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ABSTRACT (200 words)

The study of cellular networks mediated by ligand-receptor interactions has attracted much
attention recently owing to single-cell omics. However, rich collections of bulk data
accompanied with clinical information exists and continue to be generated with no equivalent
in single-cell so far. In parallel, spatial transcriptomic (ST) analyses represent a revolutionary
tool in biology. A large number of ST projects rely on multicellular resolution, for instance the
Visium™ platform, where several cells are analyzed at each location, thus producing
localized bulk data. Here, we describe BulkSignalR, a R package to infer ligand-receptor
networks from bulk data. BulkSignalR integrates ligand-receptor interactions with
downstream pathways to estimate statistical significance. A range of visualization methods
complement the statistics, including functions dedicated to spatial data. We demonstrate
BulkSignalR relevance using different bulk datasets, including new Visium liver metastasis
ST data, with experimental validation of selected interactions. A comparison with other ST
packages shows the significantly higher quality of BulkSignalR inferences. BulkSignalR can
be applied to any species thanks to its built-in generic ortholog mapping functionality.
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INTRODUCTION

The dialog of cells in a tissue through the secretion of ligands and sensing by receptors plays an
essential role in development, homeostasis, and diseases (1). The advent of single-cell omics has led
to remarkable progresses in the analysis of the cell composition and ligand-receptor networks within a
tissue (2-5). Nevertheless, these technologies remain expensive and single-cell data on cohorts are
limited compared with bulk datasets, particularly for patient cohorts associated with clinical data.
Moreover, although bulk techniques cannot give direct insights into the activity/function of individual
cell types, they are more sensitive for detecting low-abundance molecules. Therefore, tools to
untangle cellular networks from bulk data are needed as a complementary solution to single-cell

studies.

Here, we describe BulkSignalR, a R package that builds on our previous work on bulk (6) and
single-cell data (7). BulkSignalR exploits reference databases of known ligand-receptor interactions
(LRIs), gene or protein interactions, and biological pathways to assess the significance of correlation
patterns between a ligand, its putative receptor, and the targets of the downstream pathway. This
integrated modeling provides the increased specificity that is required by the convoluted bulk format. It
also allows generating gene signatures to report the LRI activity and their downstream consequences.
This may facilitate sample comparison and may be used for patient stratification. As BulkSignalR uses
correlation patterns to determine the statistical significance of LRIs, datasets can be analyzed without

any prior knowledge of sample groups or clusters.

Despite the popularity of LRI inference in the single-cell bioinformatics community with many
existing tools, its equivalent in bulk data has not attracted much attention. A seminal paper explored
LRIs in non-small-cell lung cancer (NSCLC) (8) using an empirical algorithm, called CCCExplorer, that
requires separate bulk transcriptome datasets for different cell populations. Exploiting dual mouse and
human microarrays, i.e., dual transcriptomes, Komurov (9) proposed an algorithm to infer interactions
between cancer and stromal cells using bulk data from a lung adenocarcinoma mouse xenografts
model. Among the studies on LRI inference from single-cell data, two tools indicate in their
documentation that they may be applied to bulk data. CellPhoneDB (10) mentions the possibility to
process bulk data provided they were obtained from pure cell populations, and ICELLNET (11) is able
to exploit two separated bulk datasets to predict interactions. Due to the need for separated bulk
datasets, CCCExplorer, CellPhoneDB, and ICELLNET cannot be compared with BulkSignalR directly.

They offer a less general approach.

After single-cell omics, spatial transcriptomics (ST) (12) is another revolution in functional
genomics. Spatial data are often obtained at multicellular resolution, e.g., with the popular Visium™
system, and therefore, they are localized bulk data. Consequently, bulk-specific approaches could be
used to assess ST data analysis. However, most software tools developed for ST target single-cell or
subcellular resolution datasets, where the individual transcriptomes of adjacent or nearby cells can be
directly accessed. By simply adjusting few parameters, we found that BulkSignalR could be used for

multicellular resolution spatial analyses successfully. We then compared the performance of
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BulkSignalR and of three tools for multicellular resolution analyses, CellPhoneDB (10), stLearn (13),
and SpaTalk (14).

Lastly, we generated an original Visium™ dataset from four colorectal cancer liver metastases

(CRC-LM) to validate a selection of BulkSignalR predictions by immunofluorescence (IF) analysis.

MATERIALS AND METHODS
Expression data and randomized expression data

We denote with A the n X m matrix that represents the expression of n genes (or proteins) in m
samples. To compute the null distributions of the Spearman rank correlation coefficients, we need to
generate randomized expression datasets. To do this, we assign each gene to b equally sized bins of
comparable average (over the samples) expression levels and we shuffle genes within the same bin.

By default, we use b = 20.

Ligand-receptor database and pathways

We import known LRIs (the LRdb database), pathways, and a global reference gene/protein
interaction network from SingleCellSignalR (7). For each receptor in a pathway, we identify genes the
expression of which might correlate with the receptor expression (see Results), and call them target

genes.

Null distributions of the Spearman rank correlation coefficients

BulkSignalR statistical model (below) requires null distributions of Spearman correlation coefficients
between a ligand and a receptor (L-R null distributions) and also between a receptor and the genes
involved in a pathway that includes that receptor. We called these genes target genes and the
corresponding null distribution is the R-T null distribution. By default, an automated algorithm selects
the appropriate statistical model for these null distributions because their shapes depend on the

dataset.

Empirical random Spearman L-R correlations are obtained by generating r, randomized
expression datasets. For each dataset, Spearman correlation (across samples) is computed for each
L-R pair documented in the LRdb database. We typically use k,; = 5 because each random dataset
yields a large number of random correlations, one for each L-R interaction in LRdb with ligands and
receptors in the matrix A. We pool all correlations to estimate the null distribution. For some datasets,

a censored normal distribution (correlations lie in [—1; 1]) provides an accurate fit (Figure S1A). With
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maximume-likelihood (ML) approach. However, in some cases, it is necessary to use a mixture of two
censored normal due to a slight asymmetry (Figure S1B). A mixture of two normal distribution density
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distribution is obtained as above: g.(t) = %g(t), with r = f_llg(t)dt. The five parameters a, u,, a4, iy, 0,

are estimated by ML. We also implemented a purely empirical distribution and a Gaussian kernel-
based empirical distribution (Figure S1C).

In ST, random correlations tend to be more asymmetric (biased towards positive values) and
heavy-tailed. Besides the previously described empirical models, we found that censored stable
distributions fitted such data accurately (Figure S1D). Stable distributions are a family of distributions

that include normal, but also heavy-tailed distributions, such as Cauchy distributions. The stable
distribution density function is given by (Nolan representation) h(x) = if_c’;go(t)e“'xfdt, with
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The censored stable density is obtained with h.(x) = %h(x) and s = f_ll h(x)dx. The four parameters

a, B, c, u are estimated by ML. The stable density and cumulative distribution functions are provided by

the R package stabledist.

The R-T null distribution is obtained in a similar manner. For each randomized dataset, we
consider all combinations of receptors (from the LRdb database) and downstream pathways. For each
combination, we identify the target genes and we compute their Spearman correlation with the
receptor. We then pool all correlations for all receptors and pathways. We repeat this for k,
randomized datasets, again pooling all correlations. We typically use k, = 2 because each iteration
yields >100,000 random correlations. In the special case of the censored stable distribution,
subsampling is used to avoid endless computations by randomly selecting the same number of
random correlations as obtained for the L-R null distributions. As the L-R null distribution and the R-T
distribution are usually very similar, BulkSignalR offers the possibility to use the L-R null distributions
for R-T to save training time. We do not recommend this option for accurate computations, but it may
be convenient for preliminary analyses, especially when using stable distributions where parameter
estimation can take up to 15 minutes on a powerful processor. We tried the expectation-maximization
algorithm implemented in the R package alphastable, but it did not fit our distributions and required

comparable computing time (data not shown).

