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Abstract

Multi-omics data, which include genomic, transcriptomic, epigenetic, and proteomic data, are gaining increasing importance
for determining the clinical outcomes of cancer patients. Several recent studies have evaluated various multi-modal
integration strategies for cancer survival prediction, highlighting the need for standardizing model performance results.
Addressing this issue, we introduce SurvBoard, a benchmark framework that standardizes key experimental design choices.
SurvBoard enables comparisons between single-cancer and pan-cancer data models and assesses the benefits of using patient
data with missing modalities. We also address common pitfalls in preprocessing and validating multi-omics cancer survival
models. We apply SurvBoard to several exemplary use cases, further confirming that statistical models tend to outperform
deep learning methods, especially for metrics measuring survival function calibration. Moreover, most models exhibit better
performance when trained in a pan-cancer context and can benefit from leveraging samples for which data of some omics
modalities are missing. We provide a web service for model evaluation and to make our benchmark results easily accessible
and viewable: https://www.survboard.science/. All code is available on GitHub: https://github.com/BoevaLab/survboard/ .
All benchmark outputs are available on Zenodo: https://zenodo.org/records/11066227.
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Key Messages

e We introduce SurvBoard, a comprehensive benchmarking framework for the standardized evaluation of multi-omics cancer
survival models. SurvBoard provides an easily accessible platform for the reproducible comparison of models trained
on single-cancer and pan-cancer datasets. The platform addresses issues such as the impact of missing modalities and
variability in experimental setups. SurvBoard integrates data from four major cancer programs—TCGA, ICGC, TARGET,
and METABRIC-to ensure a comprehensive evaluation across diverse types of cancer and research centers.

e SurvBoard results confirm that statistical models generally outperform deep learning models in survival function calibration.
We also find that pan-cancer training enhances model performance and that models benefit from incorporating data with
missing modalities.

e SurvBoard includes a web service that allows researchers to submit models for benchmarking and evaluation. A leaderboard
is accessible via https://survboard.science/ to promote transparency and the continuous assessment of models’ performance.

Introduction Kvamme et al., 2019, Zhong et al., 2021, Tang et al., 2022, Lee
et al., 2018].

With the advent of large-scale cancer programs such as The
Cancer Genome Atlas (TCGA), International Cancer Genome
Consortium (ICGC), and Therapeutically Applicable Research
To Generate Effective Treatments (TARGET), researchers have
begun to incorporate multi-modal omics data into their survival
models [Tomczak et al., 2015, Consortium et al., 2010, Ma et al.,

Survival analysis models for cancer research aim to predict
survival-related information using data with censored and
truncated observations [Klein et al., 2003]. These models play a
crucial role in patient risk stratification and enhancing treatment
selection, and are gaining increased interest from both machine
learning and bioinformatics communities [Depuydt et al., 2018,
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2018]. However, to date, most works have exclusively exploited
the TCGA datasets due to their large size and extensive
omics information, potentially increasing the risk of overfitting
models to this cancer program [Hornung and Wright, 2019,
Herrmann et al., 2021, Vale-Silva and Rohr, 2021, Wissel et al.,
2023, Cheerla and Gevaert, 2019]. The comparison of survival
prediction methods across large-scale cancer programs has also
been increasingly difficult due to the many diverging choices
regarding data imputation, cancer types under consideration,
test splits, and omics types utilized. Furthermore, while a
considerable number of benchmarks have explored statistical
and regression models for multi-omics integration in the cancer
[Herrmann et al., 2021, Zhao et al., 2015,
Bogvelstad et al., 2009], no comprehensive benchmark has

survival context

compared neural and statistical models specifically in the multi-
omics setting, except our recent work, which was focused almost
exclusively on the noise resistance properties of different models,
as opposed to overall performance [Wissel et al., 2023].

