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Abstract

Age-related neural dedifferentiation — reductions in the selectivity and precision of neural
representations — contributes to cognitive aging and is thought to result from age increases in
neural noise. This research has primarily used fMRI to examine age-related reductions in neural
selectivity for different categories of visual stimuli. The present experiment used EEG to
examine the link between neural noise and age-related neural dedifferentiation indexed by the
scene-selective (P200) and face-selective (N170) ERP components. Young and older adults
viewed images of scenes, objects, and faces during a 1-back task. Whereas both the P200 and
N170 showed age-related slowing of peak latency, only the P200 showed age-related reductions
in amplitude that were independent of visual and contrast acuity. We also examined the
relationship between the ERP peak measures and an index of neural noise, namely the 1/f
exponent of the frequency power spectrum. For the P200 amplitude, higher levels of neural noise
were associated with smaller P200 amplitudes in young, but not older adults. In contrast, there
was an age-invariant relationship between neural noise and N170 amplitude in the left
hemisphere with higher levels of neural noise being associated reduced N170 amplitudes. While
the present findings provide novel empirical evidence broadly consistent with predictions from
computational models of neural dedifferentiation, the results also highlight potential limitations
of the computational model that necessitate revision. The results also suggest that, at least for the
P200, maintaining levels of neural noise similar to young adults might preserve levels of neural
selectivity.
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Significance Statement

A prominent theory of cognitive aging proposes that age-related cognitive decline results from
increases in neural noise that reduce the selectivity of neural representations. We examined this
predicted link between neural selectivity and neural noise with ERP components that show
selectivity for scenes (P200) and faces (N170) and the 1/f aperiodic exponent measure of neural
noise. The amplitude for the scene-selective, but not face-selective, ERP component was reduced
in older adults, with both components showing age-related slowing. Critically, older adults with
higher levels of neural noise showed lower levels of neural selectivity for scenes, but not faces.
While these results provide some evidence supporting computational models of neural
dedifferentiation, they also highlight important limitations of the model that require revision.


https://doi.org/10.1101/2022.11.17.516990
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.17.516990; this version posted November 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

4

Introduction

Healthy aging is associated with declines in many cognitive abilities (Harada et al., 2013;
Salthouse, 2010, 2019). An influential theory of cognitive aging proposes that age-related neural
dedifferentiation — reductions in the distinctiveness or precision of neural representations —
contributes to age-related cognitive decline (Koen & Rugg, 2019; Koen et al., 2020; Li et al.,
2001; Li & Rieckmann, 2014a). Computational models of neural dedifferentiation propose that
age-related reductions in neuromodulatory drive increases neural noise (i.e., decreases the signal-
to-noise ratio of neural activity; Li, 2013; Li & Rieckmann, 2014a; Mather & Harley, 2016;
Seaman et al., 2019). Increases in neural noise, in turn, contribute to reductions in the selectivity
or precision of neural representations that negatively affect cognition. This model predicts that
neural selectivity will decrease with age showing an age-invariant relationship with measures of
cognition (Koen et al., 2020; Koen & Rugg, 2019). The majority of findings support both
predictions with older adults showing reduced neural selectivity in visual, auditory, and motor
stimuli (Carp et al., 2011; Chamberlain et al., 2021; Koen, 2022; Koen et al., 2019; Lalwani et
al., 2019; D. C. Park et al., 2004; J. Park et al., 2012; Simmonite & Polk, 2022; Srokova et al.,
2020; Voss et al., 2008) and age-invariant associations between neural selectivity and measures
of cognitive performance (Berron et al., 2018; Bowman et al., 2019; Du et al., 2016; Koen, 2022;
Koen et al., 2019; J. Park et al., 2010; Srokova et al., 2020; Yassa et al., 2011). However,
relatively little work has been done to examine the critical prediction from computational models
of neural dedifferentiation that neural noise contributes to age-related reductions in neural
selectivity.

Age-related increases in neural noise can be measured as increases in spontaneous (i.e.,
task-unrelated) or asynchronous neural activity (Li et al., 2001; Voytek & Knight, 2015; Li &
Sikstrom, 2002; Hong & Rebec, 2012). Findings from single-unit recordings in non-human
animals have provided the strongest evidence linking age-related increases in spontaneous neural
activity (i.e., neural noise) to decreases in neural selectivity (Ding et al., 2017; Engle &
Recanzone, 2013; Hua et al., 2006; Juarez-Salinas et al., 2010; Leventhal et al., 2003; Liang et
al., 2010; Schmolesky et al., 2000; Yang et al., 2008; Yu et al., 2006; Zhang et al., 2008; but see
Costa et al., 2016; Turner et al., 2005). In studies involving humans, age-related increases in
neural noise are primarily observed using measures of population level neural activity derived
from examining the 1/f aperiodic component of the EEG power spectrum (Dave et al., 2018;
Donoghue et al., 2020; Voytek et al., 2015; Voytek & Knight, 2015). The 1/f component of the
power spectrum reflects aperiodic neural activity and is associated with excitatory-inhibitory
balance in neural activity, which plays a critical role in neural noise (Freeman & Zhai, 2009; R.
Gao, 2015). As noted previously, it remains unclear whether measures of neural noise derived
from EEG are related to neural selectivity in young and older adult humans.

The purpose of the present study is to test the critical prediction from computational
models of neural dedifferentiation that age-related increases in neural noise contribute to age-
related reductions in neural selectivity (Li et al., 2001; Li & Rieckmann, 2014a). In the present
experiment, EEG was recorded while young and older adults completed a 1-back task with
scene, object, and face images (see Figure 1A). Measures of neural selectivity were examined by
measuring two ERP components: a scene-selective P200 (Harel et al., 2016) and the face-
selective N170 (Daniel & Bentin, 2012; R. Gao, 2015; Rousselet et al., 2007; for review, see
Rossion & Jacques, 2012). In addition to measuring the amplitude of these two components, we
measured the latency and onset of the P200 and N170. We related these ERP peak measures with
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the 1/f exponent measure of neural noise derived from the EEG frequency power spectrum
(Donoghue et al., 2020).

Methods
Ethics Statement

The institutional review board of the University of Notre Dame approved the
experimental procedures described below. All participants provided written informed consent
before participating in each experimental session.

