

1 **Title: Toxicity impacts on human adipose MSCs acutely exposed to Aroclor and non-
2 Aroclor mixtures of PCBs.**

3 **Authors**

4 Riley M. Behan-Bush¹, Jesse N. Liszewski¹, Michael V. Schrodt, Bhavya Vats, Xueshu Li,
5 Hans-Joachim Lehmler, Aloysius J. Klingelhutz, and James A. Ankrum*

6 ¹Contributed equally

7 *Corresponding Author: James-ankrum@uiowa.edu

8 **ABSTRACT**

9 PCBs accumulate in adipose where they may impact the growth and function of cells within the
10 tissue. This is particularly concerning during adolescence when adipocytes expand rapidly.
11 Herein we sought to understand how exposure to PCB mixtures found in U.S. schools affects
12 human adipose mesenchymal stem/stromal cell (MSC) health and function. We investigated how
13 exposure to Aroclor 1016 and Aroclor 1254, as well as a newly characterized non-Aroclor
14 mixture that resembles the PCB profile found in cabinets, Cabinet Mixture, affects adipose MSC
15 growth, viability, and function in vitro. We found that exposure to all three mixtures resulted in
16 two distinct types of toxicity. At PCB concentrations >20 μ M, the majority of MSCs die, while
17 at 1-10 μ M MSCs remained viable but display numerous alterations to their phenotype. At these
18 sublethal concentrations, MSC rate of expansion slowed, and morphology changed. Further
19 assessment revealed PCB-exposed MSCs had impaired adipogenesis and a modest decrease in
20 immunosuppressive capabilities. Thus, exposure to PCB mixtures found in schools negatively
21 impacts the health and function of adipose MSCs. This work has implications for human health
22 due to MSCs' role in supporting the growth and maintenance of adipose tissue.

23 **SYNOPSIS**

24 PCB mixtures found in schools are toxic to human adipose mesenchymal stem/stromal cells,
25 stunting their growth and altering their function in ways that could contribute to metabolic
26 diseases.

27 **Key Words (words not in title):** Mesenchymal stem cell, persistent organic pollutants,
28 endocrine disrupting chemical, EDC

29 **INTRODUCTION (1.5 pages total)**

30 There is significant need to understand how exposure to polychlorinated biphenyl (PCB)
31 mixtures found both in old and new schools contributes to the dysfunction of adipose tissue.
32 PCBs are a group of environmental toxins containing 209 distinct congeners that were heavily
33 produced globally from the late 1920s until being banned in 1979.¹ Despite being banned,
34 mixtures of different PCB congeners can still be found in capacitors (Aroclor 1016),
35 transformers (Aroclor 1254), caulk (Aroclor 1254), and many other building materials making
36 them ubiquitous in public spaces across the United States.¹⁻⁴ Furthermore, evidence of Aroclor
37 1016 and 1254 has been found in schools as recent as 2021.⁵

38 While intentional production of PCBs is banned, PCBs continue to be produced as contaminants
39 in products such as pigments and varnishes used as finishes.⁶⁻⁸ One study found finished
40 cabinetry to be a novel, non-Aroclor source of PCB mixtures leading to elevated levels of PCBs

47 in residential houses and apartments.⁹ It was also shown that factory workers exposed to these
48 materials accumulate significant levels of cabinet mixture PCBs (PCB 47, PCB 51, and PCB 68)
49 in their plasma and urine.¹⁰

50
51 Occupational exposure is not the only way humans are exposed to PCBs. While exposure to
52 PCBs was once thought to be primarily through ingestion of contaminated food, it is now clear
53 that inhalation is a major route of human exposure, specifically for the semi-volatile, lower-
54 chlorinated PCBs.¹¹ These semi-volatile PCBs do not remain fixed in place, but become
55 volatilized over time, making them a persistent source of PCB exposure to those in the
56 environment.¹⁰ Not only have non-Aroclor sources been found on small scales in residential
57 homes, but these sources now have widespread distribution in the air of places such as Chicago
58 despite not being manufactured in high levels prior to the PCB ban.¹² Due to the wide variety of
59 old and new products containing PCBs and the lack of natural degradation pathways for many
60 PCBs, there continues to be widespread contamination from both Aroclor and non-Aroclor
61 sources in buildings made with PCB-containing materials.

62
63 A particularly vulnerable population to PCB exposure is school-aged children, as many schools
64 still in use today were built prior to the PCB-ban and newer buildings are likely to contain
65 pigments and cabinetry finishes that contain non-Aroclor mixtures of PCBs. Because PCBs are
66 semi-volatile, adolescents are exposed through inhalation of PCBs while at school. Studies of
67 school air have found significantly elevated levels of PCBs in the air of many schools.^{13,14} One
68 study found concentrations inside schools were 10-100 times higher than outdoors.¹⁵ While
69 attending these schools, children accumulate PCBs. One study found that lower-chlorinated
70 PCBs were detected in 95% of pupils attending a contaminated school compared to only 27% of
71 the students at a non-contaminated school.¹⁴ Further rat studies using PCB mixtures similar to
72 those found in schools (a combination of Aroclor 1254 and 1221) have reported PCB
73 accumulation in tissues such as the liver and adipose tissue.^{16,17} Since children continue to be
74 exposed to these PCB sources in their day to day lives, there is a dire need to understand how
75 exposure to PCB mixtures affects lipid rich tissues, such as adipose.

76
77 While often thought of as just a storage depot for fat, adipose communicates with multiple other
78 organ systems through endocrine signaling and plays a critical role in regulating whole-body
79 energy metabolism. For example, adipose tissue stores excess lipids not only for caloric reserve,
80 but also to avoid ectopic fat deposition in other organs such as the liver, muscle, and heart which
81 would promote systemic complications such as non-alcoholic fatty liver disease, diabetes, and
82 heart disease.¹⁸ Adipose tissue also releases adipokines, like adiponectin, which enhances insulin
83 sensitivity and suppresses production of inflammatory cytokines such as TNF α .¹⁹ Thus,
84 disruptions to adipose tissue metabolism and/or endocrine signaling can result in metabolic
85 syndromes such as obesity, diabetes, and hyperlipidemia.²⁰ During adolescence adipose tissue
86 undergoes massive expansion via the proliferation and differentiation of adipose progenitors,
87 also called adipose mesenchymal stem/stromal cells (MSC). Although adipose MSCs are
88 responsible for maintaining healthy turnover rates of adipocytes throughout a person's lifespan,
89 these progenitor cells are particularly important during adolescence, when the number of adipose
90 cells more than quadruples before becoming relatively constant in adulthood.²¹ Additionally,
91 these adipose MSCs are active contributors to regulating local inflammation, particularly in the
92 early stages of obesity.^{22,23} Early in the development of metabolic syndromes, adipose MSCs will

93 produce high levels of MCP-1 leading to increased immune cell infiltration and inflammation.²⁴
94 Other studies have shown stimulation of adipose MSCs is critical to regulating adipose
95 inflammation.²⁵ Since proper tissue expansion and immune function is imperative for adipose
96 health, disruption of these adipose MSCs by environmental toxins would lead to disruption of
97 metabolic health as the adipose becomes less able to replace adipocytes or control adipose
98 inflammation.^{20,26,27} Therefore, it is imperative to understand if PCBs directly impact adipose
99 MSCs. While many studies have been performed on adipocytes or pre-adipocytes exposed to
100 PCBs, to date, the effects of PCB exposure on primary human adipose MSC has not been
101 previously evaluated.²⁸

102
103 Herein we systematically analyze how three different PCB mixtures impact human adipose
104 MSCs. Two of the mixtures are found in legacy sources, Aroclor 1016 and Aroclor 1254, while
105 the third mixture has been derived to mimic the PCB congeners recently found to be emitted
106 from new cabinetry, Cabinet Mixture.^{9,29} All three mixtures were recently identified in a study
107 looking at room-to-room variations in PCBs. PCB 47, the primary congener found in Cabinet
108 Mixture, was identified in rooms built after 2012. Whereas rooms built before 1970 had evidence
109 of Aroclor 1016 and 1254 likely from the use of fluorescent light fixtures and caulking
110 respectively.^{5,15} Not only are these mixtures relevant to modern human exposure, but they also
111 represent a wide range of congeners. Aroclor 1016 is comprised of primarily lower-chlorinated,
112 non-dioxin-like PCBs (Dioxin TEQ: 0.09)³⁰; Aroclor 1254 is comprised of higher-chlorinated
113 PCBs including several dioxin-like congeners (Dioxin TEQ: 21)³⁰; Cabinet Mixture is three non-
114 dioxin-like congeners.^{9,31} A range of concentrations of each mixture are used to assess how
115 short-term exposure impacts human adipose MSC growth, viability, and functional phenotype.
116

117 **METHODS**

118

119 **Materials**

120 *Sources of PCBs*

121 Aroclor 1016 and Aroclor 1254 (lot number KC 12-638) in the original containers from
122 Monsanto (St. Louis, MO) were provided by the Synthesis Core of the Iowa Superfund Research
123 Program (ISRP). The PCB congener profiles of both Aroclors have been reported previously.^{32,33}
124 The cabinet PCB mixture was prepared by mixing 2,2',4,4'-tetrachlorobiphenyl (PCB 47),
125 2,2',4,6'-tetrachlorobiphenyl (PCB 51), and 2,3',4,5'-tetrachlorobiphenyl (PCB 68) from
126 AccuStandard (New Haven, CT, USA) in a weight ratio of 75:17:8. The original data and
127 characterization of cabinet mixture are openly available through the Iowa Research Online
128 repository at <https://doi.org/10.25820/data.006184>.
129

130

131 *Cell culture media*

132 Unless otherwise specified, cells were cultured in MEM-alpha (Thermo Fisher, Cat#: 12561049)
133 supplemented with 1% (v/v) penicillin/streptomycin (Life Technologies), 1% (v/v) L-glutamine
134 (Life Technologies), and 0.5% or 15% fetal bovine serum (VWR) depending on the experiment.
135 For differentiation of adipose MSCs to adipocytes, two additional media formulations were used.
136 Initiation of differentiation was done with Preadipocyte Differentiation Media (PDM-2) (Lonza,
137 Cat: #PT-8002). Maintenance of differentiation was done with DMEM supplemented with 1.9
138 ng/mL Insulin (Sigma-Aldrich, Cat: #91077C) and 10% FBS.

139 **Isolation and characterization of adipose-derived MSC**

140 MSCs were isolated from the stromal vascular fraction of human adipose. Briefly, adipose tissue
141 from three breast reduction surgeries, donors 20-40 years of age, were obtained from the
142 University of Iowa Tissue Procurement Core. The core collects tissue specimens from surgeries
143 performed at the University of Iowa Hospitals and Clinics after obtaining informed consent
144 according to an approved IRB held by the core. The core then removes any identifying
145 information and provides the de-identified tissue to researchers. Once the tissue was obtained,
146 adipose was dissected out, minced into small pieces, and incubated overnight in collagenase. The
147 next day, the tissue was further disrupted via serial pipetting and centrifuged to separate the
148 stromal vascular fraction from the lipid-rich layer. The SVF was collected, washed 3 times, and
149 plated in polystyrene flasks with MEM-alpha growth media supplemented with 15% FBS. 4
150 hours after plating, any unattached cells were discarded, and the remaining cells were cultured
151 until 70% confluent. The cells were then passaged 1:3 and expanded into a P1 generation for
152 cryobanking and analysis of surface markers and differentiation potential.

153

154 To determine if the isolated cells were indeed MSCs, they were tested for conformance to the
155 MSC minimal criteria.³⁴ Cells between passage 1 and 2 were stained for CD90, CD73, CD105
156 CD34, CD45, CD11b, CD19, and HLA-DR surface expressions. Positive surface marker
157 expression staining was carried out using PE-CD90 antibody (BD Biosciences, A15794), PE.
158 Cy7-CD73 antibody (BD Biosciences, Cat #561258), and FITC-CD105 antibody (BD
159 Biosciences, Cat #561443) with their corresponding isotype controls: PE-CD90 Mouse IgG1
160 (Invitrogen, Cat #GM4993), PE. Cy7 Mouse IgG1k (BD Biosciences, Cat #557872), and FITC
161 Mouse IgG1k (BD Biosciences, Cat #56649) respectively. CD34, CD45, CD11b, CD19, and
162 HLA-DR were assessed using a PE-conjugated hMSC Negative Cocktail (BD Biosciences, Cat
163 #562530). After staining, cells from each donor were analyzed on a Cytek Northern Lights
164 Spectral Cytometer (**Supplemental Figure 1**).

