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ABSTRACT (200 words) 

The study of cellular networks mediated by ligand-receptor interactions has attracted much 

attention recently owing to single-cell omics. However, rich collections of bulk data 

accompanied with clinical information exists and continue to be generated with no equivalent 

in single-cell so far. In parallel, spatial transcriptomic (ST) analyses represent a revolutionary 

tool in biology. A large number of ST projects rely on multicellular resolution, for instance the 

Visium™ platform, where several cells are analyzed at each location, thus producing 

localized bulk data. Here, we describe BulkSignalR, a R package to infer ligand-receptor 

networks from bulk data. BulkSignalR integrates ligand-receptor interactions with 

downstream pathways to estimate statistical significance. A range of visualization methods 

complement the statistics, including functions dedicated to spatial data. We demonstrate 

BulkSignalR relevance using different bulk datasets, including new Visium liver metastasis 

ST data, with experimental validation of selected interactions. A comparison with other ST 

packages shows the significantly higher quality of BulkSignalR inferences. BulkSignalR can 

be applied to any species thanks to its built-in generic ortholog mapping functionality. 
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INTRODUCTION 

The dialog of cells in a tissue through the secretion of ligands and sensing by receptors plays an 

essential role in development, homeostasis, and diseases (1). The advent of single-cell omics has led 

to remarkable progresses in the analysis of the cell composition and ligand-receptor networks within a 

tissue (2–5). Nevertheless, these technologies remain expensive and single-cell data on cohorts are 

limited compared with bulk datasets, particularly for patient cohorts associated with clinical data. 

Moreover, although bulk techniques cannot give direct insights into the activity/function of individual 

cell types, they are more sensitive for detecting low-abundance molecules. Therefore, tools to 

untangle cellular networks from bulk data are needed as a complementary solution to single-cell 

studies. 

Here, we describe BulkSignalR, a R package that builds on our previous work on bulk (6) and 

single-cell data (7). BulkSignalR exploits reference databases of known ligand-receptor interactions 

(LRIs), gene or protein interactions, and biological pathways to assess the significance of correlation 

patterns between a ligand, its putative receptor, and the targets of the downstream pathway. This 

integrated modeling provides the increased specificity that is required by the convoluted bulk format. It 

also allows generating gene signatures to report the LRI activity and their downstream consequences. 

This may facilitate sample comparison and may be used for patient stratification. As BulkSignalR uses 

correlation patterns to determine the statistical significance of LRIs, datasets can be analyzed without 

any prior knowledge of sample groups or clusters. 

Despite the popularity of LRI inference in the single-cell bioinformatics community with many 

existing tools, its equivalent in bulk data has not attracted much attention. A seminal paper explored 

LRIs in non-small-cell lung cancer (NSCLC) (8) using an empirical algorithm, called CCCExplorer, that 

requires separate bulk transcriptome datasets for different cell populations. Exploiting dual mouse and 

human microarrays, i.e., dual transcriptomes, Komurov (9) proposed an algorithm to infer interactions 

between cancer and stromal cells using bulk data from a lung adenocarcinoma mouse xenografts 

model. Among the studies on LRI inference from single-cell data, two tools indicate in their 

documentation that they may be applied to bulk data. CellPhoneDB (10) mentions the possibility to 

process bulk data provided they were obtained from pure cell populations, and ICELLNET (11) is able 

to exploit two separated bulk datasets to predict interactions. Due to the need for separated bulk 

datasets, CCCExplorer, CellPhoneDB, and ICELLNET cannot be compared with BulkSignalR directly. 

They offer a less general approach. 

After single-cell omics, spatial transcriptomics (ST) (12) is another revolution in functional 

genomics. Spatial data are often obtained at multicellular resolution, e.g., with the popular Visium™ 

system, and therefore, they are localized bulk data. Consequently, bulk-specific approaches could be 

used to assess ST data analysis. However, most software tools developed for ST target single-cell or 

subcellular resolution datasets, where the individual transcriptomes of adjacent or nearby cells can be 

directly accessed. By simply adjusting few parameters, we found that BulkSignalR could be used for 

multicellular resolution spatial analyses successfully. We then compared the performance of 
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BulkSignalR and of three tools for multicellular resolution analyses, CellPhoneDB (10), stLearn (13), 

and SpaTalk (14).  

Lastly, we generated an original Visium™ dataset from four colorectal cancer liver metastases 

(CRC-LM) to validate a selection of BulkSignalR predictions by immunofluorescence (IF) analysis. 

 

 

MATERIALS AND METHODS 

Expression data and randomized expression data 

We denote with 𝐴 the 𝑛 × 𝑚 matrix that represents the expression of 𝑛 genes (or proteins) in 𝑚 

samples. To compute the null distributions of the Spearman rank correlation coefficients, we need to 

generate randomized expression datasets. To do this, we assign each gene to 𝑏 equally sized bins of 

comparable average (over the samples) expression levels and we shuffle genes within the same bin. 

By default, we use 𝑏 = 20. 

 

Ligand-receptor database and pathways 

We import known LRIs (the LRdb database), pathways, and a global reference gene/protein 

interaction network from SingleCellSignalR (7). For each receptor in a pathway, we identify genes the 

expression of which might correlate with the receptor expression (see Results), and call them target 

genes. 

 

Null distributions of the Spearman rank correlation coefficients 

BulkSignalR statistical model (below) requires null distributions of Spearman correlation coefficients 

between a ligand and a receptor (L-R null distributions) and also between a receptor and the genes 

involved in a pathway that includes that receptor. We called these genes target genes and the 

corresponding null distribution is the R-T null distribution. By default, an automated algorithm selects 

the appropriate statistical model for these null distributions because their shapes depend on the 

dataset. 

Empirical random Spearman L-R correlations are obtained by generating 𝑟1 randomized 

expression datasets. For each dataset, Spearman correlation (across samples) is computed for each 

L-R pair documented in the LRdb database. We typically use 𝑘1 = 5 because each random dataset 

yields a large number of random correlations, one for each L-R interaction in LRdb with ligands and 

receptors in the matrix 𝐴. We pool all correlations to estimate the null distribution. For some datasets, 

a censored normal distribution (correlations lie in [−1; 1]) provides an accurate fit (Figure S1A). With 
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are estimated by ML. We also implemented a purely empirical distribution and a Gaussian kernel-

based empirical distribution (Figure S1C). 

In ST, random correlations tend to be more asymmetric (biased towards positive values) and 

heavy-tailed. Besides the previously described empirical models, we found that censored stable 

distributions fitted such data accurately (Figure S1D). Stable distributions are a family of distributions 

that include normal, but also heavy-tailed distributions, such as Cauchy distributions. The stable 

distribution density function is given by (Nolan representation) ℎ(𝑥) =
1
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The censored stable density is obtained with ℎ𝑐(𝑥) =
1

𝑠
ℎ(𝑥) and 𝑠 = ∫ ℎ(𝑥)d𝑥
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. The four parameters 

𝛼, 𝛽, 𝑐, 𝜇 are estimated by ML. The stable density and cumulative distribution functions are provided by 

the R package stabledist. 

The R-T null distribution is obtained in a similar manner. For each randomized dataset, we 

consider all combinations of receptors (from the LRdb database) and downstream pathways. For each 

combination, we identify the target genes and we compute their Spearman correlation with the 

receptor. We then pool all correlations for all receptors and pathways. We repeat this for 𝑘2 

randomized datasets, again pooling all correlations. We typically use 𝑘2 = 2 because each iteration 

yields >100,000 random correlations. In the special case of the censored stable distribution, 

subsampling is used to avoid endless computations by randomly selecting the same number of 

random correlations as obtained for the L-R null distributions. As the L-R null distribution and the R-T 

distribution are usually very similar, BulkSignalR offers the possibility to use the L-R null distributions 

for R-T to save training time. We do not recommend this option for accurate computations, but it may 

be convenient for preliminary analyses, especially when using stable distributions where parameter 

estimation can take up to 15 minutes on a powerful processor. We tried the expectation-maximization 

algorithm implemented in the R package alphastable, but it did not fit our distributions and required 

comparable computing time (data not shown). 