In a pioneering study, Zhao et al. [2015] benchmarked
several feature selection and dimensionality reduction methods
combined with the Cox proportional hazards model on four
cancer types from the TCGA program. Although there was
high wvariability across cancer types, the study concluded
that modalities beyond clinical and gene expression did not
significantly enhance prediction performance. However, this
study was conducted early in the life cycle of TCGA, and it only
considered a limited number of datasets and techniques. More
recently, Herrmann et al. [2021] evaluated the performance of
12 statistical multi-omics models in predicting cancer survival
across 18 TCGA cancer types. The study found that while
incorporating the multi-modal group structure of multi-omics
data resulted in better predictions, even the best-performing
multi-omics models did not significantly outperform a baseline
model trained solely on clinical data. It should be noted that
this study excluded neural network models, now frequently
employed in survival analysis [Cheerla and Gevaert, 2019, Vale-
Silva and Rohr, 2021]. Furthermore, this study did not consider
missing modalities or pan-cancer scenarios in the training data,
which are increasingly typical in neural networks designed for
cancer survival prediction [Cheerla and Gevaert, 2019, Vale-
Silva and Rohr, 2021, Fan et al., 2023]. Hornung et al. [2023]
provided a comprehensive review and benchmarked multiple
methods designed to handle this type of data for a classification
task on TCGA. NieBl et al. [2022] used the benchmark design
of Herrmann et al. [2021] to illustrate the multiplicity of
design options available for benchmarking multi-omics survival
analysis. They showed that benchmark results could vary widely
depending on the metrics, datasets, and models used.

In addition to different training scenarios and the absence
of deep learning models in previous benchmarks, there exist
few guidelines for benchmarking survival models more generally.
The lack of a standardized benchmarking and experimental
framework may cause overly optimistic results due to inadvertent
data leakage and the numerous preprocessing options available
to researchers when comparing different survival prediction
methods [NieBl et al., 2022, Kapoor and Narayanan, 2023].

To address the current gaps in the performance evaluation
of multi-omics cancer survival models and to standardize their
empirical comparison, we introduce SurvBoard, a comprehensive
benchmarking framework. Using SurvBoard, we evaluate the
predictive performance of deep learning and state-of-the-art
statistical models on datasets from four cancer programs: TCGA,
ICGC, TARGET and Molecular Taxonomy of Breast Cancer
International ConsortiumMolecular Taxonomy of Breast Cancer
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International Consortium (METABRIC). SurvBoard allows
users to train models in three different settings: standard
survival analysis, survival analysis with samples for which
some data modalities are missing, and pan-cancer analysis,
where a model is jointly trained on multiple cancer types. We
showcase the potential use of the SurvBoard platform and discuss
common pitfalls in creating datasets for omics survival analysis
studies using relevant examples from our four considered cancer
programs. Finally, we offer a free web service that displays a
leaderboard for SurvBoard, making it easy for other researchers
to compare their methods with existing ones.

Going forward, we will restrict ourselves to right-censoring
with no truncation, which is typical of most large-scale
observational cancer studies and datasets.

Methods

Datasets

The SurvBoard benchmark includes a total of 28 cancer datasets
from four projects: TCGA, which is arguably the largest and
most commonly used database for multi-omics cancer survival
analysis (n = 21), ICGC, which encompasses and complements
TCGA with additional samples from non-American studies
(n = 4), the pediatric cancer database TARGET (n = 2),
and the large breast cancer dataset METABRIC (n = 1)
(Supplementary Table S1, Supplementary Table S2). All datasets
from the cancer programs were preprocessed based on the
selection criteria highlighted in the Preprocessing section and
Supplementary Methods.

Survival analysis models evaluated in the leaderboard

We evaluated six different approaches on SurvBoard to jumpstart
the leaderboard, including two statistical methods and four deep
learning models. Our selection of methods was based on the
research conducted by Herrmann et al. [2021] and Wissel et al.
[2023], who identified BlockForest [Hornung and Wright, 2019]
and PriorityLasso [Klau et al., 2018] as the leading statistical
methods for accurately predicting clinical outcomes on TCGA
datasets.

From previous research, among various multi-modal deep
learning architectures for multi-omics survival analysis, the
most effective ones were architectures based on the late
fusion using an arithmetic mean and intermediate fusion using
concatenation [Wissel et al., 2023]. Furthermore, we used two
loss functions for the deep learning methods: the commonly used
negative logarithm of the Cox PH partial likelihood and the
Extended Hazards likelihood, which was recently introduced in
a deep learning setting [Zhong et al., 2021, Tseng and Shu, 2011].
We only considered methods that take into account the group
structure of the multi-omics data as they have been proven to
be more effective than those that do not [Herrmann et al., 2021,
Wissel et al., 2023].

