

1 **Population structure and genetic diversity of *Salmonella* Typhimurium in avian hosts**

2 Yezhi Fu^{1*}, Nkuchia M. M'ikanatha² and Edward G. Dudley^{1,3*}

3

4 ¹Department of Food Science, The Pennsylvania State University, University Park, PA, USA

5 ²Pennsylvania Department of Health, Harrisburg, PA, USA

6 ³*E. coli* Reference Center, The Pennsylvania State University, University Park, PA, USA

7

8 *Corresponding authors: Yezhi Fu or Edward G. Dudley

9 Email: yff5072@psu.edu or egd100@psu.edu

10

11

12

13

14

15

16

17

18

19

20

21

22

23 **Abstract**

24 Within-host evolution of bacterial pathogens can lead to host-associated variants of the same
25 species or serovar. Identification and characterization of closely related variants from diverse host
26 species are crucial to public health and host-pathogen adaptation research. However, the work
27 remained largely underexplored at a strain level until the advent of whole-genome sequencing
28 (WGS). Here, we performed WGS-based subtyping and analyses of *Salmonella enterica* serovar
29 Typhimurium ($n = 787$) from different wild birds across 18 countries over a 75-year period. We
30 revealed seven avian host-associated *S. Typhimurium* variants/lineages. These lineages emerged
31 globally over short timescales and presented genetic features distinct from *S. Typhimurium*
32 lineages circulating among humans and domestic animals. We further showed that, in terms of
33 virulence, host adaptation of these variants was driven by genome degradation. Our results provide
34 a snapshot of the population structure and genetic diversity of *S. Typhimurium* within avian hosts.
35 We also demonstrate the value of WGS-based subtyping and analyses in unravelling closely
36 related variants at the strain level.

37

38

39

40

41

42

43

44

45 Introduction

46 *Salmonella enterica* is a major zoonotic bacterial pathogen that causes morbidity and mortality in
47 humans and animals worldwide^{1,2}. More than 2,500 serovars have been identified within
48 *Salmonella enterica* according to the distinct combination of O and H antigens³. These serovars
49 are roughly grouped into two categories based on their host specificity, i.e., serovars with broad
50 host range (generalists) and narrow host range (specialists)⁴. *Salmonella enterica* serovar
51 Typhimurium (*S. Typhimurium*) and *S. Enteritidis* are examples of generalists that can colonize
52 and cause diseases in a wide variety of host species such as humans, livestock, poultry, and
53 wildlife. However, *S. Typhi* and *S. Paratyphi A* are restricted to humans and higher primates^{5,6},
54 while *S. Choleraesuis* (pig adapted), *S. Dublin* (cattle adapted), *S. Abortusovis* (sheep adapted),
55 and *S. Gallinarum* (avian adapted) are associated with specific livestock or poultry⁷.

56 Although *S. Typhimurium* is considered the prototypical generalist serovar, epidemiologic
57 evidence supports that this serovar has undergone adaptive evolution within specific host species,
58 particularly in wild birds. Some avian host-associated *S. Typhimurium* variants identified by
59 phage typing include definite phage type (DT) 2 and DT99 circulating in pigeon⁸, DT8 linked to
60 duck/goose⁹, and DT40 and DT56 adapted to passerine¹⁰. Recently, we also documented three *S.*
61 *Typhimurium* variants associated with larid, water bird, and passerine¹¹. The emergence of host-
62 associated variants in a broad-host-range serovar suggests that defining generalist bacterial
63 pathogens at a species or serovar level is an oversimplification. It also highlights the importance
64 of within-host evolution in shaping bacterial genetic diversity and host specificity.

65 Each host species represents a distinct ecological niche for bacterial pathogens. Over the
66 course of colonization and infection, bacterial pathogens face challenges from the host species

67 such as host immune response, antibiotic treatment, and native microbiota. Such challenges put
68 selective pressure on bacterial pathogens and force them to evolve within the host¹². As a result,
69 bacterial pathogens are subjected to genomic changes to develop mechanisms of immune evasion
70 and antimicrobial resistance (AMR), leading to emerging variants of the same species¹³. Wild
71 birds constitute unique but underexplored ecological niches for microbes. Bacterial pathogens
72 colonizing avian hosts may evolve divergently from their relatives residing in domestic animals
73 due to difference in host environment (e.g., body temperature, immune system, exposure to
74 antibiotics)^{8,14,15}. Therefore, avian hosts may represent underestimated reservoirs for emerging
75 pathogenic variants.

76 The emergence of new variants of bacterial pathogens poses a threat to public health as
77 they may present distinct pathogenicity and epidemicity. It is important to identify new variants,
78 characterize their genetic diversity, and correlate individual variants with their respective hosts.
79 This will contribute to our understanding of the evolution, adaptability, and pathogenicity
80 potential of bacterial pathogens within diverse hosts, and also be valuable for outbreak
81 investigation and infection control/treatment. The traditional antibody-based serotyping method
82 is used to differentiate between bacterial variants of the same species to a serovar level based on
83 their surface antigens³. However, serotyping cannot distinguish bacterial variants of the same
84 serovar. A variety of subtyping techniques such as pulsed-field gel electrophoresis (PFGE)^{16,17},
85 seven-housekeeping-gene multilocus sequence typing (MLST)^{18,19}, and phage typing²⁰ have been
86 developed for the latter purpose. Although these methods have been routinely used in surveillance
87 for bacterial pathogens, they still lack resolution in discriminating between closely related variants
88 at the strain level. Moreover, they cannot provide genetic information such as antimicrobial

89 resistance and virulence of the tested variants²¹. The advance in whole-genome sequencing
90 (WGS)-based subtyping and analyses provides superior resolution in identifying bacterial
91 pathogens and unravelling their phylogenetic relationships and genetic makeup²². Currently,
92 single nucleotide polymorphism (SNP) and whole genome or core genome-based MLST analyses
93 are among the most commonly adopted WGS-based subtyping methods, which can differentiate
94 bacterial pathogens at a strain level^{23,24}.

95 In this study, we performed WGS-based subtyping and analyses of 787 *S. Typhimurium*
96 isolates collected from diverse wild birds during 1946-2021 across 18 countries. The overall goal
97 of this study is to reveal the population structure and genetic diversity of *S. Typhimurium* within
98 avian hosts. By identifying distinct *S. Typhimurium* variants associated with avian hosts using
99 WGS-based subtyping and analyses, our specific objectives are to: 1) gain insights into how
100 within-host evolution of bacterial pathogens shapes their host specificity; 2) identify the
101 evolutionary and genetic basis of *S. Typhimurium* adaptation to different host species; 3) assess
102 the use of WGS-based subtyping and analyses in distinguishing between closely related variants
103 (strain level) from multiple host species.

104

105 **Results**

106 **Collection of *S. Typhimurium* isolates from avian hosts.** A total of 787 *S. Typhimurium* isolates
107 from avian hosts (avian hosts herein refers to wild birds, and do not include domestic poultry)
108 were retrieved from EnteroBase on January 10, 2022 (Supplementary Data 1). The avian hosts
109 were grouped into six categories based on bird type/phylogeny^{25,26} (Fig. 1 and Supplementary
110 Data 1), i.e., passerine (order Passeriformes, also known as songbirds or perching birds; such as

111 sparrow, finch, siskin, cardinal; $n = 207$), larid (order Charadriiformes; such as gull and tern; $n =$
112 138), duck/goose (order Anseriformes; $n = 37$), pigeon (order Columbiformes; $n = 58$), water bird
113 (clade Aequornithes, such as cormorant, heron, pelican, stork; $n = 154$), and others (avian hosts
114 without a designated bird type at Enterobase or other bird types not mentioned above; $n = 193$).
115 The collection contained historical and contemporary (1946-2021) isolates sampled from 18
116 countries across North America ($n = 587$), Europe ($n = 124$), Oceania ($n = 52$), Asia ($n = 18$),
117 South America ($n = 5$), and Africa ($n = 1$) (Fig. 1). Of note, among the 787 genomes at Enterobase,
118 our group sequenced and uploaded 414 genomes (collection year: 1978-2019; collection location:
119 43 US states). Overall, our collection represented the most diverse collection of *S. Typhimurium*
120 from avian hosts at Enterobase as of the retrieval time.

121 **Population structure of *S. Typhimurium* from avian hosts.** To investigate the population
122 structure of *S. Typhimurium* from avian hosts, we generated a neighbor joining (NJ) tree of the
123 787 genomes (Fig. 2a) using the *Salmonella* wgMLST (whole genome MLST) scheme at
124 Enterobase. Ten *S. Typhimurium* lineages were present on the NJ tree, which included seven
125 distinct lineages clustered by isolates ($n = 633$) primarily associated with specific bird types, i.e.,
126 passerine lineage 1 and lineage 2, larid lineage, duck/goose lineage, pigeon lineage 1 and lineage
127 2, and water bird lineage (Fig. 2a). The other three lineages on the NJ tree were formed by isolates
128 from diverse bird types (Fig. 2a). As avian hosts usually are highly mobile and can migrate across
129 different continents or countries, we also investigated the impact of geographic locations on the
130 clustering pattern of the avian isolates. The seven *S. Typhimurium* lineages defined by bird type
131 all contained isolates from ≥ 2 continents, indicating a global distribution of these lineages
132 (Supplementary Fig. 1). Further, each individual lineage included isolates from multiple countries

133 (Supplementary Fig. 2). Within the same lineage, isolates were observed to cluster based on
134 collection countries. For examples, in passerine lineage 1, isolates from New Zealand clustered as
135 a sublineage of the US passerine lineage (Supplementary Fig. 2a); in larid lineage, isolates from
136 Australia clustered as a sublineage of the US larid lineage (Supplementary Fig. 2c). These
137 observations indicate clonal expansions within different continents or countries, likely facilitated
138 by bird migration^{27,28}.

139 We filtered the 787 genomes by excluding those without a collection year, location,
140 specific bird host or other important metadata information. The filtered collection of 207 *S.*
141 Typhimurium genomes (Supplementary Data 2) were used for further phylogenetic analysis and
142 Bayesian inference. A maximum-likelihood (ML) phylogenetic tree based on 6,310 core-genome
143 SNPs (cgSNPs) of the 207 genomes were built to validate the population structure of avian *S.*
144 Typhimurium inferred by wgMLST. The lineages present in the cgSNP-based ML phylogenetic
145 tree (Fig. 2b) were supported by robust bootstrap values of 100% and congruent with those formed
146 in the NJ tree based on wgMLST.

147 A total of six STs (ST19, 99, 128, 568, 3719, and 7075) were identified among the seven
148 lineages based on the classic seven-housekeeping-gene MLST method (Fig. 2b). Specifically,
149 isolates from passerine lineage 1, larid lineage, duck/goose lineage, and pigeon lineage 1 all
150 belonged to ST19, which is consistent with the fact that ST19 is one of the most prevalent *S.*
151 Typhimurium sequence types detected in a broad range of hosts¹⁹. In addition, isolates from
152 pigeon lineage 2 were represented by ST128, and variable STs were presented in isolates from
153 passerine lineage 2 (i.e., ST19, 568, and 7075) and water bird lineage (i.e., ST99 and 3719).

154 Therefore, sequence types defined by seven-housekeeping-gene MLST method did not distinguish
155 between the lineages defined by bird type.

156 **Emergence times of avian *S. Typhimurium* lineages.** Temporal signal of the sequence data was
157 examined by TempEst²⁹ before Bayesian molecular clock analysis. Moderate to strong temporal
158 signals (correlation coefficient between 0.65 and 0.96) were detected in the sequence data
159 ([Supplementary Fig. 3](#)). After confirming temporal signal, we built a Bayesian time-scaled
160 phylogenetic tree using BEAST2 v2.6.5 to infer the emergence times of the lineages ([Fig. 3](#)).
161 Based on Bayesian inference, passerine lineage 1, passerine lineage 2, larid lineage, duck/goose
162 lineage, and pigeon lineage 1 emerged in ca. 1950 [95% highest probability density (HPD): 1940–
163 1959], ca. 1969 (95% HPD: 1959–1977), ca. 1943 (95% HPD: 1925–1957), ca. 1826 (95% HPD:
164 1771–1885), and ca. 1959 (95% HPD: 1947–1969), respectively ([Fig. 3](#)). Isolates from the five
165 lineages mostly belonged to ST19 except that some isolates from passerine lineage 2 presented
166 variable STs ([Fig. 2b](#)), indicating that these lineages diverged from a most recent common
167 ancestor (MRCA) belonging to ST19. Pigeon lineage 2 (ST128) and water bird lineage (ST99 and
168 3719) evolved independently and formed in ca. 1847 (95% HPD: 1798–1886) and ca. 1953 (95%
169 HPD: 1935–1967), respectively ([Fig. 3](#)). Of note, duck/goose lineage and pigeon lineage 2
170 emerged in 19th century (i.e., 1826 for duck/goose lineage and 1847 for pigeon lineage 2), whereas
171 the other five lineages formed within 20th century during 1940–1970. The results show that *S.
172 Typhimurium* evolved on short timescales to form individual lineages within avian hosts. We then
173 estimated the median substitution rate for each lineage according to Bayesian inference. Median
174 substitution rates for individual lineages ranged from 1.3×10^{-7} to 6.4×10^{-7} substitutions/site/year,
175 with the lowest substitution rate for duck/goose lineage and the highest substitution rate for water

176 bird lineage ([Supplementary Fig. 4](#)). These estimates are higher than the long-term (over million
177 years) substitution rates in *Salmonella* and *E. coli* (10^{-10} to 10^{-9} substitutions per site per year)³⁰,
178 but similar to the short-term (over months or years) substitution rates reported for two ST313
179 lineages adapted to humans in sub-Saharan Africa (1.9×10^{-7} and 3.9×10^{-7} substitutions per site
180 per year)³¹.

