

Identification of genomic alterations with clinical impact in canine splenic hemangiosarcoma

Timothy Estabrooks¹, Anastasia Gurinovich², Jodie Pietruska³, Benjamin Lewis⁴, Garrett Harvey⁴, Gerald Post⁴, Lindsay Lambert⁴, Lucas Rodrigues⁴, Michelle E. White⁴, Christina Lopes⁴, Cheryl A. London^{1*}, Kate Megquier^{5*}

¹*Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA*

²*Tufts Medical Center, Boston, MA*

³*MassBio, Worcester, MA*

⁴*One Health Company, Palo Alto, CA*

⁵*Broad Institute of MIT and Harvard, Cambridge, MA*

*Authors contributed equally

Keywords: angiosarcoma, doxorubicin, genomics, hemangiosarcoma, precision medicine, targeted sequencing

Abbreviations: AS, angiosarcoma; CI, confidence interval; CT, computed tomography; HSA, hemangiosarcoma; MST, median survival time; NGS, next-generation sequencing; OST, overall survival time; WES, whole exome sequencing

Contact:

Kate Megquier

kmegq@broadinstitute.org

Acknowledgments: This study was partially supported by a grant from the PETCO Foundation. The authors acknowledge the support of the One Health Company in supplying patient data and writing of the materials and methods.

Conflict of Interest: CAL is a paid consultant for the One Health Company and a member of their Scientific Advisory; BL is a member of the One Health Company Board; KM has acted as an unpaid

Special Advisor to the One Health Company; GH, GP, LL, LR, MEW, and CL are full-time employees of the One Health Company.

Off-label antimicrobial use: Authors declare no off-label use of antimicrobials.

Institutional Animal Care and Use Committee (IACUC) or other approval declaration: Authors declare no IACUC or other approval was needed for exome sequencing of previously excised formalin-fixed paraffin-embedded tumor samples. These were obtained following histopathologic analysis of tumors post resection.

Human ethics approval declaration: Authors declare human ethics approval was not needed for this study.

1 **ABSTRACT**

2 Background - Canine hemangiosarcoma (HSA) is an aggressive cancer of endothelial cells associated with
3 short survival times. Understanding the genomic landscape of HSA is critical to developing more
4 effective therapeutic strategies.

5 Objectives - To determine the relationships between genomic and clinical features including treatment
6 and outcome in canine splenic HSA.

7 Animals – 109 dogs with primary splenic HSA treated by splenectomy that had tumor sequencing via the
8 FidoCure® Precision Medicine Platform targeted sequencing panel.

9 Methods – Patient signalment, weight, metastasis at diagnosis, treatment, and survival time were
10 retrospectively evaluated. The incidence of genomic alterations in individual genes and their relationship
11 to patient variables and outcome were assessed.

12 Results – Somatic mutations in *TP53* (n = 45), *NRAS* (n = 20), and *PIK3CA* (n = 19) were most common.

13 Survival was associated with metastases at diagnosis, germline variants in *SETD2* and *NOTCH1*, and
14 nominally with breed. Age at diagnosis was associated with *NRAS* mutations and breed. *TP53* and
15 *PIK3CA* mutations were found in larger dogs, germline *SETD2* variants in smaller dogs. Doxorubicin
16 (DOX) treatment did not significantly improve survival time, while targeted therapies had a significant
17 early survival benefit.

18 Conclusions and clinical importance – DOX treatment may provide limited clinical benefit for dogs with
19 splenic HSA, while targeted therapy may provide early survival benefit. Genetic signatures associated
20 with splenic HSA may be useful in guiding targeted therapy to improve outcomes. Germline variants,
21 age, size, and breed may be useful prognostic factors and provide insight into the genomic landscape of
22 the tumor.