Thus, to seed the SurvBoard leaderboard, we conducted
experiments for the six methods abbreviated as:

1. PriorityLasso L14L2 (with the Elastic-net regularization),
a method that orders the input modalities and sequentially
uses Elastic-net-based models per modality that are carried
forward via offsets into the model fit for the next modality
[Klau et al., 2018];

2. BlockForest, a method based on random survival forests,
that takes the group structure of multi-omics data into
account by sampling covariates per modality (as opposed
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Fig. 1. The SurvBoard framework enables the reproducible, easily accessible, and standardized comparison of (multi-)omics cancer survival methods.
SurvBoard is based on a careful cohort selection from four cancer programs: TCGA, ICGC, TARGET, and METABRIC. The datasets from all programs
are preprocessed in a standardized manner, which allows for uniform assessment of the models created. The evaluation results can then be uploaded to

the SurvBoard leaderboard to track model results.

to uniformly) and considers block-specific weights when
calculating the split criterion [Hornung and Wright, 2019];

3. Neural network using late fusion with an arithmetic mean
and with the Cox PH likelihood, NN Cox LM [Ching et al.,
2018, Katzman et al., 2018];

4. Neural network using late fusion with arithmetic mean and
the Extended Hazards likelihood, NN EH LM [Zhong et al.,
2021];

5. Neural network using intermediate fusion with concatenation
and the Cox PH likelihood, NN Cox IC [Ching et al., 2018,

2018];

6. Neural network using intermediate fusion with concatenation
and the Extended Hazards likelihood, NN EH IC [Zhong
et al., 2021].

Katzman et al.,

Further details regarding the considered models, including
hyperparameter choices,
Methods.

can be found in Supplementary

Considered modalities

The performance of each model was assessed in three different
scenarios: (i) on each modality individually, (i¢) with clinical
and gene expression data combined, and (i) with all modalities
Notably,
modalities significantly varied across cancer programs and

available for that particular dataset. available
datasets (Supplementary Table S1).

Furthermore, for experiments where only one modality was
used and no multi-modal integration was required, equivalent
models that did not take group structure into account
were employed. For example, Elastic Net was used instead
of PriorityLasso, and Survival Random Forest instead of
BlockForest in the unimodal experiments. For all deep learning
models, the unimodal experiments used a standard Multilayer
perceptron (MLP).

Three settings for the evaluation of survival models

SurvBoard allows users to train models in three settings:
standard, missing data modality, and pan-cancer.

Standard setting. Our first setting implements standard
multi-omics survival analysis. Each model is trained and
evaluated only on samples of the same cancer type.

Missing data modality setting. The missing data modality
setting refers to the scenario in which several samples in a dataset
lack data for one or more modalities but still have data for some
modalities, in addition to survival information. This is common
in TCGA, where many patients lack protein expression data.
Thus, models that can handle samples with missing modalities
benefit from an increased training set size.

In the missing data modality setting of SurvBoard, the tumor
samples with data lacking one or more modalities were used
as additional training data for models that can handle missing
modalities. In the test sets, only those samples with complete
data modalities in all settings were present. This was done to
ensure comparability with other models by using a consistent
test set.

Pan-cancer setting. In the pan-cancer setting, we jointly
trained models on datasets from different cancer types. However,
since not all datasets include all modalities, models that cannot
handle missing modalities cannot be trained in the pan-cancer
setting when all modalities are used.

Therefore, in our pan-cancer experiments, we only used
clinical data and gene expression. This allowed us to obtain
pan-cancer results for all models included in SurvBoard.

It is worth noting that the pan-cancer scenario only applies
to the TCGA project, as other projects did not provide data
that was normalized in a unified way for a pan-cancer analysis.

Preprocessing

While several packages (e.g., Cerami et al. [2012]) and data
sources (e.g., Weinstein et al. [2013]) allow the acquisition and
usage of TCGA, ICGC, TARGET, and METABRIC datasets,
preprocessing choices are left to the user, which leads to
inconsistency across benchmarking experiments. To enable
a fair comparison of existing and new methods, SurvBoard

standardizes most preprocessing choices.
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Endpoint choice. While all of our considered cancer datasets
provide multiple endpoints, e.g., overall survival (OS), Disease
Free Survival (DFS), and others, it is relatively common in
the survival literature to utilize OS, as it is ubiquitously
available compared to other endpoints. For example, for TCGA,
the Clinical Data Resource (CDR) analyzed the suitability of
different endpoints for survival analysis and found that OS is the
most used and generally appropriate for most datasets [Liu et al.,
2018]. The only exception was the situation where progression
was the event of interest, in which case the progression-free
interval was recommended. We follow this broader convention

and use OS as the endpoint of all datasets within our benchmark.