165

166 **Metabolic Function Assay**

167 To determine the toxicity of the PCB mixtures on MSC metabolic function, we used an XTT
168 assay (Biotium, Cat #30007). Using either 15% FBS or 0.5% FBS media, 2,000 MSCs were
169 plated in 96-well plates containing 167 µL of media with a DMSO control (1 µL/mL) or media
170 with 5 or 25 µM of PCBs dissolved in DMSO. After 48 hours, the culture media was removed
171 and replaced with 100 µL of 15% FBS or 0.5% FBS media, depending on the original media
172 composition. Then, 50 µL of XTT solution was added to the 100 µL of media in each well
173 followed by incubation at 37 °C for 2 hours. After incubation, absorbance was read at 490 nm
174 and 650 nm. Wells without MSCs and MSCs that had been permeabilized with 0.2% TritonX-
175 100 were used as internal controls for each experiment. To show the change in XTT signal as a
176 percent of the vehicle treated controls, all samples divided by the average of the vehicle treated
177 controls.

178

179 **Cell Proliferation and Morphology**

180 Cell proliferation was determined by counting nuclei stained with Hoechst 33342 (Thermo
181 Fisher Scientific, Cat # H3570) and morphology was evaluated using Hoechst 33342 and
182 ActinGreen 488 (Thermo Fisher Scientific, Cat # R37110) after 48 hours of PCB exposure.
183 MSCs were seeded on 24-well plates with a seeding density of 12,000 cells/well. One mL of

184 0.5% FBS media with a DMSO control (1 μ L/mL) or 0.5% FBS media with 1, 5, 10, 20, 25 μ M
185 of PCBs dissolved in DMSO was added to each well at the same time as seeding. After 48 hours
186 of incubation, media was removed from each well. The MSCs were then fixed for 5 minutes
187 using 10% formalin followed by permeabilization with 0.05% Triton X-100 in PBS. A staining
188 solution was made by diluting Hoechst 33342 and ActinGreen 488 with PBS to concentrations of
189 5 μ L/mL and 2 drops/mL, respectively. After washing the cells with PBS, the staining solution
190 was added to each well, and cells were incubated for 30 minutes at room temperature. The
191 staining solution was removed and replaced with PBS. Imaging was performed at 10x
192 magnification on an inverted fluorescent microscope (Leica DMI6000). To prevent bias in field
193 selection, 5x5 tile scans were performed around the center of the well (25 images per well). The
194 number of nuclei was counted using ImageJ (NIH) with an automated cell counting macro that
195 ran a Gaussian blur, threshold, convert to mask, and watershed before analyzing particles to
196 obtain the number and size of nuclei.

197

198 **Cell Viability**

199 Cell death was assessed using propidium iodide staining and the LDH-Glo Cytotoxicity Assay
200 (Promega, Cat #J2380). For the propidium iodide staining, MSCs were seeded at 61,000
201 cells/well in a 6-well plate. The MSCs were cultured for 48 hours in 5 mL of 0.5% FBS media
202 with a DMSO control (1 μ L/mL) or 0.5% FBS media with 1, 5, 10, 20, 25 μ M of PCB mixtures
203 dissolved in DMSO. The cells were then lifted and stained with propidium iodide (Sigma-
204 Aldrich, Cat # P4864) to a final concentration of 0.01 μ M. Controls included unstained MSCs as
205 well as dead control cells which had been permeabilized with 0.2% TritonX-100 for 10 minutes.
206 The cells were then incubated in the staining solution for 10 minutes before being analyzed via
207 flow cytometry using a Cytek Northern Lights spectral cytometer. For the LDH assay, MSCs
208 were plated in a 24-well plate as described in the “Cell Proliferation and Morphology” section.
209 After 48 hours of incubation, 2 μ L of media was collected from each well and each sample was
210 diluted with 48 μ L of LDH storage buffer. LDH Detection Reagent was prepared and added to
211 each sample as directed by the manufacturer’s protocol. After incubation for 1 hour at room
212 temperature, luminescence was recorded and normalized by the positive control to obtain LDH
213 release as a % of the dead cell control.

214

215 **MSC-PBMC Direct Contact Co-culture**

216 Peripheral blood mononuclear cells (PBMCs) were isolated from a leukapheresis reduction cone
217 from a de-identified donor via the DeGowin Blood Center at the University of Iowa Hospital and
218 Clinics. PBMCs were cryopreserved in a solution of 40% FBS, 50% RPMI, and 10% DMSO
219 until use. Immunosuppressive capabilities of MSC were investigated utilizing a co-culture
220 method as previously described.³⁵ MSCs in a T75 flask were exposed to 1 μ L/mL DMSO
221 (“Vehicle Control”), 5, or 10 μ M of PCB mixtures in 0.5% FBS containing media. Cells were
222 then cultured within these conditions for another 48 hours. After pre-exposure to PCB mixtures,
223 MSCs were harvested, counted, and plated for co-culture. PBMCs were stained with CFSE Cell
224 Division Tracker dye (BioLegend; Cat: #423801) for 15-minutes. Any unbound CFSE dye was
225 quenched with RPMI (15% FBS). Two-hundred fifty thousand cells were then added to each
226 well to establish a 1:3 ratio of MSC to PBMCs. To activate PBMCs, 250,000 CD3/CD28
227 Dynabeads (Thermo Fisher Scientific, Cat: #11132D) were added to each well. A stimulated
228 control with Dynabeads but no MSCs and an unstimulated control without MSCs or Dynabeads
229 were performed in parallel and used for gating and statistical comparison. After 4-days of co-

230 culture, PBMCs were collected and analyzed by flow cytometry. Gates were first set on FSC-A
231 vs SSC-A for excluding any Dynabeads, MSCs, and debris within the samples. The resultant
232 cells were then analyzed for percent proliferation as measured by CFSE intensity using the
233 unstimulated control to set a gate.

234

235 **Adipogenic Differentiation Assay**

236 To investigate the PCB mixtures' potential disruption on adipogenesis through pre-exposure,
237 cells were plated at a confluent density and cultured with 0.5% FBS MEM-alpha with 1 and
238 10 μ M of Aroclor 1016, 1254, or Cabinet Mixture for two days to achieve confluence. As a
239 vehicle control, cells were cultured in 0.5% MEM-alpha containing 1 μ M of DMSO. After the
240 pre-exposure period, all wells were washed with 1x PBS to remove remaining PCBs, and media
241 was switched to 10% FBS Preadipocyte Differentiation Media (PDM-2) for 7 days, with media
242 changes every 3-4 days. After 7 days the media was switched to 10% FBS DMEM + 1.9 ng/mL
243 Insulin for another 7 days, with media changeouts every 3-4 days. As a negative control, cells
244 received complete 0.5% FBS DMEM for all 14 days. At the end of the 14 days, media was
245 collected for adiponectin analysis and cells were either stained with AdipoRed and imaged or
246 harvested for RT-qPCR analysis.

247

248 *Adiponectin ELISA*

249 Media was collected after 14-days of differentiation and stored at -20 C until analysis.
250 Quantification of adiponectin production was performed using an ELISA kit (BioLegend; Cat
251 #442304) with no dilutions of samples to provide absorbance values within the linear range of
252 the standard curve. Four biological replicates were used for each condition.

253

254 *RT-qPCR Analysis*

255 In preparation for RNA isolation, all samples were lifted with Accutase, spun down at 500g for 5
256 minutes, and washed with PBS. Total RNA was isolated via RNeasy kit (Qiagen; Cat #74104) as
257 per the manufacturer's protocols and eluted in 50 μ L nuclease-free water. Each RNA elution was
258 run on nano-drop for nucleotide quantification and ensuring protein/organic solvent purification.
259 cDNA was synthesized utilizing a high-capacity cDNA reverse transcriptase kit (Applied
260 Biosystems; Cat #4375575). ABI QuantStudio (model 7 Flex) was used for quantitative PCR
261 reactions with SYBR green master mix (Applied Biosystems; Cat #4367659). The catalog of
262 chosen primers can be found in supplementary data (**Supplementary Table 1**). GAPDH was
263 chosen for normalizing gene expression, and fold changes were compared to fully differentiated
264 vehicle controls via $2^{-\Delta\Delta Ct}$ method.

265

266

267 **Statistical Analysis**

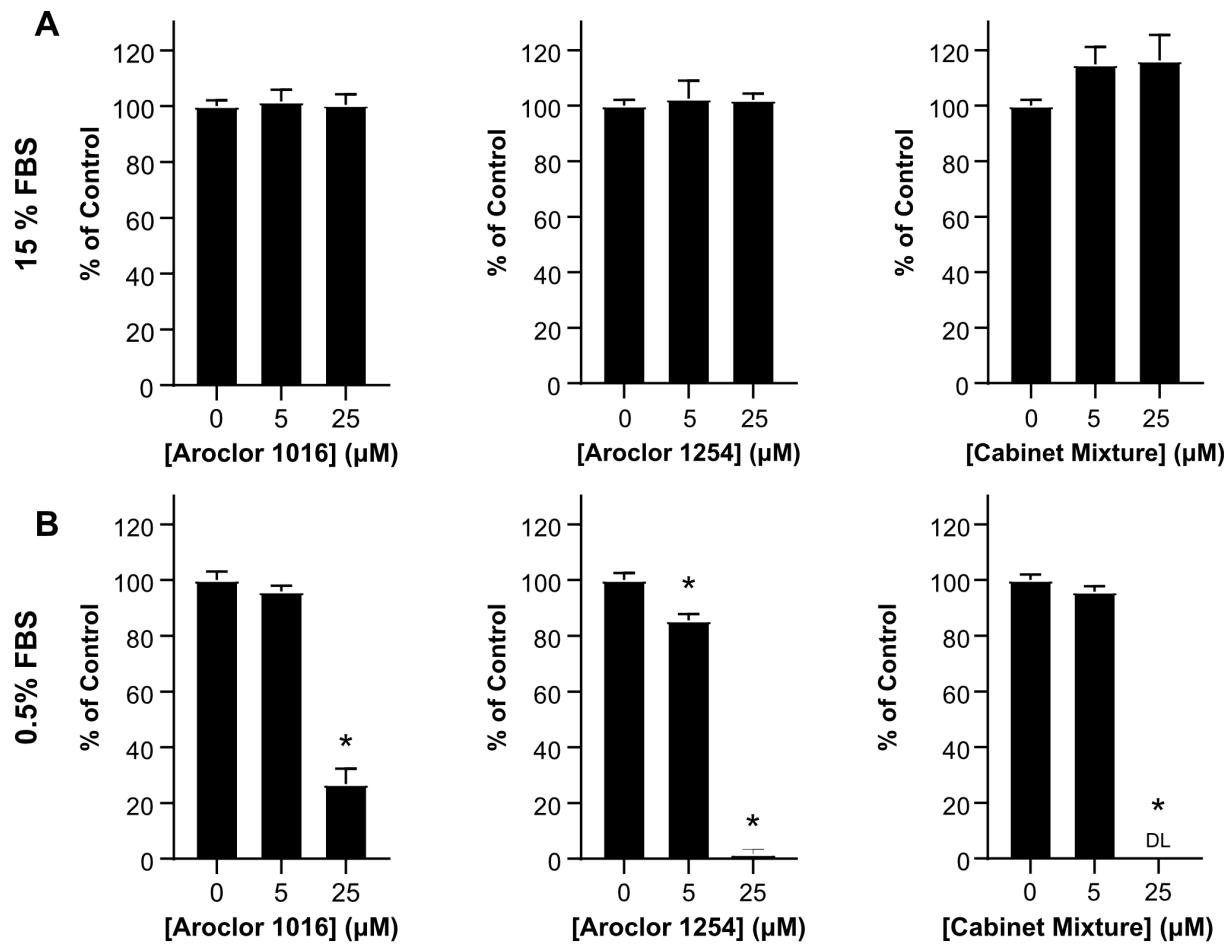
268 GraphPad Prism 9 was used for graphing and performing statistical analyses on quantitative data.
269 One-way ANOVA with Dunnett post-hoc analysis was used for statistical comparisons. A
270 p<0.05 was considered statistically significant for post-hoc analyses. IC50 values were
271 determined using Nonlinear Regression (least squares fit) for the [Inhibitor] vs. response (three
272 parameters) model. Bottom constraint was set to 0 and top constraint was set to 152, the average
273 number of cells/frame for the vehicle control condition. Further statistical details are provided
274 within each figure caption.