23 **1 INTRODUCTION**

24 Hemangiosarcoma (HSA) is a common, aggressive cancer in dogs that arises from endothelial progenitor
25 cells, most frequently in the spleen.¹ Despite aggressive treatment, median survival times range from 4-
26 8 months due to a high metastatic rate and rapid tumor recurrence.² Unfortunately, patient outcomes
27 have not improved significantly in the past 30 years.^{3,4} In the era of precision medicine, understanding
28 the genomic landscape of HSA will likely facilitate identification and implementation of new, more
29 effective therapeutic strategies. This is particularly important given that canine HSA is a relevant large
30 animal comparative model for human angiosarcoma (AS), a cancer that bears histologic and clinical
31 similarities to canine HSA but occurs far less frequently (300-800 human cases/year compared to greater
32 than 25,000 cases/year in dogs).^{5,6} As with canine HSA, human AS exhibits an aggressive biologic
33 behavior including resistance to chemotherapy and the development of drug resistant metastasis,
34 resulting in a 5-year survival rate of only 26%.⁷ Consequently, validating precision medicine approaches
35 in canine HSA by leveraging its genomic landscape to guide therapy could provide critical new data
36 regarding therapeutic combinations that may be of benefit for the human disease.

37 Previous studies have performed whole exome sequencing (WES) and targeted next-generation
38 sequencing (NGS) of canine HSA tumors, finding potential driver mutations in *TP53*, *PIK3CA*, *NRAS*, and
39 *PTEN*, among other genes.⁸⁻¹² Loss-of-function mutations in the *TP53* tumor-suppressor gene were most
40 frequent across studies (29-93% of cases), as well as activating mutations of *PIK3CA* (14-60%) and *NRAS*
41 (4-24%).⁸⁻¹² In one paper, increased PI3K pathway signaling was demonstrated in cases with either
42 *PIK3CA* activating mutations or *PTEN* inactivating mutations, and increased MAPK/ERK pathway signaling
43 was found in cases with *NRAS* activating mutations.⁹ While both AS and HSA are genetically
44 heterogeneous, there are some similarities, including mutations in *TP53*, *PIK3CA* (most common in
45 primary breast AS¹³), *PTEN*, and *NRAS*^{14,15}, and MAPK/ERK and PI3K pathway activation.^{14,15}

46 Sequencing of patient tumors is increasingly being used to identify targetable mutations and match
47 patients to a “precision medicine” treatment. With mutation data and long-term follow-up, outcomes
48 of such precision therapies have provided important information regarding efficacy of individual and
49 combination treatment strategies for human cancer patients. In the current study, we leveraged
50 targeted NGS data and matched clinical annotations in a population of 109 dogs with splenic HSA to
51 assess associations between genomic features, clinical presentation, treatment regimens and outcome.
52 This study represents the largest cohort of patients with splenic HSA to have undergone genomic
53 interrogation, and the first to show a link between somatic variants and clinical variables such as age
54 and weight, in addition to an association between germline variants, breed, and overall survival.
55 Moreover, these data confirm prior published data questioning the efficacy of doxorubicin for the
56 treatment of splenic HSA.¹⁶

57 **2 MATERIALS AND METHODS**

58 **2.1 Case selection criteria**

59 Cases were enrolled retrospectively by reviewing medical records of dogs with splenic HSA for which the
60 splenic mass was submitted for NGS through the FidoCure Precision Medicine platform (One Health
61 Company, Palo Alto, CA). Dogs were included if they had undergone splenectomy to remove the tumor,
62 had a histologic diagnosis of HSA by a board certified veterinary anatomic pathologist, the splenic mass
63 was presumed to be the primary tumor site, and tumor samples had been submitted for FidoCure NGS.
64 Dogs were excluded if surgery to remove the splenic tumor was not performed or if the confirmed or
65 suspected primary tumor was in a non-splenic location (e.g., right auricle, cutaneous, subcutaneous,
66 retroperitoneal, etc.).

67 One hundred ten dogs with splenic HSA submitted for FidoCure analysis were identified. One dog was
68 excluded because it could not be verified that the spleen was the primary tumor site, leaving 109 dogs

69 for analysis. All but one dog had confirmed splenic HSA. The remaining dog had histopathology originally
70 reported as splenic sarcoma and additional IHC to identify HSA was ordered by the requesting
71 veterinarian. The mass was then submitted as HSA by the veterinarian, but the IHC results were not
72 available for us to review so the diagnosis was presumed.