The BulkSignalR parameter training algorithm automatically chooses a model among the 

censored normal, censored mixture of two normal, and Gaussian kernel-based empirical models. 
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However, the user can impose a model manually, including purely empirical and censored stable 

models. A control plot displaying the empirical histograms of (L-R) and (R-T) correlations and the 

chosen fitted model can be generated by BulkSignalR training function (Figure S1). The model 

selection algorithm is: 

 Compute 𝜒2 statistics between a random correlation histogram with equally sized bins (bin 

width = 0.05) and the censored normal, censored mixture of normal, and Gaussian kernel-

based empirical models. 

 Select the censored Gaussian if its 𝜒2 is not worse than 1.25 times the censored mixture 𝜒2 

and 2 times the Gaussian kernel 𝜒2. 

 Select the censored mixture if its 𝜒2 is not worse than 2 times the Gaussian kernel 𝜒2 

 Select the Gaussian kernel-based empirical model, otherwise. 

 

Statistical model 

Under the null hypothesis, we assume that L-R and R-T correlations are independently and identically 

distributed after their respective null distributions. Accordingly, we estimate independently and multiply 

the significance of the L-R correlation and the set of R-T correlations. We obtain the L-R correlation 

significance directly from its null distribution. To allow the search of antagonist ligands (see Results), 

L-R significance computation depends on its sign. If 𝐹(𝑟) is the cumulative distribution function (CDF) 

of random L-R correlations 𝑟, then we use P-value=1 − 𝐹(𝑟) for 𝑟 ≥ 0, and P-value=𝐹(𝑟) otherwise. 

It is very difficult to assess the activity of the pathways downstream of the receptor in full 

generality, considering pathways of all possible sizes and topologies, and also RNA-seq, DNA chip, or 

proteomic data. Moreover, we wanted BulkSignalR to learn from the expression dataset directly, 

without any manual intervention, and to be applicable to datasets of virtually any size. Therefore, we 

opted for a simple but robust approach. Once the target genes 𝑔1, ⋯ , 𝑔𝑁 of a pathway 𝑝𝑤 downstream 

a receptor 𝑅 are identified, we can compute the Spearman correlations between 𝑅 and each of 𝑔𝑖. We 

use order statistics (making the assumption of independence between R-T correlations under the null 

hypothesis) to integrate the information provided by several target genes, and also to take into 

account branches of a large pathway that are not all active, or regulatory mechanisms that cannot be 

detected with the used technology, e.g., posttranslational modifications in transcriptomic data. Namely, 

all the R-T correlations are sorted by increasing order and the 𝑘th percentile is used. With 𝑘 = 100 we 

only check the best correlation and with 𝑘 = 75 we check the 75th percentile of all correlations. By 

construction, the order statistics integrates the pathway size and the correlation strengths. For a 𝑘th 

percentile correlation 𝑟𝑘, the probability to observe a Spearman correlation 𝑅 ≤ 𝑟𝑘 is given by the CDF 

of the chosen censored distribution 𝐹𝑅(𝑟𝑘). The order statistics CDF is given by a binomial distribution 

𝐹𝑅𝑘
(𝑟) = ∑ [𝐹𝑅(𝑟)]𝑗[1 − 𝐹𝑅(𝑟)]𝑁−𝑗𝑁

𝑗=𝑘  and P-values are obtained from 𝐹𝑅𝑘
(𝑟). Multiple hypothesis 

correction is applied using the R package multtest with the Bejamini-Hochberg method as default 

method. 
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Gene signature scoring 

We implemented a simple scheme where each gene is normalized separately across samples to 

obtain z-scores. The score of a gene signature is the average of the z-scores of all included genes. 

 

LRI association with cell types 

We assume that two matrices of gene signature scores are available, a 𝑡 × 𝑚 matrix 𝐶 for cell types 

and a 𝑟 × 𝑚 matrix 𝐼 for LRI activity. That is, 𝑡 different cell type signatures and 𝑟 distinct LRI 

signatures were scored over the 𝑚 sample of the dataset. To associate the LRI on row 𝑘 of the matrix 

𝐼 with one or several cell types, a preliminary filter requires a minimum Spearman correlation between 

a cell type signature and the LRI signature 𝐼𝑘,. (default = 0.25). If any cell type passes this filter, the 

selected cell types are used to construct a regularized linear model with the LASSO and by imposing 

non-negative coefficients (otherwise default parameters of the glmnet R library were used to optimize 

the weight 𝜆 of the penalty term). If we denote 𝑃𝑡 the set of cell types with non-zero weights and 𝑃𝑡 ≠

∅, the linear model ∑ 𝛼𝑗𝑐𝑗,.𝑗∈𝑃𝑡
 approximates 𝐼𝑘,.. We remove all cell types with a low weight 𝛼𝑗 in the 

model (< 0.1 by default) to obtain a new set of cell type indices 𝑃𝑡
′ ⊂ 𝑃𝑡. The model is considered valid 

provided its correlation with LRI activity, i.e., Spearman correlation between ∑ 𝛼𝑗𝑐𝑗,.𝑗∈𝑃𝑡
′  and 𝐼𝑘, is 

sufficient (> 0.35 by default). 

 

Association with tissue areas 

Users can choose among a default statistical non-parametric model (Kruskal-Wallis for global 

association and Wilcoxon for each area versus all the others), a parametric Gaussian model (ANOVA 

and t-test), Spearman correlations, and the coefficients of determination (r2) of linear regressions. In 

the two last models, tissue regions are represented by their characteristic functions (1 = inside the 

region, 0 = outside). 

 

Implementation 

BulkSignalR is implemented in R following an S4 object-oriented approach. The package follows the 

Bioconductor standards (submission pending) and is available from GitHub.  

 

Datasets and their preparation 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.17.516911doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516911
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

All the examples provided in this article were based on public data made available by their respective 

authors, but for the CRC-LM spatial data that were generated by us (see below). We downloaded 

TCGA RNA-seq data (gene read counts) from the BROAD Institute GDAC at firebrowse.org. The 

frontal cortex transcriptome data were from the Genotype-Tissue Expression (GTEx) Project v8 (2017-

06-05) RNASeQCv1.1.9_gene_reads_gct. Lung cancer cell line transcriptome (RNA-seq) data were 

from DepMap (15) 22Q2 Portal. 

BulkSignalR includes a data preparation function that eliminates non- or barely expressed 

genes/proteins and performs common normalization procedures. We chose default parameters for 

RNA-seq data: genes were retained if a minimum read count of 10 was found in at least 10% of 

samples (percentage and minimum value can be changed to adapt to different data). The default 

normalization is upper quartile, but total count is available as well. Pre-normalized data can be used to 

allow filtering and normalization according to more advanced strategies. We processed datasets with 

default parameters unless otherwise specified. For the datasets presented in Supplementary 

Information, refer to Supplementary Methods. For the DepMap lung cancer cell line data, we imposed 

a minimum read count of 1 and log-transformation. 

 

Pseudo-receiver operating characteristics (ROC) curves 

To estimate true and false positives (TPs and FPs), we applied BulkSignalR to the original data matrix 

𝐴 and also randomized matrices (see above for the randomization procedure). By varying a threshold 

on the Q-values we obtained estimates of the number of FPs from the randomized data for that 

specific Q-value. The corresponding number of TPs was estimated by the number of selected LRIs at 

the same Q-value from the original matrix 𝐴 minus the number of FPs. We named these curves 

pseudo-ROC curves because the estimates are obtained in the absence of an exact reference. To 

estimate their variability, we generated 100 randomized expression matrices 𝐴 per dataset. We also 

generated pseudo-ROC curves for single-cell scores (similar to what done by ICELLNET and 

CellPhoneDB). We computed ICELLNET-like scores using normalized data according to the 

ICELLNET original publication (11). We obtained CellPhoneDB-like P-values from 1,000 shuffled 

datasets. We did not implement any specific treatment for multimeric receptors, thus departing from 

the original CellPhoneDB and ICELLNET implementations. We estimated the pseudo-ROC curve 

variability based on 50 randomized expression matrices 𝐴 in this case. 