181 **Phylogenetic relationship of *S. Typhimurium* from avian and other diverse hosts.** To
182 investigate the phylogenetic relationship of avian isolates to other sourced isolates, we included
183 83 contextual genomes from diverse host species (humans, pigs, cattle, poultry) other than wild
184 birds in the previous cgSNP-based ML phylogenetic tree. The contextual genomes represented
185 the major epidemiologic *S. Typhimurium* lineages circulating globally ([Supplementary Data 3](#)).
186 Taken together with the seven avian host-associated lineages, we presented a comprehensive
187 population structure of *S. Typhimurium* in diverse hosts ([Fig. 4](#)). An NJ tree ([Supplementary Fig.](#)
188 [5](#)) of the 207 avian and 83 contextual genomes based on *Salmonella* wgMLST scheme at
189 Enterobase was built to complement the cgSNP-based ML phylogenetic tree. Isolates present in
190 the NJ tree had the same clustering pattern with those shown in the ML phylogenetic tree based
191 on cgSNPs ([Fig. 4](#)).

192 There were 13 lineages present in the ML phylogenetic tree ([Fig. 4](#)), which can be divided
193 into two categories based on host range, i.e., lineages with broad host range (generalist lineages)
194 and lineages with narrow host range (specialist lineages). Generalist lineages included
195 monophasic *S. Typhimurium* ST34 lineage³², DT104 complex lineage³³, and DT193 complex
196 lineage¹⁴; on the other hand, specialist lineages contained DT204 complex lineage primarily
197 associated with cattle³⁴, U288 complex lineage possibly adapted to pigs³⁵, human-adapted ST313

198 lineage causing invasive salmonellosis in sub-Saharan Africa^{36,37}, and the seven lineages linked
199 to specific bird types. By incorporating the host information into the cgSNP-based ML
200 phylogenetic tree, we therefore were able to correlate individual lineages to specific host species
201 (Fig. 4). It should be noted that generalist and specialist lineages are proposed in this study based
202 on previous epidemiologic studies^{9,14}, and lineages with narrow host range can occasionally infect
203 other hosts^{11,35,38–42}, indicating that adaptation of these lineages is still at an initial stage.

204 **Genomic comparison of *S. Typhimurium* lineages from avian and other diverse hosts.** To
205 explore the genetic diversity of *S. Typhimurium* variants, we performed comparative genomic
206 analyses of the 207 genomes from avian hosts and 83 contextual genomes from other diverse hosts
207 (humans, pigs, cattle, poultry). Pangenome analysis showed that the number of core genes (genes
208 present in ≥99% isolates) shared by isolates within a specific lineage (henceforth referred to as
209 lineage-associated core genes) ranged from 4,147 to 4,381, with the lowest being passerine lineage
210 1, and the highest being DT104 complex lineage (Fig. 5a; Supplementary Data 4). Isolates from
211 all the 13 lineages shared 3,798 core genes, which we referred to as *S. Typhimurium* core genes.
212 This number is smaller than previous estimates (3,836 or 3,910 core genes)^{43,44}, possibly due to
213 the increased genetic diversity in our dataset collection. By subtracting *S. Typhimurium* core
214 genes from lineage-associated core genes, we calculated the number of core genes that represented
215 a unique core-gene combination in a specific lineage (Fig. 5b). We further performed a pairwise
216 comparison of lineage-associated core genes and found that individual lineages were differed from
217 one another by an average number of 194 unique core genes (Supplementary Data 4). However,
218 we did not find that avian host-associated lineages consistently presented much higher or lower
219 number of unique core genes compared to lineages from other diverse hosts. In particular,

220 passerine lineage 1 had the lowest average number of unique core genes ($n = 123$) relative to other
221 lineages, while water bird lineage had the highest number ($n = 265$) ([Supplementary Fig. 6](#)).

222 AMR profiling revealed that all the isolates from avian host-associated lineages except
223 duck/goose lineage lacked AMR genes (average number per isolate = 1) ([Fig. 5c](#)). The only AMR
224 gene detected was *aac(6')-Iaa* ([Supplementary Data 5](#)), which is a chromosomally encoded cryptic
225 gene⁴⁵. However, more AMR genes were detected in isolates from broad-host-range lineages
226 (DT104, DT193, and ST34: average number per isolate >4), and lineages associated with humans
227 (ST313: average number per isolate ≈ 7) or specific livestock (DT204 and U288: average number
228 per isolate ≈ 2 and 8, respectively) ([Fig. 5c](#)).

229 Plasmid profiling revealed that most of the isolates from diverse lineages carried plasmid
230 replicons IncFIB (70%; 203/290) and IncFII (74.5%; 216/290) ([Supplementary Data 6](#)) that
231 belong to the *S. Typhimurium*-specific virulence plasmid pSLT⁴⁶. However, both plasmid
232 replicons were absent in all the isolates from passerine lineage 2 ($n = 26$) and ST34 lineage ($n =$
233 21) ([Supplementary Data 6](#)). As a result, isolates from the two lineages carried fewer plasmid
234 replicons (average number per isolate <1) compared to isolates from other lineages (average
235 number per isolate >1) ([Fig. 5d](#)). Additionally, isolates from passerine lineage 1 and DT193
236 complex lineage also tended to lose the two plasmid replicons ([Supplementary Data 6](#)).
237 Specifically, both IncFIB and IncFII were absent in 40% (23/59) isolates from passerine lineage
238 1, while all the DT193 isolates ($n = 9$) lacked IncFIB and two DT193 isolates lacked IncFII
239 ([Supplementary Data 6](#)).

240 **Prevalence of virulence-associated genome degradation in avian host-associated *S.***
241 **Typhimurium lineages.** Our virulence profiling detected an average number of 114-116

242 virulence genes per isolate (Fig. 6a) for 9 out of the 13 lineages present on Fig. 4. The four lineages
243 with fewer virulence genes per isolate were passerine lineage 1 (average number per isolate \approx
244 113), passerine lineage 2 (average number per isolate \approx 107), ST34 lineage (average number per
245 isolate \approx 107), and DT193 complex lineage (average number per isolate \approx 113) (Fig. 6a). We
246 further identified that the absent virulence genes were mostly encoded by pSLT, i.e., *pefABCD*
247 (plasmid-encoded fimbriae), *rck* (resistance to complement killing), and *spvBCR* (*Salmonella*
248 plasmid virulence) (Supplementary Data 7), which was consistent with the fact that isolates from
249 these four lineages also completely or partially lacked pSLT replicons IncFIB or IncFII
250 (Supplementary Data 6). For chromosomally encoded virulence genes, we only detected a
251 complete loss of type 3 secretion system (T3SS) effector genes *gogB* in water bird lineage or *sopA*
252 in DT193 complex lineage (Supplementary Data 7).

253 We also determined the number of chromosome-encoded virulence genes with identical
254 mutation in individual lineages. Avian host-associated lineages and ST313 lineage adapted to
255 humans had more than 10 (duck/goose lineage, pigeon lineage 1, pigeon lineage 2, ST313) or 20
256 (passerine lineage 1, passerine lineage 2, larid lineage, water bird lineage) identical mutant
257 virulence genes; however, the number was less than 10 for lineages with broad host range (DT104,
258 DT193, and ST34) or associated with livestock (DT204 and U288) (Fig. 6b). The types of
259 mutation (Supplementary Data 8) were manually checked by aligning the virulence gene of
260 interest against the reference virulence gene from *S. Typhimurium* LT2⁴⁷ using BLAST. Among
261 the 61 mutant chromosome-encoded virulence genes from different lineages, 47 were T3SS genes,
262 five were curli genes (*csgA*, *csgB*, *csgE*, *csgF*, *csgG*), three were type 1 fimbriae genes (*fimC*,
263 *fimH*, *fimI*), two were long polar fimbriae genes (*lpfC*, *lpfD*), and four were genes associated with

264 other functions (*mgtB*, *misL*, *ratB*, *sodCl*) (Fig. 6c and Supplementary Data 8). The majority of
265 mutations resulted from point mutations (SNPs) in T3SS genes, while a few virulence genes were
266 subjected to deletions or multiple mutations (i.e., mutation occurs in more than one location in the
267 gene) (Fig. 6c). We found that identical mutations in *lpfC* (substitution from C to T at position
268 328) and *lpfD* (deletion of GTTGAGAAT at position 406-415) co-occurred in all specialist
269 lineages except water bird lineage (single base-pair deletion in *lpfC* and intact *lpfD*) and U288
270 complex lineage (intact *lpfC* and *lpfD*). Each avian host-associated variants also had lineage-
271 specific mutations. For instances, single base-pair deletion in *fimC* of passerine lineage 1, single
272 base-pair deletions in *gogB*, *sseJ*, and *sseK2* of passerine lineage 2, SNPs in *sptP* and *ssaQ* of larid
273 lineage, SNP in *sodCl* of duck/goose lineage, SNPs in *csgB*, *ssaD*, and *sseB* of pigeon lineage 1,
274 SNPs in *prgH* and *sopE2* of pigeon lineage 2, and loss of *gogB* in water bird lineage (Fig. 6c).

275

276 **Discussion**

277 Overall, our WGS-based subtyping and analyses identify seven avian host-associated *S.*
278 Typhimurium lineages and provide new insights into the population structure and genetic diversity
279 of *S. Typhimurium* from diverse host species (i.e., humans, livestock, poultry, wild birds). The
280 avian host-associated lineages emerged over short timescales and present phylogenetic features
281 (e.g., clustering based on bird type) and genetic traits (e.g., lack of AMR, lineage-specific
282 virulence gene signatures) distinct from those formed by clinical isolates or isolates of domestic
283 animal origin. Our findings suggest that some variants of this generalist serovar may be
284 undergoing a convergent adaptive evolution driven by host species. From a virulence perspective,

285 we find that genome degradation through point mutations (mainly SNPs) and deletions is the
286 molecular basis of host adaptation of *S. Typhimurium* to avian hosts.

287 Among the 344,387 *Salmonella enterica* genomes deposited at Enterobase as of January
288 10, 2022, only 0.5% of the genomes ($n = 1,880$) were from avian hosts. Our group sequenced and
289 uploaded 699 out of the 1,880 genomes, which included 414 genomes of serovar Typhimurium.
290 Therefore, our study makes a substantial contribution to the understanding of *S. Typhimurium*
291 diversity with the identification of three new lineages associated with avian hosts (i.e., passerine
292 lineage 1, larid lineage, and water bird lineage). Previous work on *S. Typhimurium* population
293 structure focused on specific lineages formed by isolates from humans and domestic animals, and
294 the geographic locations of these isolates were restricted to certain countries or regions^{14,32,33,35–}
295 ^{37,48}. As a result, the genetic diversity of this bacterial pathogen was underestimated due to a lack
296 of representative isolates from wild animals, and the phylogenetic relationship of individual
297 lineages remains largely unexplored on a global scale. Our study not only reveals the population
298 structure of 787 avian isolates collected from 18 countries over a 75-year period, but explores the
299 genetic diversity and phylogenetic relationship of globally sourced *S. Typhimurium* from diverse
300 hosts.

301 As a prototype of generalist bacterial pathogens, *S. Typhimurium* can colonize and cause
302 diseases in a variety of host species⁴⁹. However, the identification of seven avian host-associated
303 *S. Typhimurium* lineages indicates that some variants of serovar Typhimurium have adapted to
304 specific avian host species. Previous studies also reported that DT204 and U288 complex lineages
305 of *S. Typhimurium* were mainly restricted to cattle and pigs, respectively^{34,35}, and ST313 lineage
306 of *S. Typhimurium* was adapted to humans^{36,37}. Therefore, it is more accurate to describe serovar

307 Typhimurium as a collection of variants with different host range and degrees of host adaptation.

308 The strong correlation of *S. Typhimurium* variants to specific hosts suggests that within-host

309 evolution (host niche) is the primary driver in shaping host specificity of *S. Typhimurium*. Further,

310 we did not find association of avian isolates with geographic locations at a lineage level. However,

311 within some specific avian host-associated lineages, avian isolates from the same country

312 clustered together to form a sublineage, indicating that geographic location (disperse limitation)

313 serves as a less important evolutionary driver than host niche. The seven avian host-associated

314 lineages emerged in 19th and 20th centuries (ca. 1826, 1847, 1943, 1950, 1953, 1959, and 1969,

315 respectively), which occurred well after the divergence of avian host groups^{25,26}. Similarly, the

316 human-adapted ST313 sublineage L1, L2, and L3 in sub-Saharan Africa dated to around 1950,

317 1948, and 2007, respectively³⁷. Collectively, these results support that host adaptation of *S.*

318 *Typhimurium* is likely to be a relatively recent and ongoing process subjected to anthropogenic

319 influence (e.g., globalization, antibiotic usage).

320 AMR profiles of *S. Typhimurium* lineages from diverse host species provide further

321 evidence demonstrating the importance of host niches and anthropogenic activities in bacterial

322 evolution. Our study shows that *S. Typhimurium* variants associated with avian hosts carried few

323 AMR genes, while variants from humans or domestic animals had an average number of 2-8 AMR

324 genes per isolate. Isolates evolve within avian hosts may be less likely to develop AMR as wild

325 birds are rarely exposed to antibiotics in the natural environments; conversely, isolates from

326 humans and domestic animals carry high number of AMR genes for the host species are frequently

327 subjected to antibiotics, thus putting selective pressure on the colonized bacterial pathogens.

