

1 **Structural analysis of *Toxoplasma gondii* sortilin**

2

3

4 Ariane Honfozo¹, Rania Ghoul¹, Tchilabalo Dilezitoko Alayi², Malika Ouldali¹, Ana-
5 Andreea Arteni¹, Cynthia Menonve Atindehou³, Lucie Ayi Fanou³, Yetrib Hathout²,
6 Sophie Zinn-Justin¹ and Stanislas Tomavo^{1,*}

7

8

9

10

11 ¹Université Paris Saclay, CNRS UMR 9198-CEA, Institute for Integrative Biology of the
12 Cell (I2BC), 91190 Gif sur Yvette, France

13 ²Binghamton University, School of Pharmacy and Pharmaceutical Sciences,
14 Binghamton, New York 13902, USA

15 ³Université d'Abomey Calavi, Laboratoire de Biochimie et de Biologie Moléculaire,
16 Faculté des Sciences et Technologies, Cotonou, Bénin.

17

18 **Keywords:** *Toxoplasma gondii*, Sortilin, *Pichia pastoris*, AlphaFold, 3D-models

19

20

21

22

23

24 *Corresponding author: stanislas.tomavo@i2bc.paris-saclay.fr; Ph: 33 1 69 82 61 72

25

26

27 **ABSTRACT**

28 Rhoptries and micronemes are essential for host cell invasion and survival of all
29 apicomplexan parasites, which are composed of numerous obligate intracellular
30 protozoan pathogens including *Plasmodium falciparum* (malaria) and *Toxoplasma*
31 *gondii* (toxoplasmosis) that infect humans and animals causing severe diseases. We
32 identified *Toxoplasma gondii* TgSORT as an essential cargo receptor, which drives the
33 transport of rhoptry (ROP) and microneme (MIC) proteins to ensure the biogenesis of
34 these secretory organelles. The luminal ectodomain of 752 amino acid long situated at
35 the N-terminus end of TgSORT has been described to bind to MIC and ROP proteins.
36 Here, we present an optimized protocol for expression of the entire luminal ectodomain
37 of TgSORT (Tg-NSORT) in the yeast *Pichia pastoris*. Optimization of its coding
38 sequence, cloning and transformation of the yeast *P. pastoris* allowed the secretion of
39 Tg-NSORT. The protein was purified and further analyzed by negative staining
40 electron microscopy. In addition, molecular modeling using AlphaFold identified key
41 differences between human and *T. gondii* sortilin. The structural features that are only
42 present in *T. gondii* and other apicomplexan parasites were highlighted. Elucidating
43 the roles of these specific structural features may be useful for designing new
44 therapeutic agents against apicomplexan parasites

45

46

47 **INTRODUCTION**

48 *Toxoplasma gondii* is a single-celled obligate intracellular parasite responsible for
49 toxoplasmosis. It is the leading cause of congenital neurological abnormalities and
50 severe opportunistic infection in immunocompromised individuals (Hu et al., 2006).
51 This parasite belongs to the large phylum of *Apicomplexa*, which includes protozoan
52 pathogens such as *Babesia*, *Cryptosporidium*, *Cyclospora*, *Isospora* and *Plasmodium*
53 (Kim and Weiss, 2004). Apicomplexan parasites possess various similar morphological
54 features that constitute the hallmark of the phylum (Morrisette and Sibley, 2002).
55 Among these different structures, the most remarkable is the presence of an apical
56 complex composed of polar ring, conoid and unique secretory organelles named
57 rhoptries and micronemes. During the invasion, micronemes firstly release their
58 contents that are required for motility, host cell attachment and egress (Dubois and
59 Soldati-Favre, 2019). Microneme (MIC) proteins (adhesins and escorters) form
60 complexes that link host cell receptors to the glideosome (Opitz and Soldati, 2002).
61 These complexes required for invasion are translocated backwards, allowing the
62 parasite to propel itself into the host cell by membrane invagination. Subsequent
63 proteolysis of these proteins is essential for cell invasion progression by enabling
64 parasite migration into host cell (Brydges et al., 2006). MIC5 is the first microneme
65 protein identified as not possessing an adhesive domain (Brydges et al., 2000). It acts
66 as a regulator of the activity of the parasitic surface protease MPP2 (Brydges et al.,
67 2006). Rhoptries (ROP) proteins are also involved in host cell entry and in the
68 subversion of other host functions such as the control of nuclear transcription and
69 immune responses (Boothroyd and Dubremetz, 2008). Among these proteins, ROP18
70 phosphorylates and inactivates a family of host immunity related GTPases (IRGs),
71 preserving the parasite from lysis (Fentress and Sibley, 2011). ROP16 interferes with
72 signal transduction in the host nucleus through phosphorylation of the activator
73 STAT3/6 (Butcher et al., 2011). Key roles of rhoptries and micronemes make these
74 organelles the pillars of the parasite survival. However, the formation of these vital
75 secretory organelles depends on the presence of *Toxoplasma gondii* Sortilin-like
76 receptor (TgSORTLR), which is a type I transmembrane cargo transporter located in
77 the post-Golgi and endosome related compartments. TgSORTLR is essential to the
78 biogenesis of secretory organelles and in turn to motility, invasion and egress (Sloves
79 et al., 2012). Furthermore, TgSORTLR is required for efficient host immune responses
80 against infection (Sloves et al., 2015). The luminal ectodomain situated at the N-

81 terminus of the receptor binds ROP and MIC proteins (Sloves et al., 2012) while the
82 cytosolic tail recruits partners to enable anterograde and retrograde receptor transport
83 (Sangaré et al. 2016), in a manner similar to sortilins of humans (Nielsen et al., 2001).
84 Therefore, we now named this receptor TgSORT. Furthermore, homologues of
85 TgSORT is present in all apicomplexan parasites whose genomes have been
86 sequenced ([VEuPathDB](#)). For example, in the malaria *P. falciparum*, PfSORT
87 determines transport of proteins to form rhoptries (Hallée et al., 2018a, 2018b).