 

Comparison with other ST software tools 

We used BulkSignalR with default parameters except min.count = 1, method = ”TC”, min.prop = 0.01 

when calling the method prepareDataset(), min.positive = 2 when calling the method 

learnParameters(), and min.cor = -1 when calling the method initialInference(). 
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For stLearn, we followed the steps provided by the Cell-Cell interaction tutorial in the stLearn 

documentation website. We used the function st.tl.cci.run() with distance = 0 to compute LRIs in the 

within-spot mode, and we set n_pairs (the number of random pairs generated to compute the 

background distribution) to 1,000. We did not apply any P-value correction for multiple hypotheses. 

We replaced the stLearn L-R database by LRdb (Cabello-Aguillar 2020 NAR). Then, we exported all L-

R and the associated P-values from data.uns['lr_summary'] and data.obsm['p_vals]. 

We used CellPhoneDB v3 to compute inferences of LRIs according to the documentation provided by 

the CellPhoneDB website. CellPhoneDB database v4 was used. We set the method parameters to 

“statistical analysis”. We incorporated spatial information of cell types via the microenvironments file. 

We used SpaTalk to directly infer cell-cell communications, thus skipping the deconvolution mode as 

described in its Wiki documentation. We called the function createSpaTalk() with the following 

parameters: if_st_is_sc = FALSE,  spot_max_cell = 1. We defined the major cell type at each spot 

according to the data released by the authors of the different datasets. We used the LRdb database 

as the core database for LRI, thus replacing the native database. We called LRIs with downstream 

targets using the function find_lr_path(). 

 

Liver metastasis patient material 

The ICM Translational study committee, Montpellier, approved the present study. In accordance with 

the French law, patients who did not oppose to the use of their material for research purposes 

provided consent (opting-out rule). Four CRC-LM samples were used in the present study.  

 

Liver metastasis spatial gene expression analysis  

First, we analyzed the quality of RNA extracted from selected formalin-fixed paraffin-embedded 

(FFPE) CRC-LM samples by evaluating the percentage of fragments with length > 200 nucleotides 

(DV200). Briefly, we cut one-two 10 µm-thin FFPE tissue sections, followed by dewaxing and lysis. We 

extracted and purified RNA using the High Pure FFPE RNA Isolation Kit (cat. N. 06650775001, 

Roche), and analyzed the samples by microfluidics-based automated electrophoresis (Bioanalyzer; 

Agilent). All tested samples had a DV200 > 50%. Then, we used serial sections from the same tissue 

blocks, stained with Hematoxylin Eosin Saffron (HES), to identify an area of ~6 x 6 mm containing liver 

metastasis, in order to provide optimal coverage of the 6.5 x 6.5 mm capture area on the Visium slide. 

Following macro-dissection, we fixed 10 µm-thin sections of the selected areas on the Visium slide, 

followed by dewaxing, HES staining, imaging, and decrosslinking according to the manufacturer’s 

instructions (10X Genomics Visium Spatial Gene Expression for FFPE kit, Human Transcriptome, 

Protocol n. GC000408 and GC000409). Then, we prepared Visium libraries according to 

manufacturer’s instructions (Protocol n. GC000407). After sequencing using the NovaSeq 6000 

system (S1 flowcell; Illumina) to obtain ~50,000 reads per spot, we used the Space Ranger 
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Software Suite (version 1.3) for sample demultiplexing, alignment to the human probes, barcode 

assignment of each spot, and gene counting by unique molecular identifier counts. Data will be 

available at GEO upon publication. 

 

Multiplexed immunofluorescence  

After deparaffinization in xylene, rehydration in a series of methanol dilutions (see above), and antigen 

retrieval in AR6 buffer (Perkin Elmer, Waltham, MA, USA; cat. n. AR600250) in a pressure cooker for 

10 min, we incubated FFPE CRC-LM tissue sections in serum-free blocking solution (Agilent-Dako, 

Santa Clara, CA, USA; cat. n. X0909) at room temperature for 30 min followed by incubation with the 

anti-epidermal growth factor receptor (EGFR) primary antibody (cat. n. 4267, Cell Signaling) at 4°C 

overnight. Then, we washed slides in TBS-0.01% Tween 20 and incubated them with Histofine MAX 

PO Multi (Nichirei, Tokyo, Japan; cat. n. 414152F) secondary antibody at room temperature for 30 

min. We performed staining with the TSA Coumarin system (Akoya, cat. n. NEL703001KT). Next, after 

antibody stripping with the AR6 buffer in a pressure cooker for 5 min, and antigen blocking for 30 min, 

we incubated sections with three antibody sets (each set containing three antibodies), by repeating the 

staining, stripping and blocking steps for each antibody. Set 1 (structure) included: anti-CD31 

(IR61061-2, Dako), anti-pan-CK (GA05361-2, Dako) and anti-SMA (GA61161-2, Dako) antibodies. Set 

2 (decorin) included: anti-phosphorylated p44/42 MAPK (Thr202/Tyr204) (4376, Cell Signaling), anti-

cMET (8198, Cell Signaling), and anti-DCN (AF-143, R&D Systems) antibodies. Set 3 (cadherin) 

included: anti-phosphorylated ERK1/2, anti-cMET (same antibody as in set 2), and anti-CADH1 

(GA05961-2, Dako) antibodies. The secondary antibody was the same for most antibodies (Histofine 

MAX PO Multi), but for the anti-DCN antibody that was detected using Histofine MAX PO G (414162F, 

Nichirei Bio). For staining we used the Opal system (Perkin Elmer, cat. n. NEL810001KT). After 

mounting using VECTASHIELD® Vibrance Mounting Medium without DAPI (Vector, Burlingame, 

USA), we visualized staining using a Thunder microscope (Leica, Wetzlar, Germany). 

 

 

RESULTS 

BulkSignalR approach and design 

Most single-cell tools infer LRIs by relying only on the ligand 𝐿 and the receptor 𝑅 abundance because 

they have access to separate data for each cell population. With bulk data, the observed abundance 

of transcripts (or proteins) is the net contribution of different cell types, each of which represents an 

unknown proportion of the analyzed tissue. Therefore, we hypothesized that LRI inference using bulk 

data should rely on additional modeling steps. Specifically, we modeled the consequence of a putative 

LRI by considering the participation of 𝑅 in biological pathways and the regulation of the genes 

targeted by these pathways. Furthermore, as we did not assume any knowledge about the different 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 18, 2022. ; https://doi.org/10.1101/2022.11.17.516911doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.17.516911
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

samples, such as clusters harboring similar profiles, we modeled relationships between ligands, 

receptors, and downstream pathways based on Spearman correlations across the whole dataset. 

Consequently, BulkSignalR searches for triples (𝐿, 𝑅, 𝑝𝑤) where 𝑝𝑤 is a pathway downstream of 𝑅 

(Figure 1A). 𝐿, 𝑅, and 𝑝𝑤 must display correlated activities to be deemed significant by our statistical 

model. Potential LRIs are taken from the LRdb database (7), while pathways originate from Reactome 

(16) or GO biological processes (17) regarded as pathways. To identify genes reporting on a pathway 

activity, which we called target genes in general, we exploited the topology of a reference network that 

includes Reactome and KEGG (18) interactions. Target genes include the targets of transcription 

factors of the pathway. By default, when 𝑅 is part of a complex, we add the other complex members to 

the list of targets because their expression should be correlated with 𝑅 expression to maintain the 

complex stoichiometry. BulkSignalR uses a statistical model to assess the significance of all possible 

triples (𝐿, 𝑅, 𝑝𝑤) based on the null distributions of L-R and also R-T correlations, pathway sizes, and 

total number of target genes (see Materials and Methods). Importantly, BulkSignalR computes null 

distributions of correlations from the (randomized) dataset directly, and the statistical model combines 

all correlation values independently from the sample number. This avoids the issue of very small, but 

highly significant correlations in large datasets and allows the analysis of small cohorts.  