275

276 **RESULTS AND DISCUSSION**

277 Toxicity of PCB mixtures is heavily influenced by serum

278 To investigate the effect of the PCB mixtures on MSC health, we decided to first determine if
279 PCBs are toxic to MSCs. For assessing toxicity, MTT and XTT assays are often a first choice as
280 they can detect a broad range of cellular responses. Since these assays measure NADH
281 production, changes in the viability, metabolic function, or proliferative capacity of the cells will
282 all lead to a change in signal. During our first XTT experiment, we performed a 48-hour
283 exposure of MSCs to PCB mixtures dissolved in 15% FBS media. We found the PCB mixtures
284 had little to no effect on the MSCs at both 5 and 25 μ M concentrations (**Figure 1A**). These data
285 were surprising since previous work has shown various PCBs negatively impact many cell types
286 such as human preadipocytes, neural stem cells, and astrocytes.³⁶⁻³⁸ Therefore, we were
287 expecting to see a similar negative impact of the PCB mixtures on MSCs.

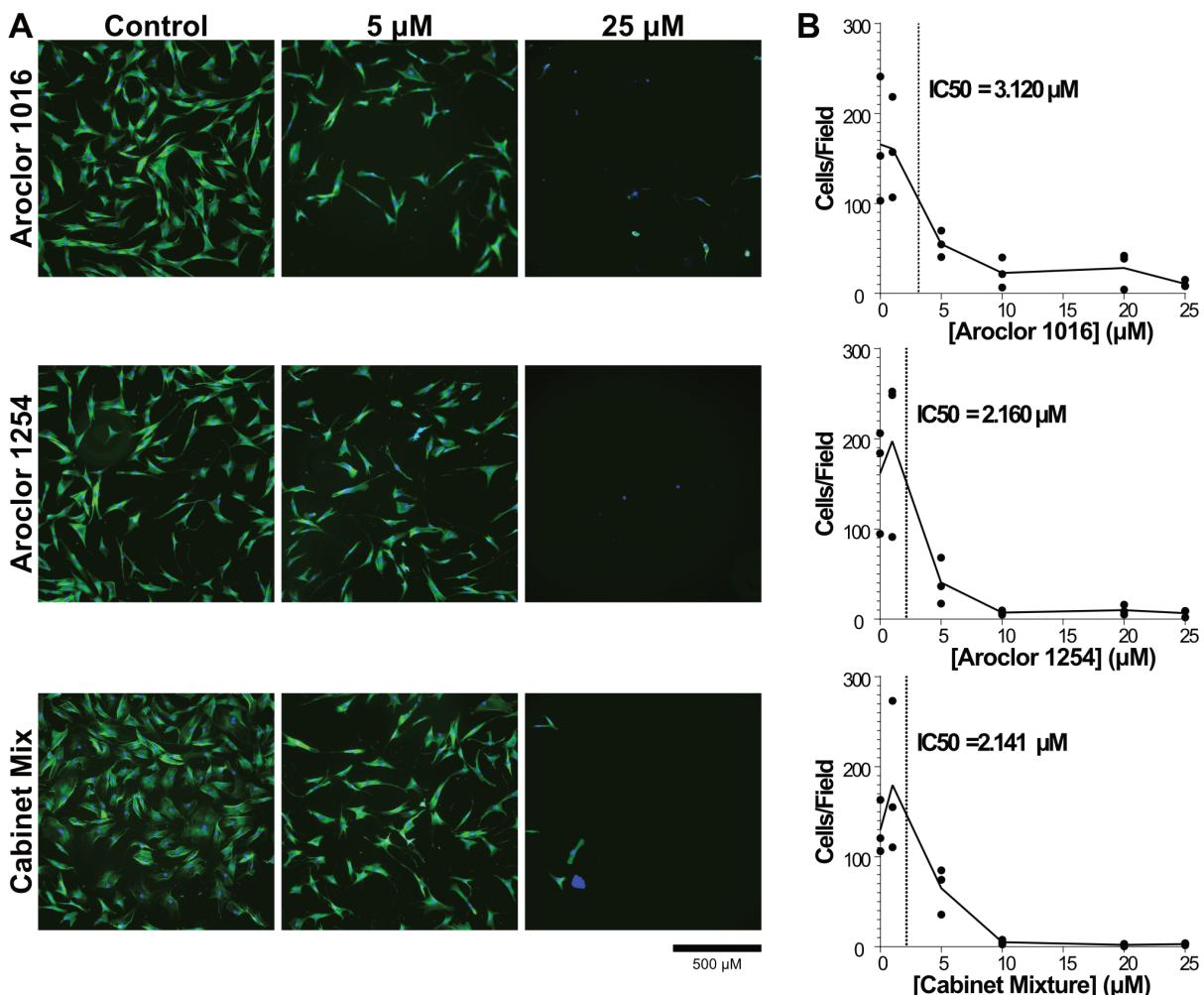

288

289 We were curious if there was a component of our cell culture system preventing PCBs from
290 exerting an effect on MSCs. Previous work shows the drug binding sites of albumin strongly
291 bind PCB congeners.³⁹⁻⁴¹ For our first experiment, 15% of the media was FBS, of which almost
292 half of the proteins were albumin.⁴² We hypothesized that the albumin in our media was
293 significantly decreasing the amount of free PCB available to MSCs, thus masking any toxic
294 effects of PCB exposure. To test this hypothesis, we repeated our first experiment, exposing the
295 MSCs to the PCB mixtures for 48 hours, however, we replaced the 15% FBS media with a 0.5%
296 FBS media.

297

298 After 48 hours of PCB exposure in this 0.5% FBS media, we found striking differences between
299 the vehicle control and 5 and 25 μ M conditions. Aroclor 1254 had close to a 20% reduction in
300 NADH production at 5 μ M, and all three PCB mixtures had 75% or greater reductions in NADH
301 production at 25 μ M exposures (**Figure 1B**). Compared to the 15% FBS media, the 0.5% FBS
302 media allowed for much greater insight into the effects of PCBs on MSCs and revealed PCB
303 exposure disrupts adipose-derived MSCs cellular processes. Thus, all subsequent cell
304 experiments were performed using MEM-alpha with 0.5% FBS unless otherwise stated.

305

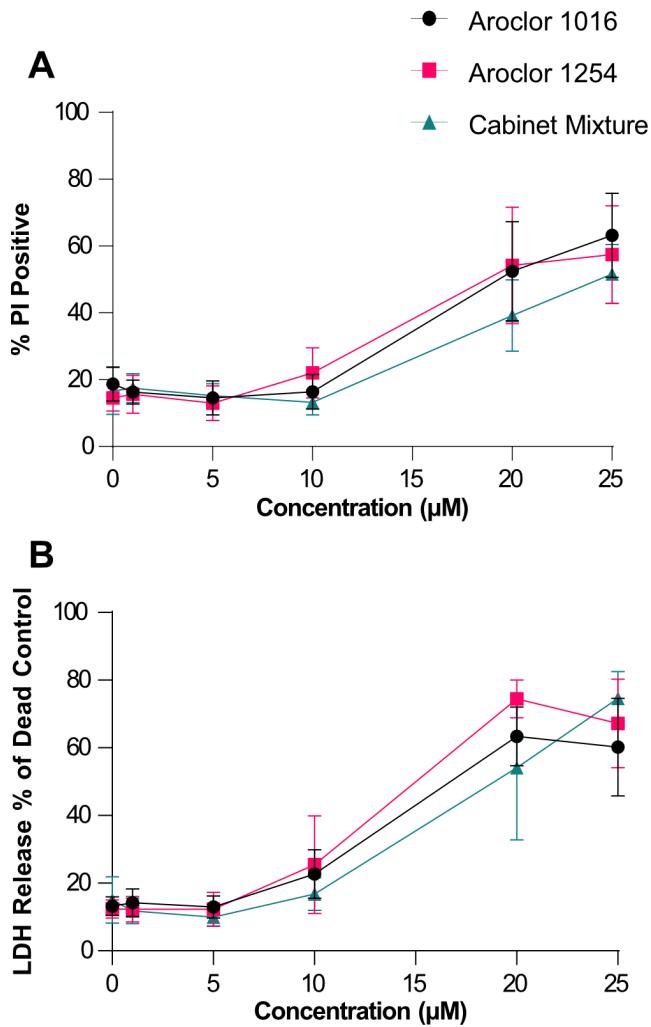

306
307 **Figure 1: The effect of PCBs on MSC metabolic activity is highly dependent on serum**
308 **concentration.** The metabolic activity of MSCs was determined using XTT after 48 hours of
309 exposure to 5 or 10 μM concentrations of Aroclor 1016, Aroclor 1254, or Cabinet Mixture
310 dissolved in (A) 15% FBS media or (B) 0.5% FBS media. Bars represent mean and error bars are
311 SEM. Ordinary one-way ANOVA, * designates significant difference ($p < 0.05$) between the
312 indicated group and vehicle control (0 μM) treated MSCs after Dunnnett multiple comparison
313 corrections. n=8 biological replicates with adipose MSC donor 2334 (representative of 4
314 experiments).

315 Short term exposure to PCB mixtures reduces adipose derived MSC expansion

316 While the XTT assay showed there was decreased NADH as the amount of PCB increased the
317 decrease could have been due to direct PCB cytotoxicity, decreased proliferation, or decreased
318 cellular metabolism. We next wanted to determine which of these potential mechanisms of
319 cellular disruption were at work. Throughout the course of the XTT assay, we observed that the
320 number of MSCs visible in the wells under a microscope at the end of the experiment was
321 decreased in the PCB exposed conditions compared to the vehicle control. These observations of
322 led us to hypothesize that increasing MSC exposure to PCBs would lead to decreased cell
323 numbers. To determine the effect of PCBs on MSC expansion, we exposed MSCs from three
324 donors to the three PCB mixtures at concentrations ranging from 1-25 μM. After 48 hours of
325 incubation, we stained the cells with Hoechst and Actin Green and imaged them to assess cell
326 counts and morphology.

