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ABSTRACT 1 

Background - Canine hemangiosarcoma (HSA) is an aggressive cancer of endothelial cells associated with 2 

short survival times. Understanding the genomic landscape of HSA is critical to developing more 3 

effective therapeutic strategies.   4 

Objectives - To determine the relationships between genomic and clinical features including treatment 5 

and outcome in canine splenic HSA. 6 

Animals – 109 dogs with primary splenic HSA treated by splenectomy that had tumor sequencing via the 7 

FidoCure® Precision Medicine Platform targeted sequencing panel. 8 

Methods – Patient signalment, weight, metastasis at diagnosis, treatment, and survival time were 9 

retrospectively evaluated. The incidence of genomic alterations in individual genes and their relationship 10 

to patient variables and outcome were assessed.  11 

Results – Somatic mutations in TP53 (n = 45), NRAS (n = 20), and PIK3CA (n = 19) were most common. 12 

Survival was associated with metastases at diagnosis, germline variants in SETD2 and NOTCH1, and 13 

nominally with breed. Age at diagnosis was associated with NRAS mutations and breed. TP53 and 14 

PIK3CA mutations were found in larger dogs, germline SETD2 variants in smaller dogs. Doxorubicin 15 

(DOX) treatment did not significantly improve survival time, while targeted therapies had a significant 16 

early survival benefit. 17 

Conclusions and clinical importance – DOX treatment may provide limited clinical benefit for dogs with 18 

splenic HSA, while targeted therapy may provide early survival benefit. Genetic signatures associated 19 

with splenic HSA may be useful in guiding targeted therapy to improve outcomes. Germline variants, 20 

age, size, and breed may be useful prognostic factors and provide insight into the genomic landscape of 21 

the tumor.   22 
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1 INTRODUCTION 23 

Hemangiosarcoma (HSA) is a common, aggressive cancer in dogs that arises from endothelial progenitor 24 

cells, most frequently in the spleen.1 Despite aggressive treatment, median survival times range from 4-25 

8 months due to a high metastatic rate and rapid tumor recurrence.2  Unfortunately, patient outcomes 26 

have not improved significantly in the past 30 years.3,4  In the era of precision medicine, understanding 27 

the genomic landscape of HSA will likely facilitate identification and implementation of new, more 28 

effective therapeutic strategies.  This is particularly important given that canine HSA is a relevant large 29 

animal comparative model for human angiosarcoma (AS), a cancer that bears histologic and clinical 30 

similarities to canine HSA but occurs far less frequently (300-800 human cases/year compared to greater 31 

than 25,000 cases/year in dogs).5,6 As with canine HSA, human AS exhibits an aggressive biologic 32 

behavior including resistance to chemotherapy and the development of drug resistant metastasis, 33 

resulting in a 5-year survival rate of only 26%.7  Consequently, validating precision medicine approaches 34 

in canine HSA by leveraging its genomic landscape to guide therapy could provide critical new data 35 

regarding therapeutic combinations that may be of benefit for the human disease.   36 

Previous studies have performed whole exome sequencing (WES) and targeted next-generation 37 

sequencing (NGS) of canine HSA tumors, finding potential driver mutations in TP53, PIK3CA, NRAS, and 38 

PTEN, among other genes.8-12 Loss-of-function mutations in the TP53 tumor-suppressor gene were most 39 

frequent across studies (29-93% of cases), as well as activating mutations of PIK3CA (14-60%) and NRAS 40 

(4-24%).8-12 In one paper, increased PI3K pathway signaling was demonstrated in cases with either 41 

PIK3CA activating mutations or PTEN inactivating mutations, and increased MAPK/ERK pathway signaling 42 

was found in cases with NRAS activating mutations.9 While both AS and HSA are genetically 43 

heterogeneous, there are some similarities, including mutations in TP53, PIK3CA (most common in 44 

primary breast AS13), PTEN, and NRAS14,15, and MAPK/ERK and PI3K pathway activation.14,15 45 
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Sequencing of patient tumors is increasingly being used to identify targetable mutations and match 46 

patients to a “precision medicine” treatment.  With mutation data and long-term follow-up, outcomes 47 

of such precision therapies have provided important information regarding efficacy of individual and 48 

combination treatment strategies for human cancer patients. In the current study, we leveraged 49 

targeted NGS data and matched clinical annotations in a population of 109 dogs with splenic HSA to 50 

assess associations between genomic features, clinical presentation, treatment regimens and outcome. 51 

