cre07.g325950	II (ACD)	Soluble SPX-protein	0.89	1.7	3.2	1.8	1.4	1.4	1.3
PolyP synthesis										
PLH1	Cre02.g078400	II (ACD)	P-loop NTP hydrolase	0.56	4.6	5.7	1.4	1.5	0.8	1.4
CAX1	Cre12.g519500	II (ACD)	Ca ²⁺ /H ⁺ antiporter	0.73	3.2	3.1	1.9	1.5	1.3	0.7
VTC4	Cre09.g402775	II (ACD)	PolyP polymerase catalysis	0.72	1.7	2.4	1.7	1.4	1.3	1.4
VTC1L	Cre09.g402812	II (ACD)	PolyP polymerase subunit	0.90	1.7	2.4	2.1	1.2	1.3	1.5
Cation transport										
MTP4	Cre03.g160550	II (ACD)	CDF Mn transporter	0.53	2.5	34.9	4.5	0.8	0.7	0.7
CIT1	Cre12.g512950	II (ACD)	Chromate ion transporter	0.90	2.6	5.0	2.9	1.5	1.3	1.6
CIT2‡	Cre12.g507333	II (ACD)	Chromate ion transporter	0.89	2.7	4.8	2.2	1.6	1.2	1.2
ACA3	Cre06.g263950	II (ACD)	Na ⁺ /K ⁺ -exchanging ATPase	0.82	3.4	4.6	2.7	1.6	1.6	1.2
CPR1	Cre02.g144550	II (A)	Na ⁺ /H ⁺ exchanger 5-related	0.77	0.9	2.8	3.0	0.8	1.1	1.47
MTP3‡	Cre03.g160750	II (ACD)	CDF Mn transporter	0.90	1.5	2.1	2.0	1.4	1.2	1.4

*Significant values in bold. Pearson's correlation coefficients (RPKM, p<0.05, n=3). FC values in relation to UVM4 control (p-adj<0.05, n=3). In the *psr1-1* mutant in P-STRESS: †Ectopic down; ‡Independent up (see Data S1).

1180

1181

1182

1183

1184

1185

Table 3. Key genes with roles unassigned or linked to processes other than P-stress

Gene	Accession	Class	Description	Correlation	Fold-change (FC)					
					Line 8-27			Line 8-42		
Transcription factors				PSR1	d2	d3	d6	d2	d3	d6
SPL9	Cre16.g683953	I (ABCD)	Squamosa promoter binding	0.89*	11.8	26.3	25.2	1.6	1.8	6.1
Bzip1	Cre16.g671200	I (ABCD)	Basic-leucine zipper (bZIP)	0.96	5.5	13.8	4.9	1.3	1.9	2.8
ZAF1	Cre26.g756897	III (BD)	PHD-type C-terminal zinc finger	0.29	0.9	1.3	0.8	2.7	4.2	10.9
NOR1	Cre07.g331401	II (ACD)	Orphan nuclear receptor	0.85	2.5	9.2	5.2	1.1	1.3	1.4
CSB57	Cre14.g618820	IV (AB)	Transposase DNA-binding	0.69	5.3	7.3	5.9	5.0	5.5	7.0
NOR2	Cre15.g637552	IV (AB)	Orphan nuclear receptor	0.20	4.5	1.8	0.9	2.6	1.5	1.0
RHC1	Cre02.g144802	II (A)	RNA helicase	0.67	1.8	4.2	2.2	1.0	1.1	1.1
ZF3§	Cre16.g681100	II (ACD)	Zinc/RING finger C3HC4 domain	0.92	2.4	4.1	2.5	1.2	1.3	1.5
ZF4	Cre19.g751047	IV (ABD)	CCHC-type zinc finger	-0.04	3.3	1.6	2.2	2.8	1.7	1.9
ZF1	Cre17.g742800	IV (AB)	CCHC-type C-terminal zinc finger	-0.43	0.19	0.17	0.09	0.21	0.21	0.13
Signal transduction										
MKK5	Cre10.g463500	II (ACD)	Mitogen-activated PKK	0.79	4.9	26.0	3.9	1.2	0.9	0.6
ANK1	Cre01.g019550	II (ACD)	Ankyrin repeat protein	0.88	5.3	14.1	6.1	1.5	1.3	1.3
MRK1	Cre16.g674900	I (ABCD)	Ser/thr protein kinase	0.84	5.3	13.0	11.9	1.2	1.4	3.8
AUR1	Cre16.g674065	II (ACD)	Aurora protein kinase	0.75	6.6	7.1	5.2	1.2	1.1	0.7
MEKK	Cre08.g368600	I (AB)	MEKK-related protein kinase	0.90	6.0	6.4	5.7	2.2	2.4	1.8
CDPK	Cre02.g114750	III (BCD)	Ca/calmodulin-dependent PK	0.19	1.3	1.4	0.8	3.3	3.7	4.1
XBAT31†	Cre09.g403500	I (ABCD)	E3 ubiquitin ligase	-0.87	0.6	0.14	0.06	0.9	0.8	0.28
PK7	Cre08.g369667	IV (AB)	Thr-specific protein kinase	-0.42	0.6	0.28	0.34	0.6	0.28	0.35
LAR1	Cre12.g541550	I (ABCD)	Las17-binding actin regulator	0.61	14.3	38.4	8.8	2.9	2.1	1.9
BAR	Cre06.g299500	II (A)	Endocytosis regulation	-0.43	0.24	0.15	0.44	1.6	1.4	1.4
S-stress										
SUTA†	Cre02.g095151	III (BD)	Sulfate-transporting ABC-2 type	0.47	0.7	1.1	1.4	0.7	0.9	2.6
SIR†	Cre16.g693202	III (BD)	Sulfite reductase (ferredoxin)	0.45	0.50	1.3	1.4	0.8	1.5	2.5
ATS1†	Cre03.g203850	II (ACD)	ATP-sulfurylase	0.27	0.8	0.5	0.40	0.6	0.7	1.7
N-stress										
GAT1†	Cre01.g004900	IV (ABCD)	Glutamine amidotransferase	0.69	5.2	3.7	2.2	4.4	2.5	1.8
NS1	Cre11.g476026	II (A)	N starvation induced COV1	0.80	1.3	3.0	3.3	1.0	1.1	1.3
Other stress responses										
MGS1	Cre07.g331700	II (ACD)	Minus gamete specific, secretory	0.69	3.0	6.6	2.0	1.4	1.1	0.7
UVE1	Cre12.g505100	III (B)	UV-damage endonuclease	0.56	0.9	1.5	1.4	1.1	0.8	2.7
NOS1	Cre16.g683550	II (AC)	NO synthase ferrodoxin reductase	0.44	0.7	1.7	2.5	0.7	1.6	1.7
FEA1	Cre12.g546550	II (AD)	Periplasmic Fe-binding	0.08	2.2	1.4	1.3	1.9	1.5	1.6
LCI12	Cre04.g217962	III (B)	Zinc finger, CCHC-type	0.52	1.4	0.8	1.4	2.2	1.7	2.6
DNA2	Cre12.g528200	IV (AB)	ATP-dependent helicase (DNA)	-0.44	0.6	0.7	0.24	0.5	0.6	0.32
METE†	Cre03.g180750	III (BCD)	Vit B12-independent met synthase	0.43	0.54	1.2	1.5	1.8	1.2	2.1
PBP1	Cre08.g362600	IV (AB)	Beta-lactamase	-0.33	0.49	0.7	0.32	0.38	0.5	0.16
CRD1	Cre12.g537250	II (ACD)	Cyclase in Tetrapyrrole pathway	0.29	0.7	1.8	0.31	1.5	1.3	1.8
THB2	Cre14.g615350	I (ABD)	Thylakoid truncated hemoglobin	-0.31	0.8	0.6	0.28	1.2	0.7	0.5
GST8‡	Cre11.g467690	II (A)	Glutathione S-transferase	-0.26	0.08	0.04	0.04	0.8	1.5	0.9
HMG1	Cre06.g299550	II (AB)	HMG-CoA reductase	-0.59	0.09	0.04	0.15	1.7	1.4	2.5
LTI1	Cre08.g368650	IV (AB)	Lysin-induced mt- secretory	-0.55	0.03	0.02	0.05	0.03	0.04	0.04

1186 *Significant values in bold. Pearson's correlation coefficients (RPKM, p<0.05, n=3). FC values in relation to UVM4
1187 control (p-adj<0.05, n=3). In the *psr1-1* mutant, P-STRESS: Ectopic up†/down‡; Independent up§/down|| (Data S1).
1188

Supplementary Materials for

Overexpression of PSR1 in *Chlamydomonas reinhardtii* induces luxury phosphorus uptake

Stephen P. Slocombe, Tatiana Zúñiga-Burgos, Lili Chu, Payam Mehrshahi, Matthew P. Davey, Alison G. Smith, Miller Alonso Camargo-Valero, Alison Baker*

*Corresponding author. Email: A.Baker@leeds.ac.uk

This PDF file includes:

Supplementary Text

Figs. S1 to S12

Tables S1 to S2

Other Supplementary Materials for this manuscript include the following:

Data S1

1239

Supplementary Text

1240

DNA construct for PSR1 over-expression (PSR1-OE)

1241

The pLC8 DNA construct is shown in **Fig. S1** and the amino acid sequence of the fusion protein is shown in **Fig. S2**. The fusion protein consisted of *C. reinhardtii* PSR1 C-terminally fused to a 3xHA-tag followed by YFP and a Strep tag. The predicted MW was 109 kDa (1048 aa) and its expression was driven by a constitutive PSAD promoter (when under continuous light) and an RBCSi enhancer element. The construct was assembled into pUC57 backbone plasmid (kanR) using the synthesized PSR1 gene (Cre12.g495100.t1.1) including the 3xHA-tag. This plasmid was then used as a template for Golden Gate-based cloning which introduced PSADprom, RBSC2 intron, mVenus including the Strep tag and PSAD terminator. A second round of cloning introduced the ParoR gene components. The full cloning history is shown in **Fig. S3** and described in Materials and Methods in the manuscript. The pCL8 construct was then transformed into *C. reinhardtii* UVM4 by electroporation (Materials and Methods). Stable pLC8-transformed *Chlamydomonas* lines were screened for PSR1-YFP fusion mRNA by RT-PCR and by western blotting for levels of intact fusion protein (**Fig. S4**). The primers used for the construct assembly and screening are shown in **Tables S1, 2**.