88 In humans, sortilins are multifunctional receptors whose structures are defined by the
89 backbone of yeast VPS10 composed of ten β -propeller domains, two cystein bound
90 domains, one transmembrane domain and C-terminus tail (Quistgaard et al., 2009).
91 These sortilins function in mannose-6-phosphate independent manner for the sorting
92 of numerous enzymes from the endosomal system to the lysosomes. Expressed in a
93 number of vertebrate tissues, notably brain, spinal cord, testis, and skeletal muscle,
94 sortilins also function as a surface coreceptor for induction of neural apoptosis in the
95 brain (Kim and Hempstead, 2009) and is linked to type 2 diabetes (Clee et al., 2006)
96 and Alzheimer's disease (Rogaeva et al., 2007). However, mice or yeast deficient in
97 sortilin/VPS10 are viable and show relatively mild phenotypes (Marcusson et al., 1994;
98 Jansen et al., 2007). In sharp contrast, in apicomplexan parasites, as demonstrated
99 for *T. gondii* and *P. falciparum*, this receptor is an essential factor that allows
100 apicomplexan parasites to build the complex apical structure composed of the
101 functional conoid containing rhoptries and micronemes (Sloves et al., 2012; Sakura et
102 al., 2016; Sangaré et al., 2016; Hallée et al., 2018a, 2018b). However, the homology
103 between *T. gondii* sortilin and its human counterparts is only about 27%. Interestingly,
104 four peptide insertions are present in the β -propeller domains B, H, 10CCb and the C-
105 terminus tail in all apicomplexan parasite's sortilins identified up-to-date (Sloves et al.,
106 2012). The presence of conserved specific peptide insertions exclusively in sortilins of
107 apicomplexan parasites suggests that they may have peculiar 3-D structures
108 compared to the classical VPS10 backbone that can be exploited for future therapeutic
109 interventions. In the present study, we established optimal conditions for expression in
110 the methylotrophic yeast *Pichia pastoris* of secreted soluble N-terminus luminal end of
111 TgSORT for structural analysis and we exploited the recent and powerful
112 computational predictive program AlphaFold to propose a 3D-model of TgSORT.

113

114 **MATERIALS AND METHODS**

115 **Strains, vectors and reagents**

116 Pichiapink secreted protein kit (Thermofisher scientific) containing one shot electro-
117 competent *E. coli*, pPINKaHC vector, 5'α-factor primer, 3'CYC1 primer was used in
118 this study. PichiaPink expression strains composed of 4 adenine auxotrophic *Pichia*
119 *pastoris* strains were as follows: PichiaPink strain 1, a wild strain of genotype *ade2*,
120 PichiaPink strain 2 (*ade2, pep4*), PichiaPink strain 3 (*ade2, prb1*) and PichiaPink strain
121 4 (*ade2, pep4, prb1*). Pichia Pink Media kit (Dextrose, Pichia Adenine Dropout Agar,
122 yeast extract peptone dextrose, yeast extract peptone dextrose sorbitol, yeast extract
123 peptone dextrose). Additional reagents were required: Yeast Nitrogen Base
124 (Thermofischer scientific), methanol (Millipore), biotin and sorbitol (Sigma Aldrich),
125 glycerol, 1M potassium phosphate buffer. Rabbit anti-Flag antibodies (Sigma Aldrich)
126 and rat anti-Tg-NSORT antibodies were produced in the laboratory as previously
127 described (Sloves et al., 2012). The following media were also prepared: YPD broth,
128 YPD agar, YPDS yeast extract peptone dextrose sorbitol, PAD agar (Pichia Adenine
129 Dropout Agar), BMGY and BMMY.

130

131 ***Pichia pastoris* expression vector**

132 The N-terminus luminal coding region of TgSORT (named here Tg-NSORT) from
133 amino acid 37 to 789 (*TgSORTLR* ToxoDB accession Number TGME49_290160) was
134 designed with Flag and 6xHistidine epitopes added to the C-terminus end. The
135 synthesis and cloning of this Flag and 6xHis tagged TgSORT coding nucleotide
136 sequence in pPINKaHC were performed by Genscript based on *P. pastoris* codon
137 usage. This vector also contained the *Saccharomyces cerevisiae* α-factor signal
138 peptide added upstream to Tg-NSORT (N-terminus) and this allows the traffic of
139 expressed protein to the secretory pathway of the yeast until its release in the culture
140 supernatant. The expression was under the control of the methanol-inducible promoter
141 AOX1.

142 **Transformation of *P. pastoris***

143 Strains transformation was made according to Thermofisher scientific
144 recommendations, which are based on modified protocols previously described (Wu

145 and Letchworth, 2004). All cultures were carried out at 27°C, 300 rpm and
146 centrifugations at 1500xg for 5 minutes. The different strains of *Pichia pastoris* were
147 grown on YPD agar plates for 24 hours. Starter cultures were performed by incubating
148 an isolated colony in 10 ml of YPD medium for 24 hours. Hundred ml of cultures were
149 made from an OD₆₀₀ of 0.2 to OD₆₀₀ between 1.3 and 1.5. Pellet was recovered,
150 washed twice in cold sterile water and then in ice-cold 1M sorbitol. Cells were
151 permeabilized for 30 minutes at room temperature using a buffer composed of: 100
152 mM lithium acetate, 10 mM DTT, 0.6 M sorbitol and 10 mM Tris-HCl pH 7.5. Three
153 washes were performed with ice-cold 1M sorbitol and electro-competent yeast strains
154 were transferred to 0.2-cm electroporation cuvette and 1 µg of linearized recombinant
155 plasmid was added, and kept on ice for 5 minutes. Transformation was performed at
156 1500 V, 186 Ω and 25 µF using the BTX Electro Cell Manipulator 600. One ml of ice
157 cold YPDS medium was immediately added and the mixture was kept for 2 hours at
158 27°C without shaking. Ten µl and 100 µl were spread on PAD plates and incubated at
159 27°C for 24-48 hours until formation of colonies. Positive clones were isolated and
160 cultured for protein expression and purification as described below.

161 Recombinant Tg-NSORT protein expression

162 Protein expression was achieved according to the manufacturer's protocol. All
163 incubations were done at 27°C under 250 rpm shaking. Pilot experiments were first
164 performed to determine the optimal expression conditions. Ten ml of culture were
165 carried out in BMGY for 24 hours in a 250 ml flask. Cultures were centrifuged at 1500
166 g for 5 minutes at room temperature and the pellet was resuspended in 1 ml of BMMY.
167 Cells were again incubated overnight before starting the inductions. The four different
168 strains have been tested as well as a range of concentrations of 0.5%, 1%, 2%, 3%,
169 4% and induction times of 6, 24, 48, 72 and 96 hours. At the end of induction periods,
170 all supernatants were recovered by centrifugation for 10 minutes, analysed by SDS-
171 PAGE and Western blot using the rat anti Tg-NSORT antibodies. *Pichia pastoris* strain
172 transformed with empty vector served as negative control.

173 After determining the best conditions for expression, a large-scale production was
174 performed. Briefly, one liter of BMGY (Buffered Glycerol-complex Medium) culture
175 medium was seeded by 25 ml using 24-hour pre-culture of one positive clones isolated
176 above. When the OD reaches between 2 and 6, the culture was centrifuged and the
177 pellet was resuspended in 200 ml BMMY (Buffered Methanol-complex Medium)

178 induction medium. After one day of incubation, inductions were performed every 24
179 hours. Supernatants were analyzed by SDS-PAGE and Western blots. We have also
180 isolated Tg-NSORT from 3 liter of cultures.