This study represents the largest cohort of patients with splenic HSA to have undergone genomic 52 

interrogation, and the first to show a link between somatic variants and clinical variables such as age 53 

and weight, in addition to an association between germline variants, breed, and overall survival.  54 

Moreover, these data confirm prior published data questioning the efficacy of doxorubicin for the 55 

treatment of splenic HSA.16 56 

2 MATERIALS AND METHODS 57 

2.1 Case selection criteria 58 

Cases were enrolled retrospectively by reviewing medical records of dogs with splenic HSA for which the 59 

splenic mass was submitted for NGS through the FidoCure Precision Medicine platform (One Health 60 

Company, Palo Alto, CA). Dogs were included if they had undergone splenectomy to remove the tumor, 61 

had a histologic diagnosis of HSA by a board certified veterinary anatomic pathologist, the splenic mass 62 

was presumed to be the primary tumor site, and tumor samples had been submitted for FidoCure NGS. 63 

Dogs were excluded if surgery to remove the splenic tumor was not performed or if the confirmed or 64 

suspected primary tumor was in a non-splenic location (e.g., right auricle, cutaneous, subcutaneous, 65 

retroperitoneal, etc.). 66 

One hundred ten dogs with splenic HSA submitted for FidoCure analysis were identified. One dog was 67 

excluded because it could not be verified that the spleen was the primary tumor site, leaving 109 dogs 68 
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for analysis. All but one dog had confirmed splenic HSA. The remaining dog had histopathology originally 69 

reported as splenic sarcoma and additional IHC to identify HSA was ordered by the requesting 70 

veterinarian. The mass was then submitted as HSA by the veterinarian, but the IHC results were not 71 

available for us to review so the diagnosis was presumed. 72 

2.2 Data collection 73 

Case records were retrospectively reviewed. Data collected included age at diagnosis, dog breed, sex, 74 

neuter status, weight, primary tumor site, presence and site of metastases, clinical stage, date of 75 

diagnosis, and date of death or last follow-up, and whether the dog received doxorubicin and/or 76 

targeted therapy. The presence and location of metastases at diagnosis was validated by review of 77 

patient medical records including imaging reports, histopathology of sampled metastatic sites, and the 78 

submitting veterinarian’s interpretation of in-house imaging. Presence of metastasis was determined by 79 

the submitting veterinarian via a variety of methods, including thoracic radiographs, abdominal 80 

ultrasound, thoracic and/or abdominal computed tomography (CT), and/or exploratory surgery. 81 

Metastasis was not confirmed by histopathology or cytology in all cases, but was often presumed based 82 

on imaging findings. Full staging with thoracic and abdominal imaging could not be confirmed in all 83 

cases, and in some cases the submitting veterinarian’s interpretation of imaging was available, but not 84 

the original imaging.  85 

For purposes of treatment reporting, patients were considered to have been treated with doxorubicin 86 

(DOX) if they were reported to have received at least one dose of DOX at any point in their treatment. 87 

Targeted therapies were recommended by FidoCure based on the results of their NGS panel analysis of 88 

potentially targetable mutations. When recommended, these therapies could be ordered directly from 89 

FidoCure. Recommended therapies from FidoCure included rapamycin (an mTOR inhibitor), trametinib 90 

(a MEK inhibitor), vorinostat (an HDAC inhibitor), and multiple tyrosine kinase inhibitors; primarily 91 
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toceranib, dasatinib, lapatinib, and imatinib. If patients ordered targeted therapies from FidoCure at any 92 

point, this was noted and the medication used was recorded. Total number of DOX doses received, 93 

targeted therapy doses received, and length of targeted therapy treatment could not be confirmed for 94 

all cases. It was not always possible to verify whether patients received other treatments beyond 95 

doxorubicin or FidoCure targeted therapies, such as other intravenous agents or metronomic 96 

chemotherapy. 97 

2.3 Tumor sequencing 98 

Sequencing of splenic HSA samples was performed using the NGS panel from the FidoCure Precision 99 

Medicine Platform targeting 56 individual genes (Supplementary Table 1). Tumor samples confirmed by 100 

histopathology were obtained as formalin-fixed paraffin-embedded (FFPE) tissues submitted by the 101 

clinic that had performed the splenectomy.  102 

DNA was extracted from FFPE tissues using the Mag-Bind® FFPE DNA/RNA kit (Omega Bio-tek). DNA was 103 

quantified using the Qubit dsDNA HS assay kit (Thermo Fisher), and 200 ng was used to prepare a DNA 104 

sequencing library using the SureSelect Low Input Library (Agilent). Hybrid selection of the targeted 105 

regions was performed using the SureSelect custom DNA Target Enrichment Probes and SureSelect XT 106 

