

1 Genome Report: A blue mussel chromosome-scale genome assembly for aquaculture, marine
2 ecology and evolution

3 Tim Regan¹, Tiago S. Hori², Tim P. Bean¹

4 ¹ The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK.

5 ² Atlantic Aqua Farms Ltd., Charlottetown, PE, Canada.

6

7 **Keywords:** Aquaculture, evolution, bivalve, mussel, *Mytilus edulis*

8

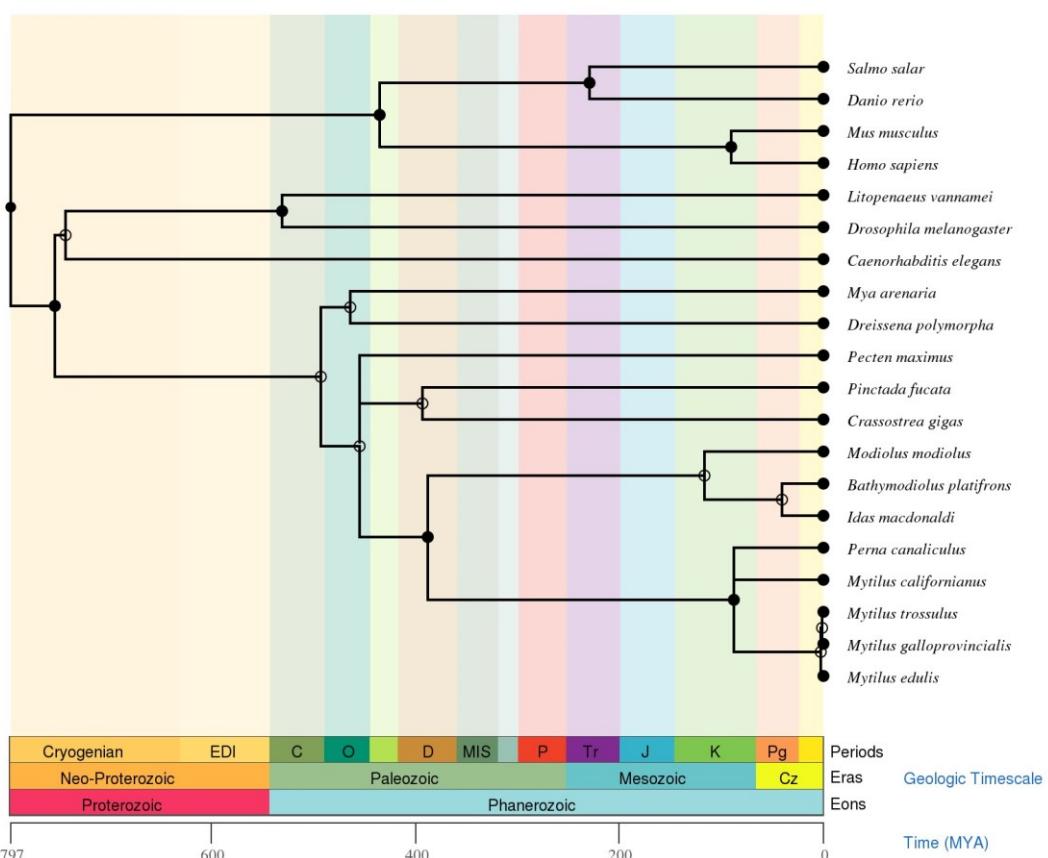
9 **Abstract**

10 The blue mussel, *Mytilus edulis* is part of the *Mytilus edulis* species complex, encompassing at least
11 three putative species: *M. edulis*, *M. galloprovincialis* and *M. trossulus*. These three species occur on
12 both sides of the Atlantic and hybridize in nature, and both *M. edulis* and *M. galloprovincialis* are
13 important aquaculture species. They are also invasive species in many parts of the world. Here, we
14 present a chromosome-level assembly of *Mytilus edulis*. We used a combination of PacBio sequencing
15 and Dovetail's Omni-C technology to generate an assembly with 14 long scaffolds containing 94% of
16 the predicted length of the *M. edulis* genome (1.6 out of 1.7 Gb). Assembly statistics were total length
17 1.65 Gb, N50 = 116 Mb, L50 = 7 and, L90 = 13. BUSCO analysis showed 92.55% eukaryote BUSCOs
18 identified. AB-*Initio* annotation using RNA-seq from mantle, gills, muscle and foot predicted 47,128
19 genes. These gene models were combined with Isoseq validation resulting in 65,505 gene models and
20 129,708 isoforms. Using GBS and shotgun sequencing, we also sequenced 3 North American
21 populations of *Mytilus* to characterize single-nucleotide as well as structural variance. This high-quality
22 genome for *M. edulis* provides a platform to develop tools that can be used in breeding, molecular
23 ecology and evolution to address questions of both commercial and environmental perspectives.

24

25

26 **Introduction**


27 The blue mussel (*Mytilus edulis*) is common to the North Atlantic from Arctic to Mediterranean
28 regions, with habitat ranging from upper shore to the shallow subtidal (Hayward and Ryland 2017).
29 *M. edulis* is known to hybridise with *M. trossulus* in North America and with *M. trossulus* and *M.*
30 *galloprovincialis* in Europe. Together, these three species form the *M. edulis* species complex (Fig. 1)
31 (McDonald et al. 1991).

32 This reef-building bivalve is an ecosystem engineer. Blue mussels dominate fouling communities in
33 shallow and substrata providing important secondary habitat (Norling and Kautsky 2007). Offshore
34 wind energy structure surveys found that they can cover the structures with up to 3.4 kg of biomass
35 m^{-2} (Krone et al. 2013). Through filter-feeding, eutrophication is reduced which can alter ecosystems
36 (Broszeit et al. 2016). This nutrient cycling ability has been harnessed by using *M. edulis* to study the
37 fate of persistent organic and metal pollutants (Chase et al. 2001; McEneff et al. 2014), for the
38 bioremediation of waste (Broszeit et al. 2016) and reduce environmental effects from salmon farms
39 (MacDonald et al. 2011).

