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Abstract 
Age-related neural dedifferentiation – reductions in the selectivity and precision of neural 
representations – contributes to cognitive aging and is thought to result from age increases in 
neural noise. This research has primarily used fMRI to examine age-related reductions in neural 
selectivity for different categories of visual stimuli. The present experiment used EEG to 
examine the link between neural noise and age-related neural dedifferentiation indexed by the 
scene-selective (P200) and face-selective (N170) ERP components. Young and older adults 
viewed images of scenes, objects, and faces during a 1-back task. Whereas both the P200 and 
N170 showed age-related slowing of peak latency, only the P200 showed age-related reductions 
in amplitude that were independent of visual and contrast acuity. We also examined the 
relationship between the ERP peak measures and an index of neural noise, namely the 1/f 
exponent of the frequency power spectrum. For the P200 amplitude, higher levels of neural noise 
were associated with smaller P200 amplitudes in young, but not older adults. In contrast, there 
was an age-invariant relationship between neural noise and N170 amplitude in the left 
hemisphere with higher levels of neural noise being associated reduced N170 amplitudes. While 
the present findings provide novel empirical evidence broadly consistent with predictions from 
computational models of neural dedifferentiation, the results also highlight potential limitations 
of the computational model that necessitate revision. The results also suggest that, at least for the 
P200, maintaining levels of neural noise similar to young adults might preserve levels of neural 
selectivity. 
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Significance Statement 
A prominent theory of cognitive aging proposes that age-related cognitive decline results from 
increases in neural noise that reduce the selectivity of neural representations. We examined this 
predicted link between neural selectivity and neural noise with ERP components that show 
selectivity for scenes (P200) and faces (N170) and the 1/f aperiodic exponent measure of neural 
noise. The amplitude for the scene-selective, but not face-selective, ERP component was reduced 
in older adults, with both components showing age-related slowing. Critically, older adults with 
higher levels of neural noise showed lower levels of neural selectivity for scenes, but not faces. 
While these results provide some evidence supporting computational models of neural 
dedifferentiation, they also highlight important limitations of the model that require revision. 
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Introduction 
Healthy aging is associated with declines in many cognitive abilities (Harada et al., 2013; 

Salthouse, 2010, 2019). An influential theory of cognitive aging proposes that age-related neural 
dedifferentiation – reductions in the distinctiveness or precision of neural representations – 
contributes to age-related cognitive decline (Koen & Rugg, 2019; Koen et al., 2020; Li et al., 
2001; Li & Rieckmann, 2014a). Computational models of neural dedifferentiation propose that 
age-related reductions in neuromodulatory drive increases neural noise (i.e., decreases the signal-
to-noise ratio of neural activity; Li, 2013; Li & Rieckmann, 2014a; Mather & Harley, 2016; 
Seaman et al., 2019). Increases in neural noise, in turn, contribute to reductions in the selectivity 
or precision of neural representations that negatively affect cognition. This model predicts that 
neural selectivity will decrease with age showing an age-invariant relationship with measures of 
cognition (Koen et al., 2020; Koen & Rugg, 2019). The majority of findings support both 
predictions with older adults showing reduced neural selectivity in visual, auditory, and motor 
stimuli (Carp et al., 2011; Chamberlain et al., 2021; Koen, 2022; Koen et al., 2019; Lalwani et 
al., 2019; D. C. Park et al., 2004; J. Park et al., 2012; Simmonite & Polk, 2022; Srokova et al., 
2020; Voss et al., 2008) and age-invariant associations between neural selectivity and measures 
of cognitive performance (Berron et al., 2018; Bowman et al., 2019; Du et al., 2016; Koen, 2022; 
Koen et al., 2019; J. Park et al., 2010; Srokova et al., 2020; Yassa et al., 2011). However, 
relatively little work has been done to examine the critical prediction from computational models 
of neural dedifferentiation that neural noise contributes to age-related reductions in neural 
selectivity. 

Age-related increases in neural noise can be measured as increases in spontaneous (i.e., 
task-unrelated) or asynchronous neural activity (Li et al., 2001; Voytek & Knight, 2015; Li & 
Sikström, 2002; Hong & Rebec, 2012). Findings from single-unit recordings in non-human 
animals have provided the strongest evidence linking age-related increases in spontaneous neural 
activity (i.e., neural noise) to decreases in neural selectivity (Ding et al., 2017; Engle & 
Recanzone, 2013; Hua et al., 2006; Juarez-Salinas et al., 2010; Leventhal et al., 2003; Liang et 
al., 2010; Schmolesky et al., 2000; Yang et al., 2008; Yu et al., 2006; Zhang et al., 2008; but see 
Costa et al., 2016; Turner et al., 2005). In studies involving humans, age-related increases in 
neural noise are primarily observed using measures of population level neural activity derived 
from examining the 1/f aperiodic component of the EEG power spectrum (Dave et al., 2018; 
Donoghue et al., 2020; Voytek et al., 2015; Voytek & Knight, 2015). The 1/f component of the 
power spectrum reflects aperiodic neural activity and is associated with excitatory-inhibitory 
balance in neural activity, which plays a critical role in neural noise (Freeman & Zhai, 2009; R. 
Gao, 2015). As noted previously, it remains unclear whether measures of neural noise derived 
from EEG are related to neural selectivity in young and older adult humans. 

The purpose of the present study is to test the critical prediction from computational 
models of neural dedifferentiation that age-related increases in neural noise contribute to age-
related reductions in neural selectivity (Li et al., 2001; Li & Rieckmann, 2014a). In the present 
experiment, EEG was recorded while young and older adults completed a 1-back task with 
scene, object, and face images (see Figure 1A). Measures of neural selectivity were examined by 
measuring two ERP components: a scene-selective P200 (Harel et al., 2016) and the face-
selective N170 (Daniel & Bentin, 2012; R. Gao, 2015; Rousselet et al., 2007; for review, see 
Rossion & Jacques, 2012). In addition to measuring the amplitude of these two components, we 
measured the latency and onset of the P200 and N170. We related these ERP peak measures with 
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the 1/f exponent measure of neural noise derived from the EEG frequency power spectrum 
(Donoghue et al., 2020).  

Methods 
Ethics Statement 

The institutional review board of the University of Notre Dame approved the 
experimental procedures described below. All participants provided written informed consent 
before participating in each experimental session. 
Participants 

The sample contributing data to the current report comprised 44 young (18-30 years of 
age) and 44 older (65-82 years of age) cognitively normal adults (see Table 1 for demographics 
and scores on the neuropsychological test battery). Participants were recruited from the 
University of Notre Dame and the surrounding areas and compensated for time at $15/hour and 
travel expenses. All participants were native English speakers, right-handed, had normal or 
correct-to-normal vision, had no self-reported history of substance abuse, psychological or 
neurological issues, seizure, stoke, neuroactive medications, severe head injury or diagnosed 
concussion within the past 3 months, memory disorder, heart disease or arrhythmia, uncontrolled 
hypertension, diabetes, COVID-19 risk factors (i.e., liver disease, immunocompromised, 
moderate to severe asthma; except being over the age of 65 in the case of older adults) and 
performed within the norms of a neuropsychological test battery. Data from an additional three 
participants were collected and excluded from analyses due to having greater than 25% of EEG 
epochs rejected (1 young adult and 1 older adult) or due to a misunderstanding of the task 
instructions (1 older adult). 