181 **Affinity column purification of Tg-NSORT**

182 200 ml of supernatant containing recombinant Tg-NSORT were concentrated to 5 ml
183 using the 30-kDa cutoff Millipore centrifugal filters. The concentrated sample was
184 diluted 1:10 with 1X binding buffer (50 mM Tris pH 7.5, 250 mM NaCl and 5% glycerol)
185 and then incubated on Nickel-NTA beads for 4 hours at 4°C with 1 mM PMSF and
186 inhibitor cocktail. Three washes were performed in 50 mM Tris pH 7.5, 1 M NaCl and
187 5% glycerol buffer and three additional washes were done using 50 mM Tris pH 7.5,
188 150 mM NaCl and 5% glycerol. Recombinant Tg-NSORT was eluted twice with 200
189 mM of imidazole and eluates were concentrated in 1X PBS, 5% glycerol before size
190 exclusion chromatography. Protein bands were cut and analyzed by mass
191 spectrometry.

192 **SDS-PAGE**

193 Sixteen (16) μ l of supernatant were mixed with 4 μ l of 5X Laemmli buffer and heated
194 at 100°C for five minutes. SDS-PAGE was performed in 12% gel under reducing
195 conditions by sample migration at 30 V until its reached running gel then at 70 V and
196 120 V. Gels were stained with BIO-RAD Coomassie brilliant blue R-250 staining
197 solution. The protein bands of interest were excised and processed for mass
198 spectrometry.

199 **In-gel digestion of protein and LC-MS/MS analysis**

200 The gel band were cut in small pieces of one mm^3 . The staining of gel pieces were
201 removed thrice with 120 μ L of a mixture of 50/50 (v/v) of 25 mM ammonium bicarbonate
202 (NH_5CO_3)/ acetonitrile for 10 min. In-gel reduction and alkylation of protein disulfide
203 bonds were performed, respectively, with 100 μ L of 10 mM of DTT for 50 min at 57 °C,
204 and 100 μ L of 50 mM of iodoacetamide (IAM) for 30 min at room temperature. After a
205 washing step with 120 μ L of 25 mM NH_5CO_3 and the dehydration step with 100 μ L
206 acetonitrile for 5 min, an in-gel digestion was performed on each band with 0.3 μ g of
207 Pierce™ Trypsin Protease, MS Grade (Thermo Fisher Scientific, IL, USA) for 16 h at
208 37 °C using Thermomixer C (Eppendorf AG, Hamburg, Germany). The peptide was

209 extracted thrice from gel with a mixture of 60/40/0.1 (v/v/v), acetonitrile/25 mM of
210 NH₅CO₃ (v/v) and 0.1% formic acid. The extracted solution was then dried with vacuum
211 centrifuge and resuspended in 15 μ L of water containing 0.1% formic acid. Seven
212 microliter of each sample were injected into the Ultimate 3,000 RSLC nano- System
213 (Dionex, Thermo Scientific) through a trap column 2 cm x 75 μ m inner diameter, C18,
214 3 μ m, 100 A (Dionex, CA, USA) at 3.5 μ L/min with aqueous solution containing 0.1%
215 FA and 2% ACN (v/v). After 10 min, the trap column was set on-line with analytical
216 column, EASY-Spray Acclaim PepMap RSLC, 15 cm x 75 μ m inner diameter, C18, 2
217 μ m, 100 A (Dionex, CA, USA). Peptides were eluted by applying a mixture of solvents
218 A and B. Solvent A consisted of HPLC grade water with 0.1% FA (v/v), and solvent B
219 consisted of HPLC grade acetonitrile (80% ACN) with 0.1% FA (v/v). Separations were
220 performed using a linear gradient of 2% to 50% solvent B at 300 nL/min over 36 min
221 followed by 3 min linear increase of ACN percentage up to a washing step (4 min at
222 100% solvent B), 4 min linear decrease of ACN percentage up to an equilibration step
223 (11 min at 2% solvent B). Total analysis run time was 60 min. LC-MS/MS data
224 dependent acquisition was performed using a Q-Exactive HF mass spectrometer
225 (Thermo Scientific, Bremen, Germany) in positive mode. For ionization, an EASY-
226 Spray ES233 (Thermo Scientific, Bremen, Germany) was used with a voltage set at 2
227 kV, and the capillary temperature set at 350 °C. Full MS scans were acquired in the
228 Orbitrap mass analyzer over an m/z 375 - 1800 range with a resolution set at 60,000
229 for m/z 200. The target automatic gain control value of 3x10⁶ was used with a maximum
230 allowed injection time (Maximum IT) of 90 ms. For MS/MS, an isolation window of 1.2
231 m/z was utilized. The ten most intense peaks with a charge state between 2 and 4
232 were selected for fragmentation using high-energy collision induced dissociation with
233 stepped normalized collision energy of 27-32. The tandem mass spectra were acquired
234 with fixed first mass of m/z 90 in the Orbitrap mass analyzer with a resolution set at
235 30,000 for m/z 200 and an automatic gain control of 10⁴. The ion intensity selection
236 threshold was 8.3x 10⁴, and the maximum injection time was 120 ms. The dynamic
237 exclusion time was 15 s for the total run time of 60 min.

238 All data files collected were processed with a specific workflow designed in Proteome
239 Discoverer 2.2 (Thermo Fisher Scientific). MS/MS data was interpreted using Sequest
240 HT search engine (Thermo Fisher Scientific). Searches were performed against *T.*
241 *gondii* (TGVEG, TGME49 and TGGT1 strains) protein sequences downloaded from

242 www.toxodb.org the 13th November 2019 concatenated with human keratin and others
243 proteins known as contaminants (25310 entries). The search was performed with
244 precursor and fragment mass tolerance respectively set at ± 10 ppm and ± 0.05 Da and
245 the following dynamic modifications: carbamidomethyl on cysteine, acetyl on protein
246 N-terminal, oxidation on methionine. The target-decoy database search allowed us to
247 control and to estimate the false positive discovery rate at 1% for peptide and protein
248 as well (Elias and Gygi, 2007).

249 **Western blots**

250 After SDS-PAGE, proteins were transferred on nitrocellulose membrane at 80 V for 1
251 hour. Membranes were blocked for 30 minutes at room temperature in 5% skim milk
252 prepared in TNT (15 mM Tris-HCl pH8, 140 mM NaCl, 0.05% Tween-20). Incubation
253 with antibodies was done for 1hour at room temperatures with 10 minutes washes for
254 three times using TNT. Blotting membranes were developed with standard
255 chemiluminescent solution (GE healthcare) and scanned using Vilber fusion FX 6.0
256 apparatus (France).

257 **Size-exclusion chromatography of Tg-NSORT**

258 Size-Exclusion Chromatography (SEC) using a 24 ml Superose 6 Increase 10/300 GL
259 column in a buffer composed of 50 mM Tris-HCl pH 8, 150 mM NaCl and 1 mM EDTA,
260 was used to purify the concentrated eluate of Tg-NSORT. A single peak corresponding
261 to Tg-NSORT was observed at 17.5 ml by monitoring elution at 280 nm.