40 Mussels, a key bivalve production species (FAO 2020), face decreasing wild spat availability for
41 aquaculture in the UK and elsewhere (Regan et al. 2021). These losses are attributed to multiple
42 stressors including warmer seas (Seuront et al. 2019) causing a poleward range contraction (Jones et
43 al. 2010). Additionally, warmer oceans elevate dissolved CO_2 leading to Ocean Acidification (OA)
44 impacting mussel viability (Asplund et al. 2014) and disease resistance (Ellis et al. 2015). This makes
45 mussels more susceptible to bacterial pathogenesis (Eggermont et al. 2017; Ripabelli et al. 1999), with
46 emerging pathogens posing a constant threat (Charles et al. 2020; Cano et al. 2022). Infectious disease
47 such as disseminated Neoplasia (DN) of *M. trossulus* origin is associated with reduced fitness in *Mytilus*
48 *spp.* (Burioli et al. 2021). Furthermore, the effects of hybridisation between the three species of the
49 *Mytilus edulis* complex are yet uncertain with suggested negative effect of *M. trossulus* hybridisation
50 and potential adaptive introgression in the case of *M. galloprovincialis* hybridisation (Fraïsse et al.
51 2014; Kenchington et al. 2020; Michalek et al. 2021).

52 To protect the aquaculture industry from these threats, hatchery efforts have been launched in the
53 UK (Regan et al. 2021), elsewhere in Europe (Kamermans et al. 2013) and in Canada (Gurney-Smith et
54 al. 2017). However, these efforts have not been straightforward and a better understanding of
55 fundamental biology is required to achieve commercial success. Despite their importance in
56 aquaculture and the valuable ecosystem services they provide, no chromosomal assembly existed for
57 any species within the *Mytilus edulis* species complex prior to this study. Improved genomic tools are
58 required to address fundamental biological questions such as inheritance patterns and adaptations.

59 Like many bivalves, the mussel genome is highly heterozygous (3.5%) with an estimated 43% repeat
60 content. The linear plot of k-mer abundance analysis clearly shows a heterozygous peak in addition to
61 the homozygous peak and estimates a shorter haploid genome length of 1.18 Gb compared to flow-
62 cytometry data. The estimated repeat content of the *M. edulis* genome is ~43%. These characteristics
63 make assembly of these genomes challenging. However, recently genomes for the American oyster,
64 Pacific Oyster, *M. corruscus* and *M. californicus* have been assembled to chromosome-level using short
65 and long-read sequencing technologies as well as Hi-C-based scaffolding (Yang et al. 2021; Paggeot et
66 al. 2022a; Penalosa et al. 2021; Gomez-Chiarri et al. 2015). We used a similar approach in this project
67 to produce a highly contiguous assembly. Practical application of this assembly is demonstrated in
68 cross-species synteny analyses and in population structure of *Mytilus* individuals sampled from
69 different regions of the Canadian Atlantic.

70

71 **Fig. 1. TimeTree for *Mytilus edulis***

72 Mytilidae diverged ~387 MYA. Generated using TimeTree (Kumar et al. 2022).

73

74

75 **Methods**

76 *DNA extraction, library preparation for genome assembly*

77 One naïve blue mussel sample (Anne) was selected from samples collected by the Provincial
78 Department of Communities and Fisheries in the estuary Foxley river in PE. Foxley River was selected
79 as a sampling site because there is no grow-out aquaculture there (i.e. seed from other bays are not
80 transferred to the area). Due to potential introgression of other species of the *Mytilus* species complex
81 (e.g. *M. trossulus*), this sample was genotyped using 12 SNPs described by (Wilson et al. 2018). We
82 sampled the gill, mantle and muscle of sample "Anne" aseptically, flash froze fresh tissues in liquid
83 nitrogen and preserved them at -80°C. Tissues were shipped to Dovetail Genomics in Scott's Valley,
84 CA, in excess dry ice. Dovetail extracted high molecular weight (HMW) DNA using an in-house modified
85 CTAB method. Dovetail prepared and sequenced PacBIO SMRTbell libraries to a depth of 196X using
86 the Sequel II sequencer. Processed PacBio data (from Dovetail) can be found on SRA under accession
87 number SRX11246493.

88 *Raw contig assembly, scaffold formation and polishing*

89 Dovetail generated a primary contig-level assembly using wtDBG2 (Ruan and Li 2020). The contig-level
90 assembly was filtered of putative duplicated haplotypes and contaminants using Purge Haplotigs
91 (Roach et al. 2018) and Blobtools2 (Challis et al. 2020), respectively. Scaffolding was performed using
92 Omni-C libraries and the HiRise assembler (v1.0). The same DNA sample used by Dovetail was shipped
93 to UWM (University of Wisconsin – Madison) and sequenced to a 100X using the NovaSeq sequencer.
94 These data were trimmed using Trimmomatic (v) and used for polishing with racon (v1.4.3) (Vaser et
95 al. 2017). Completeness was evaluated using compleasm v0.2.5 (Huang and Li 2023)
96 (eukaryota_odb10: 255 BUSCOS, metazoa_odb10: 954 BUSCOS and mollusca_odb10: 5295 BUSCOS)
97 (Manni et al. 2021) and Merqury (Rhie et al. 2020). Merqury analysis was carried out with the same
98 read set used for polishing as the original PacBio CLR reads were not suitable for this analysis. General

99 length metrics were obtained using QUAST (v5.0.1) (Gurevich et al. 2013; Mikheenko et al. 2018).
100 Synteny mapping between the *M. edulis* and the *M. coruscus* (GCA_017311375.1) (Yang et al. 2021)
101 was done using the MCScanX.h function of MCScanX (v2) (Wang et al. 2012). Putative orthologous
102 groups were identified with Orthofinder (v.2.5.4) using predicted gene structures for *M. edulis* (this
103 work) and *M. coruscus* (Yang et al. 2021). Dot plots and circle plots were generated using MCScanX
104 (v.2).