1249

Nuclear targeting of PSR1-YFP fusion protein

1250

Fluorescence confocal analysis was carried out on two of the PSR1-OE lines (8-27 and 8-42) to examine intracellular targeting of the PSR1-YFP fusion protein. The intracellular targeting and composition of the strongest PSR1-OE line 8-27 is shown in the manuscript (**Fig. 1**). Similar data for the weaker PSR1-OE line 8-42 is shown in **Fig. S5**. This demonstrated that there was nuclear expression of PSR1-YFP in both lines where the DAPI-DNA signal co-localized with PSR1-YFP in large organelles, consistent with the nucleus (**Fig. S5 B-D**). Unlike the nuclear DAPI-DNA signal, the DAPI-PolyP signal located close to the vacuole consistent with the known location of PolyP granules to the acidocalcisomes or vacuolar bodies (**Fig. S5 E-H**).

1251

PolyP accumulation is transiently increased with PSR1-OE

1252

Comparison of PSR1-OE line 8-27 and the UVM4 control in a batch-culture time course indicated differences in the accumulation pattern of PolyP granules by fluorescence confocal microscopy (carried out as above). This was shown for single representative cells in the manuscript (**Fig. 1**). Here in **Fig. S6** images from multiple cells (10) are shown for the two lines for each time point. As indicated in the manuscript, PolyP granules were particularly large (<5 μ m) with a very extensive but diffuse DAPI-PolyP signal apparent in the transgenic line at d2 compared with the control (**Fig. S6A**). However, by d3, granules had become smaller and more numerous in both lines but with more intense signal in the control compared with 8-27 (**Fig. S6B**). By d6, the signal was diffuse and weak in both lines (**Fig. S6C**).

1253

Growth rate and composition of medium and biomass during batch culture

1254

Three PSR1-OE lines (8-2, 8-27, 8-42) were compared together with an untransformed UVM4 background control in a batch culture time course (standard conditions at 25°C under continuous light in nutrient-replete TAP medium: 1 mM P ~30 mg/L P). Growth in batch culture was compared in the manuscript in **Fig. 2A**, followed by depiction of PSR1-OE driven changes: medium P and Mg, and biomass P (**Fig. 2B-D**). In **Fig. S7**, measurements are shown for the parameters that did not change in transgenics versus control: growth rates (log plot); biomass chl a+b levels; pH; N (NH_4^+), S (SO_4^{2-}); Ca^{2+} and K^+ . A statistical analysis of the P in biomass differences between the transgenic PSR1-OE lines and the control is shown in **Fig. S8**.

1255

Functional analysis of gene expression changes during batch culture in the UVM4 control

1256

RNA sequencing was performed on triplicate samples from d2, d3 and d6 for lines 8-27 and 8-42 and UVM4. Transcriptomic analysis focused first on the changes occurring in the background (strain UVM4) as it transitioned from log-phase (d3 v. d2) to stationary phase (d6 v. d2). Relative data was obtained (FC) using a 2-fold biological significance cut-off with a P-adj<0.05 statistical significance cut-off. This generated four sets of genes for early changes (d3 v. d2) and late (d6 v.

1289 d2) for both up and down (listed in **Data S1**). In the manuscript the data for the top 200 up or
1290 down genes were shown for the early and late comparisons (**Fig. 3A**). In **Fig. S9**, the full set of
1291 genes were analyzed in terms of function according to Protein Class Panther annotations available
1292 at JGI (*C. reinhardtii* genome v5.6 annotation file).

1293 Comparison of PSR1-OE data with a published P-stress experiment

1294 The second focus of the transcriptional analysis was on the changes attributed to the PSR1-OE
1295 construct in the transgenics as compared to the UVM4 control during the batch-culture time
1296 course. This required a comparison of the transgenic lines (8-27, 8-42) against the UVM4 control.
1297 Fold-change (FC) gene expression data was determined at time points d2, 3 and 6. The greatest
1298 magnitude (i.e. the maxima or minima for each gene, whichever was greatest) were compared
1299 with the same from a published dataset from a P-starvation (P-STRESS) experiment (16). In the
1300 manuscript a biological significance cutoff of 2-fold for both datasets was used. This cutoff
1301 generated a subset of 248 genes (OE-248) for our data (98% p-adj<0.1; 68%, p-adj<0.05) (**Data**
1302 **S1**) but gave a much larger subset of ~4000 genes with the P-STRESS data (PS-4354). In the
1303 manuscript, good agreement was seen between the OE-248 and P-STRESS data sets (60% of the
1304 OE-248 set were also altered in the P-STRESS set). Here in Supplemental, the same exercise was
1305 repeated using similar numbers of genes from both data sets, to confirm the findings. The OE-248
1306 data set (>2-fold cutoff) had 177 up genes and 71 down genes. To compile a list of similar
1307 numbers from the P-STRESS dataset, modified integer cut-offs of 6-fold (up) and 25-fold (down)
1308 were applied to the P-STRESS dataset with the results shown in **Fig. S10**. For the 177 up genes of
1309 the OE-248 set, 25% showed agreement with the P-STRESS data with a >6-fold cut-off (cf. 68%
1310 >2-fold). With the strongest line 8-27 the agreement for up genes was now 30% compared with
1311 70% (>6-fold cutoff cf. >2-fold cutoff of P-STRESS data) whereas with line 8-42 it was 19%
1312 compared with 51%. This indicated a continued agreement with the higher ranked up genes from
1313 the P-STRESS dataset. In contrast, with the down genes, only three genes (FDX5, XBAT33 and
1314 RBCS2) from the OE-248 dataset (4%) showed agreement with a similar number of down-
1315 regulated genes from the P-STRESS data (c.f. 46% with a >2-fold cut-off). This reinforced the
1316 findings in the manuscript that PSR1-OE mimicked more closely P-stress for the upregulated
1317 cohort of genes rather than the down-regulated genes.