Participants

The sample contributing data to the current report comprised 44 young (18-30 years of
age) and 44 older (65-82 years of age) cognitively normal adults (see Table 1 for demographics
and scores on the neuropsychological test battery). Participants were recruited from the
University of Notre Dame and the surrounding areas and compensated for time at $15/hour and
travel expenses. All participants were native English speakers, right-handed, had normal or
correct-to-normal vision, had no self-reported history of substance abuse, psychological or
neurological issues, seizure, stoke, neuroactive medications, severe head injury or diagnosed
concussion within the past 3 months, memory disorder, heart disease or arrhythmia, uncontrolled
hypertension, diabetes, COVID-19 risk factors (i.e., liver disease, immunocompromised,
moderate to severe asthma; except being over the age of 65 in the case of older adults) and
performed within the norms of a neuropsychological test battery. Data from an additional three
participants were collected and excluded from analyses due to having greater than 25% of EEG
epochs rejected (1 young adult and 1 older adult) or due to a misunderstanding of the task
instructions (1 older adult).

Table 1. Sample demographics and neuropsychological test scores.

Cohen’s
Young Older #(86) p d
N 44 44
Age 20.61 70.75
(2.73) (4.58)
Sex/Gender (F/M) 25/19 25/19
Ethnicity
Hispanic or Latino 5 0
Not Hispanic or Latino 39 43
Not reported/Unknown 0 1
Race
White 34 43
Asian 4

More than one race
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Not reported/Unknown 0 1
Education (years) (113' 5800) (127..6015) 6.81 <.001 1.47
MOCA (25'3775) (216"6079) 8.18 <.001 1.76
CVLT Short Delay Free Recall (123:42) (ggg) 7.03 <.001 1.52
CVLT Long Delay Free Recall (123"2517) (gg% 6.61 <.001 1.43
CVLT Recognition Hits (115.6265) (lﬁ '3636) 2.31 023 0.50
CVLT Recognition False Alarms (8:;‘2) é jg) 421 <001 091
Logical Memory I (2695362) (246"7020) 2.72 .008 0.59
Logical Memory II (265 98;‘; (251 '6913) 291 .005 0.63
SDMT Written (?232) ?;'16;; 8.36 <.001 1.80
SDMT Oral (?2?;) (5878280) 9.36 <.001 2.02
Digit Span (24().:526()) (137..8060) 3.56 .001 0.77
Trails A (s) (27"3918) (?gzz) 6.46 <.001 1.39
Trails B (s) (Tj‘gg) (334218) 5.57 <.001 1.20
Categories (Animals) (247;% (262"2953) 3.80 <.001 0.82
Stroop Interference ( (1)28) (32(9)) 5.69 <.001 1.23
WASI — Matrix Reasoning (223';‘21) (149'6277) 5.78 <.001 1.25
WASI - Vocabulary é3 .1077) ?52':578?3 0.35 795 0.08
TOPF 51.41 51.16 0.12 907 0.03

(9.35)  (10.61)
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Visual Acuity (logMAR) -0.14 -0.01
(0.08) (0.08) 7.39 <.001 1.59
Contrast Acuity (logCS) 1.36 0.83

(0.24) 0.27) 9.80 <.001 2.11
Note. Standard deviations are provided in parentheses with the mean values. Statistical
differences between groups determined by independent samples #-test assuming equal
variances.

MOCA: Montreal Cognitive Assessment, CVLT: California Verbal Learning Test, SDMT:
Symbol Digit Modalities Test, Logical Memory: from Wechsler Memory Scale, WASI:
Wechsler Abbreviated Scale of Intelligence, TOPF: Test of Premorbid Functioning.

Neuropsychological Test Battery

All participants completed a neuropsychological test battery that included the Montreal
Cognitive Assessment (MoCA; Nasreddine et al., 2005), the California Verbal Learning Test,
Third Edition (Delis et al., 2017), the written and oral forms of the Symbol Digit Modalities Test
(Smith, 1982), the Digit Span from the Wechsler Adult Intelligence Scale-Revised (Wechsler,
1981), Trail Making Test parts A and B (Reitan & Wolfson, 1985), Logical Memory I and II
from the Wechsler Memory Scale — Revised (Wechsler, 2009), the Vocabulary and Matrix
Reasoning portions of the Wechsler Abbreviated Scale of Intelligence (Wechsler, 2011), the Test
of Premorbid Functioning (Pearson, 2009), Category Fluency test for animals (Rosen, 1980;
Tombaugh et al., 1999), and the Victoria Stroop Test (Regard, 1981; Troyer et al., 2006).
Participants were excluded prior to the EEG experiment if they (1) scored below a 23 on the
MoCA (Carson et al., 2018), (2) scored more than 1.5 standard deviations under the age- and
education-normed mean performance on any one memory measure (i.e., CVLT short or long
delay cued or free recall, CVLT recognition discriminability, and Logical Memory I and II), or
(3) scored more than 1.5 standard deviations below age-normed and, if available education-
normed, mean performance for two or more of the other measures in the battery. These
exclusionary criteria for the neuropsychological test battery were to minimize the possibility that
older adults were in the early stages of mild cognitive impairment. Additionally, participants’
visual acuity and contrast sensitivity was measured using the Super Vision Test (Rabin et al.,
2009). Neither visual acuity nor contrast sensitivity were used as exclusionary criteria.

Experimental Task
Materials

The stimuli for this task comprised 96 object images from the BOSS database (Brodeur,
2014), 96 scene images from the Konkle et al. (2012) database, and 96 faces from the London
Face Database (DeBruine & Jones, 2021). Half of the objects and scenes depicted manmade
images (e.g., tools, urban landscapes) and the other half depicted natural images (e.g.,
vegetables, rural scenes). All scene images were of outdoor locations and did not depict animals
or people. Faces included males and females from multiple races and ethnicities with neutral
expressions.

The images were used to create yoked stimulus sets that were each presented to one
young and one older adult. Each yoked stimulus set comprised 2 lists, each with 144 novel (i.e.,
first) presentation trials and 18 repeated trials for a total of 288 novel presentation trials and 36
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repeated trials. A total of 12.5% of the images were randomly assigned to be repeated as 1-back
trials, resulting in 11.1% of all trials being repeated images. There were an equal number of each
image sub-category (e.g., natural vs. manmade) within each condition (novel vs. repeated) in
each block. The stimulus lists were pseudorandomized such that there were no more than 3
repetitions of the same image category and no more than two consecutive images labeled 1-back
trials. The pseudorandomization was done prior to inserting the 1-back trials in the trial
sequence.

Presentation of all tasks was controlled with PsychoPy (Peirce, 2007; Peirce et al., 2019)
on a Windows 10 PC computer with a BenQ X1.4340 monitor (100Hz frame refresh rate) using
frame-rate timing. Participants were seated approximately 57 cm from the monitor for all tasks.
Images were presented on the computer screen subtending a visual angle of approximately 10.0°
x 10.0° centered on a grey background. Object images were overlaid on a light grey background
of the same size as the scene and face images to approximately equate the area of the monitor
taken up by the object, face, and scene images. A red fixation cross (1° letter height) always
remained at the center of the screen.