The BulkSignalR parameter training algorithm automatically chooses a model among the

censored normal, censored mixture of two normal, and Gaussian kernel-based empirical models.
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However, the user can impose a model manually, including purely empirical and censored stable
models. A control plot displaying the empirical histograms of (L-R) and (R-T) correlations and the
chosen fitted model can be generated by BulkSignalR training function (Figure S1). The model

selection algorithm is:

e Compute y? statistics between a random correlation histogram with equally sized bins (bin
width = 0.05) and the censored normal, censored mixture of hormal, and Gaussian kernel-
based empirical models.

e Select the censored Gaussian if its y? is not worse than 1.25 times the censored mixture y?
and 2 times the Gaussian kernel x2.

e Select the censored mixture if its y? is not worse than 2 times the Gaussian kernel y?

e Select the Gaussian kernel-based empirical model, otherwise.

Statistical model

Under the null hypothesis, we assume that L-R and R-T correlations are independently and identically
distributed after their respective null distributions. Accordingly, we estimate independently and multiply
the significance of the L-R correlation and the set of R-T correlations. We obtain the L-R correlation
significance directly from its null distribution. To allow the search of antagonist ligands (see Results),
L-R significance computation depends on its sign. If F(r) is the cumulative distribution function (CDF)

of random L-R correlations r, then we use P-value=1 — F(r) for r = 0, and P-value=F (r) otherwise.

It is very difficult to assess the activity of the pathways downstream of the receptor in full
generality, considering pathways of all possible sizes and topologies, and also RNA-seq, DNA chip, or
proteomic data. Moreover, we wanted BulkSignalR to learn from the expression dataset directly,
without any manual intervention, and to be applicable to datasets of virtually any size. Therefore, we
opted for a simple but robust approach. Once the target genes g,, ::-, gy Of a pathway pw downstream
a receptor R are identified, we can compute the Spearman correlations between R and each of g;. We
use order statistics (making the assumption of independence between R-T correlations under the null
hypothesis) to integrate the information provided by several target genes, and also to take into
account branches of a large pathway that are not all active, or regulatory mechanisms that cannot be
detected with the used technology, e.g., posttranslational modifications in transcriptomic data. Namely,
all the R-T correlations are sorted by increasing order and the k" percentile is used. With k = 100 we
only check the best correlation and with k = 75 we check the 75" percentile of all correlations. By
construction, the order statistics integrates the pathway size and the correlation strengths. For a kt
percentile correlation r, the probability to observe a Spearman correlation R < r;, is given by the CDF
of the chosen censored distribution Fg (7). The order statistics CDF is given by a binomial distribution
Fg, (1) = XY [Fr(M]/[1 — Fr(r)]"~/ and P-values are obtained from Fg, (). Multiple hypothesis
correction is applied using the R package multtest with the Bejamini-Hochberg method as default

method.
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Gene signature scoring

We implemented a simple scheme where each gene is normalized separately across samples to

obtain z-scores. The score of a gene signature is the average of the z-scores of all included genes.

LRI association with cell types

We assume that two matrices of gene signature scores are available, a t x m matrix C for cell types
and a r x m matrix I for LRI activity. That is, t different cell type signatures and r distinct LRI
signatures were scored over the m sample of the dataset. To associate the LRI on row k of the matrix
I with one or several cell types, a preliminary filter requires a minimum Spearman correlation between
a cell type signature and the LRI signature I, (default = 0.25). If any cell type passes this filter, the
selected cell types are used to construct a regularized linear model with the LASSO and by imposing
non-negative coefficients (otherwise default parameters of the glmnet R library were used to optimize
the weight 1 of the penalty term). If we denote P, the set of cell types with non-zero weights and P, #
@, the linear model }cp, a;c;, approximates I, . We remove all cell types with a low weight a; in the
model (< 0.1 by default) to obtain a new set of cell type indices P/ c P,. The model is considered valid

provided its correlation with LRI activity, i.e., Spearman correlation between Zjeptf ajc; and I, is

sufficient (> 0.35 by default).

Association with tissue areas

Users can choose among a default statistical non-parametric model (Kruskal-Wallis for global
association and Wilcoxon for each area versus all the others), a parametric Gaussian model (ANOVA
and t-test), Spearman correlations, and the coefficients of determination (r2) of linear regressions. In
the two last models, tissue regions are represented by their characteristic functions (1 = inside the

region, 0 = outside).

Implementation

BulkSignalR is implemented in R following an S4 object-oriented approach. The package follows the

Bioconductor standards (submission pending) and is available from GitHub.

Datasets and their preparation
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All the examples provided in this article were based on public data made available by their respective
authors, but for the CRC-LM spatial data that were generated by us (see below). We downloaded
TCGA RNA-seq data (gene read counts) from the BROAD Institute GDAC at firebrowse.org. The
frontal cortex transcriptome data were from the Genotype-Tissue Expression (GTEX) Project v8 (2017-
06-05) RNASeQCv1.1.9 gene_reads_gct. Lung cancer cell line transcriptome (RNA-seq) data were
from DepMap (15) 22Q2 Portal.

BulkSignalR includes a data preparation function that eliminates non- or barely expressed
genes/proteins and performs common normalization procedures. We chose default parameters for
RNA-seq data: genes were retained if a minimum read count of 10 was found in at least 10% of
samples (percentage and minimum value can be changed to adapt to different data). The default
normalization is upper quartile, but total count is available as well. Pre-normalized data can be used to
allow filtering and normalization according to more advanced strategies. We processed datasets with
default parameters unless otherwise specified. For the datasets presented in Supplementary
Information, refer to Supplementary Methods. For the DepMap lung cancer cell line data, we imposed

a minimum read count of 1 and log-transformation.

Pseudo-receiver operating characteristics (ROC) curves

To estimate true and false positives (TPs and FPs), we applied BulkSignalR to the original data matrix
A and also randomized matrices (see above for the randomization procedure). By varying a threshold
on the Q-values we obtained estimates of the number of FPs from the randomized data for that
specific Q-value. The corresponding number of TPs was estimated by the number of selected LRIs at
the same Q-value from the original matrix A minus the number of FPs. We named these curves
pseudo-ROC curves because the estimates are obtained in the absence of an exact reference. To
estimate their variability, we generated 100 randomized expression matrices A per dataset. We also
generated pseudo-ROC curves for single-cell scores (similar to what done by ICELLNET and
CellPhoneDB). We computed ICELLNET-like scores using normalized data according to the
ICELLNET original publication (11). We obtained CellPhoneDB-like P-values from 1,000 shuffled
datasets. We did not implement any specific treatment for multimeric receptors, thus departing from
the original CellPhoneDB and ICELLNET implementations. We estimated the pseudo-ROC curve

variability based on 50 randomized expression matrices A4 in this case.