328

329 We found that increasing concentrations of PCB mixtures led to a significant decrease in the
330 number of cells in each well. All three MSC donors had significant decreases in cell counts with
331 exposure to increasing concentrations of all three PCB mixtures (**Figure 2B**). In fact, all samples
332 exposed to 20 μ M of PCBs had at least a 90% reduction in the number of MSCs at 48 hours.
333 Combining all donors together, IC₅₀ values for each PCB mixture were calculated to be in the 2-
334 5 μ M range showing that even low concentrations of Aroclor 1016, Aroclor 1254, and Cabinet
335 Mixture can significantly impact MSC health. In addition, there were also significant changes to
336 the morphology of the MSCs with increasing concentrations of PCB mixtures. The cells that
337 remained in the wells at the high concentrations (20, 25 μ M) had what looked to be only
338 fragments of cytoskeleton left and the portion that remained took on a spindle-like appearance
339 and smaller overall footprint compared to cells in the vehicle control (**Figure 2A**). In addition,
340 the size of cell nuclei generally became larger and the variability of nuclear size increased
341 (**Supplemental Figure 2**). It should be noted that due to wash steps in the staining procedure,
342 any small nuclei of detached dead cells would have been washed out before imaging. Of the cells
343 that remained attached, the increased frequency of large nuclei at higher concentrations could be
344 an indication that the cells have entered senescence, which is characterized by large, flattened
345 nuclei.⁴³

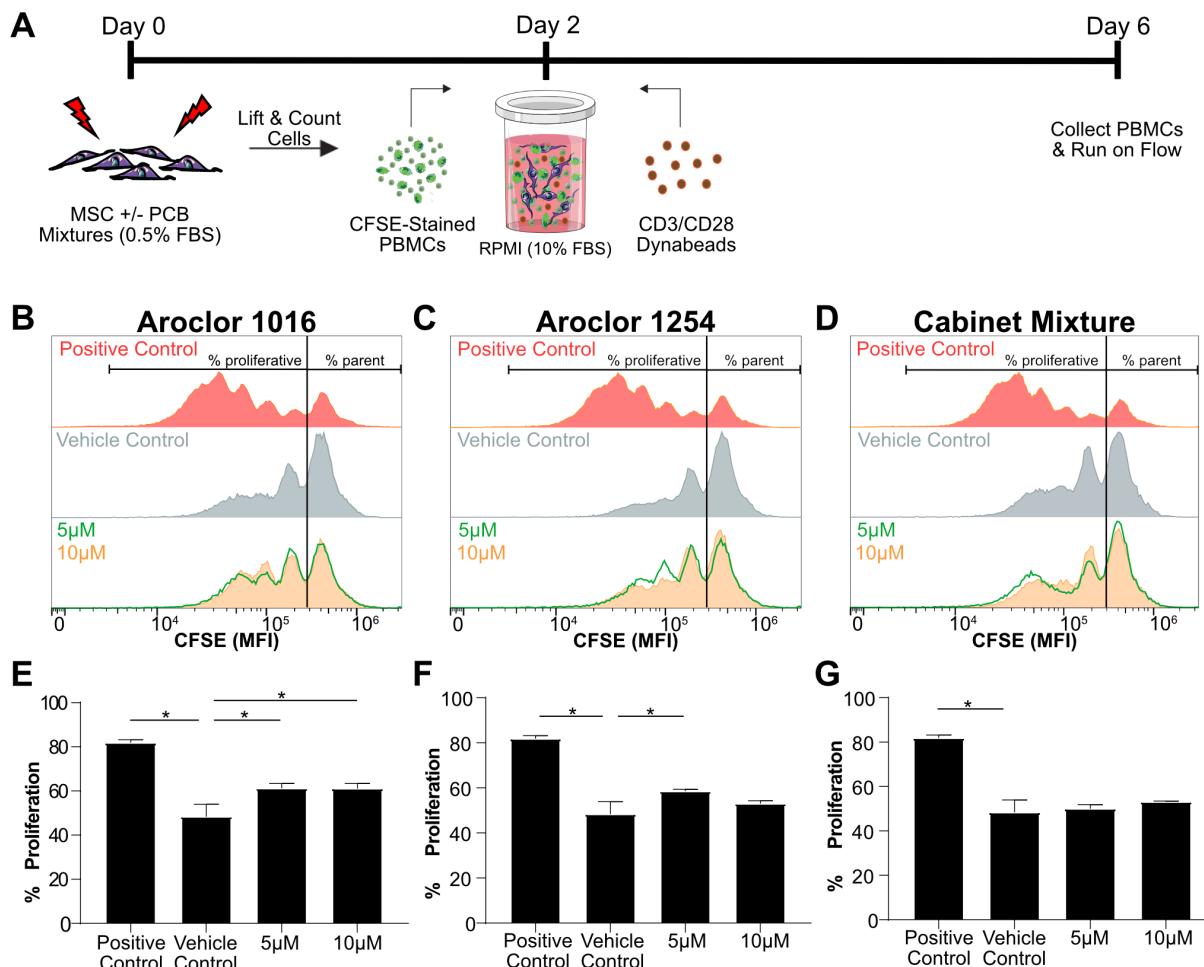


346

347 **Figure 2: Cell count decreases with increasing exposure to PCB mixtures. (A)**
348 Representative images of adipose MSCs exposed to 0, 5, or 25 μ M concentrations of Aroclor
349 1016, Aroclor 1254, and Cabinet Mixture. (B) The number of cells was determined by using
350 ImageJ software to count the number of nuclei per image field. Quantification was performed on
351 25 images per condition for three independent adipose MSC donors. Data are represented via a
352 point for the mean of each donor (n=25 image fields/point) with a line connecting the mean value
353 of all donors (n=3 donors). IC50 values calculated using Prism for Aroclor 1016, Aroclor 1254,
354 and Cabinet Mixture are 3.120 μ M, 2.160 μ M, and 2.141 μ M, respectively.
355

356 PCB mixtures increase cell death at high concentrations
357 After the XTT and imaging studies, it was clear that exposure to PCB mixtures was causing
358 cytotoxicity, but it was not yet clear if this was due primarily to suppression of cell proliferation
359 or increases in cell death. To assess cell death directly, we used two complimentary assays, a
360 propidium iodide (PI) stain to measure membrane permeability and lactate dehydrogenase
361 (LDH) assay to measure release of LDH from dead cells. We again exposed MSCs to three PCB
362 mixtures ranging from 1-25 μ M and compared them to DMSO treated control cells. After 48
363 hours, the cells were stained with PI for analysis by flow cytometry and the media was assessed
364 for LDH activity.
365

366 Based on the prior imaging experiments (**Figure 2**), we expected to see increases in cell death
367 starting at 5 μ M, however, with both the PI staining (**Figure 3A**) and the LDH assay (**Figure**
368 **3B**), we observed minimal cell death after exposure to 1, 5, or even 10 μ M of the PCB mixtures.
369 It was only at high exposure levels, 20 and 25 μ M, that we observed significant levels of cell
370 death. Thus, at higher concentrations >20 μ M, the decrease in cell numbers is due to lethal
371 cytotoxicity of the PCBs on MSCs. While the decreased cell counts we saw with 5 and 10 μ M
372 exposure but without increased levels of cell death suggests that low concentrations of PCB
373 mixtures cause a cytostatic rather than a cytotoxic effect on adipose MSCs. These results indicate
374 that PCB mixtures at lower concentrations are disrupting cellular processes involved in cell
375 proliferation and raise the possibility that exposure to low concentrations of PCB mixtures alter
376 other aspects of adipose MSC phenotype.
377


378
379 **Figure 3: High concentrations of PCB mixtures kill the majority of adipose MSCs.** Cell
380 death was assessed using (A) propidium iodide staining and flow cytometry or (B) LDH assay
381 after 48 hours of exposure to media formulated to contain 0, 1, 5, 10, 20, or 25 μM of Aroclor
382 1016, Aroclor 1254, and Cabinet Mixture. Each data point represents mean of 3 donors and error
383 bars are SEM.

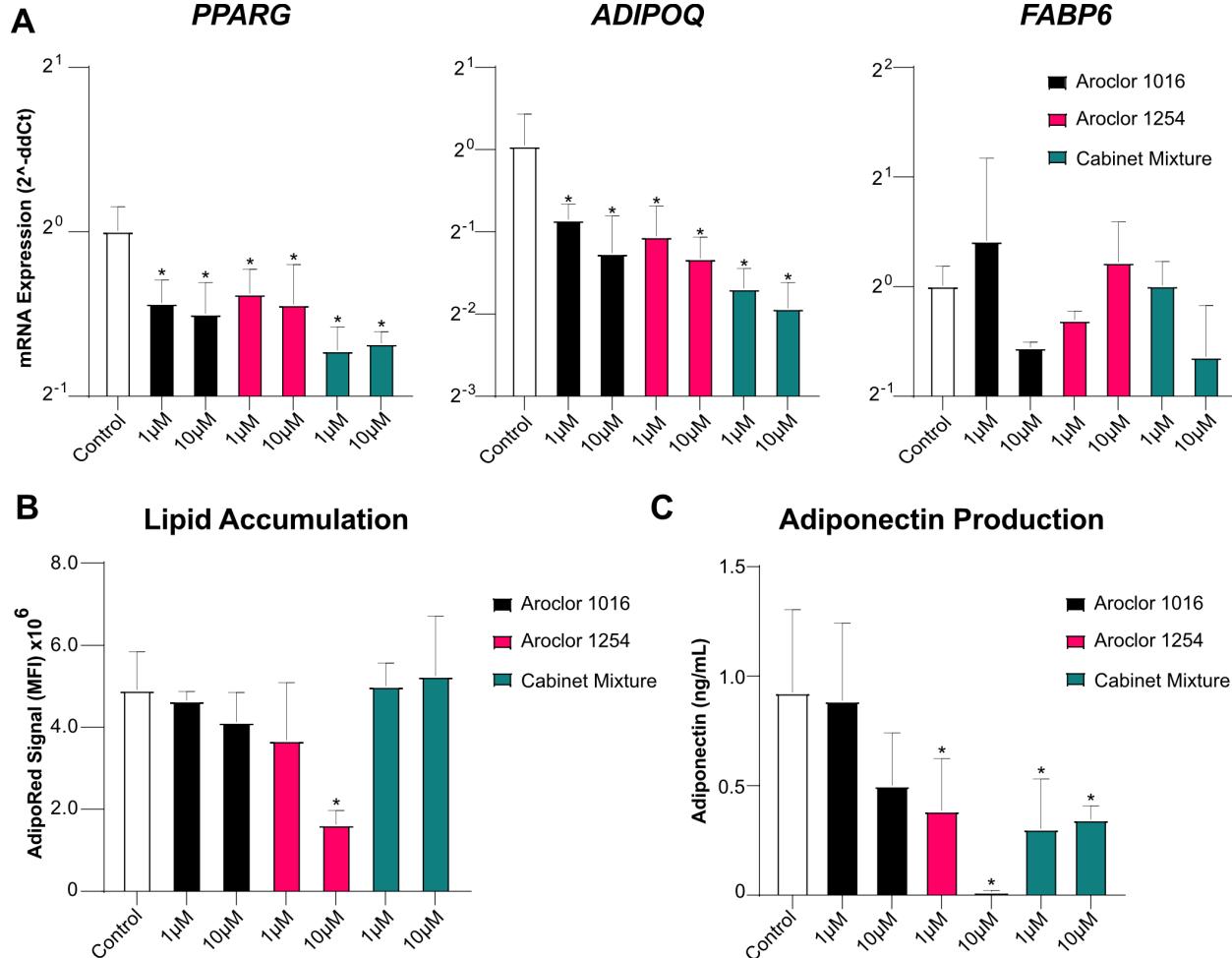
384
385 Exposure to PCB mixtures only modestly impacts adipose MSC's immunomodulatory properties
386 After determining the PCB mixtures' cytotoxic effects on MSCs at higher concentrations, we
387 wanted to investigate if exposure to non-lethal concentrations alters functional characteristics
388 critical for adipose MSCs. An important property of adipose MSCs is their immunosuppressive
389 capability. When in an inflammatory environment, MSCs tend to drive the surrounding immune
390 cells towards a more immune-resolving phenotype, and as such serve as a key regulator of
391 adipose inflammation.²⁵ To determine how MSC exposure to non-lethal concentrations of PCB
392 mixtures impacts their immunosuppressive properties, we pre-exposed the MSCs to each mixture
393 at 5 or 10 μM for 48 hours within 0.5% FBS supplemented media. The cells were then washed to
394 remove any dead cells and residual PCBs, counted, and seeded at a ratio of 1 MSC to 3
395 Dynabead-stimulated PBMCs (**Figure 4A**).