Procedure

The experiment took place over two sessions conducted on separate days. The first
session consisted of the neuropsychological test battery and the second session consisted of the
experimental EEG tasks. In the second session, participants completed the following EEG tasks
in order: (1) a I-back task with scene, object, and face stimuli, (2) a C1 wave and oddball task
(cf. Kappenman & Luck, 2012), and a (3) recognition memory task (cf. Koen et al., 2019). The
present report focuses on the EEG/ERP data from the 1-back task. Data from the other two tasks
will be the focus of other reports.

The procedure for the 1-back task was modeled after the paradigm used by Harel and
colleagues (2016; see Figure 1A). Participants were instructed to pay attention to each image
and, when they saw an image repeat, to press a button on a response pad (LabHackers, Inc.) with
their right index finger as quickly as possible. Participants were instructed that if they did not see
the image repeat immediately, the image would not repeat again in the task. Each image was
presented for 0.5 secs and followed by an inter-trial interval between 1.6 secs and 1.9 secs (in
0.01 secs intervals). This resulted in a stimulus-onset asynchrony range of 2.1 to 2.4 secs.
Participants were instructed to keep their eyes fixated on the red fixation cross in the center of
the screen through the task. Participants were given a break halfway throughout the task (i.e.,
after 162 trials). A brief practice task was completed prior to the critical phase to ensure
participants understood the instructions.
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Figure 1. Depiction of the experimental paradigm and behavioral results. (A) Schematic
overview of the scene, object, and face 1-back task that participants completed while undergoing
EEG recording. Participants were instructed to press a button with their right index finger if an
image repeated itself. (B) The analysis of reaction times (RTs) for correct 1-back judgments
demonstrated a significant effect of age, whereby older adults were slower to respond relative to
young adults. (C) There was also a significant effect of image category on RTs during correct 1-
back judgments. Correct detection of repeated scenes was slower than for both faces and objects,
and there was no significant difference in RTs between faces and objects. The yellow and orange
points depict individual participant RTs. Black points reflect the model implied mean RT with
error bars representing the 95% confidence intervals of the estimate.

Dependent Measures from the Behavioral Data

The dependent measures from the 1-back task included the proportion of accurate no
responses to first presentation trials, the proportion of accurate button presses to 1-back trials,
and reaction times (RTs, in secs) for accurate 1-back judgments. Accuracies were near ceiling
(see Results) and are provided for descriptive purposes only. Statistical analyses were carried out
on RTs to examine differences in RTs as a function of age and image category.

EEG Acquisition and Preprocessing

Continuous EEG was recorded with an actiCHamp amplifier (Brain Products, Munic,
Germany) from 64 Ag/AgCI active electrodes (Afz, Fz, FCz, Cz, CPz, Pz, Poz, Oz, Fpl/2,
AF3/4/7/8, F1/2/3/4/5/6/7/8, FC1/2/3/4/5/6/7/8, C1/2/3/4/5/6, T7/8, CP1/2/3/4/5/6, TP7/8/9/10,
P1/2/3/4/5/6/7/8, PO3/4/7/8, and O1/2) mounted in an actiCAP (Brain Products; Munich,
Germany) according to the extended 10-20 system (Nuwer et al., 1998). Data were referenced
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online to FCz with the ground located at Fpz. Electrode impedances were lowered at or below 10
kQ before data collection began. Impedances were checked and adjusted, if needed, before each
of the three tasks in the experiment. EEG was recorded at DC and digitized at 1000 Hz. The
BIO2AUX adaptor was used to acquire and monitor vertical and horizontal electrooculography
(EOGQG). Vertical EOG was monitored with two passive electrodes placed above and below the
right eye, with a ground electrode on the right check. Horizontal EOG was monitored with two
electrodes placed on the outer canthi of each eye, with a ground electrode placed on the left
cheek. Impedance was not monitored for the EOG electrodes. The EOG recordings were
primarily used for online monitoring during EEG recording and during preprocessing for
identification of blinks occurring around stimulus onset.

Offline analysis of the EEG data was performed using mne-Python (version 0.23.4;
Gramfort et al., 2013). First, the photosensor data were used to adjust event onset latencies (i.e.,
markers) using an in-house algorithm. The algorithm first determined the threshold value of an
event as 85% of the maximum photosensor value. Then, in each segment surrounding an event
marker, the algorithm found the first sample that exceeded the threshold value and marked that
as the onset value. An event latency was adjusted if the delay between the original marker and
the photosensor-derived onset value was delayed more than half the frame rate (50 Hz or 5 ms).

Next, the continuous data were resampled to 250 Hz and high-pass filtered at 0.10 Hz
with a finite-impulse response filter (zero-phase shift; -6 dB cutoff = 0.05 Hz; transition
bandwidth = 0.10 Hz). The data were then epoched from -1000 ms to 1000 ms locked to stimulus
onset for the 1-back task. Epochs with voltages exceeding £150 puV, peak-to-peak values
exceeding threshold determined with the get rejection threshold function implemented in
autoreject (Jas et al., 2017) on 6 or more channels, and blinks at stimulus onset (150 uV peak-to-
peak value threshold in a 100 ms window) in the VEOG channel were automatically flagged for
visual inspection and then rejected if determined to contain an artifact. Bad channels were
identified manually and using the Random Sample Consensus algorithm (Bigdely-Shamlo et al.,
2015; Fischler & Bolles, 1981) as implemented in auforeject. Next, artifact correction was
performed using independent components analysis (ICA; Jung et al., 2000) using the Piccard
algorithm (Ablin et al., 2018). Note that ICA was performed on a duplicate EEG dataset that was
processed in the same manner described above, with the exception that the continuous data were
first filtered at 1 Hz with a finite-impulse response filter (zero-phase shift; -6 dB cutoff = 0.5 Hz;
transition bandwidth = 0.50 Hz). Ocular and other artifactual components (e.g., muscle, heart)
were visually inspected and flagged for removal if deemed artifactual.

The artifactual components were then subtracted from epoched data derived from the
0.10 Hz high pass filtered continuous data. Channels marked as bad were then interpolated using
spherical splines, re-referenced to an average reference (recovering the FCz channel), and
baseline corrected using the 200 ms immediately preceding stimulus onset. Finally, epochs were
inspected for artifacts using the same routine described above. On average, 4.55% (range: 0.00-
16.67%) of epochs in young adults and 4.14% (range: 0.31-15.74%) of epochs in older adults
were rejected.

ERP Measures

ERPs for scene, object, and face trials were created by averaging the artifact free epochs
for the first presentation trials. The number of artifact free epochs for first presentation scene,
object, and face trials were, respectively, 91 (range: 76-96), 92 (range: 81-96), and 91 (range: 80-
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96) for young adults and 92 (range: 77-96), 92 (range: 81-96), and 92 (range: 80-96) for older
adults.