Comparison with other ST software tools

We used BulkSignalR with default parameters except min.count = 1, method = "TC”, min.prop = 0.01
when calling the method prepareDataset(), min.positive = 2 when calling the method

learnParameters(), and min.cor = -1 when calling the method initialinference().
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For stLearn, we followed the steps provided by the Cell-Cell interaction tutorial in the stLearn
documentation website. We used the function st.tl.cci.run() with distance = 0 to compute LRIs in the
within-spot mode, and we set n_pairs (the number of random pairs generated to compute the
background distribution) to 1,000. We did not apply any P-value correction for multiple hypotheses.
We replaced the stLearn L-R database by LRdb (Cabello-Aguillar 2020 NAR). Then, we exported all L-

R and the associated P-values from data.uns['Ir_summary'] and data.obsm['p_vals].

We used CellPhoneDB v3 to compute inferences of LRIs according to the documentation provided by
the CellPhoneDB website. CellPhoneDB database v4 was used. We set the method parameters to

“statistical analysis”. We incorporated spatial information of cell types via the microenvironments file.

We used SpaTalk to directly infer cell-cell communications, thus skipping the deconvolution mode as
described in its Wiki documentation. We called the function createSpaTalk() with the following
parameters: if st is_sc = FALSE, spot_max_cell = 1. We defined the major cell type at each spot
according to the data released by the authors of the different datasets. We used the LRdb database
as the core database for LRI, thus replacing the native database. We called LRIs with downstream

targets using the function find_Ir_path().

Liver metastasis patient material

The ICM Translational study committee, Montpellier, approved the present study. In accordance with
the French law, patients who did not oppose to the use of their material for research purposes

provided consent (opting-out rule). Four CRC-LM samples were used in the present study.

Liver metastasis spatial gene expression analysis

First, we analyzed the quality of RNA extracted from selected formalin-fixed paraffin-embedded
(FFPE) CRC-LM samples by evaluating the percentage of fragments with length > 200 nucleotides
(DV200). Briefly, we cut one-two 10 um-thin FFPE tissue sections, followed by dewaxing and lysis. We
extracted and purified RNA using the High Pure FFPE RNA Isolation Kit (cat. N. 06650775001,
Roche), and analyzed the samples by microfluidics-based automated electrophoresis (Bioanalyzer;
Agilent). All tested samples had a DV200 > 50%. Then, we used serial sections from the same tissue
blocks, stained with Hematoxylin Eosin Saffron (HES), to identify an area of ~6 x 6 mm containing liver
metastasis, in order to provide optimal coverage of the 6.5 x 6.5 mm capture area on the Visium slide.
Following macro-dissection, we fixed 10 pm-thin sections of the selected areas on the Visium slide,
followed by dewaxing, HES staining, imaging, and decrosslinking according to the manufacturer’s
instructions (10X Genomics Visium Spatial Gene Expression for FFPE kit, Human Transcriptome,
Protocol n. GC000408 and GC000409). Then, we prepared Visium libraries according to
manufacturer’s instructions (Protocol n. GC000407). After sequencing using the NovaSeq 6000

system (S1 flowcell; lllumina) to obtain ~50,000 reads per spot, we used the Space Ranger
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Software Suite (version 1.3) for sample demultiplexing, alignment to the human probes, barcode
assignment of each spot, and gene counting by unique molecular identifier counts. Data will be

available at GEO upon publication.

Multiplexed immunofluorescence

After deparaffinization in xylene, rehydration in a series of methanol dilutions (see above), and antigen
retrieval in AR6 buffer (Perkin ElImer, Waltham, MA, USA; cat. n. AR600250) in a pressure cooker for
10 min, we incubated FFPE CRC-LM tissue sections in serum-free blocking solution (Agilent-Dako,
Santa Clara, CA, USA, cat. n. X0909) at room temperature for 30 min followed by incubation with the
anti-epidermal growth factor receptor (EGFR) primary antibody (cat. n. 4267, Cell Signaling) at 4°C
overnight. Then, we washed slides in TBS-0.01% Tween 20 and incubated them with Histofine MAX
PO Multi (Nichirei, Tokyo, Japan; cat. n. 414152F) secondary antibody at room temperature for 30
min. We performed staining with the TSA Coumarin system (Akoya, cat. n. NEL703001KT). Next, after
antibody stripping with the AR6 buffer in a pressure cooker for 5 min, and antigen blocking for 30 min,
we incubated sections with three antibody sets (each set containing three antibodies), by repeating the
staining, stripping and blocking steps for each antibody. Set 1 (structure) included: anti-CD31
(IR61061-2, Dako), anti-pan-CK (GA05361-2, Dako) and anti-SMA (GA61161-2, Dako) antibodies. Set
2 (decorin) included: anti-phosphorylated p44/42 MAPK (Thr202/Tyr204) (4376, Cell Signaling), anti-
cMET (8198, Cell Signaling), and anti-DCN (AF-143, R&D Systems) antibodies. Set 3 (cadherin)
included: anti-phosphorylated ERK1/2, anti-cMET (same antibody as in set 2), and anti-CADH1
(GA05961-2, Dako) antibodies. The secondary antibody was the same for most antibodies (Histofine
MAX PO Multi), but for the anti-DCN antibody that was detected using Histofine MAX PO G (414162F,
Nichirei Bio). For staining we used the Opal system (Perkin Elmer, cat. n. NEL810001KT). After
mounting using VECTASHIELD® Vibrance Mounting Medium without DAPI (Vector, Burlingame,

USA), we visualized staining using a Thunder microscope (Leica, Wetzlar, Germany).

RESULTS
BulkSignalR approach and design

Most single-cell tools infer LRIs by relying only on the ligand L and the receptor R abundance because
they have access to separate data for each cell population. With bulk data, the observed abundance
of transcripts (or proteins) is the net contribution of different cell types, each of which represents an
unknown proportion of the analyzed tissue. Therefore, we hypothesized that LRI inference using bulk
data should rely on additional modeling steps. Specifically, we modeled the consequence of a putative
LRI by considering the participation of R in biological pathways and the regulation of the genes

targeted by these pathways. Furthermore, as we did not assume any knowledge about the different

10
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samples, such as clusters harboring similar profiles, we modeled relationships between ligands,
receptors, and downstream pathways based on Spearman correlations across the whole dataset.
Consequently, BulkSignalR searches for triples (L, R, pw) where pw is a pathway downstream of R
(Figure 1A). L, R, and pw must display correlated activities to be deemed significant by our statistical
model. Potential LRIs are taken from the LRdb database (7), while pathways originate from Reactome
(16) or GO biological processes (17) regarded as pathways. To identify genes reporting on a pathway
activity, which we called target genes in general, we exploited the topology of a reference network that
includes Reactome and KEGG (18) interactions. Target genes include the targets of transcription
factors of the pathway. By default, when R is part of a complex, we add the other complex members to
the list of targets because their expression should be correlated with R expression to maintain the
complex stoichiometry. BulkSignalR uses a statistical model to assess the significance of all possible
triples (L, R, pw) based on the null distributions of L-R and also R-T correlations, pathway sizes, and
total number of target genes (see Materials and Methods). Importantly, BulkSignalR computes null
distributions of correlations from the (randomized) dataset directly, and the statistical model combines
all correlation values independently from the sample number. This avoids the issue of very small, but

highly significant correlations in large datasets and allows the analysis of small cohorts.