396

397 Since the PBMCs are stained with the cell proliferation dye, CFSE, prior to stimulation, each
398 division will lead to a cytosolic partitioning of the fluorescent dye and leftward shift in CFSE
399 intensity. As seen in the “Positive Control” panels of (Figure 4B-D), the absence of MSCs
400 allows the PBMCs to freely proliferate, leading to increased peaks at lower fluorescent
401 intensities, each peak signifying a new generation of inflammatory cells. Upon adding vehicle
402 treated MSCs, the divisions are substantially reduced. To summarize the degree of inflammatory
403 suppression, we use a gate to separate the un-proliferated parent peak from cells that have
404 undergone cell division and calculate the “% Proliferated”. The presence of vehicle control
405 MSCs decreases the % of proliferated cells from ~84% to ~48% (Figure 4E-G). Pre-exposure of
406 MSCs to Aroclor 1016 at 5 and 10 μ M both lead to a small but statistically significant increase in
407 % proliferation (Figure 4E). This was also observed for Aroclor 1254 (Figure 4F) at 5 μ M, but
408 the difference at 10 μ M was not large enough to reach statistical significance. Interestingly,
409 while both Aroclor 1016 and 1254 had modest effects on MSC suppression of PBMCs, Cabinet
410 Mixture had no measurable effect (Figure 4G). Based on prior cytotoxicity assays (Figure 2)
411 that showed a change in cell behavior at these same concentrations, namely a dramatic reduction
412 in proliferation, we expected to see a much larger impact on adipose MSCs immunosuppressive
413 potency. This result paints a more complex portrait of adipose MSC response to PCB exposure
414 and suggests the surviving adipose MSCs retain some functionality.

415

416


417 **Figure 4: MSC immunosuppressive capabilities are only slightly reduced following**
418 **exposure to PCB mixtures.** A)Timeline of the PBMC-MSC coculture. Immunosuppressive
419 capabilities of MSCs was assessed by measuring the dilution of CFSE dye in PBMCs after
420 coculture with MSCs that had been pre-exposed for 48-hours to B) Aroclor 1016, C) Aroclor
421 1254 or D) Cabinet Mixture. The percent of PBMCs that proliferated was quantified to assess
422 MSCs immunosuppressive potency after exposure to E) Aroclor 1016, F) Aroclor 1254 or G)
423 Cabinet Mixture. Bars are mean +/- SD of n=3 independent adipose donors. Ordinary one-way
424 ANOVA, * designates significant difference (p<0.05) between the indicated group and vehicle
425 control (DMSO) pre-exposed MSCs after Dunnett multiple comparison corrections. Cell figures
426 were adapted from <https://smart.servier.com/> and licensed under CC-BY 3.0.
427

428 Pre-Exposure to PCB Mixtures Disrupts MSCs' Adipogenic Potential
429 With recent studies correlating persistent organic pollutants, such as PCBs, with the development
430 of metabolic syndromes, we next wanted to investigate the influence of PCB mixtures on adipose
431 MSCs adipogenic potential.⁴⁴ To assess this, we pre-exposed MSCs to sublethal concentrations
432 of PCB mixtures for 48 hours, and then induced adipogenic differentiation for 14-days in the
433 absence of PCB exposure. After 14 days, we analyzed the transcript levels of key genes involved
434 or indicative of adipocyte differentiation, namely, peroxisome proliferator activated receptor
435 gamma (*PPARG*) a gene that plays a vital role as a master switch for the adipogenic
436 differentiation pathway, contributing to protein transcription that influences lipid accumulation
437 and insulin sensitivity, fatty acid binding protein (*FABP6*) a gene involved with fatty acid uptake
438 and metabolism, which is a precursor to lipid production, and adiponectin (*ADIPOQ*) which is
439 exclusively expressed by mature adipocytes for encoding adiponectin, a major protein involved
440 in regulating whole-body metabolism.^{45,46} We found exposure to any PCB mixture led to a
441 significant reduction in the transcript levels of both *PPARG* and *ADIPOQ* (**Figure 5A**). While
442 significant, the magnitude of reduction of *PPARG* was fairly modest, with exposure leading to a
443 1.35-1.65-fold reduction compared to vehicle-treated controls. The reduction of *ADIPOQ* was
444 more pronounced with 10 μ M cabinet mixture exposure leading to a nearly 4-fold reduction in
445 expression. Interestingly, no significant changes were observed for *FABP6*. Thus, exposure of
446 adipose MSCs for just 48 hours has a long-term impact on gene expression, even after 14 days of
447 differentiation in PCB-free media.
448

449 To determine if alterations in gene expression led to changes in adipocyte phenotype, we
450 repeated the experiment and analyzed lipid accumulation and adiponectin production directly.
451 MSCs exposed to Aroclor 1016 or 1254 showed a dose-dependent decrease in lipid accumulation
452 while MSCs exposed to Cabinet Mixture showed no decline in lipid accumulation (**Figure 5B**).
453 Interestingly, the only exposure that resulted in a statistically significant decline in lipid
454 accumulation was 10 μ M Aroclor 1254. Analysis of adiponectin secreted by the adipocytes after
455 14 days of differentiation revealed a stark decrease in production after pre-exposure to all three
456 of the PCB mixtures (**Figure 5C**). Specifically, pre-exposure to Aroclor 1254 at 5 μ M or Cabinet
457 Mixture at both concentrations reduced adiponectin output in half. Increasing the Aroclor 1254
458 exposure to 10 μ M nearly completely blocked adiponectin production. Overall, the observed
459 changes in adiponectin secretion were consistent with the *ADIPOQ* transcript levels (**Figure**
460 **5A**). This is important, as adiponectin production assists in maintaining insulin-sensitivity and
461 attenuating chronic inflammation, while decreased serum levels have been associated with obesity
462 and type-2 diabetes.^{47,48} Taken collectively, these data demonstrate that even a short window of

463 exposure to PCB mixtures disrupts the quality of adipogenesis which alters the properties of the
464 resultant mature adipocytes.

465
466

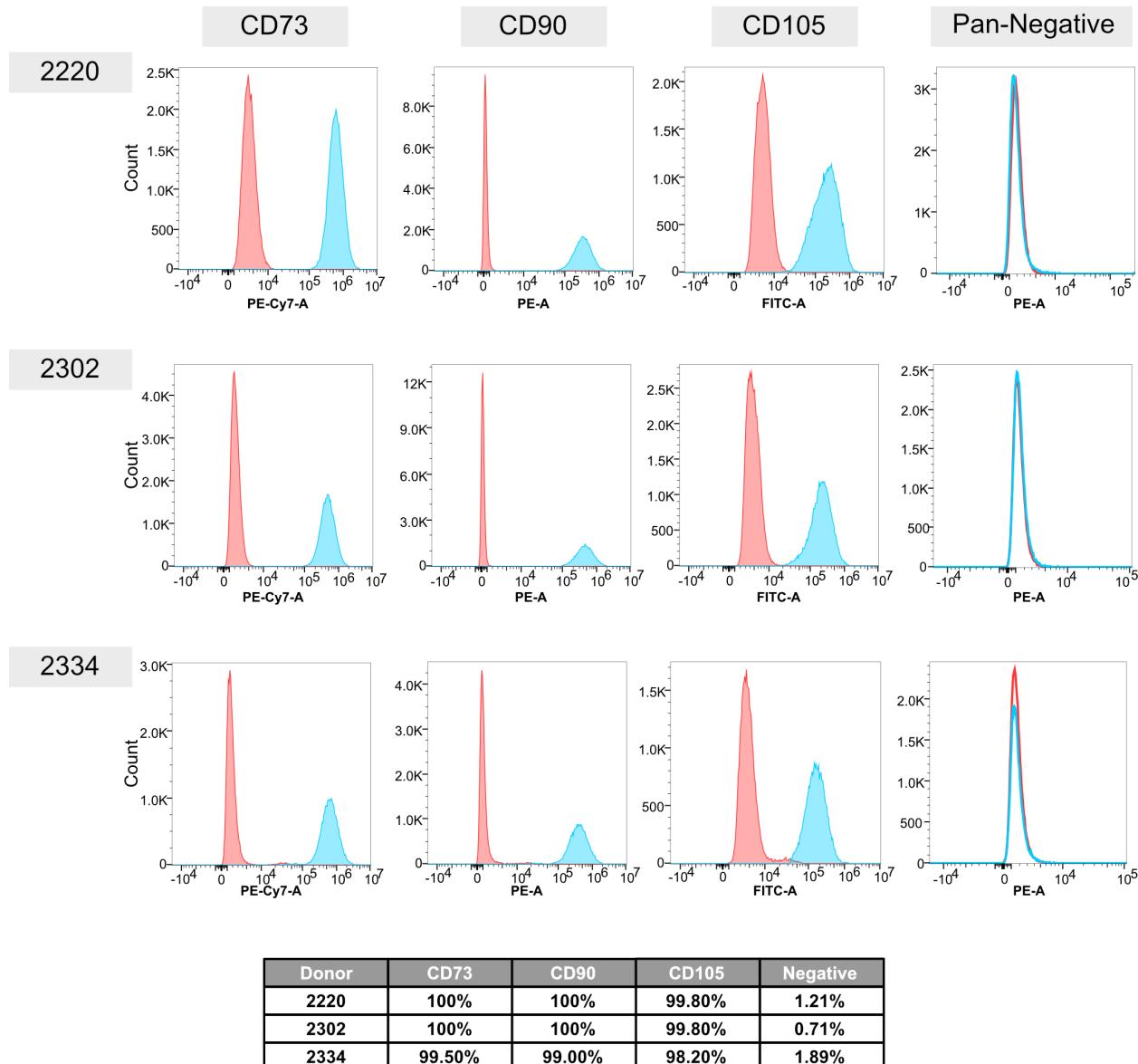
467
468 **Figure 5: Adipogenic differentiation of MSCs are slightly diminished after pre-exposure to**
469 **PCB mixtures.** A) Fold-change of the expression of prominent genes in the adipogenesis
470 signaling pathway, *PPARG*, *ADIPOQ*, and *FABP6*. Delta-CT was calculated using GAPDH and
471 then compared to vehicle treated controls using the Delta-Delta-CT method. n=3 experiments
472 with Adipose MSC donor 2334 B) Lipid accumulation as measured by AdipoRed staining
473 measured using a 96-well plate reader. C) adiponectin present in culture media measured using
474 ELISA. Bars are mean +/- SD of n=4 experiments with adipose MSC donor 2334. Ordinary one-
475 way ANOVA with Dunnett post-hoc test, * indicates p<0.05 compared vehicle controls.
476