328 Genome degradation or loss-of-function mutation is a common pattern in adaptive
329 evolution of *Salmonella*⁵⁰. For example, loss or inactivation of fimbriae is linked to host
330 adaptation^{51,52}. Compared to host generalist serovar Enteritidis, host specialist serovars such as
331 Dublin and Gallinarum accumulate more pseudogenes that lead to loss of fimbriae⁵⁰. In this study,
332 pseudogenization of the same fimbrial virulence gene network (*lpfC* and *lpfD*) due to deletion
333 mutation was found in all specialist lineages except U288 complex lineage, suggesting
334 inactivation of Lpf fimbriae may play an important role in transition of serovar Typhimurium from
335 generalist to specialist. Additionally, it is reported that a group of T3SS effector proteins (SseL,
336 SifB, SopD2, SseJ, SteB, SteC, SlrP, and SseK2) are frequently present in generalist serovars but
337 lose functions in specialist serovars⁵³. Similarly, we observed that more SNPs and deletions were
338 accumulated in T3SS effector genes from host-associated lineages, which include but not limited
339 to *sseL*, *sifB*, *sopD2*, *sseJ*, *steC*, *slrP*, and *sseK2*. It is likely that allelic variations in these T3SS
340 effector genes may contribute to host specificity of *S. Typhimurium*.

341 A limitation of this study is the scarcity of *S. Typhimurium* isolates from avian hosts.
342 Current WGS-based surveillance of bacterial pathogens primarily focuses on isolates from clinical
343 samples, food samples, livestock, and poultry; however, isolates from wildlife have not been
344 routinely collected and sequenced. As indicated in this study, wild animals such as wild birds
345 represent remarkable but less studied reservoirs for emerging variants of bacterial pathogens.
346 Epidemiologic studies have also revealed a correlation between some human and avian
347 salmonellosis outbreaks, suggesting transmission of bacterial pathogens between wild birds and
348 humans³⁸⁻⁴². Although such transmission is rare relative to transmission between humans and
349 humans or between humans and domestic animals^{54,55}, they can still have a substantial impact on

350 global health as avian hosts are highly mobile and possibly carry and spread bacterial pathogens
351 over large distances^{27,28}. In a One Health framework, current surveillance of bacterial pathogens
352 needs to be not only focused on clinical isolates or isolates from domestic animals, but those
353 originating from wild animals. We also note that the sequencing data in our collection is skewed
354 toward *S. Typhimurium* isolates from North America, followed by Europe and Oceania, which is
355 consistent with the fact that WGS has been widely used by countries (e.g., the United States, the
356 United Kingdom, Australia) from these continents for surveillance of bacterial pathogens⁵⁶.
357 However, the state-of-the-art technology is less adopted in Asia, Africa, and South America,
358 mostly due to economic reason⁵⁷. Emerging epidemic lineages of bacterial pathogens may be
359 circulating in these countries but underrepresented in current public repositories. Therefore, a
360 global research collaboration is required to generate a robust and informative set of sequencing
361 data to represent bacterial pathogens and their variants that cause diseases worldwide.

362 In conclusion, we reveal the population structure and genetic diversity of *S. Typhimurium*
363 in avian and other diverse hosts. Our results indicate that within-host evolution has resulted in
364 multiple host-associated *S. Typhimurium* lineages, which present genetic traits distinct from
365 lineages with broader host range. Although our WGS-based subtyping and analyses are focused
366 on serovar Typhimurium, the approach is translatable to other bacterial pathogens. It is expected
367 that other generalist *Salmonella* serovars or bacterial pathogens such as *E. coli* and *Campylobacter*
368 spp. commonly colonizing wild birds may have also undergone a similar adaptive evolution within
369 avian hosts. Identifying these emerging host-associated variants and understanding the genetic
370 basis of host adaptation will facilitate epidemiologic investigation, provide insight into the
371 pathogenicity potential of the strain, and help design effective infection treatment/control

372 strategies. For example, the lineage-specific mutations in virulence genes of avian host-associated
373 lineages can serve as genetic markers for source tracking, and lack of AMR genes in avian host-
374 associated *S. Typhimurium* variants means that antibiotics may treat the infection. Further,
375 genome degradation in virulence genes may attenuate the pathogenicity of these variants to
376 humans, making them of potential interest to study as vaccine candidates.

377

378 **Methods**

379 **Dataset collection.** *S. Typhimurium* genomes from avian hosts ($n = 787$) retrieved from
380 Enterobase (search term: source niche-wild animal; source type-avian; predicted serotype: serovar
381 Typhimurium) were used to infer the population structure of this bacterial pathogen in wild birds.
382 The avian isolates were collected over broad spatial and temporal scales ([Supplementary Data 1](#)).
383 Among the 787 genomes deposited at Enterobase, we sequenced and uploaded 414 genomes as
384 part of a nationwide project collaborating with the US Geological Survey-National Wildlife
385 Health Center to reveal antimicrobial resistance profile and evolutionary history of avian *S.*
386 *Typhimurium* in the United States^{11,58}. The *S. Typhimurium* isolates were collected from diseased
387 or dead birds in 43 US states during 1978-2019 ([Supplementary Data 1](#)). The other 373 genomes
388 were collected between 1946 and 2021 from 18 countries (including the United States) across the
389 world and were publicly available at Enterobase ([Supplementary Data 1](#)). We further refined the
390 787 genomes by excluding those without a designated collection year, location, bird host or those
391 not belonging to an avian host-associated lineage. The filtered collection ($n = 207$)
392 ([Supplementary Data 2](#)) was used for cgSNP-based ML phylogenetic analysis and Bayesian
393 inference. In addition, contextual genomes ([Supplementary Data 3](#); $n = 83$) from major *S.*

394 Typhimurium epidemic lineages circulating worldwide were selected to infer the phylogenetic
395 relationship and compare the genomic differences of *S. Typhimurium* from avian and other diverse
396 host species (humans, livestock, poultry).

397 **DNA extraction and whole-genome sequencing.** For DNA extraction of the avian isolates, each
398 isolate was streaked onto xylose lysine deoxycholate agar plates and incubated for 18 h at 37 °C.
399 A single colony was then picked, transferred to Luria-Bertani broth, and cultured overnight at
400 37 °C with continuous agitation (250 rpm). Genomic DNA was extracted using the Qiagen
401 DNeasy® Blood & Tissue kit (Qiagen, Valencia, CA, USA) following the manufacturer's
402 instructions. DNA purity (A260/A280 \geq 1.8) was confirmed using NanoDrop™ One (Thermo
403 Scientific™, DE, USA) and DNA concentration was quantified using Qubit® 3.0 fluorometer
404 (Thermo Fisher Scientific Inc., MA, USA). Extracted genomic DNA was stored at -20 °C before
405 WGS. For WGS, DNA library was prepared using the Nextera XT DNA Library Prep Kit
406 (Illumina Inc., San Diego, CA, USA), normalized using quantitation-based procedure, and pooled
407 together at equal volume. The pooled library (600 μ L) was denatured and sequenced on an
408 Illumina MiSeq sequencer (Illumina Inc., San Diego, CA, USA).

409 **Quality assessment for raw reads.** The quality of raw reads obtained in this study and
410 downloaded from Enterobase was assessed using the MicroRunQC workflow in GalaxyTrakr v2⁵⁹.
411 Sequence data passing quality control thresholds (i.e., average coverage >30 , average quality
412 score >30 , number of contigs <400 , total assembly length between 4.4 and 5.1 Mb) were used for
413 subsequent genomic analyses.

414 **Phylogenetic analysis.** An NJ tree (https://enterobase.warwick.ac.uk/ms_tree?tree_id=70709)
415 was built based on the wgMLST scheme (21,065 loci) at Enterobase⁶⁰ to infer population structure

416 of *S. Typhimurium* from avian hosts ($n = 787$). Seven avian host-associated lineages were
417 identified in the NJ tree. Genomes from the seven avian host-associated lineages were then refined
418 as described in “**Data collection**”. The filtered collection of 207 *S. Typhimurium* genomes
419 ([Supplementary Data 2](#)) was used to build the cgSNP-based ML phylogenetic tree. Specifically,
420 Snippy (Galaxy v4.5.0) (<https://github.com/tseemann/snippy>) was used to generate a full
421 alignment and find SNPs between the reference genome LT2 (RefSeq [NC_003197.1](#)) and the
422 genomes of avian isolates, and Snippy-core (Galaxy v4.5.0) (<https://github.com/tseemann/snippy>)
423 was used to convert the Snippy outputs into a core SNP alignment. The resultant core SNP
424 alignment (6,310 SNPs in the core genomic regions) was used to construct a cgSNP-based ML
425 phylogenetic tree by MEGA X v10.1.8 using the Tamura-Nei model and 1,000 bootstrap
426 replicates⁶¹. Sequence types of the filtered *S. Typhimurium* isolates was identified using 7-gene
427 (*aroC*, *dnaN*, *hemD*, *hisD*, *purE*, *sucA* and *thrA*) MLST at Enterobase⁶⁰ and annotated on the
428 cgSNP-based ML phylogenetic tree. We also added contextual genomes ([Supplementary Data 3](#);
429 $n = 83$) that represented the major *S. Typhimurium* epidemic lineages circulating globally in the
430 cgSNP-based ML phylogenetic tree to infer the genetic relationship of lineages formed by avian
431 and non-avian (e.g., humans, livestock, poultry) isolates. The cgSNP-based ML phylogenetic trees
432 generated in this study were visualized and annotated using the Interactive Tree of Life (iTOL v6;
433 <https://itol.embl.de>).

434 **Bayesian inference.** The temporal signal of the sequence data was examined using TempEst
435 v1.5.3²⁹ before phylogenetic molecular clock analysis. Subsequently, a Bayesian time-scaled
436 phylogenetic tree was constructed via BEAUti v2.6.5 and BEAST2 v2.6.5⁶² using the core SNP
437 alignment (6,310 SNPs in the core genomic regions) generated from filtered collection ($n = 207$).

438 The parameters in BEAUti v2.6.5 were set as followings: Prior assumption-coalescent Bayesian
439 skyline; Clock model-relaxed clock log normal; Markov chain Monte Carlo (MCMC): chain
440 length-250 million, storing every 1,000 generations. Two independent runs with the same
441 parameters were performed in BEAST2 v2.6.5 to ensure convergence. The resultant log files were
442 viewed in Tracer v1.7.2 to ensure that the effective sample size (ESS) of key parameters was more
443 than 200. A maximum clade credibility tree was created using TreeAnnotator v2.6.4 with burnin
444 percentage of 10%. Finally, the tree was visualized using FigTree v1.4.4
445 (<https://github.com/rambaut/figtree/releases>) and annotated with the emergence times and
446 substitution rates of individual lineages. To determine the substitution rate, we multiplied the
447 substitution rate estimated by BEAST2 platform by the number of cgSNPs (6,310 bp), and then
448 divided the product by the average genome size of the avian isolates (4,951,383 bp).

449 **Pangenome analysis.** Raw reads of the 207 avian isolates and 83 contextual isolates from diverse
450 host species were *de novo* assembled using Shovill (Galaxy v1.0.4)⁶³ and then annotated by
451 Prokka (Galaxy v1.14.6)⁶⁴. The annotated contigs in GFF3 format produced by Prokka were taken
452 by Roary (Galaxy v3.13.0)⁶⁵ to calculate the pangenome with a minimum percentage identity of
453 95% for BLASTP. Specifically, lineage-associated core genes (i.e., genes present in more than
454 99% isolates from a specific lineage) were calculated by using genomes from individual lineages
455 as input (passerine lineage 1: $n = 59$; passerine lineage 2: $n = 26$; larid lineage: $n = 33$; duck/goose
456 lineage: $n = 23$; pigeon lineage 1: $n = 17$; pigeon lineage 2: $n = 21$; water bird lineage: $n = 28$;
457 ST313 lineage: $n = 10$; DT204 complex lineage: $n = 9$; U288 complex lineage: $n = 20$; ST34
458 lineage: $n = 21$; DT193 complex lineage: $n = 9$; DT104 complex lineage: $n = 14$). *S. Typhimurium*
459 core genes (i.e., genes present in more than 99% isolates from all lineages) were calculated by

460 using genomes from all the isolates ($n = 290$) of avian and non-avian origin as input. We also
461 performed a pairwise comparison of lineage-associated core genes to evaluate the genetic
462 relatedness of individual lineages: First, the number of core genes shared by two lineages was
463 calculated by using genomes from the two lineages; second, the number of core genes that differed
464 the two lineages was obtained by subtracting the core genes shared by two lineages from lineage-
465 associated core genes.

466 **AMR, plasmid, and virulence profiling.** ABRicate (Galaxy v1.0.1)⁶⁶ was used to identify the
467 AMR genes, plasmid replicons, and virulence factors by aligning each draft genome assembly
468 (see “**Pangenome analysis**”) against the ResFinder database⁶⁷, PlasmidFinder database⁶⁸, and
469 Virulence Factor Database (VFDB)⁶⁹, respectively. For all searches using ABRicate, minimum
470 nucleotide identity and coverage thresholds of 80% and 80% were used, respectively. Virulence
471 genes that were not 100% identical or covered with the reference virulence gene from VFDB may
472 have deletions, insertions, or substitutions of interest. We then manually checked the mutation
473 type by aligning the virulence gene of interest against the reference virulence gene from VFDB
474 using BLAST (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>).