Hyb and Wash kit, following the manufacturer’s instructions. The final libraries were quantified using 107 

qPCR and pooled for sequencing. Samples were sequenced on Illumina MiSeq 2x150 or NovaSeq S4 108 

2x150 sequencers to a target depth of approximately 500x. Sequencing reads were aligned to the 109 

CanFam3.1 reference genome17 using bwa-mem (v0.7.12).18 Preprocessing was performed using Picard 110 

Tools MarkDuplicates ( http://broadinstitute.github.io/picard) and following the GATK19 (version 3.8.1) 111 

best practices. Bamtools20 was used to filter out reads with mapping quality less than five, or with ten or 112 

more mismatches. Sequencing metrics are provided in Supplementary Table 2. Much of this sequencing 113 

data was also included in a prior publication21 of a much larger set of tumor sequencing information for 114 
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a diverse set of canine cancers.  However, the data associated with splenic HSA did not undergo 115 

additional analysis for functional consequences of somatic mutations, recredentialling of the variant 116 

calls, and association with clinical outcomes.  117 

Single-nucleotide variants (SNVs) and insertions and deletions (indels) were identified by creating a 118 

pileup file in SAMtools22 and calling variants using Varscan223, requiring passing variants to have 119 

coverage > 10x, variant allele fraction (VAF) ≥1%, and minimum quality score of 20. Additional filtering 120 

was performed to remove variants with VAF < 2% or > 95% (potential sequencing artifacts or 121 

homozygous germline mutations), and variants located in repetitive regions24 were filtered out.  122 

Variants were phased using the tool WhatsHap25, and variants co-occurring in the same read (within 150 123 

base pairs) were filtered out as putative germline variants. SnpEff and SnpSift26 were used to annotate 124 

each variant and predict its functional impact. Variants with moderate or high impact were included in 125 

downstream analysis. 126 

Identified mutations were compared to known human mutations in the Catalog of Somatic Mutations in 127 

Cancer (COSMIC, cancer.sanger.ac.uk)27 to determine likelihood of being pathogenic. Due to the lack of a 128 

matched normal germline sample in variant calling, we could not definitively distinguish between all 129 

somatic mutations and germline variants. However, we annotated variants found in two catalogs of 130 

germline variants from 722 canids28 and from 591 dogs29 , as well as common (≥ 5 cases) variants with 131 

VAF near 0.5 or 1 as putative germline variants in our cohort (Supplementary Table 3). Mutations 132 

identified in < 5 cases that did not overlap a known human pathogenic mutation were flagged as 133 

“unknown”. Variants remaining after filtering were annotated as somatic. 134 

2.4 Statistical analysis and generation of figures 135 

Overall survival time was defined as the time from HSA diagnosis to patient death or censoring. Patients 136 

were censored if they were lost to follow-up or still alive at the time of data analysis. All patient deaths 137 
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were considered death from disease unless a clear, unrelated cause was confirmed. To identify any 138 

important clinical variables associated with OST, we used univariate linear regression models for 139 

continuous variables and one-way ANOVA tests for categorical variables. Survival function was 140 

estimated using the Kaplan-Meier method30 with median survival time (MST) and 95% confidence 141 

intervals and differences in overall survival time (OST) between groups evaluated using the log-rank and 142 

Wilcoxon signed-rank tests. A Cox Proportional Hazards model incorporating multiple clinical factors was 143 

also created. Factors evaluated for prognostic significance using Kaplan-Meier survival analysis included 144 

age at diagnosis, sex, weight, presence of metastasis at diagnosis, doxorubicin treatment, targeted 145 

therapy treatment, and total number of somatic mutations.  146 

We also looked at the relationship between various clinical features and individual genes altered by 147 

somatic mutations or germline variants. We used linear regression models for continuous variables, such 148 

as OST, age at diagnosis, weight, and total number of somatic mutations; logistic regression models for 149 

categorical variables with two levels, such as presence of metastasis at diagnosis; and Fisher’s exact 150 

tests for categorical variables with more than two levels, such as breed and reproductive status. Cox 151 

