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Abstract

Within-host evolution of bacterial pathogens can lead to host-associated variants of the same
species or serovar. Identification and characterization of closely related variants from diverse host
species are crucial to public health and host-pathogen adaptation research. However, the work
remained largely underexplored at a strain level until the advent of whole-genome sequencing
(WGS). Here, we performed WGS-based subtyping and analyses of Salmonella enterica serovar
Typhimurium (n = 787) from different wild birds across 18 countries over a 75-year period. We
revealed seven avian host-associated S. Typhimurium variants/lineages. These lineages emerged
globally over short timescales and presented genetic features distinct from S. Typhimurium
lineages circulating among humans and domestic animals. We further showed that, in terms of
virulence, host adaptation of these variants was driven by genome degradation. Our results provide
a snapshot of the population structure and genetic diversity of S. Typhimurium within avian hosts.
We also demonstrate the value of WGS-based subtyping and analyses in unravelling closely

related variants at the strain level.
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Introduction

Salmonella enterica is a major zoonotic bacterial pathogen that causes morbidity and mortality in
humans and animals worldwide!”>. More than 2,500 serovars have been identified within
Salmonella enterica according to the distinct combination of O and H antigens®. These serovars
are roughly grouped into two categories based on their host specificity, i.e., serovars with broad
host range (generalists) and narrow host range (specialists)*. Salmonella enterica serovar
Typhimurium (S. Typhimurium) and S. Enteritidis are examples of generalists that can colonize
and cause diseases in a wide variety of host species such as humans, livestock, poultry, and
wildlife. However, S. Typhi and S. Paratyphi A are restricted to humans and higher primates>®,
while S. Choleraesuis (pig adapted), S. Dublin (cattle adapted), S. Abortusovis (sheep adapted),
and S. Gallinarum (avian adapted) are associated with specific livestock or poultry’.

Although S. Typhimurium is considered the prototypical generalist serovar, epidemiologic
evidence supports that this serovar has undergone adaptive evolution within specific host species,
particularly in wild birds. Some avian host-associated S. Typhimurium variants identified by
phage typing include definite phage type (DT) 2 and DT99 circulating in pigeon®, DT8 linked to
duck/goose’, and DT40 and DT56 adapted to passerine'’. Recently, we also documented three S.
Typhimurium variants associated with larid, water bird, and passerine''. The emergence of host-
associated variants in a broad-host-range serovar suggests that defining generalist bacterial
pathogens at a species or serovar level is an oversimplification. It also highlights the importance
of within-host evolution in shaping bacterial genetic diversity and host specificity.

Each host species represents a distinct ecological niche for bacterial pathogens. Over the

course of colonization and infection, bacterial pathogens face challenges from the host species

3
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such as host immune response, antibiotic treatment, and native microbiota. Such challenges put
selective pressure on bacterial pathogens and force them to evolve within the host'?. As a result,
bacterial pathogens are subjected to genomic changes to develop mechanisms of immune evasion
and antimicrobial resistance (AMR), leading to emerging variants of the same species'’. Wild
birds constitute unique but underexplored ecological niches for microbes. Bacterial pathogens
colonizing avian hosts may evolve divergently from their relatives residing in domestic animals
due to difference in host environment (e.g., body temperature, immune system, exposure to
antibiotics)®!*!>. Therefore, avian hosts may represent underestimated reservoirs for emerging
pathogenic variants.

The emergence of new variants of bacterial pathogens poses a threat to public health as
they may present distinct pathogenicity and epidemicity. It is important to identify new variants,
characterize their genetic diversity, and correlate individual variants with their respective hosts.
This will contribute to our understanding of the evolution, adaptability, and pathogenicity
potential of bacterial pathogens within diverse hosts, and also be valuable for outbreak
investigation and infection control/treatment. The traditional antibody-based serotyping method
is used to differentiate between bacterial variants of the same species to a serovar level based on
their surface antigens®. However, serotyping cannot distinguish bacterial variants of the same
serovar. A variety of subtyping techniques such as pulsed-field gel electrophoresis (PFGE)'®!7,

)!%19 and phage typing”® have been

seven-housekeeping-gene multilocus sequence typing (MLST
developed for the latter purpose. Although these methods have been routinely used in surveillance

for bacterial pathogens, they still lack resolution in discriminating between closely related variants

at the strain level. Moreover, they cannot provide genetic information such as antimicrobial

4
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resistance and virulence of the tested variants’'. The advance in whole-genome sequencing
(WGS)-based subtyping and analyses provides superior resolution in identifying bacterial
pathogens and unravelling their phylogenetic relationships and genetic makeup?’. Currently,
single nucleotide polymorphism (SNP) and whole genome or core genome-based MLST analyses
are among the most commonly adopted WGS-based subtyping methods, which can differentiate
bacterial pathogens at a strain level?*-*,

In this study, we performed WGS-based subtyping and analyses of 787 S. Typhimurium
isolates collected from diverse wild birds during 1946-2021 across 18 countries. The overall goal
of this study is to reveal the population structure and genetic diversity of S. Typhimurium within
avian hosts. By identifying distinct S. Typhimurium variants associated with avian hosts using
WGS-based subtyping and analyses, our specific objectives are to: 1) gain insights into how
within-host evolution of bacterial pathogens shapes their host specificity; 2) identify the
evolutionary and genetic basis of S. Typhimurium adaptation to different host species; 3) assess
the use of WGS-based subtyping and analyses in distinguishing between closely related variants

(strain level) from multiple host species.