Patient cohort. We restricted our datasets to primary tumor
tissue samples. We also excluded patients for whom either the
event indicator or the event time was missing.

Dataset selection. We followed the methodology of Herrmann
et al. [2021] and selected only datasets with at least 100 samples
and a minimum event ratio of 5% or 10 total events, whichever
was larger. This ensured that we could compute meaningful
performance metrics. We only counted samples with complete
modalities for dataset selection since only these were included
in the test splits. Samples with missing modalities were only
used as additional training data.

Modality selection. We chose the maximum number of
modalities available for each dataset in each cancer program
and excluded datasets lacking clinical data and gene expression
modalities. In addition, we selected only datasets that fulfilled
the criteria above for at least two omics modalities, leading to
a total minimum of three modalities for each dataset.

Clinical variables. To ensure a fair comparison between
different cancer programs and cancer types, we only considered
standard clinical information that was available at the time of
diagnosis to prevent data leakage. This included demographic
data such as age and gender and staging variables such as clinical
stage. For each cancer program and dataset, we used slightly
different variables in the SurvBoard framework (as outlined
in Supplementary Methods and Supplementary Table S1). We
chose not to include information specific to certain cancer types
in our analysis, such as smoking history for lung cancer.

Missing wvalues within modalities. To handle missing
data, we followed a three-step procedure. Firstly, we created
a token for non-available (NA) information for categorical
variables. We assumed that the missingness of categorical
variables might correlate with either the target variable or
other covariates, which is known as Missing Not At Random
(MNAR) [Van Buuren, 2018]. Our goal was to avoid mixing
unrelated categories, so we did not use mode imputation.
Secondly, non-categorical variables missing in more than 10% of

samples in a specific dataset were excluded from that dataset.

Thirdly, non-categorical variables with missing rates less than
10% in a dataset were imputed using the median of the
available samples on the full dataset. Although imputation
in the full dataset could lead to some information leakage,
previous research has shown that it does not cause significant
bias [Hornung et al., 2015]. This approach was designed
to eliminate non-model-specific preprocessing choices from
researchers.

Missing modalities. To create splits for training and testing
for each dataset of each cancer program, we created two sets
of samples: a ”complete” set used in the standard setting and
an ”incomplete” set that included samples with one or more
missing modalities. Importantly, the incomplete set was intended
only as additional training data in our benchmark, as noted in
the section describing the three training settings. Within the

made available under aCC-BY-NC-ND 4.0 International license.

incomplete set, NA values indicated that a particular modality
was missing in a specific sample. As explained above, NA values
for particular variables within available modalities were no longer
present in the incomplete set as they had been imputed or
removed.

Pan-cancer training. For the TCGA program, which
provided data normalized in a pan-cancer way, we combined
variables across all cancer types in the pan-cancer dataset.
The variables that were not available for all cancer types were
excluded. However, if a particular cancer type lacked a modality,
we did not remove this modality from the pan-cancer dataset.
Instead, we marked it as missing for the samples corresponding
to that particular cancer type.

Performance metrics

We measured three performance metrics in our benchmarks, all
of which are evaluated on the survival function level. Firstly, we
used Antolini’s Concordance (Antolini’s C) to assess the ability
of each survival model to discriminate low-risk patients from
high-risk patients over time [Antolini et al., 2005]. Secondly,
we evaluated the Integrated Brier score (IBS), which is a
widely used measure in survival benchmarks that assesses both
discrimination and calibration accuracy [Graf et al., 1999].
Thirdly, we included the recently proposed D-Calibration (D-
CAL), which measures the distributional calibration of each
multi-omics survival model [Haider et al., 2020]. For D-CAL, we
evaluated the test statistic where lower values corresponded to
a better fit (Supplementary Methods).

Validation

We implemented five-fold cross-validation, repeated five times,
resulting in a total of 25 test splits for each cancer type. To
create the splits, we stratified the data by the event indicator,
OS, which ensured that the event ratio in each train and test
fold was the same as in the original unsplit data. The incomplete
modality samples were not part of the test set and were instead
used only as additional training data. In the pan-cancer setting,
training data from all cancer types were included in each training
split.