The results of BulkSignalR statistical analysis are summarized in a table that contains putative 

LRIs, pathways including the receptors, and statistical parameters (Figures 1B and S2). Due to 

redundancies in pathway definitions that often occur at different levels of detail, the same interaction 

can appear in multiple pathways. Moreover, some ligands can have more than one receptor and vice 

versa. Therefore, we introduced different reduction operations to limit redundancy, or to emphasize the 

ligand, the receptor, or the pathway (Figures 1C and S3). Such operations can be chained. Reduction 

to the pathway that yields the best P-value for each LRI results in a table with unique interactions. 

Using this reduction, we estimated the TP and FP rates in order to obtain pseudo-ROC curves (Figure 

1D). Such curves allowed varying the depth at which target gene correlations are assessed in different 

datasets, which revealed that it was advantageous to exploit the pathway downstream the receptor, 

and that the L-R correlation on its own did not provide a useful inference mechanism. Indeed, the 

performance of sole L-R correlation was limited or did not detect any significant LRI. Although we 

could evaluate the pathway activity by considering all its target genes, large pathways may comprise 

multiple branches, and target genes may be up- or down-regulated. As a compromise, we did not go 

deeper than the 45% of the highest correlation (55th percentile in Figure 1D). 

The number of LRIs found by BulkSignalR was lower compared to what was obtained when 

comparable single-cell datasets are available. Nonetheless, as expected, only the interactions found 

using bulk data were enriched in low-abundance molecules (Figure S4). 

As explained in the Introduction, single-cell scores have been proposed to infer LRIs from bulk 

data, although they require separate datasets for the ligand-secreting cells and the receptor-

expressing cells. We investigated whether such scores could be adapted when no upfront cell 

separation is available. To this aim, we selected a salivary duct carcinoma (SDC) dataset (6) that 

included well-separated clusters of samples with limited intra-cluster variability. The scoring of 
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common immune cell gene signatures (Table S1) revealed such clusters (Figure 1E). We then 

compared the clusters to identify LRIs that were enriched in one cluster as a selection mechanism. At 

the time of writing, the LRdb database included 3,249 putative LRIs. Due to the necessary presence of 

both ligand and receptor in the dataset, and the default requirements of BulkSignalR analysis (L-R 

correlation > 0.25, minimum four target genes found in pathways of sizes between 5 and 200), we 

could evaluate 777 LRIs with BulkSignalR. We submitted those 777 LRIs to adapted single-cell 

scores. We used a score based on ICELLNET (a product of average values) with specific data 

normalization (11), and another one based on CellPhoneDB (P-values of the ligand and receptor 

average expression by sample random permutations across clusters). We compared cluster A vs. 

B∪C, respectively A vs. B, to obtain strong , respectively extreme, differences in tumor immune 

infiltrate abundance (Figure E). Furthermore, we selected scores that were higher in the cluster with 

most immune cells or in one of the two compared clusters. This resulted in four pseudo-ROC curves 

for each score (Figure 1E), none of which performed better than random selection. 

 To compare samples and search for differential activity of LRIs is an important functionality. 

Therefore, we introduced the notion of gene signature to reflect the overall activity of the interactions, 

including downstream pathway targets (Figure 1F). The expression values of different genes (or 

proteins) are transformed into z-scores and a weighted sum defines the score. By default, the average 

ligand and receptor z-scores accounts for one half, while the target genes included in the statistical 

model (correlations above chosen percentile) account for the other half of the score, with equal 

individual weights. Gene signatures and scores remain compatible with any combination of reduction 

operations due to BulkSignalR software design. To facilitate the analysis of non-human datasets, we 

integrated a generic ortholog mapping mechanism that allows users to virtually work with any species 

(Figure 1G). We designed BulkSignalR with the aim of proposing a user-friendly tool. Therefore, only 

few lines of code, accessible to basic R users, are sufficient to perform a complete analysis and 

generate informative outputs (Figure S5) including graphical representations (Figures 1HI and S6). 

 

Autocrine communications in lung cancer cells 

For the first application of BulkSignalR, we analyzed bulk transcriptomic data from 206 lung cancer cell 

lines from DepMap (15). We reduced BulkSignalR output to the best pathway for each LRI to obtain 

only unique interactions, and we imposed a FDR < 0.1% (full output in Table S1). We obtained and 

scored gene signatures (Figure 2A). Cell lines originating from the two main histologic subgroups, 

small-cell lung cancer (SCLC) and NSCLC, harbored distinct autocrine communication patterns. 

Mesothelioma-derived cell lines were close to those of NSCLC-derived cell lines, although they 

constitute a different entity. This similarity may simply reflect the absence of microenvironment in 

cultured cell lines. The presence of only two lung carcinoid cell lines in the dataset prevented drawing 

any conclusion on this subgroup. 

In the NSCLC cell lines, we obtained the highest scores for LRIs that involved EGFR. This is 

in line with its increased activity in more than half of patients with NSCLC (19). We identified specific 
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interactions between EGFR and its seven activating ligands (20) (Figure 2A). It is important to be able 

to identify each interaction because different ligands may be associated with functional differences 

(21). The pathways associated with these interactions included EGFR downregulation, clathrin-

mediated endocytosis, general ERBB2-related signaling processes, signaling by PTK6, and signaling 

by non-receptor tyrosine kinase (Table S2). An example of ligand-specific signaling was related to the 

heparin binding EGF-like (HBEGF)-EGFR interaction, for which we identified additional pathways, e.g., 

NOTCH3 Activation and Transmission of Signal to the Nucleus (Table S1). Previous studies already 

reported the crosstalk between EGFR and the Notch pathway in NSCLC (22), and the important 

specific role of the HBEGF ligand (23). LRIs harboring a prognostic value also were enriched in 

NSCLC cell lines. For example, TGFB1-TGFBR2 is involved in TGF-β receptor signaling associated 

with the Epithelial-Mesenchymal Transition (EMT) pathway (24, 25). Other LRIs involved the CD44 

receptor, which is often described as a cancer stem cell marker. In NSCLC ,CD44 and its isoforms 

have been associated with poor prognosis and tumor invasion (26). 

In agreement with the fact that SCLCs are high grade neuroendocrine tumors, we found 

several LRIs related to neurexins and neuroligins, for instance NXPH1-NRXN1 and NLGN1-NRXN3. 

Interestingly, the NRXN1 receptor is considered a novel potential target of antibody-drug conjugates 

against SCLC (27). The NCAM1 ligand, which is a surface marker for SCLC (28), interacted with the 

PTRA and CACNA1C receptors. These interactions are needed to activate signaling for neurite 

outgrowth, thus contributing to the neuroendocrine phenotype. Lastly, other LRIs suggested the 

potential activation of Notch-related signaling, for instance the DLL3-NOTCH4 interaction. In SCLC, 

Notch signaling may have tumor suppressive or promoting activity and is a candidate biomarker of the 

response to immune checkpoint blockade (29). Recent studies investigated treatments targeting DLL3 

in recurrent SCLC (30), and in high-grade pulmonary neuroendocrine tumor-initiating cells (31). 

 

Summarizing at the pathway level 

In the analysis of lung cancer bulk data, we found LRIs that implicated a single receptor or related to a 

single pathway. BulkSignalR capacity to reduce data can be exploited to investigate a dataset at the 

pathway level. We illustrate this procedure using transcriptomic data from human brain and heart 

during development and adult life (32). We started by reducing the output at the pathway level. To this 

aim, we pooled together all receptors implicated in a given pathway, followed by pooling of all their 

ligands. In this way, that pathway was associated with a meta-ligand and a meta-receptor instead of 

many single interactors (Figure S3): a standard triple (𝐿, 𝑅, 𝑝𝑤) becomes ({𝐿1, ⋯ , 𝐿𝑁}, {𝑅1, ⋯ , 𝑅𝑀}, 𝑝𝑤). 