Results

Collection of S. Typhimurium isolates from avian hosts. A total of 787 S. Typhimurium isolates
from avian hosts (avian hosts herein refers to wild birds, and do not include domestic poultry)
were retrieved from EnteroBase on January 10, 2022 (Supplementary Data 1). The avian hosts
were grouped into six categories based on bird type/phylogeny”>?® (Fig. 1 and Supplementary

Data 1), i.e., passerine (order Passeriformes, also known as songbirds or perching birds; such as

5
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sparrow, finch, siskin, cardinal; n = 207), larid (order Charadriiformes; such as gull and tern; n =
138), duck/goose (order Anseriformes; n =37), pigeon (order Columbiformes; n = 58), water bird
(clade Aequornithes, such as cormorant, heron, pelican, stork; n = 154), and others (avian hosts
without a designated bird type at EnteroBase or other bird types not mentioned above; n = 193).
The collection contained historical and contemporary (1946-2021) isolates sampled from 18
countries across North America (n = 587), Europe (n = 124), Oceania (n = 52), Asia (n = 18),
South America (n =15), and Africa (n=1) (Fig. 1). Of note, among the 787 genomes at EnteroBase,
our group sequenced and uploaded 414 genomes (collection year: 1978-2019; collection location:
43 US states). Overall, our collection represented the most diverse collection of S. Typhimurium
from avian hosts at EnteroBase as of the retrieval time.

Population structure of S. Typhimurium from avian hosts. To investigate the population
structure of S. Typhimurium from avian hosts, we generated a neighbor joining (NJ) tree of the
787 genomes (Fig. 2a) using the Salmonella wgMLST (whole genome MLST) scheme at
EnteroBase. Ten S. Typhimurium lineages were present on the NJ tree, which included seven
distinct lineages clustered by isolates (n = 633) primarily associated with specific bird types, i.e.,
passerine lineage 1 and lineage 2, larid lineage, duck/goose lineage, pigeon lineage 1 and lineage
2, and water bird lineage (Fig. 2a). The other three lineages on the NJ tree were formed by isolates
from diverse bird types (Fig. 2a). As avian hosts usually are highly mobile and can migrate across
different continents or countries, we also investigated the impact of geographic locations on the
clustering pattern of the avian isolates. The seven S. Typhimurium lineages defined by bird type
all contained isolates from >2 continents, indicating a global distribution of these lineages

(Supplementary Fig. 1). Further, each individual lineage included isolates from multiple countries
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(Supplementary Fig. 2). Within the same lineage, isolates were observed to cluster based on
collection countries. For examples, in passerine lineage 1, isolates from New Zealand clustered as
a sublineage of the US passerine lineage (Supplementary Fig. 2a); in larid lineage, isolates from
Australia clustered as a sublineage of the US larid lineage (Supplementary Fig. 2c¢). These
observations indicate clonal expansions within different continents or countries, likely facilitated
by bird migration?’-%,

We filtered the 787 genomes by excluding those without a collection year, location,
specific bird host or other important metadata information. The filtered collection of 207 S.
Typhimurium genomes (Supplementary Data 2) were used for further phylogenetic analysis and
Bayesian inference. A maximum-likelihood (ML) phylogenetic tree based on 6,310 core-genome
SNPs (cgSNPs) of the 207 genomes were built to validate the population structure of avian S.
Typhimurium inferred by wgMLST. The lineages present in the cgSNP-based ML phylogenetic
tree (Fig. 2b) were supported by robust bootstrap values of 100% and congruent with those formed
in the NJ tree based on wgMLST.

A total of six STs (ST19, 99, 128, 568, 3719, and 7075) were identified among the seven
lineages based on the classic seven-housekeeping-gene MLST method (Fig. 2b). Specifically,
isolates from passerine lineage 1, larid lineage, duck/goose lineage, and pigeon lineage 1 all
belonged to ST19, which is consistent with the fact that ST19 is one of the most prevalent S.
Typhimurium sequence types detected in a broad range of hosts!”. In addition, isolates from

pigeon lineage 2 were represented by ST128, and variable STs were presented in isolates from

passerine lineage 2 (i.e., ST19, 568, and 7075 ) and water bird lineage (i.e., ST99 and 3719).
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Therefore, sequence types defined by seven-housekeeping-gene MLST method did not distinguish
between the lineages defined by bird type.

Emergence times of avian S. Typhimurium lineages. Temporal signal of the sequence data was
examined by TempEst* before Bayesian molecular clock analysis. Moderate to strong temporal
signals (correlation coefficient between 0.65 and 0.96) were detected in the sequence data
(Supplementary Fig. 3). After confirming temporal signal, we built a Bayesian time-scaled
phylogenetic tree using BEAST2 v2.6.5 to infer the emergence times of the lineages (Fig. 3).
Based on Bayesian inference, passerine lineage 1, passerine lineage 2, larid lineage, duck/goose
lineage, and pigeon lineage 1 emerged in ca. 1950 [95% highest probability density (HPD): 1940—
1959], ca. 1969 (95% HPD: 1959-1977), ca. 1943 (95% HPD: 1925-1957), ca. 1826 (95% HPD:
1771-1885), and ca. 1959 (95% HPD: 1947-1969), respectively (Fig. 3). Isolates from the five
lineages mostly belonged to ST19 except that some isolates from passerine lineage 2 presented
variable STs (Fig. 2b), indicating that these lineages diverged from a most recent common
ancestor (MRCA) belonging to ST19. Pigeon lineage 2 (ST128) and water bird lineage (ST99 and
3719) evolved independently and formed in ca. 1847 (95% HPD: 1798-1886) and ca. 1953 (95%
HPD: 1935-1967), respectively (Fig. 3). Of note, duck/goose lineage and pigeon lineage 2
emerged in 19" century (i.e., 1826 for duck/goose lineage and 1847 for pigeon lineage 2), whereas
the other five lineages formed within 20" century during 1940-1970. The results show that S.
Typhimurium evolved on short timescales to form individual lineages within avian hosts. We then
estimated the median substitution rate for each lineage according to Bayesian inference. Median
substitution rates for individual lineages ranged from 1.3 x 1077 to 6.4 x 1077 substitutions/site/year,

with the lowest substitution rate for duck/goose lineage and the highest substitution rate for water
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bird lineage (Supplementary Fig. 4). These estimates are higher than the long-term (over million
years) substitution rates in Salmonella and E. coli (107'° to 107 substitutions per site per year)*’,
but similar to the short-term (over months or years) substitution rates reported for two ST313
lineages adapted to humans in sub-Saharan Africa (1.9 x 1077 and 3.9 x 1077 substitutions per site
per year)*!.