 
Table 1. Sample demographics and neuropsychological test scores.                       

 Young  Older  t(86) p 
Cohen’s 

d 

N 44 44    

Age 20.61 
(2.73) 

70.75 
(4.58)    

Sex/Gender (F/M) 25/19 25/19    

Ethnicity      
  Hispanic or Latino 5 0    

  Not Hispanic or Latino 39 43    
  Not reported/Unknown 0 1    

Race      
  White 34 43    

  Asian 4 0    
  More than one race 6 0    
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  Not reported/Unknown 0 1    

Education (years) 13.80 
(1.80) 

17.05 
(2.61) 6.81 < .001 1.47 

MOCA 28.75 
(1.37) 

26.09 
(1.67) 8.18 < .001 1.76 

CVLT Short Delay Free Recall 13.32 
(2.44) 

9.57 
(2.56) 7.03 < .001 1.52 

CVLT Long Delay Free Recall 13.57 
(2.21) 

9.95 
(2.87) 6.61 < .001 1.43 

CVLT Recognition Hits 15.25 
(1.06) 

14.66 
(1.33) 2.31 .023 0.50 

CVLT Recognition False Alarms 0.45 
(0.82) 

2.59 
(3.27) 4.21 < .001 0.91 

Logical Memory I 29.32 
(6.56) 

26.00 
(4.72) 2.72 .008 0.59 

Logical Memory II 25.84 
(6.91) 

21.93 
(5.61) 2.91 .005 0.63 

SDMT Written 68.45 
(13.45) 

48.64 
(8.13) 8.36 < .001 1.80 

SDMT Oral 83.23 
(16.17) 

57.20 
(8.88) 9.36 < .001 2.02 

Digit Span 20.20 
(4.56) 

17.00 
(3.86) 3.56 .001 0.77 

Trails A (s) 17.98 
(4.31) 

28.97 
(10.43) 6.46 < .001 1.39 

Trails B (s)  41.69 
(14.82) 

64.26 
(22.40) 5.57 < .001 1.20 

Categories (Animals) 27.43 
(4.77) 

22.93 
(6.25) 3.80 < .001 0.82 

Stroop Interference 1.50 
(0.30) 

2.00 
(0.49) 5.69 < .001 1.23 

WASI – Matrix Reasoning 23.41 
(2.44) 

19.27 
(4.07) 5.78 < .001 1.25 

WASI – Vocabulary 43.07 
(3.17) 

42.73 
(5.58) 0.35 .725 0.08 

TOPF 51.41 
(9.35) 

51.16 
(10.61) 0.12 .907 0.03 
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Visual Acuity (logMAR) -0.14 
(0.08) 

-0.01 
(0.08) 7.39 < .001 1.59 

Contrast Acuity (logCS) 1.36 
(0.24) 

0.83 
(0.27) 9.80 < .001 2.11 

Note. Standard deviations are provided in parentheses with the mean values. Statistical 
differences between groups determined by independent samples t-test assuming equal 
variances. 
MOCA: Montreal Cognitive Assessment, CVLT: California Verbal Learning Test, SDMT: 
Symbol Digit Modalities Test, Logical Memory: from Wechsler Memory Scale, WASI: 
Wechsler Abbreviated Scale of Intelligence, TOPF: Test of Premorbid Functioning. 
 

Neuropsychological Test Battery 
All participants completed a neuropsychological test battery that included the Montreal 

Cognitive Assessment (MoCA; Nasreddine et al., 2005), the California Verbal Learning Test, 
Third Edition (Delis et al., 2017), the written and oral forms of the Symbol Digit Modalities Test 
(Smith, 1982), the Digit Span from the Wechsler Adult Intelligence Scale-Revised (Wechsler, 
1981), Trail Making Test parts A and B (Reitan & Wolfson, 1985), Logical Memory I and II 
from the Wechsler Memory Scale – Revised (Wechsler, 2009), the Vocabulary and Matrix 
Reasoning portions of the Wechsler Abbreviated Scale of Intelligence (Wechsler, 2011), the Test 
of Premorbid Functioning (Pearson, 2009), Category Fluency test for animals (Rosen, 1980; 
Tombaugh et al., 1999), and the Victoria Stroop Test (Regard, 1981; Troyer et al., 2006). 
Participants were excluded prior to the EEG experiment if they (1) scored below a 23 on the 
MoCA (Carson et al., 2018), (2) scored more than 1.5 standard deviations under the age- and 
education-normed mean performance on any one memory measure (i.e., CVLT short or long 
delay cued or free recall, CVLT recognition discriminability, and Logical Memory I and II), or 
(3) scored more than 1.5 standard deviations below age-normed and, if available education-
normed, mean performance for two or more of the other measures in the battery. These 
exclusionary criteria for the neuropsychological test battery were to minimize the possibility that 
older adults were in the early stages of mild cognitive impairment. Additionally, participants’ 
visual acuity and contrast sensitivity was measured using the Super Vision Test (Rabin et al., 
2009). Neither visual acuity nor contrast sensitivity were used as exclusionary criteria. 
Experimental Task 

Materials 
The stimuli for this task comprised 96 object images from the BOSS database (Brodeur, 

2014), 96 scene images from the Konkle et al. (2012) database, and 96 faces from the London 
Face Database (DeBruine & Jones, 2021). Half of the objects and scenes depicted manmade 
images (e.g., tools, urban landscapes) and the other half depicted natural images (e.g., 
vegetables, rural scenes). All scene images were of outdoor locations and did not depict animals 
or people. Faces included males and females from multiple races and ethnicities with neutral 
expressions. 

The images were used to create yoked stimulus sets that were each presented to one 
young and one older adult. Each yoked stimulus set comprised 2 lists, each with 144 novel (i.e., 
first) presentation trials and 18 repeated trials for a total of 288 novel presentation trials and 36 
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repeated trials. A total of 12.5% of the images were randomly assigned to be repeated as 1-back 
trials, resulting in 11.1% of all trials being repeated images. There were an equal number of each 
image sub-category (e.g., natural vs. manmade) within each condition (novel vs. repeated) in 
each block. The stimulus lists were pseudorandomized such that there were no more than 3 
repetitions of the same image category and no more than two consecutive images labeled 1-back 
trials. The pseudorandomization was done prior to inserting the 1-back trials in the trial 
sequence. 