262 **Negative staining of TgN-SORT**

263 Samples were analysed by conventional electron microscopy using the negative
264 staining method. 3 μ L suspension (0.05 mg mL^{-1}) were deposited on an airglow-
265 discharged carbon-coated grid. Excess liquid was blotted, and the grid rinsed with 2%
266 w/v aqueous uranyl acetate. The grids were visualised at 100 kV with a TECNAI Spirit
267 (FEI) transmission electron microscope (ThermoFisher, New York NY, USA) equipped
268 with a K2 Base 4k \times 4k camera (Gatan, Pleasanton CA, USA). Final magnification was
269 at 34.500 x, corresponding to a pixel size at the level of the specimen of 0.14 nm. Data
270 were recorded under low-dose conditions (dose rate 20 e A^{-2}).

271
272 **RESULTS**

273 **Determination of optimal conditions for Tg-NSORT expression**

274 We have used four distinct yeast *Pichia pastoris*, which were mutants lacking
275 respectively either one gene coding a first protease, a second protease or a double
276 mutant lacking both proteases and wild type strains. The use of these mutants allows
277 to minimize the rate of degradation of the recombinant protein expressed in the yeast
278 and to achieve an optimal expression in one of these four *P. pastoris* strains. Figure
279 1A depicted the plasmid that contains the coding DNA sequence of Tg-NSORT tagged
280 to FLAG and 6XHis epitopes and used to transform these yeasts. Transformation of
281 these *P. pastoris* strains resulted in good integration of the plasmids into the genome.
282 Two positive colonies of each strain were shown to express a protein having about 100
283 kDa band that corresponds to the expected size of Tg-NSORT (Figure 1B). However,
284 different amounts of the 100-kDa protein were observed after Coomassie blue staining
285 plus few additional smaller bands with one predominant band around 50 kDa (Figure
286 1B). We showed that the specific anti-TgSORT antibodies recognized this 50-kDa
287 protein, suggesting it as a degradation product of the apparently intact and much
288 stronger TgN-SORT band of 100-kDa size (Figure 1C). Based on the level and
289 intactness of TgN-SORT, we selected clone 1 of *Pichia pastoris* mutant strain 4 for our
290 studies (Figure 1B and 1C, see the red box). Using this Tg-NSORT clone 1, we
291 established that the same level of the 100-kDa band was expressed regardless of the
292 methanol concentrations, except that a slight decreased in intensity was observed at
293 4% methanol (Figure 1D and 1E). In addition, the amount of TgN-SORT produced in
294 this clone also increased with time (Figure 1F and 1G). For our purposes, we picked
295 out 2% of methanol induction for 72 hours as the optimal conditions at 27°C under
296 constant shaking for efficient expression of Tg-NSORT in *Pichia pastoris*.

297 **Purification of secreted Tg-NSORT from *Pichia pastoris***

298 After, a small-scale purification of Tg-NSORT using Ni-NTA resin, we checked that the
299 100 kDa and 50 kDa bands were recognized by Western blots using anti-His and anti-
300 Flag antibodies corresponding to the two-epitope tags placed at the C-terminus of Tg-
301 NSORT (Figure 2A). The same bands stained by Coomassie blue after polyacrylamide
302 gel electrophoresis were excised and processed for mass spectrometry. Sixty-three
303 (63) peptides covering 55% of the length of TgSORT were identified in the 100-kDa
304 protein, indicating it is a genuine ectodomain of Tg-NSORT expressed and secreted
305 from *P. pastoris* (panel B of Figure 2). The nature of these peptides was described in

306 Table 1, which also showed the sequence of 46 peptides found in the 50-kDa protein,
307 suggesting it as a degraded product of Tg-NSORT. Altogether, these data demonstrate
308 that Tg-NSORT was expressed and secreted by *P. pastoris*. After this verification, we
309 embarked on a large-scale production and purification of Tg-NSORT. Figure 3 shows
310 the quality of Tg-NSORT secreted by *P. pastoris* in one liter of culture medium, which
311 was used to purify the protein by Ni⁺-NTA beads (Figure 3A and 3B). The highest
312 amount of protein was obtained after 200 mM of imidazole elution (see E2) and this
313 yielded to 0.5 mg of total Tg-NSORT protein with fewer degradation (Figure 3A and
314 3B). The increase of the volume of *P. pastoris* culture to three liters resulted in a higher
315 quantity of protein that reached 2 mg of purified protein (Figure 3B and 3D). Next, we
316 decided to improve the purity of Tg-NSORT by removing the smaller degraded
317 products seen in Figure 3 by size exclusion chromatography. In these gel filtration
318 conditions, Tg-NSORT was eluted at 17.5 ml, which corresponds to a molecular mass
319 between 44 and 158 kDa on this column (Figure 4A). SDS-PAGE revealed Tg-NSORT
320 at about 100 kDa, but the degraded product of 50 kDa was still present after gel
321 filtration, suggesting that it binds to the 100 kDa protein (Figure 4B).

322 **Negative staining electron microscopy**

323 We diluted the purified material from size chromatography down to 0.05 mg/ml
324 concentration to analyze it by conventional Electron Microscopy (EM) using the
325 negative staining method. We obtained EM micrographs showing homogeneous and
326 well-dispersed particles, suggesting that a protein having a single conformation was
327 present in our gel filtration samples (Figure 5A). Analysis of these micrographs
328 revealed a ring-shaped protein structure that resembles that previously shown for
329 human sortilin (Figure 5B). However, further attempts to crystallize Tg-NSORT or to
330 analyze it by cryo-electron microscopy failed. Therefore, we used the recent
331 AlphaFold2 program (Jumper et al., 2021) to calculate a model of Tg-NSORT.

332 **AlphaFold analyses**

333 We provided as an input for AlphaFold2 the sequence of Tg-NSORT. Using this recent
334 program, we obtained a three-dimensional model of Tg-NSORT (Figure 6A), and in
335 particular of the four parasite's specific peptide insertions, which are organized as
336 loops within TgSORT (Figures 6A and 6C). We also attempted to model the 3D
337 structure of Tg-NSORT bound to its partners. AlphaFold2 predicted with a reasonable

338 significant score (IDDT values for the residues of the disordered binding partners larger
339 than 0.7) that Tg-NSORT interacts with different ROPs proteins (ROP1, ROP5,
340 ROP16) through specific motifs located in intrinsically disordered regions (IDRs) of
341 ROPs proteins (see the model of Tg-NSORT bound to ROP1 in Figure 7A). These
342 motifs are found in the pro-peptide situated at the N-terminus of all ROP proteins. They
343 all bind to the same site in Tg-NSORT within the inner tunnel of the protein. Such
344 binding mode was already observed for neurotensin binding to human sortilin (Figure
345 7B; Quistgaard et al., 2009).