The results of BulkSignalR statistical analysis are summarized in a table that contains putative
LRIs, pathways including the receptors, and statistical parameters (Figures 1B and S2). Due to
redundancies in pathway definitions that often occur at different levels of detail, the same interaction
can appear in multiple pathways. Moreover, some ligands can have more than one receptor and vice
versa. Therefore, we introduced different reduction operations to limit redundancy, or to emphasize the
ligand, the receptor, or the pathway (Figures 1C and S3). Such operations can be chained. Reduction
to the pathway that yields the best P-value for each LRI results in a table with unique interactions.
Using this reduction, we estimated the TP and FP rates in order to obtain pseudo-ROC curves (Figure
1D). Such curves allowed varying the depth at which target gene correlations are assessed in different
datasets, which revealed that it was advantageous to exploit the pathway downstream the receptor,
and that the L-R correlation on its own did not provide a useful inference mechanism. Indeed, the
performance of sole L-R correlation was limited or did not detect any significant LRI. Although we
could evaluate the pathway activity by considering all its target genes, large pathways may comprise
multiple branches, and target genes may be up- or down-regulated. As a compromise, we did not go

deeper than the 45% of the highest correlation (55" percentile in Figure 1D).

The number of LRIs found by BulkSignalR was lower compared to what was obtained when
comparable single-cell datasets are available. Nonetheless, as expected, only the interactions found

using bulk data were enriched in low-abundance molecules (Figure S4).

As explained in the Introduction, single-cell scores have been proposed to infer LRIs from bulk
data, although they require separate datasets for the ligand-secreting cells and the receptor-
expressing cells. We investigated whether such scores could be adapted when no upfront cell
separation is available. To this aim, we selected a salivary duct carcinoma (SDC) dataset (6) that

included well-separated clusters of samples with limited intra-cluster variability. The scoring of
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common immune cell gene signatures (Table S1) revealed such clusters (Figure 1E). We then
compared the clusters to identify LRIs that were enriched in one cluster as a selection mechanism. At
the time of writing, the LRdb database included 3,249 putative LRIs. Due to the necessary presence of
both ligand and receptor in the dataset, and the default requirements of BulkSignalR analysis (L-R
correlation > 0.25, minimum four target genes found in pathways of sizes between 5 and 200), we
could evaluate 777 LRIs with BulkSignalR. We submitted those 777 LRIs to adapted single-cell
scores. We used a score based on ICELLNET (a product of average values) with specific data
normalization (11), and another one based on CellPhoneDB (P-values of the ligand and receptor
average expression by sample random permutations across clusters). We compared cluster A vs.
BUC, respectively A vs. B, to obtain strong , respectively extreme, differences in tumor immune
infiltrate abundance (Figure E). Furthermore, we selected scores that were higher in the cluster with
most immune cells or in one of the two compared clusters. This resulted in four pseudo-ROC curves

for each score (Figure 1E), none of which performed better than random selection.

To compare samples and search for differential activity of LRIs is an important functionality.
Therefore, we introduced the notion of gene signature to reflect the overall activity of the interactions,
including downstream pathway targets (Figure 1F). The expression values of different genes (or
proteins) are transformed into z-scores and a weighted sum defines the score. By default, the average
ligand and receptor z-scores accounts for one half, while the target genes included in the statistical
model (correlations above chosen percentile) account for the other half of the score, with equal
individual weights. Gene signatures and scores remain compatible with any combination of reduction
operations due to BulkSignalR software design. To facilitate the analysis of non-human datasets, we
integrated a generic ortholog mapping mechanism that allows users to virtually work with any species
(Figure 1G). We designed BulkSignalR with the aim of proposing a user-friendly tool. Therefore, only
few lines of code, accessible to basic R users, are sufficient to perform a complete analysis and

generate informative outputs (Figure S5) including graphical representations (Figures 1HI and S6).

Autocrine communications in lung cancer cells

For the first application of BulkSignalR, we analyzed bulk transcriptomic data from 206 lung cancer cell
lines from DepMap (15). We reduced BulkSignalR output to the best pathway for each LRI to obtain
only unique interactions, and we imposed a FDR < 0.1% (full output in Table S1). We obtained and
scored gene signatures (Figure 2A). Cell lines originating from the two main histologic subgroups,
small-cell lung cancer (SCLC) and NSCLC, harbored distinct autocrine communication patterns.
Mesothelioma-derived cell lines were close to those of NSCLC-derived cell lines, although they
constitute a different entity. This similarity may simply reflect the absence of microenvironment in
cultured cell lines. The presence of only two lung carcinoid cell lines in the dataset prevented drawing

any conclusion on this subgroup.

In the NSCLC cell lines, we obtained the highest scores for LRIs that involved EGFR. This is

in line with its increased activity in more than half of patients with NSCLC (19). We identified specific
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interactions between EGFR and its seven activating ligands (20) (Figure 2A). It is important to be able
to identify each interaction because different ligands may be associated with functional differences
(21). The pathways associated with these interactions included EGFR downregulation, clathrin-
mediated endocytosis, general ERBB2-related signaling processes, signaling by PTK6, and signaling
by non-receptor tyrosine kinase (Table S2). An example of ligand-specific signaling was related to the
heparin binding EGF-like (HBEGF)-EGFR interaction, for which we identified additional pathways, e.g.,
NOTCHS3 Activation and Transmission of Signal to the Nucleus (Table S1). Previous studies already
reported the crosstalk between EGFR and the Notch pathway in NSCLC (22), and the important
specific role of the HBEGF ligand (23). LRIs harboring a prognostic value also were enriched in
NSCLC cell lines. For example, TGFB1-TGFBR?2 is involved in TGF-f3 receptor signaling associated
with the Epithelial-Mesenchymal Transition (EMT) pathway (24, 25). Other LRIs involved the CD44
receptor, which is often described as a cancer stem cell marker. In NSCLC ,CD44 and its isoforms

have been associated with poor prognosis and tumor invasion (26).

In agreement with the fact that SCLCs are high grade neuroendocrine tumors, we found
several LRIs related to neurexins and neuroligins, for instance NXPH1-NRXN1 and NLGN1-NRXN3.
Interestingly, the NRXN1 receptor is considered a novel potential target of antibody-drug conjugates
against SCLC (27). The NCAML1 ligand, which is a surface marker for SCLC (28), interacted with the
PTRA and CACNALC receptors. These interactions are needed to activate signaling for neurite
outgrowth, thus contributing to the neuroendocrine phenotype. Lastly, other LRIs suggested the
potential activation of Notch-related signaling, for instance the DLL3-NOTCH4 interaction. In SCLC,
Notch signaling may have tumor suppressive or promoting activity and is a candidate biomarker of the
response to immune checkpoint blockade (29). Recent studies investigated treatments targeting DLL3

in recurrent SCLC (30), and in high-grade pulmonary neuroendocrine tumor-initiating cells (31).

Summarizing at the pathway level

In the analysis of lung cancer bulk data, we found LRIs that implicated a single receptor or related to a
single pathway. BulkSignalR capacity to reduce data can be exploited to investigate a dataset at the
pathway level. We illustrate this procedure using transcriptomic data from human brain and heart
during development and adult life (32). We started by reducing the output at the pathway level. To this
aim, we pooled together all receptors implicated in a given pathway, followed by pooling of all their
ligands. In this way, that pathway was associated with a meta-ligand and a meta-receptor instead of
many single interactors (Figure S3): a standard triple (L, R,pw) becomes ({Lq, -, Ly}, {R1, ", Ry}, W).
If two different pathways were associated with the same meta -ligand and -receptor, we performed a
reduction to maintain only the best pathway chaining BulkSignalR chained reduction operations
(Figure S6).