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

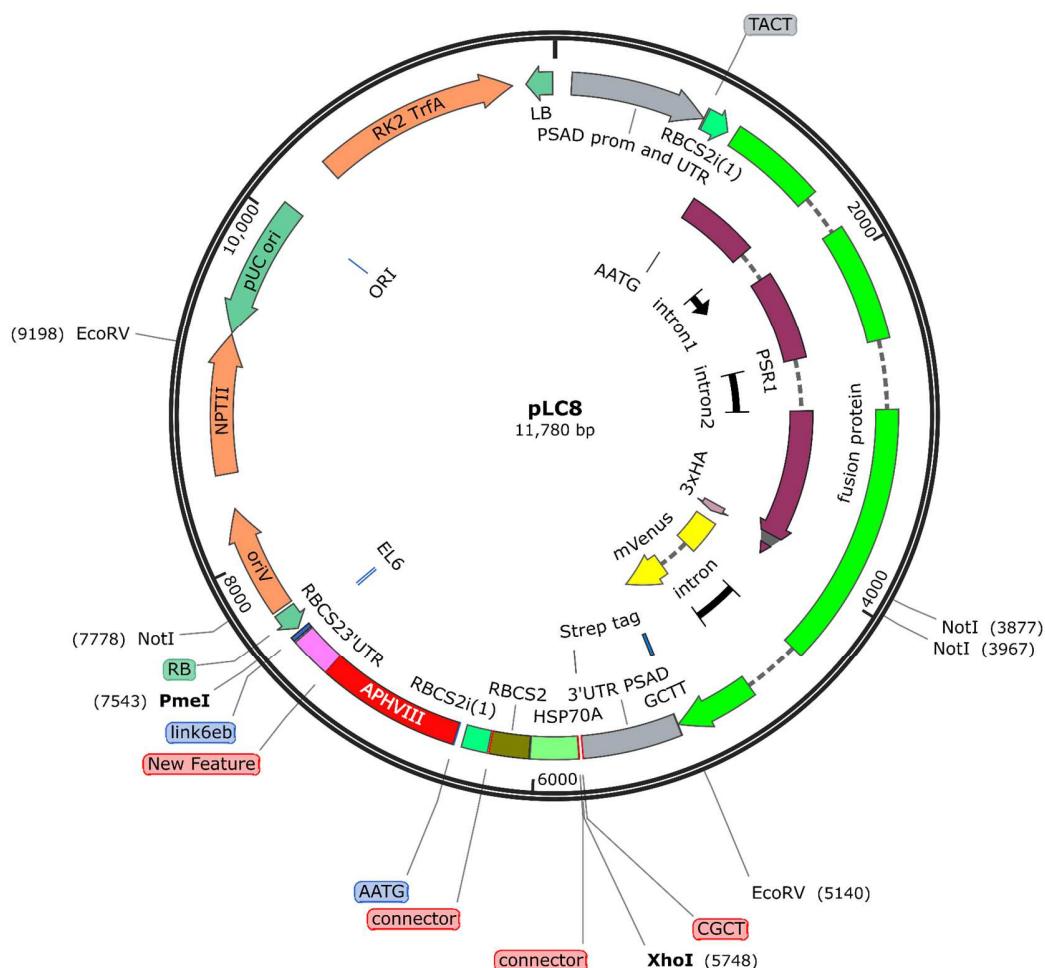
1330

1331

1332

1333

1334


1335

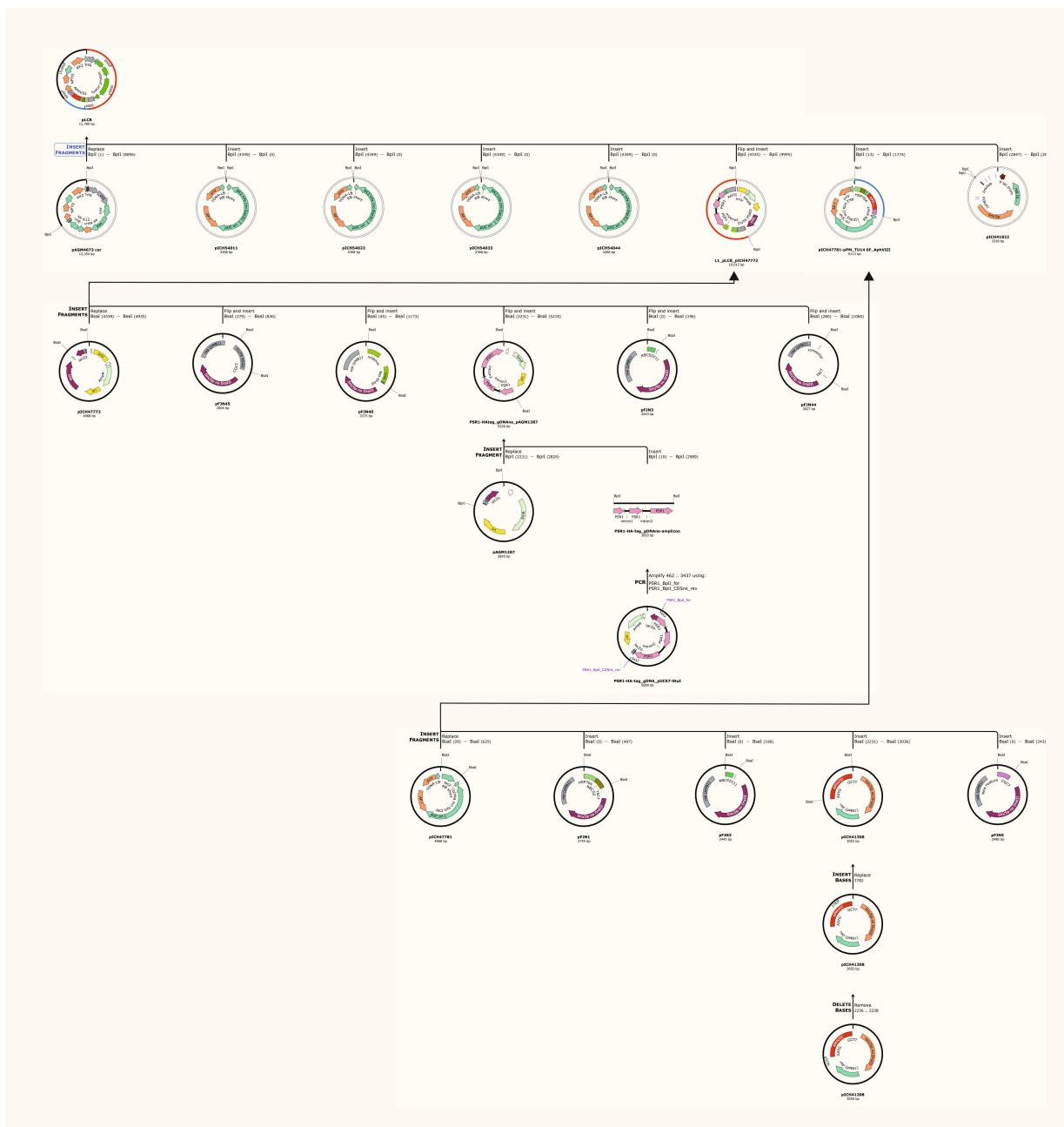
1336

1337

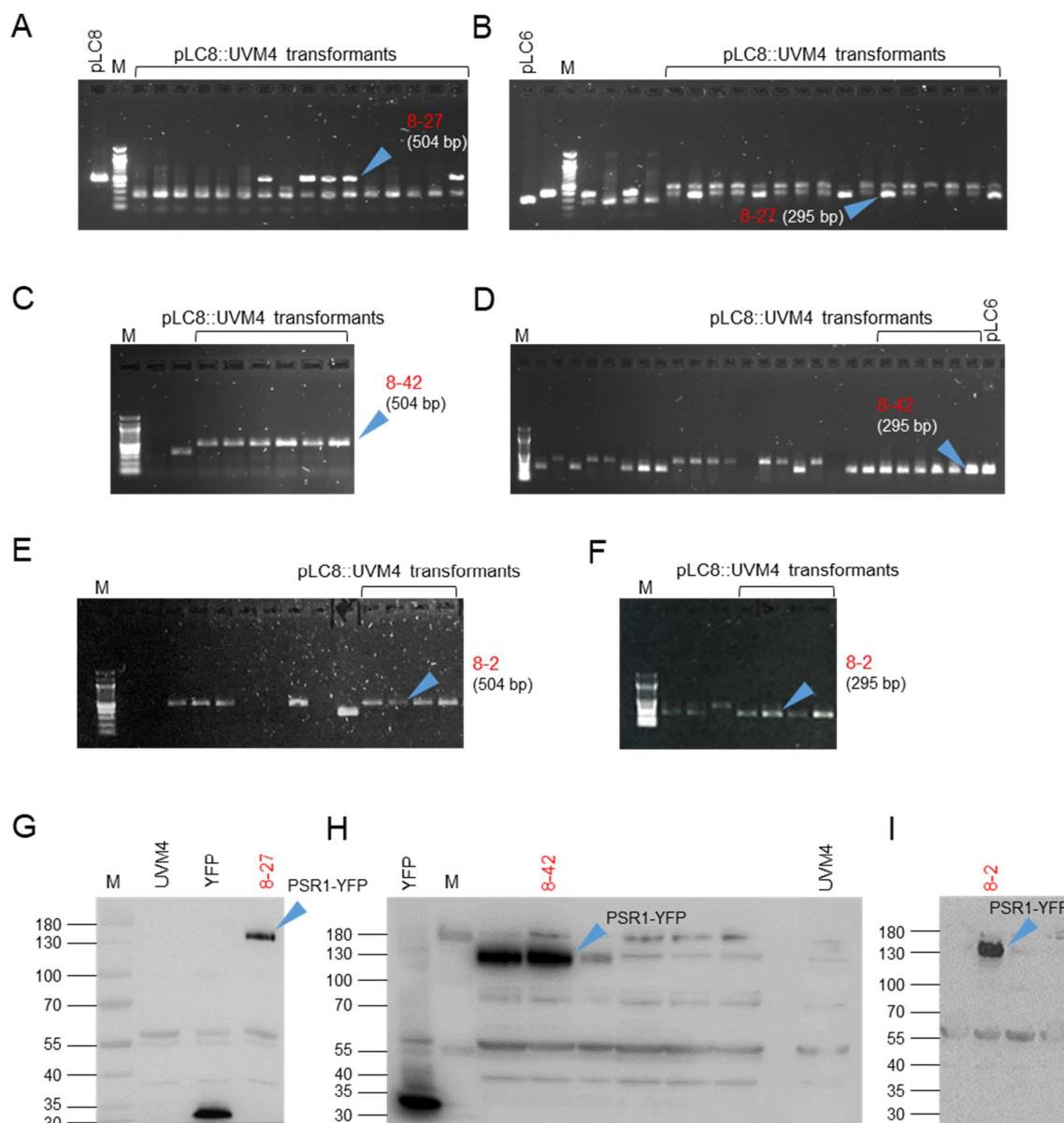
1338

1339
1340
1341

1342
1343
1344
1345


Fig. S1. Plasmid map of pLC8, the PSR1-OE construct. The pLC8 construct was based on the pUC57 backbone, which provided kanamycin resistance (*nptII*) for microbial selection. From the top, the PSR1-OE component included the PSAD constitutive promoter with an RBCS2i enhancer driving the PSR1 gene. The latter was terminally fused to a 3X HA tag then YFP (mVenus) followed by 3'UTR of PSAD. Downstream of this gene was a second gene construct for Paromycin resistance for enabling selection of algal transformants.

1352
1353
1354
1355
1356
1357
1358
1359
1360


1361
1362
1363 PSR1 (HA) VenusStrepII Fusion protein
1364 1048 amino acids; MW 109363; pi 5.35
1365 MDKAERAAGGPNAASEDDWLEFWPEPAADFAPAVAPMLSQHQDAAQLPEAMPQQQGLALGGYGL
1366 TQQPSDFMQTGMPGFDSSGKAATLGLPLADPQRSTDGASALMNAQQSSEYMLAPGMGGMP
1367 HLLAPSVGTALPGTHTGFADLSMGGMAGGI PGLGGPGIMHGQYFMQPQRAATGPAKSRLRWTPE
1368 LHNRFVNADVNSLGGPDKATPKGILKLMGVGDLTIYHIKSHLQKYRLNIRLPGESGLAGDSADGSD
1369 GERSDGEGGVRRATSLERADTMSGMAGGAAAALGRAGGTPGGALISPGLAGGTSSTGGMAAGGGG
1370 GGGLVTEPSISRGTVLNAAGAVATAAAPAAAAPAGGSAAVKRPAGTSLSGGSTASATRRNLEEALL
1371 FQMEIQKKLHEQLETQRQLQLSLEAHGRYIASLMEQEGLTSRLPELGGAPAAAPVAAGGAAGGM
1372 IA PPPPQQQLQHQPQQLQPGSIPAGGSSEAHAAAGAGTMVVHQQQQQHVHHHQQQQVQMQQHA
1373 RHCDTCGAGGAGGAPSGGSSMQQLQAAEQQRTTELVVAAGRLGSMPAPASSSPLAGQAHQQQPLAGG
1374 AAHLVHVHSHTPGQPHVQHQDAFAGAATAAAHASPGLPQSHSHLLPADLSSNAGPDTSAQIKP
1375 EPDMSQQQQQQEQQEAEQLAQGLNDSSAGAGAVSGSDGGGLGDFDFGDFGDLGGAQGGLLGPG
1376 DLIGIAELEAAAAYPYDVPDYAYPYDVPDYAYPYDVPDYAAAHEQQQEHDPLADRAKRQRV
1377 EPSSHMRSVDVIEGRVSKGEELFTGVVPILVLEDGDVNGHKFSVSGEGEGDATYGKLTLLKLICTTG
1378 KLPVPWPTLVTLGYGLQCFARYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEG
1379 DTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYITADKQKNGIKANFKIRHNIEDGGVQLADH
1380 YQQNTPIGDGPVLLPDNHYLQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYKIEGRDIEF
1381 WSHPQFEK*

1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397

Fig. S2. Amino acid sequence of PSR1-OE construct fusion protein. The fusion protein was of predicted size 109 kDa and consisted of an N-terminal fusion of PSR1 (MDK...VEP) (C. reinhardtii v5.6 Accession: Cre12.g495100.t1.2) containing a 3xHA tag inserted towards the end in a stretch of Alanines (YPY...DYA), with a C-terminal mVenus YFP (MRS...FEK).