346 DISCUSSION

347 *Pichia pastoris* system has a good record of accomplishment in expressing proteins
348 from both prokaryotes and eukaryotes for the most part difficult to express in *E. coli*.
349 Human coagulation factor XIIIa, which was insoluble after its complicated expression
350 in *E. coli* (Nikolajsen et al., 2014) was successfully produced by Chen et al., (2021)
351 using *P. pastoris*. As used in the present study, these authors also employed the
352 methanol inducible AOX1 promoter to efficiently express the protein for which they
353 evaluated different biological activities (Chen et al., 2021). The same AOX1 promoter
354 controls the expression of the human camel chymosin in *P. pastoris* (Wang et al.,
355 2015). Protein expression in *P. pastoris* depends of different parameters including pH
356 of the culture medium, inducing agent and temperature. As for human coagulation
357 factor XIIIa, the ectodomain of *T. gondii* TgSORT composed of the ten β-propeller and
358 double 10 C-C bound domains is insoluble because it is completely directed into
359 inclusion bodies when expressed in *E. coli*. Now, we have been quite successful in
360 expressing the ectodomain of TgSORT, which is transported through the secretory
361 pathway and can be recovered in the culture supernatant as several milligrams of
362 proteins using *P. pastoris*. As this yeast is a eukaryotic model system; we assume that
363 the parasite TgSORT will be well folded in addition to some post-translational
364 modifications that may be necessary for future functional investigations. It should be
365 noticed that, for example, *T. gondii* ROP2 protein has been already expressed in *P.*
366 *pastoris* and the protein has been used for diagnosis (Chang et al., 2011). However,
367 the level of ROP2 in *P. pastoris* appears weaker than what we have achieved during
368 our work. After 72 hours of induction with 2% of methanol, we were able to obtain
369 several milligrams of pure recombinant TgSORT. It is known that the experimental
370 conditions are important for protein expression in this yeast. For example, Cheng et al.

371 (2021) induced the expression at 30°C with 1% of methanol every 24 hours during 120
372 hours for a camel chymosin at pH 4.7 and even below at 28°C for 8 hours (Wang et
373 al., 2015). After evaluation of the different parameters, expression of human serum
374 albumin was performed at 28°C for 24 hours in an acidic pH of 5.75 and the methanol
375 concentration was set between 0.5 and 2% and for every 2 hours (Zhu et al., 2018). In
376 addition, of these conditions defined for human proteins expression in *P. pastoris*, other
377 *T. gondii* proteins whose expression was difficult in *E. coli* were also produced in this
378 yeast. TgGRA2 was expressed in *P. pastoris* at 28°C for 5 days under 0.5% final
379 methanol every 24 hours (Ling et al., 2012), (Huaiyu Zhou, 2007). GRA4 was also
380 expressed in under the same conditions but for 3 days (Lau et al., 2010). In addition to
381 these *T. gondii* cytosolic proteins, membrane proteins such as SAG1 and SAG2 were
382 also expressed in *P. pastoris* at 30°C for 4 days under continuous 24 hours of induction
383 using 0.5-1% methanol concentrations (Thiruvengadam et al., 2011), (Huaiyu Zhou,
384 2007), (Lau Yee Ling et al., 2010). Methanol concentration generally varies between
385 0.5% and 2% and even very low amount can stimulate induction between short time of
386 culture as it represents an important source of carbon for the yeast. Its continuous
387 addition in the culture favors the good expression of proteins. In addition, we also
388 noticed that even a minimal expression environment could be achieved if good aeration
389 conditions of the cultures were established. Using *P. pastoris*, we obtained enough
390 quantity of purified Tg-NSORT that was analyzed by negative-staining electron
391 microscopy. The purified protein was homogenous, and we observed ring-shaped
392 particles with dimensions similar to those of the crystal structure of human sortilin
393 (Quistgaard et al., 2009). We were to obtain a higher atomic resolution structure of Tg-
394 NSORT. It seems that the presence of the three parasite's specific loops hinders
395 crystallization of Tg-NSORT. Alternatively, we used the AlphaFold program for
396 predicting the structure of Tg-NSORT. This analysis revealed the possible molecular
397 bases of the interactions between TgSORT and ROP proteins. It indicated that the pro-
398 peptide domain of ROP could bind to the tunnel of TgSORT in a manner similar to
399 neurotensin with human sortilin. The specific motifs of ROP proteins are located in
400 some intrinsically disordered regions (IDR) with all IDR tested binding to the same site
401 of TgSORT. These IDR corresponds to the pro-peptide situated at the N-terminus of
402 all ROP proteins, and it is normally cleaved off during the maturation of ROP proteins
403 before they reached their destination (Bradley and Boothroyd, 1999; Bradley and
404 Boothroyd, 2002; et al., Hajagos et al., 2012).

405 In conclusion, *Pichia pastoris* represents a good organism for *T. gondii* protein
406 expression. This expression system combines the advantages of prokaryotic system
407 with those of eukaryotic model for use of minimal and inexpensive culture medium, fast
408 and high growth rate, high productivity, extracellular expression, folding and post-
409 translational modifications (Karbalei et al., 2020). Large-scale production in improved
410 conditions can lead to high amounts of well-folded proteins that can be used for various
411 applications. Collectively, our data provides the foundation of future and deeper
412 structure-function studies of TgSORT, the key receptor required for host infection of
413 apicomplexan parasites. The expression of large amount of soluble ectodomain of
414 TgSORT provides an avenue for conducting detailed mechanistic studies with
415 biochemical and chemical approaches to identify new and parasite-specific inhibitors.

416 **REFERENCES**

417 Boothroyd, J.C., Dubremetz, J.-F., 2008. Kiss and spit: the dual roles of *Toxoplasma*
418 *rhoptries*. *Nat Rev Microbiol* 6, 79–88. <https://doi.org/10.1038/nrmicro1800>

419 Bradley, P. J., and Boothroyd, J. C. Identification of the pro-mature processing site of
420 *Toxoplasma* ROP1 by mass spectrometry. *Mol. Biochem. Parasitol.* 1999.100,103–
421 109.

422 Bradley, P. J., and Boothroyd, J. C. The pro region of *Toxoplasma* ROP1 is a rhoptry-
423 targeting signal. *Intern. J. Parasitol.* 2001. 31,1177–1186.