105 *RNA preparation and Isoseq analysis*

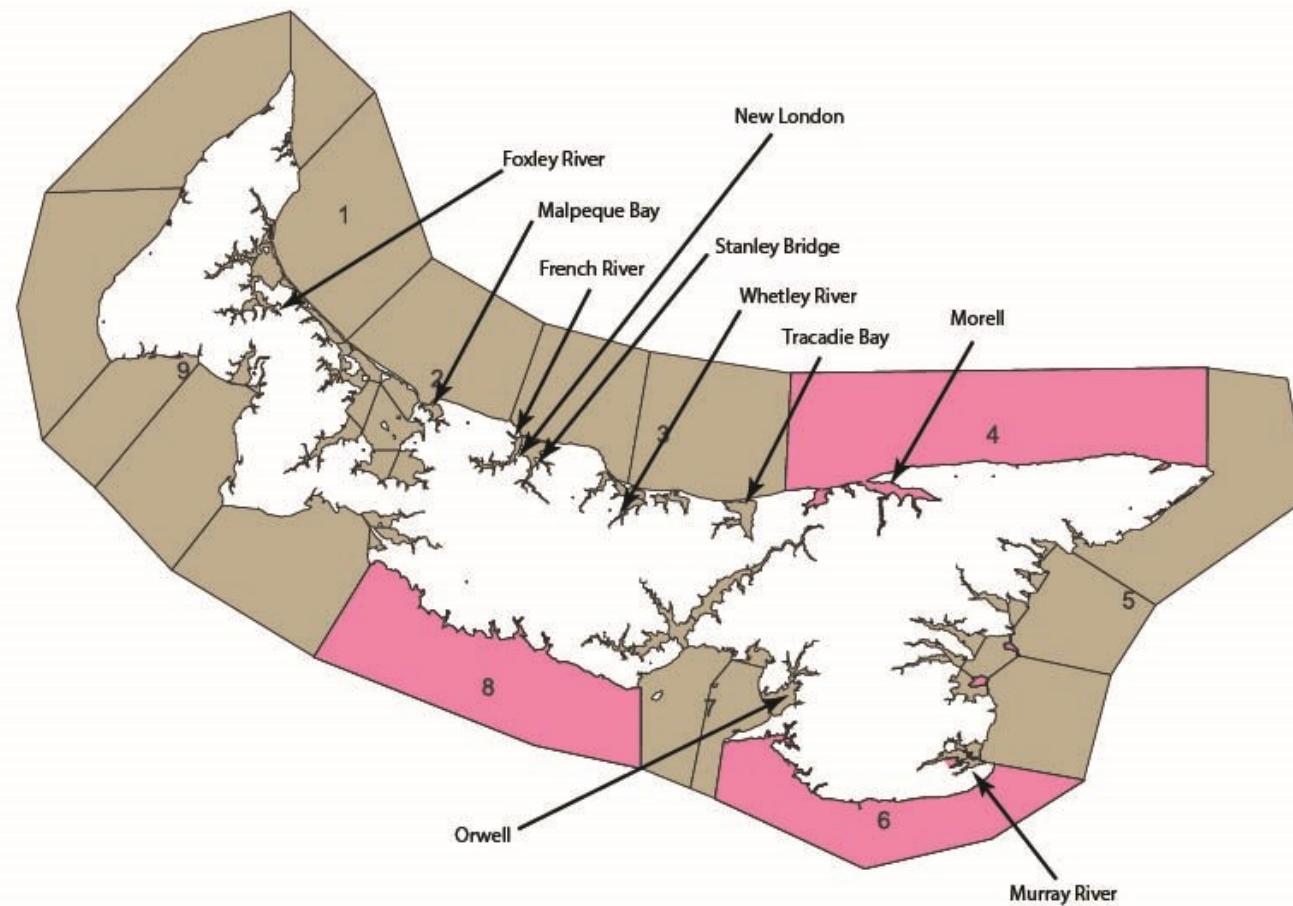
106 Isoseq3 analysis of CSS data from muscle, gill, hemolymph, and foot (2.9 million reads -188,165 Mb)
107 identified 216,343 high-quality putative full-length (FL) transcripts (from 2.8 million reads containing
108 poly-A tails). We shipped flash frozen gill and adductor muscle tissue from sample "Anne" to the
109 Biotechnology Centre Core facility at the University of Wisconsin, Madison (UWM). Samples were
110 homogenized using a Qiagen Tissuelyser (2 min @ 20 Hz). RNA was extracted using the RNeasy Mini
111 Kit (Qiagen) with on-column DNase treatment. UWM performed RNA QC with a nanodrop and
112 bioanalyzer and prepared libraries using the Iso-seq Library SMRTbell express template prep kit.
113 Libraries were sequenced using one Sequel II SMRT cell in CSS mode (i.e. HiFi reads). UWM provided
114 de-multiplexed processed HiFi reads. RNA samples from foot, mantle and gut were sent to the
115 Genome Excellence Centre (Genome Quebec) in Montreal. HiFi sequencing was carried out as above.
116 Putative full-length transcripts were identified using the IsoSeq3 pipeline
117 (<https://github.com/ylipacbio/IsoSeq3>). Putative open read frames (ORF) were identified using
118 TransDecoder (v5.5.0) (<https://github.com/TransDecoder/TransDecoder/wiki>).

119 *Annotation*

120 Repeat modeller (4.1.0) (Flynn et al. 2020) was used to predict repeat motifs for *M. edulis* and Repeat
121 Masker (2.0.2a) (Smit et al. 2015) was used to mask the final assembly. Ab-initio annotation was done
122 using Augustus (v3.4.0) (Stanke et al. 2006) trained with genes from *Mytilus galloprovincialis*, *Mytilus*
123 *coruscus* and *Crassostrea virginica*. Additional hints were generated using short-read RNA-seq (data

124 not shown) and Isoseq data generated herein. The ab-initio annotation was updated using PASA (v2.5)
125 with alignments of a de-novo transcriptome produced using Trinity (v2.8.15) (Grabherr et al. 2011) in
126 Genome-Guided mode. Two runs through PASA were used to update the *ab-initio* annotation. Full-
127 length (FL) transcripts from Isoseq3 pipeline were mapped to the genome using pbmm2 with pre-sets
128 for Isoseq and filtered based on quality Isoseq3 collapse (minimum alignment identity/coverage:
129 0.90/0.90) and Isoseq3 refine. We used the resulting gff annotation to run SQANTI3 (v4.3.0). We used
130 sqanti_qc.py to generate quality data for sqanti_filter.py. Filtering to remove artifacts was carried out
131 using the default parameters. Lastly, ab-initio predictions and filtered Isoseq FLs were merged with
132 AGAT (v.1.2.0). Using agat_sp_merge.pl, we removed duplicate gene models/isoform and assigned
133 orphan isoforms from the Isoseq data when possible. Amino acid sequences were translated from the
134 CDS using agat_sp_extract_sequences using options -t "CDS" -p --cfs --acs --asc.

135 *Sample collection for SNP discovery and population structure*


136 We collected gill samples for DNA extractions using standard molecular biology techniques and
137 preserved them in non-denatured 100% ethanol. For population genetics analysis, we sampled
138 mussels in sets of 96 from west to east PEI in Foxley River (FOX) (wild population), Malpeque Bay (MB)
139 (North Shore, Prince County); French River (FR), Stanley Bridge (ST), Whetley River (WR), Tracadie
140 (TRC) (North Shore, Queen county); Orwell (OR) (South Shore, Queen's county; Morell (MRL) (North
141 Shore – King's county) and; Murray River (MR) (South Shore, King county) (Fig. 2). Seed deployed on
142 these sites were originally collected in St. Peter's bay, Brudenell River, and Malpeque bay. We also
143 collected samples in the Bras D'or Lake in Cape Breton (Nova Scotia), the Magdalene Island (Québec)
144 and Notre Dame bay in Newfoundland.