The pathway-level analysis (Figure 2B) identified tissue-specific, and also shared pathways
and LRIs, including some that are development stage-dependent. Brain-specific pathways included
Synaptic adhesion-like molecules (including the LRIs CDH1-PTPRF and PTN-PTPRS), and at later
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stages Opioid signaling (including CALM1-ADCY8 and CALM2-PDE1A) and Neurotransmitter release
cycle (RIMS1-SLC17A7). NCAM signaling for neurite outgrowth (NCAM1-PTPRA and PSPN-GFRA2),
Neurexins and neuroligins (NLGN1-NRXN1 and NXPH1-NRXN1), and ROBO receptors bind AKAP5
(OLFM2-ROBO2) were additional brain pathways that start in utero and show maximal activity after
birth. Shared developmental pathways were Signaling by BMP (BMP2-BMPR1A and GDF11-
ACVR2B) and Pre-NOTCH Expression and Processing (DLL1-NOTCH1, DLL4-NOTCH4, and JAG1-
NOTCH1). Regulation of insulin-like growth factor transport and uptake by insulin-like growth factor
binding proteins (ANOS1-SDC2 and FGF2-SDC2) and Muscle contraction (ADAM9-ITGB5, ANXA1-
DYSF, and COL1A1-ITGA1) are examples of heart pathways. The complete list of all LRIs and
pathways is provided in Table S1.

Relating ligand-receptor interactions to cell types

In the single-cell paradigm, LRI inference comes with the knowledge of which cell types express the
receptor and the ligand. As such information is not directly accessible in bulk datasets, we
implemented an algorithm to predict cell type-LRI associations. This requires scoring a set of cell type
gene signatures in all samples. It can be achieved with a simple z-score average-based function
provided by BulkSignalR, or with more advanced cellular deconvolution tools the output of which can
then be imported in BulkSignalR. By comparing cell type and LRI gene signature scores (Figure 3A),
we build a sparse linear model in which LRI activity is linked to cell type abundances by the following
equation: LRI k activity I, = ¥ ;c; ;CT; for a small set J of cell types CT;. Due to the intrinsic limitations
of bulk data and the absence of complete LRI reference, BulkSignalR cannot predict whether a given
cell type expresses the ligand, the receptor, or both. Using the SDC dataset, we scored cell type
signatures for common tumor-infiltrating cell types: immune cells, endothelial cells, and fibroblasts
(Table S1). We summarized cell communications by summing the weights of the cell types in all LRI
activity models as above, i.e., by summing the «; values (Figure 3B). We noted stronger
communications within the stromal (endothelial cells and fibroblasts) and immune components of the
tumor, as expected. By selecting all LRIs that were exclusively associated with stromal cells or with
immune cells, we found that they were involved in very relevant pathways (Figure 3B). Immune
pathways included well-known immune checkpoints, in agreement with the strong immunosuppressive
microenvironment of immune cell-infiltrated SDCs. We experimentally identified these immune
checkpoints and some of the implicated cell populations in a previous study on the SDC landscape (6),
and found a good agreement between our previous results and the BulkSignalR associations (Figure
3C). In the absence of available ground truth, we relied on synthetic data to obtain a more general
performance estimation of cell type assignment. By randomly picking 1, 2, or 3 cell line signature
scores and adding Gaussian noise, we generated correct cases, i.e., artificial LRI signature scores
that should be assigned to the randomly picked cell lines. The noise standard deviation ¢ in real data
varies between 0.2 and 0.4. We computed the TP rates (TPR) and true negative rates (TNR) using the
small SDC and the large TCGA BRCA cohorts (Figure 3D). We also generated randomized data that
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should not be assigned to any cell type by picking LRI signature scores and shuffling 10, 25, or 50% of
the values (Figure 3D). The obtained TNR and TPR showed that the algorithm avoided wrong
assignments, but its sensitivity to detect complex relationships with three cell types decreased with

increasing noise, especially in the smaller dataset.

Other functionalities and applications

Our model of LRI (Figure 1A) implies significant positive correlations between the receptor and a
downstream pathway as well as correlations between ligand and receptor. By default, BulkSignalR
does not consider L-R correlations < 0.25. However, it is possible to impose a different minimum,
particularly -1, and to find a number of (L, R, pw) triples with strong P-values, but negative L-R
correlations. This case is properly handled by our statistical model and suggests that such ligands may
have an inhibitory action. We reanalyzed the SDC dataset by imposing FDR < 0.1% and L-R
correlation > 0.25 in absolute value. We identified 424 unique LRIs, 361 positive and 63 negative
(Table S1). By focusing on the Notch pathway, which is deregulated in many tumors, we found
common activators (DLL1, DLL4, DLK1, DLK2, JAG1, and JAG2) with strong P-values and positive
correlations with one or several of the four Notch receptors. We also found several interactors that
were negatively correlated with Notch receptors, for instance MFNG (correlation -0.52 with NOTCH1
and NOTCH2), a glycosyltransferase that modulates Notch activity by modifying O-fucose residues at
specific EGF-like domains (33). DLL3, which can inhibit Notch (34), also displayed negative
correlations (-0.26 with NOTCH3 and , just below our 0.25 threshold, -0.245 with NOTCH4) as well as
PSEN1 (-0.50 with NOTCH1, -0.27 with NOTCH2, and -0.41 with NOTCH3) and UBA52 (-0.51 with
NOTCHL1). It is worth noting that searching for negatively correlated L-R pairs is much more prone to
FP (Figure S7) because L-R databases are dominated by activating LRIs. Therefore, this procedure

should be considered as exploratory and the output needs to be experimentally validated.

NicheNet (35), a single-cell tool, exploits an integrated molecular interaction network that
includes LRIs to relate user-chosen gene sets to ligands that might drive their expression according to
the network. The authors tested this functionality using the 100-gene signature proposed by Puram (5)
for a partial EMT transcriptional program taking place at the invasive front of head and neck squamous
cell carcinoma (HNSC). As NicheNet integrated reference network and our method to link ligands to
receptor-pathway target genes are conceptually similar, we use BulkSignalR inferences to provide a
similar functionality, but for bulk data. Figure S8 describes its application to investigate the partial EMT

program using the TCGA HNSC bulk transcriptome dataset (n = 500).

In Supplementary Information, we describe the analysis of DepMap transcriptomic and
proteomic data of breast cancer cell lines (Figures S9-S12), and we use a mouse dataset to illustrate
the built-in ortholog mapping functionality (Figures S13-S15). Moreover, BulkSignalR allows replacing

LRdb, its native L-R database, with a user-provided equivalent or adding user-chosen L-R interactions.
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Investigating spatial transcriptomics data with BulkSignalR

We then applied BulkSignalR to several multicellular resolution datasets (Visium). BulkSignalR
functions were used unchanged, we only set some parameters to adapt them to the much reduced
data dynamics and large number of spots (Figure S16). We started with a triple-negative breast cancer
(TNBC) dataset (36) the overall structure of which is presented in Figure 4A. We identified 224 LRIs
(Table S1 and Figure S17), some of which we briefly present here to show that BulkSignalR identified
relevant interactions. Most LRIs were associated with the stroma or with the invasive cancer tissue. In
the stroma, we found LRIs that implicated adhesion molecules, e.g., CAM1, VCAM1, and several
integrins, i.e., ITGB1, ITGB2, ITGB7, ITGAL, ITGAX, as well as immune-related L-R complexes, e.g.,
B2M-CD3D, B2M-(HLA-F), (HLA-A)-CD3D, and IL16-CD4. The presence of activated interactions
related to antigen presentation (B2M; HLA-A/B) was consistent with findings by the authors of this
dataset (36). Figure 4B shows the spatial distribution of the LRI between the metalloproteinase MMP9
and the integrin ITGB2. MMPs are important TME regulators that promote EMT, apoptosis, resistance,
angiogenesis, and tissue remodeling (37). Moreover, MMP9 has been associated with aggressive and
metastatic breast cancer (38). In the invasive cancer tissue, we observed the activation of the Notch
signaling pathway, a TNBC hallmark (39), through interaction with several ligands, for instance JAG2.
Moreover, we identified the TNFSF10-TNFRSF10B interaction (Figure 4C) that commonly triggers
apoptosis through caspases. The second apoptosis-triggering receptor TNFRSF10A was marginally
expressed as well as TNFRSF10D, one of the two decoy receptors that modulate the apoptotic signal
effectiveness. There are many resistance mechanisms downstream of the TNFRSF10A/B receptors to

escape apoptosis (40), some of which were presumably active in the invasive cancer tissue.

