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Abstract

Multi-omics data, which include genomic, transcriptomic, epigenetic, and proteomic data, are gaining increasing importance
for determining the clinical outcomes of cancer patients. Several recent studies have evaluated various multi-modal
integration strategies for cancer survival prediction, highlighting the need for standardizing model performance results.
Addressing this issue, we introduce SurvBoard, a benchmark framework that standardizes key experimental design choices.
SurvBoard enables comparisons between single-cancer and pan-cancer data models and assesses the benefits of using patient
data with missing modalities. We also address common pitfalls in preprocessing and validating multi-omics cancer survival
models. We apply SurvBoard to several exemplary use cases, further confirming that statistical models tend to outperform
deep learning methods, especially for metrics measuring survival function calibration. Moreover, most models exhibit better
performance when trained in a pan-cancer context and can benefit from leveraging samples for which data of some omics
modalities are missing. We provide a web service for model evaluation and to make our benchmark results easily accessible
and viewable: https://www.survboard.science/. All code is available on GitHub: https://github.com/BoevaLab/survboard/.
All benchmark outputs are available on Zenodo: https://zenodo.org/records/11066227.
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Key Messages

• We introduce SurvBoard, a comprehensive benchmarking framework for the standardized evaluation of multi-omics cancer

survival models. SurvBoard provides an easily accessible platform for the reproducible comparison of models trained

on single-cancer and pan-cancer datasets. The platform addresses issues such as the impact of missing modalities and

variability in experimental setups. SurvBoard integrates data from four major cancer programs–TCGA, ICGC, TARGET,

and METABRIC–to ensure a comprehensive evaluation across diverse types of cancer and research centers.

• SurvBoard results confirm that statistical models generally outperform deep learning models in survival function calibration.

We also find that pan-cancer training enhances model performance and that models benefit from incorporating data with

missing modalities.

• SurvBoard includes a web service that allows researchers to submit models for benchmarking and evaluation. A leaderboard

is accessible via https://survboard.science/ to promote transparency and the continuous assessment of models’ performance.

Introduction

Survival analysis models for cancer research aim to predict

survival-related information using data with censored and

truncated observations [Klein et al., 2003]. These models play a

crucial role in patient risk stratification and enhancing treatment

selection, and are gaining increased interest from both machine

learning and bioinformatics communities [Depuydt et al., 2018,

Kvamme et al., 2019, Zhong et al., 2021, Tang et al., 2022, Lee

et al., 2018].

With the advent of large-scale cancer programs such as The

Cancer Genome Atlas (TCGA), International Cancer Genome

Consortium (ICGC), and Therapeutically Applicable Research

To Generate Effective Treatments (TARGET), researchers have

begun to incorporate multi-modal omics data into their survival

models [Tomczak et al., 2015, Consortium et al., 2010, Ma et al.,
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2018]. However, to date, most works have exclusively exploited

the TCGA datasets due to their large size and extensive

omics information, potentially increasing the risk of overfitting

models to this cancer program [Hornung and Wright, 2019,

Herrmann et al., 2021, Vale-Silva and Rohr, 2021, Wissel et al.,

2023, Cheerla and Gevaert, 2019]. The comparison of survival

prediction methods across large-scale cancer programs has also

been increasingly difficult due to the many diverging choices

regarding data imputation, cancer types under consideration,

test splits, and omics types utilized. Furthermore, while a

considerable number of benchmarks have explored statistical

and regression models for multi-omics integration in the cancer

survival context [Herrmann et al., 2021, Zhao et al., 2015,

Bøvelstad et al., 2009], no comprehensive benchmark has

compared neural and statistical models specifically in the multi-

omics setting, except our recent work, which was focused almost

exclusively on the noise resistance properties of different models,

as opposed to overall performance [Wissel et al., 2023].