145 *SNP markers, Admixture analysis, population structures.*

146 Samples for SNP discovery and population genetics were shipped to LGC genomics in Berlin.
147 Restriction-associated DNA libraries (RAD) libraries were prepared by LGC with using MsII, normalized
148 and sequenced using a NextSeq sequencer. The resulting reads were trimmed and checked for the

149 restriction site by LGC. This final read set was used to identify SNPs and call individual genotypes using
150 Tassel5 (v.5.2.4). SNPs were filtered using MAF (<0.01) and percent of individuals with genotypes. For
151 the SNP discovery, the samples from Cape Breton were excluded from filtering analysis. These samples
152 were shown to be a pure *M. trossulus* population and had missing calls for a significant number of
153 sites. For population genetics analysis, a second set of SNPs that were successfully called across all
154 populations was used. All samples were also genotyped for the 12 species discrimination SNPs from
155 (Wilson et al. 2018). All population genetics analyses were performed using the dPCA function of the
156 R package Adegenet (v.2.1.7) and STRUCTURE (v.2.3.4) or fastSTRUCTURE (v1.0) (K 3 to K10, 5000
157 repetitions, 1000 burn in). Analysis of species discrimination SNPs included the genotypes published
158 by (Corrochano-Fraile et al. 2022) as outgroups.

159

164 **Results and Discussion**

165 *Genome Assembly and Annotation*

166 The chromosome-level assembly presented herein was produced in two stages. First, ~15 million
167 PacBio CLR reads (~340 Gb) were produced, representing coverage of 196X for an estimated genome
168 size of 1.7 Gb (Hinegardner 1974; Rodríguez-Juiz et al. 1996). These reads were assembled into contigs
169 using wtdbg2, which uses uncorrected reads (Ruan and Li 2020). The primary assembly was 1.96 Gb
170 long in 17,825 contigs and a N50 of 443 Kb. After haplotype purging and contaminant removal, the
171 final contig assembly had 10,111 contigs, for a total of 1.65 Gb and a N50 of 518 Kb. Following
172 scaffolding using Omni-C libraries and the HiRise assembler, we generated a primary chromosome-
173 level assembly made of 2,117 contigs. We removed putative contaminants using Blobtools by
174 eliminating sequences coming from non-molluscan organisms. This assembly was further filtered to
175 contain only sequences > 5,000 bp. The resulting draft is deposited on NCBI assembly under accession
176 number GCA_019925275.1. The final assembly is made of 1,119 contigs and has an N50 of 116 Mb.
177 The 14 putative *M. edulis* chromosomes are deposited under accession numbers CM034349.1 to
178 CM34362.1. Detailed statistics for the assemblies can be found in **Table 1**.