If two different pathways were associated with the same meta -ligand and -receptor, we performed a 

reduction to maintain only the best pathway chaining BulkSignalR chained reduction operations 

(Figure S6). 

The pathway-level analysis (Figure 2B) identified tissue-specific, and also shared pathways 

and LRIs, including some that are development stage-dependent. Brain-specific pathways included 

Synaptic adhesion-like molecules (including the LRIs CDH1-PTPRF and PTN-PTPRS), and at later 
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stages Opioid signaling (including CALM1-ADCY8 and CALM2-PDE1A) and Neurotransmitter release 

cycle (RIMS1-SLC17A7). NCAM signaling for neurite outgrowth (NCAM1-PTPRA and PSPN-GFRA2), 

Neurexins and neuroligins (NLGN1-NRXN1 and NXPH1-NRXN1), and ROBO receptors bind AKAP5 

(OLFM2-ROBO2) were additional brain pathways that start in utero and show maximal activity after 

birth. Shared developmental pathways were Signaling by BMP (BMP2-BMPR1A and GDF11-

ACVR2B) and Pre-NOTCH Expression and Processing (DLL1-NOTCH1, DLL4-NOTCH4, and JAG1-

NOTCH1). Regulation of insulin-like growth factor transport and uptake by insulin-like growth factor 

binding proteins (ANOS1-SDC2 and FGF2-SDC2) and Muscle contraction (ADAM9-ITGB5, ANXA1-

DYSF, and COL1A1-ITGA1) are examples of heart pathways. The complete list of all LRIs and 

pathways is provided in Table S1. 

 

Relating ligand-receptor interactions to cell types 

In the single-cell paradigm, LRI inference comes with the knowledge of which cell types express the 

receptor and the ligand. As such information is not directly accessible in bulk datasets, we 

implemented an algorithm to predict cell type-LRI associations. This requires scoring a set of cell type 

gene signatures in all samples. It can be achieved with a simple z-score average-based function 

provided by BulkSignalR, or with more advanced cellular deconvolution tools the output of which can 

then be imported in BulkSignalR. By comparing cell type and LRI gene signature scores (Figure 3A), 

we build a sparse linear model in which LRI activity is linked to cell type abundances by the following 

equation: LRI 𝑘 activity 𝐼𝑘 ≅ ∑ 𝛼𝑗CT𝑗𝑗∈𝐽  for a small set 𝐽 of cell types CT𝑗. Due to the intrinsic limitations 

of bulk data and the absence of complete LRI reference, BulkSignalR cannot predict whether a given 

cell type expresses the ligand, the receptor, or both. Using the SDC dataset, we scored cell type 

signatures for common tumor-infiltrating cell types: immune cells, endothelial cells, and fibroblasts 

(Table S1). We summarized cell communications by summing the weights of the cell types in all LRI 

activity models as above, i.e., by summing the 𝛼𝑗 values (Figure 3B). We noted stronger 

communications within the stromal (endothelial cells and fibroblasts) and immune components of the 

tumor, as expected. By selecting all LRIs that were exclusively associated with stromal cells or with 

immune cells, we found that they were involved in very relevant pathways (Figure 3B). Immune 

pathways included well-known immune checkpoints, in agreement with the strong immunosuppressive 

microenvironment of immune cell-infiltrated SDCs. We experimentally identified these immune 

checkpoints and some of the implicated cell populations in a previous study on the SDC landscape (6), 

and found a good agreement between our previous results and the BulkSignalR associations (Figure 

3C). In the absence of available ground truth, we relied on synthetic data to obtain a more general 

performance estimation of cell type assignment. By randomly picking 1, 2, or 3 cell line signature 

scores and adding Gaussian noise, we generated correct cases, i.e., artificial LRI signature scores 

that should be assigned to the randomly picked cell lines. The noise standard deviation 𝜎 in real data 

varies between 0.2 and 0.4. We computed the TP rates (TPR) and true negative rates (TNR) using the 

small SDC and the large TCGA BRCA cohorts (Figure 3D). We also generated randomized data that 
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should not be assigned to any cell type by picking LRI signature scores and shuffling 10, 25, or 50% of 

the values (Figure 3D). The obtained TNR and TPR showed that the algorithm avoided wrong 

assignments, but its sensitivity to detect complex relationships with three cell types decreased with 

increasing noise, especially in the smaller dataset. 

 

Other functionalities and applications 

Our model of LRI (Figure 1A) implies significant positive correlations between the receptor and a 

downstream pathway as well as correlations between ligand and receptor. By default, BulkSignalR 

does not consider L-R correlations < 0.25. However, it is possible to impose a different minimum, 

particularly -1, and to find a number of (𝐿, 𝑅, 𝑝𝑤) triples with strong P-values, but negative L-R 

correlations. This case is properly handled by our statistical model and suggests that such ligands may 

have an inhibitory action. We reanalyzed the SDC dataset by imposing FDR < 0.1% and L-R 

correlation > 0.25 in absolute value. We identified 424 unique LRIs, 361 positive and 63 negative 

(Table S1). By focusing on the Notch pathway, which is deregulated in many tumors, we found 

common activators (DLL1, DLL4, DLK1, DLK2, JAG1, and JAG2) with strong P-values and positive 

correlations with one or several of the four Notch receptors. We also found several interactors that 

were negatively correlated with Notch receptors, for instance MFNG (correlation -0.52 with NOTCH1 

and NOTCH2), a glycosyltransferase that modulates Notch activity by modifying O-fucose residues at 

specific EGF-like domains (33). DLL3, which can inhibit Notch (34), also displayed negative 

correlations (-0.26 with NOTCH3 and , just below our 0.25 threshold, -0.245 with NOTCH4) as well as 

PSEN1 (-0.50 with NOTCH1, -0.27 with NOTCH2, and -0.41 with NOTCH3) and UBA52 (-0.51 with 

NOTCH1). It is worth noting that searching for negatively correlated L-R pairs is much more prone to 

FP (Figure S7) because L-R databases are dominated by activating LRIs. Therefore, this procedure 

should be considered as exploratory and the output needs to be experimentally validated. 

NicheNet (35), a single-cell tool, exploits an integrated molecular interaction network that 

includes LRIs to relate user-chosen gene sets to ligands that might drive their expression according to 

the network. The authors tested this functionality using the 100-gene signature proposed by Puram (5) 

for a partial EMT transcriptional program taking place at the invasive front of head and neck squamous 

cell carcinoma (HNSC). As NicheNet integrated reference network and our method to link ligands to 

receptor-pathway target genes are conceptually similar, we use BulkSignalR inferences to provide a 

similar functionality, but for bulk data. Figure S8 describes its application to investigate the partial EMT 

program using the TCGA HNSC bulk transcriptome dataset (𝑛 = 500). 

In Supplementary Information, we describe the analysis of DepMap transcriptomic and 

proteomic data of breast cancer cell lines (Figures S9-S12), and we use a mouse dataset to illustrate 

the built-in ortholog mapping functionality (Figures S13-S15). Moreover, BulkSignalR allows replacing 

LRdb, its native L-R database, with a user-provided equivalent or adding user-chosen L-R interactions. 
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Investigating spatial transcriptomics data with BulkSignalR 

We then applied BulkSignalR to several multicellular resolution datasets (Visium). BulkSignalR 

functions were used unchanged, we only set some parameters to adapt them to the much reduced 

data dynamics and large number of spots (Figure S16). We started with a triple-negative breast cancer 

(TNBC) dataset (36) the overall structure of which is presented in Figure 4A. We identified 224 LRIs 

(Table S1 and Figure S17), some of which we briefly present here to show that BulkSignalR identified 

relevant interactions. Most LRIs were associated with the stroma or with the invasive cancer tissue. In 

the stroma, we found LRIs that implicated adhesion molecules, e.g., CAM1, VCAM1, and several 

integrins, i.e., ITGB1, ITGB2, ITGB7, ITGAL, ITGAX, as well as immune-related L-R complexes, e.g., 

B2M-CD3D, B2M-(HLA-F), (HLA-A)-CD3D, and IL16-CD4. The presence of activated interactions 

related to antigen presentation (B2M; HLA-A/B) was consistent with findings by the authors of this 

dataset (36). Figure 4B shows the spatial distribution of the LRI between the metalloproteinase MMP9 

and the integrin ITGB2. MMPs are important TME regulators that promote EMT, apoptosis, resistance, 

angiogenesis, and tissue remodeling (37). Moreover, MMP9 has been associated with aggressive and 

metastatic breast cancer (38). In the invasive cancer tissue, we observed the activation of the Notch 

signaling pathway, a TNBC hallmark (39), through interaction with several ligands, for instance JAG2. 