The ERPs were trimmed in time between -0.2 secs to 0.6 secs and low-pass filtered at 20
Hz with a finite impulse response filter (zero-phase shift; -6 dB cutoff = 22.5 Hz; transition
bandwidth = 5 Hz) to reduce the bias in peak amplitude measures caused by high frequency
noise (Kappenman et al., 2021; Luck, 2014). The ERP analysis focused on measuring the N170
and P200 from homotopic electrode clusters in the left (average of PO7 and P7) and right
(average of POS8 and P8) hemispheres. These electrodes were selected for this analysis based on
previous research demonstrating that the N170 and P200 effects are largest over lateral parieto-
occipital channels (e.g., Boutet et al., 2020; Daniel & Bentin, 2012; R. Gao, 2015; Harel et al.,
2016; Kappenman et al., 2021).

The ERP measures estimated for the analyses reported below included peak amplitude,
peak latency, and 50% fractional peak onset for the P200 and N170. These measures were
calculated from difference waveforms between scenes and objects for the P200, and between
faces and objects for the N170. All measures were based on finding a local peak in the search
window (0.125-0.250 sec time window for the scene-selective P200 and 0.090-0.170 sec for the
face-selective N170). These windows were selected based on prior research of the P200 and
N170 (e.g., Boutet et al., 2020; Daniel & Bentin, 2012; R. Gao, 2015; Harel et al., 2016;
Kappenman et al., 2021). The windows were slightly wider than previous studies to
accommodate potential age-related delays in peak amplitudes. Note that computation of the 50%
fractional peak onset can occur below the lower-bound of the time window used for identifying
the peak amplitude.

Measurement of Neural Noise: 1/f aperiodic signal

We estimated neural noise from the prestimulus time window by quantifying the 1/f
aperiodic component of the EEG power spectrum. The power spectrum was computed using
Welch’s (1967) method on each epoch’s prestimulus window (200 samples per window with
75% overlap; zero-padded). The power spectrum for each channel was estimated by taking the
across-epoch median power for frequencies in the 2-30 Hz range, and was then submitted to the
FOOOF toolbox (Donoghue et al., 2020). This toolbox uses an algorithm that decomposes each
channel’s power spectrum into oscillatory peaks and the aperiodic component. The aperiodic
exponent was extracted from the 2-30 Hz frequency range of each channel’s power spectrum
(peak_width_limits = [2.0, 12.0], aperiodic_mode = ‘fixed’, peak threshold = I). For each
participant, we extracted the 1/f exponent from occipital and parietal electrodes (i.e., all O, PO,
and P electrodes) given that our primary ERP effects of interest occur over posterior channels.

Experimental Design and Statistical Analysis

Statistical analyses were conducted in R (version 4.1.1; R Core Team, 2021) with the
following packages: afex (version 1.0; Singmann et al., 2021), modelbased (version 0.8.1;
Makowski et al., 2020), and effectsize (version 0.4.5, Ben-Shachar et al., 2020). When necessary,
the Holm (1979) procedure was used to correct for multiple comparisons. Results are considered
significant at a two-tailed p < .05 unless otherwise specified.

Neuropsychological Test Performance

Age differences in neuropsychological test performance were examined with independent
samples z-tests assuming equal variance using the ¢.fest function in R.


https://doi.org/10.1101/2022.11.17.516990
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.17.516990; this version posted November 18, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

12

Behavioral Performance on the 1-Back Task

The RTs for repeated (i.e., 1-back) trials receiving a correct response were submitted to a
generalized linear mixed effects model with an inverse Gaussian link function (Lo & Andrews,
2015) using the mixed function of the afex package. This model included fixed effects of age
group (young, older), image category (scene, object, and face) and the age group by image
category interaction. The model included a maximal random effects structure with a random
intercept for participant and a random slope for image category, as well as the covariance
between the random effects. Note that the null hypothesis significance test for the fixed effects
were based on likelihood ratio tests, and post-hoc contrasts conducted with the modelbased
package were based on asymptotic (i.e., z) tests.

ERP Peak Measures

The ERP peak amplitude, latency, and fractional peak onset measures were examined
using a linear mixed effects model using the mixed function in the afex package. The model had
fixed effects of age group (young, older), hemisphere (left, right), and the age group by
hemisphere interaction and a random intercept term. Post-hoc contrasts on the interaction, when
necessary, were based on #-tests conducted using the modelbased package. For these linear
mixed effects models, and those reported below, degrees of freedom used the Satterthwaite
(1946) approximation.

To control for individual differences in vision, we reran the above models including mean
centered visual acuity (logMAR) and contrast acuity (logCS). With one exception, inclusion of
these covariates did not affect the pattern of findings (also see Koen et al., 2019). We report the
results from the models that do not include these covariates for the sake of parsimony. The one
exception is noted in the Results (see the Face N170 subsection of ERP Peak Measures).

1/f Aperiodic Signal

Age differences in neural noise were investigated by submitting the 1/f aperiodic
component (i.e., exponent) of the prestimulus power spectrum from parietal-occipital channels to
a linear mixed effects model. This model included age group as the only fixed effect factor.
Random intercepts for participant and channel were also included in this model.

We also investigated the relationship between neural noise (measured with the 1/f
aperiodic exponent) and the ERP peak measures for the P200 and N170 using linear mixed
effects models. For this analysis, a participant specific neural noise measure was created by
averaging over all the 1/f exponents estimated from the posterior electrodes (i.e., P, PO, and O).
This model included fixed effects of age group (young, older), hemisphere (left, right), 1/f
exponent, and the interactions between all three factors, along with a random intercept. Note that
the 1/f exponent was mean centered prior to estimating the model. In these models, we focused
only on effects involving the 1/f exponent measure. Post-hoc contrasts on interactions involving
the 1/f exponent were conducted by testing if the simple slopes within each factor (or
combination of factors) was significantly different from 0 using the modelbased package.

As with the ERP peak measures, we included mean centered visual and contrast acuity as
covariates to control for individual differences in visual function. Inclusion of these covariates
did not alter the pattern of findings (also see Koen et al., 2019). Thus, we report the results from
the statistical models that do not include these covariates.
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Results
Neuropsychological Test Performance

Table 1 provides the sample demographics and performance on the neuropsychological
test battery. Older adults had significantly more education than young adults. Statistically
significant age-related reductions were observed in every measure, except for the Vocabulary
subtest of the WASI-II and the TOPF which showed no age differences.

Behavioral Results

Participants demonstrated high accuracy on detecting the repeats (young adults: M =
0.96, SE = 0.01; older adults: M = 0.95, SE = 0.01) and correctly refrained from responding on
first presentation trials (young adults: M = 0.999, SE = 0.000; older adults: M = 0.997, SE =
0.001).