475

476 **Data availability**

477 Sequence data of the *S. Typhimurium* isolates from our lab (isolate name in the format “PSU-4
478 digits”, e.g., PSU-2718) are deposited in the NCBI Sequence Read Archive (SRA)
479 (<https://www.ncbi.nlm.nih.gov/sra>) under BioProject [PRJNA357723](https://www.ncbi.nlm.nih.gov/bioproject/PRJNA357723). Publicly available sequence
480 data were downloaded from Enterobase (<https://enterobase.warwick.ac.uk/>), NCBI SRA
481 (<https://www.ncbi.nlm.nih.gov/sra>), and the European Nucleotide Archive

482 (<https://www.ebi.ac.uk/ena>). Accession numbers of the genomes used in this study are listed in
483 [Supplementary Data 1-3](#).

484

485 **References**

- 486 1. Knodler, L. A. & Elfenbein, J. R. *Salmonella enterica*. *Trends Microbiol.* **27**, 964–965
487 (2019). <https://doi.org/10.1016/j.tim.2019.05.002>
- 488 2. Stanaway, J. D. et al. The global burden of non-typhoidal salmonella invasive disease: a
489 systematic analysis for the Global Burden of Disease Study 2017. *Lancet Infect. Dis.* **19**,
490 1312–1324 (2019). [https://doi.org/10.1016/S1473-3099\(19\)30418-9](https://doi.org/10.1016/S1473-3099(19)30418-9)
- 491 3. Grimont, P. A. & Weill, F. X. Antigenic formulae of the *Salmonella* serovars. *WHO*
492 *collaborating centre for reference and research on Salmonella* **9**, 1–166 (2007).
- 493 4. Kingsley, R. A. & Bäumler, A. J. Host adaptation and the emergence of infectious disease:
494 the *Salmonella* paradigm. *Mol. Microbiol.* **36**, 1006–1014 (2000).
495 <https://doi.org/10.1046/j.1365-2958.2000.01907.x>
- 496 5. Roumagnac, P. et al. Evolutionary history of *Salmonella* typhi. *Science* **314**, 1301–1304
497 (2006). <https://www.science.org/doi/10.1126/science.1134933>
- 498 6. Dougan, G. & Baker, S. *Salmonella enterica* serovar Typhi and the pathogenesis of
499 typhoid fever. *Annu. Rev. Microbiol.* **68**, 317–336 (2014).
500 <https://doi.org/10.1146/annurev-micro-091313-103739>
- 501 7. Tanner, J. R. & Kingsley, R. A. Evolution of *Salmonella* within hosts. *Trends Microbiol.*
502 **26**, 986–998 (2018). <https://doi.org/10.1016/j.tim.2018.06.001>

503 8. Kingsley, R. A. et al. Genome and transcriptome adaptation accompanying emergence of
504 the definitive type 2 host-restricted *Salmonella enterica* serovar Typhimurium Pathovar.
505 *mBio* **4**, e00565-13 (2013). <https://doi.org/10.1128/mBio.00565-13>

506 9. Rabsch, W. et al. *Salmonella enterica* serotype Typhimurium and its host-adapted variants.
507 *Infect. Immun.* **70**, 2249–2255 (2002). <https://doi.org/10.1128/IAI.70.5.2249-2255.2002>

508 10. Mather, A. E. et al. Genomic analysis of *Salmonella enterica* serovar Typhimurium from
509 wild passerines in England and Wales. *Appl. Environ. Microbiol.* **82**, 6728–6735 (2016).
510 <https://doi.org/10.1128/AEM.01660-16>

511 11. Fu, Y. et al. *Salmonella enterica* serovar Typhimurium from wild birds in the United States
512 represent distinct lineages defined by bird type. *Appl. Environ. Microbiol.* **88**, e01979-21
513 (2022). <https://doi.org/10.1128/AEM.01979-21>

514 12. Didelot, X., Walker, A. S., Peto, T. E., Crook, D. W. & Wilson, D. J. Within-host evolution
515 of bacterial pathogens. *Nat. Rev. Microbiol.* **14**, 150–162 (2016).
516 <https://doi.org/10.1038/nrmicro.2015.13>

517 13. Gatt, Y. E. & Margalit, H. Common adaptive strategies underlie within-host evolution of
518 bacterial pathogens. *Mol. Biol. Evol.* **38**, 1101–1121 (2021).
519 <https://doi.org/10.1093/molbev/msaa278>

520 14. Bawn, M. et al. Evolution of *Salmonella enterica* serotype Typhimurium driven by
521 anthropogenic selection and niche adaptation. *PLoS Genet.* **16**, e1008850 (2020).
522 <https://doi.org/10.1371/journal.pgen.1008850>

523 15. Sheppard, S. K. et al. Niche segregation and genetic structure of *Campylobacter jejuni*
524 populations from wild and agricultural host species. *Mol. Ecol.* **20**, 3484–3490 (2011).
525 <https://doi.org/10.1111/j.1365-294X.2011.05179.x>

526 16. Schwartz, D. C. & Cantor, C. R. Separation of yeast chromosome-sized DNAs by pulsed
527 field gradient gel electrophoresis. *Cell* **37**, 67–75 (1984). [https://doi.org/10.1016/0092-8674\(84\)90301-5](https://doi.org/10.1016/0092-8674(84)90301-5)

529 17. Hunter, S. B. et al. Establishment of a universal size standard strain for use with the
530 PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national
531 databases to the new size standard. *J. Clin. Microbiol.* **43**, 1045–1050 (2005).
532 <https://doi.org/10.1128/JCM.43.3.1045-1050.2005>

533 18. Maiden, M. C. et al. Multilocus sequence typing: a portable approach to the identification
534 of clones within populations of pathogenic microorganisms. *Proc. Natl. Acad. Sci. U.S.A.*
535 **95**, 3140–3145 (1998). <https://doi.org/10.1073/pnas.95.6.3140>

536 19. Achtman, M. et al. Multilocus sequence typing as a replacement for serotyping in
537 *Salmonella enterica*. *PLoS Pathog.* **8**, e1002776 (2012).
538 <https://doi.org/10.1371/journal.ppat.1002776>

539 20. Callow, B. R. A new phage-typing scheme for *Salmonella* typhimurium. *Epidemiol. Infect.*
540 **57**, 346–359 (1959). <https://doi.org/10.1017/S0022172400020209>

541 21. Neoh, H. M., Tan, X. E., Sapri, H. F. & Tan, T. L. Pulsed-field gel electrophoresis (PFGE):
542 A review of the “gold standard” for bacteria typing and current alternatives. *Infect. Genet.*
543 *Evol.* **74**, 103935 (2019). <https://doi.org/10.1016/j.meegid.2019.103935>

544 22. Sheppard, S. K., Guttman, D. S. & Fitzgerald, J. R. Population genomics of bacterial host
545 adaptation. *Nat. Rev. Genet.* **19**, 549–565 (2018). [https://doi.org/10.1038/s41576-018-0032-z](https://doi.org/10.1038/s41576-018-
546 0032-z)

547 23. Schürch, A. C., Arredondo-Alonso, S., Willems, R. J. L. & Goering, R. V. Whole genome
548 sequencing options for bacterial strain typing and epidemiologic analysis based on single
549 nucleotide polymorphism versus gene-by-gene-based approaches. *Clin. Microbiol. Infect.*
550 **24**, 350–354 (2018). <https://doi.org/10.1016/j.cmi.2017.12.016>

551 24. Denamur, E. et al. The population genetics of pathogenic *Escherichia coli*. *Nat. Rev. Microbiol.* **19**, 37–54 (2021). <https://doi.org/10.1038/s41579-020-0416-x>

552 25. Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of
553 modern birds. *Science* **346**, 1320–1331 (2014). <https://doi.org/10.1126/science.1253451>

554 26. Prum, R. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation
555 DNA sequencing. *Nature* **526**, 569–573 (2015). <https://doi.org/10.1038/nature15697>

556 27. Fu, Y., Smith, J. C., Shariat, N. W., M'ikanatha, N. M. & Dudley, E. G. Evidence for
557 common ancestry and microevolution of passerine-adapted *Salmonella enterica* serovar
558 Typhimurium in the UK and USA. *Microb. Genom.* **8**, 000775 (2022).
559 <https://doi.org/10.1099/mgen.0.000775>

560 28. Fu, Y., M'ikanatha, N. M. & Dudley, E. G. Comparative genomic analysis of *Salmonella*
561 *enterica* serovar Typhimurium isolates from passernines reveals two lineages circulating in
562 Europe, New Zealand, and the United States. *Appl. Environ. Microbiol.* **88**, e00205-22
563 (2022). <https://doi.org/10.1128/aem.00205-22>

565 29. Rambaut, A. Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the temporal
566 structure of heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evol.*
567 2, 1–7 (2016). <https://doi.org/10.1093/ve/vew007>

568 30. Makendi, C. et al. A phylogenetic and phenotypic analysis of *Salmonella enterica* serovar
569 Weltevreden, an emerging agent of diarrheal disease in tropical regions. *PLoS Negl. Trop.*
570 *Dis.* 10, e0004446 (2016). <https://doi.org/10.1371/journal.pntd.0004446>

571 31. Okoro, C. et al. Intracontinental spread of human invasive *Salmonella* Typhimurium
572 pathovariants in sub-Saharan Africa. *Nat. Genet.* 44, 1215–1221 (2012).
573 <https://doi.org/10.1038/ng.2423>

574 32. Petrovska, L. et al. Microevolution of monophasic *Salmonella* Typhimurium during
575 epidemic, United Kingdom, 2005–2010. *Emerg. Infect. Dis.* 22, 617–624 (2016).
576 <https://doi.org/10.3201/eid2204.150531>

577 33. Mather, A. E. et al. 2013. Distinguishable epidemics of multidrug-resistant *Salmonella*
578 Typhimurium DT104 in different hosts. *Science* 341, 1514–1517.
579 <https://doi.org/10.1126/science.1240578>

580 34. Threlfall, J., Ward, L. R. & Rowe, B. Epidemic spread of a chloramphenicol-resistant
581 strain of *Salmonella* typhimurium phage type 204 in bovine animals in Britain. *Vet. Rec.*
582 103, 438–440 (1978). <https://doi.org/10.1136/vr.103.20.438>

583 35. Kirkwood, M. et al. Ecological niche adaptation of *Salmonella* Typhimurium U288 is
584 associated with altered pathogenicity and reduced zoonotic potential. *Commun. Biol.* 4, 1–
585 15 (2021). <https://doi.org/10.1038/s42003-021-02013-4>

586 36. Van Puyvelde, S. et al. An African *Salmonella* Typhimurium ST313 sublineage with
587 extensive drug-resistance and signatures of host adaptation. *Nat. Commun.* **10**, 1–12
588 (2019). <https://doi.org/10.1038/s41467-019-11844-z>

589 37. Pulford, CV, et al. Stepwise evolution of *Salmonella* Typhimurium ST313 causing
590 bloodstream infection in Africa. *Nat. Microbiol.* **6**, 327–338 (2021).
591 <https://doi.org/10.1038/s41564-020-00836-1>

592 38. Hernandez, S. M. et al. Epidemiology of a *Salmonella enterica* subsp. *enterica* serovar
593 Typhimurium strain associated with a songbird outbreak. *Appl. Environ. Microbiol.* **78**,
594 7290–7298 (2012) <https://doi.org/10.1128/AEM.01408-12>

595 39. Lawson, B. et al. Epidemiological evidence that garden birds are a source of human
596 salmonellosis in England and Wales. *PLoS One* **9**, e88968 (2014)
597 <https://doi.org/10.1371/journal.pone.0088968>

598 40. Bloomfield, S. J. et al. Genomic analysis of *Salmonella enterica* serovar Typhimurium
599 DT160 associated with a 14-year outbreak, New Zealand, 1998–2012. *Emerg. Infect. Dis.*
600 **23**, 906–913 (2017). <https://doi.org/10.3201/eid2306.161934>

601 41. Ford, L. et al. Whole-genome sequencing of *Salmonella* Mississippi and Typhimurium
602 Definitive Type 160, Australia and New Zealand. *Emerg. Infect. Dis.* **25**, 1690–1697
603 (2019). <https://doi.org/10.3201/eid2509.181811>

604 42. Söderlund, R. et al. Linked seasonal outbreaks of *Salmonella* Typhimurium among
605 passerine birds, domestic cats and humans, Sweden, 2009 to 2016. *Euro. Surveill.* **24**,
606 1900074 (2019) <https://doi.org/10.2807/1560-7917.ES.2019.24.34.1900074>

607 43. Hayden, H. S. et al. Genomic analysis of *Salmonella enterica* serovar Typhimurium
608 characterizes strain diversity for recent U.S. salmonellosis cases and identifies mutations
609 linked to loss of fitness under nitrosative and oxidative stress. *mBio* **7**, e00154 (2016).
610 <https://doi.org/10.1128/mBio.00154-16>

611 44. Fu, S. et al. Comparative genomics of Australian and international isolates of *Salmonella*
612 Typhimurium: correlation of core genome evolution with CRISPR and prophage profiles.
613 *Sci. Rep.* **7**, 1–12 (2017). <https://doi.org/10.1038/s41598-017-06079-1>

614 45. Salipante, S. J. & Hall, B. G. Determining the limits of the evolutionary potential of an
615 antibiotic resistance gene. *Mol. Biol. Evol.* **20**, 653–659 (2003).
616 <https://doi.org/10.1093/molbev/msg074>

617 46. Hiley, L., Graham, R. M. & Jennison, A. V. Genetic characterisation of variants of the
618 virulence plasmid, pSLT, in *Salmonella enterica* serovar Typhimurium provides evidence
619 of a variety of evolutionary directions consistent with vertical rather than horizontal
620 transmission. *PloS One* **14**, e0215207 (2019).
621 <https://doi.org/10.1371/journal.pone.0215207>

622 47. McClelland, M. et al. Complete genome sequence of *Salmonella enterica* serovar
623 Typhimurium LT2. *Nature* **413**, 852–856 (2001). <https://doi.org/10.1038/35101614>