Phylogenetic relationship of S. Typhimurium from avian and other diverse hosts. To
investigate the phylogenetic relationship of avian isolates to other sourced isolates, we included
83 contextual genomes from diverse host species (humans, pigs, cattle, poultry) other than wild
birds in the previous cgSNP-based ML phylogenetic tree. The contextual genomes represented
the major epidemiologic S. Typhimurium lineages circulating globally (Supplementary Data 3).
Taken together with the seven avian host-associated lineages, we presented a comprehensive
population structure of S. Typhimurium in diverse hosts (Fig. 4). An NJ tree (Supplementary Fig.
5) of the 207 avian and 83 contextual genomes based on Salmonella wgMLST scheme at
EnteroBase was built to complement the cgSNP-based ML phylogenetic tree. Isolates present in
the NJ tree had the same clustering pattern with those shown in the ML phylogenetic tree based
on cgSNPs (Fig. 4).

There were 13 lineages present in the ML phylogenetic tree (Fig. 4), which can be divided
into two categories based on host range, i.e., lineages with broad host range (generalist lineages)
and lineages with narrow host range (specialist lineages). Generalist lineages included
monophasic S. Typhimurium ST34 lineage*?, DT104 complex lineage®’, and DT193 complex
lineage'*; on the other hand, specialist lineages contained DT204 complex lineage primarily

associated with cattle**, U288 complex lineage possibly adapted to pigs*’, human-adapted ST313
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3637, and the seven lineages linked

lineage causing invasive salmonellosis in sub-Saharan Africa
to specific bird types. By incorporating the host information into the cgSNP-based ML
phylogenetic tree, we therefore were able to correlate individual lineages to specific host species
(Fig. 4). It should be noted that generalist and specialist lineages are proposed in this study based
on previous epidemiologic studies”'*, and lineages with narrow host range can occasionally infect

other hosts'!-33-3842

, indicating that adaptation of these lineages is still at an initial stage.

Genomic comparison of S. Typhimurium lineages from avian and other diverse hosts. To
explore the genetic diversity of S. Typhimurium variants, we performed comparative genomic
analyses of the 207 genomes from avian hosts and 83 contextual genomes from other diverse hosts
(humans, pigs, cattle, poultry). Pangenome analysis showed that the number of core genes (genes
present in 299% isolates) shared by isolates within a specific lineage (henceforth referred to as
lineage-associated core genes) ranged from 4,147 to 4,381, with the lowest being passerine lineage
1, and the highest being DT104 complex lineage (Fig. 5a; Supplementary Data 4). Isolates from
all the 13 lineages shared 3,798 core genes, which we referred to as S. Typhimurium core genes.

)44 possibly due to

This number is smaller than previous estimates (3,836 or 3,910 core genes
the increased genetic diversity in our dataset collection. By subtracting S. Typhimurium core
genes from lineage-associated core genes, we calculated the number of core genes that represented
a unique core-gene combination in a specific lineage (Fig. 5b). We further performed a pairwise
comparison of lineage-associated core genes and found that individual lineages were differed from
one another by an average number of 194 unique core genes (Supplementary Data 4). However,

we did not find that avian host-associated lineages consistently presented much higher or lower

number of unique core genes compared to lineages from other diverse hosts. In particular,
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passerine lineage 1 had the lowest average number of unique core genes (n = 123) relative to other
lineages, while water bird lineage had the highest number (n = 265) (Supplementary Fig. 6).

AMR profiling revealed that all the isolates from avian host-associated lineages except
duck/goose lineage lacked AMR genes (average number per isolate = 1) (Fig. 5¢). The only AMR
gene detected was aac(6')-laa (Supplementary Data 5), which is a chromosomally encoded cryptic
gene®. However, more AMR genes were detected in isolates from broad-host-range lineages
(DT104, DT193, and ST34: average number per isolate >4), and lineages associated with humans
(ST313: average number per isolate = 7) or specific livestock (DT204 and U288: average number
per isolate = 2 and 8§, respectively) (Fig. 5¢).

Plasmid profiling revealed that most of the isolates from diverse lineages carried plasmid
replicons IncFIB (70%; 203/290) and IncFII (74.5%; 216/290) (Supplementary Data 6) that
belong to the S. Typhimurium-specific virulence plasmid pSLT*. However, both plasmid
replicons were absent in all the isolates from passerine lineage 2 (n = 26) and ST34 lineage (n =
21) (Supplementary Data 6). As a result, isolates from the two lineages carried fewer plasmid
replicons (average number per isolate <1) compared to isolates from other lineages (average
number per isolate >1) (Fig. 5d). Additionally, isolates from passerine lineage 1 and DT193
complex lineage also tended to lose the two plasmid replicons (Supplementary Data 6).
Specifically, both IncFIB and IncFII were absent in 40% (23/59) isolates from passerine lineage
1, while all the DT193 isolates (n = 9) lacked IncFIB and two DT193 isolates lacked IncFII
(Supplementary Data 6).

Prevalence of virulence-associated genome degradation in avian host-associated S.