The generalized linear mixed effects model on trial-wise reaction time data revealed a
significant effect of age group [x*(1) = 7.46, p = .006]. As expected, older adults were slower to
respond to repeated images relative to younger adults (see Figure 1B). There was also a
significant effect of image category [}*(2) = 14.69, p = .001]. Post-hoc contrasts demonstrated
that reaction times to repeated scenes were significantly slower compared to both repeated faces
[z=3.20, p =.004, Cohen’s d = 0.34] and repeated objects [z = 3.69, p =.001, Cohen’s d =
0.39]. There was no significant difference in reaction times for correctly identifying repeated
faces and objects [z = 0.29, p = .956, Cohen’s d = 0.03] (see Figure 1C). The age group by image
category interaction was not significant [¥*(2) = 2.24, p = .326].

ERP Peak Measures

The grand average waveforms from the three image categories in young and older adults
are shown in Figures 2 and 3, respectively. Visual inspection of these waveforms in both age
groups show differences between ERPs for scene and object stimuli around 0.15 to 0.25 secs
following stimulus onset. These differences are consistent with the scene-selective P200
previously reported by Harel and colleagues (2016). Similarly, consistent with prior work on the
face N170 (Boutet et al., 2020; Daniel & Bentin, 2012; L. Gao et al., 2009; Kappenman et al.,
2021; Rousselet et al., 2007, 2009; for review, see Rossion & Jacques, 2012), both young and
older adults showed a more negative going ERP for faces relative to objects between 0.1 and
0.17 secs following stimulus onset. Difference waveforms were used to measure the peak
amplitudes, peak latencies, and fractional peak onsets for the P200 (scene minus object) and
N170 (face minus object).
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Figure 2. Grand average ERPs for young adults for scenes, objects, and faces. The electrodes
shown were those used to create virtual left (P7 and PO7) and right (P8 and PO8) hemisphere
channels for analysis of the P200 and N170 in the main text. The ERPs reflect the grand average
of unfiltered ERPs for each image category and error ribbon reflects the 95% confidence
interval.
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Figure 3. Grand average ERPs for older adults for scenes, objects, and faces. The electrodes
shown were those used to create virtual left (P7 and PO7) and right (P8 and PO8) hemisphere
channels for analysis of the P200 and N170 in the main text. The ERPs reflect the grand average
of unfiltered ERPs for each image category and error ribbon reflects the 95% confidence
interval.

Scene P200

Figure 4A shows the grand average difference waveforms between scene and object
ERPs for young and older adults, and Table 2 includes the descriptive statistics for P200 peak
measures. A visual inspection of the waveforms indicates that the peak amplitude in the 0.15 to
0.25 second time window was larger and occurred earlier (in onset and peak latency) in young
relative to older adults. The results from the analysis of the P200 peak measures support these
observations. The linear mixed effects model for the scene selective P200 peak amplitude
(Figure 4B) showed a significant main effect of age group [F(1, 86) = 15.01, p <.001, n5 =0.15],
hemisphere [F(1, 86) = 4.44, p = .038, ny = 0.05], and the age group by hemisphere interaction
[F(1,86)=5.04, p=.027, n; = 0.06]. The main effect of age group was driven by the peak
amplitude of the P200 being reduced in magnitude for older relative to young adults (see Table
2). The post-hoc analysis of the interaction indicated that the above age-related reduction in P200
peak amplitude was significant in the right hemisphere [#(154.47) = 4.46, SE = 0.40, p <.001,
Cohen’s d = 0.72]. However, the age difference in the left hemisphere only approached, but did
not reach, our a priori significance threshold [#(154.47) = 1.88, SE = 0.40, p = .063, Cohen’s d =
0.30]. Overall, these findings converge with previous fMRI findings of age-related neural
dedifferentiation of scene stimuli in the parahippocampal place area (Koen et al., 2019; D. C.
Park et al., 2004; Srokova et al., 2020; Voss et al., 2008).

Table 2. P200 peak amplitudes and latencies means and standard error for age group and

hemispheres.
Age Group Hemisphere Peak Amplitude Peak Latency Fractional Peak Onset Latency
Young Left 4.68 (0.27) 0.169 (0.002) 0.136 (0.003)
Right 5.68 (0.31) 0.165 (0.002) 0.130 (0.004)
Older Left 3.94 (0.28) 0.193 (0.003) 0.160 (0.004)
Right 3.91 (0.25) 0.196 (0.002) 0.162 (0.003)

Note. Standard error of the mean is provided in parentheses. Peak amplitude is reported in pV
and latency measures are reported in secs.

The linear mixed effects model conducted on the P200 peak latency revealed a main
effect of age group [F(1, 86) =96.49, p <.001, n5 = 0.53] that was driven by the peak P200
latency in older adults occurring later relative to young adults (Figure 4C and Table 2). Neither
the main effect of hemisphere [F(1, 86) = 0.00, p =.946, n; = 0.00] nor the age group by
hemisphere interaction [F(1, 86) = 2.54, p = .114, n5 = 0.03] reached our a priori statistical
threshold.
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The linear mixed effects model conducted on the P200 fractional peak onset latency
revealed a main effect of age group [F(1, 86) =49.32, p <.001, ny = 0.36] that was driven by the
P200 fractional peak onset latency in older adults occurring later relative to young adults (Figure
4D and Table 2). Neither the main effect of hemisphere [F(1, 86) = 1.17, p = .282, 13 = 0.01] nor
the age group by hemisphere interaction [F(1, 86) = 3.02, p = .086, n3 = 0.03] reached our a
priori statistical threshold. The peak latency and onset findings suggest that, in addition to age-
related reductions in the magnitude of neural selectivity, there is also an age-related delay in
when neural activity shows selectivity for scene stimuli. Inclusion of visual and contrast acuity
measures as covariates did not change the pattern of results for the above analyses (see
Experimental Design and Statistical Analyses).
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Figure 4. Results from the analysis of the scene selective P200. (A) Grand average difference
waveforms between scene and object ERPs from virtual channels from the left (average of P7
and PO7) and right (average of P8 and POS8) hemispheres. These waveforms reflect the grand
averages of unfiltered ERPs from young and older participants, with the error ribbon reflecting
the 95% confidence interval of the difference wave in each age group. The shaded area reflects
the time window used to search for the P200 peak amplitude measure. Note that the peak
measures were derived from ERPs that were low-pass filtered with a 20 Hz finite impulse
response filter (zero-phase shift; -6 dB cutoff = 22.5 Hz; transition bandwidth = 5 Hz). (B-D)
Raincloud plots of the P200 peak amplitude, latency, and 50% fractional peak onset latency
derived from the scene minus object difference wave. The peak amplitude of the P200 was larger
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in young relative to older adults and only significant in the right hemisphere. Both P200 peak
latency and fractional onset were delayed in older relative to young adults. The point with the
error bar represents the group mean and 95% confidence interval.