Presentation of all tasks was controlled with PsychoPy (Peirce, 2007; Peirce et al., 2019) 
on a Windows 10 PC computer with a BenQ XL4340 monitor (100Hz frame refresh rate) using 
frame-rate timing. Participants were seated approximately 57 cm from the monitor for all tasks. 
Images were presented on the computer screen subtending a visual angle of approximately 10.0° 
x 10.0° centered on a grey background. Object images were overlaid on a light grey background 
of the same size as the scene and face images to approximately equate the area of the monitor 
taken up by the object, face, and scene images. A red fixation cross (1° letter height) always 
remained at the center of the screen. 

Procedure 
The experiment took place over two sessions conducted on separate days. The first 

session consisted of the neuropsychological test battery and the second session consisted of the 
experimental EEG tasks. In the second session, participants completed the following EEG tasks 
in order: (1) a 1-back task with scene, object, and face stimuli, (2) a C1 wave and oddball task 
(cf. Kappenman & Luck, 2012), and a (3) recognition memory task (cf. Koen et al., 2019). The 
present report focuses on the EEG/ERP data from the 1-back task. Data from the other two tasks 
will be the focus of other reports. 

The procedure for the 1-back task was modeled after the paradigm used by Harel and 
colleagues (2016; see Figure 1A). Participants were instructed to pay attention to each image 
and, when they saw an image repeat, to press a button on a response pad (LabHackers, Inc.) with 
their right index finger as quickly as possible. Participants were instructed that if they did not see 
the image repeat immediately, the image would not repeat again in the task. Each image was 
presented for 0.5 secs and followed by an inter-trial interval between 1.6 secs and 1.9 secs (in 
0.01 secs intervals). This resulted in a stimulus-onset asynchrony range of 2.1 to 2.4 secs. 
Participants were instructed to keep their eyes fixated on the red fixation cross in the center of 
the screen through the task. Participants were given a break halfway throughout the task (i.e., 
after 162 trials). A brief practice task was completed prior to the critical phase to ensure 
participants understood the instructions. 
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Figure 1. Depiction of the experimental paradigm and behavioral results. (A) Schematic 
overview of the scene, object, and face 1-back task that participants completed while undergoing 
EEG recording. Participants were instructed to press a button with their right index finger if an 
image repeated itself. (B) The analysis of reaction times (RTs) for correct 1-back judgments 
demonstrated a significant effect of age, whereby older adults were slower to respond relative to 
young adults. (C) There was also a significant effect of image category on RTs during correct 1-
back judgments. Correct detection of repeated scenes was slower than for both faces and objects, 
and there was no significant difference in RTs between faces and objects. The yellow and orange 
points depict individual participant RTs. Black points reflect the model implied mean RT with 
error bars representing the 95% confidence intervals of the estimate. 

 
Dependent Measures from the Behavioral Data 
 The dependent measures from the 1-back task included the proportion of accurate no 
responses to first presentation trials, the proportion of accurate button presses to 1-back trials, 
and reaction times (RTs, in secs) for accurate 1-back judgments. Accuracies were near ceiling 
(see Results) and are provided for descriptive purposes only. Statistical analyses were carried out 
on RTs to examine differences in RTs as a function of age and image category. 
EEG Acquisition and Preprocessing 

Continuous EEG was recorded with an actiCHamp amplifier (Brain Products, Munic, 
Germany) from 64 Ag/AgCI active electrodes (Afz, Fz, FCz, Cz, CPz, Pz, Poz, Oz, Fp1/2, 
AF3/4/7/8, F1/2/3/4/5/6/7/8,  FC1/2/3/4/5/6/7/8, C1/2/3/4/5/6, T7/8, CP1/2/3/4/5/6, TP7/8/9/10, 
P1/2/3/4/5/6/7/8, PO3/4/7/8, and O1/2) mounted in an actiCAP (Brain Products; Munich, 
Germany) according to the extended 10-20 system (Nuwer et al., 1998). Data were referenced 
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online to FCz with the ground located at Fpz. Electrode impedances were lowered at or below 10 
kΩ before data collection began. Impedances were checked and adjusted, if needed, before each 
of the three tasks in the experiment. EEG was recorded at DC and digitized at 1000 Hz. The 
BIO2AUX adaptor was used to acquire and monitor vertical and horizontal electrooculography 
(EOG). Vertical EOG was monitored with two passive electrodes placed above and below the 
right eye, with a ground electrode on the right check. Horizontal EOG was monitored with two 
electrodes placed on the outer canthi of each eye, with a ground electrode placed on the left 
cheek. Impedance was not monitored for the EOG electrodes. The EOG recordings were 
primarily used for online monitoring during EEG recording and during preprocessing for 
identification of blinks occurring around stimulus onset. 

Offline analysis of the EEG data was performed using mne-Python (version 0.23.4; 
Gramfort et al., 2013). First, the photosensor data were used to adjust event onset latencies (i.e., 
markers) using an in-house algorithm. The algorithm first determined the threshold value of an 
event as 85% of the maximum photosensor value. Then, in each segment surrounding an event 
marker, the algorithm found the first sample that exceeded the threshold value and marked that 
as the onset value. An event latency was adjusted if the delay between the original marker and 
the photosensor-derived onset value was delayed more than half the frame rate (50 Hz or 5 ms).  

Next, the continuous data were resampled to 250 Hz and high-pass filtered at 0.10 Hz 
with a finite-impulse response filter (zero-phase shift; -6 dB cutoff = 0.05 Hz; transition 
bandwidth = 0.10 Hz). The data were then epoched from -1000 ms to 1000 ms locked to stimulus 
onset for the 1-back task. Epochs with voltages exceeding ±150 µV, peak-to-peak values 
exceeding threshold determined with the get_rejection_threshold function implemented in 
autoreject (Jas et al., 2017) on 6 or more channels, and blinks at stimulus onset (150 µV peak-to-
peak value threshold in a ±100 ms window) in the VEOG channel were automatically flagged for 
visual inspection and then rejected if determined to contain an artifact. Bad channels were 
identified manually and using the Random Sample Consensus algorithm (Bigdely-Shamlo et al., 
2015; Fischler & Bolles, 1981) as implemented in autoreject. Next, artifact correction was 
performed using independent components analysis (ICA; Jung et al., 2000) using the Piccard 
algorithm (Ablin et al., 2018). Note that ICA was performed on a duplicate EEG dataset that was 
processed in the same manner described above, with the exception that the continuous data were 
first filtered at 1 Hz with a finite-impulse response filter (zero-phase shift; -6 dB cutoff = 0.5 Hz; 
transition bandwidth = 0.50 Hz). Ocular and other artifactual components (e.g., muscle, heart) 
were visually inspected and flagged for removal if deemed artifactual.  

The artifactual components were then subtracted from epoched data derived from the 
0.10 Hz high pass filtered continuous data. Channels marked as bad were then interpolated using 
spherical splines, re-referenced to an average reference (recovering the FCz channel), and 
baseline corrected using the 200 ms immediately preceding stimulus onset. Finally, epochs were 
inspected for artifacts using the same routine described above. On average, 4.55% (range: 0.00-
16.67%) of epochs in young adults and 4.14% (range: 0.31-15.74%) of epochs in older adults 
were rejected. 
ERP Measures 

ERPs for scene, object, and face trials were created by averaging the artifact free epochs 
for the first presentation trials. The number of artifact free epochs for first presentation scene, 
object, and face trials were, respectively, 91 (range: 76-96), 92 (range: 81-96), and 91 (range: 80-
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96) for young adults and 92 (range: 77-96), 92 (range: 81-96), and 92 (range: 80-96) for older 
adults. 