In cases where a model encountered numerical issues or
sparse methods reported a fully sparse fit as the best model, we
used a Kaplan-Meier estimator as a replacement [Kaplan and
Meier, 1958]. For instance, the Lasso model has been observed to
sometimes fail in very high-dimensional datasets with high multi-
collinearity due to numerical issues [Herrmann et al., 2021, Sohn
et al., 2009]. We note that other choices have been explored here
and that this choice may have an impact on results [Herrmann
et al., 2021, NieBl et al., 2022]. Despite this, to enable a fair
comparison and prevent gameability for future submissions to
SurvBoard (for example, by deliberately setting difficult splits
to failures), we settled on the choice of a simple Kaplan-Meier
replacement (Supplementary Methods, Supplementary Table
S3).

Results

Benchmark design

We developed a benchmark framework named SurvBoard that
allows for the thorough evaluation of multi-omics survival
models in the context of cancer. Our framework, SurvBoard,

has several unique features (Fig. 1). Firstly, we used datasets
from four different cancer programs, TCGA, ICGC, TARGET,


https://doi.org/10.1101/2022.11.18.517043
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.18.517043; this version posted June 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available unq%m((im (F/LN%

and METABRIC, containing data from up to seven modalities
including clinical variables, gene expression, somatic mutations,
DNA methylation, copy number alterations, protein expression
from reverse-phase protein arrays (RPPA), and miRNA
expression (Supplementary Table S1 and Supplementary Table
S2, Methods, Supplementary Methods).

Secondly, the datasets were filtered and preprocessed in a
standardized manner to enable optimal comparability across
models. Stratified splits were created to facilitate the uniform
assessment of model performances (Methods).

Thirdly, we prepared the datasets for conducting experiments
in three different settings: (¢) a standard setting, where all
samples present all modalities used in training and the model
training is performed individually for each cancer type, (%)
a setting where certain patients do not have information for
specific modalities, and (#4z) a pan-cancer training setting where
multiple cancer types are trained jointly via a unified model
(Methods).

Last, we assessed the model performance using three different
metrics that focus on the accuracy of patient outcome prediction
and model calibration: Antolini’s C, IBS, and D-CAL (Methods,
Supplementary Methods, Supplementary Table S4).

Leaderboard

Additionally, we have developed a web service that enables
researchers and other stakeholders to submit predictions on
the SurvBoard benchmark set, which can be accessed via
https://www.survboard.science/. Using this service, one can
also download and inspect previous submissions, including
the provided baselines. SurvBoard’s web service evaluates
submitted predictions and displays the performance metrics
for all datasets within the benchmark in an easy-to-compare
leaderboard format (Fig. 2 and Supplementary Fig. S1-
S6). To access the sample submission file and links to
our web service, please visit the GitHub repository at
https://github.com/BoevaLab/survboard/.

We seeded SurvBoard by submitting six models: two
statistical and four deep learning models trained on various
combinations of input modalities and in different settings
(Methods). We limited the selection of models to those that had

already demonstrated top performance in multi-omics cancer

=
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datasets in previous benchmarks [Herrmann et al., 2021, Wissel

et al., 2023] (Methods).

Assessment of model performances

To be fair to each model and to evaluate overall survival
prediction performance, we first determined on which
combination of modalities each model performed the best. We
trained each model on each available modality unimodally,
clinical data and gene expression together (which has performed
well in related work), and all available modalities together. We
selected the best modality set based on Antolini’s C metric for
each model (Methods). We found that clinical variables and
gene expression data were the most predictive modalities across
all models (Supplementary Fig. S7).

Next,
their optimized modality sets using three performance metrics:
Antolini’s C, IBS, and D-CAL. We observed that overall,
BlockForest trained on clinical variables and gene expression
data performed the best among all models (Fig. 3A-C). Notably,
BlockForest achieved the best rank across datasets for the
IBS and performed second best in terms of both D-CAL and
Antolini’s C. Prioritylasso L1+L2 also performed well, achieving
the best rank for D-CAL and the second-best rank for the IBS,
while performance for Antolini’s C was generally more variable

we evaluated the performance of each model on

and no clear winner emerged.

Deep learning methods generally could not compete with the
statistical models PriorityLasso L1+L2 and BlockForest. While
NN Cox LM performed well for Antolini’s C, achieving the best
rank, it performed poorly in terms of model calibration, scoring
the worst median rank for both the IBS and D-CAL. Other
deep learning-based methods performed similarly, achieving
overall worse results than PriorityLasso L1+L2 and BlockForest
in terms of IBS and D-CAL, while achieving variable results
on Antolini’s C, with three out of four deep learning methods
outperforming PriorityLasso L1+L2.