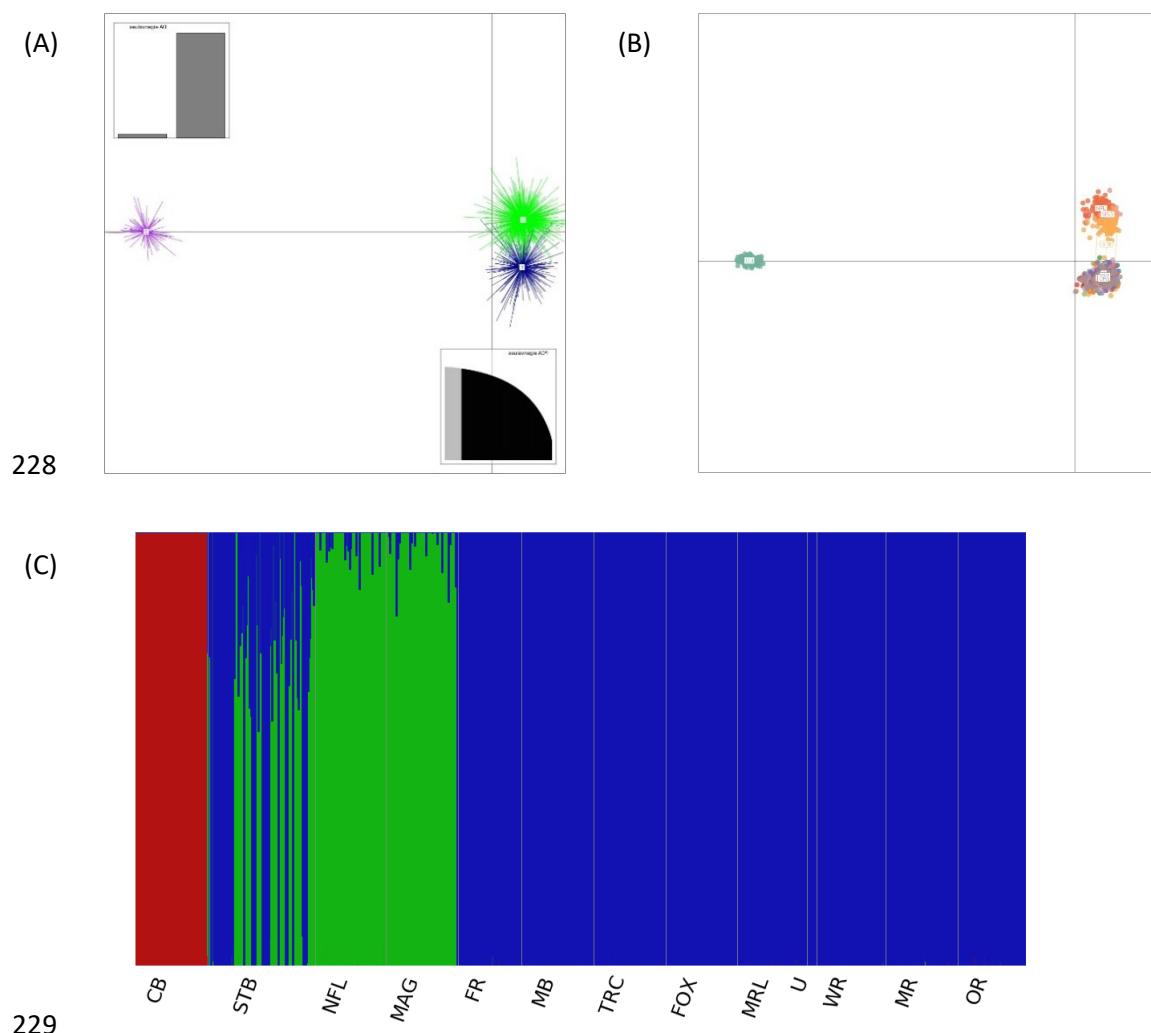
179

	Anne (This study)	Corrochano-Fraile <i>et al.</i> (2022)	xbMytEdul2.1, Darwin Tree of Life (2024)
<i>Length</i>	1,659,567,081 bp	1,827,085,763	1,374,471,240
<i># of scaffolds</i>	1,119	3,339	2,563
<i># of contigs</i>	9,866	5,966	3,754
<i>N50</i>	116,503,180	1,097,279	1,734,586
<i>Coverage</i>	196.0x	152.0x	30.0x
<i>Completeness</i> (Merqury)	76.71	NA	NA
<i>QV</i>	32.39	NA	NA

180 **Table 1. Summary statistics for *M. edulis* assemblies**

181 Compared to the assembly published in Corrochano-Fraile et al. (2022), the assembly presented
182 herein has better contiguity (**Table 1**). Our assembly is also shorter than the assembly from

183 Corrochano-Fraile et al. (2022). The two assemblies' length falls close to the estimated size of the
184 genome based on c-value (1.7) (Rodríguez-Juiz et al. 1996) and is significantly longer than what is
185 estimated by k-mer abundance analysis with GenomeScope (1.18 Gb).


186 Despite the total assembly length being close to that estimated using c-values, k-mer-based
187 completeness analysis recovers only 76% in a set of Illumina reads origination from sample "Anne".
188 When the putative purged haplotigs were added back to the assembly, recovery was ~83%. This
189 apparent low k-mer recovery is probably a combination of the consensus being different from either
190 haploid genomes, the error rate in the original PacBio data, the fact that the reads used for polishing
191 were not used from the primary assembly, the contigs removed based on length or contaminant
192 status, and the gaps arising from the Omni-C scaffolding. It is also possible that the high heterozygosity
193 affects the accuracy of k-mer abundance analysis, as shown by the large discrepancy between genome
194 size estimates.

195 Completeness analysis in Merqury resulted in 76.71% recovery of k-mers present in the polishing
196 Illumina data from the final version of the assembly. We also evaluated the completeness of the
197 assembly when combined with purged haplotypes, which was 83.44%. QV value for the primary
198 assembly was 32.39, while the combined draft had a QV of 30.73. Compleasm BUSCO analysis showed
199 a recovery of 92.55%, 91.95%, and 88.5% complete BUSCOS against the eukaryote, metazoan and
200 molluscan databases, respectively. The 14 putative chromosomes represent ~96% of the assembly,
201 with lengths varying from 140 Mbp to 90 Mbp. These data and the N50 metric show that this assembly
202 has high contiguity and that this assembly and its annotation will be highly useful for aquaculture,
203 evolution and molecular ecology studies. Herein, we illustrate the possible applications of this
204 assembly by performing population and synteny analyses.

205 *SNP discovery and population structure*

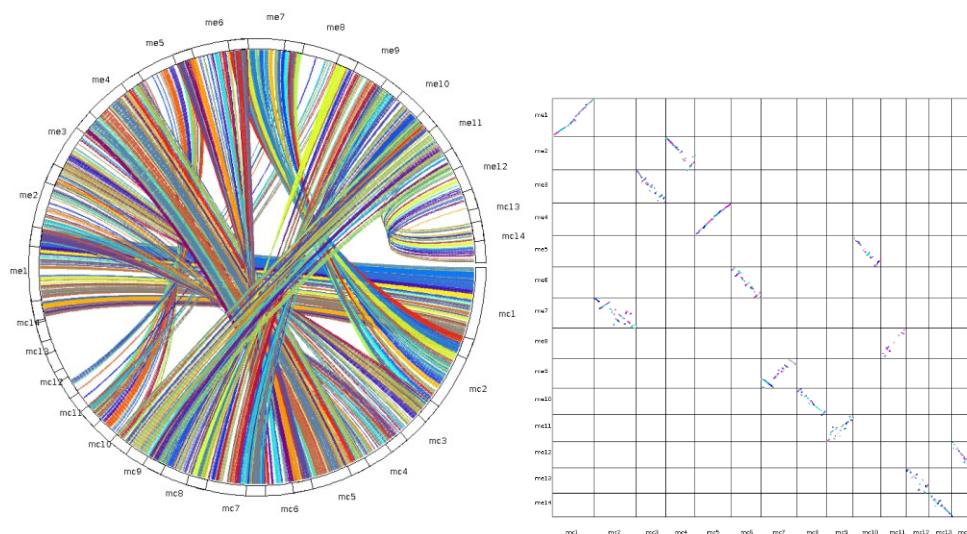
206 Due to the close relationship between the members of the *Mytilus* species complex, we wanted to
207 verify that the individual sampled (Anne) was pure *M. edulis*. Population Structure analysis conducted

208 using 12 SNPs (Wilson et al. 2018) clearly separated *M. edulis* populations in PEI from other regions of
209 Canada. We generated two sets of SNPs: the first set totalling 71,231 SNPs using only samples from
210 PEI and made a polymorphic collection of SNPs in *M. edulis*. The second set, with ~6,000 markers, is a
211 polymorphic set of SNPs in both *M. edulis* and *M. trossulus*. Population structure and putative
212 admixture are shown in **Figure 4**. In the DPCA and PCA, untrained clustering clearly separated both CB
213 from PEI/NL/MAG and also the putative populations in the Gulf of St. Lawrence. In green, are the
214 majority of samples from NL and MAG, while blue represents individuals from PEI.

215 We used *M. trossulus*, *M. galloprovincialis* and European *M. edulis* genotypes as outgroups. The later
216 inclusion of 96 individuals from Cape Breton (NS) showed no significant evidence of *M. trossulus*
217 introgression in PEI samples. Given that Cape Breton has long been considered a pure *M. trossulus*
218 population (Wilson et al., 2018), we are confident that the sample Anne represents an *M. edulis*
219 individual. We also genotyped over 500 PEI individuals and 96 samples from Magdalene Island and 96
220 individuals from Newfoundland with the same 12 SNP panel. As before no significant introgression of
221 *M. trossulus* was detected in PEI. However, we only genotyped 96 samples collected in an area with
222 no grow-out leases (Foxley River). Although unlikely, we cannot rule out the possibility of a sampling
223 bias in aquaculture sites favouring *M. edulis*. DPCA and Structure analysis indicate that there is low
224 population stratification between different regions of PEI, while the Magdalene islands and NL are
225 distinct populations. The populations from NL and the Magdalene Islands are more similar to each
226 other than from the populations from PEI. For animals from one sampling event at S.t Peter's bay, we
227 found evidence of shared genetics between PEI and the population to the northeast of the island.