477

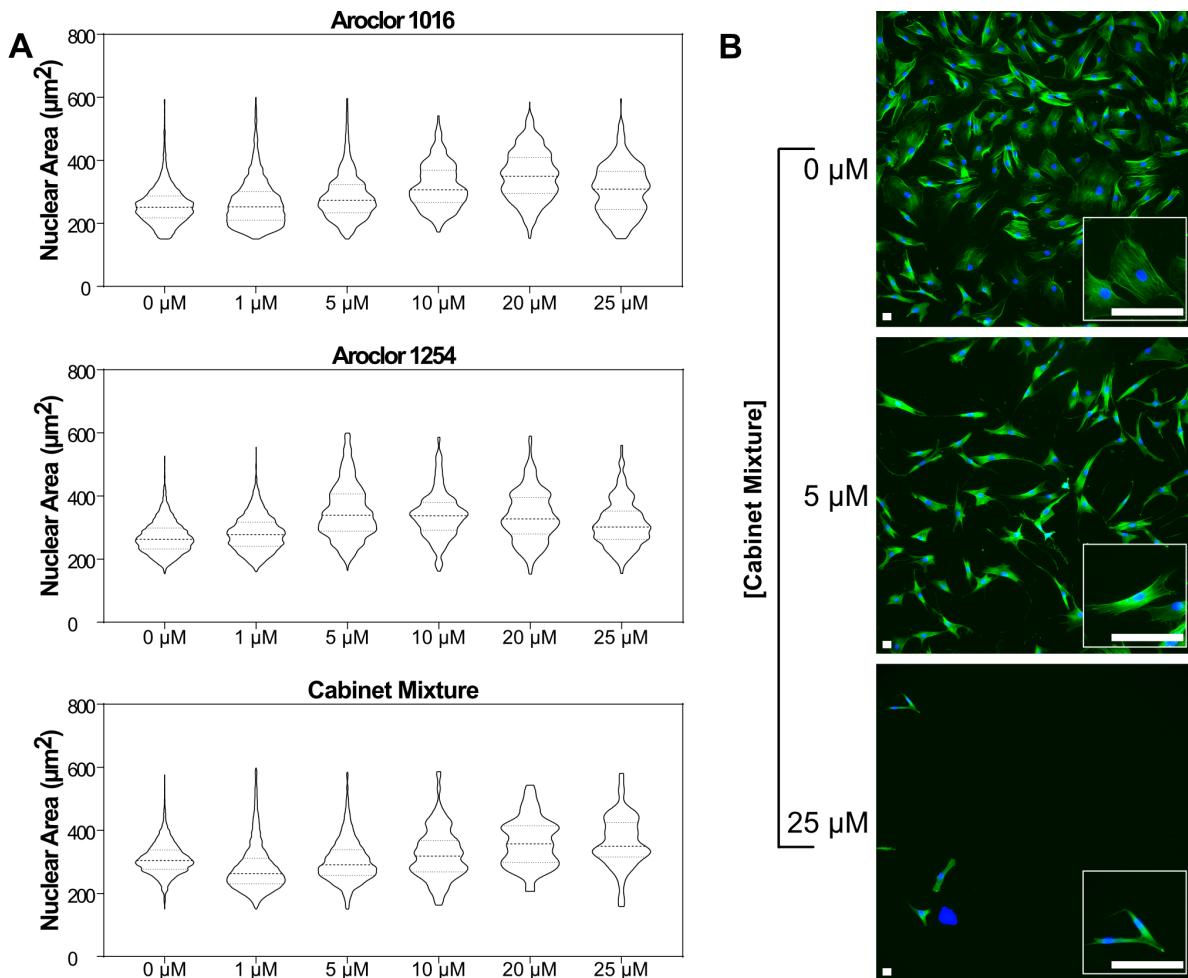
IMPLICATIONS FOR HUMAN HEALTH

478 Our work shows that exposure to Aroclor 1016, Aroclor 1254, and the Cabinet Mixture all result
479 in adverse effects on adipose MSCs, a cell type that is critical for the maintenance and function
480 of adipose tissue and overall health. We examined PCB concentrations that are similar to tissue
481 concentrations measured in adipose. In vivo studies usually report PCBs in terms of ng/g of lipid
482 and have found adipose tissue levels ranging from 700-9000 ng/g of lipid depending on the
483 severity of exposure^{49,50}. Considering the molecular weight of PCBs, the density of lipids, and

484 that adipose is ~60% lipids⁵¹, these tissue levels correspond to an adipose tissue concentration
485 range of 1.5-18 μ M of total PCB. While we examined mixtures rather than single congeners in
486 this study, mixtures are more physiologically relevant as people are exposed to mixtures and not
487 single congeners. Furthermore, studying mixtures made our assays sensitive to possible
488 interaction effects between congeners which have been reported for other cell types⁵². Our data
489 show that exposure to these mixtures at adipose tissue relevant concentrations results in
490 significant toxicity and functional disruption of adipose MSCs, an important stem/mesenchymal
491 cell population. In reality, PCB profiles found within current U.S. school air show contributions
492 from all three of these investigated sources, but only specific congeners are detectable within the
493 serum of students.⁵³ Regardless, these findings have potential implications for the health of
494 school-aged children, especially those attending schools that were built during Aroclor
495 production. Adipose MSCs are particularly important during adolescence, as the number of
496 adipocytes goes through massive expansion before plateauing and maintaining numbers
497 throughout adulthood. This expansion of adipocytes relies on the MSC niche found within
498 adipose tissue. We have shown here that exposure to non-lethal concentrations of PCB mixtures
499 disrupts both adipose MSC proliferation and impairs their ability to differentiate into mature
500 functional adipocytes. These effects of PCBs could have profound implications on the number
501 and quality of adipocytes that are generated during expansion. Mature adipocytes with altered
502 adiponectin signaling could have significant physiological effects such as decreased insulin
503 sensitivity in peripheral tissues, disrupted androgen signaling, and increased chronic
504 inflammation: all of which are aspects of metabolic syndrome.
505


506 While, in adults, MSCs and preadipocytes do not proliferate at the same rate as they do in
507 adolescents, about 10% of all adipocytes are still replaced annually, and a healthy MSC niche is
508 needed to support this replacement.²¹ Since PCBs are known to accumulate in adipose tissue,
509 adipose MSCs within adults are susceptible to the negative effects of PCB exposure.^{54,55}
510 Disruption of adipose MSCs would lead to a lower rate of adipocyte replacement which has been
511 linked to hypertrophic obesity.⁵⁶ Additionally, recent work suggests that proper expansion of
512 adipose tissue is fundamental to the prevention of metabolic disease.^{20,27}
513

514 While the effects of PCB mixtures on adipose MSCs were fairly consistent between different
515 mixtures, there were also distinct differences between the groups. Exposure of MSCs to Aroclor
516 1254 leads to much lower levels of adiponectin and lipid accumulation compared to Aroclor
517 1016 or Cabinet Mixture. One likely explanation for this difference is the congeners which
518 compose the mixtures. Aroclor 1254 contains both higher chlorinated and dioxin-like PCB
519 congeners, while Aroclor 1016 contains lower chlorinated non-dioxin-like congeners.^{32,33}
520 Moreover, each congener has its own partitioning coefficient and effective free concentration.
521 Due to the differences in congener profile and relative abundance, it is likely that multiple
522 distinct congeners, or congener subsets, are responsible for the biological effects we have
523 observed here on adipose MSCs
524


525 Another potential reason for the differences between mixtures observed in the adipogenic
526 differentiation assay is the different mechanisms of action of different PCBs. Previous work has
527 focused primarily on elucidating the effect of dioxin-like PCBs on adipocytes. PCB 126, a
528 dioxin-like PCB, activates the aryl hydrocarbon receptor (AhR) which suppresses PPARG
529 transcription and, subsequently, adipogenesis.³⁶ Further, transcriptome sequencing of adipocytes

530 after exposure to PCB 126 showed marked activation of AhR genes but also activation of
531 proinflammatory pathways and the AGE-RAGE pathways which is known to be associated with
532 the development of obesity and insulin resistance.⁵⁷ In our experiments, Aroclor 1254 is the only
533 mixture that contains significant amounts of dioxin-like PCBs (Aroclor 1016 contains trace
534 amounts of DL congeners but has a Dioxin TEQ of 0.09 compared to a TEQ of 21 for Aroclor
535 1254)³⁰. Aroclor 1254 has also been shown to lead to higher levels of DNA damage,
536 tumorigenesis, and disruption of central nervous system neurochemical function than Aroclor
537 1016.^{3,58,59} This disruption may be due to a dose-dependent inhibition of creatine kinase activity
538 as seen in L6 myoblasts.⁶⁰ Creatine kinase-B activity is decreased in adipocytes during obesity,
539 thus opening the potential for a mechanistic tie between Aroclor 1254 exposure and adipocyte
540 dysfunction.⁶¹ The other two mixtures are comprised of non-dioxin-like congeners, thus the
541 previous proposed mechanisms are unlikely to explain the effects of Aroclor 1016 and Cabinet
542 Mixture. Non-dioxin-like PCBs, such as those found in Aroclor 1016 and Cabinet Mixture, have
543 been shown to induce neuronal apoptosis via a p53-independent mechanism.⁶² They also bind to
544 ryanodine receptors (RyR) and increase calcium release from the endoplasmic reticulum of
545 neurons. Increased RyR activity is associated with neuronal apoptosis and dendritic growth.⁶² In
546 adipocytes, RyR3 activity is inversely related to adiponectin mRNA expression, thus
547 overactivation of RyR by non-dioxin-like PCBs is one potential mechanism of disrupted adipose
548 function.⁶³ While further studies will be required to understand which congeners or congener
549 interactions are responsible for toxicity and their mechanisms of action, this work provides direct
550 evidence that short-term exposure to environmentally relevant mixtures of PCBs disrupt the
551 health and function of adipose MSCs.

552
553
554

555
556 **Supplementary Figure 1: Adipose MSCs meet the ISCT Minimal Criteria.** Adipose MSCs
557 were analyzed for expression of markers according to the ISCT MSC Minimal Criteria. Flow
558 cytometry histogram plots are shown for CD73, CD90, CD105 and a Negative Cocktail (CD34,
559 CD45, CD11b, CD19, and HLA-DR). Each plot contains the isotype control (red peak) and on
560 target sample (blue peak). Table displays the percent of each on-target population considered
561 positive based on gates set using the isotype control.

562
563 **Supplemental Figure 2: Exposure to PCB mixtures leads to dose dependent changes to**
564 **MSC morphology.** Morphology of nuclei and cytoskeleton after 48 hours of exposure to PCB
565 mixtures. (A) Violin plot of nuclear area after exposure to 0, 1, 5, 10, 20, or 25 μM
566 concentrations of Aroclor 1016, Aroclor 1254, and Cabinet Mixture. (B) Representative images
567 of cells after exposure to 0, 5, or 25 μM concentrations of Cabinet Mixture. All scale bars
568 represent 50 μm .
569

570 **Supplemental Table 1. qRT-PCR Primers**

Primer Name; Exon Location	IDT Catalog #
GAPDH; 3 – 4	39a.22214836
ADIPOQ; 1 – 3	58.39189358
CCL2; 1 – 2	58.45467977
FABP6; 5 – 6	58.1261702
PPARG; 7 – 8	58.25464465
SCL2A4; 1 – 2	58.2557238

571

572

573 **ACKNOWLEDGEMENTS**

574 This study was supported by NIH [P42 ES013661](#) (JAA, AJK, HJL) and a pilot grant from the
575 Environmental Health Research Center [P30 ES005605](#) (AJK, JAA). RB is supported by the

576 University of Iowa MSTP Grant, NIH T32 GM139776. We also acknowledge the University of
577 Iowa Tissue Procurement Core which manages the University of Iowa Biobank (UIBB –
578 IRB#201103721) for services provided related to acquisition of study specimens. The TPC is
579 supported by an award from NIH (NCI award number P30CA086862) and the University of
580 Iowa Carver College of Medicine.

581

582 AUTHOR CONTRIBUTIONS

583 Riley Behan-Bush: Conceptualization, Methodology, Formal analysis, Investigation, Data
584 Curation, Writing – Original Draft, Writing – Review & Editing, Visualization. Jesse Liszewski:
585 Conceptualization, Methodology, Formal analysis, Investigation, Data Curation, Writing –
586 Original Draft, Writing – Review & Editing, Visualization. Michael Schrodt: Methodology,
587 Investigation, Writing – Original Draft. Bhavya Vats: Investigation. Xueshu Li: Resources, Data
588 Curation, Writing – Original Draft. Hans-Joachim Lehmler: Resources, Data Curation, Writing –
589 Original Draft, Funding Acquisition. Aloysius J. Klingelhutz: Conceptualization, Resources,
590 Writing – Review & Editing, Funding Acquisition. James Ankrum: Conceptualization,
591 Methodology, Formal analysis, Resources, Data Curation, Writing – Review & Editing,
592 Visualization, Supervision, Funding Acquisition.

593

594

595 REFERENCES

596

597 (1) Gore, A. C.; Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.;
598 Zoeller, R. T. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-
599 Disrupting Chemicals. *Endocr Rev* **2015**, *36* (6), E1–E150. <https://doi.org/10.1210/er.2015-1010>.

600 (2) Herrick, R. F.; McClean, M. D.; Meeker, J. D.; Baxter, L. K.; Weymouth, G. A. An
601 Unrecognized Source of PCB Contamination in Schools and Other Buildings. *Environ Health
602 Persp* **2004**, *112* (10), 1051–1053. <https://doi.org/10.1289/ehp.6912>.

603 (3) Mayes, B. A.; Connell, E. E. M.; Neal, B. H.; Brunner, M. J.; Hamilton, S. B.; Peters, A. C.;
604 Ryan, M. J.; Toft, J. D.; Singer, A. W.; Brown, J. F.; Menton, R. G.; Moore, J. A. Comparative
605 Carcinogenicity in Sprague-Dawley Rats of the Polychlorinated Biphenyl Mixtures Aroclors
606 1016, 1242, 1254, and 1260. *Toxicol Sci* **1998**, *41* (1), 62–76.
607 <https://doi.org/10.1093/toxsci/41.1.62>.