The ERPs were trimmed in time between -0.2 secs to 0.6 secs and low-pass filtered at 20 
Hz with a finite impulse response filter (zero-phase shift; -6 dB cutoff = 22.5 Hz; transition 
bandwidth = 5 Hz) to reduce the bias in peak amplitude measures caused by high frequency 
noise (Kappenman et al., 2021; Luck, 2014). The ERP analysis focused on measuring the N170 
and P200 from homotopic electrode clusters in the left (average of PO7 and P7) and right 
(average of PO8 and P8) hemispheres. These electrodes were selected for this analysis based on 
previous research demonstrating that the N170 and P200 effects are largest over lateral parieto-
occipital channels (e.g., Boutet et al., 2020; Daniel & Bentin, 2012; R. Gao, 2015; Harel et al., 
2016; Kappenman et al., 2021).  

The ERP measures estimated for the analyses reported below included peak amplitude, 
peak latency, and 50% fractional peak onset for the P200 and N170. These measures were 
calculated from difference waveforms between scenes and objects for the P200, and between 
faces and objects for the N170. All measures were based on finding a local peak in the search 
window (0.125-0.250 sec time window for the scene-selective P200 and 0.090-0.170 sec for the 
face-selective N170). These windows were selected based on prior research of the P200 and 
N170 (e.g., Boutet et al., 2020; Daniel & Bentin, 2012; R. Gao, 2015; Harel et al., 2016; 
Kappenman et al., 2021). The windows were slightly wider than previous studies to 
accommodate potential age-related delays in peak amplitudes. Note that computation of the 50% 
fractional peak onset can occur below the lower-bound of the time window used for identifying 
the peak amplitude.  

Measurement of Neural Noise: 1/f aperiodic signal 
We estimated neural noise from the prestimulus time window by quantifying the 1/f 

aperiodic component of the EEG power spectrum. The power spectrum was computed using 
Welch’s (1967) method on each epoch’s prestimulus window (200 samples per window with 
75% overlap; zero-padded). The power spectrum for each channel was estimated by taking the 
across-epoch median power for frequencies in the 2-30 Hz range, and was then submitted to the 
FOOOF toolbox (Donoghue et al., 2020). This toolbox uses an algorithm that decomposes each 
channel’s power spectrum into oscillatory peaks and the aperiodic component. The aperiodic 
exponent was extracted from the 2-30 Hz frequency range of each channel’s power spectrum 
(peak_width_limits = [2.0, 12.0], aperiodic_mode = ‘fixed’, peak_threshold = 1). For each 
participant, we extracted the 1/f exponent from occipital and parietal electrodes (i.e., all O, PO, 
and P electrodes) given that our primary ERP effects of interest occur over posterior channels. 

Experimental Design and Statistical Analysis 
Statistical analyses were conducted in R (version 4.1.1; R Core Team, 2021) with the 

following packages: afex (version 1.0; Singmann et al., 2021), modelbased (version 0.8.1; 
Makowski et al., 2020), and effectsize (version 0.4.5, Ben-Shachar et al., 2020). When necessary, 
the Holm (1979) procedure was used to correct for multiple comparisons. Results are considered 
significant at a two-tailed p < .05 unless otherwise specified.  

Neuropsychological Test Performance 
Age differences in neuropsychological test performance were examined with independent 

samples t-tests assuming equal variance using the t.test function in R.  
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Behavioral Performance on the 1-Back Task 
The RTs for repeated (i.e., 1-back) trials receiving a correct response were submitted to a 

generalized linear mixed effects model with an inverse Gaussian link function (Lo & Andrews, 
2015) using the mixed function of the afex package. This model included fixed effects of age 
group (young, older), image category (scene, object, and face) and the age group by image 
category interaction. The model included a maximal random effects structure with a random 
intercept for participant and a random slope for image category, as well as the covariance 
between the random effects. Note that the null hypothesis significance test for the fixed effects 
were based on likelihood ratio tests, and post-hoc contrasts conducted with the modelbased 
package were based on asymptotic (i.e., z) tests.  

ERP Peak Measures 
The ERP peak amplitude, latency, and fractional peak onset measures were examined 

using a linear mixed effects model using the mixed function in the afex package. The model had 
fixed effects of age group (young, older), hemisphere (left, right), and the age group by 
hemisphere interaction and a random intercept term. Post-hoc contrasts on the interaction, when 
necessary, were based on t-tests conducted using the modelbased package. For these linear 
mixed effects models, and those reported below, degrees of freedom used the Satterthwaite 
(1946) approximation.  

To control for individual differences in vision, we reran the above models including mean 
centered visual acuity (logMAR) and contrast acuity (logCS). With one exception, inclusion of 
these covariates did not affect the pattern of findings (also see Koen et al., 2019). We report the 
results from the models that do not include these covariates for the sake of parsimony. The one 
exception is noted in the Results (see the Face N170 subsection of ERP Peak Measures). 
1/f Aperiodic Signal 
 Age differences in neural noise were investigated by submitting the 1/f aperiodic 
component (i.e., exponent) of the prestimulus power spectrum from parietal-occipital channels to 
a linear mixed effects model. This model included age group as the only fixed effect factor. 
Random intercepts for participant and channel were also included in this model. 

We also investigated the relationship between neural noise (measured with the 1/f 
aperiodic exponent) and the ERP peak measures for the P200 and N170 using linear mixed 
effects models. For this analysis, a participant specific neural noise measure was created by 
averaging over all the 1/f exponents estimated from the posterior electrodes (i.e., P, PO, and O). 
This model included fixed effects of age group (young, older), hemisphere (left, right), 1/f 
exponent, and the interactions between all three factors, along with a random intercept. Note that 
the 1/f exponent was mean centered prior to estimating the model. In these models, we focused 
only on effects involving the 1/f exponent measure. Post-hoc contrasts on interactions involving 
the 1/f exponent were conducted by testing if the simple slopes within each factor (or 
combination of factors) was significantly different from 0 using the modelbased package. 

As with the ERP peak measures, we included mean centered visual and contrast acuity as 
covariates to control for individual differences in visual function. Inclusion of these covariates 
did not alter the pattern of findings (also see Koen et al., 2019). Thus, we report the results from 
the statistical models that do not include these covariates. 
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Results 
Neuropsychological Test Performance 

Table 1 provides the sample demographics and performance on the neuropsychological 
test battery. Older adults had significantly more education than young adults. Statistically 
significant age-related reductions were observed in every measure, except for the Vocabulary 
subtest of the WASI-II and the TOPF which showed no age differences. 