Typhimurium lineages. Our virulence profiling detected an average number of 114-116
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virulence genes per isolate (Fig. 6a) for 9 out of the 13 lineages present on Fig. 4. The four lineages
with fewer virulence genes per isolate were passerine lineage 1 (average number per isolate =
113), passerine lineage 2 (average number per isolate = 107), ST34 lineage (average number per
isolate = 107), and DT193 complex lineage (average number per isolate = 113) (Fig. 6a). We
further identified that the absent virulence genes were mostly encoded by pSLT, i.e., pefABCD
(plasmid-encoded fimbriae), rck (resistance to complement killing), and spvBCR (Salmonella
plasmid virulence) (Supplementary Data 7), which was consistent with the fact that isolates from
these four lineages also completely or partially lacked pSLT replicons IncFIB or IncFII
(Supplementary Data 6). For chromosomally encoded virulence genes, we only detected a
complete loss of type 3 secretion system (T3SS) effector genes gogB in water bird lineage or sopA
in DT193 complex lineage (Supplementary Data 7).

We also determined the number of chromosome-encoded virulence genes with identical
mutation in individual lineages. Avian host-associated lineages and ST313 lineage adapted to
humans had more than 10 (duck/goose lineage, pigeon lineage 1, pigeon lineage 2, ST313) or 20
(passerine lineage 1, passerine lineage 2, larid lineage, water bird lineage) identical mutant
virulence genes; however, the number was less than 10 for lineages with broad host range (DT104,
DT193, and ST34) or associated with livestock (DT204 and U288) (Fig. 6b). The types of
mutation (Supplementary Data 8) were manually checked by aligning the virulence gene of
interest against the reference virulence gene from S. Typhimurium LT2*” using BLAST. Among
the 61 mutant chromosome-encoded virulence genes from different lineages, 47 were T3SS genes,
five were curli genes (csgA, csgB, csgE, csgF, c¢sgG), three were type 1 fimbriae genes (fimC,

fimH, fiml), two were long polar fimbriae genes (IpfC, [pfD), and four were genes associated with
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other functions (mgtB, misL, ratB, sodCl) (Fig. 6¢ and Supplementary Data 8). The majority of
mutations resulted from point mutations (SNPs) in T3SS genes, while a few virulence genes were
subjected to deletions or multiple mutations (i.e., mutation occurs in more than one location in the
gene) (Fig. 6¢). We found that identical mutations in /pfC (substitution from C to T at position
328) and IpfD (deletion of GTTTGAGAAT at position 406-415) co-occurred in all specialist
lineages except water bird lineage (single base-pair deletion in IpfC and intact IpfD) and U288
complex lineage (intact [pfC and IpfD). Each avian host-associated variants also had lineage-
specific mutations. For instances, single base-pair deletion in fimC of passerine lineage 1, single
base-pair deletions in gogB, sseJ, and sseK?2 of passerine lineage 2, SNPs in sptP and ssaQ of larid
lineage, SNP in sodCl of duck/goose lineage, SNPs in csgB, ssaD, and sseB of pigeon lineage 1,

SNPs in prgH and sopE?2 of pigeon lineage 2, and loss of gogB in water bird lineage (Fig. 6c¢).

Discussion

Overall, our WGS-based subtyping and analyses identify seven avian host-associated S.
Typhimurium lineages and provide new insights into the population structure and genetic diversity
of S. Typhimurium from diverse host species (i.e., humans, livestock, poultry, wild birds). The
avian host-associated lineages emerged over short timescales and present phylogenetic features
(e.g., clustering based on bird type) and genetic traits (e.g., lack of AMR, lineage-specific
virulence gene signatures) distinct from those formed by clinical isolates or isolates of domestic
animal origin. Our findings suggest that some variants of this generalist serovar may be

undergoing a convergent adaptive evolution driven by host species. From a virulence perspective,
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we find that genome degradation through point mutations (mainly SNPs) and deletions is the
molecular basis of host adaptation of S. Typhimurium to avian hosts.

Among the 344,387 Salmonella enterica genomes deposited at EnteroBase as of January
10, 2022, only 0.5% of the genomes (n = 1,880) were from avian hosts. Our group sequenced and
uploaded 699 out of the 1,880 genomes, which included 414 genomes of serovar Typhimurium.
Therefore, our study makes a substantial contribution to the understanding of S. Typhimurium
diversity with the identification of three new lineages associated with avian hosts (i.e., passerine
lineage 1, larid lineage, and water bird lineage). Previous work on S. Typhimurium population
structure focused on specific lineages formed by isolates from humans and domestic animals, and
the geographic locations of these isolates were restricted to certain countries or regions!#32:33:35-
3748 As a result, the genetic diversity of this bacterial pathogen was underestimated due to a lack
of representative isolates from wild animals, and the phylogenetic relationship of individual
lineages remains largely unexplored on a global scale. Our study not only reveals the population
structure of 787 avian isolates collected from 18 countries over a 75-year period, but explores the
genetic diversity and phylogenetic relationship of globally sourced S. Typhimurium from diverse
hosts.

As a prototype of generalist bacterial pathogens, S. Typhimurium can colonize and cause
diseases in a variety of host species*’. However, the identification of seven avian host-associated
S. Typhimurium lineages indicates that some variants of serovar Typhimurium have adapted to
specific avian host species. Previous studies also reported that DT204 and U288 complex lineages
of S. Typhimurium were mainly restricted to cattle and pigs, respectively***>, and ST313 lineage

36,37

of S. Typhimurium was adapted to humans’°’. Therefore, it is more accurate to describe serovar
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Typhimurium as a collection of variants with different host range and degrees of host adaptation.
The strong correlation of S. Typhimurium variants to specific hosts suggests that within-host
evolution (host niche) is the primary driver in shaping host specificity of S. Typhimurium. Further,
we did not find association of avian isolates with geographic locations at a lineage level. However,
within some specific avian host-associated lineages, avian isolates from the same country
clustered together to form a sublineage, indicating that geographic location (disperse limitation)
serves as a less important evolutionary driver than host niche. The seven avian host-associated
lineages emerged in 19" and 20" centuries (ca. 1826, 1847, 1943, 1950, 1953, 1959, and 1969,

respectively), which occurred well after the divergence of avian host groups®>2°

. Similarly, the
human-adapted ST313 sublineage L1, L2, and L3 in sub-Saharan Africa dated to around 1950,
1948, and 2007, respectively’’. Collectively, these results support that host adaptation of S.
Typhimurium is likely to be a relatively recent and ongoing process subjected to anthropogenic
influence (e.g., globalization, antibiotic usage).