We obtained the plots in Figure 4A-C, the overview plot (Figure S17), statistical association
with tissue regions (Figure S18), and a representation of LRI spatial pattern diversity (Figure S19)

using BulkSignalR standard spatial functions.

Comparison with existing spatial transcriptomic data analysis packages

We identified three recent or widely used tools that offer analysis at the multicellular resolution:
stLearn (13), CellPhoneDB (10), and SpaTalk (14). We compared these tools with BulkSignalR using
three human datasets: the previously used TNBC dataset (36), a HER2+ breast cancer dataset (41),
and a dorsolateral prefrontal cortex dataset (42). To obtain comparable results, we employed LRdb
(our LRI database) with stLearn and SpaTalk. Despite our efforts, we could not replace the
CellPhoneDB LRI database. Therefore, we used its native database that combines individual
molecules and also complexes. When one interaction involved a complex (or two), we generated all
possible pairwise LRIs. Then, we intersected this LRI list with LRdb to be as close as possible to the
other three tools. As for some LRIs, both molecules were given as ligands or receptors in LRdb, we
discarded these CellPhoneDB LRIs.
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The next step was to apply comparable selection mechanisms. As not all tested tools
implemented multiple hypothesis corrections, we used P-values for all tools including BulkSignalR. We
imposed P values < 0.1% to remain close to the FDR < 1% we typically use with spatial data. stLearn
required an adapted selection strategy. For each LRI, this tool combines CellPhoneDB and a local
enrichment test at each spot versus its neighbors, and provides a P-value for each spot. We used a
first selection mechanism that required at least 0.5% of the spots with P < 0.1%. This selection was
rather sensitive to the number of imposed spots. Therefore, we used a second mechanism based on a
score given by stLearn that is equal to the number of spots where a LRI was found with P < 5%. It was
difficult to set a threshold for this score because multiple hypothesis correction would make most of
these P-values non-significant. Hence, we simply took the same number of LRIs selected by

BulkSignalR in decreasing order of this stLearn score.

CellPhoneDB and SpaTalk offer medium-resolution analysis, but they remain intrinsically
optimized for single-cell or subcellular spatial resolution. Indeed, users must define a dominant cell
type at each spot. In addition, CellPhoneDB requires the definition of the tissue regions (like in Figure
4A). They exploit this information to reconstitute cell type-specific transcriptomic profiles, restricted to
each region for CellPhoneDB, or overall for SpaTalk. As SpaTalk reports LRIs by specifying the cell
types, we selected all LRIs based on their P-values and eliminated redundant LRIs if they were
significant in several cell type pairs. CellPhoneDB gives a P-value for each pair of cell types occurring

in each region. We took the minimum P-value for each LRI and imposed a minimum P-value < 0.1%.

The TNBC, cortex, and HER2+ breast tumor datasets included 4,895, 3,636, and 306 spots,
respectively. BulkSignalR, stLearn, and CellPhoneDB computing times scaled with the dataset size,
while SpaTalk times were very long and difficult to explain (Figure 4D). CellPhoneDB was the fastest

tool.

For the TNBC dataset, the four tools reported heterogeneous numbers of LRIs with limited
overlap (Figure 4E). For CellPhoneDB and SpaTalk, we defined the dominant cell type at each spot
according to the dataset authors who used single-cell data and a deconvolution software to determine
them. For CellPhoneDB, we used the tumor regions defined by the authors and shown in Figure 4A.
We obtained the largest number of LRIs with SpaTalk (twice as many as with the other tools), and the
smallest number with stLearn (first selection). To relate the numbers of identified LRIs to their quality
in the absence of a complete reference, we defined two objective quality criteria. First, we considered
that the product of the ligand and the receptor, indicating co-presence at a spot, should display a
statistical association with the tissue regions. Using this criterion, BulkSignalR performed significantly
better than the other tools, with the exception of stLearn (second selection) (Figure 4F). This is
remarkable because BulkSignalR does not exploit the knowledge of the tissue regions, unlike
CellPhoneDB and SpaTalk. When we included negatively correlated ligands, BulkSignalR again
performed better than CellPhoneDB and SpaTalk. CellPhoneDB was the worst. Second, we
considered that the ligand and receptor abundances should be correlated in the whole sample.
BulkSignalR output was significantly enriched in positive correlations compared with the other tools

(Figure 4G). The other tools returned ~25% of LRIs with negative L-R correlations, which are more FP
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prone as reported above. Even when negative L-R correlations were allowed in BulkSignalR, the
number of less reliable LRIs was significantly lower with BulkSignalR than with CellPhoneDB and
SpaTalk.

Next, we compared the results obtained with the HER2+ breast tumor dataset. Tissue regions
and dominant cell types were defined by the dataset authors. The number of significant LRIs identified
by each tool was even more heterogeneous than for the TNBC dataset (Figure 4H). SpaTalk and
CellPhoneDB found the largest number of interactions. Associations of the L x R product with tissue
regions showed that BulkSignalR outperformed significantly SpaTalk and CellPhoneDB and also
stLearn (first selection), but not stLearn (second selection). We obtained similar results when we
allowed negative L-R correlations in BulkSignalR (Figure 4l). In terms of L-R correlations (Figure 4J),
BulkSignalR outperformed all the other tools. CellPhoneDB and SpaTalk returned a very large number

of negatively correlated LRIs, which might lead to substantial FP rates.

For the last comparison we used a dorsolateral prefrontal cortex dataset for which the authors
defined regions, but no dominant cell types at each spot. As CellPhoneDB and SpaTalk compare
remote spots anyway, we decided to apply them by using the regions as cell type definitions. stLearn
(first selection) and CellPhoneDB returned the smallest lists of LRIs, while the other tools gave
comparable numbers of LRIs (Figure 4K). Inter-tool heterogeneity remained substantial. Region
association was better with BulkSignalR than CellPhoneDB and stLearn (first selection), but not
compared with stLearn (second selection) and SpaTalk (Figure 4L). L-R correlations indicated that

BulkSignalR performed better than the other tools.

Application to colorectal cancer liver metastasis spatial data

To experimentally validate some LRIs identified by BulkSignalR, we generated a new ST dataset for
four CRC-LM samples. Analysis of this dataset by BulkSignalR gave 173, 251, and 241 unique LRIs
for the first three CRC-LM samples, respectively (FDR < 1%, L-R correlation > 0.02 in absolute value),
and only 84 LRIs for the fourth sample (Table S1). As the obtained number of reads per spot was also
smaller for the last sample (~30% less than the mean of the other three samples; data not shown), we
excluded it. Application of clustering in Seurat combined with sample analysis by two pathologists

allowed defining different regions in each sample (Figure 5A).