Behavioral Results 
Participants demonstrated high accuracy on detecting the repeats (young adults: M = 

0.96, SE = 0.01; older adults: M = 0.95, SE = 0.01) and correctly refrained from responding on 
first presentation trials (young adults: M = 0.999, SE = 0.000; older adults: M = 0.997, SE = 
0.001). 

The generalized linear mixed effects model on trial-wise reaction time data revealed a 
significant effect of age group [χ2(1) = 7.46, p = .006]. As expected, older adults were slower to 
respond to repeated images relative to younger adults (see Figure 1B). There was also a 
significant effect of image category [χ2(2) = 14.69, p = .001]. Post-hoc contrasts demonstrated 
that reaction times to repeated scenes were significantly slower compared to both repeated faces 
[z = 3.20, p = .004, Cohen’s d = 0.34] and repeated objects [z = 3.69, p = .001, Cohen’s d = 
0.39]. There was no significant difference in reaction times for correctly identifying repeated 
faces and objects [z = 0.29, p = .956, Cohen’s d = 0.03] (see Figure 1C). The age group by image 
category interaction was not significant [χ2(2) = 2.24, p = .326]. 

ERP Peak Measures 
 The grand average waveforms from the three image categories in young and older adults 
are shown in Figures 2 and 3, respectively. Visual inspection of these waveforms in both age 
groups show differences between ERPs for scene and object stimuli around 0.15 to 0.25 secs 
following stimulus onset. These differences are consistent with the scene-selective P200 
previously reported by Harel and colleagues (2016). Similarly, consistent with prior work on the 
face N170 (Boutet et al., 2020; Daniel & Bentin, 2012; L. Gao et al., 2009; Kappenman et al., 
2021; Rousselet et al., 2007, 2009; for review, see Rossion & Jacques, 2012), both young and 
older adults showed a more negative going ERP for faces relative to objects between 0.1 and 
0.17 secs following stimulus onset. Difference waveforms were used to measure the peak 
amplitudes, peak latencies, and fractional peak onsets for the P200 (scene minus object) and 
N170 (face minus object). 
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Figure 2. Grand average ERPs for young adults for scenes, objects, and faces. The electrodes 
shown were those used to create virtual left (P7 and PO7) and right (P8 and PO8) hemisphere 
channels for analysis of the P200 and N170 in the main text. The ERPs reflect the grand average 
of unfiltered ERPs for each image category and error ribbon reflects the 95% confidence 
interval. 
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Figure 3. Grand average ERPs for older adults for scenes, objects, and faces. The electrodes 
shown were those used to create virtual left (P7 and PO7) and right (P8 and PO8) hemisphere 
channels for analysis of the P200 and N170 in the main text. The ERPs reflect the grand average 
of unfiltered ERPs for each image category and error ribbon reflects the 95% confidence 
interval. 
 

Scene P200 
Figure 4A shows the grand average difference waveforms between scene and object 

ERPs for young and older adults, and Table 2 includes the descriptive statistics for P200 peak 
measures. A visual inspection of the waveforms indicates that the peak amplitude in the 0.15 to 
0.25 second time window was larger and occurred earlier (in onset and peak latency) in young 
relative to older adults. The results from the analysis of the P200 peak measures support these 
observations. The linear mixed effects model for the scene selective P200 peak amplitude 
(Figure 4B) showed a significant main effect of age group [F(1, 86) = 15.01, p < .001, η2 p = 0.15], 
hemisphere [F(1, 86) = 4.44, p = .038, η2 p = 0.05], and the age group by hemisphere interaction 
[F(1, 86) = 5.04, p = .027, η2 p = 0.06]. The main effect of age group was driven by the peak 
amplitude of the P200 being reduced in magnitude for older relative to young adults (see Table 
2). The post-hoc analysis of the interaction indicated that the above age-related reduction in P200 
peak amplitude was significant in the right hemisphere [t(154.47) = 4.46, SE = 0.40, p < .001, 
Cohen’s d = 0.72]. However, the age difference in the left hemisphere only approached, but did 
not reach, our a priori significance threshold [t(154.47) = 1.88, SE = 0.40, p = .063, Cohen’s d = 
0.30]. Overall, these findings converge with previous fMRI findings of age-related neural 
dedifferentiation of scene stimuli in the parahippocampal place area (Koen et al., 2019; D. C. 
Park et al., 2004; Srokova et al., 2020; Voss et al., 2008). 
 
Table 2. P200 peak amplitudes and latencies means and standard error for age group and 
hemispheres. 

Age Group Hemisphere Peak Amplitude Peak Latency Fractional Peak Onset Latency 

Young Left 4.68 (0.27) 0.169 (0.002) 0.136 (0.003) 

 Right 5.68 (0.31) 0.165 (0.002) 0.130 (0.004) 
Older Left 3.94 (0.28) 0.193 (0.003) 0.160 (0.004) 

 Right 3.91 (0.25) 0.196 (0.002) 0.162 (0.003) 

Note. Standard error of the mean is provided in parentheses. Peak amplitude is reported in µV 
and latency measures are reported in secs. 
 

The linear mixed effects model conducted on the P200 peak latency revealed a main 
effect of age group [F(1, 86) = 96.49, p < .001, η2 p = 0.53] that was driven by the peak P200 
latency in older adults occurring later relative to young adults (Figure 4C and Table 2). Neither 
the main effect of hemisphere [F(1, 86) = 0.00, p = .946, η2 p = 0.00] nor the age group by 
hemisphere interaction [F(1, 86) = 2.54, p = .114, η2 p = 0.03] reached our a priori statistical 
threshold. 
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The linear mixed effects model conducted on the P200 fractional peak onset latency 
revealed a main effect of age group [F(1, 86) = 49.32, p < .001, η2 p = 0.36] that was driven by the 
P200 fractional peak onset latency in older adults occurring later relative to young adults (Figure 
4D and Table 2). Neither the main effect of hemisphere [F(1, 86) = 1.17, p = .282, η2 p = 0.01] nor 
the age group by hemisphere interaction [F(1, 86) = 3.02, p = .086, η2 p = 0.03] reached our a 
priori statistical threshold. The peak latency and onset findings suggest that, in addition to age-
related reductions in the magnitude of neural selectivity, there is also an age-related delay in 
when neural activity shows selectivity for scene stimuli. Inclusion of visual and contrast acuity 
measures as covariates did not change the pattern of results for the above analyses (see 
Experimental Design and Statistical Analyses). 

 
 

 
Figure 4. Results from the analysis of the scene selective P200. (A) Grand average difference 
waveforms between scene and object ERPs from virtual channels from the left (average of P7 
and PO7) and right (average of P8 and PO8) hemispheres. These waveforms reflect the grand 
averages of unfiltered ERPs from young and older participants, with the error ribbon reflecting 
the 95% confidence interval of the difference wave in each age group. The shaded area reflects 
the time window used to search for the P200 peak amplitude measure. Note that the peak 
measures were derived from ERPs that were low-pass filtered with a 20 Hz finite impulse 
response filter (zero-phase shift; -6 dB cutoff = 22.5 Hz; transition bandwidth = 5 Hz). (B-D) 
Raincloud plots of the P200 peak amplitude, latency, and 50% fractional peak onset latency 
derived from the scene minus object difference wave. The peak amplitude of the P200 was larger 
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in young relative to older adults and only significant in the right hemisphere. Both P200 peak 
latency and fractional onset were delayed in older relative to young adults. The point with the 
error bar represents the group mean and 95% confidence interval.  
 