AMR profiles of S. Typhimurium lineages from diverse host species provide further
evidence demonstrating the importance of host niches and anthropogenic activities in bacterial
evolution. Our study shows that S. Typhimurium variants associated with avian hosts carried few
AMR genes, while variants from humans or domestic animals had an average number of 2-§ AMR
genes per isolate. Isolates evolve within avian hosts may be less likely to develop AMR as wild
birds are rarely exposed to antibiotics in the natural environments; conversely, isolates from

humans and domestic animals carry high number of AMR genes for the host species are frequently

subjected to antibiotics, thus putting selective pressure on the colonized bacterial pathogens.

15


https://doi.org/10.1101/2022.11.17.516949
http://creativecommons.org/licenses/by-nc-nd/4.0/

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.17.516949; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Genome degradation or loss-of-function mutation is a common pattern in adaptive
evolution of Salmonella®. For example, loss or inactivation of fimbriae is linked to host
adaptation®'2, Compared to host generalist serovar Enteritidis, host specialist serovars such as
Dublin and Gallinarum accumulate more pseudogenes that lead to loss of fimbriae®’. In this study,
pseudogenization of the same fimbrial virulence gene network (/pfC and /pfD) due to deletion
mutation was found in all specialist lineages except U288 complex lineage, suggesting
inactivation of Lpf fimbriae may play an important role in transition of serovar Typhimurium from
generalist to specialist. Additionally, it is reported that a group of T3SS effector proteins (SseL,
SifB, SopD2, Ssel, SteB, SteC, SIrP, and SseK?2) are frequently present in generalist serovars but
lose functions in specialist serovars®®. Similarly, we observed that more SNPs and deletions were
accumulated in T3SS effector genes from host-associated lineages, which include but not limited
to sseL, sifB, sopD2, sseJ, steC, slrP, and sseK2. It is likely that allelic variations in these T3SS
effector genes may contribute to host specificity of S. Typhimurium.

A limitation of this study is the scarcity of S. Typhimurium isolates from avian hosts.
Current WGS-based surveillance of bacterial pathogens primarily focuses on isolates from clinical
samples, food samples, livestock, and poultry; however, isolates from wildlife have not been
routinely collected and sequenced. As indicated in this study, wild animals such as wild birds
represent remarkable but less studied reservoirs for emerging variants of bacterial pathogens.
Epidemiologic studies have also revealed a correlation between some human and avian
salmonellosis outbreaks, suggesting transmission of bacterial pathogens between wild birds and
humans***2, Although such transmission is rare relative to transmission between humans and

humans or between humans and domestic animals®*°, they can still have a substantial impact on
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global health as avian hosts are highly mobile and possibly carry and spread bacterial pathogens
over large distances?’?®, In a One Health framework, current surveillance of bacterial pathogens
needs to be not only focused on clinical isolates or isolates from domestic animals, but those
originating from wild animals. We also note that the sequencing data in our collection is skewed
toward S. Typhimurium isolates from North America, followed by Europe and Oceania, which is
consistent with the fact that WGS has been widely used by countries (e.g., the United States, the
United Kingdom, Australia) from these continents for surveillance of bacterial pathogens™.
However, the state-of-the-art technology is less adopted in Asia, Africa, and South America,
mostly due to economic reason®’. Emerging epidemic lineages of bacterial pathogens may be
circulating in these countries but underrepresented in current public repositories. Therefore, a
global research collaboration is required to generate a robust and informative set of sequencing
data to represent bacterial pathogens and their variants that cause diseases worldwide.

In conclusion, we reveal the population structure and genetic diversity of S. Typhimurium
in avian and other diverse hosts. Our results indicate that within-host evolution has resulted in
multiple host-associated S. Typhimurium lineages, which present genetic traits distinct from
lineages with broader host range. Although our WGS-based subtyping and analyses are focused
on serovar Typhimurium, the approach is translatable to other bacterial pathogens. It is expected
that other generalist Salmonella serovars or bacterial pathogens such as E. coli and Campylobacter
spp. commonly colonizing wild birds may have also undergone a similar adaptive evolution within
avian hosts. Identifying these emerging host-associated variants and understanding the genetic
basis of host adaptation will facilitate epidemiologic investigation, provide insight into the

pathogenicity potential of the strain, and help design effective infection treatment/control
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strategies. For example, the lineage-specific mutations in virulence genes of avian host-associated
lineages can serve as genetic markers for source tracking, and lack of AMR genes in avian host-
associated S. Typhimurium variants means that antibiotics may treat the infection. Further,
genome degradation in virulence genes may attenuate the pathogenicity of these variants to

humans, making them of potential interest to study as vaccine candidates.

Methods

Dataset collection. S. Typhimurium genomes from avian hosts (n = 787) retrieved from
EnteroBase (search term: source niche-wild animal; source type-avian; predicted serotype: serovar
Typhimurium) were used to infer the population structure of this bacterial pathogen in wild birds.
The avian isolates were collected over broad spatial and temporal scales (Supplementary Data 1).
Among the 787 genomes deposited at EnteroBase, we sequenced and uploaded 414 genomes as
part of a nationwide project collaborating with the US Geological Survey-National Wildlife
Health Center to reveal antimicrobial resistance profile and evolutionary history of avian S.