A complete analysis of the CRC-LM data with biological interpretation would obviously be out
of the scope of this paper. We simply focused on LRIs with EGFR because its signaling is exacerbated
in many tumors and EGFR is a clinical target in CRC-LM. EGFR has multiple ligands (21) and
BulkSignalR identified 18, 19, and 15 of them in CRCLM1, CRCLM2, and CRCLM3, respectively. To
assess their expression, we computed the 95 percentile of their read counts in each sample. These
revealed ligands that were strongly expressed in some area. To summarize, we represented the seven
most abundant ligands in each CRC-LM sample in Figure 5B. We excluded the LRI UBA52-EGFR

because ubiquitin A-52 residue ribosomal protein fusion product 1 (UBA52) does not seem to be
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secreted. The seven most expressed ligands displayed strong overlap in the three CRC-LM samples,
despite the heterogeneous tumor architectures. One exception was serine protease inhibitor Kazal
type 1 (SPINK1) that was the most expressed ligand in CRCLM1, but was not identified in CRCLM2/3.
SPINK1 overexpression has been related to rare, fusion events in prostate cancer (43). It could be
specific to CRCLM1 patient. Identification of the preferential expression of each ligand in each tumor
region (see correlations in Figure 5B) showed that some ligands, e.g., decorin (DCN, and to a lower
extent heat shock protein 90, HSP90AA1) were specific to some regions. DCN was always negatively
correlated with EGFR, in line with its inhibitory action on EGFR signaling (44). DCN was also
negatively correlated with cMET (MET) in all samples and the DCN-MET LRI has inhibitory effects

(45). All other interactions involved positive L-R correlations.

Figure 5C shows the spatial configuration in CRCLM1 of the four most abundant ligand-EGFR
interactions: SPINK1-, HAP90AAL-, E-cadherin (CDH1)-, and DCN-EGFR. The scores featured in the
plots are the gene signature scores (Figure 1F) that combine ligand, receptor, and downstream
pathway activity. We observed distinct areas of higher versus lower activity. We then plotted the
expression of EGFR, CDH1, and DCN (Figure 5C). We observed that EGFR and CDH1 were almost
ubiquitously expressed, whereas DCN expression was highest in cancer-associated fibroblast (CAF)-
rich regions. This indicates that EGFR signaling could be potentially activated in each region of
CRCLML1 through different ligands that are ubiquitously expressed or region-specific. The same
analysis in CRCLM2 (Figure 5D) showed ligands with a specific localization (DCN), with intermediary
localization (HAP90AAL1), and with broad expression (CDH1). EGFR was almost ubiquitously
expressed (data not shown). We obtained similar results for CRCLM3 (Figure 5E), although DCN
expression was weaker and less localized due to the absence of desmoplastic reactions and CAF-rich

regions in this sample.

We then experimentally validated the CDH1-EGFR and CDH1-cMET interactions in CRCLM1
and CRCLM2 to illustrate BulkSignalR capacity to identify interactions that are not necessarily sample
region-specific. CDH1-EGFR and CDH1-cMET interactions have been described in many cell types;
however, their relationship remains complex and context-dependent (46). The CDH1-MET interaction
was not identified by BulkSignalR because it is not included in the LRdb database. We assessed
EGFR, cMET, CDH1 and phosphorylated ERK (pERK) abundance in the two CRC-LM samples by IF
(Figures 6AB and S20AB). We used pERK as downstream reporter of EGFR and cMET signaling. In
areas of pronounced CDH1 expression, EGFR membrane staining and pERK expression were less
pronounced (Figures 6B and S20B). The pattern of cMET expression was similar to that of EGFR
(stronger in CRCLM1 than CRCLM2). Reduction of EGFR intensity concomitantly with ERK
phosphorylation was consistent with EGFR activation because upon phosphorylation, EGRF is rapidly

internalized, thus decreasing its concentration at the membrane (47).

We then experimentally validated DCN-EGFR and DCN-MET interactions in CRCLM1/2 as
examples of inhibitory LRIs. We consistently observed DCN expression in the desmoplastic area of
the tumor, specifically in elongated stromal cells (Figures 6AC and S20AC). This was in agreement

with previous reports that associated DCN expression with CAFs. We then investigated by IF the
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zones highlighted by the DCN-EGFR or DCN-MET LRI analysis. Activation of downstream signaling
via pERK was clearly excluded in cancer cells, suggesting lower receptor tyrosine kinase activation in
these cells. Overall, high stromal DCN expression was associated with lower receptor tyrosine kinase
activation in both CRC-LMs.

DISCUSSION

Invaluable transcriptomic and proteomic datasets are available and continue to be generated with a
bulk methodology. Here, we showed that the R library BulkSignalR offers to researchers a solution to
exploit these datasets to unravel cellular networks. BulkSignalR includes a rich set of functionalities,
comparable to the best libraries for single-cell data analysis. The infrastructure that supports
BulkSignalR computations to link LRIs and downstream pathways allows data analysis at both the
pathway and individual LRI levels. There is an obvious parallel with enrichment analysis of gene sets
versus the analysis of individual differentially expressed genes. This infrastructure also allows network
visualization for relating LRIs to target genes. Although bulk data do not directly convey information
about the specific transcriptomes of individual cell populations, we propose a simple machine learning

model that can infer what populations are likely to participate in each LRI.

By comparing the LRIs inferred by BulkSignalR from several bulk datasets and the
corresponding single-cell datasets, we found that the single-cell data analysis typically identified 2-3
times more LRIs. We also found that LRIs identified in bulk data only tended to involve low-abundance
ligands and receptors, which is in line with the general higher sensitivity of bulk technologies.
Therefore, single-cell analysis is the approach of choice to map cellular networks when few
representative samples are sufficient. In the other cases, bulk approaches can be used for cellular
network inference, but with reduced details. The two formats, bulk and single-cell, could be eventually

combined as well as data analysis methods in large studies.

ST is rapidly developing and a frequent setting consists in working at multicellular resolution.
Specifically, a tissue section is probed at multiple locations (on a grid), and each spot has a size that
results in the concomitant analysis of more than one cell. For instance, in the very popular Visium™
system, a spot contains between 3 and 30 cells, in function of the tissue and cell types. Therefore, the
transcriptome data acquired at each spot are bulk by nature and BulkSignalR is suitable for analyzing
such ST data. By reviewing the literature, we discovered that most existing ST software tools have
been developed for single-cell or subcellular resolution data. Some nevertheless claim to be
compatible with Visium-type data, for instance CellPhoneDB (10), SpaTalk (14), and stLearn (13). In
stLearn, an initial CellPhoneDB application is combined with a local posterior analysis to compare a

spot with its neighbors. Conversely, CellPhoneDB alone and SpaTalk consider LRIs between spots
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that may be far from each other. Although some LRIs have a longer range, many occur at a short
range or only at cell contacts. We think that this renders the output of these tools difficult to interpret.
Nevertheless, we compared CellPhoneDB, SpaTalk, and stLearn with BulkSignalR using three ST
datasets. We found that BulkSignalR inferred an average number of LRIs who were significantly more
reliable according to two neutral quality criteria. The number of LRIs found by stLearn, CellPhoneDB
and SpaTalk varied substantially, and SpaTalk computing times were very long (up to hours on four

processors). We also observed limited overlap between the four tools for each dataset.