624 48. Ingle, D. J. et al. Evolutionary dynamics of multidrug resistant *Salmonella enterica* serovar
625 4,[5],12:i:- in Australia. *Nat. Commun.* **12**, 1–13 (2021). <https://doi.org/10.1038/s41467-021-25073-w>

627 49. Bäumler, A. & Fang, F. C. Host specificity of bacterial pathogens. *Cold Spring Harb.*
628 *Perspect. Med.* **3**, a010041 (2013). <https://doi.org/10.1101/cshperspect.a010041>

629 50. Langridge, G. C. et al. Patterns of genome evolution that have accompanied host
630 adaptation in *Salmonella*. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 863–868 (2015).
631 <https://doi.org/10.1073/pnas.1416707112>

632 51. Thomson, N. R. et al. Comparative genome analysis of *Salmonella* Enteritidis PT4 and
633 *Salmonella* Gallinarum 287/91 provides insights into evolutionary and host adaptation
634 pathways. *Genome Res.* **18**, 1624–1637 (2008). <http://doi.org/10.1101/gr.077404.108>

635 52. Yue, M. et al. Allelic variation contributes to bacterial host specificity. *Nat. Commun.* **6**,
636 1–11 (2015). <https://doi.org/10.1038/ncomms9754>

637 53. Jennings, E., Thurston, T. L. & Holden, D. W. *Salmonella* SPI-2 type III secretion system
638 effectors: molecular mechanisms and physiological consequences. *Cell Host Microbe* **22**,
639 217–231 (2017). <https://doi.org/10.1016/j.chom.2017.07.009>

640 54. Smith, O. M., Snyder, W. E. & Owen, J. P. Are we overestimating risk of enteric pathogen
641 spillover from wild birds to humans? *Biol. Rev.* **95**, 652–679 (2020).
642 <https://doi.org/10.1111/brv.12581>

643 55. Muloi, D.M. et al. Population genomics of *Escherichia coli* in livestock-keeping
644 households across a rapidly developing urban landscape. *Nat. Microbiol.* **7**, 581–589
645 (2022). <https://doi.org/10.1038/s41564-022-01079-y>

646 56. Armstrong, G. L. et al. Pathogen genomics in public health. *N. Engl. J. Med.* **381**, 2569–
647 2580 (2019). <https://www.nejm.org/doi/10.1056/NEJMsr1813907>

648 57. Perez-Sepulveda, B. M. et al. An accessible, efficient and global approach for the large-
649 scale sequencing of bacterial genomes. *Genome Biol.* **22**, 1–18 (2021).
650 <https://doi.org/10.1186/s13059-021-02536-3>

651 58. Fu, Y. et al. Low occurrence of multi-antimicrobial and heavy metal resistance in
652 *Salmonella enterica* from wild birds in the United States. *Environ Microbiol.* **24**, 1380–
653 1394 (2022). <https://doi.org/10.1111/1462-2920.15865>

654 59. Timme, R. E. et al. Optimizing open data to support one health: best practices to ensure
655 interoperability of genomic data from bacterial pathogens. *One Health Outlook* **2**, 1–11
656 (2020). <https://doi.org/10.1186/s42522-020-00026-3>

657 60. Zhou, Z. et al. The Enterobase user's guide, with case studies on *Salmonella* transmissions,
658 *Yersinia pestis* phylogeny, and *Escherichia* core genomic diversity. *Genome Res.* **30**, 138–
659 152 (2020). <https://doi.org/10.1101/gr.251678.119>

660 61. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary
661 genetics analysis across computing platforms. *Molecular Biol. Evol.* **35**, 1547–1549
662 (2018). <https://doi.org/10.1093/molbev/msy096>

663 62. Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary
664 analysis. *PLoS Comput. Biol.* **15**, e1006650 (2019).
665 <https://doi.org/10.1371/journal.pcbi.1006650>

666 63. Seemann, T. Shovill: Faster SPAdes assembly of Illumina reads (2017).
667 <https://github.com/tseemann/shovill>

668 64. Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–2069
669 (2014). <https://doi.org/10.1093/bioinformatics/btu153>

670 65. Page, A. J. et al. Roary: rapid large-scale prokaryote pan-genome analysis. *Bioinformatics*
671 **31**, 3691–3693 (2015). <https://doi.org/10.1093/bioinformatics/btv421>

672 66. Seemann, T. ABRicate: mass screening of contigs for antibiotic resistance genes (2016).

673 <https://github.com/tseemann/abricate>

674 67. Bortolaia, V. et al. ResFinder 4.0 for predictions of phenotypes from genotypes. *J.*

675 *Antimicrob. Chemother.* **75**, 3491–3500 (2020). <https://doi.org/10.1093/jac/dkaa345>

676 68. Carattoli, A. et al. *In silico* detection and typing of plasmids using PlasmidFinder and

677 plasmid multilocus sequence typing. *Antimicrob. Agents Chemother.* **58**, 3895–3903

678 (2014). <https://doi.org/10.1128/AAC.02412-14>

679 69. Liu, B., Zheng, D. D., Jin, Q., Chen, L. H. & Yang, J. VFDB 2019: a comparative

680 pathogenomic platform with an interactive web interface. *Nucleic Acids Res.* **47**, D687–

681 D692 (2019). <https://doi.org/10.1093/nar/gky1080>

682

683 **Acknowledgements**

684 We thank David Hewitt for editing this manuscript prior to publication. This work is supported

685 by the US Food and Drug Administration (Grant No. 1U19FD007114-01), US Department of

686 Agriculture (Grant No. PEN4522), and Penn State College of Agricultural Sciences.

687

688 **Author information**

689 **Affiliations**

690 **Department of Food Science, The Pennsylvania State University, University Park, PA, USA**

691 Yezhi Fu, Edward G. Dudley

692 **Pennsylvania Department of Health, Harrisburg, PA, USA**

693 Nkuchia M. M’ikanatha

694 ***E. coli* Reference Center, The Pennsylvania State University, University Park, PA, USA**

695 Edward G. Dudley

696

697 **Contributions**

698 Y.F. designed the study, sequenced the US wild bird isolates, collected the globally sourced

699 sequence data from Enterobase, NCBI, and EMBL-EBI, performed the bioinformatics analyses

700 of the data, interpreted the data, and wrote the draft manuscript; N.M.M. and E.G.D. contributed

701 to interpretation of the data and manuscript revision.

702

703 **Corresponding author**

704 Correspondence to Yezhi Fu and Edward G. Dudley.

705

706 **Ethics declarations**

707 The authors declare no competing interests.

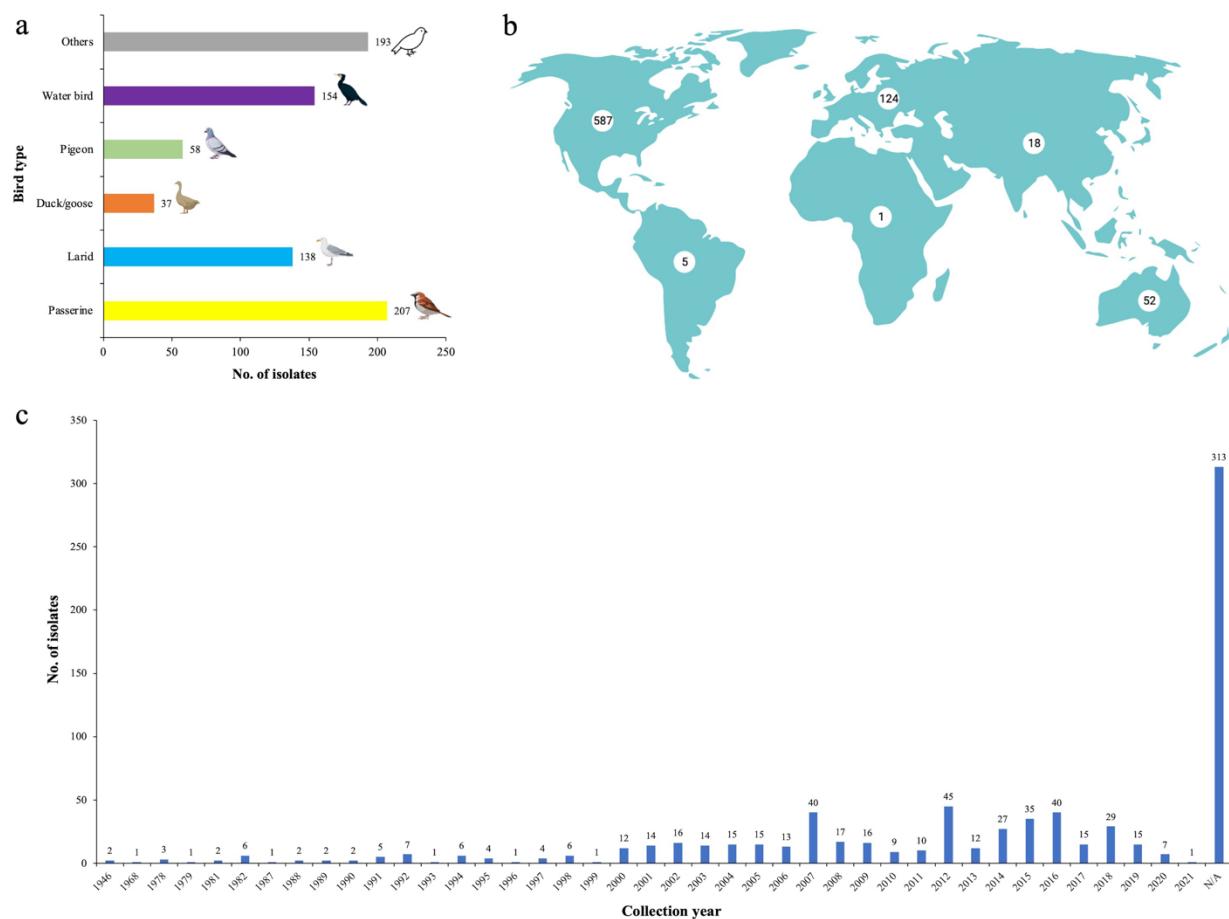
708

709

710

711

712


713

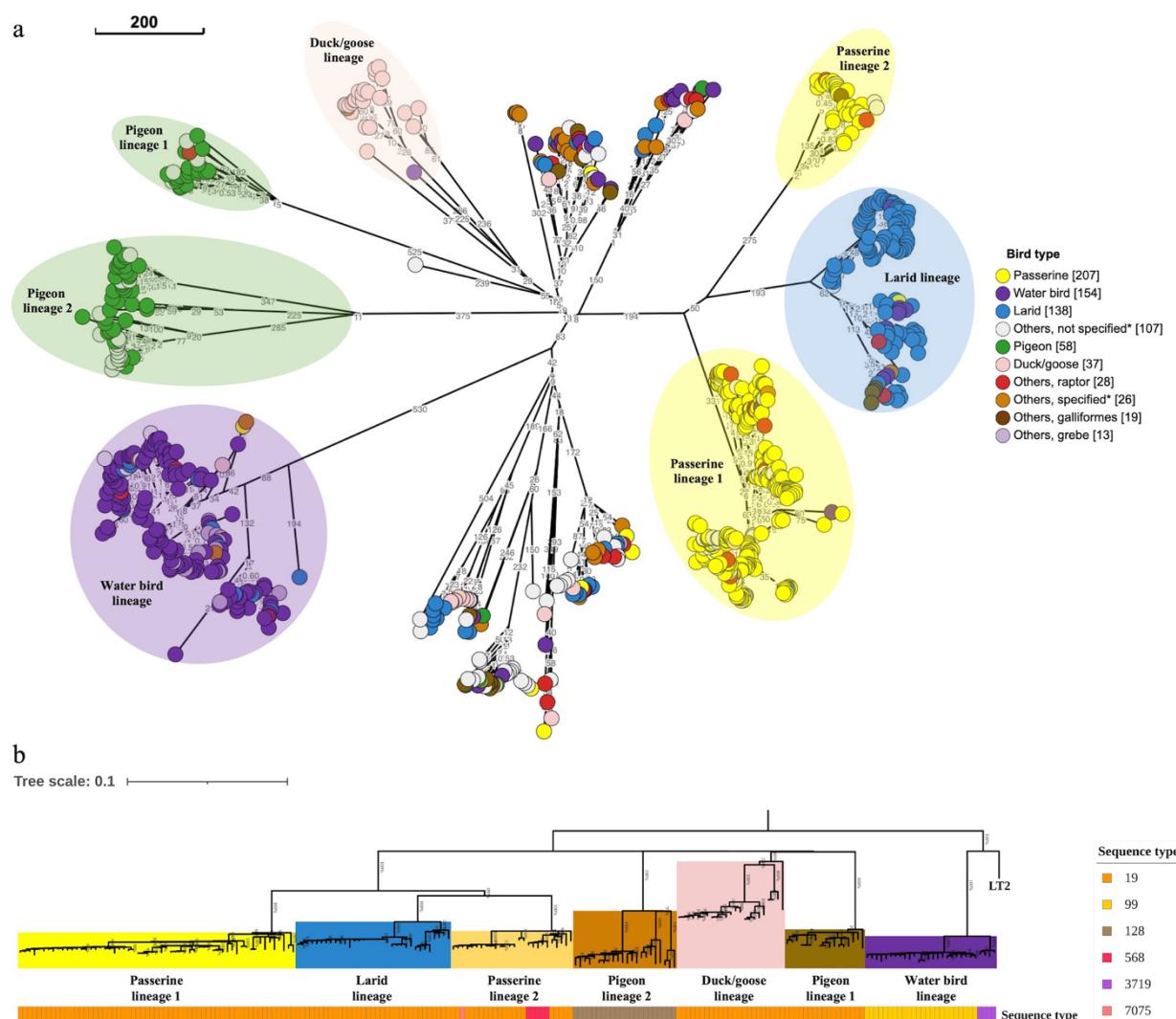
714

715

716 **Figure legends**

717 **Fig. 1: Avian isolates of *Salmonella* Typhimurium used in this study ($n = 787$).**

718 **a**, Number of isolates grouped by avian hosts. Bird type-others: avian hosts without a designated
719 bird type at Enterobase or any bird types not included in the defined categories. **b**, Number of
720 isolates grouped by geographic locations. **c**, Number of isolates grouped by collection years. N/A:
721 the collection year is not available.