73 **2.2 Data collection**

74 Case records were retrospectively reviewed. Data collected included age at diagnosis, dog breed, sex,
75 neuter status, weight, primary tumor site, presence and site of metastases, clinical stage, date of
76 diagnosis, and date of death or last follow-up, and whether the dog received doxorubicin and/or
77 targeted therapy. The presence and location of metastases at diagnosis was validated by review of
78 patient medical records including imaging reports, histopathology of sampled metastatic sites, and the
79 submitting veterinarian's interpretation of in-house imaging. Presence of metastasis was determined by
80 the submitting veterinarian via a variety of methods, including thoracic radiographs, abdominal
81 ultrasound, thoracic and/or abdominal computed tomography (CT), and/or exploratory surgery.
82 Metastasis was not confirmed by histopathology or cytology in all cases, but was often presumed based
83 on imaging findings. Full staging with thoracic and abdominal imaging could not be confirmed in all
84 cases, and in some cases the submitting veterinarian's interpretation of imaging was available, but not
85 the original imaging.

86 For purposes of treatment reporting, patients were considered to have been treated with doxorubicin
87 (DOX) if they were reported to have received at least one dose of DOX at any point in their treatment.
88 Targeted therapies were recommended by FidoCure based on the results of their NGS panel analysis of
89 potentially targetable mutations. When recommended, these therapies could be ordered directly from
90 FidoCure. Recommended therapies from FidoCure included rapamycin (an mTOR inhibitor), trametinib
91 (a MEK inhibitor), vorinostat (an HDAC inhibitor), and multiple tyrosine kinase inhibitors; primarily

92 toceranib, dasatinib, lapatinib, and imatinib. If patients ordered targeted therapies from FidoCure at any
93 point, this was noted and the medication used was recorded. Total number of DOX doses received,
94 targeted therapy doses received, and length of targeted therapy treatment could not be confirmed for
95 all cases. It was not always possible to verify whether patients received other treatments beyond
96 doxorubicin or FidoCure targeted therapies, such as other intravenous agents or metronomic
97 chemotherapy.

98 **2.3 Tumor sequencing**

99 Sequencing of splenic HSA samples was performed using the NGS panel from the FidoCure Precision
100 Medicine Platform targeting 56 individual genes (Supplementary Table 1). Tumor samples confirmed by
101 histopathology were obtained as formalin-fixed paraffin-embedded (FFPE) tissues submitted by the
102 clinic that had performed the splenectomy.

103 DNA was extracted from FFPE tissues using the Mag-Bind® FFPE DNA/RNA kit (Omega Bio-tek). DNA was
104 quantified using the Qubit dsDNA HS assay kit (Thermo Fisher), and 200 ng was used to prepare a DNA
105 sequencing library using the SureSelect Low Input Library (Agilent). Hybrid selection of the targeted
106 regions was performed using the SureSelect custom DNA Target Enrichment Probes and SureSelect XT
107 Hyb and Wash kit, following the manufacturer's instructions. The final libraries were quantified using
108 qPCR and pooled for sequencing. Samples were sequenced on Illumina MiSeq 2x150 or NovaSeq S4
109 2x150 sequencers to a target depth of approximately 500x. Sequencing reads were aligned to the
110 CanFam3.1 reference genome¹⁷ using bwa-mem (v0.7.12).¹⁸ Preprocessing was performed using Picard
111 Tools MarkDuplicates (<http://broadinstitute.github.io/picard>) and following the GATK¹⁹ (version 3.8.1)
112 best practices. Bamtools²⁰ was used to filter out reads with mapping quality less than five, or with ten or
113 more mismatches. Sequencing metrics are provided in Supplementary Table 2. Much of this sequencing
114 data was also included in a prior publication²¹ of a much larger set of tumor sequencing information for

115 a diverse set of canine cancers. However, the data associated with splenic HSA did not undergo
116 additional analysis for functional consequences of somatic mutations, recredentialling of the variant
117 calls, and association with clinical outcomes.