Face N170

Figure 5A shows the grand average difference waveforms between face and object ERPs
for young and older adults, and Table 3 includes the descriptive statistics for N170 peak
measures. Visual inspection of these difference waveforms suggests that the N170 was larger
(i.e., more negative) and delayed in onset and latency in young relative to older adults. A linear
mixed effects model conducted on the N170 peak amplitude (Figure 5B) revealed a main effect
of age group [F(1, 86) = 5.43, p = .022, n3 = 0.06] that was driven by older adults having smaller
(i.e., less negative) peak N170 amplitudes compared to young adults (see Table 3). This finding
is consistent with fMRI studies of age-related neural dedifferentiation in the fusiform face area
(D. C. Park et al., 2004; J. Park et al., 2012; Voss et al., 2008; but see Srokova et al., 2020).
Neither the main effect of hemisphere [F(1, 86) = 1.19, p = .279, n3 = 0.01] nor the age group by
hemisphere interaction [F(1, 86) = 0.70, p = .406, n5 = 0.00] reached our a priori statistical
threshold. However, the age difference in N170 amplitude was no longer significant visual and
contrast acuity measures were included as covariates [F(1, 84) = 0.51, p = .476, 13 = 0.00]. This
finding suggests that, unlike the scene P200, age differences in the N170 were not independent
of individual differences in visual function.

Table 3. N170 peak amplitudes and latencies means and standard error for age group and

hemispheres.
Age Group Hemisphere Peak Amplitude Peak Latency Fractional Peak Onset Latency
Young Left -7.27 (0.52) 0.128 (0.002) 0.109 (0.002)
Right -7.18 (0.65) 0.127 (0.002) 0.106 (0.002)
Older Left -6.14 (0.44) 0.137(0.002) 0.118 (0.002)
Right -5.45 (0.36) 0.138 (0.002) 0.120 (0.002)

Note. Standard error is provided in parentheses with the mean values. Peak amplitude is
reported in pV and latency measures are reported in secs.

A similar linear mixed effects model on the N170 peak latency revealed a main effect of
age group [F(1, 86) =21.77, p <.001, n5 = 0.20] that was driven by the peak N170 latency in
older adults occurring later relative to young adults (Figure 5C and Table 3). Neither the main
effect of hemisphere [F(1, 86) = 0.02, p = .881, n; = 0.00] nor the age group by hemisphere
interaction [F(1, 86) = 1.26, p = .265, n5 = 0.01] reached our a priori statistical threshold.

A linear mixed effects model conducted on the N170 fractional peak onset latency
revealed a main effect of age group [F(1, 86) = 32.90, p <.001, ng = 0.28] that was driven by the
N170 fractional peak onset latency in older adults occurring later relative to young adults.
Neither the main effect of hemisphere [F(1, 86) = 0.09, p = .770, ny = 0.00] nor the age group by
hemisphere interaction [F(1, 86) = 3.94, p =.050, 5 = 0.04] reached our a priori statistical
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threshold. The interaction did, however, approach our significance threshold, which is likely due
to larger age differences in fractional onset latency in the right versus left hemisphere (see figure
5D and Table 3). The peak latency and onset findings suggest that there are also age-related
delays in the face selective N170 (for similar findings, see Boutet et al., 2020; Daniel & Bentin,
2012; but see L. Gao et al., 2009). Note that inclusion of visual and contrast acuity did not alter
the latency or onset results.
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Figure 5. Results from the analysis of the face selective N170. (A) Grand average difference
waveforms between scene and object ERPs from virtual channels from the left (average of P7
and PO7) and right (average of P8 and POS8) hemispheres. These waveforms reflect the grand
averages of unfiltered ERPs from young and older participants, with the error ribbon reflecting
the 95% confidence interval of the difference wave in each age group. The shaded area reflects
the time window used to search for the N170 peak amplitude measure. Note that the peak
measures were derived from ERPs that were low-pass filtered with a 20 Hz finite impulse
response filter (zero-phase shift; -6 dB cutoff = 22.5 Hz; transition bandwidth = 5 Hz). (B-D)
Raincloud plots of the N170 peak amplitude, latency, and 50% peak onset latency derived from
the scene minus object difference wave. The peak amplitude of the N170 was larger in young
relative to older adults, and the N170 peak latency and fractional peak onset were delayed in
older adults relative to young adults. The point with the error bar represents the group mean and
95% confidence interval.
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Age Differences in Neural Noise (1/f Exponent)

The data from the analysis of the 1/f exponent is shown in Figure 6. The exponents
derived from posterior channels were analyzed for age differences with a linear mixed effects
model that included random intercepts for participant and channel (see Experimental Design and
Statistical Analyses). There was a significant age-related reduction in the 1/f exponent [F(1, 86)
=52.97, p <.001, n; = 0.38]. This finding is consistent with results from prior studies examining
age-related changes in aperiodic electrophysiological activity (Dave et al., 2018; Voytek et al.,
2015; also see Voytek & Knight, 2015) and suggests that neural noise is greater in older relative
to young adults (cf. R. Gao, 2015).
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Figure 6. Results from the analysis of age differences in the 1/f exponent. The 1/f exponent was
estimated by applying the FOOOF algorithm (Donoghue et al., 2020) to the power spectrum
derived from the 1 sec pre-stimulus baseline window. (A) The left panel shows the topography of
the age differences in the 1/f exponent. Positive #-values reflect larger 1/f exponents in young
relative to older adults. The right panel shows the topography of the across-participant average
1/f exponent estimates for young and older adults. The black points in the right panel reflect the
posterior electrodes (P, PO, and O electrodes) used for the analyses depicted in (B) and (C). (B)
The average power spectrum across the posterior channels for young and older adults plotted in
log-log space. The error ribbon depicts the 95% confidence interval of the estimate. The estimate
1/f exponent (i.e., slope) estimated from the grand average power spectrum is shown as the
dotted line. (C) Participant estimates of the 1/f exponent averaged across the posterior electrodes
shown in (A). The point with the error bar represents the group mean and 95% confidence
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interval. Age differences were largest over central posterior electrodes. Larger 1/f exponents
(i.e., steeper slopes) reflect less aperiodic activity in the power spectrum and indicate lower
levels of neural noise. Thus, the reduction of the estimate 1/f exponents (i.e., shallower slopes) in
older adults suggest age-related increases in neural noise.