In a pioneering study, Zhao et al. [2015] benchmarked

several feature selection and dimensionality reduction methods

combined with the Cox proportional hazards model on four

cancer types from the TCGA program. Although there was

high variability across cancer types, the study concluded

that modalities beyond clinical and gene expression did not

significantly enhance prediction performance. However, this

study was conducted early in the life cycle of TCGA, and it only

considered a limited number of datasets and techniques. More

recently, Herrmann et al. [2021] evaluated the performance of

12 statistical multi-omics models in predicting cancer survival

across 18 TCGA cancer types. The study found that while

incorporating the multi-modal group structure of multi-omics

data resulted in better predictions, even the best-performing

multi-omics models did not significantly outperform a baseline

model trained solely on clinical data. It should be noted that

this study excluded neural network models, now frequently

employed in survival analysis [Cheerla and Gevaert, 2019, Vale-

Silva and Rohr, 2021]. Furthermore, this study did not consider

missing modalities or pan-cancer scenarios in the training data,

which are increasingly typical in neural networks designed for

cancer survival prediction [Cheerla and Gevaert, 2019, Vale-

Silva and Rohr, 2021, Fan et al., 2023]. Hornung et al. [2023]

provided a comprehensive review and benchmarked multiple

methods designed to handle this type of data for a classification

task on TCGA. Nießl et al. [2022] used the benchmark design

of Herrmann et al. [2021] to illustrate the multiplicity of

design options available for benchmarking multi-omics survival

analysis. They showed that benchmark results could vary widely

depending on the metrics, datasets, and models used.

In addition to different training scenarios and the absence

of deep learning models in previous benchmarks, there exist

few guidelines for benchmarking survival models more generally.

The lack of a standardized benchmarking and experimental

framework may cause overly optimistic results due to inadvertent

data leakage and the numerous preprocessing options available

to researchers when comparing different survival prediction

methods [Nießl et al., 2022, Kapoor and Narayanan, 2023].

To address the current gaps in the performance evaluation

of multi-omics cancer survival models and to standardize their

empirical comparison, we introduce SurvBoard, a comprehensive

benchmarking framework. Using SurvBoard, we evaluate the

predictive performance of deep learning and state-of-the-art

statistical models on datasets from four cancer programs: TCGA,

ICGC, TARGET and Molecular Taxonomy of Breast Cancer

International ConsortiumMolecular Taxonomy of Breast Cancer

International Consortium (METABRIC). SurvBoard allows

users to train models in three different settings: standard

survival analysis, survival analysis with samples for which

some data modalities are missing, and pan-cancer analysis,

where a model is jointly trained on multiple cancer types. We

showcase the potential use of the SurvBoard platform and discuss

common pitfalls in creating datasets for omics survival analysis

studies using relevant examples from our four considered cancer

programs. Finally, we offer a free web service that displays a

leaderboard for SurvBoard, making it easy for other researchers

to compare their methods with existing ones.

Going forward, we will restrict ourselves to right-censoring

with no truncation, which is typical of most large-scale

observational cancer studies and datasets.

Methods

Datasets
The SurvBoard benchmark includes a total of 28 cancer datasets

from four projects: TCGA, which is arguably the largest and

most commonly used database for multi-omics cancer survival

analysis (n = 21), ICGC, which encompasses and complements

TCGA with additional samples from non-American studies

(n = 4), the pediatric cancer database TARGET (n = 2),

and the large breast cancer dataset METABRIC (n = 1)

(Supplementary Table S1, Supplementary Table S2). All datasets

from the cancer programs were preprocessed based on the

selection criteria highlighted in the Preprocessing section and

Supplementary Methods.

Survival analysis models evaluated in the leaderboard
We evaluated six different approaches on SurvBoard to jumpstart

the leaderboard, including two statistical methods and four deep

learning models. Our selection of methods was based on the

research conducted by Herrmann et al. [2021] and Wissel et al.

[2023], who identified BlockForest [Hornung and Wright, 2019]

and PriorityLasso [Klau et al., 2018] as the leading statistical

methods for accurately predicting clinical outcomes on TCGA

datasets.

From previous research, among various multi-modal deep

learning architectures for multi-omics survival analysis, the

most effective ones were architectures based on the late

fusion using an arithmetic mean and intermediate fusion using

concatenation [Wissel et al., 2023]. Furthermore, we used two

loss functions for the deep learning methods: the commonly used

negative logarithm of the Cox PH partial likelihood and the

Extended Hazards likelihood, which was recently introduced in

a deep learning setting [Zhong et al., 2021, Tseng and Shu, 2011].