234 *Annotation and synteny analysis*

235 We identified 196,111 putative open reading frames from the 216,343 FL transcripts using Isoseq3
236 analysis of CSS data from muscle and gill (2.9 million reads -188,165 Mb). BLASTp analysis against the
237 uniref90 database returned informative hits for ~80% (164,969) of these translated transcripts. *Ab-*
238 *initio* gene prediction in Augustus detected 46,604 gene models that produced 46,604 transcripts after
239 filtering based on evidence support. After two rounds of PASA updates, the final number of gene
240 models was 47,128 and the number of transcripts was 55,138. After Isoseq refine and collapse 85,099
241 isoforms survived and following SQANTI3 filtering 70,592 isoforms remained. They were assigned to
242 31,211 unique genes. Finally, the combined annotation has 65,505 gene models and 129,708 isoforms.
243 Proteins were translated from the CDS ensuring only complete CDS were translated and that isoforms
244 were not incorrectly fused together. This resulted in 45,379 amino acid sequences. Compleasm BUSCO
245 analysis of these 45,379 proteins showed a recovery of 78.43% and 76.83% complete BUSCOS against
246 the eukaryote and metazoan databases, respectively.


247 Synteny analysis showed a high degree of collinearity between putative chromosomes of *M. edulis*
248 and *M. coruscus* (Fig. 3). However, putative inversions, transposition and deletion can be observed in
249 almost all chromosomes. Gene order in chromosomes represented by sequences CM034349.1 (*M.*
250 *edulis* chromosome 1) - CM029595.1 (*M. coruscus* LG1) and CM034343.1 (*M. edulis* chromosome 4) –
251 CM029599.1 (*M. coruscus* LG5) showed the highest conservation. Putative orthologous relationships
252 between *M. edulis* chromosomes and *M. coruscus* linkage groups (LG) are shown in Table 2.

253 The taxonomic status of the “species” in the *Mytilus* species complex remains in debate. Chromosome-
254 level assemblies allow the study of macroevolution of the genome by looking at synteny across
255 species. Herein, we present the synteny analysis between the 14 putative chromosomes of *M. edulis*
256 and *M. coruscus* (Yang et al. 2021) to exemplify how chromosome-level assemblies may allow us to
257 better understand the phylogenetic relationships within the genus *Mytilus*. This analysis shows that
258 some of putative orthologous chromosomes of the 2 species maintain high-levels of collinearity (e.g.

259 chromosomes 1 and 4 from *M. edulis* with LG1 and LG5 from *M. coruscus* respectively) while others
260 present significant levels of re-arrangements (e.g. chromosomes 7 and 11 from *M. edulis* with LG2 and
261 LG9 from *M. coruscus* respectively). An in-depth analysis of chromosome synteny will shed light on
262 the level of collinearity between multiple members of the genus *Mytilus*. Homology between
263 chromosomes is a key element of the viability of hybrids. Reproductive isolation tends to increase
264 during speciation, and these resources will permit further studies on the reproductive compatibility
265 of the species in genus *Mytilus* at the chromosome level.

266

267

268

269 **Figure 3. Synteny between the *M. edulis* and *M. coruscus* putative chromosomes**

270

271 **Table 2: Putative synteny between *M. edulis* and *M. coruscus*. Ids are NCBI Assembly database
272 Molecule name and accession number.**

<i>M. edulis</i>	<i>M. coruscus</i>
Chromosome 1 (CM034349.1)	LG01 (CM029595.1)
Chromosome 2 (CM034350.1)	LG04 (CM029598.1)
Chromosome 3 (CM034351.1)	LG03 (CM029597.1)
Chromosome 4 (CM034352.1)	LG05 (CM029599.1)
Chromosome 5 (CM034353.1)	LG10 (CM029604.1)
Chromosome 6 (CM034354.1)	LG06 (CM029600.1)
Chromosome 7 (CM034355.1)	LG02 (CM029596.1)
Chromosome 8 (CM034356.1)	LG11 (CM029605.1)
Chromosome 9 (CM034357.1)	LG07 (CM029601.1)
Chromosome 10 (CM034358.1)	LG08 (CM029602.1)
Chromosome 11 (CM034359.1)	LG09 (CM029603.1)
Chromosome 12 (CM034360.1)	LG14 (CM029608.1)
Chromosome 13 (CM034361.1)	LG12 (CM029606.1)
Chromosome 14 (CM034362.1)	LG13 (CM029607.1)

273

274

275 Here, we present a highly contiguous chromosome assembly for *Mytilus edulis* confirming species-
276 level individual purity through resequencing. To date, our resource has been applied in multiple
277 studies analysing *Mytilus* genome assemblies (Paggeot et al. 2022b; Gallardo-Escarate et al. 2023) and
278 cross-species gene orthology analyses (Saco et al. 2023). The gene annotations produced in this study
279 were generated using Augustus gene model predictions integrating full transcript Isoseq data and
280 applying stringent filtering parameters. This comprehensive approach provides a robust foundation
281 for future cross-species analyses and biological studies on gene function within the *Mytilus* species
282 complex.

283

284 **Data Availability:**

285 The resulting draft is deposited on NCBI assembly under accession number GCA_019925275.1.

286 **Funding Statement:**

287 "Breeding Better Mussels (*Mytilus edulis*): developing genomic tools for the implementation of a
288 modern and sustainable mussel Breeding Program" (Grant ID GA-PE-RP3, Genome Canada)

289 The authors would like to acknowledge funding from BBSRC Institute Strategic Programme grants
290 (BBS/E/RL/230001A, BBS/E/RL/230001B and BBS/E/RL/230002B).

291

292 **Acknowledgements**

293 Industry Partners: Mussel King (Scott Dockendorff), PEI Aqua Farms (John Paquet), Atlantic Aqua
294 Farms (Terry Ennis).