Proportional Hazards models containing the group of somatic mutations or germline variants were also 152 

assessed. 153 

All statistical analyses were performed using R software, version 4.1.2.31 Forest plots were created using 154 

the survival32 and survminer33 R packages. Oncoprint and mutual exclusivity analysis were done using 155 

CBioportal’s Oncoprinter.34,35 “Lollipop” plots of mutation positions were created using the tool Lollipops 156 

v1.5.2.36 Gene interaction plot was created using the maftools37 package for R. 157 

3 RESULTS 158 

One hundred nine dogs were included in the study. Characteristics and descriptive statistics of this 159 

cohort are listed in Table 1.  The most common breed designation was mixed breed (n = 32), followed by 160 
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golden retriever (n = 16), German shepherd (n = 14), and Labrador retriever (n = 14). Males were slightly 161 

overrepresented (62%), and most were neutered (93%), while all females were spayed. Complete 162 

individual patient demographic and gene mutation data are listed in Supplementary Table 3. 163 

3.1 Clinical variables 164 

We examined the relationship between clinical variables, including age at diagnosis, sex and neuter 165 

status, weight, presence of metastasis at diagnosis, and treatment with overall survival (OST). Univariate 166 

and multivariate regression analyses were performed, along with cox proportional hazards models to 167 

identify important factors (Figure 1).  168 

Progression free and overall survival 169 

Complete treatment information was available for 99 dogs. Outcome was available for 100 dogs, with 170 

nine lost to follow-up or still alive at the time of data collection. The MST of all patients was 166 days 171 

(range, 16-956 days) (Supplementary Figure 1A). Ninety-six dogs were dead of disease at the time of 172 

data collection, while four were still alive and nine were lost to follow-up. Age at diagnosis, weight, total 173 

number of somatic mutations, and sex/neuter status had no significant effect on OST (Figure 1).  174 

Thirty-three dogs had confirmed or presumed metastasis, with the liver (n = 25) and omentum (n = 4) 175 

being the most frequent sites of metastasis. Nine dogs could not be classified because data regarding 176 

metastasis at diagnosis was not available. Dogs with metastasis at diagnosis had significantly shorter 177 

survival compared to those without metastasis (P = < .001), with an MST of 120 days (range [95% CI], 16-178 

596 days [87-156 days]) versus 252 days (range [95% CI], 36-956 days [207-365 days]) respectively 179 

(Figure 2A). 180 

Following splenectomy, 73 dogs received at least one dose of DOX and 67 dogs ordered the FidoCure-181 

recommended targeted therapy. Of the 67 dogs that received targeted therapy, 45 also received DOX, 182 

although relative timing of the two therapies is unknown. Ten dogs were missing data with respect to 183 
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the type of treatment given; one dog had an unknown DOX treatment status and treatment with 184 

FidoCure-recommended therapy could not be confirmed in all 10. Of the 67 dogs that ordered targeted 185 

therapies, 42 ordered more than one medication. Twenty-four dogs received only DOX, while 22 dogs 186 

received only targeted therapy. Eight dogs did not receive either DOX or targeted therapy.  187 

Treatment with DOX did not significantly improve survival time in the combined population (P = .7). 188 

Dogs that received at least one dose of doxorubicin had an MST of 193 days (range [95% CI], 36 - 762 189 

days [163 - 252 days]) while dogs that did not receive doxorubicin had an MST of 146 days (range [95% 190 

CI], 16 - 956 days [85 - 377 days]) (Figure 2B). Early survival subjectively appeared to be improved with 191 

doxorubicin chemotherapy, but this was not statistically significant (Wilcoxon test P = .2). 192 

Patients that received targeted therapy (plus or minus doxorubicin treatment) had a longer survival time 193 

compared to those that did not (MST of 250 days (range [95% CI], 55 - 762 days [173-333 days]) versus 194 

156 days (range [95% CI], 16 - 956 days [94-209 days]). This difference was significant on linear 195 

regression (PWilcoxon = .003, Padj = .007), with early survival improved, but was not significant for overall 196 

survival by Kaplan Meier (PKM = .2) or Cox Proportional Hazards model (PCox = .6) (Figure 2C).   197 