We only considered methods that take into account the group

structure of the multi-omics data as they have been proven to

be more effective than those that do not [Herrmann et al., 2021,

Wissel et al., 2023].

Thus, to seed the SurvBoard leaderboard, we conducted

experiments for the six methods abbreviated as:

1. PriorityLasso L1+L2 (with the Elastic-net regularization),

a method that orders the input modalities and sequentially

uses Elastic-net-based models per modality that are carried

forward via offsets into the model fit for the next modality

[Klau et al., 2018];

2. BlockForest, a method based on random survival forests,

that takes the group structure of multi-omics data into

account by sampling covariates per modality (as opposed
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Fig. 1. The SurvBoard framework enables the reproducible, easily accessible, and standardized comparison of (multi-)omics cancer survival methods.

SurvBoard is based on a careful cohort selection from four cancer programs: TCGA, ICGC, TARGET, and METABRIC. The datasets from all programs

are preprocessed in a standardized manner, which allows for uniform assessment of the models created. The evaluation results can then be uploaded to

the SurvBoard leaderboard to track model results.

to uniformly) and considers block-specific weights when

calculating the split criterion [Hornung and Wright, 2019];

3. Neural network using late fusion with an arithmetic mean

and with the Cox PH likelihood, NN Cox LM [Ching et al.,

2018, Katzman et al., 2018];

4. Neural network using late fusion with arithmetic mean and

the Extended Hazards likelihood, NN EH LM [Zhong et al.,

2021];

5. Neural network using intermediate fusion with concatenation

and the Cox PH likelihood, NN Cox IC [Ching et al., 2018,

Katzman et al., 2018];

6. Neural network using intermediate fusion with concatenation

and the Extended Hazards likelihood, NN EH IC [Zhong

et al., 2021].

Further details regarding the considered models, including

hyperparameter choices, can be found in Supplementary

Methods.

Considered modalities
The performance of each model was assessed in three different

scenarios: (i) on each modality individually, (ii) with clinical

and gene expression data combined, and (iii) with all modalities

available for that particular dataset. Notably, available

modalities significantly varied across cancer programs and

datasets (Supplementary Table S1).

Furthermore, for experiments where only one modality was

used and no multi-modal integration was required, equivalent

models that did not take group structure into account

were employed. For example, Elastic Net was used instead

of PriorityLasso, and Survival Random Forest instead of

BlockForest in the unimodal experiments. For all deep learning

models, the unimodal experiments used a standard Multilayer

perceptron (MLP).

Three settings for the evaluation of survival models
SurvBoard allows users to train models in three settings:

standard, missing data modality, and pan-cancer.

Standard setting. Our first setting implements standard

multi-omics survival analysis. Each model is trained and

evaluated only on samples of the same cancer type.

Missing data modality setting. The missing data modality

setting refers to the scenario in which several samples in a dataset

lack data for one or more modalities but still have data for some

modalities, in addition to survival information. This is common

in TCGA, where many patients lack protein expression data.

Thus, models that can handle samples with missing modalities

benefit from an increased training set size.

In the missing data modality setting of SurvBoard, the tumor

samples with data lacking one or more modalities were used

as additional training data for models that can handle missing

modalities. In the test sets, only those samples with complete

data modalities in all settings were present. This was done to

ensure comparability with other models by using a consistent

test set.

Pan-cancer setting. In the pan-cancer setting, we jointly

trained models on datasets from different cancer types. However,

since not all datasets include all modalities, models that cannot

handle missing modalities cannot be trained in the pan-cancer

setting when all modalities are used.

Therefore, in our pan-cancer experiments, we only used

clinical data and gene expression. This allowed us to obtain

pan-cancer results for all models included in SurvBoard.

It is worth noting that the pan-cancer scenario only applies

to the TCGA project, as other projects did not provide data

that was normalized in a unified way for a pan-cancer analysis.