608 (4) Erickson, M. D.; Kaley, R. G. Applications of Polychlorinated Biphenyls. *Environ Sci Pollut
609 R* **2011**, *18* (2), 135–151. <https://doi.org/10.1007/s11356-010-0392-1>.

610 (5) Bannavti, M. K.; Jahnke, J. C.; Marek, R. F.; Just, C. L.; Hornbuckle, K. C. Room-to-Room
611 Variability of Airborne Polychlorinated Biphenyls in Schools and the Application of Air
612 Sampling for Targeted Source Evaluation. *Environ Sci Technol* **2021**, *55* (14), 9460–9468.
613 <https://doi.org/10.1021/acs.est.0c08149>.

614 (6) Guo, J.; Capozzi, S. L.; Kraeutler, T. M.; Rodenburg, L. A. Global Distribution and Local
615 Impacts of Inadvertently Generated Polychlorinated Biphenyls in Pigments. *Environ Sci Technol*
616 **2014**, *48* (15), 8573–8580. <https://doi.org/10.1021/es502291b>.

617 (7) Hu, D.; Hornbuckle, K. C. Inadvertent Polychlorinated Biphenyls in Commercial Paint
618 Pigments. *Environ Sci Technol* **2010**, *44* (8), 2822–2827. <https://doi.org/10.1021/es902413k>.

619 (8) Anezaki, K.; Kannan, N.; Nakano, T. Polychlorinated Biphenyl Contamination of Paints
620 Containing Polycyclic- and Naphthol AS-Type Pigments. *Environ Sci Pollut R* **2015**, *22* (19),
621 14478–14488. <https://doi.org/10.1007/s11356-014-2985-6>.

622 (9) Herkert, N. J.; Jahnke, J. C.; Hornbuckle, K. C. Emissions of Tetrachlorobiphenyls (PCBs 47,
623 51, and 68) from Polymer Resin on Kitchen Cabinets as a Non-Aroclor Source to Residential
624 Air. *Environ Sci Technol* **2018**, *52* (9), 5154–5160. <https://doi.org/10.1021/acs.est.8b00966>.

625 (10) Schettgen, T.; Esser, A.; Alt, A.; Randerath, I.; Kraus, T.; Ziegler, P. Decomposition
626 Products of the Initiator Bis(2,4-Dichlorobenzoyl)Peroxide in the Silicone Industry: Human
627 Biomonitoring in Plasma and Urine of Workers. *Environ Sci Technol* **2022**,
628 <https://doi.org/10.1021/acs.est.2c01530>.

629 (11) Grimm, F. A.; Hu, D.; Kania-Korwel, I.; Lehmler, H.-J.; Ludewig, G.; Hornbuckle, K. C.;
630 Duffel, M. W.; Bergman, Å.; Robertson, L. W. Metabolism and Metabolites of Polychlorinated
631 Biphenyls. *Crit Rev Toxicol* **2015**, *45* (3), 245–272.
632 <https://doi.org/10.3109/10408444.2014.999365>.

633 (12) Hu, D.; Martinez, A.; Hornbuckle, K. C. Discovery of Non-Aroclor PCB (3,3'-
634 Dichlorobiphenyl) in Chicago Air. *Environ Sci Technol* **2008**, *42* (21), 7873–7877.
635 <https://doi.org/10.1021/es801823r>.

636 (13) Ampleman, M. D.; Martinez, A.; DeWall, J.; Rawn, D. F. K.; Hornbuckle, K. C.; Thorne, P.
637 S. Inhalation and Dietary Exposure to PCBs in Urban and Rural Cohorts via Congener-Specific
638 Measurements. *Environ Sci Technol* **2015**, *49* (2), 1156–1164.
639 <https://doi.org/10.1021/es5048039>.

640 (14) Liebl, B.; Schettgen, T.; Kerscher, G.; Broding, H.-C.; Otto, A.; Angerer, J.; Drexler, H.
641 Evidence for Increased Internal Exposure to Lower Chlorinated Polychlorinated Biphenyls
642 (PCB) in Pupils Attending a Contaminated School. *Int J Hyg Envir Heal* **2004**, *207* (4), 315–324.
643 <https://doi.org/10.1078/1438-4639-00296>.

644 (15) Marek, R. F.; Thorne, P. S.; Herkert, N. J.; Awad, A. M.; Hornbuckle, K. C. Airborne PCBs
645 and OH-PCBs Inside and Outside Urban and Rural U.S. Schools. *Environ Sci Technol* **2017**, *51*
646 (14), 7853–7860. <https://doi.org/10.1021/acs.est.7b01910>.

647 (16) Wang, H.; Adamcakova-Dodd, A.; Flor, S.; Gosse, L.; Klenov, V. E.; Stolwijk, J. M.;
648 Lehmler, H.-J.; Hornbuckle, K. C.; Ludewig, G.; Robertson, L. W.; Thorne, P. S.
649 Comprehensive Subchronic Inhalation Toxicity Assessment of an Indoor School Air Mixture of

650 PCBs. *Environ Sci Technol* **2020**, *54* (24), 15976–15985.
651 <https://doi.org/10.1021/acs.est.0c04470>.

652 (17) Wang, H.; Adamcakova-Dodd, A.; Lehmler, H.-J.; Hornbuckle, K. C.; Thorne, P. S.
653 Toxicity Assessment of 91-Day Repeated Inhalation Exposure to an Indoor School Air Mixture
654 of PCBs. *Environ Sci Technol* **2021**. <https://doi.org/10.1021/acs.est.1c05084>.

655 (18) Smith, U.; Kahn, B. B. Adipose Tissue Regulates Insulin Sensitivity: Role of Adipogenesis,
656 de Novo Lipogenesis and Novel Lipids. *J Intern Med* **2016**, *280* (5), 465–475.
657 <https://doi.org/10.1111/joim.12540>.

658 (19) Cao, H. Adipocytokines in Obesity and Metabolic Disease. *J Endocrinol* **2014**, *220* (2),
659 T47–T59. <https://doi.org/10.1530/joe-13-0339>.

660 (20) Ghaben, A. L.; Scherer, P. E. Adipogenesis and Metabolic Health. *Nat Rev Mol Cell Bio*
661 **2019**, *20* (4), 242–258. <https://doi.org/10.1038/s41580-018-0093-z>.

662 (21) Spalding, K. L.; Arner, E.; Westermark, P. O.; Bernard, S.; Buchholz, B. A.; Bergmann, O.;
663 Blomqvist, L.; Hoffstedt, J.; Näslund, E.; Britton, T.; Concha, H.; Hassan, M.; Rydén, M.;
664 Frisén, J.; Arner, P. Dynamics of Fat Cell Turnover in Humans. *Nature* **2008**, *453* (7196), 783–
665 787. <https://doi.org/10.1038/nature06902>.

666 (22) Lefevre, C.; Chartoire, D.; Ferraz, J. C.; Verdier, T.; Pinteur, C.; Chanon, S.; Pesenti, S.;
667 Vieille-Marchiset, A.; Genestier, L.; Vidal, H.; Mey, A. Obesity Activates Immunomodulating
668 Properties of Mesenchymal Stem Cells in Adipose Tissue with Differences between
669 Localizations. *Faseb J* **2021**, *35* (6), e21650. <https://doi.org/10.1096/fj.202002046rr>.

670 (23) Boland, L.; Bitterlich, L. M.; Hogan, A. E.; Ankrum, J. A.; English, K. Translating MSC
671 Therapy in the Age of Obesity. *Front Immunol* **2022**, *13*, 943333.
672 <https://doi.org/10.3389/fimmu.2022.943333>.

673 (24) Liu, W.; Li, D.; Cao, H.; Li, H.; Wang, Y. Expansion and Inflammation of White Adipose
674 Tissue - Focusing on Adipocyte Progenitors. *Biol Chem* **2021**, *402* (2), 123–132.
675 <https://doi.org/10.1515/hsz-2019-0451>.

676 (25) Hwang, I.; Jo, K.; Shin, K. C.; Kim, J. I.; Ji, Y.; Park, Y. J.; Park, J.; Jeon, Y. G.; Ka, S.;
677 Suk, S.; Noh, H. L.; Choe, S. S.; Alfadda, A. A.; Kim, J. K.; Kim, S.; Kim, J. B. GABA-
678 Stimulated Adipose-Derived Stem Cells Suppress Subcutaneous Adipose Inflammation in
679 Obesity. *Proc National Acad Sci* **2019**, *116* (24), 11936–11945.
680 <https://doi.org/10.1073/pnas.1822067116>.

681 (26) Regnier, S. M.; Sargis, R. M. Adipocytes under Assault: Environmental Disruption of
682 Adipose Physiology. *Biochimica Et Biophysica Acta Bba - Mol Basis Dis* **2014**, *1842* (3), 520–
683 533. <https://doi.org/10.1016/j.bbadiis.2013.05.028>.

684 (27) Kim, J.-Y.; Wall, E. van de; Laplante, M.; Azzara, A.; Trujillo, M. E.; Hofmann, S. M.;
685 Schraw, T.; Durand, J. L.; Li, H.; Li, G.; Jelicks, L. A.; Mehler, M. F.; Hui, D. Y.; Deshaies, Y.;
686 Shulman, G. I.; Schwartz, G. J.; Scherer, P. E. Obesity-Associated Improvements in Metabolic
687 Profile through Expansion of Adipose Tissue. *J Clin Invest* **2007**, *117* (9), 2621–2637.
688 <https://doi.org/10.1172/jci31021>.

689 (28) Bateman, M. E.; Strong, A. L.; McLachlan, J. A.; Burow, M. E.; Bunnell, B. A. The Effects
690 of Endocrine Disruptors on Adipogenesis and Osteogenesis in Mesenchymal Stem Cells: A
691 Review. *Front Endocrinol* **2017**, *7*, 171. <https://doi.org/10.3389/fendo.2016.00171>.

692 (29) Hombrecher, K.; Quass, U.; Leisner, J.; Wichert, M. Significant Release of Unintentionally
693 Produced Non-Aroclor Polychlorinated Biphenyl (PCB) Congeners PCB 47, PCB 51 and PCB
694 68 from a Silicone Rubber Production Site in North Rhine-Westphalia, Germany. *Chemosphere*
695 **2021**, *285*, 131449. <https://doi.org/10.1016/j.chemosphere.2021.131449>.

696 (30) Rushneck, D. R.; Beliveau, A.; Fowler, B.; Hamilton, C.; Hoover, D.; Kaye, K.; Berg, M.;
697 Smith, T.; Telliard, W. A.; Roman, H.; Ruder, E.; Ryan, L. Concentrations of Dioxin-like PCB
698 Congeners in Unweathered Aroclors by HRGC/HRMS Using EPA Method 1668A.
699 *Chemosphere* **2004**, *54* (1), 79–87. [https://doi.org/10.1016/s0045-6535\(03\)00664-7](https://doi.org/10.1016/s0045-6535(03)00664-7).

700 (31) Mayes, B. A.; McConnell, E. E.; Neal, B. H.; Brunner, M. J.; Hamilton, S. B.; Sullivan, T.
701 M.; Peters, A. C.; Ryan, M. J.; Toft, J. D.; Singer, A. W.; Brown, J. F.; Menton, R. G.; Moore, J.
702 A. Comparative Carcinogenicity in Sprague–Dawley Rats of the Polychlorinated Biphenyl
703 Mixtures Aroclors 1016, 1242, 1254, and 1260. *Toxicol Sci* **1998**, *41* (1), 62–76.
704 <https://doi.org/10.1006/toxs.1997.2397>.

705 (32) Johnson, G. W.; Hansen, L. G.; Hamilton, M. C.; Fowler, B.; Hermanson, M. H. PCB,
706 PCDD and PCDF Congener Profiles in Two Types of Aroclor 1254. *Environ Toxicol Phar* **2008**,
707 *25* (2), 156–163. <https://doi.org/10.1016/j.etap.2007.10.011>.

708 (33) Saktrakulkla, P.; Li, X.; Martinez, A.; Lehmler, H.-J.; Hornbuckle, K. C. Hydroxylated
709 Polychlorinated Biphenyls Are Emerging Legacy Pollutants in Contaminated Sediments.
710 *Environ Sci Technol* **2022**, *56* (4), 2269–2278. <https://doi.org/10.1021/acs.est.1c04780>.