118 Single-nucleotide variants (SNVs) and insertions and deletions (indels) were identified by creating a
119 pileup file in SAMtools²² and calling variants using Varscan2²³, requiring passing variants to have
120 coverage > 10x, variant allele fraction (VAF) $\geq 1\%$, and minimum quality score of 20. Additional filtering
121 was performed to remove variants with VAF < 2% or > 95% (potential sequencing artifacts or
122 homozygous germline mutations), and variants located in repetitive regions²⁴ were filtered out.

123 Variants were phased using the tool WhatsHap²⁵, and variants co-occurring in the same read (within 150
124 base pairs) were filtered out as putative germline variants. SnpEff and SnpSift²⁶ were used to annotate
125 each variant and predict its functional impact. Variants with moderate or high impact were included in
126 downstream analysis.

127 Identified mutations were compared to known human mutations in the Catalog of Somatic Mutations in
128 Cancer (COSMIC, cancer.sanger.ac.uk)²⁷ to determine likelihood of being pathogenic. Due to the lack of a
129 matched normal germline sample in variant calling, we could not definitively distinguish between all
130 somatic mutations and germline variants. However, we annotated variants found in two catalogs of
131 germline variants from 722 canids²⁸ and from 591 dogs²⁹, as well as common (≥ 5 cases) variants with
132 VAF near 0.5 or 1 as putative germline variants in our cohort (Supplementary Table 3). Mutations
133 identified in < 5 cases that did not overlap a known human pathogenic mutation were flagged as
134 “unknown”. Variants remaining after filtering were annotated as somatic.

135 **2.4 Statistical analysis and generation of figures**

136 Overall survival time was defined as the time from HSA diagnosis to patient death or censoring. Patients
137 were censored if they were lost to follow-up or still alive at the time of data analysis. All patient deaths

138 were considered death from disease unless a clear, unrelated cause was confirmed. To identify any
139 important clinical variables associated with OST, we used univariate linear regression models for
140 continuous variables and one-way ANOVA tests for categorical variables. Survival function was
141 estimated using the Kaplan-Meier method³⁰ with median survival time (MST) and 95% confidence
142 intervals and differences in overall survival time (OST) between groups evaluated using the log-rank and
143 Wilcoxon signed-rank tests. A Cox Proportional Hazards model incorporating multiple clinical factors was
144 also created. Factors evaluated for prognostic significance using Kaplan-Meier survival analysis included
145 age at diagnosis, sex, weight, presence of metastasis at diagnosis, doxorubicin treatment, targeted
146 therapy treatment, and total number of somatic mutations.

147 We also looked at the relationship between various clinical features and individual genes altered by
148 somatic mutations or germline variants. We used linear regression models for continuous variables, such
149 as OST, age at diagnosis, weight, and total number of somatic mutations; logistic regression models for
150 categorical variables with two levels, such as presence of metastasis at diagnosis; and Fisher's exact
151 tests for categorical variables with more than two levels, such as breed and reproductive status. Cox
152 Proportional Hazards models containing the group of somatic mutations or germline variants were also
153 assessed.

154 All statistical analyses were performed using R software, version 4.1.2.³¹ Forest plots were created using
155 the survival³² and survminer³³ R packages. Oncoprint and mutual exclusivity analysis were done using
156 CBioportal's Oncoprinter.^{34,35} "Lollipop" plots of mutation positions were created using the tool Lollipops
157 v1.5.2.³⁶ Gene interaction plot was created using the maftools³⁷ package for R.

158 **3 RESULTS**

159 One hundred nine dogs were included in the study. Characteristics and descriptive statistics of this
160 cohort are listed in Table 1. The most common breed designation was mixed breed (n = 32), followed by

161 golden retriever (n = 16), German shepherd (n = 14), and Labrador retriever (n = 14). Males were slightly
162 overrepresented (62%), and most were neutered (93%), while all females were spayed. Complete
163 individual patient demographic and gene mutation data are listed in Supplementary Table 3.