Preprocessing
While several packages (e.g., Cerami et al. [2012]) and data

sources (e.g., Weinstein et al. [2013]) allow the acquisition and

usage of TCGA, ICGC, TARGET, and METABRIC datasets,

preprocessing choices are left to the user, which leads to

inconsistency across benchmarking experiments. To enable

a fair comparison of existing and new methods, SurvBoard

standardizes most preprocessing choices.
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Endpoint choice. While all of our considered cancer datasets

provide multiple endpoints, e.g., overall survival (OS), Disease

Free Survival (DFS), and others, it is relatively common in

the survival literature to utilize OS, as it is ubiquitously

available compared to other endpoints. For example, for TCGA,

the Clinical Data Resource (CDR) analyzed the suitability of

different endpoints for survival analysis and found that OS is the

most used and generally appropriate for most datasets [Liu et al.,

2018]. The only exception was the situation where progression

was the event of interest, in which case the progression-free

interval was recommended. We follow this broader convention

and use OS as the endpoint of all datasets within our benchmark.

Patient cohort. We restricted our datasets to primary tumor

tissue samples. We also excluded patients for whom either the

event indicator or the event time was missing.

Dataset selection. We followed the methodology of Herrmann

et al. [2021] and selected only datasets with at least 100 samples

and a minimum event ratio of 5% or 10 total events, whichever

was larger. This ensured that we could compute meaningful

performance metrics. We only counted samples with complete

modalities for dataset selection since only these were included

in the test splits. Samples with missing modalities were only

used as additional training data.

Modality selection. We chose the maximum number of

modalities available for each dataset in each cancer program

and excluded datasets lacking clinical data and gene expression

modalities. In addition, we selected only datasets that fulfilled

the criteria above for at least two omics modalities, leading to

a total minimum of three modalities for each dataset.

Clinical variables. To ensure a fair comparison between

different cancer programs and cancer types, we only considered

standard clinical information that was available at the time of

diagnosis to prevent data leakage. This included demographic

data such as age and gender and staging variables such as clinical

stage. For each cancer program and dataset, we used slightly

different variables in the SurvBoard framework (as outlined

in Supplementary Methods and Supplementary Table S1). We

chose not to include information specific to certain cancer types

in our analysis, such as smoking history for lung cancer.

Missing values within modalities. To handle missing

data, we followed a three-step procedure. Firstly, we created

a token for non-available (NA) information for categorical

variables. We assumed that the missingness of categorical

variables might correlate with either the target variable or

other covariates, which is known as Missing Not At Random

(MNAR) [Van Buuren, 2018]. Our goal was to avoid mixing

unrelated categories, so we did not use mode imputation.

Secondly, non-categorical variables missing in more than 10% of

samples in a specific dataset were excluded from that dataset.

Thirdly, non-categorical variables with missing rates less than

10% in a dataset were imputed using the median of the

available samples on the full dataset. Although imputation

in the full dataset could lead to some information leakage,

previous research has shown that it does not cause significant

bias [Hornung et al., 2015]. This approach was designed

to eliminate non-model-specific preprocessing choices from

researchers.

Missing modalities. To create splits for training and testing

for each dataset of each cancer program, we created two sets

of samples: a ”complete” set used in the standard setting and

an ”incomplete” set that included samples with one or more

missing modalities. Importantly, the incomplete set was intended

only as additional training data in our benchmark, as noted in

the section describing the three training settings. Within the

incomplete set, NA values indicated that a particular modality

was missing in a specific sample. As explained above, NA values

for particular variables within available modalities were no longer

present in the incomplete set as they had been imputed or

removed.

Pan-cancer training. For the TCGA program, which

provided data normalized in a pan-cancer way, we combined

variables across all cancer types in the pan-cancer dataset.

The variables that were not available for all cancer types were

excluded. However, if a particular cancer type lacked a modality,

we did not remove this modality from the pan-cancer dataset.

Instead, we marked it as missing for the samples corresponding

to that particular cancer type.

Performance metrics
We measured three performance metrics in our benchmarks, all

of which are evaluated on the survival function level. Firstly, we

used Antolini’s Concordance (Antolini’s C) to assess the ability

of each survival model to discriminate low-risk patients from

high-risk patients over time [Antolini et al., 2005]. Secondly,

we evaluated the Integrated Brier score (IBS), which is a

widely used measure in survival benchmarks that assesses both

discrimination and calibration accuracy [Graf et al., 1999].