424 Brydges, S.D., Sherman, G.D., Nockemann, S., Loyens, A., Däubener, W.,
425 Dubremetz, J.-F., et al. 2000. Molecular characterization of TgMIC5, a proteolytically
426 processed antigen secreted from the micronemes of *Toxoplasma gondii*. *Mol.*
427 *Biochem. Parasitol.* 111, 51–66. [https://doi.org/10.1016/S0166-6851\(00\)00296-6](https://doi.org/10.1016/S0166-6851(00)00296-6)

428 Brydges, S.D., Zhou, X.W., Huynh, M.-H., Harper, J.M., Mital, J., Adjogble, K.D.Z., et
429 al. Targeted deletion of *MIC5* enhances trimming proteolysis of *Toxoplasma* invasion
430 proteins. *Eukaryot Cell* 5, 2174–2183. <https://doi.org/10.1128/EC.00163-06>

431 Butcher, B.A., Fox, B.A., Rommereim, L.M., Kim, S.G., Maurer, K.J., Yarovinsky, F., et
432 al. 2011. *Toxoplasma gondii* Rhopty Kinase ROP16 Activates STAT3 and STAT6
433 Resulting in Cytokine Inhibition and Arginase-1-Dependent Growth Control. *PLoS*
434 *Pathog* 7, e1002236. <https://doi.org/10.1371/journal.ppat.1002236>

435 Chang, P. Y., Fong, M. Y., Nissapatorn, V., and Lau, Y. L. Evaluation of *Pichia pastoris*-
436 expressed recombinant rhoptry protein 2 of *Toxoplasma gondii* for its application in
437 diagnosis of toxoplasmosis. *Am J Trop Med Hyg.* 2011. 85, 485-489. doi:
438 10.4269/ajtmh.2011.11-0351.

439 Clee, S. M., Yandell, B. S., Schueler, K. M., Rabaglia, M. E., Richards, O. C., Raines,
440 S. M., et al. (2006). Positional cloning of Sorcs1, a type 2 diabetes quantitative trait
441 locus. *Nat. Genet.* 38, 688–693.

442 Dubois, D.J., Soldati-Favre, D., 2019. Biogenesis and secretion of micronemes in
443 *Toxoplasma gondii*. *Cellular Microbiology* 21, e13018.
444 <https://doi.org/10.1111/cmi.13018>

445 Elias, J. E., and Gygi, S. P. Target-decoy search strategy for increased confidence in
446 large-scale protein identifications by mass spectrometry. 2007. *Nat. Methods* 4, 207–
447 214

448 Fentress, S.J., Sibley, L.D., 2011. The secreted kinase ROP18 defends *Toxoplasma*'s
449 border. *BioEssays* 33, 693–700. <https://doi.org/10.1002/bies.201100054>

450 Hajagos, B. E, Turetzky, J. M., Peng, E. D., Cheng, S. J., Ryan, C. M., Souda, P., et
451 al. Molecular dissection of novel trafficking and processing of the *Toxoplasma gondii*
452 rhoptry metalloprotease toxolysin-1. *Traffic.* 2012 Feb;13(2):292-304. doi:
453 10.1111/j.1600-0854.2011.01308

454 Hallée, S., Boddey, J. A., Cowman, A. F., and Richard, D. Evidence that
455 the *Plasmodium falciparum* protein sortilin potentially acts as an escorter for the
456 trafficking of the rhoptry-associated membrane antigen to the rhoptries. *mSphere.*
457 2018-a. 3: e00551-17. doi: 10.1128.

458 Hallée, S., Counihan, N. A., Matthews, K., de Koning-Ward, T. F., and Richard, D. The
459 malaria parasite *Plasmodium falciparum* sortilin is essential for merozoite formation
460 and apical complex biogenesis. *Cell Microbiol.* 2018-b. 20, e12844. doi: 10.1111.

461 Hu, K., Johnson, J., Florens, L., Fraunholz, M., Suravajjala, S., DiLullo, C., et al. 2006.
462 Cytoskeletal Components of an Invasion Machine-The Apical Complex of *Toxoplasma*
463 *gondii*. *PLoS Pathog.* 2, e13. <https://doi.org/10.1371/journal.ppat.0020013>

464 Jansen, P., Giehl, K., Nyengaard, J. R., Teng, K., Lioubinski, O., Sjoegaard, S. S., et
465 al. (2007). Roles for the pro-neurotrophin receptor sortilin in neuronal development,
466 aging and brain injury. *Nat. Neurosci.* 10, 1449–1457.

467 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al.
468 Highly accurate protein structure prediction with AlphaFold. *Nature*. 2021. 596, 583-
469 589. doi: 10.1038/s41586-021-03819-2.

470 Kim, T., and Hempstead, B. L. (2009). NRH2 is a trafficking switch to regulate sortilin
471 localization and permit proneurotrophin-induced cell death. *EMBO J.* 28, 1612–1623.

472 Kim, K., Weiss, L.M., 2004. *Toxoplasma gondii*: the model apicomplexan. *Int J*
473 *Parasitol* 34, 423–432. <https://doi.org/10.1016/j.ijpara.2003.12.009>

474 Quistgaard, E. M., Madsen, P., Groftehauge, M .K., Nissen, P., Petersen, C. M., and
475 Thirup, S.S. Ligands bind to Sortilin in the tunnel of a ten-bladed beta-propeller domain.
476 *Nat. Struct. Mol. Biol.* 16, 96-98, (2009)

477 Marcusson, E. G., Horazdovsky, B. F., Cereghino, J. L., Gharakhanian, E., and Emr,
478 S. D. (1994). The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded
479 by the VPS10 gene. *Cell* 77, 579–586.

480 Marti-Renom, M. A., Stuart, A., Fiser, A., Sánchez, R., Melo, F., and Sali, A.
481 Comparative protein structure modeling of genes and genomes. *Annu. Rev. Biophys.*
482 *Biomol. Struct.* 29, 291-325, 2000.

483 Morrisette, N.S., Sibley, L.D., 2002. Cytoskeleton of apicomplexan parasites.
484 *Microbiol. Mol. Biol. Rev.* 66, 21–38. <https://doi.org/10.1128/MMBR.66.1.21-38.2002>

485 Nielsen, M. S., Madsen, P., Christensen, E. L., Nykjaer, A., Gliemann, J., Kasper, D.,
486 et al. The sortilin cytoplasmic tail conveys Golgi-endosome transport and binds the
487 VHS domain of the GGA2 sorting protein. *EMBO J.* 2001 May 1;20(9):2180-90. doi:
488 10.1093/emboj/20.9.2180.

489 Nikolajsen, C.L., Dyrlund, T.F., Poulsen, E.T., Enghild, J.J., and Scavenius, C. 2014.
490 Coagulation factor XIIIa substrates in human plasma. *J. Biol. Chem.* 289, 6526–6534.
491 <https://doi.org/10.1074/jbc.M113.517904>

492 Opitz, C., Soldati, D., 2002. 'The glideosome': a dynamic complex powering gliding
493 motion and host cell invasion by *Toxoplasma gondii*. *Mol. Microbiol.* 45, 597–604.
494 <https://doi.org/10.1046/j.1365-2958.2002.03056.x>

495 Sangaré, L. O., Alayi, T. D., Hovasse, A., Westermann, B., Sindikubwabo, F.,
496 Callebaut, I., et al. Unconventional endosome-like compartment and retromer complex
497 in *Toxoplasma gondii* govern parasite integrity and host infection. *Nat. Commun.* 2016.
498 7:10191 doi: 10.1038/ncomms11191.