Fig. S3. Full cloning history of the pCL8 construct (zoom into image). The PSR1 gene (Cre12.g495100.t1.1) with an inserted 3xHA-tag was synthesized (Genscript Biotech Corporation, UK) and cloned into pUC57 via the StuI restriction site. This plasmid was then used as a template for Golden Gate-based cloning. The following level 0 plasmids were used: pCM0-001 (PSAD prom), pCM0-024 (RBCS2 intron), pCM0-044 (mVenus, incl. Strep-tag), pCM0-114 (PSAD term) all from (47), and L0_PSR1 (PSR1 cloned into pAGM1287 (MoClo Plant Kit) in this study). For the generation of level 2 plasmids for Chlamydomonas transformation, the following level 1 plasmids were used: pAGM4673 (L2 backbone, MoClo Plant Kit), pICH41822 (L2 end-linkers MoClo Plant Kit), pICH54011, pICH54022, pICH54033, pICH54044 (Dummies, MoClo Plant Kit), pCM1-27 (ParoR_r) (47) and L1_PSR1 (PSADprom-RBCS2intr-PSR1-mVenus-PSADterm, this study).

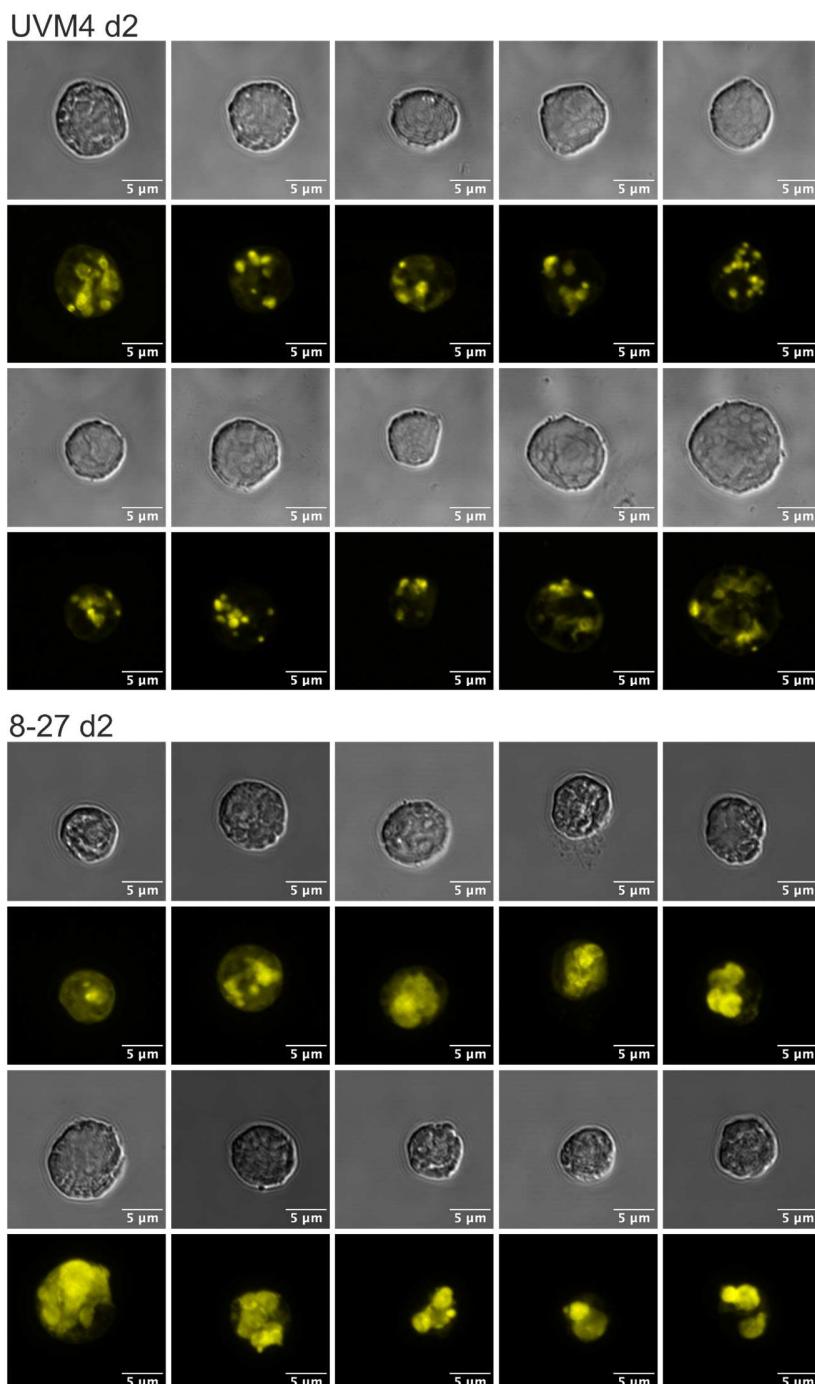
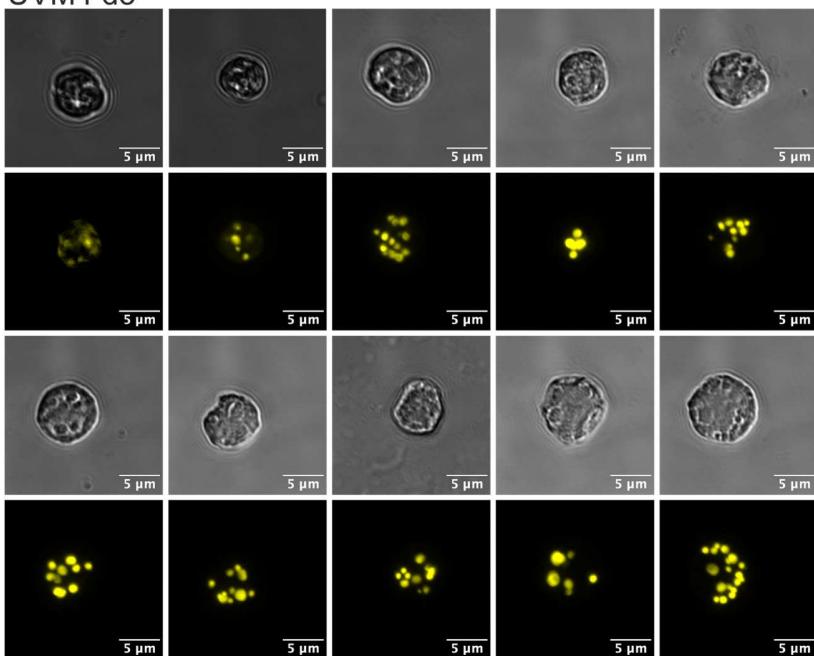


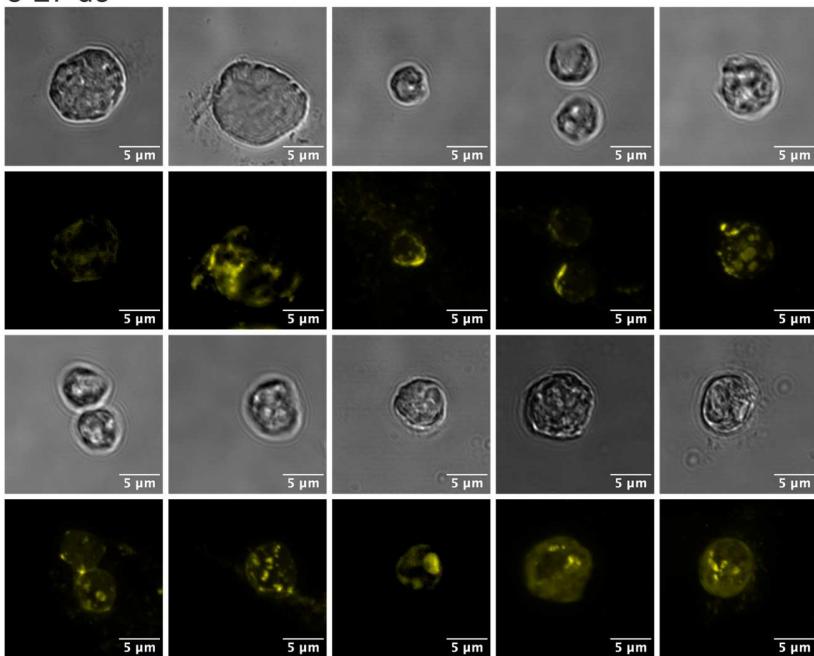
Fig. S4. Screening for PSR1-YFP construct and fusion protein in transgenic lines.