Face N170 
Figure 5A shows the grand average difference waveforms between face and object ERPs 

for young and older adults, and Table 3 includes the descriptive statistics for N170 peak 
measures. Visual inspection of these difference waveforms suggests that the N170 was larger 
(i.e., more negative) and delayed in onset and latency in young relative to older adults. A linear 
mixed effects model conducted on the N170 peak amplitude (Figure 5B) revealed a main effect 
of age group [F(1, 86) = 5.43, p = .022, η2 p = 0.06] that was driven by older adults having smaller 
(i.e., less negative) peak N170 amplitudes compared to young adults (see Table 3). This finding 
is consistent with fMRI studies of age-related neural dedifferentiation in the fusiform face area 
(D. C. Park et al., 2004; J. Park et al., 2012; Voss et al., 2008; but see Srokova et al., 2020). 
Neither the main effect of hemisphere [F(1, 86) = 1.19, p = .279, η2 p = 0.01] nor the age group by 
hemisphere interaction [F(1, 86) = 0.70, p = .406, η2 p = 0.00] reached our a priori statistical 
threshold. However, the age difference in N170 amplitude was no longer significant visual and 
contrast acuity measures were included as covariates [F(1, 84) = 0.51, p = .476, η2 p = 0.00]. This 
finding suggests that, unlike the scene P200, age differences in the N170 were not independent 
of individual differences in visual function. 

 
Table 3. N170 peak amplitudes and latencies means and standard error for age group and 
hemispheres. 

Age Group Hemisphere Peak Amplitude Peak Latency Fractional Peak Onset Latency 

Young Left -7.27 (0.52) 0.128 (0.002) 0.109 (0.002) 

 Right -7.18 (0.65) 0.127 (0.002) 0.106 (0.002) 
Older Left -6.14 (0.44) 0.137 (0.002) 0.118 (0.002) 

 Right -5.45 (0.36) 0.138 (0.002) 0.120 (0.002) 

Note. Standard error is provided in parentheses with the mean values. Peak amplitude is 
reported in µV and latency measures are reported in secs. 
 

 
A similar linear mixed effects model on the N170 peak latency revealed a main effect of 

age group [F(1, 86) = 21.77, p < .001, η2 p = 0.20] that was driven by the peak N170 latency in 
older adults occurring later relative to young adults (Figure 5C and Table 3). Neither the main 
effect of hemisphere [F(1, 86) = 0.02, p = .881, η2 p = 0.00] nor the age group by hemisphere 
interaction [F(1, 86) = 1.26, p = .265, η2 p = 0.01] reached our a priori statistical threshold. 

A linear mixed effects model conducted on the N170 fractional peak onset latency 
revealed a main effect of age group [F(1, 86) = 32.90, p < .001, η2 p = 0.28] that was driven by the 
N170 fractional peak onset latency in older adults occurring later relative to young adults. 
Neither the main effect of hemisphere [F(1, 86) = 0.09, p = .770, η2 p = 0.00] nor the age group by 
hemisphere interaction [F(1, 86) = 3.94, p = .050, η2 p = 0.04] reached our a priori statistical 
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threshold. The interaction did, however, approach our significance threshold, which is likely due 
to larger age differences in fractional onset latency in the right versus left hemisphere (see figure 
5D and Table 3). The peak latency and onset findings suggest that there are also age-related 
delays in the face selective N170 (for similar findings, see Boutet et al., 2020; Daniel & Bentin, 
2012; but see L. Gao et al., 2009). Note that inclusion of visual and contrast acuity did not alter 
the latency or onset results. 

 
 

 
Figure 5. Results from the analysis of the face selective N170. (A) Grand average difference 
waveforms between scene and object ERPs from virtual channels from the left (average of P7 
and PO7) and right (average of P8 and PO8) hemispheres. These waveforms reflect the grand 
averages of unfiltered ERPs from young and older participants, with the error ribbon reflecting 
the 95% confidence interval of the difference wave in each age group. The shaded area reflects 
the time window used to search for the N170 peak amplitude measure. Note that the peak 
measures were derived from ERPs that were low-pass filtered with a 20 Hz finite impulse 
response filter (zero-phase shift; -6 dB cutoff = 22.5 Hz; transition bandwidth = 5 Hz). (B-D) 
Raincloud plots of the N170 peak amplitude, latency, and 50% peak onset latency derived from 
the scene minus object difference wave. The peak amplitude of the N170 was larger in young 
relative to older adults, and the N170 peak latency and fractional peak onset were delayed in 
older adults relative to young adults. The point with the error bar represents the group mean and 
95% confidence interval. 
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Age Differences in Neural Noise (1/f Exponent) 
 The data from the analysis of the 1/f exponent is shown in Figure 6. The exponents 
derived from posterior channels were analyzed for age differences with a linear mixed effects 
model that included random intercepts for participant and channel (see Experimental Design and 
Statistical Analyses). There was a significant age-related reduction in the 1/f exponent [F(1, 86) 
= 52.97, p < .001, η2 p = 0.38]. This finding is consistent with results from prior studies examining 
age-related changes in aperiodic electrophysiological activity (Dave et al., 2018; Voytek et al., 
2015; also see Voytek & Knight, 2015) and suggests that neural noise is greater in older relative 
to young adults (cf. R. Gao, 2015). 
 

 
Figure 6. Results from the analysis of age differences in the 1/f exponent. The 1/f exponent was 
estimated by applying the FOOOF algorithm (Donoghue et al., 2020) to the power spectrum 
derived from the 1 sec pre-stimulus baseline window. (A) The left panel shows the topography of 
the age differences in the 1/f exponent. Positive t-values reflect larger 1/f exponents in young 
relative to older adults. The right panel shows the topography of the across-participant average 
1/f exponent estimates for young and older adults. The black points in the right panel reflect the 
posterior electrodes (P, PO, and O electrodes) used for the analyses depicted in (B) and (C). (B) 
The average power spectrum across the posterior channels for young and older adults plotted in 
log-log space. The error ribbon depicts the 95% confidence interval of the estimate. The estimate 
1/f exponent (i.e., slope) estimated from the grand average power spectrum is shown as the 
dotted line. (C) Participant estimates of the 1/f exponent averaged across the posterior electrodes 
shown in (A). The point with the error bar represents the group mean and 95% confidence 
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interval. Age differences were largest over central posterior electrodes. Larger 1/f exponents 
(i.e., steeper slopes) reflect less aperiodic activity in the power spectrum and indicate lower 
levels of neural noise. Thus, the reduction of the estimate 1/f exponents (i.e., shallower slopes) in 
older adults suggest age-related increases in neural noise. 