164 **3.1 Clinical variables**

165 We examined the relationship between clinical variables, including age at diagnosis, sex and neuter
166 status, weight, presence of metastasis at diagnosis, and treatment with overall survival (OST). Univariate
167 and multivariate regression analyses were performed, along with cox proportional hazards models to
168 identify important factors (Figure 1).

169 *Progression free and overall survival*

170 Complete treatment information was available for 99 dogs. Outcome was available for 100 dogs, with
171 nine lost to follow-up or still alive at the time of data collection. The MST of all patients was 166 days
172 (range, 16-956 days) (Supplementary Figure 1A). Ninety-six dogs were dead of disease at the time of
173 data collection, while four were still alive and nine were lost to follow-up. Age at diagnosis, weight, total
174 number of somatic mutations, and sex/neuter status had no significant effect on OST (Figure 1).

175 Thirty-three dogs had confirmed or presumed metastasis, with the liver (n = 25) and omentum (n = 4)
176 being the most frequent sites of metastasis. Nine dogs could not be classified because data regarding
177 metastasis at diagnosis was not available. Dogs with metastasis at diagnosis had significantly shorter
178 survival compared to those without metastasis ($P = < .001$), with an MST of 120 days (range [95% CI], 16-
179 596 days [87-156 days]) versus 252 days (range [95% CI], 36-956 days [207-365 days]) respectively
180 (Figure 2A).

181 Following splenectomy, 73 dogs received at least one dose of DOX and 67 dogs ordered the FidoCure-
182 recommended targeted therapy. Of the 67 dogs that received targeted therapy, 45 also received DOX,
183 although relative timing of the two therapies is unknown. Ten dogs were missing data with respect to

184 the type of treatment given; one dog had an unknown DOX treatment status and treatment with
185 FidoCure-recommended therapy could not be confirmed in all 10. Of the 67 dogs that ordered targeted
186 therapies, 42 ordered more than one medication. Twenty-four dogs received only DOX, while 22 dogs
187 received only targeted therapy. Eight dogs did not receive either DOX or targeted therapy.

188 Treatment with DOX did not significantly improve survival time in the combined population ($P = .7$).
189 Dogs that received at least one dose of doxorubicin had an MST of 193 days (range [95% CI], 36 - 762
190 days [163 - 252 days]) while dogs that did not receive doxorubicin had an MST of 146 days (range [95%
191 CI], 16 - 956 days [85 - 377 days]) (Figure 2B). Early survival subjectively appeared to be improved with
192 doxorubicin chemotherapy, but this was not statistically significant (Wilcoxon test $P = .2$).

193 Patients that received targeted therapy (plus or minus doxorubicin treatment) had a longer survival time
194 compared to those that did not (MST of 250 days (range [95% CI], 55 - 762 days [173-333 days]) versus
195 156 days (range [95% CI], 16 - 956 days [94-209 days])). This difference was significant on linear
196 regression ($P_{Wilcoxon} = .003$, $P_{adj} = .007$), with early survival improved, but was not significant for overall
197 survival by Kaplan Meier ($P_{KM} = .2$) or Cox Proportional Hazards model ($P_{Cox} = .6$) (Figure 2C).

198 **3.2 Genomic landscape**

199 Sequenced DNA libraries achieved a mean depth of 1704x overall (range, 74-8661). On average, 99.7%
200 of reads aligned to the canine genome (range, 97% - 100%), with an average duplicate read percentage
201 of 19% (range, 0% - 38%) (Supplementary Table 1).

202 After variant calling and filtration, somatic mutations were identified in 72 cases, germline variants in 99
203 cases, and both in 65 cases (Supplementary Figure 2, Supplementary Table 3). Two cases had no
204 detected mutations in the 56 genes targeted by the Fidocure NGS panel, and one case had no mutations
205 remaining after filtering (Supplementary Table 1). The mean number of somatic mutations per case,
206 including cases with multiple mutations in the same gene, was 1.1 (range, 0 - 4).