711 (34) Dominici, M.; Blanc, K. L.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F. C.; Krause, D. S.;
712 Deans, R. J.; Keating, A.; Prockop, D. J.; Horwitz, E. M. Minimal Criteria for Defining
713 Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position
714 Statement. *Cytotherapy* **2006**, *8* (4), 315–317. <https://doi.org/10.1080/14653240600855905>.

715 (35) Boland, L. K.; Burand, A. J.; Boyt, D. T.; Dobroski, H.; Di, L.; Liszewski, J. N.; Schrotte,
716 M. V.; Frazer, M. K.; Santillan, D. A.; Ankrum, J. A. Nature vs. Nurture: Defining the Effects of
717 Mesenchymal Stromal Cell Isolation and Culture Conditions on Resiliency to Palmitate
718 Challenge. *Front Immunol* **2019**, *10*, 1080. <https://doi.org/10.3389/fimmu.2019.01080>.

719 (36) Gadupudi, G.; Gourronc, F. A.; Ludewig, G.; Robertson, L. W.; Klingelhutz, A. J. PCB126
720 Inhibits Adipogenesis of Human Preadipocytes. *Toxicol In Vitro* **2015**, 29 (1), 132–141.
721 <https://doi.org/10.1016/j.tiv.2014.09.015>.

722 (37) Pistollato, F.; Gyves, E. M. de; Carpi, D.; Bopp, S. K.; Nunes, C.; Worth, A.; Bal-Price, A.
723 Assessment of Developmental Neurotoxicity Induced by Chemical Mixtures Using an Adverse
724 Outcome Pathway Concept. *Environ Health-uk* **2020**, 19 (1), 23. <https://doi.org/10.1186/s12940-020-00578-x>.

726 (38) McCann, M. S.; Fernandez, H. R.; Flowers, S. A.; Maguire-Zeiss, K. A. Polychlorinated
727 Biphenyls Induce Oxidative Stress and Metabolic Responses in Astrocytes. *Neurotoxicology*
728 **2021**, 86, 59–68. <https://doi.org/10.1016/j.neuro.2021.07.001>.

729 (39) Rodriguez, E. A.; Li, X.; Lehmler, H.-J.; Robertson, L. W.; Duffel, M. W. Sulfation of
730 Lower Chlorinated Polychlorinated Biphenyls Increases Their Affinity for the Major Drug-
731 Binding Sites of Human Serum Albumin. *Environ Sci Technol* **2016**, 50 (10), 5320–5327.
732 <https://doi.org/10.1021/acs.est.6b00484>.

733 (40) Hestermann, E. V.; Stegeman, J. J.; Hahn, M. E. Serum Alters the Uptake and Relative
734 Potencies of Halogenated Aromatic Hydrocarbons in Cell Culture Bioassays. *Toxicol Sci* **2000**,
735 53 (2), 316–325. <https://doi.org/10.1093/toxsci/53.2.316>.

736 (41) Równicka-Zubik, J.; Sulkowski, L.; Toborek, M. Interactions of PCBs with Human Serum
737 Albumin: In Vitro Spectroscopic Study. *Spectrochimica Acta Part Mol Biomol Spectrosc* **2014**,
738 124, 632–637. <https://doi.org/10.1016/j.saa.2014.01.069>.

739 (42) Francis, G. L. Albumin and Mammalian Cell Culture: Implications for Biotechnology
740 Applications. *Cytotechnology* **2010**, 62 (1), 1–16. <https://doi.org/10.1007/s10616-010-9263-3>.

741 (43) Zhao, H.; Darzynkiewicz, Z. Cell Senescence, Methods and Protocols. *Methods Mol
742 Biology* **2012**, 965, 83–92. https://doi.org/10.1007/978-1-62703-239-1_5.

743 (44) Dusanov, S.; Ruzzin, J.; Kiviranta, H.; Klemsdal, T. O.; Retterstøl, L.; Rantakokko, P.;
744 Airaksinen, R.; Djurovic, S.; Tonstad, S. Associations between Persistent Organic Pollutants and
745 Metabolic Syndrome in Morbidly Obese Individuals. *Nutrition Metabolism Cardiovasc Dis*
746 **2018**, 28 (7), 735–742. <https://doi.org/10.1016/j.numecd.2018.03.004>.

747 (45) Smathers, R. L.; Petersen, D. R. The Human Fatty Acid-Binding Protein Family:
748 Evolutionary Divergences and Functions. *Hum Genomics* **2011**, 5 (3), 170–191.
749 <https://doi.org/10.1186/1479-7364-5-3-170>.

750 (46) Nguyen, T. M. D. Adiponectin: Role in Physiology and Pathophysiology. *Int J Prev
751 Medicine* **2020**, 11 (1), 136. https://doi.org/10.4103/ijpvm.ijpvm_193_20.

752 (47) Meyer, L. K.; Ciaraldi, T. P.; Henry, R. R.; Wittgrove, A. C.; Phillips, S. A. Adipose Tissue
753 Depot and Cell Size Dependency of Adiponectin Synthesis and Secretion in Human Obesity.
754 *Adipocyte* **2013**, 2 (4), 217–226. <https://doi.org/10.4161/adip.24953>.

755 (48) Li, S.; Shin, H. J.; Ding, E. L.; Dam, R. M. van. Adiponectin Levels and Risk of Type 2
756 Diabetes: A Systematic Review and Meta-Analysis. *Jama* **2009**, 302 (2), 179–188.
757 <https://doi.org/10.1001/jama.2009.976>.

758 (49) Fernandez, M. F.; Kiviranta, H.; Molina-Molina, J. M.; Laine, O.; Lopez-Espinosa, M. J.;
759 Vartiainen, T.; Olea, N. Polychlorinated Biphenyls (PCBs) and Hydroxy-PCBs in Adipose
760 Tissue of Women in Southeast Spain. *Chemosphere* **2008**, 71 (6), 1196–1205.
761 <https://doi.org/10.1016/j.chemosphere.2007.09.064>.

762 (50) Wang, H.; Adamcakova-Dodd, A.; Lehmler, H.-J.; Hornbuckle, K. C.; Thorne, P. S.
763 Toxicity Assessment of 91-Day Repeated Inhalation Exposure to an Indoor School Air Mixture
764 of PCBs. *Environ Sci Technol* **2022**, 56 (3), 1780–1790. <https://doi.org/10.1021/acs.est.1c05084>.

765 (51) Martin, A. D.; Daniel, M. Z.; Drinkwater, D. T.; Clarys, J. P. Adipose Tissue Density,
766 Estimated Adipose Lipid Fraction and Whole Body Adiposity in Male Cadavers. *Int J Obes
767 Relat Metabolic Disord J Int Assoc Study Obes* **1994**, 18 (2), 79–83.

768 (52) Kodavanti, P. R.; Ward, T. R. Interactive Effects of Environmentally Relevant
769 Polychlorinated Biphenyls and Dioxins on [³H]Phorbol Ester Binding in Rat Cerebellar Granule
770 Cells. *Environ Health Persp* **1998**, 106 (8), 479–486. <https://doi.org/10.1289/ehp.98106479>.

771 (53) Zhang, D.; Saktratkulkla, P.; Marek, R. F.; Lehmler, H.-J.; Wang, K.; Thorne, P. S.;
772 Hornbuckle, K. C.; Duffel, M. W. PCB Sulfates in Serum from Mothers and Children in Urban
773 and Rural U.S. Communities. *Environ Sci Technol* **2022**, 56 (10), 6537–6547.
774 <https://doi.org/10.1021/acs.est.2c00223>.

775 (54) Bourez, S.; Lay, S. L.; Daelen, C. V. den; Louis, C.; Larondelle, Y.; Thomé, J.-P.;
776 Schneider, Y.-J.; Dugail, I.; Debier, C. Accumulation of Polychlorinated Biphenyls in
777 Adipocytes: Selective Targeting to Lipid Droplets and Role of Caveolin-1. *Plos One* **2012**, 7 (2),
778 e31834. <https://doi.org/10.1371/journal.pone.0031834>.

779 (55) Roos, V.; Rönn, M.; Salihovic, S.; Lind, L.; Bavel, B. van; Kullberg, J.; Johansson, L.;
780 Ahlström, H.; Lind, P. M. Circulating Levels of Persistent Organic Pollutants in Relation to
781 Visceral and Subcutaneous Adipose Tissue by Abdominal MRI. *Obesity* **2013**, 21 (2), 413–418.
782 <https://doi.org/10.1002/oby.20267>.

783 (56) Arner, E.; Westermark, P. O.; Spalding, K. L.; Britton, T.; Rydén, M.; Frisén, J.; Bernard,
784 S.; Arner, P. Adipocyte Turnover: Relevance to Human Adipose Tissue Morphology. *Diabetes*
785 **2010**, 59 (1), 105–109. <https://doi.org/10.2337/db09-0942>.

786 (57) Gourronc, F. A.; Helm, B. K.; Robertson, L. W.; Chimenti, M. S.; Joachim-Lehmler, H.;
787 Ankrum, J. A.; Klingelhutz, A. J. Transcriptome Sequencing of 3,3',4,4',5-Pentachlorobiphenyl

788 (PCB126)-Treated Human Preadipocytes Demonstrates Progressive Changes in Pathways
789 Associated with Inflammation and Diabetes. *Toxicol In Vitro* **2022**, *83*, 105396.
790 <https://doi.org/10.1016/j.tiv.2022.105396>.

791 (58) Borlak, J. ürgen; Hock, A.; Hansen, T.; Richter, E. DNA Adducts in Cultures of
792 Polychlorinated Biphenyl-Treated Human Hepatocytes. *Toxicol Appl Pharm* **2003**, *188* (2), 81–
793 91. [https://doi.org/10.1016/s0041-008x\(02\)00075-3](https://doi.org/10.1016/s0041-008x(02)00075-3).

794 (59) Seegal, R. F.; Brosch, K. O.; Okoniewski, R. The Degree of PCB Chlorination Determines
795 Whether the Rise in Urinary Homovanillic Acid Production in Rats Is Peripheral or Central in
796 Origin. *Toxicol Appl Pharm* **1988**, *96* (3), 560–564. [https://doi.org/10.1016/0041-008x\(88\)90015-4](https://doi.org/10.1016/0041-008x(88)90015-4).

797

798 (60) Coletti, D.; Palleschi, S.; Silvestroni, L.; Cannavò, A.; Vivarelli, E.; Tomei, F.; Molinaro,
799 M.; Adamo, S. Polychlorobiphenyls Inhibit Skeletal Muscle Differentiation in Culture. *Toxicol*
800 *Appl Pharm* **2001**, *175* (3), 226–233. <https://doi.org/10.1006/taap.2001.9237>.

801 (61) Maqdasy, S.; Lecoutre, S.; Renzi, G.; Frendo-Cumbo, S.; Rizo-Roca, D.; Moritz, T.;
802 Juvany, M.; Hodek, O.; Gao, H.; Couchet, M.; Witting, M.; Kerr, A.; Bergo, M. O.; Choudhury,
803 R. P.; Aouadi, M.; Zierath, J. R.; Krook, A.; Mejhert, N.; Rydén, M. Impaired Phosphocreatine
804 Metabolism in White Adipocytes Promotes Inflammation. *Nat Metabolism* **2022**, *4* (2), 190–202.
805 <https://doi.org/10.1038/s42255-022-00525-9>.

806 (62) Panesar, H. K.; Wilson, R. J.; Lein, P. J. Handbook of Neurotoxicity. **2022**, 1–30.
807 https://doi.org/10.1007/978-3-030-71519-9_204-1.

808 (63) Tsai, S.-H.; Chang, E. Y.-C.; Chang, Y.-C.; Hee, S.-W.; Tsai, Y.-C.; Chang, T.-J.; Chuang,
809 L.-M. Knockdown of RyR3 Enhances Adiponectin Expression Through an Atf3-Dependent
810 Pathway. *Endocrinology* **2013**, *154* (3), 1117–1129. <https://doi.org/10.1210/en.2012-1515>.

811