Typhimurium in the United States''->®

. The S. Typhimurium isolates were collected from diseased
or dead birds in 43 US states during 1978-2019 (Supplementary Data 1). The other 373 genomes
were collected between 1946 and 2021 from 18 countries (including the United States) across the
world and were publicly available at EnteroBase (Supplementary Data 1). We further refined the
787 genomes by excluding those without a designated collection year, location, bird host or those
not belonging to an avian host-associated lineage. The filtered collection (n = 207)

(Supplementary Data 2) was used for cgSNP-based ML phylogenetic analysis and Bayesian

inference. In addition, contextual genomes (Supplementary Data 3; n = 83) from major S.
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Typhimurium epidemic lineages circulating worldwide were selected to infer the phylogenetic
relationship and compare the genomic differences of S. Typhimurium from avian and other diverse
host species (humans, livestock, poultry).

DNA extraction and whole-genome sequencing. For DNA extraction of the avian isolates, each
isolate was streaked onto xylose lysine deoxycholate agar plates and incubated for 18 h at 37 °C.
A single colony was then picked, transferred to Luria-Bertani broth, and cultured overnight at
37 °C with continuous agitation (250 rpm). Genomic DNA was extracted using the Qiagen
DNeasy® Blood & Tissue kit (Qiagen, Valencia, CA, USA) following the manufacturer’s
instructions. DNA purity (A260/A280 >1.8) was confirmed using NanoDrop™ One (Thermo
Scientific™, DE, USA) and DNA concentration was quantified using Qubit® 3.0 fluorometer
(Thermo Fisher Scientific Inc., MA, USA). Extracted genomic DNA was stored at -20 °C before
WGS. For WGS, DNA library was prepared using the Nextera XT DNA Library Prep Kit
(Illumina Inc., San Diego, CA, USA), normalized using quantitation-based procedure, and pooled
together at equal volume. The pooled library (600 ul) was denatured and sequenced on an
[llumina MiSeq sequencer (Illumina Inc., San Diego, CA, USA).

Quality assessment for raw reads. The quality of raw reads obtained in this study and
downloaded from EnteroBase was assessed using the MicroRunQC workflow in GalaxyTrakr v2°°.
Sequence data passing quality control thresholds (i.e., average coverage >30, average quality
score >30, number of contigs <400, total assembly length between 4.4 and 5.1 Mb) were used for
subsequent genomic analyses.

Phylogenetic analysis. An NJ tree (https:/enterobase.warwick.ac.uk/ms_tree?tree_id=70709)

was built based on the wgMLST scheme (21,065 loci) at EnteroBase® to infer population structure
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of S. Typhimurium from avian hosts (n = 787). Seven avian host-associated lineages were
identified in the NJ tree. Genomes from the seven avian host-associated lineages were then refined
as described in “Data collection”. The filtered collection of 207 S. Typhimurium genomes
(Supplementary Data 2) was used to build the cgSNP-based ML phylogenetic tree. Specifically,

Snippy (Galaxy v4.5.0) (https:/github.com/tseemann/snippy) was used to generate a full

alignment and find SNPs between the reference genome LT2 (RefSeq NC_003197.1) and the

genomes of avian isolates, and Snippy-core (Galaxy v4.5.0) (https://github.com/tseemann/snippy)

was used to convert the Snippy outputs into a core SNP alignment. The resultant core SNP
alignment (6,310 SNPs in the core genomic regions) was used to construct a cgSNP-based ML
phylogenetic tree by MEGA X v10.1.8 using the Tamura-Nei model and 1,000 bootstrap
replicates®!. Sequence types of the filtered S. Typhimurium isolates was identified using 7-gene
(aroC, dnaN, hemD, hisD, purE, sucA and thrA) MLST at Enterobase® and annotated on the
cgSNP-based ML phylogenetic tree. We also added contextual genomes (Supplementary Data 3;
n = 83) that represented the major S. Typhimurium epidemic lineages circulating globally in the
cgSNP-based ML phylogenetic tree to infer the genetic relationship of lineages formed by avian
and non-avian (e.g., humans, livestock, poultry) isolates. The cgSNP-based ML phylogenetic trees
generated in this study were visualized and annotated using the Interactive Tree of Life (iTOL v6;

https://itol.embl.de).

Bayesian inference. The temporal signal of the sequence data was examined using TempEst
v1.5.3%° before phylogenetic molecular clock analysis. Subsequently, a Bayesian time-scaled
phylogenetic tree was constructed via BEAUti v2.6.5 and BEAST2 v2.6.5%? using the core SNP

alignment (6,310 SNPs in the core genomic regions) generated from filtered collection (n =207).
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The parameters in BEAUti v2.6.5 were set as followings: Prior assumption-coalescent Bayesian
skyline; Clock model-relaxed clock log normal; Markov chain Monte Carlo (MCMC): chain
length-250 million, storing every 1,000 generations. Two independent runs with the same
parameters were performed in BEAST2 v2.6.5 to ensure convergence. The resultant log files were
viewed in Tracer v1.7.2 to ensure that the effective sample size (ESS) of key parameters was more
than 200. A maximum clade credibility tree was created using TreeAnnotator v2.6.4 with burnin
percentage of 10%. Finally, the tree was visualized wusing FigTree v1.4.4

(https://github.com/rambaut/figtree/releases) and annotated with the emergence times and

substitution rates of individual lineages. To determine the substitution rate, we multiplied the
substitution rate estimated by BEAST2 platform by the number of cgSNPs (6,310 bp), and then
divided the product by the average genome size of the avian isolates (4,951,383 bp).