722

723

724

725

726 **Fig. 2: Population structure of globally sourced *Salmonella* Typhimurium isolates from**
 727 **avian hosts.**

728 **a,** Neighbor joining tree of the 787 *S. Typhimurium* isolates from avian hosts
 729 (https://enterobase.warwick.ac.uk/ms_tree?tree_id=70709). The NJ tree is constructed based on
 730 the *Salmonella* wgMLST scheme (21,065 loci) at Enterobase. The scale bar indicates 200
 731 wgMLST alleles. Allele differences between isolates are indicated by numbers on the connecting
 732 lines. In the legend "Bird type", the number in brackets indicates the number of isolates from that
 733 specific bird type. "Other, not specified" represents avian hosts without a designated bird type at
 734 Enterobase. "Other, specified" represents avian hosts that do not belong to passerine, larid, water
 735 bird, duck/goose, pigeon, and the number of isolates from these avian hosts is <10. More detailed

736 information on individual bird type and its corresponding isolates can be found in [Supplementary](#)
737 [Data 1. b](#), Maximum-likelihood phylogenetic tree of the 207 *S. Typhimurium* isolates from avian
738 hosts (See “**Methods-Dataset collection**” for the selection criteria for the 207 isolates out of the
739 whole collection of 787 isolates). The tree is built based on 6,310 SNPs in the core genomic
740 regions with reference to *S. Typhimurium* LT2 and rooted at midpoint. Individual avian host-
741 associated lineages are supported by bootstrap value of 100%. The color strip “Sequence type”
742 represents the *S. Typhimurium* multilocus sequence type determined by 7-gene (*aroC*, *dnaN*,
743 *hemD*, *hisD*, *purE*, *sucA* and *thrA*) MLST.

744

745

746

747

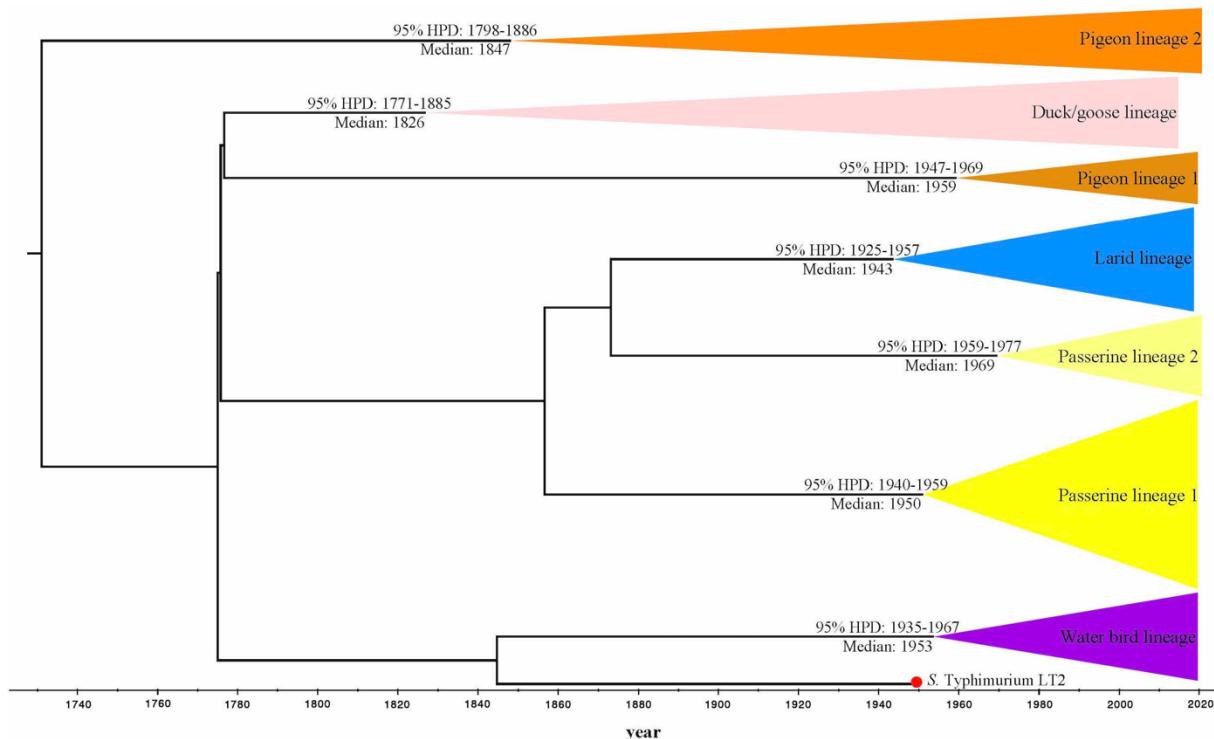
748

749

750

751

752


753

754

755

756

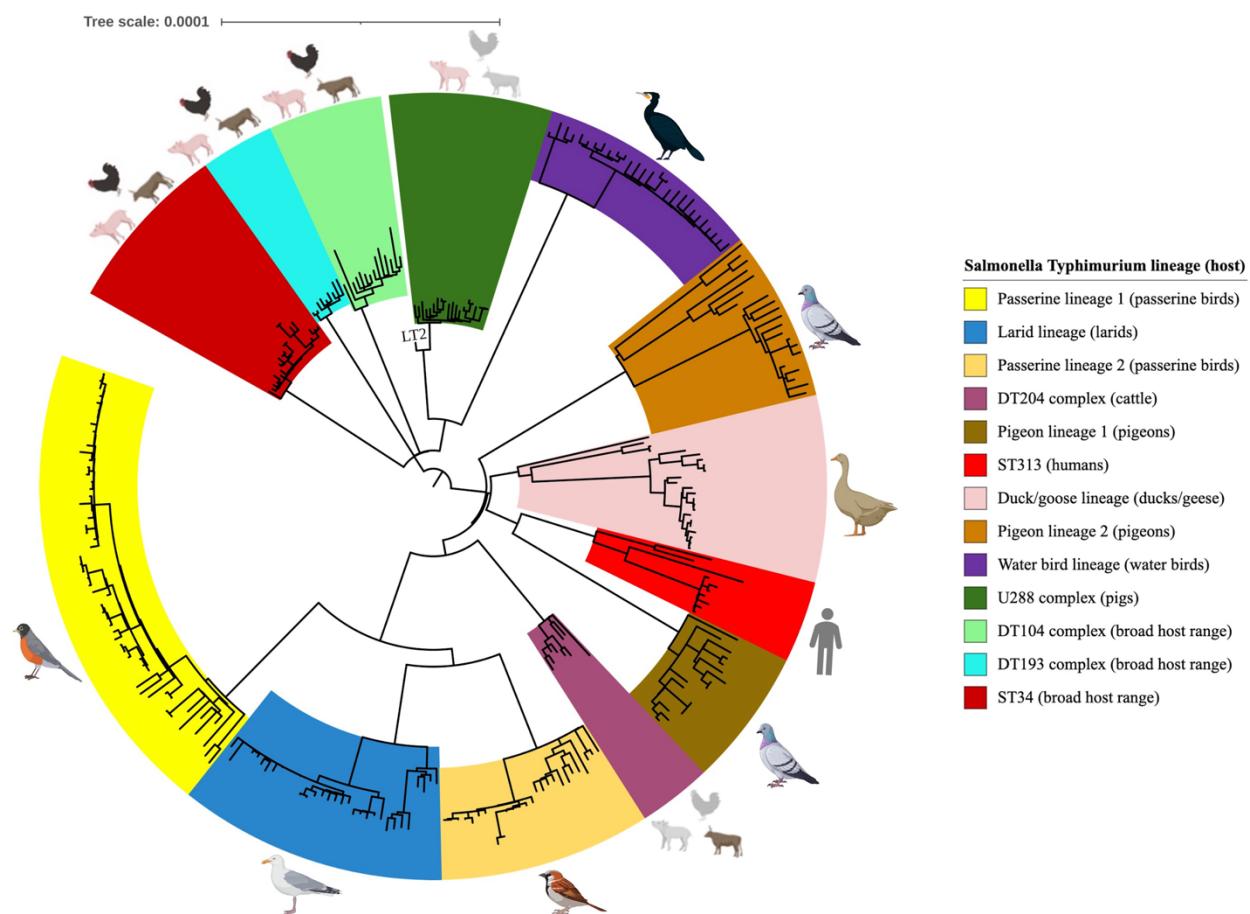
757 **Fig. 3: Emergence times of avian host-associated *Salmonella* Typhimurium lineages inferred**
758 **by Bayesian time-scaled tree.**

759 Estimated emergence times of individual lineages are reported as median years with 95% highest
760 posterior probability density (HPD). The red dot at the tree tip represents the reference genome
761 from *S. Typhimurium* LT2 (collection year: ca. 1948). The posterior probability values of
762 representative divergent events are >95% (not shown in the figure).