3.2 Genomic landscape 198 

Sequenced DNA libraries achieved a mean depth of 1704x overall (range, 74-8661). On average, 99.7% 199 

of reads aligned to the canine genome (range, 97% - 100%), with an average duplicate read percentage 200 

of 19% (range, 0% - 38%) (Supplementary Table 1). 201 

After variant calling and filtration, somatic mutations were identified in 72 cases, germline variants in 99 202 

cases, and both in 65 cases (Supplementary Figure 2, Supplementary Table 3). Two cases had no 203 

detected mutations in the 56 genes targeted by the Fidocure NGS panel, and one case had no mutations 204 

remaining after filtering (Supplementary Table 1). The mean number of somatic mutations per case, 205 

including cases with multiple mutations in the same gene, was 1.1 (range, 0 - 4). 206 
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Somatic mutations 207 

Three genes (TP53, NRAS, and PIK3CA) were somatically mutated in at least ten cases (Table 2). TP53 (n 208 

= 45 cases) was most commonly altered, with the majority of mutations present in the DNA-binding 209 

domain (Supplementary Figures 2-3, Supplementary Table 3). NRAS and PIK3CA were mutated in 20 and 210 

19 cases, respectively. Somatic mutations in PTEN and EGFR were identified in only 3 cases, but were 211 

included in the overall analysis due to prior published data demonstrating their importance in canine 212 

HSA. Somatic mutations in three genes were associated with higher numbers of total somatic mutations 213 

TP53 (Padj < .001), PIK3CA (Padj = < .001), and PTEN (Padj = .006). 214 

Germline variants 215 

Putative germline variants were identified in ten or more cases in 11 genes, including NOTCH1 (29 216 

cases), ROS1 (29 cases), KMT2C (26 cases), and MET (22 cases) (Table 3, Supplementary Table 3). Cases 217 

with germline EGFR variants were also included, despite falling below the cutoff (n = 6).  218 

Co-occurrence and mutual exclusivity of somatic and germline alterations 219 

We noted patterns of co-occurrence and mutual exclusivity in both somatic mutations and germline 220 

variants (Supplementary Table 4, Supplementary Figure 4). Somatic mutations in six pairs of genes had 221 

nominally significant patterns of co-occurrence or mutual exclusivity that were not significant after 222 

multiple testing correction. TP53 and PIK3CA mutations (co-occuring, P = .004, Padj = .06), TP53 and NRAS 223 

(mutually exclusive , P = .01, Padj = .14), PIK3CA and NRAS (mutually exclusive, P = 0.02, Padj = .2). 224 

Similarly, germline variants in KMT2C and CDKN2A (P = .02, Padj = .2) and PDGFRB and NOTCH1 (P = .03, 225 

Padj = .3), mutations tended to be mutually exclusive although again these were not significant after 226 

multiple testing correction. Both somatic and germline alterations in EGFR nominally tended to co-occur 227 

with germline variants in BRCA2 (P = .05, Padj = .4). 228 
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Survival 229 

None of the somatically mutated genes were associated with OST. However, germline variants in SETD2 230 

were associated with decreased OST in a Cox Proportional Hazards model (P = .001, Figure 4) and 231 

Kaplan-Meier survival analysis (PKM < .001, Figure 5), with an MST for mutated and non-mutated cases of 232 

84 days (range [95% CI], 45 - 250 days [59 days – NA]) and 207 days (range [95% CI], 16 - 956 days [165-233 

260 days]), respectively. Germline variants in NOTCH1 were also associated with decreased survival in a 234 

Cox Proportional Hazards model (Pcox = .04, Figure 4) and Kaplan-Meier survival analysis (PKM = .04, MST 235 

for mutated and non-mutated cases of 165 days (range [95% CI], 33 – 556 days [146 – 260 days]) and 236 

203 days (range [95% CI], 16 - 956 days [146 - 324 days]), respectively (Figure 5). 237 

Age 238 

Age at diagnosis was available for all dogs (mean, 9.7 years; range, 4 - 14 years) (Supplementary Table 3, 239 

Supplementary Figure 1B). The association between age at diagnosis and individual genes was evaluated 240 

using a univariate linear regression model. Somatic mutations in NRAS were significantly associated with 241 

younger age of diagnosis (unadjusted P < .001; Padj = .004), with a mean age of dogs carrying NRAS 242 

mutations 8 years (range, 4 - 13 years) vs. 10 years (range, 6 - 14 years) in those without NRAS 243 

mutations (Supplementary Figure 5). No other genes with somatic mutations were associated with age.  244 

Germline variants in KMT2C and SETD2 were nominally associated with increased age, but this was not 245 

significant after correction for multiple testing. Cases with KMT2C variants had a mean age of 11 years 246 