Thirdly, we included the recently proposed D-Calibration (D-

CAL), which measures the distributional calibration of each

multi-omics survival model [Haider et al., 2020]. For D-CAL, we

evaluated the test statistic where lower values corresponded to

a better fit (Supplementary Methods).

Validation
We implemented five-fold cross-validation, repeated five times,

resulting in a total of 25 test splits for each cancer type. To

create the splits, we stratified the data by the event indicator,

OS, which ensured that the event ratio in each train and test

fold was the same as in the original unsplit data. The incomplete

modality samples were not part of the test set and were instead

used only as additional training data. In the pan-cancer setting,

training data from all cancer types were included in each training

split.

In cases where a model encountered numerical issues or

sparse methods reported a fully sparse fit as the best model, we

used a Kaplan-Meier estimator as a replacement [Kaplan and

Meier, 1958]. For instance, the Lasso model has been observed to

sometimes fail in very high-dimensional datasets with high multi-

collinearity due to numerical issues [Herrmann et al., 2021, Sohn

et al., 2009]. We note that other choices have been explored here

and that this choice may have an impact on results [Herrmann

et al., 2021, Nießl et al., 2022]. Despite this, to enable a fair

comparison and prevent gameability for future submissions to

SurvBoard (for example, by deliberately setting difficult splits

to failures), we settled on the choice of a simple Kaplan-Meier

replacement (Supplementary Methods, Supplementary Table

S3).

Results

Benchmark design
We developed a benchmark framework named SurvBoard that

allows for the thorough evaluation of multi-omics survival

models in the context of cancer. Our framework, SurvBoard,

has several unique features (Fig. 1). Firstly, we used datasets

from four different cancer programs, TCGA, ICGC, TARGET,
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and METABRIC, containing data from up to seven modalities

including clinical variables, gene expression, somatic mutations,

DNA methylation, copy number alterations, protein expression

from reverse-phase protein arrays (RPPA), and miRNA

expression (Supplementary Table S1 and Supplementary Table

S2, Methods, Supplementary Methods).

Secondly, the datasets were filtered and preprocessed in a

standardized manner to enable optimal comparability across

models. Stratified splits were created to facilitate the uniform

assessment of model performances (Methods).

Thirdly, we prepared the datasets for conducting experiments

in three different settings: (i) a standard setting, where all

samples present all modalities used in training and the model

training is performed individually for each cancer type, (ii)

a setting where certain patients do not have information for

specific modalities, and (iii) a pan-cancer training setting where

multiple cancer types are trained jointly via a unified model

(Methods).

Last, we assessed the model performance using three different

metrics that focus on the accuracy of patient outcome prediction

and model calibration: Antolini’s C, IBS, and D-CAL (Methods,

Supplementary Methods, Supplementary Table S4).

Leaderboard
Additionally, we have developed a web service that enables

researchers and other stakeholders to submit predictions on

the SurvBoard benchmark set, which can be accessed via

https://www.survboard.science/. Using this service, one can

also download and inspect previous submissions, including

the provided baselines. SurvBoard’s web service evaluates

submitted predictions and displays the performance metrics

for all datasets within the benchmark in an easy-to-compare

leaderboard format (Fig. 2 and Supplementary Fig. S1-

S6). To access the sample submission file and links to

our web service, please visit the GitHub repository at

https://github.com/BoevaLab/survboard/.

We seeded SurvBoard by submitting six models: two

statistical and four deep learning models trained on various

combinations of input modalities and in different settings

(Methods). We limited the selection of models to those that had

already demonstrated top performance in multi-omics cancer

datasets in previous benchmarks [Herrmann et al., 2021, Wissel

et al., 2023] (Methods).

Assessment of model performances
To be fair to each model and to evaluate overall survival

prediction performance, we first determined on which

combination of modalities each model performed the best. We

trained each model on each available modality unimodally,

clinical data and gene expression together (which has performed

well in related work), and all available modalities together. We

selected the best modality set based on Antolini’s C metric for

each model (Methods). We found that clinical variables and

gene expression data were the most predictive modalities across

all models (Supplementary Fig. S7).