Moreover, we identified the TNFSF10-TNFRSF10B interaction (Figure 4C) that commonly triggers 

apoptosis through caspases. The second apoptosis-triggering receptor TNFRSF10A was marginally 

expressed as well as TNFRSF10D, one of the two decoy receptors that modulate the apoptotic signal 

effectiveness. There are many resistance mechanisms downstream of the TNFRSF10A/B receptors to 

escape apoptosis (40), some of which were presumably active in the invasive cancer tissue. 

 We obtained the plots in Figure 4A-C, the overview plot (Figure S17), statistical association 

with tissue regions (Figure S18), and a representation of LRI spatial pattern diversity (Figure S19) 

using BulkSignalR standard spatial functions. 

 

Comparison with existing spatial transcriptomic data analysis packages 

We identified three recent or widely used tools that offer analysis at the multicellular resolution: 

stLearn (13), CellPhoneDB (10), and SpaTalk (14). We compared these tools with BulkSignalR using 

three human datasets: the previously used TNBC dataset (36), a HER2+ breast cancer dataset (41), 

and a dorsolateral prefrontal cortex dataset (42). To obtain comparable results, we employed LRdb 

(our LRI database) with stLearn and SpaTalk. Despite our efforts, we could not replace the 

CellPhoneDB LRI database. Therefore, we used its native database that combines individual 

molecules and also complexes. When one interaction involved a complex (or two), we generated all 

possible pairwise LRIs. Then, we intersected this LRI list with LRdb to be as close as possible to the 

other three tools. As for some LRIs, both molecules were given as ligands or receptors in LRdb, we 

discarded these CellPhoneDB LRIs. 
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The next step was to apply comparable selection mechanisms. As not all tested tools 

implemented multiple hypothesis corrections, we used P-values for all tools including BulkSignalR. We 

imposed P values < 0.1% to remain close to the FDR < 1% we typically use with spatial data. stLearn 

required an adapted selection strategy. For each LRI, this tool combines CellPhoneDB and a local 

enrichment test at each spot versus its neighbors, and provides a P-value for each spot. We used a 

first selection mechanism that required at least 0.5% of the spots with P < 0.1%. This selection was 

rather sensitive to the number of imposed spots. Therefore, we used a second mechanism based on a 

score given by stLearn that is equal to the number of spots where a LRI was found with P < 5%. It was 

difficult to set a threshold for this score because multiple hypothesis correction would make most of 

these P-values non-significant. Hence, we simply took the same number of LRIs selected by 

BulkSignalR in decreasing order of this stLearn score. 

CellPhoneDB and SpaTalk offer medium-resolution analysis, but they remain intrinsically 

optimized for single-cell or subcellular spatial resolution. Indeed, users must define a dominant cell 

type at each spot. In addition, CellPhoneDB requires the definition of the tissue regions (like in Figure 

4A). They exploit this information to reconstitute cell type-specific transcriptomic profiles, restricted to 

each region for CellPhoneDB, or overall for SpaTalk. As SpaTalk reports LRIs by specifying the cell 

types, we selected all LRIs based on their P-values and eliminated redundant LRIs if they were 

significant in several cell type pairs. CellPhoneDB gives a P-value for each pair of cell types occurring 

in each region. We took the minimum P-value for each LRI and imposed a minimum P-value < 0.1%. 

 The TNBC, cortex, and HER2+ breast tumor datasets included 4,895, 3,636, and 306 spots, 

respectively. BulkSignalR, stLearn, and CellPhoneDB computing times scaled with the dataset size, 

while SpaTalk times were very long and difficult to explain (Figure 4D). CellPhoneDB was the fastest 

tool. 

 For the TNBC dataset, the four tools reported heterogeneous numbers of LRIs with limited 

overlap (Figure 4E). For CellPhoneDB and SpaTalk, we defined the dominant cell type at each spot 

according to the dataset authors who used single-cell data and a deconvolution software to determine 

them. For CellPhoneDB, we used the tumor regions defined by the authors and shown in Figure 4A. 

We obtained the largest number of LRIs with SpaTalk (twice as many as with the other tools), and the 

smallest number with stLearn (first selection). To relate the numbers of identified LRIs to their quality 

in the absence of a complete reference, we defined two objective quality criteria. First, we considered 

that the product of the ligand and the receptor, indicating co-presence at a spot, should display a 

statistical association with the tissue regions. Using this criterion, BulkSignalR performed significantly 

better than the other tools, with the exception of stLearn (second selection) (Figure 4F). This is 

remarkable because BulkSignalR does not exploit the knowledge of the tissue regions, unlike 

CellPhoneDB and SpaTalk. When we included negatively correlated ligands, BulkSignalR again 

performed better than CellPhoneDB and SpaTalk. CellPhoneDB was the worst. Second, we 

considered that the ligand and receptor abundances should be correlated in the whole sample. 

BulkSignalR output was significantly enriched in positive correlations compared with the other tools 

(Figure 4G). The other tools returned ~25% of LRIs with negative L-R correlations, which are more FP 
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prone as reported above. Even when negative L-R correlations were allowed in BulkSignalR, the 

number of less reliable LRIs was significantly lower with BulkSignalR than with CellPhoneDB and 

SpaTalk. 

 Next, we compared the results obtained with the HER2+ breast tumor dataset. Tissue regions 

and dominant cell types were defined by the dataset authors. The number of significant LRIs identified 

by each tool was even more heterogeneous than for the TNBC dataset (Figure 4H). SpaTalk and 

CellPhoneDB found the largest number of interactions. Associations of the 𝐿 × 𝑅 product with tissue 

regions showed that BulkSignalR outperformed significantly SpaTalk and CellPhoneDB and also 

stLearn (first selection), but not stLearn (second selection). We obtained similar results when we 

allowed negative L-R correlations in BulkSignalR (Figure 4I). In terms of L-R correlations (Figure 4J), 

BulkSignalR outperformed all the other tools. CellPhoneDB and SpaTalk returned a very large number 

of negatively correlated LRIs, which might lead to substantial FP rates. 

 For the last comparison we used a dorsolateral prefrontal cortex dataset for which the authors 

defined regions, but no dominant cell types at each spot. As CellPhoneDB and SpaTalk compare 

remote spots anyway, we decided to apply them by using the regions as cell type definitions. stLearn 

(first selection) and CellPhoneDB returned the smallest lists of LRIs, while the other tools gave 

comparable numbers of LRIs (Figure 4K). Inter-tool heterogeneity remained substantial. Region 

association was better with BulkSignalR than CellPhoneDB and stLearn (first selection), but not 

compared with stLearn (second selection) and SpaTalk (Figure 4L). L-R correlations indicated that 

BulkSignalR performed better than the other tools.    

 

Application to colorectal cancer liver metastasis spatial data 

To experimentally validate some LRIs identified by BulkSignalR, we generated a new ST dataset for 

four CRC-LM samples. Analysis of this dataset by BulkSignalR gave 173, 251, and 241 unique LRIs 

for the first three CRC-LM samples, respectively (FDR < 1%, L-R correlation > 0.02 in absolute value), 

and only 84 LRIs for the fourth sample (Table S1). As the obtained number of reads per spot was also 

smaller for the last sample (~30% less than the mean of the other three samples; data not shown), we 

excluded it. Application of clustering in Seurat combined with sample analysis by two pathologists 

allowed defining different regions in each sample (Figure 5A). 