Colonies from three independent transformations of *C. reinhardtii* were screened by (A-F) colony PCR for the presence of the PSR1-YFP construct and (G-I) Western blotting for presence of the PSR1-YFP fusion protein. (A, B, G) **Line 8-27** is highlighted from transformation date 23-11-2017. (C, D, H) **Line 8-42** is highlighted from transformation date 22-03-2018. (E, F, I) **Line 8-2** is highlighted from transformation date 26-04-2018. (A, C, E) The PSR1 portion of the construct was detected by PCR primers LC40 and LC42 giving rise to a 504 bp product, utilizing the pLC8 plasmid DNA as a positive control. (B, D, F) The Venus YFP portion of the construct was detected using primers LC43 and LC45 generating a 295 bp product, using pLC6 plasmid DNA as a positive control. (G-I) Western blot analysis of protein extracts from the selected colonies for presence of the fusion protein using anti-YFP antibody (predicted size 109.4 kDa). The controls were untransformed UVM4 (negative) and UVM4 transformed with the YFP construct only (positive). Chlorophyll loadings were 2.5 μ g (G, I) and 5.0 μ g (H). Marker (M), primers are listed in **Table S1**.

A



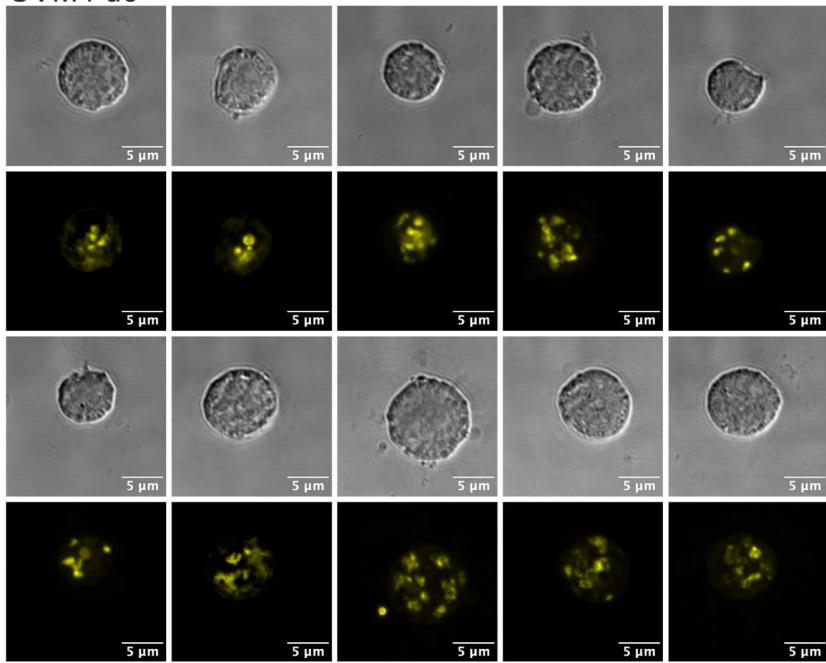
1449
1450
1451
1452
1453
1454
1455
1456


Fig. S6. Increases in PolyP storage granule size as determined by fluorescence confocal microscopy associated with PSR1-OE. Increases in PolyP storage granule size as determined by fluorescence confocal microscopy associated with PSR1-OE. Displayed in (A-C) are differences in the accumulation of PolyP in cells from a batch culture time course in TAP media for time points d2 (A), d3 (B) and d6 (C). At each time point 10 representative cells are compared for control line UVM4 (top) and PSR1-OE line 8-27 (bottom). For each cell the bright field (top) and the DAPI-PolyP signal (bottom) is shown (Emission λ 535-575nm).

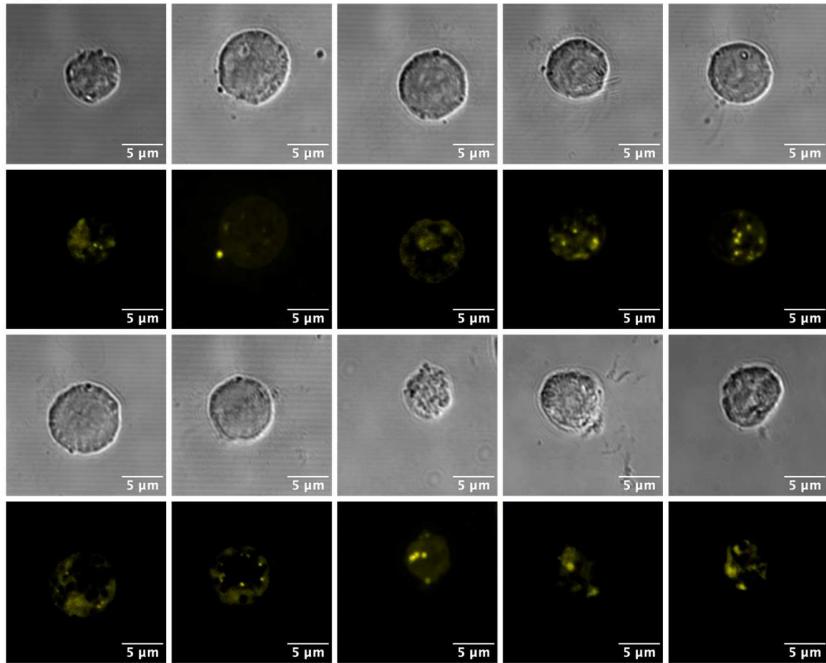
B

UVM4 d3

8-27 d3



1457
1458
1459
1460
1461
1462
1463
1464


Fig. S6 (continued). Increases in PolyP storage granule size as determined by fluorescence confocal microscopy associated with PSR1-OE. Increases in PolyP storage granule size as determined by fluorescence confocal microscopy associated with PSR1-OE. Displayed in (A-C) are differences in the accumulation of PolyP in cells from a batch culture time course in TAP media for time points d2 (A), d3 (B) and d6 (C). At each time point 10 representative cells are compared for control line UVM4 (top) and PSR1-OE line 8-27 (bottom). For each cell the bright field (top) and the DAPI-PolyP signal (bottom) is shown (Emission λ 535-575nm).