207 *Somatic mutations*

208 Three genes (*TP53*, *NRAS*, and *PIK3CA*) were somatically mutated in at least ten cases (Table 2). *TP53* (n
209 = 45 cases) was most commonly altered, with the majority of mutations present in the DNA-binding
210 domain (Supplementary Figures 2-3, Supplementary Table 3). *NRAS* and *PIK3CA* were mutated in 20 and
211 19 cases, respectively. Somatic mutations in *PTEN* and *EGFR* were identified in only 3 cases, but were
212 included in the overall analysis due to prior published data demonstrating their importance in canine
213 HSA. Somatic mutations in three genes were associated with higher numbers of total somatic mutations
214 (*TP53* ($P_{adj} < .001$), *PIK3CA* ($P_{adj} = < .001$), and *PTEN* ($P_{adj} = .006$)).

215 *Germline variants*

216 Putative germline variants were identified in ten or more cases in 11 genes, including *NOTCH1* (29
217 cases), *ROS1* (29 cases), *KMT2C* (26 cases), and *MET* (22 cases) (Table 3, Supplementary Table 3). Cases
218 with germline *EGFR* variants were also included, despite falling below the cutoff ($n = 6$).

219 *Co-occurrence and mutual exclusivity of somatic and germline alterations*

220 We noted patterns of co-occurrence and mutual exclusivity in both somatic mutations and germline
221 variants (Supplementary Table 4, Supplementary Figure 4). Somatic mutations in six pairs of genes had
222 nominally significant patterns of co-occurrence or mutual exclusivity that were not significant after
223 multiple testing correction. *TP53* and *PIK3CA* mutations (co-occurring, $P = .004$, $P_{adj} = .06$), *TP53* and *NRAS*
224 (mutually exclusive, $P = .01$, $P_{adj} = .14$), *PIK3CA* and *NRAS* (mutually exclusive, $P = 0.02$, $P_{adj} = .2$).
225 Similarly, germline variants in *KMT2C* and *CDKN2A* ($P = .02$, $P_{adj} = .2$) and *PDGFRB* and *NOTCH1* ($P = .03$,
226 $P_{adj} = .3$), mutations tended to be mutually exclusive although again these were not significant after
227 multiple testing correction. Both somatic and germline alterations in *EGFR* nominally tended to co-occur
228 with germline variants in *BRCA2* ($P = .05$, $P_{adj} = .4$).

229 *Survival*

230 None of the somatically mutated genes were associated with OST. However, germline variants in *SETD2*
231 were associated with decreased OST in a Cox Proportional Hazards model ($P = .001$, Figure 4) and
232 Kaplan-Meier survival analysis ($P_{KM} < .001$, Figure 5), with an MST for mutated and non-mutated cases of
233 84 days (range [95% CI], 45 - 250 days [59 days – NA]) and 207 days (range [95% CI], 16 - 956 days [165-
234 260 days]), respectively. Germline variants in *NOTCH1* were also associated with decreased survival in a
235 Cox Proportional Hazards model ($P_{cox} = .04$, Figure 4) and Kaplan-Meier survival analysis ($P_{KM} = .04$, MST
236 for mutated and non-mutated cases of 165 days (range [95% CI], 33 – 556 days [146 – 260 days]) and
237 203 days (range [95% CI], 16 - 956 days [146 - 324 days]), respectively (Figure 5).

238 *Age*

239 Age at diagnosis was available for all dogs (mean, 9.7 years; range, 4 - 14 years) (Supplementary Table 3,
240 Supplementary Figure 1B). The association between age at diagnosis and individual genes was evaluated
241 using a univariate linear regression model. Somatic mutations in *NRAS* were significantly associated with
242 younger age of diagnosis (unadjusted $P < .001$; $P_{adj} = .004$), with a mean age of dogs carrying *NRAS*
243 mutations 8 years (range, 4 - 13 years) vs. 10 years (range, 6 - 14 years) in those without *NRAS*
244 mutations (Supplementary Figure 5). No other genes with somatic mutations were associated with age.