(range, 7 - 14) vs. 10 years in cases without (range, 4 - 14) (P = .007; Padj = .08). Cases with SETD2 variants 247 

had a mean age of 10.6 years (range, 7 - 14) vs. 9.4 years in cases without a variant (range, 4 - 14) (P = 248 

.04; Padj =  .3)(Supplementary Figure 5).  249 

Weight 250 
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Weights were available for all 109 dogs (mean = 29.0 kg, range = 4.7 - 59.2) (Supplementary Figure 1C). 251 

On univariate linear regression, mean weights were significantly different for dogs with somatic 252 

mutations in PIK3CA (Padj = .03) and TP53 (Padj = .03). In both cases, dogs carrying mutations tended to be 253 

larger than dogs without somatic mutations (PIK3CA: mean with mutation = 35.2 kg, mean without 254 

mutation = 27.7 kg; TP53:  mean with mutation = 32.3 kg, mean without mutation = 26.7 255 

(Supplementary Figure 6).  256 

Dogs carrying germline variants in SETD2 tended to be smaller than those without (mean weight with 257 

variant = 20 kg, mean weight without variant = 29.9 kg, P = .007), however this was not significant after 258 

multiple testing correction(Padj = .09) (Figure 5). 259 

Breed 260 

There were three breeds for which sample numbers were sufficient to evaluate the distribution of 261 

various variables: golden retrievers (n = 16), German shepherd dogs (n = 14), and Labrador retrievers (n 262 

= 14). The mean age at diagnosis differed significantly among these three breeds (P = .01, one way 263 

ANOVA test), with German shepherd dogs (mean age = 8.5 years) being younger than golden retrievers 264 

(mean age = 9.4 years) and Labrador retrievers (mean age = 10.6 years) being older (Figure 6).  A 265 

nominal difference in OST was also noted, with German shepherd dogs having a shorter OST (median, 266 

138 days; range, 16 - 514) and Labrador retrievers having a longer OST (median, 340 days; range, 36 - 267 

594) than golden retrievers (median, 179 days; range, 87 - 596), but this was not statistically significant 268 

(P = .07)(Figure 6). 269 

A significant association with breed was also found for germline variants in CDKN2A, with only German 270 

shepherds among the three breeds included in the analysis carrying variants in this gene (P < .001 ; Padj= 271 

.009, Supplementary Figure 7B). Nominally significant differences in breed distribution that were not 272 
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significant after correcting for multiple testing were noted in TP53 (P = .02; Padj = .08), ROS1 (P = .02; 273 

Padj= .07), FLT3 (P = .02; Padj= .07), and PDGFRB  (P = .03; Padj= .09)(Supplementary Figure 7B-E).  274 

4 DISCUSSION 275 

This study represents the largest exome sequencing study of primary canine splenic HSA to date, the 276 

first to link somatic mutations to patient characteristics such as age and size, and the first to link 277 

germline variants to patient outcome. Analysis of this data set confirms previously published data 278 

questioning the impact of doxorubicin on patient survival.16 Moreover, our findings suggest that 279 

treatment with targeted therapies may improve early survival. 280 

Clinical variables 281 

In general, survival times were observed to be longer in this study than those previously reported. Non-282 

treated patients had a median OST of approximately 5 months, while prior publications have reported 283 

survival times of 2-3 months for this population.16,38,39 Indeed, the dogs that received no treatment had a 284 

median OST comparable to a recent study comparing outcomes of dogs with HSA given carboplatin 285 

versus doxorubicin post-surgery (160 days and 139 days, respectively).4 This difference in OST may be 286 

influenced by immortal time bias40, as an unknown number of cases with more aggressive disease may 287 

have died before having the opportunity to enroll (or complete enrollment) in FidoCure. 288 

The survival benefit of DOX in this population appeared to be primarily during the early course of 289 

treatment, with an improved surviving fraction observed in the first 3-4 months after diagnosis, 290 

although this was not statistically significant. Our data supports a prior study, in which dogs with HSA 291 

that received DOX post-surgery did not have a significantly improved survival time across the entire 292 

follow-up period compared to those that did not receive doxorubicin, however a significantly higher 293 

proportion of treated patients did survive within the first 4 months after surgery.16 294 
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Patients that received targeted therapies recommended by FidoCure had a longer OST versus those that 295 

did not (MST 250 days vs. 156 days), which was statistically significant upon univariate linear regression 296 

analysis. When Kaplan-Meier analysis was employed, this difference was statistically significant only 297 

during the early period of treatment, as the survival curves for treated and untreated patients reached 298 

equivalence at 375 days.  Future prospective studies will be necessary to both identify targeted 299 

therapies best matched to the tumor genomic landscape, and to confirm benefit in the setting of single 300 

or multi-agent targeted therapy. 301 

Somatic mutations 302 

Common somatic mutations in this cohort - TP53 (41%, 30% - 93% previously reported), NRAS (18%, 0% - 303 