295 PEIMSO: Angela MacDonald, Neil McNair, Aaron Ramsey, Jessica Fry

296 Genome Atlantic: Kristin Tweel, Charmaine Gaudet, Nil d'Entremont

297 Service Providers: LGC Berlin and UK, Genome Quebec, Dovetail Genomics

298

299

300 Asplund, M.E., S.P. Baden, S. Russ, R.P. Ellis, N. Gong *et al.*, 2014 Ocean acidification and host-
301 pathogen interactions: blue mussels, *Mytilus edulis*, encountering *Vibrio tubiashii*. *Environ
302 Microbiol* 16 (4):1029-1039.

303 Broszeit, S., C. Hattam, and N. Beaumont, 2016 Bioremediation of waste under ocean acidification:
304 Reviewing the role of *Mytilus edulis*. *Marine Pollution Bulletin* 103 (1):5-14.

305 Burioli, E.A.V., M. Hammel, N. Bierne, F. Thomas, M. Houssin *et al.*, 2021 Traits of a mussel
306 transmissible cancer are reminiscent of a parasitic life style. *Scientific Reports* 11 (1):24110.

307 Cano, I., A. Parker, G.M. Ward, M. Green, S. Ross *et al.*, 2022 First Detection of *Francisella halioticida*
308 Infecting a Wild Population of Blue Mussels *Mytilus edulis* in the United Kingdom. *Pathogens*
309 11 (3).

310 Challis, R., E. Richards, J. Rajan, G. Cochrane, and M. Blaxter, 2020 BlobToolKit – Interactive Quality
311 Assessment of Genome Assemblies. *G3 Genes/Genomes/Genetics* 10 (4):1361-1374.

312 Charles, M., A. Villalba, G. Meyer, S. Trancart, C. Lagy *et al.*, 2020 First detection of *Francisella
313 halioticida* in mussels *Mytilus* spp. experiencing mortalities in France. *Dis Aquat Organ*
314 140:203-208.

315 Chase, M., S.H. Jones, P. Hennigar, J. Sowles, G. Harding *et al.*, 2001 Gulfwatch: Monitoring spatial
316 and temporal patterns of trace metal and organic contaminants in the Gulf of Maine (1991–
317 1997) with the blue mussel, *Mytilus edulis* L. *Marine Pollution Bulletin* 42 (6):490-504.

318 Corrochano-Fraile, A., A. Davie, S. Carboni, and M. Bekaert, 2022 Evidence of multiple genome
319 duplication events in *Mytilus* evolution. *BMC Genomics* 23 (1):340.

320 Eggermont, M., P. Bossier, G.S.J. Pande, V. Delahaut, A.M. Rayhan *et al.*, 2017 Isolation of
321 *Vibrio*aceae from wild blue mussel (*Mytilus edulis*) adults and their impact on blue mussel
322 larviculture. *FEMS Microbiology Ecology* 93 (4).

323 Ellis, R.P., S. Widdicombe, H. Parry, T.H. Hutchinson, and J.I. Spicer, 2015 Pathogenic challenge
324 reveals immune trade-off in mussels exposed to reduced seawater pH and increased
325 temperature. *Journal of Experimental Marine Biology and Ecology* 462:83-89.

326 FAO, 2020 The State of World Fisheries and Aquaculture 2020. Sustainability in action. , pp. #244 p.
327 in *The State of World Fisheries and Aquaculture (SOFIA)*. FAO, Rome, Italy.

328 Flynn, J.M., R. Hubley, C. Goubert, J. Rosen, A.G. Clark *et al.*, 2020 RepeatModeler2 for automated
329 genomic discovery of transposable element families. *Proceedings of the National Academy
330 of Sciences* 117 (17):9451-9457.

331 Fraïsse, C., C. Roux, J.J. Welch, and N. Bierne, 2014 Gene-flow in a mosaic hybrid zone: is local
332 introgression adaptive? *Genetics* 197 (3):939-951.

333 Gallardo-Escarate, C., V. Valenzuela-Munoz, G. Nunez-Acuna, D. Valenzuela-Miranda, F.J. Tapia *et al.*,
334 2023 Chromosome-Level Genome Assembly of the Blue Mussel *Mytilus chilensis* Reveals
335 Molecular Signatures Facing the Marine Environment. *Genes (Basel)* 14 (4).

336 Gomez-Chiarri, M., W.C. Warren, X. Guo, and D. Proestou, 2015 Developing tools for the study of
337 molluscan immunity: The sequencing of the genome of the eastern oyster, *Crassostrea
338 virginica*. *Fish Shellfish Immunol* 46 (1):2-4.

339 Grabherr, M.G., B.J. Haas, M. Yassour, J.Z. Levin, D.A. Thompson *et al.*, 2011 Full-length
340 transcriptome assembly from RNA-Seq data without a reference genome. *Nature
341 Biotechnology* 29 (7):644-652.

342 Gurevich, A., V. Saveliev, N. Vyahhi, and G. Tesler, 2013 QUAST: quality assessment tool for genome
343 assemblies. *Bioinformatics* 29 (8):1072-1075.

344 Gurney-Smith, H.J., A.J. Wade, and C.L. Abbott, 2017 Species composition and genetic diversity of
345 farmed mussels in British Columbia, Canada. *Aquaculture* 466:33-40.

346 Hayward, P.J., and J.S. Ryland, 2017 *Handbook of the marine fauna of North-West Europe*: Oxford
347 University Press.

348 Hinegardner, R., 1974 Cellular DNA content of the Mollusca. *Comp Biochem Physiol A Comp Physiol*
349 47 (2):447-460.

350 Huang, N., and H. Li, 2023 compleasm: a faster and more accurate reimplementation of BUSCO.
351 *Bioinformatics* 39 (10).

352 Jones, S.J., F.P. Lima, and D.S. Wethey, 2010 Rising environmental temperatures and biogeography:
353 poleward range contraction of the blue mussel, *Mytilus edulis* L., in the western Atlantic.
354 *Journal of Biogeography* 37 (12):2243-2259.

355 Kamermans, P., T. Galley, P. Boudry, J. Fuentes, H. McCombie *et al.*, 2013 11 - Blue mussel hatchery
356 technology in Europe, pp. 339-373 in *Advances in Aquaculture Hatchery Technology*, edited
357 by G. Allan and G. Burnell. Woodhead Publishing.

358 Kenchington, E.L., B.W. MacDonald, A. Cogswell, L.C. Hamilton, and A.P. Diz, 2020 Sex-specific
359 effects of hybridization on reproductive fitness in *Mytilus*. *Journal of Zoological Systematics
360 and Evolutionary Research* 58 (2):581-597.