A complete analysis of the CRC-LM data with biological interpretation would obviously be out 

of the scope of this paper. We simply focused on LRIs with EGFR because its signaling is exacerbated 

in many tumors and EGFR is a clinical target in CRC-LM. EGFR has multiple ligands (21) and 

BulkSignalR identified 18, 19, and 15 of them in CRCLM1, CRCLM2, and CRCLM3, respectively. To 

assess their expression, we computed the 95th percentile of their read counts in each sample. These 

revealed ligands that were strongly expressed in some area. To summarize, we represented the seven 

most abundant ligands in each CRC-LM sample in Figure 5B. We excluded the LRI UBA52-EGFR 

because ubiquitin A-52 residue ribosomal protein fusion product 1 (UBA52) does not seem to be 
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secreted. The seven most expressed ligands displayed strong overlap in the three CRC-LM samples, 

despite the heterogeneous tumor architectures. One exception was serine protease inhibitor Kazal 

type 1 (SPINK1) that was the most expressed ligand in CRCLM1, but was not identified in CRCLM2/3. 

SPINK1 overexpression has been related to rare, fusion events in prostate cancer (43). It could be 

specific to CRCLM1 patient. Identification of the preferential expression of each ligand in each tumor 

region (see correlations in Figure 5B) showed  that some ligands, e.g., decorin (DCN, and to a lower 

extent heat shock protein 90, HSP90AA1) were specific to some regions. DCN was always negatively 

correlated with EGFR, in line with its inhibitory action on EGFR signaling (44). DCN was also 

negatively correlated with cMET (MET) in all samples and the DCN-MET LRI has inhibitory effects 

(45). All other interactions involved positive L-R correlations. 

Figure 5C shows the spatial configuration in CRCLM1 of the four most abundant ligand-EGFR 

interactions: SPINK1-, HAP90AA1-, E-cadherin (CDH1)-, and DCN-EGFR. The scores featured in the 

plots are the gene signature scores (Figure 1F) that combine ligand, receptor, and downstream 

pathway activity. We observed distinct areas of higher versus lower activity. We then plotted the 

expression of EGFR, CDH1, and DCN (Figure 5C). We observed that EGFR and CDH1 were almost 

ubiquitously expressed, whereas DCN expression was highest in cancer-associated fibroblast (CAF)-

rich regions. This indicates that EGFR signaling could be potentially activated in each region of 

CRCLM1 through different ligands that are ubiquitously expressed or region-specific. The same 

analysis in CRCLM2 (Figure 5D) showed ligands with a specific localization (DCN), with intermediary 

localization (HAP90AA1), and with broad expression (CDH1). EGFR was almost ubiquitously 

expressed (data not shown). We obtained similar results for CRCLM3 (Figure 5E), although DCN 

expression was weaker and less localized due to the absence of desmoplastic reactions and CAF-rich 

regions in this sample. 

We then experimentally validated the CDH1-EGFR and CDH1-cMET interactions in CRCLM1 

and CRCLM2 to illustrate BulkSignalR capacity to identify interactions that are not necessarily sample 

region-specific. CDH1-EGFR and CDH1-cMET interactions have been described in many cell types; 

however, their relationship remains complex and context-dependent (46). The CDH1-MET interaction 

was not identified by BulkSignalR because it is not included in the LRdb database. We assessed 

EGFR, cMET, CDH1 and phosphorylated ERK (pERK) abundance in the two CRC-LM samples by IF 

(Figures 6AB and S20AB). We used pERK as downstream reporter of EGFR and cMET signaling. In 

areas of pronounced CDH1 expression, EGFR membrane staining and pERK expression were less 

pronounced (Figures 6B and S20B). The pattern of cMET expression was similar to that of EGFR 

(stronger in CRCLM1 than CRCLM2). Reduction of EGFR intensity concomitantly with ERK 

phosphorylation was consistent with EGFR activation because upon phosphorylation, EGRF is rapidly 

internalized, thus decreasing its concentration at the membrane (47).  

We then experimentally validated DCN-EGFR and DCN-MET interactions in CRCLM1/2 as 

examples of inhibitory LRIs. We consistently observed DCN expression in the desmoplastic area of 

the tumor, specifically in elongated stromal cells (Figures 6AC and S20AC). This was in agreement 

with previous reports that associated DCN expression with CAFs. We then investigated by IF the 
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zones highlighted by the DCN-EGFR or DCN-MET LRI analysis. Activation of downstream signaling 

via pERK was clearly excluded in cancer cells, suggesting lower receptor tyrosine kinase activation in 

these cells. Overall, high stromal DCN expression was associated with lower receptor tyrosine kinase 

activation in both CRC-LMs. 

 

 

 

DISCUSSION 

Invaluable transcriptomic and proteomic datasets are available and continue to be generated with a 

bulk methodology. Here, we showed that the R library BulkSignalR offers to researchers a solution to 

exploit these datasets to unravel cellular networks. BulkSignalR includes a rich set of functionalities, 

comparable to the best libraries for single-cell data analysis. The infrastructure that supports 

BulkSignalR computations to link LRIs and downstream pathways allows data analysis at both the 

pathway and individual LRI levels. There is an obvious parallel with enrichment analysis of gene sets 

versus the analysis of individual differentially expressed genes. This infrastructure also allows network 

visualization for relating LRIs to target genes. Although bulk data do not directly convey information 

about the specific transcriptomes of individual cell populations, we propose a simple machine learning 

model that can infer what populations are likely to participate in each LRI. 

 By comparing the LRIs inferred by BulkSignalR from several bulk datasets and the 

corresponding single-cell datasets, we found that the single-cell data analysis typically identified 2-3 

times more LRIs. We also found that LRIs identified in bulk data only tended to involve low-abundance 

ligands and receptors, which is in line with the general higher sensitivity of bulk technologies. 

Therefore, single-cell analysis is the approach of choice to map cellular networks when few 

representative samples are sufficient. In the other cases, bulk approaches can be used for cellular 

network inference, but with reduced details. The two formats, bulk and single-cell, could be eventually 

combined as well as data analysis methods in large studies. 

 ST is rapidly developing and a frequent setting consists in working at multicellular resolution. 

Specifically, a tissue section is probed at multiple locations (on a grid), and each spot has a size that 

results in the concomitant analysis of more than one cell. For instance, in the very popular Visium™ 

system, a spot contains between 3 and 30 cells, in function of the tissue and cell types. Therefore, the 

transcriptome data acquired at each spot are bulk by nature and BulkSignalR is suitable for analyzing 

such ST data. By reviewing the literature, we discovered that most existing ST software tools have 

been developed for single-cell or subcellular resolution data. Some nevertheless claim to be 

compatible with Visium-type data, for instance CellPhoneDB (10), SpaTalk (14), and stLearn (13). In 

stLearn, an initial CellPhoneDB application is combined with a local posterior analysis to compare a 

spot with its neighbors. Conversely, CellPhoneDB alone and SpaTalk consider LRIs between spots 
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that may be far from each other. Although some LRIs have a longer range, many occur at a short 

range or only at cell contacts. We think that this renders the output of these tools difficult to interpret. 

Nevertheless, we compared CellPhoneDB, SpaTalk, and stLearn with BulkSignalR using three ST 

datasets. We found that BulkSignalR inferred an average number of LRIs who were significantly more 

reliable according to two neutral quality criteria. The number of LRIs found by stLearn, CellPhoneDB 

and SpaTalk varied substantially, and SpaTalk computing times were very long (up to hours on four 

processors). We also observed limited overlap between the four tools for each dataset. 