Relationship Between Neural Selectivity and Neural Noise

Computational models of neural dedifferentiation propose that increased neural noise is
related to reductions in neural selectivity (Li et al., 2001; Li & Rieckmann, 2014a). We tested
this prediction by examining the association between the ERP peak measures (i.e., amplitude,
latency, and onset latency) and the average of the 1/f exponents derived from the posterior
channels used in the above analysis. The linear mixed effects models reported in this section are
like the statistical models reported on in the Scene P200 and Face N170 sections above, but they
include the 1/f exponent (mean centered) as a predictor along with the interaction between the
other terms in the model (i.e., age group by 1/f interaction, hemisphere by 1/f interaction, and the
3-way interaction between age group, hemisphere, and 1/exponent). In this section we focus only
on effects that included the 1/f exponent. Inclusion of visual and contrast acuity measures as
covariates did not change the pattern of results for the above analyses (see Experimental Design
and Statistical Analyses).

P200

The linear mixed effects model for the scene selective P200 peak amplitude revealed a
significant age group by 1/f exponent interaction [F(1, 84) = 7.53, p =.007, n = 0.08]. This
interaction was driven by a significantly steeper slope in older adults relative to younger adults
(Figure 7). Post-hoc analyses demonstrated that there was a negative relationship between the 1/f
exponent and the P200 amplitude in older adults that was significantly different from zero [slope
=2.75, 1(84) = 2.75, p = .007]. This relationship demonstrates that older adults with low levels of
neural noise showed higher P200 peak amplitudes. The relationship between the 1/f exponent
and P200 peak amplitude was not significant in young adults [slope = -1.06, #(84) = 1.10, p =
.274]. No other effects involving the 1/f exponent were significant [all F’s < 1.49, all p’s > .226,
all n3’s <.02].
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Figure 7. Visual depiction of the age group by 1/f exponent interaction for the analysis of the
P200 peak amplitude data. There was a significant relationship between the 1/f exponent and the
P200 peak amplitude in older, but not younger, adults. In older adults, lower levels of neural
noise (i.e., higher 1/f exponents) were associated with higher P200 peak amplitudes. The error
bar around the regression reflects the 95% confidence interval and the circles represent
individual data points.

The linear mixed effects model for the scene selective P200 peak latency revealed a
significant interaction between age group, hemisphere, and 1/f exponent [F(1, 84) =3.98, p =
.049, s = 0.03]. To examine the interaction, we conducted post-hoc analyses on the four simple
slopes for each hemisphere in each age group. After correction for four comparisons using the
Holm method, none of the simple slopes were significantly different from O [all slopes between -
.013 and .015; all #149.34) < 1.30, all proim > .780]. No other effects involving the 1/f exponent
were significant [all F’s < 1.26, all p’s > .266, all n3’s < .01].

The analysis of the P200 fractional peak onset showed a significant 3-way interaction
involving age group, hemisphere, and 1/f exponent [F(1, 84) =9.31, p =.003, n3 = 0.09].
However, similar to P200 peak latency, none of the simple slopes were significant after
correction for multiple comparisons [all slopes between -.032 and .016; all #(130.78) < 2.16, all
PHolm > .129]. No other effects involving the 1/f exponent were significant [all F°s <3.31, all p’s
>.071, all ng’s <.03]. Together, these latter two findings suggest that, at best, the 1/f exponent
measure of neural noise has a rather weak (and likely complex) relationship with the P200 peak
latency and fractional peak onset.

NI170

The linear mixed effects model for the face selective N170 peak amplitude showed a
significant main effect of 1/f exponent [F(1, 84) = 5.09, p =.027, n5 = 0.06] that was moderated
by an interaction with hemisphere interaction [F(1, 84) = 8.38, p =.005, n; = 0.09] (see Figure
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8). An analysis of the simple slopes indicate a significant negative relationship between N170
amplitude and the 1/f exponent in the left hemisphere [slope = -5.25, #133.83) = 3.40, p <.001]
but not in the right hemisphere [slope =-0.80, #(133.83) = 0.52, p = .605]. Thus, in the left
hemisphere, there was an age-invariant relationship showing 1/f exponents (increases in neural
noise) are associated with decreased neural selectivity. Neither the age group by 1/f exponent
interaction [F(1, 84) = 0.05, p = .815, n3 = 0.00] nor the age group by 1/f exponent by
hemisphere interaction [F(1, 84) = 0.22, p = .637, n; = 0.00] reached our a priori statistical
threshold.

N170 Peak Amplitude

Left [ Right

=< . AgeGroup

: | Young
—/ Older

-151

-20

-0.5 0.0 0.5 -0.5 0.0 0.5
1/f Exponent (mean centered)

Figure 8. Results from the analysis of the face selective N170 and 1/f exponent. Data points for
the N170 peak amplitudes and 1/f exponents for young and older adults are presented, with
slopes representing group mean estimates and error ribbons reflecting the 95% confidence
interval of group mean estimates from the linear mixed effects model for each age group. In the
left hemisphere, more negative 1/f exponents reflecting less aperiodic activity in the power
spectrum and indicating less neural noise are associated with smaller N170 peak amplitudes in
both young and older adults. Thus, in the left hemisphere, the age-related reduction of 1/f
exponents (increases in neural noise) are associated with decreased neural selectivity in an age-
invariant manner. In other words, more lateralized N170 peak amplitudes are associated with
decreased neural noise in an age-invariant manner.

None of the effects that included the 1/f exponent reached our significance threshold for
the linear mixed effects models of N170 peak latency [all F’s <2.90, all p’s > .092, all n5’s <
.02] nor fractional peak onset [all F’s < 1.25, all p’s > .268, all n3’s <.01].
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General Discussion

The current study examined the relationship between neural noise and age differences in
EEG measures of neural selectivity (Li et al., 2001; Li & Rieckmann, 2014b). Specifically, we
related measures of neural noise derived from the aperiodic activity in the EEG signal (Dave et
al., 2018; Donoghue et al., 2020; R. Gao, 2015; Voytek et al., 2015) and ERP measures of neural
selectivity, namely the scene-selective P200 (Harel et al., 2016) and face-selective N170 (for
review, see Rossion & Jacques, 2012). First, the results demonstrated that the amplitude of the
scene-selective P200, but not the face-selective N170, was reduced in older adults relative to
younger adults (after controlling for individual differences in visual and contrast acuity). Second,
both the P200 and N170 components showed evidence of age-related slowing. Third, in older but
not young adults, the P200 peak amplitude was associated with the 1/f exponent, indicating that
lower levels of neural noise were associated with higher P200 peak amplitudes, or neural
selectivity. Finally, the N170 peak amplitude in the left, but not right, hemisphere showed an
age-invariant relationship with the 1/f measure of neural noise whereby lower levels of neural
noise were associated with larger (i.e., more negative) N170 amplitudes.