245 Germline variants in *KMT2C* and *SETD2* were nominally associated with increased age, but this was not
246 significant after correction for multiple testing. Cases with *KMT2C* variants had a mean age of 11 years
247 (range, 7 - 14) vs. 10 years in cases without (range, 4 - 14) ($P = .007$; $P_{adj} = .08$). Cases with *SETD2* variants
248 had a mean age of 10.6 years (range, 7 - 14) vs. 9.4 years in cases without a variant (range, 4 - 14) ($P =$
249 $.04$; $P_{adj} = .3$)(Supplementary Figure 5).

250 *Weight*

251 Weights were available for all 109 dogs (mean = 29.0 kg, range = 4.7 - 59.2) (Supplementary Figure 1C).

252 On univariate linear regression, mean weights were significantly different for dogs with somatic

253 mutations in *PIK3CA* ($P_{adj} = .03$) and *TP53* ($P_{adj} = .03$). In both cases, dogs carrying mutations tended to be

254 larger than dogs without somatic mutations (*PIK3CA*: mean with mutation = 35.2 kg, mean without

255 mutation = 27.7 kg; *TP53*: mean with mutation = 32.3 kg, mean without mutation = 26.7

256 (Supplementary Figure 6).

257 Dogs carrying germline variants in *SETD2* tended to be smaller than those without (mean weight with

258 variant = 20 kg, mean weight without variant = 29.9 kg, $P = .007$), however this was not significant after

259 multiple testing correction($P_{adj} = .09$) (Figure 5).

260 *Breed*

261 There were three breeds for which sample numbers were sufficient to evaluate the distribution of

262 various variables: golden retrievers ($n = 16$), German shepherd dogs ($n = 14$), and Labrador retrievers (n

263 = 14). The mean age at diagnosis differed significantly among these three breeds ($P = .01$, one way

264 ANOVA test), with German shepherd dogs (mean age = 8.5 years) being younger than golden retrievers

265 (mean age = 9.4 years) and Labrador retrievers (mean age = 10.6 years) being older (Figure 6). A

266 nominal difference in OST was also noted, with German shepherd dogs having a shorter OST (median,

267 138 days; range, 16 - 514) and Labrador retrievers having a longer OST (median, 340 days; range, 36 -

268 594) than golden retrievers (median, 179 days; range, 87 - 596), but this was not statistically significant

269 ($P = .07$)(Figure 6).

270 A significant association with breed was also found for germline variants in *CDKN2A*, with only German

271 shepherds among the three breeds included in the analysis carrying variants in this gene ($P < .001$; $P_{adj} =$

272 .009, Supplementary Figure 7B). Nominally significant differences in breed distribution that were not

273 significant after correcting for multiple testing were noted in *TP53* ($P = .02$; $P_{adj} = .08$), *ROS1* ($P = .02$;
274 $P_{adj} = .07$), *FLT3* ($P = .02$; $P_{adj} = .07$), and *PDGFRB* ($P = .03$; $P_{adj} = .09$)(Supplementary Figure 7B-E).

275 **4 DISCUSSION**

276 This study represents the largest exome sequencing study of primary canine splenic HSA to date, the
277 first to link somatic mutations to patient characteristics such as age and size, and the first to link
278 germline variants to patient outcome. Analysis of this data set confirms previously published data
279 questioning the impact of doxorubicin on patient survival.¹⁶ Moreover, our findings suggest that
280 treatment with targeted therapies may improve early survival.

281 *Clinical variables*

282 In general, survival times were observed to be longer in this study than those previously reported. Non-
283 treated patients had a median OST of approximately 5 months, while prior publications have reported
284 survival times of 2-3 months for this population.^{16,38,39} Indeed, the dogs that received no treatment had a
285 median OST comparable to a recent study comparing outcomes of dogs with HSA given carboplatin
286 versus doxorubicin post-surgery (160 days and 139 days, respectively).⁴ This difference in OST may be
287 influenced by immortal time bias⁴⁰, as an unknown number of cases with more aggressive disease may
288 have died before having the opportunity to enroll (or complete enrollment) in FidoCure.