361 Krone, R., L. Gutow, T.J. Joschko, and A. Schröder, 2013 Epifauna dynamics at an offshore foundation
362 – Implications of future wind power farming in the North Sea. *Marine Environmental
363 Research* 85:1-12.

364 Kumar, S., M. Suleski, J.M. Craig, A.E. Kasprowicz, M. Sanderford *et al.*, 2022 TimeTree 5: An
365 Expanded Resource for Species Divergence Times. *Mol Biol Evol*.

366 MacDonald, B.A., S.M.C. Robinson, and K.A. Barrington, 2011 Feeding activity of mussels (*Mytilus
367 edulis*) held in the field at an integrated multi-trophic aquaculture (IMTA) site (*Salmo salar*)
368 and exposed to fish food in the laboratory. *Aquaculture* 314 (1):244-251.

369 Manni, M., M.R. Berkeley, M. Seppey, and E.M. Zdobnov, 2021 BUSCO: Assessing Genomic Data
370 Quality and Beyond. *Current Protocols* 1 (12):e323.

371 McDonald, J., R. Seed, and R. Koehn, 1991 Allozymes and morphometric characters of three species
372 of *Mytilus* in the Northern and Southern Hemispheres. *Marine Biology* 111 (3):323-333.

373 McEneff, G., L. Barron, B. Kelleher, B. Paull, and B. Quinn, 2014 A year-long study of the spatial
374 occurrence and relative distribution of pharmaceutical residues in sewage effluent, receiving
375 marine waters and marine bivalves. *Science of the Total Environment* 476:317-326.

376 Michalek, K., D.L.J. Vendrami, M. Bekaert, D.H. Green, K.S. Last *et al.*, 2021 *Mytilus trossulus*
377 introgression and consequences for shell traits in longline cultivated mussels. *Evolutionary*
378 *applications* 14 (7):1830-1843.

379 Mikheenko, A., A. Prjibelski, V. Saveliev, D. Antipov, and A. Gurevich, 2018 Versatile genome
380 assembly evaluation with QUAST-LG. *Bioinformatics* 34 (13):i142-i150.

381 Norling, P., and N. Kautsky, 2007 Structural and functional effects of *Mytilus edulis* on diversity of
382 associated species and ecosystem functioning. *Marine Ecology Progress Series* 351:163-175.

383 Paggeot, L.X., M.B. DeBiase, M. Escalona, C. Fairbairn, M.P.A. Marimuthu *et al.*, 2022a Reference
384 genome for the California ribbed mussel, *Mytilus californianus*, an ecosystem engineer. *J*
385 *Hered.*

386 Paggeot, L.X., M.B. DeBiase, M. Escalona, C. Fairbairn, M.P.A. Marimuthu *et al.*, 2022b Reference
387 genome for the California ribbed mussel, *Mytilus californianus*, an ecosystem engineer. *J*
388 *Hered* 113 (6):681-688.

389 Penalosa, C., A.P. Gutierrez, L. Eory, S. Wang, X. Guo *et al.*, 2021 A chromosome-level genome
390 assembly for the Pacific oyster *Crassostrea gigas*. *Gigascience* 10 (3).

391 Regan, T., T.P. Bean, T. Ellis, A. Davie, S. Carboni *et al.*, 2021 Genetic improvement technologies to
392 support the sustainable growth of UK aquaculture. *Reviews in Aquaculture* 13 (4):1958-1985.

393 Rhie, A., B.P. Walenz, S. Koren, and A.M. Phillippy, 2020 Merqury: reference-free quality,
394 completeness, and phasing assessment for genome assemblies. *Genome Biology* 21 (1):245.

395 Ripabelli, G., M.L. Sammarco, G.M. Grasso, I. Fanelli, A. Caprioli *et al.*, 1999 Occurrence of *Vibrio* and
396 other pathogenic bacteria in *Mytilus galloprovincialis* (mussels) harvested from Adriatic Sea,
397 Italy. *International Journal of Food Microbiology* 49 (1):43-48.

398 Roach, M.J., S.A. Schmidt, and A.R. Borneman, 2018 Purge Haplotype: allelic contig reassignment for
399 third-gen diploid genome assemblies. *BMC Bioinformatics* 19 (1):460.

400 Rodríguez-Juiz, A.M., M. Torrado, and J. Méndez, 1996 Genome-size variation in bivalve molluscs
401 determined by flow cytometry. *Marine Biology* 126:489-497.

402 Ruan, J., and H. Li, 2020 Fast and accurate long-read assembly with wtdbg2. *Nature Methods* 17
403 (2):155-158.

404 Saco, A., B. Novoa, S. Greco, M. Gerdol, and A. Figueras, 2023 Bivalves Present the Largest and Most
405 Diversified Repertoire of Toll-Like Receptors in the Animal Kingdom, Suggesting Broad-
406 Spectrum Pathogen Recognition in Marine Waters. *Molecular Biology and Evolution* 40 (6).

407 Seuront, L., K.R. Nicastro, G.I. Zardi, and E. Goberville, 2019 Decreased thermal tolerance under
408 recurrent heat stress conditions explains summer mass mortality of the blue mussel *Mytilus*
409 *edulis*. *Scientific Reports* 9 (1):17498.

410 Smit, A., R. Hubley, and P. Green, 2015 RepeatMasker Open-4.0. <http://www.repeatmasker.org>.

411 Stanke, M., O. Keller, I. Gunduz, A. Hayes, S. Waack *et al.*, 2006 AUGUSTUS: ab initio prediction of
412 alternative transcripts. *Nucleic acids research* 34 (suppl_2):W435-W439.

413 Vaser, R., I. Sović, N. Nagarajan, and M. Šikić, 2017 Fast and accurate de novo genome assembly
414 from long uncorrected reads. *Genome Res* 27 (5):737-746.

415 Wang, Y., H. Tang, J.D. Debarry, X. Tan, J. Li *et al.*, 2012 MCScanX: a toolkit for detection and
416 evolutionary analysis of gene synteny and collinearity. *Nucleic acids research* 40 (7):e49.

417 Wilson, J., I. Matejusova, R.E. McIntosh, S. Carboni, and M. Bekaert, 2018 New diagnostic SNP
418 molecular markers for the *Mytilus* species complex. *PLoS One* 13 (7):e0200654.

419 Yang, J.L., D.D. Feng, J. Liu, J.K. Xu, K. Chen *et al.*, 2021 Chromosome-level genome assembly of the
420 hard-shelled mussel *Mytilus coruscus*, a widely distributed species from the temperate areas
421 of East Asia. *Gigascience* 10 (4).

422