Pangenome analysis. Raw reads of the 207 avian isolates and 83 contextual isolates from diverse
host species were de novo assembled using Shovill (Galaxy v1.0.4)* and then annotated by
Prokka (Galaxy v1.14.6)%*. The annotated contigs in GFF3 format produced by Prokka were taken
by Roary (Galaxy v3.13.0)* to calculate the pangenome with a minimum percentage identity of
95% for BLASTP. Specifically, lineage-associated core genes (i.e., genes present in more than
99% isolates from a specific lineage) were calculated by using genomes from individual lineages
as input (passerine lineage 1: n = 59; passerine lineage 2: n = 26; larid lineage: n = 33; duck/goose
lineage: n = 23; pigeon lineage 1: n = 17; pigeon lineage 2: n = 21; water bird lineage: n = 28;
ST313 lineage: n = 10; DT204 complex lineage: n = 9; U288 complex lineage: n = 20; ST34
lineage: n=21; DT193 complex lineage: n =9; DT104 complex lineage: n = 14). S. Typhimurium

core genes (i.e., genes present in more than 99% isolates from all lineages) were calculated by
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using genomes from all the isolates (n = 290) of avian and non-avian origin as input. We also
performed a pairwise comparison of lineage-associated core genes to evaluate the genetic
relatedness of individual lineages: First, the number of core genes shared by two lineages was
calculated by using genomes from the two lineages; second, the number of core genes that differed
the two lineages was obtained by subtracting the core genes shared by two lineages from lineage-
associated core genes.

AMR, plasmid, and virulence profiling. ABRicate (Galaxy v1.0.1)°® was used to identify the
AMR genes, plasmid replicons, and virulence factors by aligning each draft genome assembly
(see “Pangenome analysis™) against the ResFinder database®’, PlasmidFinder database®®, and
Virulence Factor Database (VFDB)®, respectively. For all searches using ABRicate, minimum
nucleotide identity and coverage thresholds of 80% and 80% were used, respectively. Virulence
genes that were not 100% identical or covered with the reference virulence gene from VFDB may
have deletions, insertions, or substitutions of interest. We then manually checked the mutation

type by aligning the virulence gene of interest against the reference virulence gene from VFDB

using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

Data availability
Sequence data of the S. Typhimurium isolates from our lab (isolate name in the format “PSU-4
digits”, e.g., PSU-2718) are deposited in the NCBI Sequence Read Archive (SRA)

(https://www.ncbi.nlm.nih.gov/sra) under BioProject PRINA357723. Publicly available sequence

data were downloaded from EnteroBase (https://enterobase.warwick.ac.uk/), NCBI SRA

(https://www.ncbi.nlm.nih.gov/sra), and the European Nucleotide Archive
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(https://www.ebi.ac.uk/ena). Accession numbers of the genomes used in this study are listed in

Supplementary Data 1-3.
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Figure legends

Fig. 1: Avian isolates of Salmonella Typhimurium used in this study (n = 787).
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a, Number of isolates grouped by avian hosts. Bird type-others: avian hosts without a designated
bird type at EnteroBase or any bird types not included in the defined categories. b, Number of
isolates grouped by geographic locations. ¢, Number of isolates grouped by collection years. N/A:

the collection year is not available.
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726  Fig. 2: Population structure of globally sourced Salmonella Typhimurium isolates from

727 avian hosts.
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728 a, Neighbor joining tree of the 787 S. Typhimurium isolates from avian hosts

729  (https://enterobase.warwick.ac.uk/ms_tree?tree_id=70709). The NJ tree is constructed based on

730  the Salmonella wgMLST scheme (21,065 loci) at EnteroBase. The scale bar indicates 200
731  wgMLST alleles. Allele differences between isolates are indicated by numbers on the connecting
732 lines. In the legend “Bird type”, the number in brackets indicates the number of isolates from that
733 specific bird type. “Other, not specified” represents avian hosts without a designated bird type at
734 EnteroBase. “Other, specified” represents avian hosts that do not belong to passerine, larid, water

735  bird, duck/goose, pigeon, and the number of isolates from these avian hosts is <10. More detailed
35
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736  information on individual bird type and its corresponding isolates can be found in Supplementary
737  Data 1. b, Maximum-likelihood phylogenetic tree of the 207 S. Typhimurium isolates from avian
738  hosts (See “Methods-Dataset collection” for the selection criteria for the 207 isolates out of the
739  whole collection of 787 isolates). The tree is built based on 6,310 SNPs in the core genomic
740  regions with reference to S. Typhimurium LT2 and rooted at midpoint. Individual avian host-
741  associated lineages are supported by bootstrap value of 100%. The color strip “Sequence type”
742  represents the S. Typhimurium multilocus sequence type determined by 7-gene (aroC, dnaN,
743 hemD, hisD, purE, sucA and thrA) MLST.
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Fig. 3: Emergence times of avian host-associated Salmonella Typhimurium lineages inferred

by Bayesian time-scaled tree.
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Estimated emergence times of individual lineages are reported as median years with 95% highest
posterior probability density (HPD). The red dot at the tree tip represents the reference genome
from S. Typhimurium LT2 (collection year: ca. 1948). The posterior probability values of

representative divergent events are >95% (not shown in the figure).
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Fig. 4: Phylogenetic relationship of Salmonella Typhimurium lineages circulating within

diverse hosts (n = 290).