24% previously reported), PIK3CA (17%, 15% - 60% previously reported), and PTEN (3%, 0% - 10% 304 

previously reported) were present at similar frequencies to previous reports. 8-12 However, mutations in 305 

both TP53 and PIK3CA were observed near the lower end of their reported frequency in the literature.  306 

Our finding that TP53 and PIK3CA are mutated more frequently in larger dogs may offer a potential 307 

explanation of the decreased prevalence of these mutations in our cohort, which included dogs as small 308 

as 4 kg. 309 

We observed co-occurrence or mutually exclusive patterns of certain somatic mutations and germline 310 

variants, suggesting possible overlap in downstream effects. PIK3CA, PTEN, and NRAS mutations were 311 

mutually exclusive. TP53 mutations frequently co-occurred with PIK3CA/PTEN mutations, while being 312 

mutually exclusive with NRAS mutations. Mutations in PIK3CA and PTEN are expected to have similar 313 

consequences, as PIK3CA promotes signaling through the PI3K/AKT/mTOR pathway and PTEN is a 314 

negative regulator of this signaling.41-43 NRAS mutations activate the RAS/RAF/MEK/ERK pathway, which 315 

has also been implicated in neoplastic development14, but these have also been shown to activate PI3K 316 

signaling as a downstream effector.44,45  Furthermore, evidence suggests that knockdown of TP53 can 317 
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activate RAF/MEK/ERK independent of RAS, while RAS activation can inhibit TP53-mediated cell-cycle 318 

arrest.46  These data suggest the possibility that tumors with PIK3CA/PTEN mutations plus TP53 319 

mutation and tumors with NRAS mutations may be achieving similar downstream effects of 320 

RAF/MEK/ERK and PI3K activation and TP53 inhibition. 321 

Overall, the patterns of co-occurrence/mutual exclusivity of both somatic mutations and germline 322 

variants suggest that key pathway aberrations driving disease pathogenesis can be achieved through 323 

germline or somatic genetic alteration of particular combinations of genes.  Consequently, a more global 324 

view of both somatic and germline changes could be informative both for prognostication and therapy 325 

selection.  326 

Mutational burden 327 

Our finding that overall mutational burden is correlated with somatic mutations in TP53 replicates prior 328 

published work.47 PIK3CA and PTEN have not previously been linked to higher mutational burden, 329 

however, in this study, mutations in both genes tend to co-occur with TP53 mutations, potentially 330 

confounding the analysis. 331 

Germline background 332 

Due to the high prevalence of cancers within specific dog breeds, it is thought that many breeds carry 333 

fixed or high-frequency deleterious variants predisposing to cancer. Presumptive germline loci 334 

associated with HSA risk have been reported for golden retrievers.48 Many of the common germline 335 

alterations in this study fall into the RTK-RAS pathway, upstream of the MAPK pathway. The genomic 336 

profiles of canine HSA samples were previously found to have less enrichment in the MAPK pathway 337 

than human AS, suggesting a possible role of the germline background in altering MAPK signaling. Our 338 

findings highlight the potential role of germline background in the development of HSA in different 339 

breeds, and, importantly, in outcome. Variants in SETD2 and NOTCH1 were associated with decreased 340 
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OST. SETD2 is a known tumor suppressor gene encoding a histone methyltransferase, and decreased 341 

SETD2 protein expression or loss of function mutations have been implicated in tumor progression and 342 

poor prognosis in multiple human cancers, including gastric, pancreatic, lung, and renal cancers.49-52 343 

Mutations have also been recently identified in canine osteosarcoma.53,54  344 

The significant differences in age and suggestive differences in OST we observed between German 345 

Shepherds (which were younger and had shorter survival times), golden retrievers, and Labrador 346 

retrievers (which were older and had longer survival times) also point to the potential influence of the 347 

genetic background of these breeds. As germline CDKN2A variants were significantly more likely to occur 348 

in German Shepherds, it is possible that these variants contribute to underlying risk in this breed. 349 