It is worth noting that the best model configurations in
terms of the IBS metric differed from those selected based on
Antolini’s C (Supplementary Fig. S8). Most models achieved
optimal IBS values when only clinical variables were used for
predictions. However, even with using the input modalities
that led to the best IBS for each model (Supplementary Fig.
S8), the results were generally consistent with those obtained

LeaderBoard
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® Al O 1C6A (O Il () TARGET

Date Model

17.06.2215:40 Mean pooling neural model

17.06.22 16:06 Priority Lasso
20.06.22 15:09 Favored BlockForest
20.06.2214:11 Mean pooling neural model

20.06.22 15:08 BlockForest

Setting

@® Al O standaré (O Missing (O Pancancer

Setting BLCA
Pancancer 0.64¢8
Standard 0.635
Standard 0.60¢8
Missing 0.636
Standard 0.595

Fig. 2. The SurvBoard web service curates and makes model results submitted to SurvBoard easily explorable and downloadable. The web service also

ensures that SurvBoard stays up to date, as other researchers can easily extend our initial baseline models.
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Fig. 3. Regularized linear models and random-forest-based methods outperformed deep learning methods on the SurvBoard benchmark. Overall ranked

results across all datasets, where lower ranks indicate better scores. A. Antolini’s concordance (Antolini’s C). B. Integrated Brier Score (IBS). C.

D-Calibration (D-CAL). Each model was trained on the dataset on which it ranked the best among itself in terms of the median Antolini’s C rank (see

Figure S2). Ties in the median Antolini’s C rank were broken using the mean Antolini’s C rank. The median is indicated by black horizontal lines, the

arithmetic mean by red points.

by optimizing Antolini’s C metric (Supplementary Fig. S9).
Nevertheless, when using only clinical data for training, the
survival problem becomes significantly more straightforward
and the integration becomes unnecessary, hence leading to little
or no differences between some of the deep learning methods.
In addition,

performance as measured by Antolini’s C was noticeably

discriminative survival model prediction

more concordant between deep learning methods than between
PriorityLasso LL14L2 and BlockForest or either of the former

and any of the deep learning methods (Supplementary Fig. S10).

Added value of the pan-cancer training and including
additional training samples with missing modalities

Using the SurvBoard framework, we determined to what extent
pan-cancer training, i.e., (i.e.,) simultaneous training on all
datasets from a cancer program, could improve the performance
of omics survival analysis models. We used the two most
informative modalities, clinical variables, and gene expression
data, as input for the assessment. The results showed that
pan-cancer training improved the median performance for most
considered methods in terms of Antolini’s C and the IBS, while
the impact on D-CAL was much more variable. Moreover, the

performance increase was often statistically significant (Fig. 4A).

Deep learning methods benefited the most from pan-cancer
training, with all considered neural network models significantly
improving their performance for at least two out of the three
considered metrics. Interestingly, however, the best-performing
method in the standard setting, BlockForest, benefited the
least from pan-cancer training, with the D-CAL metric getting
significantly worse.

Next, we investigated to what extent including samples
with some missing modalities during training could improve
model prediction performance on unseen samples with all
modalities present. For this, we performed experiments on all
models capable of handling missing modalities (Supplementary
Methods), namely all models except BlockForest. Since the
clinical data and gene expression setting had no missing modality
samples, we considered all available modalities and compared
the performance of each method with and without including
missing modality samples as additional training data. After
including into the training set samples with missing modalities,
Antolini’s concordance improved significantly relative to the
non-missing modality models for all considered deep learning
methods but not for PriorityLasso L1+L2 (Fig. 4B). Meanwhile,

only PriorityLasso L1+L2 showed significant improvement in
model calibration as measured by IBS and D-CAL (Fig. 4).

Take-aways for effective model development and
validation

In our benchmark framework, we have aimed to remedy potential
pitfalls related to the training and validation of omics cancer
survival models. The pitfalls discussed below emphasize the
importance of some of the design choices we made in the
SurvBoard benchmark and may be helpful for other researchers
to validate their models on small n and large p data size regimes.

First, it is essential to report both discriminative
and calibration metrics while evaluating survival models.
Discriminative metrics such as Harrell’s concordance and
Antolini’s C have been widely used, along with calibration
metrics such as the IBS. These metrics do not necessarily
correlate, with correlations close to zero or even negative on
some datasets (Fig. 5A-B). Thus, reporting at least one metric of
each type is crucial. We found that on various datasets included
in SurvBoard, models could be favored if only one metric was
reported. For example, on the METABRIC breast cancer dataset,
PriorityLasso outperformed all other models in terms of the IBS
and D-CAL while achieving among the worst concordance values
as measured by Antolini’s C out of all methods (Fig. 5B).