499 Sloves, P.-J., Delhaye, S., Mouveaux, T., Werkmeister, E., Slomianny, C., Hovasse,
500 A., et al. 2012. *Toxoplasma* sortilin-like receptor regulates protein transport and is
501 essential for apical secretory organelle biogenesis and host infection. *Cell Host
502 Microbe* 11, 515–527. <https://doi.org/10.1016/j.chom.2012.03.006>

503 Sloves, P.-J., Mouveaux, T., Ait-Yahia, S., Vorng, H., Everaere, L., Sangare, L. O., al.
504 2015. Apical organelle secretion by *Toxoplasma* controls innate and adaptive immunity
505 and mediates long-term protection. *J. Infect. Dis.* 212, 1449–1458.
506 <https://doi.org/10.1093/infdis/jiv250>

507 Wu, S., Letchworth, G. J., 2004. High efficiency transformation by electroporation of
508 *Pichia pastoris* pretreated with lithium acetate and dithiothreitol. *BioTechniques* 36,
509 152–154. <https://doi.org/10.2144/04361DD02>.

510 **Legends**

511 **Figure 1.** (A) Design of the expression vector of TgSORT in *Pichia pastoris*. (B) A pilot
512 experiment of Tg-NSORT expression and transformants derived from *Pichia pastoris*
513 S1, S2, S3 and S4-strains were analysed by SDS-PAGE and Coomassie blue staining.
514 (C) Western blot of this pilot experiment using anti-TgSORT antibodies; (D) The optimal
515 methanol concentration for induction determined by Coomassie blue staining; (E) The
516 corresponding blots of panel D; (F) Coomassie blue staining showing the optimal time
517 (hours) for methanol induction; (F) The corresponding blot of panel E. C means
518 negative control.

519
520 **Figure 2.** (A) Western blots after a small-scale purification of Tg-NSORT using Ni²⁺NTA
521 column and the culture supernatant of *Pichia pastoris* induced by 2% of methanol for
522 3 days. The blots were revealed with anti-Histidine and anti-Flag, two epitope tags at

523 the C-terminus of Tg-NSORT. (B) The same material analysed in panel A was staining
524 by Coomassie blue and processed by mass spectrometry to confirm the 100-kDa band
525 as Tg-NSORT.

526

527 **Figure 3.** Large-scale purification of TgN-SORT by affinity chromatography (A)
528 Coomassie blue staining and corresponding blot after purification from one liter of
529 *Pichia pastoris* transformant grown in complete medium culture ; I: Input ; E1: 1st eluate
530 at 50 mM of imidazole; E2: 2nd eluate at 200 mM of imidazole; E3: 3rd eluate at 200 mM
531 of imidazole; (C and D) the same experiment using three liters of culture medium
532 containing secreted TgSORT by *Pichia pastoris*; 1: Input 1X; 2: Input TgN-SORT 20X
533 material; 3: 1X eluate of TgN-SORT; 4: 15X eluate of TgN-SORT.

534

535 **Figure 4.** Size exclusion chromatography of Tg-NSORT. (A) Chromatogram recorded
536 at 260 (purple) and 280 (blue) nm showing the peak corresponding to eluted Tg-
537 NSORT. (B) SDS-PAGE and Coomassie blue staining of eluate containing Tg-NSORT.

538

539 **Figure 5.** (A) Negative staining electron micrograph of Tg-NSORT purified by gel
540 filtration. (B) Zoom on a micrograph and 2D classification of the particles picked on the
541 micrographs.

542

543 **Figure 6.** (A) 3D model of Tg-NSORT calculated using AlphaFold2. (B) Crystal
544 structure of human sortilin. (C) Representation of the Tg-NSORT model, with the
545 insertions specific to *Apicomplexa* colored in cyan (insert or loop 1), green (insert or
546 loop 2) and orange (insert or loop 3). In panels (A) and (B), proteins are colored from
547 blue (N-terminus) to red (C-terminus).

548

549 **Figure 7.** (A) Interaction between Tg-NSORT (from blue to red) and the intrinsically
550 disordered region (IDR) of ROP1 (in black), as determined by AlphaFold2. The motif
551 PPNAQELLPP of this IDR binds to the tunnel formed by the ten β -propeller domains
552 of sortilin. (B) Interaction between human sortilin and the neuropeptide, as
553 observed in the crystal structure referenced as 4PO7 in the PDB.

554 **Supplementary Table 1.** Mass spectrometry data showing peptide identified from the
555 100-kDa and 50-kDa proteins of purified TgSORT excised from polyacrylamide gel
556 and stained by Coomassie blue and processed for proteomics analyses.

557

558 **Acknowledgments**

559 Financial support for this work was provided by the Agence Nationale de la Recherche
560 grants N°ANR-19-CE44-0006. AH was supported by the International Campus France
561 and African UEMOA fellowships. This work benefited from the CryoEM platform of
562 I2BC, supported by the French Infrastructure for Integrated Structural Biology (FRISBI)
563 [ANR-10-INSB-05-05]. We thank Dr. P. Legrand (Synchrotron Soleil) for the
564 AlphaFold2 calculations.