CDKN2A is a known tumor-suppressor gene and frequent deletions and copy number losses have been 350 

documented in both radiation-induced AS and canine HSA.55 Because these three breeds have different 351 

average lifespans, it is difficult to ascertain whether German Shepherds (mean lifespan of 10.3 years) 352 

age more rapidly compared to Golden retrievers (mean lifespan 12 years) and Labrador retrievers (12.6 353 

years) 56-58, or if instead they age at the same rate, but their strong predisposition to HSA56-59 and 354 

tendency towards shorter OST depress the breed’s overall average survival. As golden retrievers and 355 

Labrador retrievers also have a high HSA risk, differences in genetic background and aging may be 356 

playing a role. 357 

Limitations 358 

In addition to the previously stated limitations of this study’s retrospective design, and the difficulty of 359 

interpreting OST due to immortal time bias, there were also limitations in the sequencing methods. 360 

Patient tumor samples were sequenced without matched normal tissues, making it impossible to 361 

definitively distinguish germline mutations from somatic mutations. In addition, the targeted panel of 56 362 

genes is fairly small, and we are unable to evaluate potential drivers not included in the panel, copy 363 
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number changes, or other structural variants. In addition, despite the large cohort size, we did not have 364 

power to evaluate the efficacy of individual targeted therapies or combinations of therapies. 365 

In conclusion, this study contributes significantly to our knowledge of the genomic landscape of primary 366 

canine splenic HSA, including impact of age, size, breed and genetic background may influence clinical 367 

presentation and outcome in this disease. Our findings also support the notion that the previously 368 

established standard of care cytotoxic chemotherapy (DOX) may not impact patient outcomes,  369 

providing a solid rationale for further research regarding the benefits of precision medicine in the 370 

setting of HSA.  Prospective work to refine matching of genomic landscapes  with appropriate targeted 371 

therapies in dogs may also facilitate improving outcomes of humans with AS.  372 
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6 TABLES AND FIGURES 

 

Table 1. Summary characteristics of the 109 dogs in the study, including age, weight, breed, stage, and 

number censored.  

Age (years) Median (range) 10 (4-14) 

Sex MC 59 

 MI 8 

 FS 42 

Weight (kg) Median (range) 29 (4.7-59.2) 

Breed Mixed breed 32 

 Golden retriever 16 

 German shepherd 14 

 Labrador retriever 14 

 Pit bull 3 

 Bichon Frise 2 

 Flat-coated retriever 2 

 Boxer 2 

 Australian shepherd 2 

 Other (1 each) 23 

Stage I/II 67 

 III 33 

 Unknown 9 

# Censored Alive 4 

 Lost to follow-up 9 
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Gene Cases Individual Mutations 
TP53 45 55 
NRAS 20 20 
PIK3CA 19 19 

 

Table 2. Summary of genes with somatic mutations in 10 or more cases, including total number of 

individual mutations per gene. 

Gene Cases Individual Variants 
NOTCH1 32 38 
ROS1 30 32 
KMT2C 28 32 
KMT2D 25 32 
MET 22 22 
BRCA2 21 26 
PDGFRB 21 23 
CDKN2A 17 18 
BRCA1 14 37 
FLT3 14 15 
PARP1 12 13 
SETD2 11 13 

 

Table 3. Summary of genes with germline variants in 10 or more cases, including total number of 

individual variants per gene. 
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Figure Legends 

1. Effect of clinical variables on survival. Forest plot of Cox Proportional Hazards model effects of 

multiple clinical variables on overall survival (OST). Dogs with detectable metastases at the time of 

diagnosis had a significantly shorter overall survival. 

2. Clinical variable survival curves. Kaplan-Meier survival curves comparing dogs (A) with or without 

metastases at time of presentation; (B) with and without doxorubicin therapy; (C) with and without 

targeted therapy. 

3. Effect of somatic mutations on survival. Forest plot of Cox Proportional Hazards model effects of the 

most commonly somatically mutated genes on OST. None had a significant effect.  

4. Effect of germline variants on survival. Forest plot of Cox Proportional Hazards model effects of the 

genes most commonly harboring germline variants on OST. Variants in SETD2 and NOTCH1 both were 

associated with significantly shorter OST. 

5. Germline variant survival curves. Kaplan-Meier curves comparing the survival of dogs with and 

without germline variants in (A) SETD2; and (B) NOTCH1. 

6. Breed effects. Box plots comparing (A) age and (B) OST in the three most common breeds in the 

cohort, golden retrievers (n = 16), German shepherd dogs (n = 14) and Labrador retrievers (n = 14). 
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