Using a new Visium™ dataset that included four CRC-LM samples, we used two of these
samples to experimentally validate selected inferences obtained with BulkSignalR. We confirmed the
CDH1-EGFR, CDH1-cMET, DCN-EGFR, and DCN-cMET interactions in both samples by IF. The
activation of receptors, and especially receptor tyrosine kinases, such as EGFR, is complex and
involves multiple agonist and antagonist ligands, as illustrated by our analysis that unraveled several,
spatially-dependent ligands besides CDH1 and DCN. The complete analysis of the net results of all
these interactions goes beyond the scope of this article, but the presented validations showed the

potential of our ST data analysis pipeline.

The analysis of spatial data did not require any modification of BulkSignalR, only the
adaptation of few parameters. However, we added dedicated graphical functions. The BulkSignalR R
library was designed to be easy to use by scientists with basic knowledge of R. Few functions are

sufficient to prepare a dataset, infer the LRIs, and generate informative plots.

AVAILABILITY

BulkSignalR is available with documentation from https://github.com/jcolinge/BulkSignalR.
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The CRC-LM spatial transcriptomics data will be available from GEO upon publication. The other data

were made public by their authors.
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Figure 1. BulkSignalR overview. (A) Model of a LRI with a pathway downstream the receptor. The
pathway activity in terms of correlation with the receptor is reported by target genes (in blue) that

include the other members of the receptor complex (denoted by C) and regulated genes (denoted by
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Re). (B) Example of BulkSignalR output. (C) Examples of reduction operations at the receptor level
and at the best pathway level. Other reduction operations are available. (D) Representative pseudo-
ROC curves showing the effect of using the pathway information at various depths (depth increases
with smaller percentiles (0.55 = 55! percentile). RNA-seq transcriptome data of 1087 TCGA breast
invasive carcinoma samples (BRCA), 24 salivary duct carcinoma (SDC) samples (6), and 209 brain
frontal cortex samples retrieved from GTEX v8; microarray transcriptome data (Affymetrix) of 310
sarcoma samples (48). In the SDC and GTEX brain cortex datasets, no individual L-R correlation alone
did not even reach 5% of significance and a simple dot at (0,0) was drawn to indicate this. (E)
Performance of simple single-cell-inspired scores when samples display clear differences in cellular
composition. We considered clusters A vs. BUC and A vs. B to look for increased scores compared
with the randomized expression data in A or in both directions. (F) Construction of a gene signature for
a L-R-pathway triple, and computation of the weighted average of z-scores. Multiple L-R-pathway
signature scores can be compared among samples (heatmap). (G) In BulkSignalR, the reference
database is of human origin, but an integrated ortholog mapping tool allows using it for virtually any
species. (H) Example of graphical display of LRIs limited to a chosen pathway (PD-1 signaling in the
SDC dataset). (I) Representation of the LRIs of the chosen pathway (PD-1 signaling in the SDC

dataset) with the shortest paths to target genes.
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Figure 2. Bulk data analysis with BulkSignalR. (A) Autocrine communications in the DepMap lung
cancer cell line dataset. Analysis was performed at the LRI level. Representative interactions are
indicated (FDR < 0.1%). (B) Analysis (pathway level) of transcriptome data of human brain and heart
samples at different development and adult life stages (32). Representative pathways are indicated
with one LRI example in brackets. Pathways were taken from Reactome. FDR < 0.1%. WPC = weeks
post-conception.
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Figure 3. Assigning cell types to interactions. (A) Using the gene signature scores for cell types and
the gene signature scores for LRIs, mathematical models are built to predict the L-R scores from a
minimum set of cell type scores. (B) For the SDC dataset, we represented the total weights of each
cell type contribution to LRIs (network). Left: most recurrent pathways related to LRIs only between
fibroblasts and endothelial cells. Right: most recurrent pathways for interactions only between immune
cell types. These pathways include important immune checkpoint molecule interactions: (PD-L1)-(PD-
1), (Galectin-9)-(TIM-3), and (CD80/86)-(CTLA-4). (C) Immunofluorescence-validated interactions and
cell types in SDC (6) and BulkSignalR predictions. (D) True positive rate (TPR) and true negative rate
(TNR) of the cell type association algorithm for synthetic data. Correct cases include interactions
involving 1, 2, or 3 cell types and increasing Gaussian noise N(0,s). Random cases were obtained by
shuffling 10, 25, or 50% of data. Synthetic models were generated using a small (SDC) and a large
(TCGA breast cancer, BRCA) dataset. In total, 100 synthetic models were constructed for each

configuration (correct/random, o, shuffling rate, #CTs = number of cell types).
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Figure 4. BulkSignalR for spatial transcriptomic data analysis. (A) Spatial organization of the TNBC
tissue. (B) Example of a significant LRI associated with stroma. The left plot contains the gene
signature scores of the (L, R, pw) triple where pw = interleukin 4 & 13 signaling (Reactome R-HAS-
6785807). The middle and left plots show the ligand and receptor expression. (C) Example of LRI
associated with cancer invasive tissue where pw = apoptosis (Reactome R-HSA-109581). (D)
Computing times in seconds for the indicated tools using the indicated datasets. BSR=BulkSignalR,
STL=stLearn, CPDB=CellPhoneDB, and SPAT=SpaTalk. (E) Number of significant LRIs in the TNBC
dataset. BSR.N=BulkSignalR with negative L-R interactions (< -0.02), STL.S=stLearn second
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selection with a score threshold set to have the same number of LRIs as with BulkSignalR,
STL=stLearn first selection. The color code indicates the number of tools that found one LRI (BSR and
BSR.N as well as STL and STL.S count for one tool). The Venn diagram represents the overlap
between tools and selections. (F) Statistical associations (Kruskal-Wallis followed by Benjamini-
Hochberg multiple-hypothesis corrections) between tissue regions and concomitant expression of the
ligand and the receptor captured by the product L x R. (G) Spearman correlation between ligand and
receptor in the whole tissue. (H) Number of significant LRIs in the HER2* breast cancer dataset. (1,J)
Same as (F,G) for the HER2* breast cancer dataset. (K) Number of significant LRIs in the dorsolateral
prefrontal cortex dataset. (L,M) Same as (F,G) for the cortex dataset. *P < 0.05, **P < 0.01, #P < 1E-3,
##P < 1E-5, 4P < 2.2E-16 (Wilcoxon 2-sided).
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Figure 5. BulkSignalR analysis of a colorectal liver metastasis (CRC-LM) ST dataset. (A) Architecture
of three CRC-LM samples. (B) Seven abundant EGFR ligands in the three CRC-LM. DCN is
negatively correlated with EGFR. UBA52-EGFR was considered a dubious LRI and was ignored. (C)
Spatial distribution of the four most abundant ligand-EGFR interactions (gene signature scores) in
CRCLM1 and expression of EGFR, CDH1, and DCN. (D) Spatial distribution of the three most
abundant ligand-EGFR interactions in CRCLM2. (E) Representative LRI spatial distributions in
CRCLMS.
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Figure 6. Validation by IF analysis of selected ligand-receptor interactions in CRCLM1. (A) (left)

Structural overview of CRCLM1 with stromal areas (delineated in white) and EGFR* cancer cells
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(green). ACTAZ2 is a CAF marker, CD45 is an immune cell marker, EGFR is cancer cell marker, and
CD31 is an endothelial cell marker; d, desmoplastic reaction; n, necrosis. (right) Higher magnification
view of desmoplastic and necrotic areas. (B) Analysis of CDH1-EGFR and CDH1-cMET interactions.
Low-magnification view (100x) of quadruple staining (pERK, EGFR, CDH1, and cMET) in CRCLML1.
The area of interest is highlighted and shown at higher magnification in the panels underneath. (C)

Analysis of DCN-EGFR and DCN-cMET interactions. Same as in (B).
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