Second, when using multi-omics survival methods, the choice
of clinical variables is crucial for ensuring high performance.
However, although it is tempting to use all treatment-related
and outcome-related covariates as predictive features, including
some of these may lead to data leakage [Kapoor and Narayanan,
2023]. For instance, a clinician might decide against starting
radiation therapy if the patient is expected to have a short life
expectancy due to their illness or other factors [Arenas et al.,
2014]. Indeed, on TCGA, we observed cancer types in which
treatment-related variables such as ”radiation therapy” were
strongly associated with the outcome (Fig. 5C), which could
be either due to a treatment effect or (partially) an effect of
not prescribing the treatment due to a very advanced disease
stage. It is thus advisable to be mindful of the choice of clinical
variables, especially treatment variables when benchmarking
survival prediction methods.

Third, it is advisable to include a large spectrum of studies
and datasets as possible in a benchmark to account for variability
in model performance. In SurvBoard, we reported results on
datasets from four cancer programs. This may guard against
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Fig. 4. Training on multiple cancer types jointly (pan-cancer) and leveraging samples with some missing modalities improved performance for most
models and most metrics. A. Pan-cancer training based on clinical and gene expression data improved all three considered metrics for most models, often
significantly. B. Training on all available modalities that also included samples with missing modalities on improved Antolini’s C for all deep learning
methods and both the IBS and D-CAL for PriorityLasso, relative to training on all available modalities without missing modality samples. Significance
indicated by * (p < 0.05) and ** (p < 0.01), based on a two-sided Wilcoxon signed-rank test. The median is indicated by black horizontal lines, and the

arithmetic mean by red points.

overfitting to a particular cancer program that is frequently
used in the literature or related work.

Fourth, one should avoid using unrepeated cross-validation or
even a single split when reporting model prediction performance
since this can make model ranking inconsistent. Indeed, in
SurvBoard, we observed large variability in model rankings
by Antolini’s C metric across cross-validation repetitions for
selected models (Fig. 5D). Smaller datasets, as measured by the
number of events e, rather than the number of samples n, such
as the Acute Lymphoblastic Leukemia (TARGET-ALL) dataset,
were especially prone to this issue. Performance results on larger
datasets tend to show greater consistency but may still suffer
from sizeable variability. Thus, we suggest performing several
repetitions of cross-validation on each dataset.

Fifth, it is crucial to ensure the comparability of past and
future work. For example, when utilizing samples with missing
modalities or training models on multiple cancer types, it is
imperative to choose train and test splits that can also be

utilized by models not utilizing these settings (for example,
samples with missing modalities should not be part of the test set
since this makes comparison with non-missing modality models
impossible). To circumvent this issue, SurvBoard employed
missing modality samples as additional training data instead of
incorporating them into the test sets.

Finally,
publicly available, it

in addition to making the code for models
is vital to focus on providing a
reproducible hyperparameter tuning strategy and evading
manual hyperparameter optimization to enhance the model’s
reusability by other researchers.

Discussion

In this work, we presented SurvBoard, a rigorous benchmark
and a framework for the validation and comparison of omics
survival models. In a proof of concept, here, SurvBoard enabled


https://doi.org/10.1101/2022.11.18.517043
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.18.517043; this version posted June 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

8 | Wissel et al.

Antolini's C

1- Antolini's C
© o o
w w B
N (o) o

made available under aCC-BY-NC-ND 4.0 International license.

(9]
N
o
S

IBS

B BlockForest
[ PriorityLasso L1+L2 [l NN Cox LM

Antolini's C
D-CAL

) 40 : -+ Treated
30 o T 0.75 -+Untreated
| * S
S 209, 3 0.50
2 10 * *+ 2025 p <0.0001
>
0 = © 0.00
I NN CoxIC [ NNEH IC 0 .1500 3000
Time (days)

] NN EH LM

D ICGC-CLLE-ES ICGC-PACA-AU TARGET-ALL TCGA-BRCA
PriorityLasso L1+L2
NN EH LM
NN EH IC
NN Cox LM
NN Cox IC
BlockForest