Using a new Visium™ dataset that included four CRC-LM samples, we used two of these 

samples to experimentally validate selected inferences obtained with BulkSignalR. We confirmed the 

CDH1-EGFR, CDH1-cMET, DCN-EGFR, and DCN-cMET interactions in both samples by IF. The 

activation of receptors, and especially receptor tyrosine kinases, such as EGFR, is complex and 

involves multiple agonist and antagonist ligands, as illustrated by our analysis that unraveled several, 

spatially-dependent ligands besides CDH1 and DCN. The complete analysis of the net results of all 

these interactions goes beyond the scope of this article, but the presented validations showed the 

potential of our ST data analysis pipeline. 

The analysis of spatial data did not require any modification of BulkSignalR, only the 

adaptation of few parameters. However, we added dedicated graphical functions. The BulkSignalR R 

library was designed to be easy to use by scientists with basic knowledge of R. Few functions are 

sufficient to prepare a dataset, infer the LRIs, and generate informative plots. 

 

 

AVAILABILITY 

BulkSignalR is available with documentation from https://github.com/jcolinge/BulkSignalR. 
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The CRC-LM spatial transcriptomics data will be available from GEO upon publication. The other data 

were made public by their authors. 
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TABLE AND FIGURE LEGENDS 

 

Figure 1. BulkSignalR overview. (A) Model of a LRI with a pathway downstream the receptor. The 

pathway activity in terms of correlation with the receptor is reported by target genes (in blue) that 

include the other members of the receptor complex (denoted by C) and regulated genes (denoted by 
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Re).  (B) Example of BulkSignalR output. (C) Examples of reduction operations at the receptor level 

and at the best pathway level. Other reduction operations are available.  (D) Representative pseudo-

ROC curves showing the effect of using the pathway information at various depths (depth increases 

with smaller percentiles (0.55 = 55th percentile). RNA-seq transcriptome data of 1087 TCGA breast 

invasive carcinoma samples (BRCA), 24 salivary duct carcinoma (SDC) samples (6), and 209 brain 

frontal cortex samples retrieved from GTEx v8; microarray transcriptome data (Affymetrix) of 310 

sarcoma samples (48). In the SDC and GTEx brain cortex datasets, no individual L-R correlation alone 

did not even reach 5% of significance and a simple dot at (0,0) was drawn to indicate this. (E) 

Performance of simple single-cell-inspired scores when samples display clear differences in cellular 

composition. We considered clusters A vs. B∪C and A vs. B to look for increased scores compared 

with the randomized expression data in A or in both directions. (F) Construction of a gene signature for 

a L-R-pathway triple, and computation of the weighted average of z-scores. Multiple L-R-pathway 

signature scores can be compared among samples (heatmap). (G) In BulkSignalR, the reference 

database is of human origin, but an integrated ortholog mapping tool allows using it for virtually any 

species. (H) Example of graphical display of LRIs limited to a chosen pathway (PD-1 signaling in the 

SDC dataset). (I) Representation of the LRIs of the chosen pathway (PD-1 signaling in the SDC 

dataset) with the shortest paths to target genes. 
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Figure 2. Bulk data analysis with BulkSignalR. (A) Autocrine communications in the DepMap lung 

cancer cell line dataset. Analysis was performed at the LRI level. Representative interactions are 

indicated (FDR < 0.1%). (B) Analysis (pathway level) of transcriptome data of human brain and heart 

samples at different development and adult life stages (32). Representative pathways are indicated 

with one LRI example in brackets. Pathways were taken from Reactome. FDR < 0.1%. WPC = weeks 

post-conception. 
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Figure 3. Assigning cell types to interactions. (A) Using the gene signature scores for cell types and 

the gene signature scores for LRIs, mathematical models are built to predict the L-R scores from a 

minimum set of cell type scores. (B) For the SDC dataset, we represented the total weights of each 

cell type contribution to LRIs (network). Left: most recurrent pathways related to LRIs only between 

fibroblasts and endothelial cells. Right: most recurrent pathways for interactions only between immune 

cell types. These pathways include important immune checkpoint molecule interactions: (PD-L1)-(PD-

1), (Galectin-9)-(TIM-3), and (CD80/86)-(CTLA-4). (C) Immunofluorescence-validated interactions and 

cell types in SDC (6) and BulkSignalR predictions. (D) True positive rate (TPR) and true negative rate 

(TNR) of the cell type association algorithm for synthetic data. Correct cases include interactions 

involving 1, 2, or 3 cell types and increasing Gaussian noise N(0, 𝜎). Random cases were obtained by 

shuffling 10, 25, or 50% of data. Synthetic models were generated using a small (SDC) and a large 

(TCGA breast cancer, BRCA) dataset. In total, 100 synthetic models were constructed for each 

configuration (correct/random, σ, shuffling rate, #CTs = number of cell types). 
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Figure 4. BulkSignalR for spatial transcriptomic data analysis. (A) Spatial organization of the TNBC 

tissue. (B) Example of a significant LRI associated with stroma. The left plot contains the gene 

signature scores of the (𝐿, 𝑅, 𝑝𝑤) triple where 𝑝𝑤 = interleukin 4 & 13 signaling (Reactome R-HAS-

6785807). The middle and left plots show the ligand and receptor expression. (C) Example of LRI 

associated with cancer invasive tissue where 𝑝𝑤 = apoptosis (Reactome R-HSA-109581). (D) 

Computing times in seconds for the indicated tools using the indicated datasets. BSR=BulkSignalR, 

STL=stLearn, CPDB=CellPhoneDB, and SPAT=SpaTalk. (E) Number of significant LRIs in the TNBC 

dataset. BSR.N=BulkSignalR with negative L-R interactions (< -0.02), STL.S=stLearn second 
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selection with a score threshold set to have the same number of LRIs as with BulkSignalR, 

STL=stLearn first selection. The color code indicates the number of tools that found one LRI (BSR and 

BSR.N as well as STL and STL.S count for one tool). The Venn diagram represents the overlap 

between tools and selections. (F) Statistical associations (Kruskal-Wallis followed by Benjamini-

Hochberg multiple-hypothesis corrections) between tissue regions and concomitant expression of the 

ligand and the receptor captured by the product 𝐿 × 𝑅. (G) Spearman correlation between ligand and 

receptor in the whole tissue. (H) Number of significant LRIs in the HER2+ breast cancer dataset. (I,J) 

Same as (F,G) for the HER2+ breast cancer dataset. (K) Number of significant LRIs in the dorsolateral 

prefrontal cortex dataset. (L,M) Same as (F,G) for the cortex dataset. *P < 0.05, **P < 0.01, #P < 1E-3, 

##P < 1E-5, ◄P < 2.2E-16 (Wilcoxon 2-sided). 
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Figure 5. BulkSignalR analysis of a colorectal liver metastasis (CRC-LM) ST dataset. (A) Architecture 

of three CRC-LM samples. (B) Seven abundant EGFR ligands in the three CRC-LM. DCN is 

negatively correlated with EGFR. UBA52-EGFR was considered a dubious LRI and was ignored. (C) 

Spatial distribution of the four most abundant ligand-EGFR interactions (gene signature scores) in 

CRCLM1 and expression of EGFR, CDH1, and DCN. (D) Spatial distribution of the three most 

abundant ligand-EGFR interactions in CRCLM2. (E) Representative LRI spatial distributions in 

CRCLM3. 
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Figure 6. Validation by IF analysis of selected ligand-receptor interactions in CRCLM1. (A) (left) 

Structural overview of CRCLM1 with stromal areas (delineated in white) and EGFR+ cancer cells 
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(green). ACTA2 is a CAF marker, CD45 is an immune cell marker, EGFR is cancer cell marker, and 

CD31 is an endothelial cell marker; d, desmoplastic reaction; n, necrosis. (right) Higher magnification 

view of desmoplastic and necrotic areas. (B) Analysis of CDH1-EGFR and CDH1-cMET interactions. 

Low-magnification view (100x) of quadruple staining (pERK, EGFR, CDH1, and cMET) in CRCLM1. 

The area of interest is highlighted and shown at higher magnification in the panels underneath. (C) 

Analysis of DCN-EGFR and DCN-cMET interactions. Same as in (B). 
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