565

566 **Competing interest statement**

567 The authors declare that they have no competing financial interest

568 **Author Contributions**

569 The author(s) have made the following declarations about their contributions:

570 **Conceived and designed the experiments:**

571 SZJ and ST

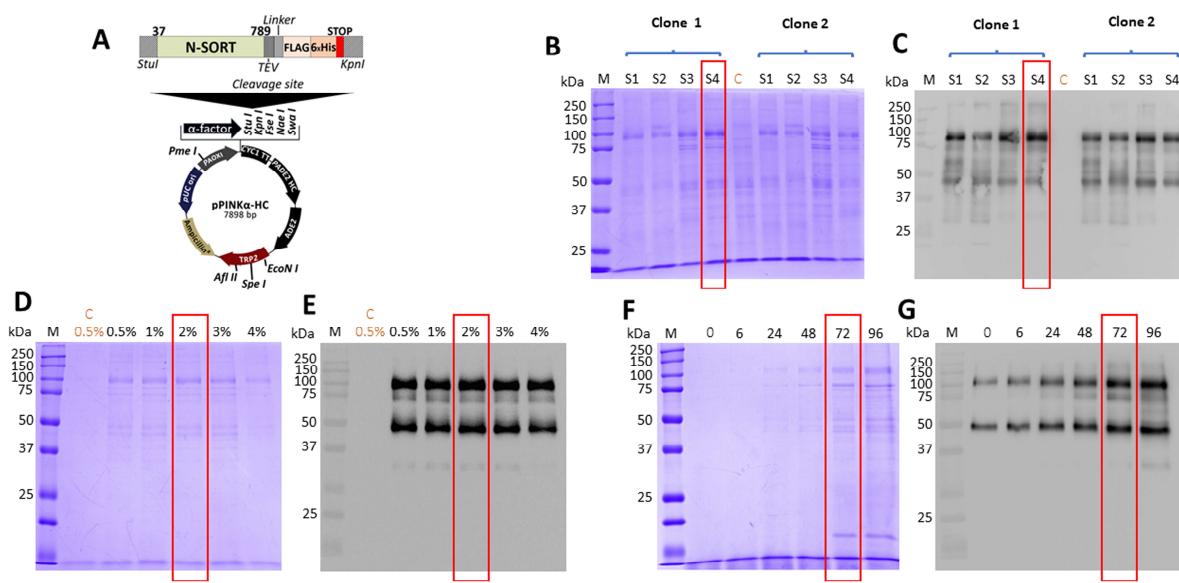
572 **Performed the experiments:**

573 AH, RG, TDA, AA, MOA and SZJ

574 **Contributed reagents/materials/analysis tools:**

575 SZJ, YA and ST

576 **Performed data analysis:**


577 AH, CMA, LAF, SZJ

578 **Wrote the paper:**

579 AH, SZJ, ST

580

581

582

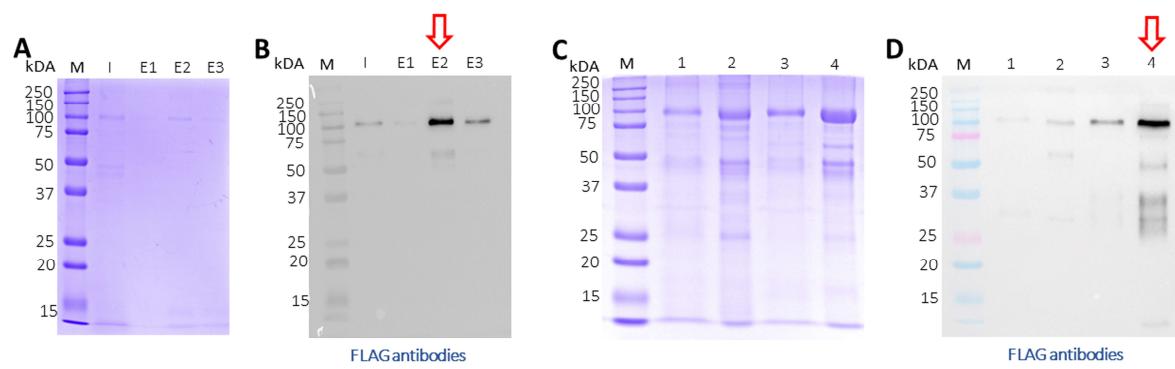

583

Figure 2

584

585

Figure 3

586

587

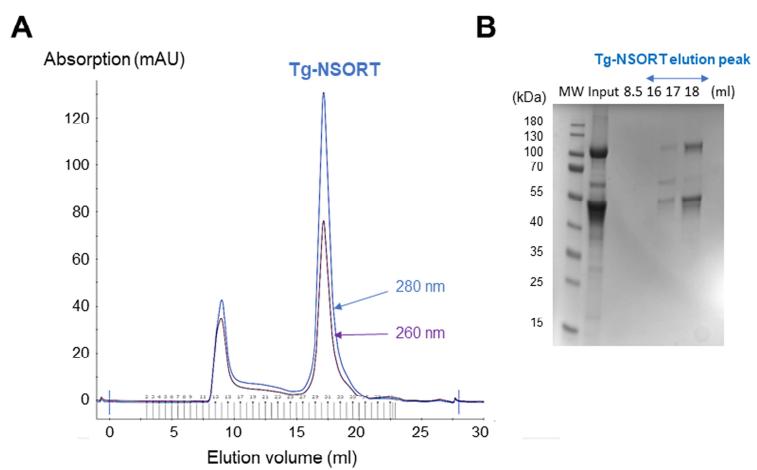
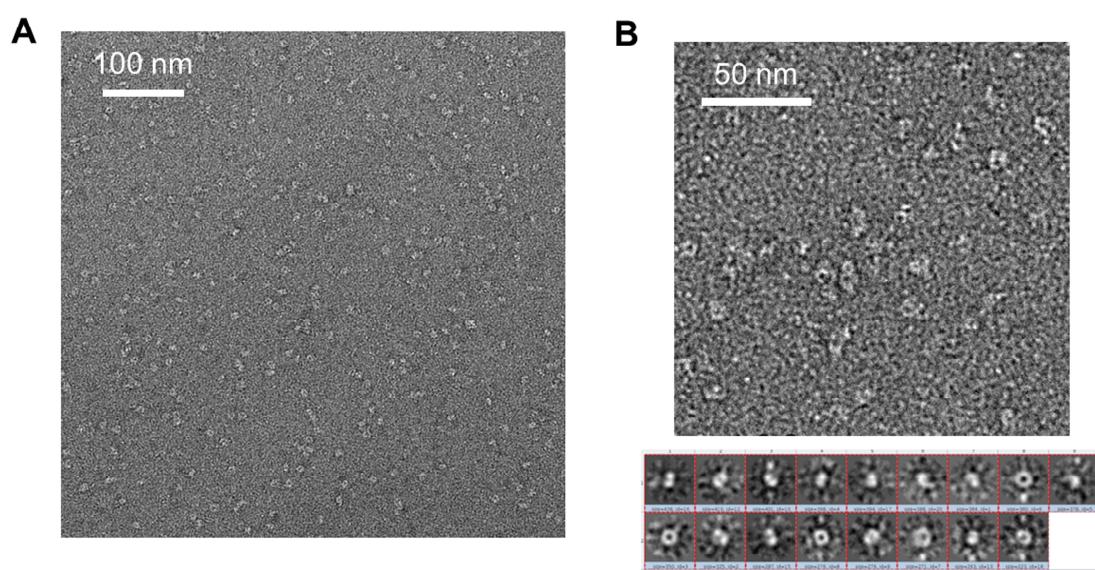



Figure 4

588

589

590 Figure 5

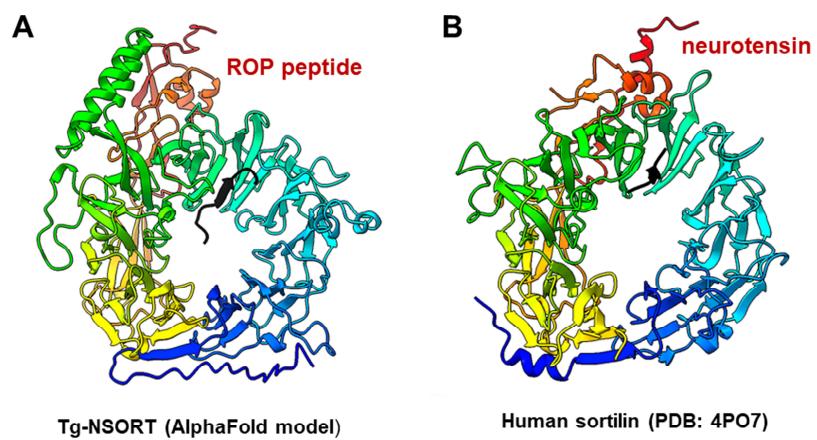

591

Figure 6

592

593

Figure 7

594