Next, we evaluated the performance of each model on

their optimized modality sets using three performance metrics:

Antolini’s C, IBS, and D-CAL. We observed that overall,

BlockForest trained on clinical variables and gene expression

data performed the best among all models (Fig. 3A-C). Notably,

BlockForest achieved the best rank across datasets for the

IBS and performed second best in terms of both D-CAL and

Antolini’s C. Prioritylasso L1+L2 also performed well, achieving

the best rank for D-CAL and the second-best rank for the IBS,

while performance for Antolini’s C was generally more variable

and no clear winner emerged.

Deep learning methods generally could not compete with the

statistical models PriorityLasso L1+L2 and BlockForest. While

NN Cox LM performed well for Antolini’s C, achieving the best

rank, it performed poorly in terms of model calibration, scoring

the worst median rank for both the IBS and D-CAL. Other

deep learning-based methods performed similarly, achieving

overall worse results than PriorityLasso L1+L2 and BlockForest

in terms of IBS and D-CAL, while achieving variable results

on Antolini’s C, with three out of four deep learning methods

outperforming PriorityLasso L1+L2.

It is worth noting that the best model configurations in

terms of the IBS metric differed from those selected based on

Antolini’s C (Supplementary Fig. S8). Most models achieved

optimal IBS values when only clinical variables were used for

predictions. However, even with using the input modalities

that led to the best IBS for each model (Supplementary Fig.

S8), the results were generally consistent with those obtained

Fig. 2. The SurvBoard web service curates and makes model results submitted to SurvBoard easily explorable and downloadable. The web service also

ensures that SurvBoard stays up to date, as other researchers can easily extend our initial baseline models.
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Fig. 3. Regularized linear models and random-forest-based methods outperformed deep learning methods on the SurvBoard benchmark. Overall ranked

results across all datasets, where lower ranks indicate better scores. A. Antolini’s concordance (Antolini’s C). B. Integrated Brier Score (IBS). C.

D-Calibration (D-CAL). Each model was trained on the dataset on which it ranked the best among itself in terms of the median Antolini’s C rank (see

Figure S2). Ties in the median Antolini’s C rank were broken using the mean Antolini’s C rank. The median is indicated by black horizontal lines, the

arithmetic mean by red points.

by optimizing Antolini’s C metric (Supplementary Fig. S9).

Nevertheless, when using only clinical data for training, the

survival problem becomes significantly more straightforward

and the integration becomes unnecessary, hence leading to little

or no differences between some of the deep learning methods.

In addition, discriminative survival model prediction

performance as measured by Antolini’s C was noticeably

more concordant between deep learning methods than between

PriorityLasso L1+L2 and BlockForest or either of the former

and any of the deep learning methods (Supplementary Fig. S10).

Added value of the pan-cancer training and including
additional training samples with missing modalities
Using the SurvBoard framework, we determined to what extent

pan-cancer training, i.e., (i.e.,) simultaneous training on all

datasets from a cancer program, could improve the performance

of omics survival analysis models. We used the two most

informative modalities, clinical variables, and gene expression

data, as input for the assessment. The results showed that

pan-cancer training improved the median performance for most

considered methods in terms of Antolini’s C and the IBS, while

the impact on D-CAL was much more variable. Moreover, the

performance increase was often statistically significant (Fig. 4A).

Deep learning methods benefited the most from pan-cancer

training, with all considered neural network models significantly

improving their performance for at least two out of the three

considered metrics. Interestingly, however, the best-performing

method in the standard setting, BlockForest, benefited the

least from pan-cancer training, with the D-CAL metric getting

significantly worse.

Next, we investigated to what extent including samples

with some missing modalities during training could improve

model prediction performance on unseen samples with all

modalities present. For this, we performed experiments on all

models capable of handling missing modalities (Supplementary

Methods), namely all models except BlockForest. Since the

clinical data and gene expression setting had no missing modality

samples, we considered all available modalities and compared

the performance of each method with and without including

missing modality samples as additional training data. After

including into the training set samples with missing modalities,

Antolini’s concordance improved significantly relative to the

non-missing modality models for all considered deep learning

methods but not for PriorityLasso L1+L2 (Fig. 4B). Meanwhile,

only PriorityLasso L1+L2 showed significant improvement in

model calibration as measured by IBS and D-CAL (Fig. 4).