 
Relationship Between Neural Selectivity and Neural Noise  

Computational models of neural dedifferentiation propose that increased neural noise is 
related to reductions in neural selectivity (Li et al., 2001; Li & Rieckmann, 2014a). We tested 
this prediction by examining the association between the ERP peak measures (i.e., amplitude, 
latency, and onset latency) and the average of the 1/f exponents derived from the posterior 
channels used in the above analysis. The linear mixed effects models reported in this section are 
like the statistical models reported on in the Scene P200 and Face N170 sections above, but they 
include the 1/f exponent (mean centered) as a predictor along with the interaction between the 
other terms in the model (i.e., age group by 1/f interaction, hemisphere by 1/f interaction, and the 
3-way interaction between age group, hemisphere, and 1/exponent). In this section we focus only 
on effects that included the 1/f exponent. Inclusion of visual and contrast acuity measures as 
covariates did not change the pattern of results for the above analyses (see Experimental Design 
and Statistical Analyses).   

P200 
The linear mixed effects model for the scene selective P200 peak amplitude revealed a 

significant age group by 1/f exponent interaction [F(1, 84) = 7.53, p = .007, η2 p = 0.08]. This 
interaction was driven by a significantly steeper slope in older adults relative to younger adults 
(Figure 7). Post-hoc analyses demonstrated that there was a negative relationship between the 1/f 
exponent and the P200 amplitude in older adults that was significantly different from zero [slope 
= 2.75, t(84) = 2.75, p = .007]. This relationship demonstrates that older adults with low levels of 
neural noise showed higher P200 peak amplitudes. The relationship between the 1/f exponent 
and P200 peak amplitude was not significant in young adults [slope = -1.06, t(84) = 1.10, p = 
.274]. No other effects involving the 1/f exponent were significant [all F’s < 1.49, all p’s > .226, 
all η2 p’s < .02]. 
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Figure 7. Visual depiction of the age group by 1/f exponent interaction for the analysis of the 
P200 peak amplitude data. There was a significant relationship between the 1/f exponent and the 
P200 peak amplitude in older, but not younger, adults. In older adults, lower levels of neural 
noise (i.e., higher 1/f exponents) were associated with higher P200 peak amplitudes. The error 
bar around the regression reflects the 95% confidence interval and the circles represent 
individual data points. 

 
The linear mixed effects model for the scene selective P200 peak latency revealed a 

significant interaction between age group, hemisphere, and 1/f exponent [F(1, 84) = 3.98, p = 
.049, η2 p = 0.03]. To examine the interaction, we conducted post-hoc analyses on the four simple 
slopes for each hemisphere in each age group. After correction for four comparisons using the 
Holm method, none of the simple slopes were significantly different from 0 [all slopes between -
.013 and .015; all t(149.34) < 1.30, all pHolm > .780]. No other effects involving the 1/f exponent 
were significant [all F’s < 1.26, all p’s > .266, all η2 p’s < .01]. 

The analysis of the P200 fractional peak onset showed a significant 3-way interaction 
involving age group, hemisphere, and 1/f exponent [F(1, 84) = 9.31, p = .003, η2 p = 0.09]. 
However, similar to P200 peak latency, none of the simple slopes were significant after 
correction for multiple comparisons [all slopes between -.032 and .016; all t(130.78) < 2.16, all 
pHolm > .129]. No other effects involving the 1/f exponent were significant [all F’s < 3.31, all p’s 
> .071, all η2 p’s < .03]. Together, these latter two findings suggest that, at best, the 1/f exponent 
measure of neural noise has a rather weak (and likely complex) relationship with the P200 peak 
latency and fractional peak onset.  

N170 
The linear mixed effects model for the face selective N170 peak amplitude showed a 

significant main effect of 1/f exponent [F(1, 84) = 5.09, p = .027, η2 p = 0.06] that was moderated 
by an interaction with hemisphere interaction [F(1, 84) = 8.38, p = .005, η2 p = 0.09] (see Figure 
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8). An analysis of the simple slopes indicate a significant negative relationship between N170 
amplitude and the 1/f exponent in the left hemisphere [slope = -5.25, t(133.83) = 3.40, p < .001] 
but not in the right hemisphere [slope = -0.80, t(133.83) = 0.52, p = .605]. Thus, in the left 
hemisphere, there was an age-invariant relationship showing 1/f exponents (increases in neural 
noise) are associated with decreased neural selectivity. Neither the age group by 1/f exponent 
interaction [F(1, 84) = 0.05, p = .815, η2 p = 0.00] nor the age group by 1/f exponent by 
hemisphere interaction [F(1, 84) = 0.22, p = .637, η2 p = 0.00] reached our a priori statistical 
threshold. 

 

 
Figure 8. Results from the analysis of the face selective N170 and 1/f exponent. Data points for 
the N170 peak amplitudes and 1/f exponents for young and older adults are presented, with 
slopes representing group mean estimates and error ribbons reflecting the 95% confidence 
interval of group mean estimates from the linear mixed effects model for each age group. In the 
left hemisphere, more negative 1/f exponents reflecting less aperiodic activity in the power 
spectrum and indicating less neural noise are associated with smaller N170 peak amplitudes in 
both young and older adults. Thus, in the left hemisphere, the age-related reduction of 1/f 
exponents (increases in neural noise) are associated with decreased neural selectivity in an age-
invariant manner. In other words, more lateralized N170 peak amplitudes are associated with 
decreased neural noise in an age-invariant manner. 

 
None of the effects that included the 1/f exponent reached our significance threshold for 

the linear mixed effects models of N170 peak latency [all F’s < 2.90, all p’s > .092, all η2 p’s < 
.02] nor fractional peak onset [all F’s < 1.25, all p’s > .268, all η2 p’s < .01].  
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General Discussion 
The current study examined the relationship between neural noise and age differences in 

EEG measures of neural selectivity (Li et al., 2001; Li & Rieckmann, 2014b). Specifically, we 
related measures of neural noise derived from the aperiodic activity in the EEG signal (Dave et 
al., 2018; Donoghue et al., 2020; R. Gao, 2015; Voytek et al., 2015) and ERP measures of neural 
selectivity, namely the scene-selective P200 (Harel et al., 2016) and face-selective N170 (for 
review, see Rossion & Jacques, 2012). First, the results demonstrated that the amplitude of the 
scene-selective P200, but not the face-selective N170, was reduced in older adults relative to 
younger adults (after controlling for individual differences in visual and contrast acuity). Second, 
both the P200 and N170 components showed evidence of age-related slowing. Third, in older but 
not young adults, the P200 peak amplitude was associated with the 1/f exponent, indicating that 
lower levels of neural noise were associated with higher P200 peak amplitudes, or neural 
selectivity. Finally, the N170 peak amplitude in the left, but not right, hemisphere showed an 
age-invariant relationship with the 1/f measure of neural noise whereby lower levels of neural 
noise were associated with larger (i.e., more negative) N170 amplitudes.  
Age Differences in ERP Neural Selectivity Measures 

The present findings replicate those from a recent study by Harel and colleagues (2016), 
who provided the first demonstration of this scene-selective P200 ERP component. Moreover, 
we extended these findings to show that the scene-selective P200 is observed in both young and 
older adults, suggesting that this scene-selective component can be generalized across different 
groups of individuals. 