C

UVM4 d6

8-27 d6

1465

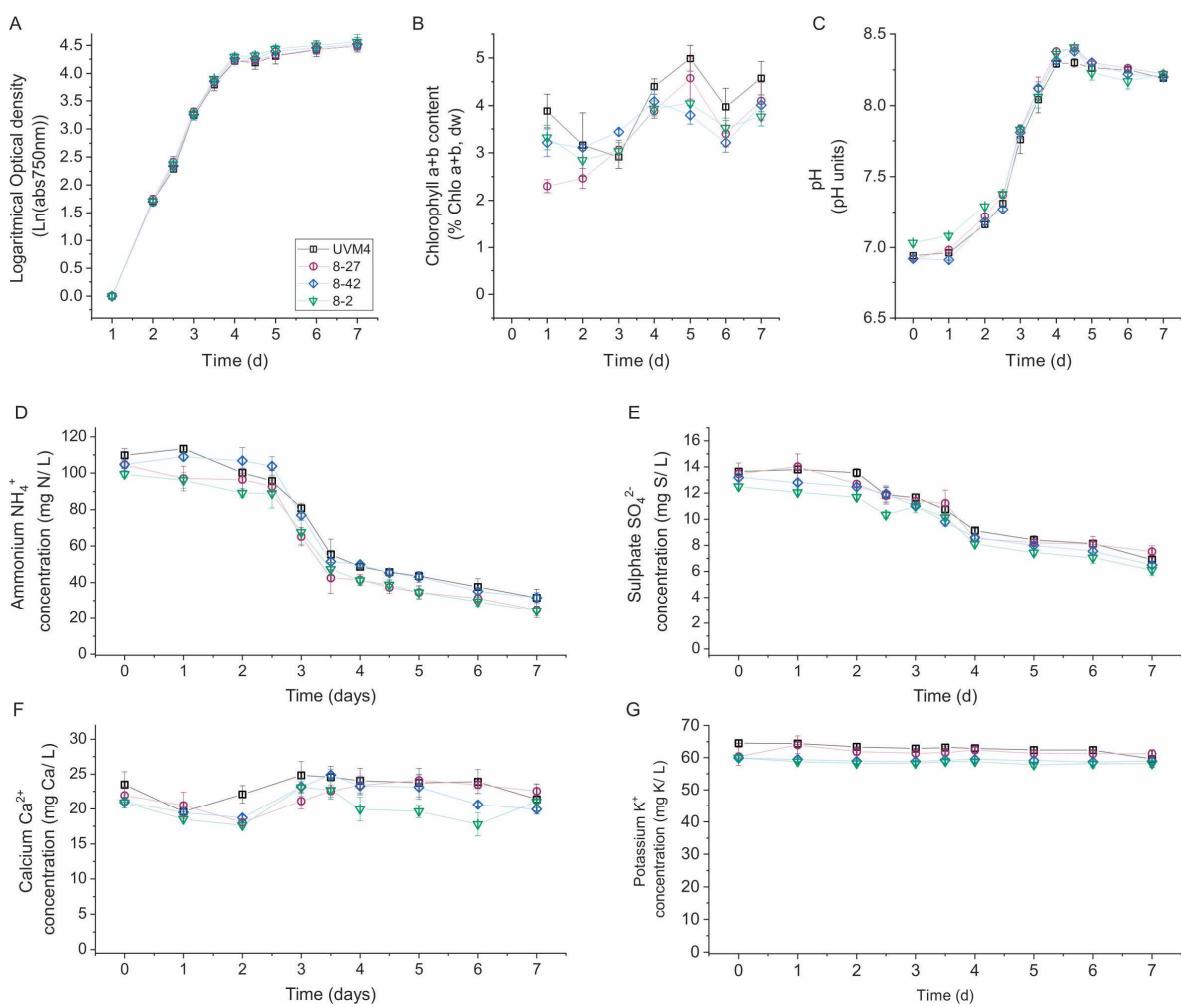
1466

1467

1468

1469

1470


1471

1472

1473

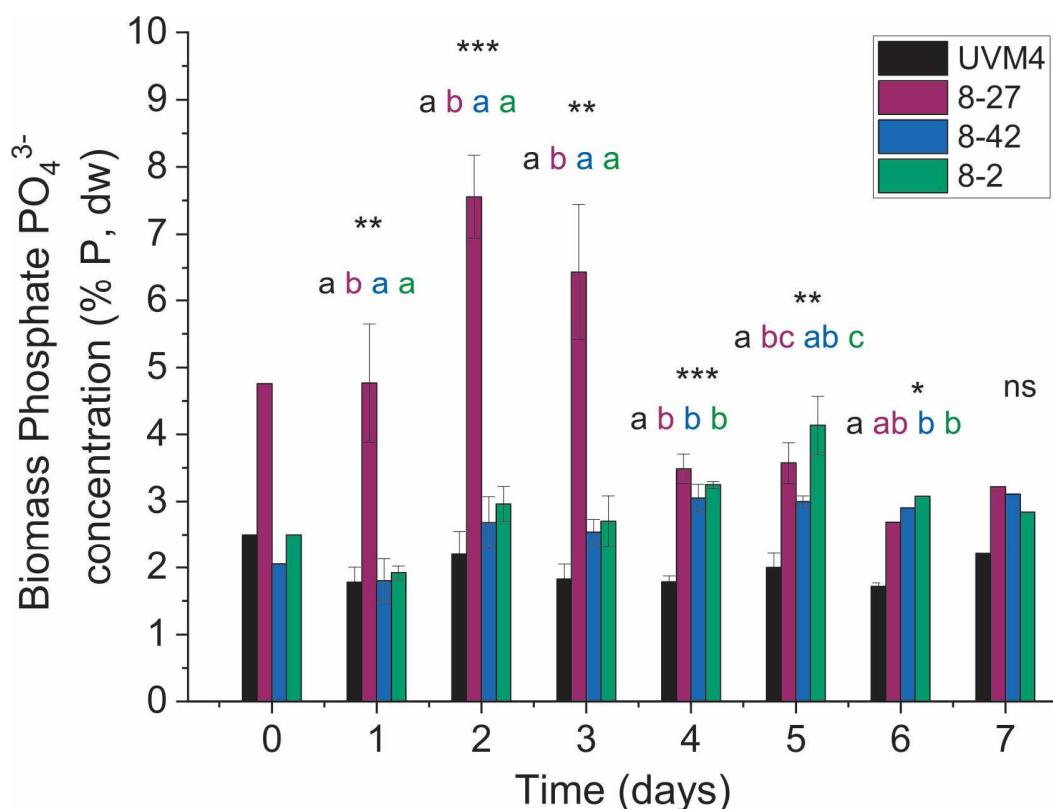
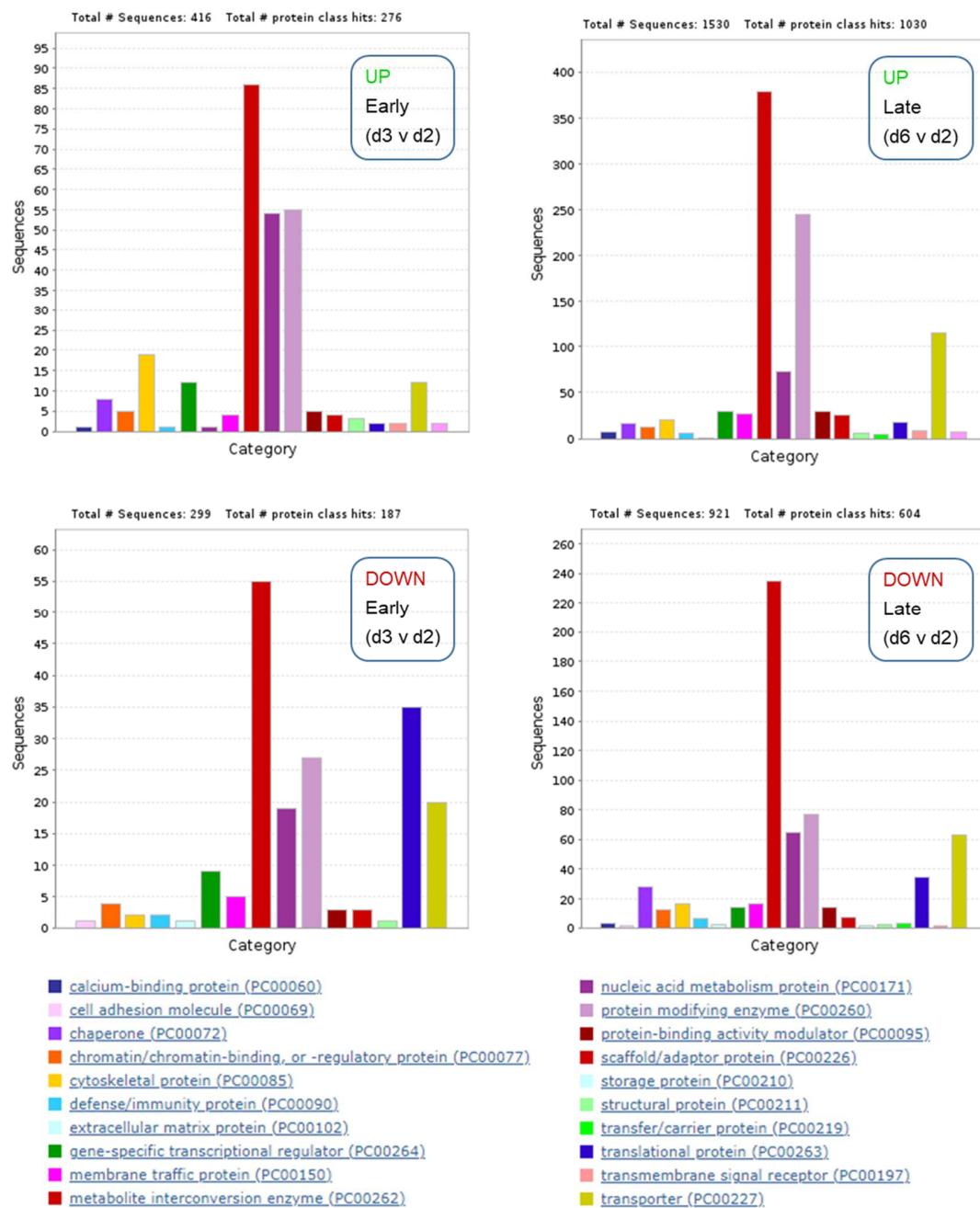
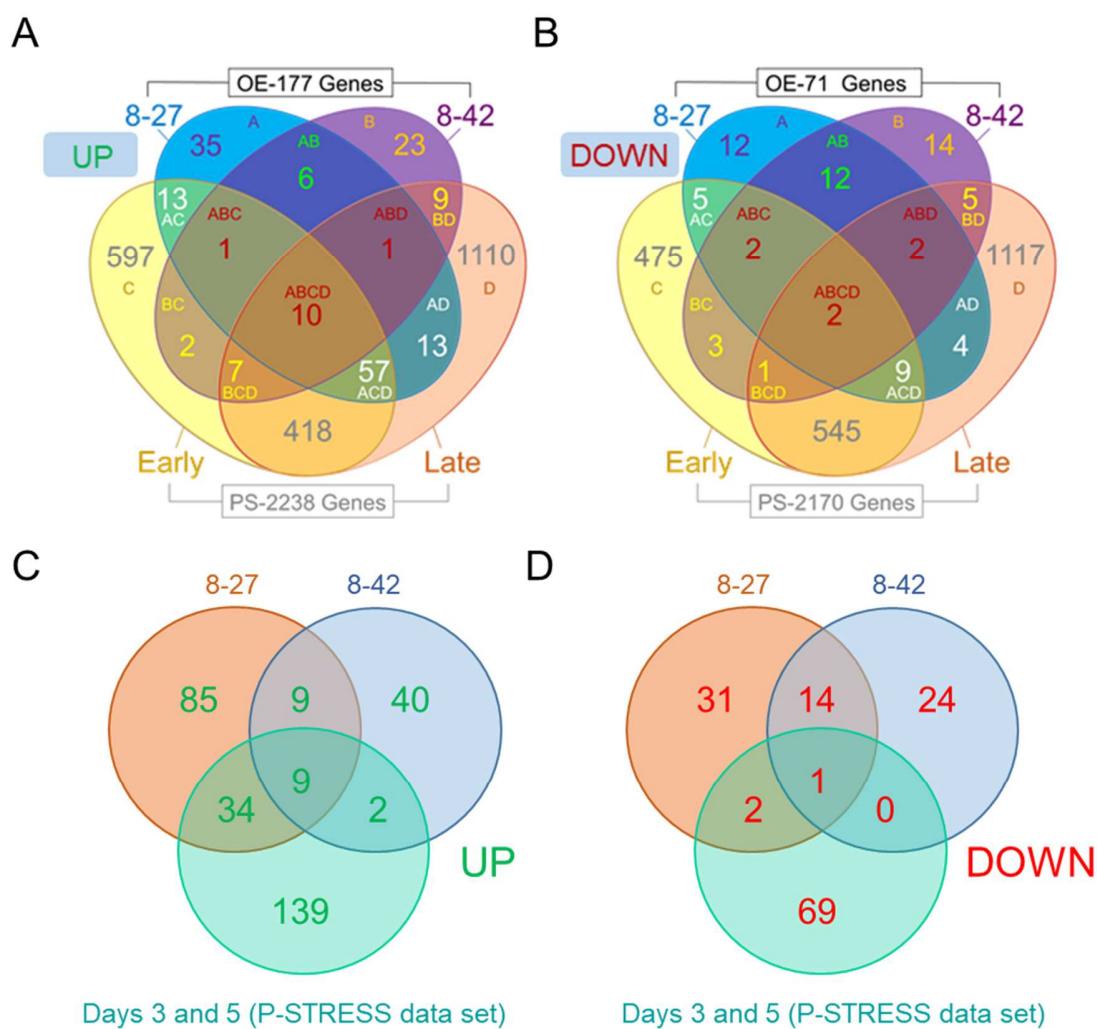