2 3 4 5 Al 1

12 3 4 5A1 12 3 4 5Al

TCGA-PAAD

2 34 5A1 123 45Al

Cross-valldatlon index

Fig. 5. There are several pitfalls to consider when benchmarking and validating (multi-)omics survival models. A. The usage of several survival metrics is

necessary, since the discriminative and calibration performance of a particular model may not be correlated. Pearson correlation matrix between Antolini’s
C, IBS, and D-CAL of all models on breast cancer (METABRIC). B. On the METABRIC breast cancer dataset using clinical and gene expression data,
PriorityLasso L14L2 achieves the best performance for both D-CAL and IBS but is among the worst performers for Antolini’s C. Performance of selected

multi-omics survival methods on breast cancer (METABRIC) as measured by 1 - Antolini’s concordance, the Integrated Brier Score, and D-Calibration.

Lower values are better. C. Treatment-related variables should be treated in survival analysis models to avoid any potential data leakage [Kapoor and

Narayanan, 2023]. Kaplan-Meier estimator on glioblastoma multiforme (TCGA-GBM) stratified by whether a patient received radiation therapy. Patients

with an unknown value for radiation therapy were excluded. D. Especially for small datasets, it is essential to use repeated cross-validation to prevent

dependence on a particular cross-validation split. Antolini concordance rank of all considered models across cross-validation repetitions on all cancer

types; one signifies best rank, five worst rank.

the comparisons of six models across 28 datasets from four
projects. SurvBoard focused on model comparability by ensuring
that models utilizing pan-cancer data or samples with missing
modalities can be compared to models trained on single datasets.
Additionally, we provided a simple web service that allows
researchers to evaluate their models on our new benchmark easily.
In our work, we also illustrated potential pitfalls during the
validation of omics survival models, highlighting the importance
of the choice of clinical variables, the use of repeated cross-
validation, and the display of results using several relevant
performance metrics.

Our observations that statistical models often outperform
deep learning ones for the survival prediction in cancer and that
clinical variables and gene expression data constitute the two
most informative modalities were consistent with our earlier
work [Wissel et al., 2023] and the work of Herrmann et al.
[2021]; however, the current analysis encompassed a broader
array of datasets and cancer programs. We also showed how the
SurvBoard benchmarking platform enables novel findings. We
demonstrated the positive effect of pan-cancer training for most
of the survival analysis models considered in our leaderboard
and examined the effect of conducting training on samples with
missing data modalities [Cheerla and Gevaert, 2019, Vale-Silva
and Rohr, 2021, Fan et al., 2023].

In the future, further investigation is required to explore new
model architectures and loss functions, particularly those that
have been previously used in clinical survival analysis datasets
[Kvamme et al., 2019, Tang et al., 2022]. Methodological research
could also focus on the problem of low model resistance to the
inclusion of less informative data modalities. Indeed, many

methods continued to perform worse in our benchmark when
more modalities were added, as evidenced by the fact that few
models reached their best performance for any of the metrics
when all modalities were included (Supplementary Fig. S7 and
Supplementary Fig. S8).

It is important to consider some limitations of our work.
‘While SurvBoard uses datasets from multiple cancer programs,
the TCGA program contributed significantly more datasets
than the others. Therefore, the conclusions drawn from smaller
projects may be less reliable in comparison to those drawn from
the larger TCGA dataset. Additionally, certain design decisions
made during SurvBoard development may have an impact on the
work outcomes. Therefore, results might vary if different design
2022]. Nevertheless, we
argue that defining a common benchmarking set for multi-omics

decisions had been made [Niefll et al.,

survival analysis models is crucial to enable comparability across
models, even if the benchmark has certain biases. Indeed, several
standard computer vision datasets have recently been found to
contain label errors and other inaccuracies. Despite these errors,
the datasets have greatly contributed to the progress of method
development in this field [Northcutt et al., 2021].

Within SurvBoard, we excluded comparisons of runtime and
memory requirements since we cannot correctly assess these
computational requirements when researchers submit future
model predictions to our web service later on in the lifecycle
of SurvBoard. Furthermore, to ensure model comparisons in
the pan-cancer setting, our datasets only included standard
clinical variables such as demographics or staging, which may
be a disadvantage to some methods.
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To sum up, the development of consistent preprocessing
pipelines and online resources for evaluating multi-omics survival
models is crucial to advancing research in the field of cancer.
In the future, we expect our benchmarking framework to lead
to more reliable conclusions about the superiority of different
models in predicting patient survival.
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