Age Differences in ERP Neural Selectivity Measures

The present findings replicate those from a recent study by Harel and colleagues (2016),
who provided the first demonstration of this scene-selective P200 ERP component. Moreover,
we extended these findings to show that the scene-selective P200 is observed in both young and
older adults, suggesting that this scene-selective component can be generalized across different
groups of individuals.

Our findings also provide the first demonstration of age-related neural dedifferentiation
using ERPs in paradigms like those used in fMRI research (e.g., D. C. Park et al., 2004; Voss et
al., 2008). These findings converge with fMRI studies demonstrating that neural
dedifferentiation is more readily observed for scene stimuli relative to face stimuli (Koen et al.,
2019; Srokova et al., 2020; for related findings, see Voss et al., 2008). This is supported by our
results showing age-related reduction in the amplitude of the scene-selective P200, but not the
face-selective N170 (after controlling for visual and contrast acuity). These findings suggest that
there is something special about scene stimuli that produces consistent patterns of age-related
neural dedifferentiation.

The present results also extend prior fMRI findings in showing that age differences in
neural selectivity reflect a mixture of reductions in amplitude of and delays in neural processing.
For both the P200 and the N170, we observe significant age-related delays in onset and peak
latency, which suggests that the neural processes that differentiate categories of visual stimuli are
sensitive to age-related slowing. It is possible that mixed findings for age-related neural
dedifferentiation for faces (Srokova et al., 2020; and potentially objects; see Koen et al., 2019)
observed with fMRI are driven by age-related delays in the peak level of neural selectivity, but
not overall differences in the magnitude of neural selectivity. Future research using a multi-
model approach in the same participants is needed to critically examine this hypothesis and to
determine if the present EEG findings for scenes reflect similar neural processes as those
observed in fMRI studies of neural dedifferentiation.

Our results also add to the existing literature on age differences in the latency of the face-
selective N170. Previous studies have reported mixed findings with some showing prolonged
peak latencies in older relative to young adults (Boutet et al., 2020; Daniel & Bentin, 2012;
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Rousselet et al., 2009), whereas others have reported no age differences in latency (L. Gao et al.,
2009). Our results converge with the former set of findings, suggesting there are age-related
delays in the N170. Importantly, our methods differ from prior investigations that focused on
peak latency measures from ERPs for face stimuli alone. Here, we measured the peak latency (as
well as fractional peak onset) from difference waves. We believe this approach can better isolate
underlying neural components given that peaks are not (necessarily) the same as components
(Luck, 2014). Moreover, our different measurement method could potentially explain why the
N170 amplitude results differed from the prior N170 literature.

It is unclear from the present results if age differences in the two ERP components
investigated are driven by age differences in neural activity elicited by scenes and faces, or a
common age difference in the neural response to just the object stimuli. Specifically, both the
N170 and P200 were estimated from difference waves created by referencing the ERPs elicited
by faces and scenes to the ERPs elicited by object stimuli. Thus, it is possible that age
differences in object ERPs could account for the observed pattern of results. Indeed, age
differences in the ERPs elicited by objects can be seen by comparing Figure 2 and 3. However, it
should be noted that even age differences in ERPs for a single condition (e.g., ERP for object
stimuli) can occur even when young and older adults have the same underlying neural generator.
Such differences can arise from age-related differences in neuroanatomy, which can alter the
orientation or generator-to-scalp distance of a neural generator, thus affecting the electrical
activity recorded at the scalp for any single-condition ERPs. The use of difference waves helps to
mitigate this issue. Although we cannot fully rule out the possibility that age differences in the
object ERP contribute to the present results, we believe this account unlikely as it cannot readily
explain the different patterns observed for the P200 and N170 measured from difference waves.

Relationship Between Age, Neural Noise, and Neural Selectivity

Another aim of this study was to examine the relationship between neural noise and
neural dedifferentiation in young and older adults. Computational models propose that age-
related increases in neural noise contribute to age-related reductions in neural selectivity (Li et
al., 2001; Li & Rieckmann, 2014a). In addition to replicating previous findings showing age-
related increases in neural noise as indexed by decreases in the 1/f exponent (Dave et al., 2018;
Voytek et al., 2015), our results provide some evidence consistent with the general proposal that
neural noise is associated with neural selectivity and, more specifically, the magnitude (not
latency) of neural selectivity. Importantly, the relationship between neural noise and neural
selectivity appeared to differ by age and visual category.

For the scene-selective P200, we found the relationship between neural noise and peak
amplitude was moderated by age group. In older adults, lower levels of neural noise (i.e., higher
1/f exponents) were associated with higher levels of neural selectivity for scene stimuli (i.e.,
larger P200 peak amplitudes). There was no significant relationship between neural noise and the
P200 peak amplitude in younger adults. This pattern of results might suggest a brain
maintenance or preservation account of age-related neural dedifferentiation (Cabeza et al., 2018).
Specifically, it could be the case that older adults who have maintained levels of neural noise
more similar to those found in young adults through some lifestyle factors, such as exercise
(Kleemeyer et al., 2017), maintain young adult levels of neural selectivity. A longitudinal study
of this relationship is needed to remove potential cohort effects and provide better evidence for a
the brain maintenance account mentioned above.
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In contrast, peak amplitude of the face-selective N170 showed an age-invariant
relationship with neural noise that was only observed in left hemisphere electrodes. While the
age-invariant nature of this relationship is in line with predictions derived from computational
models (Li et al., 2001), this observed laterality effect was unexpected. One possible
interpretation of this finding is that the right lateralization typically reported in the N170
literature is dependent on levels of neural noise. Specifically, both young and older adults with
lower levels of neural noise also show reduced hemispheric asymmetry in the N170 compared to
individuals with higher levels of neural noise. These findings need to be replicated before any
strong conclusions can be drawn made about this hemispheric dependent, yet age-invariant,
relationship between neural noise and the N170 peak amplitude.

Implications for Computational Models of Neural Dedifferentiation Theory

While our results are broadly consistent with the predicted relationship between neural
noise and neural selectivity derived from computational models, the present results join a
growing body of work suggesting that computational models of neural dedifferentiation require
revision (Koen et al., 2019; Srokova et al., 2020; but see, Simmonite & Polk, 2022). As we have
argued previously, computational models of neural dedifferentiation predict age- and stimulus-
invariant relationships between neural noise and measures of neural selectivity (Koen et al.,
2020; Koen & Rugg, 2019). The present findings join the growing party of evidence that neural
dedifferentiation is not consistently observed across all stimulus categories. Moreover, the
present results suggest that the relationship between neural noise and neural dedifferentiation
differs across the lifespan and, potentially, in different brain regions. The present results provide
some important boundary conditions that any new iteration of a computational model of neural
dedifferentiation must account for.
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