763

764

765

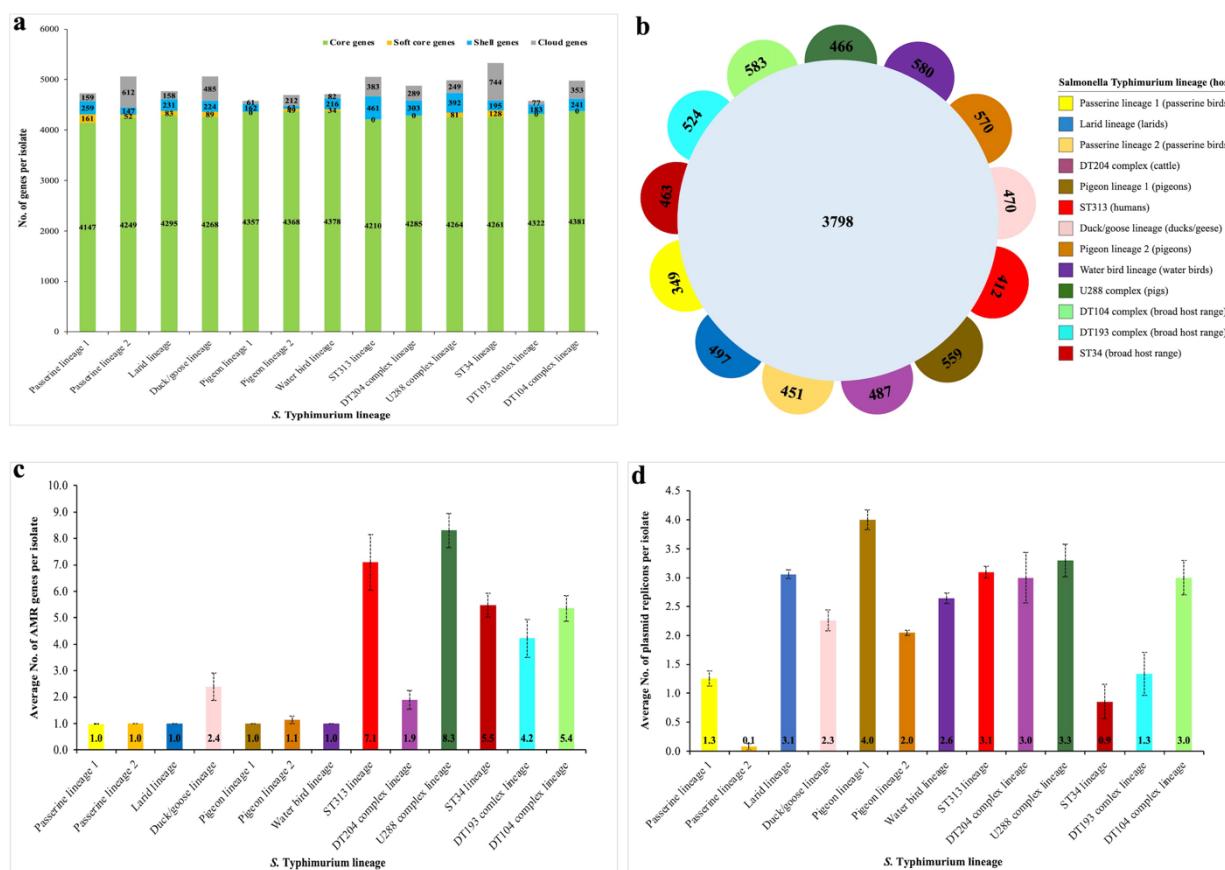

766

767

768

769

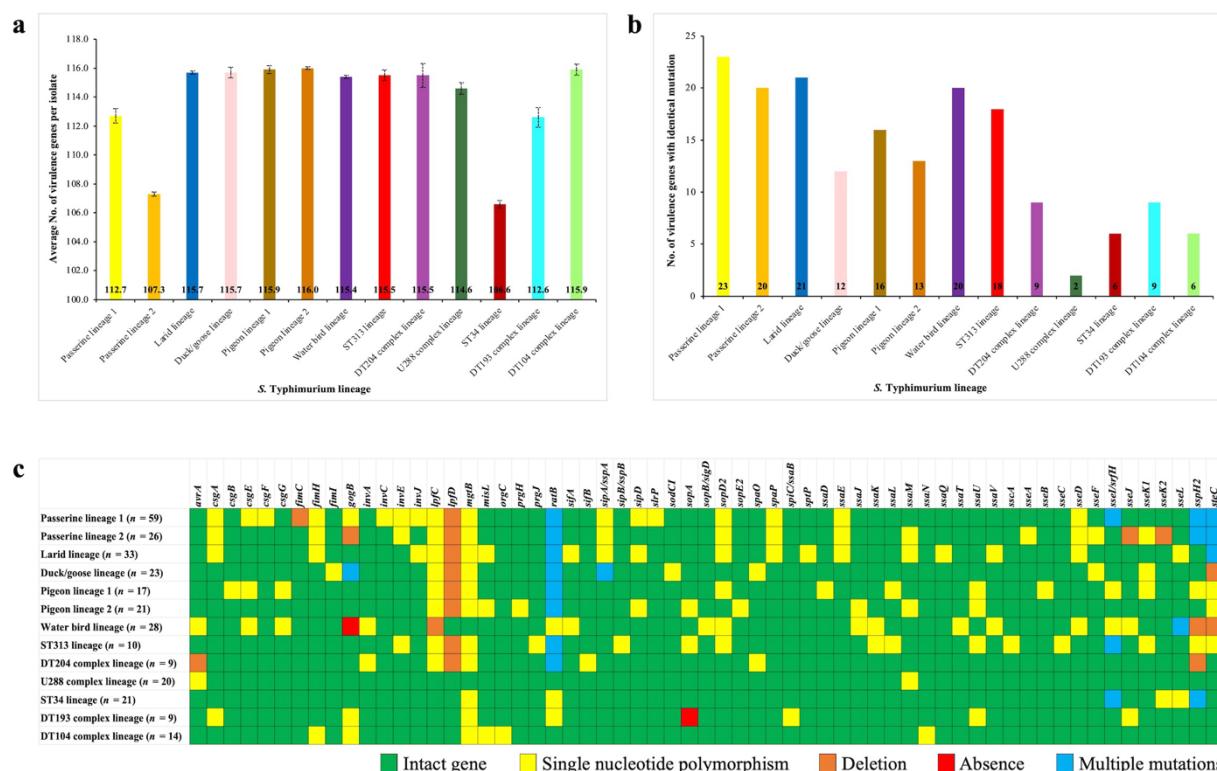
770 **Fig. 4: Phylogenetic relationship of *Salmonella* Typhimurium lineages circulating within**
771 **diverse hosts (n = 290).**



772 The legend field at the right of the tree represents the *S. Typhimurium* lineage (primary host).
773 Broad host range in parentheses indicates that isolates from the corresponding lineage are
774 commonly identified among humans, cattle, pigs, and poultry. The specific host species in
775 parentheses indicates that isolates from the corresponding lineage are primarily from that specific
776 host. Individual lineages are correlated to their associated host species in the tree. Grey shaded
777 host species in U288 complex lineage and DT204 complex lineage represent minor host other than
778 primary host.

779

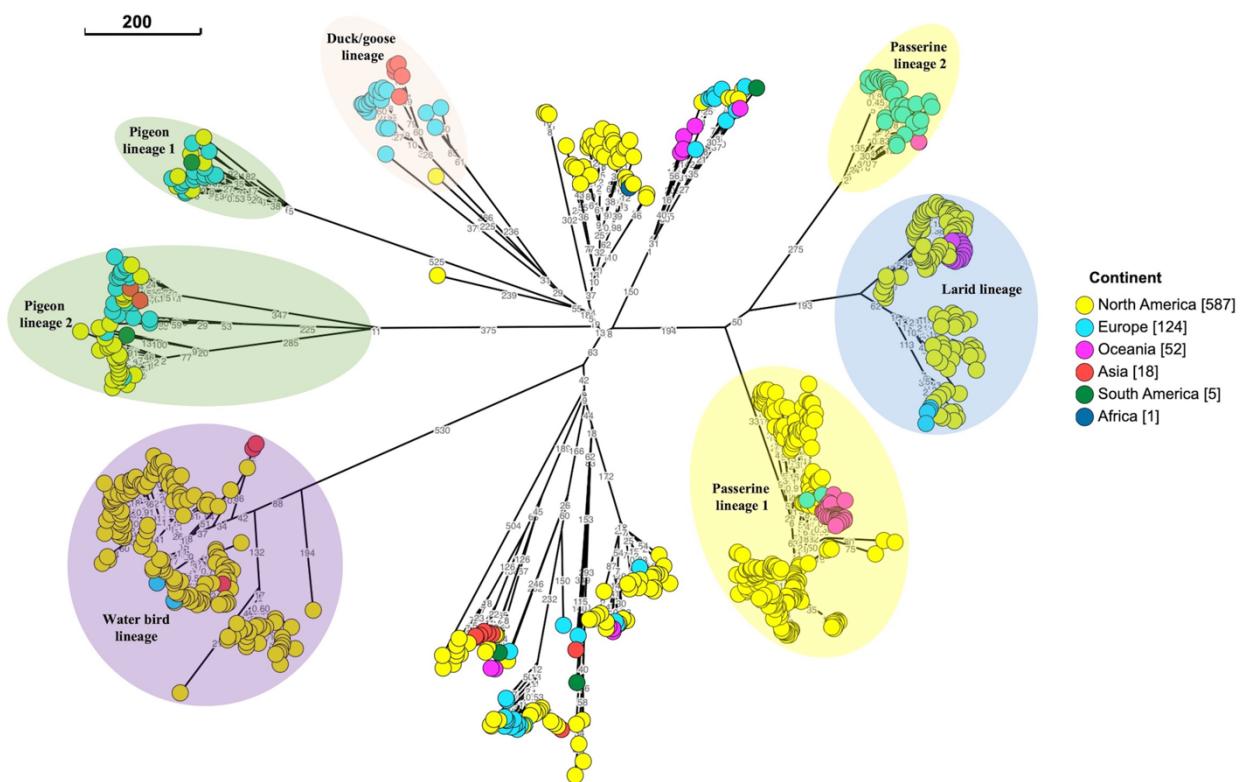
780


781 **Fig. 5: Genetic diversity of *Salmonella* Typhimurium lineages from diverse hosts (n = 290).**

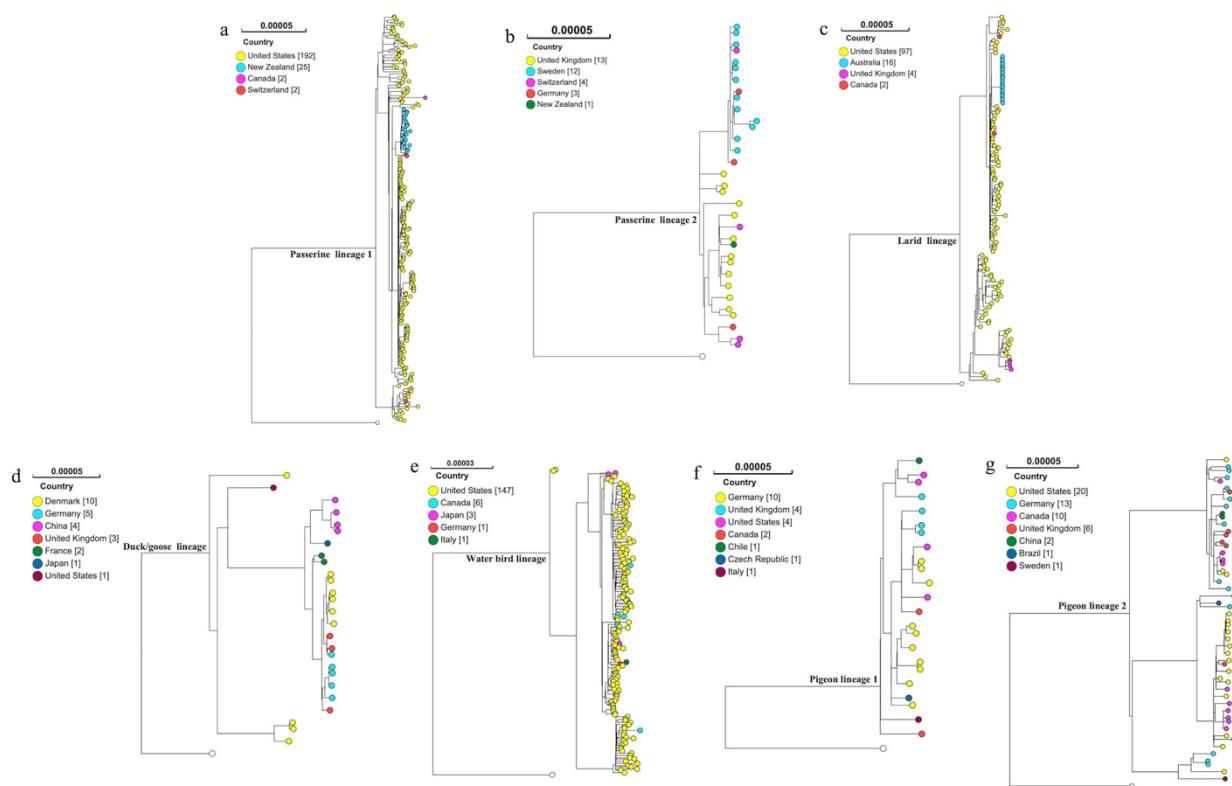
782 **a**, Number of core genes (genes present in $\geq 99\%$ isolates of the analyzed dataset), soft shell genes
 783 (genes present in 95%-99% isolates of the analyzed dataset), shell genes (genes present in 15%-
 784 95% isolates of the analyzed dataset), and cloud genes (genes present in 0%-15% isolates of the
 785 analyzed dataset) per isolate in individual lineages. **b**, Number of *S. Typhimurium* core genes (n
 786 = 3,798) and number of core genes that represent a unique core-gene combination in a specific
 787 lineage (see colored key). **c**, Average number of antimicrobial resistance (AMR) genes per isolate
 788 in individual lineages. **d**, Average number of plasmid replicons per isolate in individual lineages.
 789 The number of isolates in each lineage is: Passerine lineage 1 (n = 59); Passerine lineage 2 (n =
 790 26); Larid lineage (n = 33); Duck/goose lineage (n = 23); Pigeon lineage 1 (n = 17); Pigeon lineage
 791 2 (n = 21); Water bird lineage (n = 28); ST313 lineage (n = 10); DT204 complex lineage (n = 9);

792 U288 complex lineage ($n = 20$); ST34 lineage ($n = 21$); DT193 complex lineage ($n = 9$); DT104
793 complex lineage ($n = 14$). Error bars represent standard error of the average number of a dataset.
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812

813 **Fig. 6: Virulence gene profiles of *Salmonella* Typhimurium lineages from diverse hosts (n =**
 814 **290).**

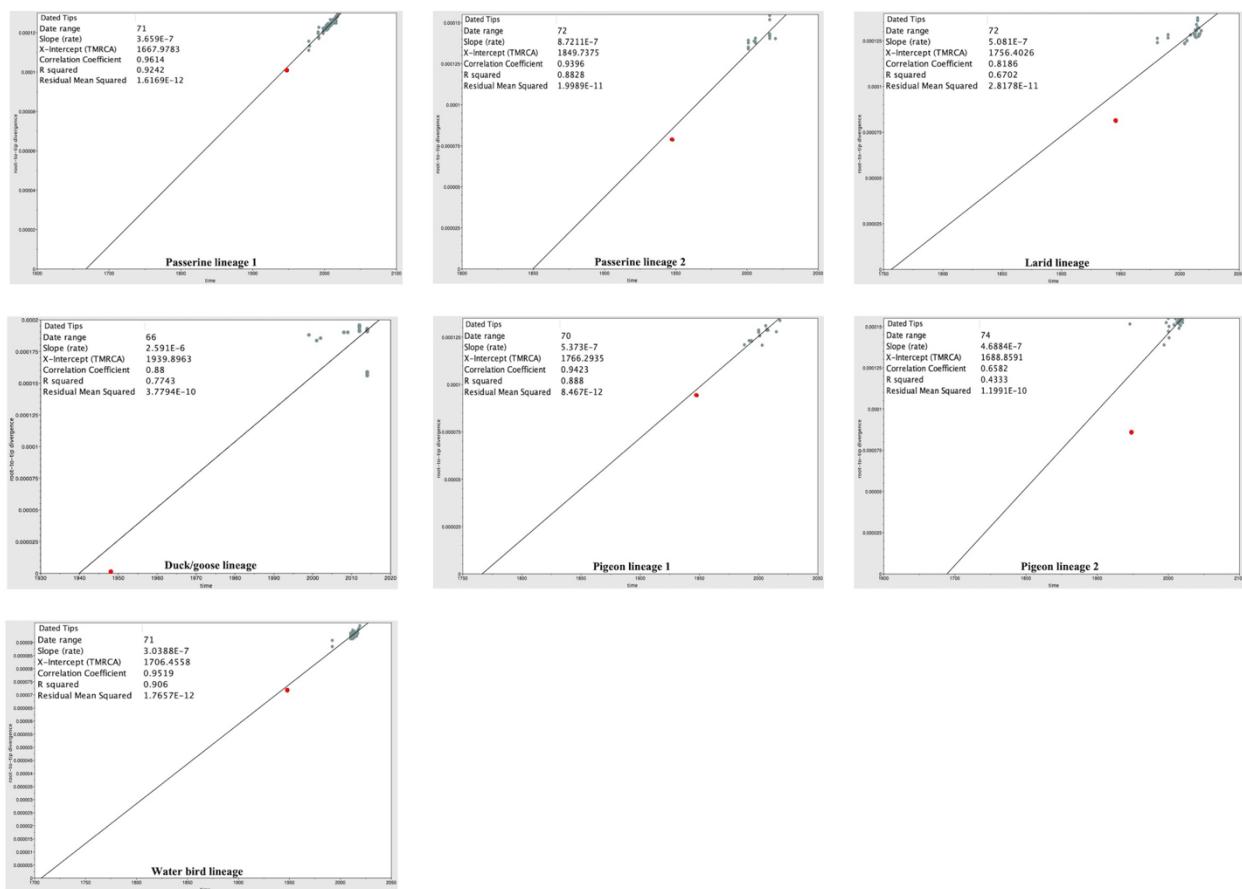


815 **a**, Average number of virulence genes per isolate in individual lineages. Error bars represent
 816 standard error of the average number of a dataset. **b**, Number of virulence genes with identical
 817 mutation in individual lineages. **c**, Heatmap showing the mutation types of virulence genes in
 818 individual lineages. The number in parentheses indicates the number of isolates from that specific
 819 lineage. “Multiple mutations” indicates that several mutations occur in a virulence gene at
 820 different positions. The detailed mutation information (mutation type, mutation position, base-
 821 pair change) of each virulence gene in individual lineages can be found in [Supplementary Data 8](#).