Tree scale: 0.0001

< 2

Salmonella Typhimurium lineage (host)

D Passerine lineage 1 (passerine birds)
. Larid lineage (larids)

D Passerine lineage 2 (passerine birds)
. DT204 complex (cattle)

. Pigeon lineage 1 (pigeons)

[l ST313 (humans)

D Duck/goose lineage (ducks/geese)
. Pigeon lineage 2 (pigeons)

. Water bird lineage (water birds)

. U288 complex (pigs)

E’ DT104 complex (broad host range)
[] DT193 complex (broad host range)
[l ST34 (broad host range)

The legend field at the right of the tree represents the S. Typhimurium lineage (primary host).
Broad host range in parentheses indicates that isolates from the corresponding lineage are
commonly identified among humans, cattle, pigs, and poultry. The specific host species in
parentheses indicates that isolates from the corresponding lineage are primarily from that specific
host. Individual lineages are correlated to their associated host species in the tree. Grey shaded
host species in U288 complex lineage and DT204 complex lineage represent minor host other than

primary host.
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781  Fig. 5: Genetic diversity of Salmonella Typhimurium lineages from diverse hosts (n = 290).
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782  a, Number of core genes (genes present in >99% isolates of the analyzed dataset), soft shell genes
783  (genes present in 95%-99% isolates of the analyzed dataset), shell genes (genes present in 15%-
784 95% isolates of the analyzed dataset), and cloud genes (genes present in 0%-15% isolates of the
785  analyzed dataset) per isolate in individual lineages. b, Number of S. Typhimurium core genes (n
786 = 3,798) and number of core genes that represent a unique core-gene combination in a specific
787 lineage (see colored key). ¢, Average number of antimicrobial resistance (AMR) genes per isolate
788  in individual lineages. d, Average number of plasmid replicons per isolate in individual lineages.
789  The number of isolates in each lineage is: Passerine lineage 1 (n = 59); Passerine lineage 2 (n =
790  26); Larid lineage (n = 33); Duck/goose lineage (n = 23); Pigeon lineage 1 (n = 17); Pigeon lineage

791 2 (n=21); Water bird lineage (n = 28); ST313 lineage (n = 10); DT204 complex lineage (n = 9);
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792 U288 complex lineage (n = 20); ST34 lineage (n = 21); DT193 complex lineage (n = 9); DT104
793  complex lineage (n = 14). Error bars represent standard error of the average number of a dataset.
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813  Fig. 6: Virulence gene profiles of Salmonella Typhimurium lineages from diverse hosts (n =

814 290).
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815 a, Average number of virulence genes per isolate in individual lineages. Error bars represent
816  standard error of the average number of a dataset. b, Number of virulence genes with identical
817  mutation in individual lineages. ¢, Heatmap showing the mutation types of virulence genes in
818  individual lineages. The number in parentheses indicates the number of isolates from that specific
819  lineage. “Multiple mutations” indicates that several mutations occur in a virulence gene at
820  different positions. The detailed mutation information (mutation type, mutation position, base-
821  pair change) of each virulence gene in individual lineages can be found in Supplementary Data 8.
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Supplementary Fig. 1: Neighbor joining tree based on wgMLST showing the geographic
distribution of avian Salmonella Typhimurium isolates (» = 787) in six continents. In the
legend “Continent”, the number in brackets indicates the number of isolates from that specific
continent. The scale bar indicates 200 wgMLST alleles. Allele differences between isolates are

indicated by numbers on the connecting lines.
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Supplementary Fig. 2: Individual avian host-associated Salmonella Typhimurium lineages

formed by isolates from different countries. a, Passerine lineage 1. b, Passerine lineage 2. c,

Larid lineage. d, Duck/goose lineage. e, Water bird lineage. f, Pigeon lineage 1. g, Pigeon lineage

2. Reference genome from S. Typhimurium LT2 is represented by white dot in each tree.
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Supplementary Fig. 3: Root-to-tip regression plots showing the temporal signal of the
genome sequences used for Bayesian inference. a, Passerine lineage 1. b, Passerine lineage 2.
¢, Larid lineage. d, Duck/goose lineage. e, Pigeon lineage 1. f, Pigeon lineage 2. g, Water bird

lineage. Reference genome from S. Typhimurium LT2 is represented by red dot.


https://doi.org/10.1101/2022.11.17.516949
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.17.516949; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Median: 3.8 x 107

Median: 1.3 x 107
95% HPD: 1.3 x 107-2.5x 107

Duck/goose lineage

Median: 3.8 x 107

95% HPD: 2.5x 107-3.8x 107 _‘

Median: 2.5 x 107
- 95% HPD: 1.3 x 107-5.1x 107

Median: 2.5 x 107
95% HPD: 2.5 x 107-3.8 x 107

Passerine lineage 2

Median: 3.8 x 107
95% HPD: 2.5 x 107 5.1 x 107

Passerine lineage 1

Median: 6.4 x 107
95% HPD: 3.8 x 107-8.9x 107

@ S. Typhimurium LT2
1740 1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000 2020

year

Supplementary Fig. 4: Substitution rates of avian host-associated Salmonella Typhimurium
lineages inferred by Bayesian time-scaled tree. Estimated substitution rates of individual
lineages are reported as median substitution rate with 95% highest posterior probability density
(HPD). The red dot at the tree tip represents the reference genome from S. Typhimurium LT2
(collection year: ca. 1948). The posterior probability values of representative divergent events

are >95% (not shown in the figure).
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Supplementary Fig. 5: Neighbor joining tree based on wgMLST showing major Salmonella
Typhimurium lineages circulating in avian (» = 207) and non-avian (» = 83) host species.
Tree tips are colored by S. Typhimurium lineage (see key), with number of isolates listed in
brackets in the key. The scale bar indicates 200 wgMLST alleles. Allele differences between

isolates are indicated by numbers on the connecting lines.
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S. Typhimurium lineage

Supplementary Fig. 6: Number of core genes that one Salmonella Typhimurium lineage
differs another. The blue dot represents the number of core genes that is unique to a specific
lineage when comparing it with another lineage. The black line represents the average number of
core genes that is unique to a specific lineage when comparing it pairwise with all other lineages.

The detailed data of pairwise comparison can be found in Supplementary Data 4.
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