1474

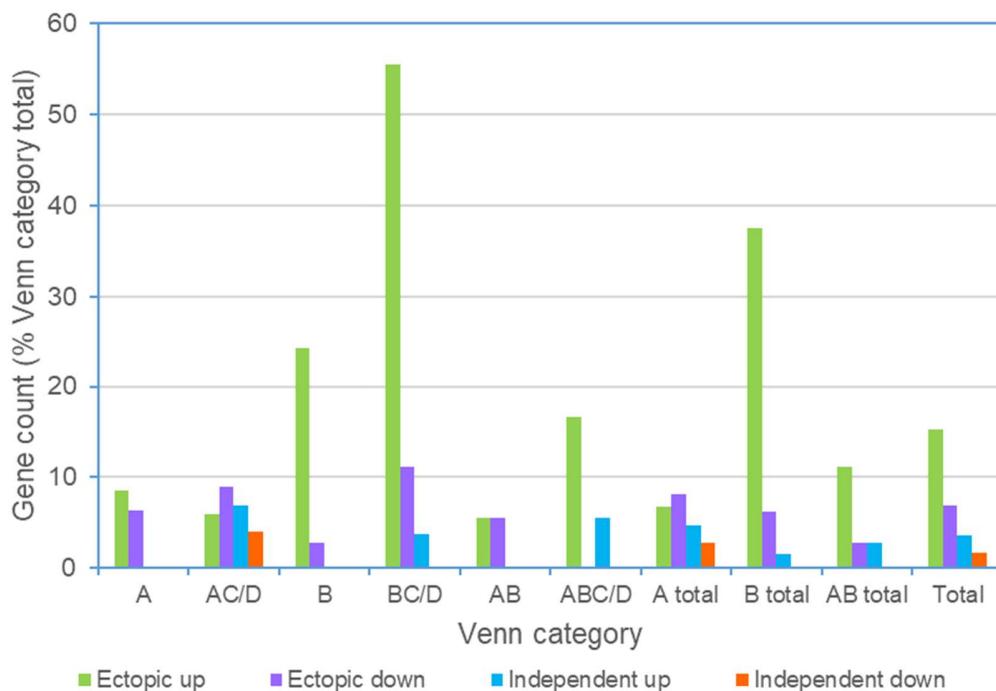
Fig. S6 (continued). Increases in PolyP storage granule size as determined by fluorescence confocal microscopy associated with PSR1-OE. Increases in PolyP storage granule size as determined by fluorescence confocal microscopy associated with PSR1-OE. Displayed in (A-C) are differences in the accumulation of PolyP in cells from a batch culture time course in TAP media for time points d2 (A), d3 (B) and d6 (C). At each time point 10 representative cells are compared for control line UVM4 (top) and PSR1-OE line 8-27 (bottom). For each cell the bright field (top) and the DAPI-PolyP signal (bottom) is shown (Emission λ 535-575nm).


1475
1476
1477
1478
1479
1480 **Fig. S7.** Physiological parameters of transgenic lines and UVM4 control. Three transgenic PSR1-
1481 OE-lines, along with untransformed UVM4 background control, were cultivated under small-
1482 scale batch culture conditions in TAP media under continuous light. **(A)** Growth rates (log plot of
1483 optical density (OD)), **(B)** biomass chl a+b levels, **(C)** pH, **(D)** Medium N levels, **(E)** medium S
1484 levels, **(F)** medium Ca levels and **(G)** medium K levels.

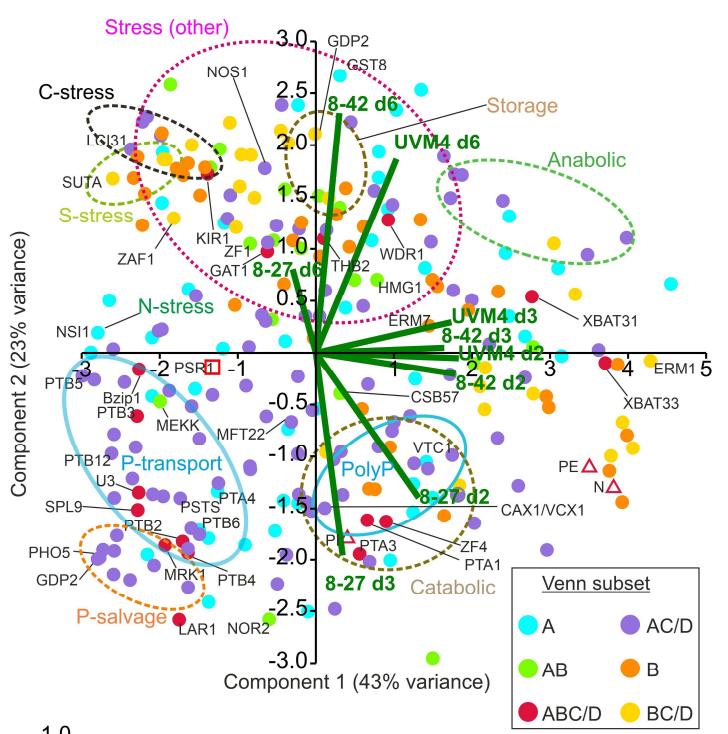
1485
1486
1487
1488
1489
1490

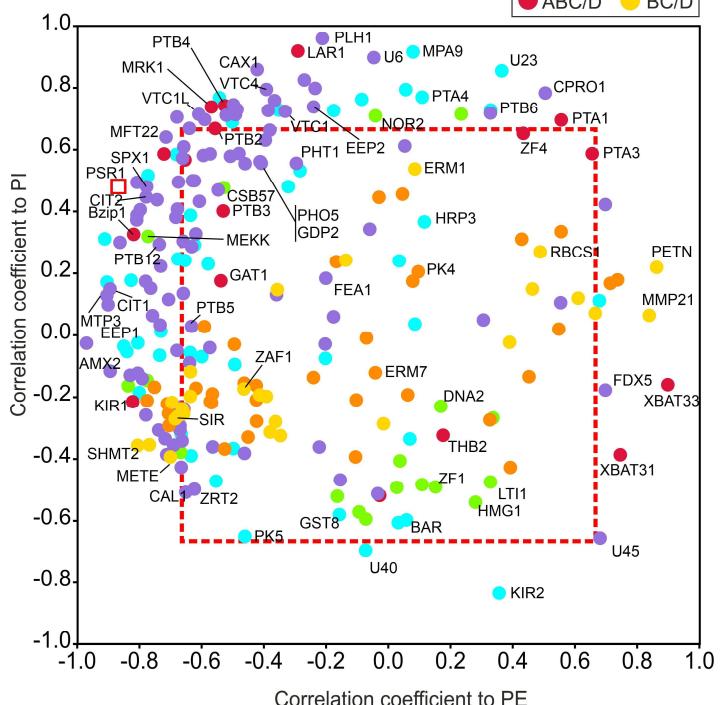


1491
1492
1493
1494
1495
Fig. S8. Statistical analysis of enhanced P in biomass accumulation in PSR1-OE lines.


1496 Measurements P in biomass composition at different stages of algal growth. Three transgenic
1497 PSR1-OE-lines, along with the untransformed UVM4 background control, were cultivated under
1498 small-scale batch culture conditions in TAP media (30 mg/L P ~ 1mM) in continuous light.
1499 Statistical differences were analysed by One-way ANOVA to validate the replicates and
1500 determine differences between the transgenic lines and the control: ns (not significant), *
1501 (P<0.05), ** (P<0.01), *** (P<0.001) and **** (P<0.0001). Where p<0.05 (One-way ANOVA),
1502 multi-comparison statistical analysis was carried out between each of the four lines with a Tukey
1503 HSD test (p-value<0.05). Letters from a-d were assigned to group the lines with no significant
1504 differences on each day of cultivation.
1505
1506
1507

1508
1509 **Fig. S9. Gene function analysis of UVM4 during batch culture.** Analysis based on Panther
1510 gene ontology for Protein Class for early and late, up and down as labelled. Relative data was
1511 obtained (FC) using a 2-fold biological significance cut-off with a P-adj<0.05 statistical
1512 significance cut-off. This generated four sets of genes for early changes (d3 v. d2) and late (d6 v.
1513 d2) for both up and down (listed in **Data S1**). Protein Classes are indicated in the legend and
1514 numbers falling into these classes in relation to the total is indicated at the top of each chart.
1515 Majority changes at all stages, up or down were Metabolite-interconversion enzyme genes,
1516 followed by Protein modifying enzyme genes, Nucleic acid metabolism proteins and
1517 Transporters. Large early decrease are shown in Translational protein and Transporters, and a
1518 relatively large increase is shown in Cytoskeletal protein genes.
1519


Fig. S10. Co-regulated expression changes between two PSR1-OE lines (8-27 and 8-42) and the P-STRESS data showing direction of regulation (up or down). Co-regulation occurrences are shown for maximum (A, C) or minimum (B, D) FC values (≥ 2 -fold FC relative to UVM4) for a given gene from the PSR1-OE lines in comparison with the P-STRESS dataset FC's. (A, B) Gene number per Venn sector is indicated and each sector is labelled as follows: A (8-27), B (8-42), C (P-STRESS d3 "EARLY") and D (P-STRESS d5 "LATE"). Here the P-STRESS FC cut-off was also ≥ 2 -fold. (C, D) Similar analysis employing different cut-offs for the P-STRESS dataset FC's (C) ≥ 6 -fold and (D) ≥ 25 -fold to generate equivalent gene numbers as observed for OE-248 up (177) and down (71).