Take-aways for effective model development and
validation
In our benchmark framework, we have aimed to remedy potential

pitfalls related to the training and validation of omics cancer

survival models. The pitfalls discussed below emphasize the

importance of some of the design choices we made in the

SurvBoard benchmark and may be helpful for other researchers

to validate their models on small n and large p data size regimes.

First, it is essential to report both discriminative

and calibration metrics while evaluating survival models.

Discriminative metrics such as Harrell’s concordance and

Antolini’s C have been widely used, along with calibration

metrics such as the IBS. These metrics do not necessarily

correlate, with correlations close to zero or even negative on

some datasets (Fig. 5A-B). Thus, reporting at least one metric of

each type is crucial. We found that on various datasets included

in SurvBoard, models could be favored if only one metric was

reported. For example, on the METABRIC breast cancer dataset,

PriorityLasso outperformed all other models in terms of the IBS

and D-CAL while achieving among the worst concordance values

as measured by Antolini’s C out of all methods (Fig. 5B).

Second, when using multi-omics survival methods, the choice

of clinical variables is crucial for ensuring high performance.

However, although it is tempting to use all treatment-related

and outcome-related covariates as predictive features, including

some of these may lead to data leakage [Kapoor and Narayanan,

2023]. For instance, a clinician might decide against starting

radiation therapy if the patient is expected to have a short life

expectancy due to their illness or other factors [Arenas et al.,

2014]. Indeed, on TCGA, we observed cancer types in which

treatment-related variables such as ”radiation therapy” were

strongly associated with the outcome (Fig. 5C), which could

be either due to a treatment effect or (partially) an effect of

not prescribing the treatment due to a very advanced disease

stage. It is thus advisable to be mindful of the choice of clinical

variables, especially treatment variables when benchmarking

survival prediction methods.

Third, it is advisable to include a large spectrum of studies

and datasets as possible in a benchmark to account for variability

in model performance. In SurvBoard, we reported results on

datasets from four cancer programs. This may guard against
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Fig. 4. Training on multiple cancer types jointly (pan-cancer) and leveraging samples with some missing modalities improved performance for most

models and most metrics. A. Pan-cancer training based on clinical and gene expression data improved all three considered metrics for most models, often

significantly. B. Training on all available modalities that also included samples with missing modalities on improved Antolini’s C for all deep learning

methods and both the IBS and D-CAL for PriorityLasso, relative to training on all available modalities without missing modality samples. Significance

indicated by * (p < 0.05) and ** (p < 0.01), based on a two-sided Wilcoxon signed-rank test. The median is indicated by black horizontal lines, and the

arithmetic mean by red points.

overfitting to a particular cancer program that is frequently

used in the literature or related work.

Fourth, one should avoid using unrepeated cross-validation or

even a single split when reporting model prediction performance

since this can make model ranking inconsistent. Indeed, in

SurvBoard, we observed large variability in model rankings

by Antolini’s C metric across cross-validation repetitions for

selected models (Fig. 5D). Smaller datasets, as measured by the

number of events e, rather than the number of samples n, such

as the Acute Lymphoblastic Leukemia (TARGET-ALL) dataset,

were especially prone to this issue. Performance results on larger

datasets tend to show greater consistency but may still suffer

from sizeable variability. Thus, we suggest performing several

repetitions of cross-validation on each dataset.

Fifth, it is crucial to ensure the comparability of past and

future work. For example, when utilizing samples with missing

modalities or training models on multiple cancer types, it is

imperative to choose train and test splits that can also be

utilized by models not utilizing these settings (for example,

samples with missing modalities should not be part of the test set

since this makes comparison with non-missing modality models

impossible). To circumvent this issue, SurvBoard employed

missing modality samples as additional training data instead of

incorporating them into the test sets.

Finally, in addition to making the code for models

publicly available, it is vital to focus on providing a

reproducible hyperparameter tuning strategy and evading

manual hyperparameter optimization to enhance the model’s

reusability by other researchers.