Our findings also provide the first demonstration of age-related neural dedifferentiation 
using ERPs in paradigms like those used in fMRI research (e.g., D. C. Park et al., 2004; Voss et 
al., 2008). These findings converge with fMRI studies demonstrating that neural 
dedifferentiation is more readily observed for scene stimuli relative to face stimuli (Koen et al., 
2019; Srokova et al., 2020; for related findings, see Voss et al., 2008). This is supported by our 
results showing age-related reduction in the amplitude of the scene-selective P200, but not the 
face-selective N170 (after controlling for visual and contrast acuity). These findings suggest that 
there is something special about scene stimuli that produces consistent patterns of age-related 
neural dedifferentiation. 

The present results also extend prior fMRI findings in showing that age differences in 
neural selectivity reflect a mixture of reductions in amplitude of and delays in neural processing. 
For both the P200 and the N170, we observe significant age-related delays in onset and peak 
latency, which suggests that the neural processes that differentiate categories of visual stimuli are 
sensitive to age-related slowing. It is possible that mixed findings for age-related neural 
dedifferentiation for faces (Srokova et al., 2020; and potentially objects; see Koen et al., 2019) 
observed with fMRI are driven by age-related delays in the peak level of neural selectivity, but 
not overall differences in the magnitude of neural selectivity. Future research using a multi-
model approach in the same participants is needed to critically examine this hypothesis and to 
determine if the present EEG findings for scenes reflect similar neural processes as those 
observed in fMRI studies of neural dedifferentiation. 

Our results also add to the existing literature on age differences in the latency of the face-
selective N170. Previous studies have reported mixed findings with some showing prolonged 
peak latencies in older relative to young adults (Boutet et al., 2020; Daniel & Bentin, 2012; 
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Rousselet et al., 2009), whereas others have reported no age differences in latency (L. Gao et al., 
2009). Our results converge with the former set of findings, suggesting there are age-related 
delays in the N170. Importantly, our methods differ from prior investigations that focused on 
peak latency measures from ERPs for face stimuli alone. Here, we measured the peak latency (as 
well as fractional peak onset) from difference waves. We believe this approach can better isolate 
underlying neural components given that peaks are not (necessarily) the same as components 
(Luck, 2014). Moreover, our different measurement method could potentially explain why the 
N170 amplitude results differed from the prior N170 literature. 

It is unclear from the present results if age differences in the two ERP components 
investigated are driven by age differences in neural activity elicited by scenes and faces, or a 
common age difference in the neural response to just the object stimuli. Specifically, both the 
N170 and P200 were estimated from difference waves created by referencing the ERPs elicited 
by faces and scenes to the ERPs elicited by object stimuli. Thus, it is possible that age 
differences in object ERPs could account for the observed pattern of results. Indeed, age 
differences in the ERPs elicited by objects can be seen by comparing Figure 2 and 3. However, it 
should be noted that even age differences in ERPs for a single condition (e.g., ERP for object 
stimuli) can occur even when young and older adults have the same underlying neural generator. 
Such differences can arise from age-related differences in neuroanatomy, which can alter the 
orientation or generator-to-scalp distance of a neural generator, thus affecting the electrical 
activity recorded at the scalp for any single-condition ERPs. The use of difference waves helps to 
mitigate this issue. Although we cannot fully rule out the possibility that age differences in the 
object ERP contribute to the present results, we believe this account unlikely as it cannot readily 
explain the different patterns observed for the P200 and N170 measured from difference waves. 
Relationship Between Age, Neural Noise, and Neural Selectivity 

Another aim of this study was to examine the relationship between neural noise and 
neural dedifferentiation in young and older adults. Computational models propose that age-
related increases in neural noise contribute to age-related reductions in neural selectivity (Li et 
al., 2001; Li & Rieckmann, 2014a). In addition to replicating previous findings showing age-
related increases in neural noise as indexed by decreases in the 1/f exponent (Dave et al., 2018; 
Voytek et al., 2015), our results provide some evidence consistent with the general proposal that 
neural noise is associated with neural selectivity and, more specifically, the magnitude (not 
latency) of neural selectivity. Importantly, the relationship between neural noise and neural 
selectivity appeared to differ by age and visual category. 

For the scene-selective P200, we found the relationship between neural noise and peak 
amplitude was moderated by age group. In older adults, lower levels of neural noise (i.e., higher 
1/f exponents) were associated with higher levels of neural selectivity for scene stimuli (i.e., 
larger P200 peak amplitudes). There was no significant relationship between neural noise and the 
P200 peak amplitude in younger adults. This pattern of results might suggest a brain 
maintenance or preservation account of age-related neural dedifferentiation (Cabeza et al., 2018). 
Specifically, it could be the case that older adults who have maintained levels of neural noise 
more similar to those found in young adults through some lifestyle factors, such as exercise 
(Kleemeyer et al., 2017), maintain young adult levels of neural selectivity. A longitudinal study 
of this relationship is needed to remove potential cohort effects and provide better evidence for a 
the brain maintenance account mentioned above. 
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In contrast, peak amplitude of the face-selective N170 showed an age-invariant 
relationship with neural noise that was only observed in left hemisphere electrodes. While the 
age-invariant nature of this relationship is in line with predictions derived from computational 
models (Li et al., 2001), this observed laterality effect was unexpected. One possible 
interpretation of this finding is that the right lateralization typically reported in the N170 
literature is dependent on levels of neural noise. Specifically, both young and older adults with 
lower levels of neural noise also show reduced hemispheric asymmetry in the N170 compared to 
individuals with higher levels of neural noise. These findings need to be replicated before any 
strong conclusions can be drawn made about this hemispheric dependent, yet age-invariant, 
relationship between neural noise and the N170 peak amplitude. 

Implications for Computational Models of Neural Dedifferentiation Theory 
 While our results are broadly consistent with the predicted relationship between neural 
noise and neural selectivity derived from computational models, the present results join a 
growing body of work suggesting that computational models of neural dedifferentiation require 
revision (Koen et al., 2019; Srokova et al., 2020; but see, Simmonite & Polk, 2022). As we have 
argued previously, computational models of neural dedifferentiation predict age- and stimulus-
invariant relationships between neural noise and measures of neural selectivity (Koen et al., 
2020; Koen & Rugg, 2019). The present findings join the growing party of evidence that neural 
dedifferentiation is not consistently observed across all stimulus categories. Moreover, the 
present results suggest that the relationship between neural noise and neural dedifferentiation 
differs across the lifespan and, potentially, in different brain regions. The present results provide 
some important boundary conditions that any new iteration of a computational model of neural 
dedifferentiation must account for. 
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