1536
1537 **Fig. S11. Frequency of ectopic gene regulation in the *psr1-1* mutant among OE-248 genes.**

1538 The data refers to the behaviour of the OE-248 gene list in the *psr1-1* mutant. These data were
1539 published as part of the P-STRESS dataset where P-stress was not just carried out on a strain with
1540 wild-type PSR1 (Venn C/D) but also provided for the *psr1-1* mutant (FC: P-stress v. no stress)
1541 (**Data S1**) (16). Note that up or down refers to behaviour in the *psr1-1* mutant under P-stress in
1542 the P-STRESS dataset. Gene counts are shown for each Venn category which was defined by the
1543 PSR1-OE FC values (v. UVM4) where A refers to line 8-27 and B to line 8-42. Here, Venn
1544 subsets refer to a comparison of these lines within OE-248 (A, B) and the published P-STRESS
1545 data set (C/D) (**Fig. 3B**). In **Data S1**, mutant and wild-type P-STRESS data were compared for
1546 each of the OE-248 genes. Note that genes in Venn sets A, B, AB were not significantly changed
1547 in gene expression in the P-STRESS data set (FC<2 and >0.5) for the wild-type PSR1 strain
1548 (C/D), so where these genes were significantly up/down regulated in the mutant, this was
1549 considered ectopic; the remainder counts being P-stress unregulated genes (not shown). In Venn
1550 sets XC/D, genes were defined as PSR1-independent where FC values were (i) similar ($\Delta FC < 2$ -
1551 fold) in wild-type and mutant (ii) in the same direction (up or down) and (iii) biologically
1552 significant in both cases (FC>2 or <0.5) in the P-STRESS dataset. Genes in Venn XC/D were
1553 defined as ectopic where the FC's were 2-fold greater in the mutant relative to wild-type (same or
1554 opposite direction). Here the remainder counts were PSR1-dependent P-stress regulated (FC>2
1555 and <0.5) (not shown).

A

B

1560

1561 **Fig. S12. Temporal regulation of PSR1-OE gene expression.** Patterns of gene expression
1562 focusing on temporal factors are shown for the OE-248 gene set. The charts are coded for the six
1563 Venn diagram sector subsets (inset) as described in **Fig. 3B**. The data point for the full PSR1 gene
1564 mRNA (not specific to endogenous gene or transgene) is shown (□). (A) PCA analysis of
1565 normalized mean (n=3) RPKM and PE, PI and N measurements (Δ). Biplots (—) shown for three
1566 lines and timepoints. Clusters highlighting functional processes are encircled. (B) Plot of Pearson's
1567 correlation coefficients for RPKM data v. PI and v. PE for each OE-248 gene. Coefficients outside
1568 the boxed region (---) were significant for PI or PE (P<0.05). In all cases mean data was from n=3
1569 culture replicates.

1570

Table S1. Primers used in cloning and screening of transformants

Primer	Sequence	Binding site
GG_RBCS2intron1_F1	tactGCCAGGTGAGTCGAC	Binds at: 874 -> 892; 6251 -> 6269
GG_RBCS2intron1_R1	GCTTCGAATTCTTCAGCACC	Binds at: 1049 <- 1069; 6426 <- 6446
LC9_PSR1_screen274_rev	CGAGGGTTGCAGCCCTCC	Binds at: 1327 <- 1344
LC13_L2_PSAterm_for	gccaacgtgcacacacc	Binds at: 5453 -> 5469
LC14_L2_PSAterm_rev	gggtgtggcacgttggc	Binds at: 5453 <- 5469
LC15_AphVIII_rev	CAACCGGATACCGACC	Binds at: 6475 <- 6491
LC16_HSP70_for	cgaacgtgacccac	Binds at: 5927 -> 5943
LC18_mVenus_rev	CCAGCTCCACCAGGATG	Binds at: 4121 <- 4137
LC29_PSAprom_for	cgaccgagatggcttc	Binds at: 804 -> 820
LC40_PSAprom_2_for	caggccaggacgattatgt	Binds at: 709 -> 728
LC42_PSR1_screen142_rev	GCTGTGCTGCGCTTGATG	Binds at: 1194 <- 1212
LC43_PSAterm_rev	ctgtggtaattgaccgtgg	Binds at: 5337 <- 5356
LC45_mVenus_3'end_for	CATGGTGTGCTGGAGTTC	Binds at: 5062 -> 5080
LC51_RT_RBCSint_for	cgtgcgttccatttg	Binds at: 1007 -> 1024; 6384 -> 6401
LC52_RT_3'UTR-PSAD_rev	cgatcccgtataatcagcg	Binds at: 5248 <- 5267
LC56_RT_PSR1-3'end_for	GACCCACTAGATGCGGATC	Binds at: 4002 -> 4020
LC56_RT_PSR1-3'end_rev	GATCCGATCTAGTGGTC	Binds at: 4002 <- 4020
LC57_RT_AphIII_screen79_for	GCTGGTGTATCGGTTTCG	Binds at: 6526 -> 6545
LC58_RT_AphIII_screen263_rev	GCTTCGGTGACCAACCAG	Binds at: 6693 <- 6710
LC61_RT_3'UTR-PSAD_2_rev	CTGCTGCCAGAACGCaag	Binds at: 5178 <- 5195
LC64_RT_PSR1-CDS992_for_pr3+	CTGAGCCCAGCATCTTAGG	Binds at: 2299 -> 2318
LC65_RT_PSR1-CDS1184_rev_pr3+	CAGCTCCATTGGAACAGCAG	Binds at: 2472 <- 2492
LC66_RT_PSR1-3'end_for	CGACCCACTAGATGCGGATC	Binds at: 4001 -> 4020
LC67_RT_VenusCDS_for	CACAAGTTCAGCGTGGAGC	Binds at: 4155 -> 4173
LC68_RT_VenusCDS_rev	CGTGCTGCTTCATGTGGTC	Binds at: 4308 <- 4326
LC71_RT_PSR1-CDS2009_for	GCAGGGTTGCTCAATGACAG	Binds at: 3710 -> 3730
LC72_RT_PSR1-HA_rev	GGAAACATCGTATGGGTACGC	Binds at: 3882 <- 3901; 3912 <- 3928; 3939 <- 3955
LC87_PSR1-ex1_for	GCATCTACTAGCACCAGCG	Binds at: 1460 -> 1479
LC88_PSR1-ex2_rev	CGACGCCCATGAGCTTAAGG	Binds at: 1961 <- 1980
LC91_Venus-ex1_for	GACCACATGAACGACACG	Binds at: 4308 -> 4326
LC92_Venus-ex2_rev	CCTTGATGCCGTCTCTGC	Binds at: 4879 <- 4898
LC95_PSR1-ex1_2_for	CGAGGCAATTATGCCATGGGC	Binds at: 1569 -> 1587
LC96_PSR1-ex2_2_rev	GTTCACCGCGTTGACGAAG	Binds at: 1904 <- 1922
LC101_RT_AphIII_rev	CAACACGAGGTACGGGAATCC	Binds at: 6644 <- 6664
LC102_qRT_Venus_for	GCACGACTTCTCAAGAGGCC	Binds at: 4322 -> 4343
LC103_qRT_Venus_rev	CCTTCAGCTCGATGCGGTTAC	Binds at: 4769 <- 4790
LC104_PSR1-ex1-pr3+ for	CGCTGGGGATATGGACTC	Binds at: 1246 -> 1265
LC105_PSR1-ex1-pr3+_rev	GGCCAGCATGTACTGAGG	Binds at: 1420 <- 1439
LC106_PSR1-ex3-pr3+ for	AGCCGTATATGTCGAGCAA	Binds at: 3652 -> 3671
LC107_PSR1-ex3-pr3+_rev	GTCGGCGAAATCACCGAAGT	Binds at: 3787 <- 3806
PM829_GGAphVIII_F1	ttGAAGACatAATGgacgatgcgtgcgtg	Binds at: 6447 -> 6466
PM830_GGAphVIII_R1	ttGAAGACatAAGCtcagaagaactcgccaacagc	Binds at: 7230 <- 7255
PM831_AphVIII_F2	CGGGAGTTGTTGTCAGGT	Binds at: 6556 -> 6575
PSR1_BpI_CDSinlStop_rev	TTGAAGACATAAGCCTATGGCTCCACTCGCTGCC	Binds at: 4030 <- 4046
PSR1_BpI_CDSns_rev	TTGAAGACATAATGGACAAAGCTGAACCGCGCTGCT	Binds at: 4030 <- 4052
PSR1_BpI_for	TTGAAGACATAATGGACAAAGCTGAACCGCGCTGCT	Binds at: 1070 -> 1094

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

Table S2. Plasmids used in the construction of the pLC8 construct

Name	Description	Selection	Backbone plasmid	Creator	SnapGene file
pAGM1287	Level 0 backbone vector	Spec			pAGM1287.dna
pICH41308	Level 0 backbone vector	Spec			pICH41308.dna
LC10.3/4	PSR1-HAns_L0 (gDNA of transcription factor PSR1 HA-tagged no stop codon in pAGM1287)	Spec	pAGM1287	Lili Chu	pAGM1287.dna
PM_L1_TU4_paroR	TU paromomycin resistance cassette	Amp/Carb	pICH47781	Payam Mehrshahi (Cambridge)	PM_L1_TU4_paroR_AphVIII_plCH47781.dna
L1_pLC8	PSADprom-5'UTR – RBCS2intron – PSR1-HAtags – C-tagVenus – PSADterm	Amp/Carb	pICH47772	Lili Chu	L1_pLC8_pICH47772.dna
L2_pLC8	L1_pLC8 + ParoR	Kan/Paro	pAGM4673	Lili Chu	L2_pLC8.dna
pFJN3	Level 0 RBCS2intron	Spec		Cambridge	pFJN3.dna
pFJN40	Level 0 Venus	Spec		Cambridge	pFJN40.dna
pFJN43	Level 0 PSAD promoter incl. 5'UTR	Spec		Cambridge	pFJN43.dna
pFJN44	Level 0 PSAD promoter without 5'UTR	Spec		Cambridge	pFJN44.dna
pFJN45	Level 0 PSAD 3'UTR terminator	Spec		Cambridge	pFJN45.dna

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601