Discussion

In this work, we presented SurvBoard, a rigorous benchmark

and a framework for the validation and comparison of omics

survival models. In a proof of concept, here, SurvBoard enabled
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Fig. 5. There are several pitfalls to consider when benchmarking and validating (multi-)omics survival models. A. The usage of several survival metrics is

necessary, since the discriminative and calibration performance of a particular model may not be correlated. Pearson correlation matrix between Antolini’s

C, IBS, and D-CAL of all models on breast cancer (METABRIC). B. On the METABRIC breast cancer dataset using clinical and gene expression data,

PriorityLasso L1+L2 achieves the best performance for both D-CAL and IBS but is among the worst performers for Antolini’s C. Performance of selected

multi-omics survival methods on breast cancer (METABRIC) as measured by 1 - Antolini’s concordance, the Integrated Brier Score, and D-Calibration.

Lower values are better. C. Treatment-related variables should be treated in survival analysis models to avoid any potential data leakage [Kapoor and

Narayanan, 2023]. Kaplan-Meier estimator on glioblastoma multiforme (TCGA-GBM) stratified by whether a patient received radiation therapy. Patients

with an unknown value for radiation therapy were excluded. D. Especially for small datasets, it is essential to use repeated cross-validation to prevent

dependence on a particular cross-validation split. Antolini concordance rank of all considered models across cross-validation repetitions on all cancer

types; one signifies best rank, five worst rank.

the comparisons of six models across 28 datasets from four

projects. SurvBoard focused on model comparability by ensuring

that models utilizing pan-cancer data or samples with missing

modalities can be compared to models trained on single datasets.

Additionally, we provided a simple web service that allows

researchers to evaluate their models on our new benchmark easily.

In our work, we also illustrated potential pitfalls during the

validation of omics survival models, highlighting the importance

of the choice of clinical variables, the use of repeated cross-

validation, and the display of results using several relevant

performance metrics.

Our observations that statistical models often outperform

deep learning ones for the survival prediction in cancer and that

clinical variables and gene expression data constitute the two

most informative modalities were consistent with our earlier

work [Wissel et al., 2023] and the work of Herrmann et al.

[2021]; however, the current analysis encompassed a broader

array of datasets and cancer programs. We also showed how the

SurvBoard benchmarking platform enables novel findings. We

demonstrated the positive effect of pan-cancer training for most

of the survival analysis models considered in our leaderboard

and examined the effect of conducting training on samples with

missing data modalities [Cheerla and Gevaert, 2019, Vale-Silva

and Rohr, 2021, Fan et al., 2023].

In the future, further investigation is required to explore new

model architectures and loss functions, particularly those that

have been previously used in clinical survival analysis datasets

[Kvamme et al., 2019, Tang et al., 2022]. Methodological research

could also focus on the problem of low model resistance to the

inclusion of less informative data modalities. Indeed, many

methods continued to perform worse in our benchmark when

more modalities were added, as evidenced by the fact that few

models reached their best performance for any of the metrics

when all modalities were included (Supplementary Fig. S7 and

Supplementary Fig. S8).

It is important to consider some limitations of our work.

While SurvBoard uses datasets from multiple cancer programs,

the TCGA program contributed significantly more datasets

than the others. Therefore, the conclusions drawn from smaller

projects may be less reliable in comparison to those drawn from

the larger TCGA dataset. Additionally, certain design decisions

made during SurvBoard development may have an impact on the

work outcomes. Therefore, results might vary if different design

decisions had been made [Nießl et al., 2022]. Nevertheless, we

argue that defining a common benchmarking set for multi-omics

survival analysis models is crucial to enable comparability across

models, even if the benchmark has certain biases. Indeed, several

standard computer vision datasets have recently been found to

contain label errors and other inaccuracies. Despite these errors,

the datasets have greatly contributed to the progress of method

development in this field [Northcutt et al., 2021].

Within SurvBoard, we excluded comparisons of runtime and

memory requirements since we cannot correctly assess these

computational requirements when researchers submit future

model predictions to our web service later on in the lifecycle

of SurvBoard. Furthermore, to ensure model comparisons in

the pan-cancer setting, our datasets only included standard

clinical variables such as demographics or staging, which may

be a disadvantage to some methods.
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To sum up, the development of consistent preprocessing

pipelines and online resources for evaluating multi-omics survival

models is crucial to advancing research in the field of cancer.

In the future, we expect our benchmarking framework to lead

to more reliable conclusions about the superiority of different

models in predicting patient survival.
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