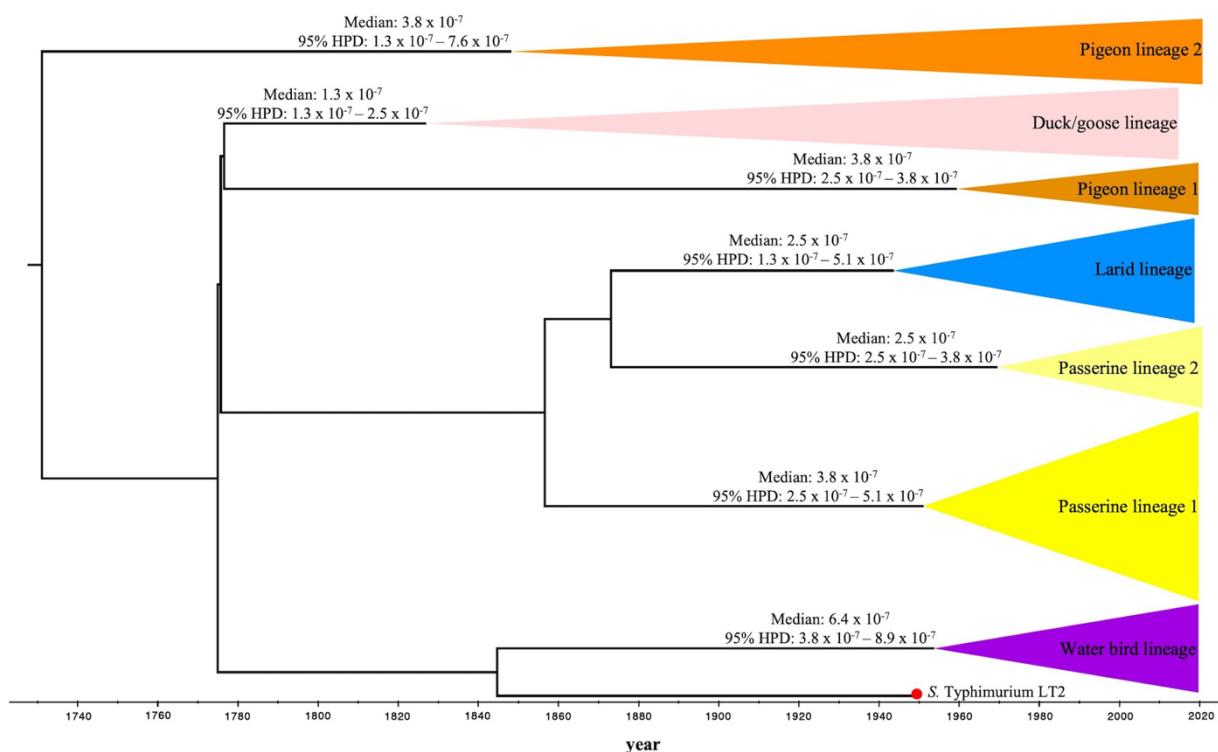

822

823

824

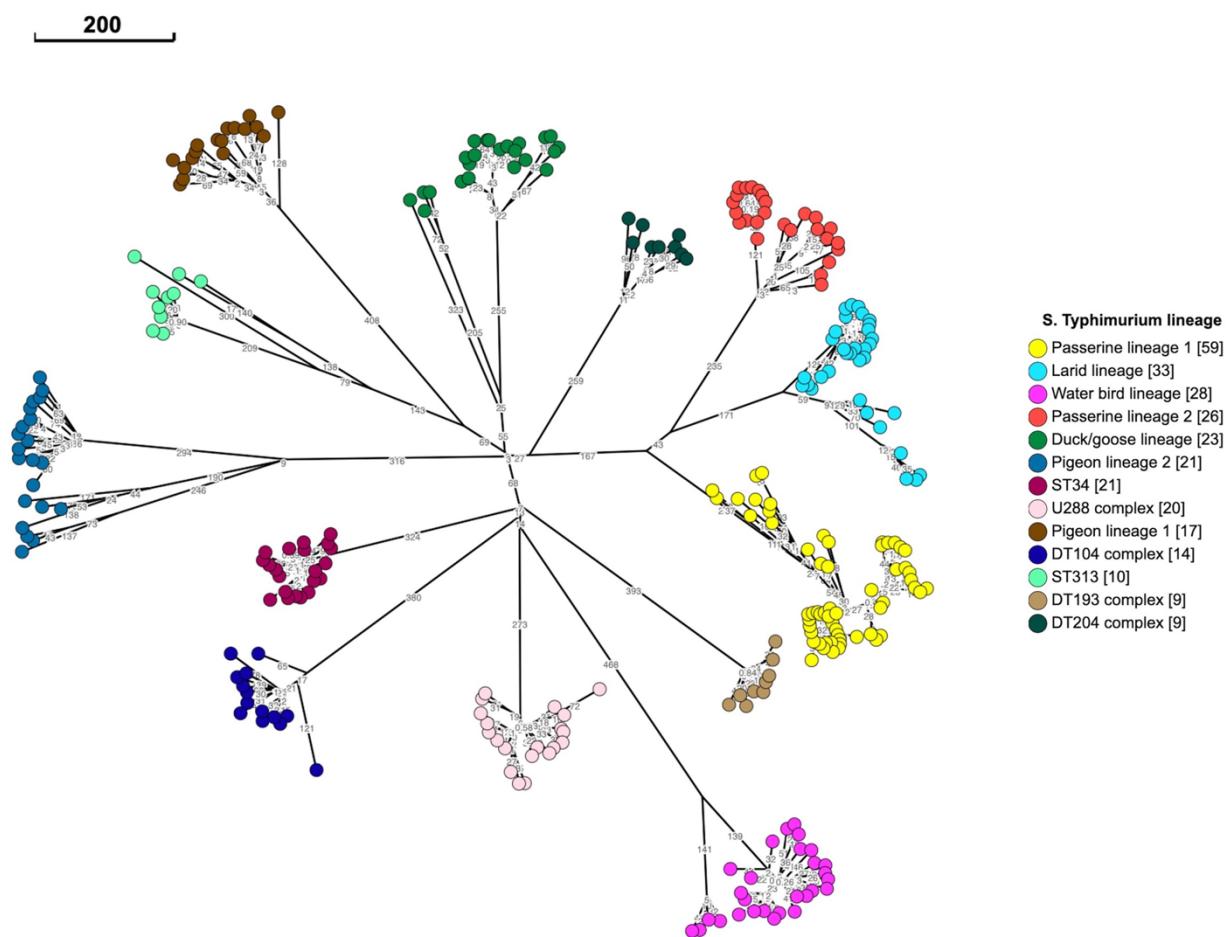


Supplementary Fig. 1: Neighbor joining tree based on wgMLST showing the geographic distribution of avian *Salmonella* Typhimurium isolates ($n = 787$) in six continents. In the legend “Continent”, the number in brackets indicates the number of isolates from that specific continent. The scale bar indicates 200 wgMLST alleles. Allele differences between isolates are indicated by numbers on the connecting lines.

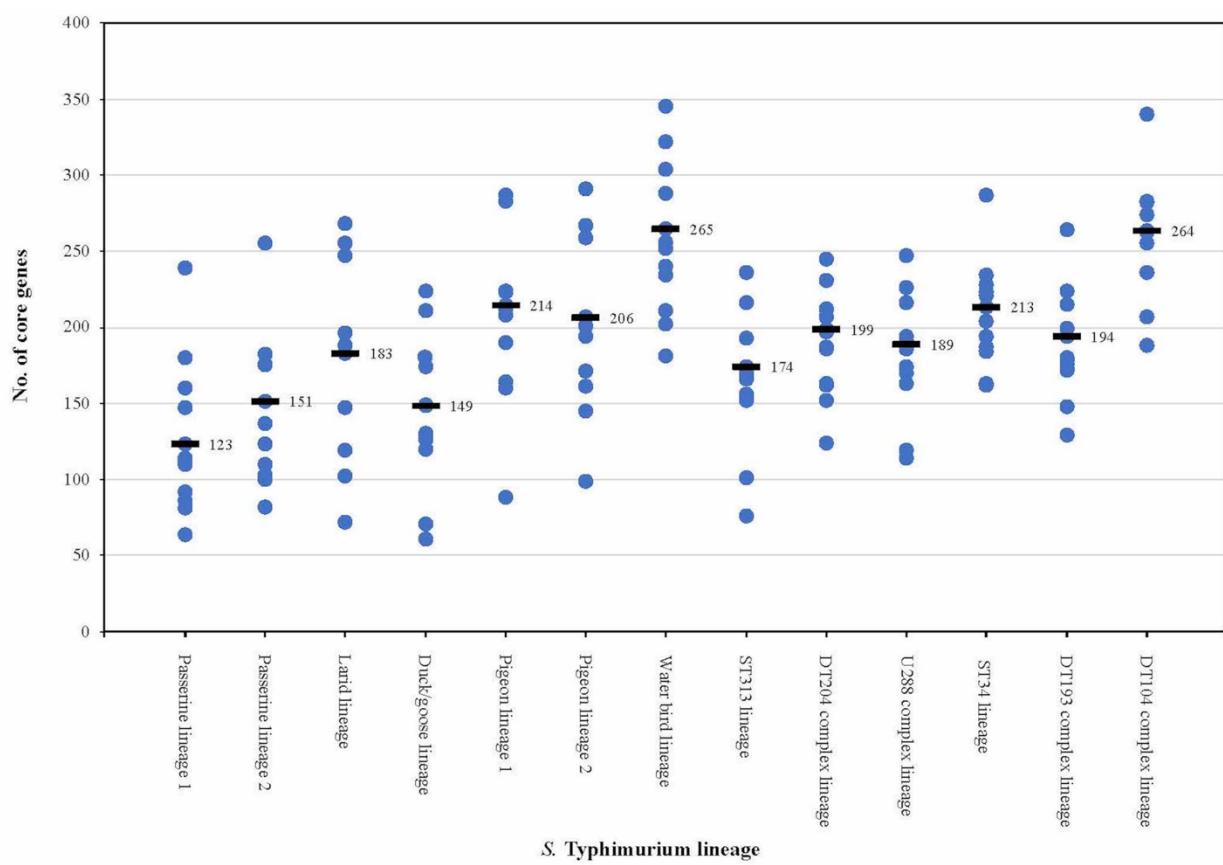


Supplementary Fig. 2: Individual avian host-associated *Salmonella* Typhimurium lineages formed by isolates from different countries. **a, Passerine lineage 1. **b**, Passerine lineage 2. **c**, Larid lineage. **d**, Duck/goose lineage. **e**, Water bird lineage. **f**, Pigeon lineage 1. **g**, Pigeon lineage 2.**

Reference genome from *S. Typhimurium* LT2 is represented by white dot in each tree.



Supplementary Fig. 3: Root-to-tip regression plots showing the temporal signal of the genome sequences used for Bayesian inference. **a, Passerine lineage 1. **b**, Passerine lineage 2. **c**, Larid lineage. **d**, Duck/goose lineage. **e**, Pigeon lineage 1. **f**, Pigeon lineage 2. **g**, Water bird lineage. Reference genome from *S. Typhimurium* LT2 is represented by red dot.**


Supplementary Fig. 4: Substitution rates of avian host-associated *Salmonella* Typhimurium

lineages inferred by Bayesian time-scaled tree. Estimated substitution rates of individual lineages are reported as median substitution rate with 95% highest posterior probability density (HPD). The red dot at the tree tip represents the reference genome from *S. Typhimurium* LT2 (collection year: ca. 1948). The posterior probability values of representative divergent events are >95% (not shown in the figure).

Supplementary Fig. 5: Neighbor joining tree based on wgMLST showing major *Salmonella* Typhimurium lineages circulating in avian ($n = 207$) and non-avian ($n = 83$) host species.

Tree tips are colored by *S. Typhimurium* lineage (see key), with number of isolates listed in brackets in the key. The scale bar indicates 200 wgMLST alleles. Allele differences between isolates are indicated by numbers on the connecting lines.

Supplementary Fig. 6: Number of core genes that one *Salmonella* Typhimurium lineage

differs another. The blue dot represents the number of core genes that is unique to a specific lineage when comparing it with another lineage. The black line represents the average number of core genes that is unique to a specific lineage when comparing it pairwise with all other lineages.

The detailed data of pairwise comparison can be found in [Supplementary Data 4](#).