289 The survival benefit of DOX in this population appeared to be primarily during the early course of
290 treatment, with an improved surviving fraction observed in the first 3-4 months after diagnosis,
291 although this was not statistically significant. Our data supports a prior study, in which dogs with HSA
292 that received DOX post-surgery did not have a significantly improved survival time across the entire
293 follow-up period compared to those that did not receive doxorubicin, however a significantly higher
294 proportion of treated patients did survive within the first 4 months after surgery.¹⁶

295 Patients that received targeted therapies recommended by FidoCure had a longer OST versus those that
296 did not (MST 250 days vs. 156 days), which was statistically significant upon univariate linear regression
297 analysis. When Kaplan-Meier analysis was employed, this difference was statistically significant only
298 during the early period of treatment, as the survival curves for treated and untreated patients reached
299 equivalence at 375 days. Future prospective studies will be necessary to both identify targeted
300 therapies best matched to the tumor genomic landscape, and to confirm benefit in the setting of single
301 or multi-agent targeted therapy.

302 *Somatic mutations*

303 Common somatic mutations in this cohort - *TP53* (41%, 30% - 93% previously reported), *NRAS* (18%, 0% -
304 24% previously reported), *PIK3CA* (17%, 15% - 60% previously reported), and *PTEN* (3%, 0% - 10%
305 previously reported) were present at similar frequencies to previous reports.⁸⁻¹² However, mutations in
306 both *TP53* and *PIK3CA* were observed near the lower end of their reported frequency in the literature.
307 Our finding that *TP53* and *PIK3CA* are mutated more frequently in larger dogs may offer a potential
308 explanation of the decreased prevalence of these mutations in our cohort, which included dogs as small
309 as 4 kg.

310 We observed co-occurrence or mutually exclusive patterns of certain somatic mutations and germline
311 variants, suggesting possible overlap in downstream effects. *PIK3CA*, *PTEN*, and *NRAS* mutations were
312 mutually exclusive. *TP53* mutations frequently co-occurred with *PIK3CA/PTEN* mutations, while being
313 mutually exclusive with *NRAS* mutations. Mutations in *PIK3CA* and *PTEN* are expected to have similar
314 consequences, as *PIK3CA* promotes signaling through the PI3K/AKT/mTOR pathway and *PTEN* is a
315 negative regulator of this signaling.⁴¹⁻⁴³ *NRAS* mutations activate the RAS/RAF/MEK/ERK pathway, which
316 has also been implicated in neoplastic development¹⁴, but these have also been shown to activate PI3K
317 signaling as a downstream effector.^{44,45} Furthermore, evidence suggests that knockdown of *TP53* can

318 activate RAF/MEK/ERK independent of RAS, while RAS activation can inhibit TP53-mediated cell-cycle

319 arrest.⁴⁶ These data suggest the possibility that tumors with *PIK3CA/PTEN* mutations plus *TP53*

320 mutation and tumors with *NRAS* mutations may be achieving similar downstream effects of

321 RAF/MEK/ERK and PI3K activation and TP53 inhibition.

322 Overall, the patterns of co-occurrence/mutual exclusivity of both somatic mutations and germline

323 variants suggest that key pathway aberrations driving disease pathogenesis can be achieved through

324 germline or somatic genetic alteration of particular combinations of genes. Consequently, a more global

325 view of both somatic and germline changes could be informative both for prognostication and therapy

326 selection.

327 *Mutational burden*

328 Our finding that overall mutational burden is correlated with somatic mutations in *TP53* replicates prior

329 published work.⁴⁷ *PIK3CA* and *PTEN* have not previously been linked to higher mutational burden,

330 however, in this study, mutations in both genes tend to co-occur with *TP53* mutations, potentially

331 confounding the analysis.

332 *Germline background*

333 Due to the high prevalence of cancers within specific dog breeds, it is thought that many breeds carry

334 fixed or high-frequency deleterious variants predisposing to cancer. Presumptive germline loci

335 associated with HSA risk have been reported for golden retrievers.⁴⁸ Many of the common germline

336 alterations in this study fall into the RTK-RAS pathway, upstream of the MAPK pathway. The genomic

337 profiles of canine HSA samples were previously found to have less enrichment in the MAPK pathway

338 than human AS, suggesting a possible role of the germline background in altering MAPK signaling. Our

339 findings highlight the potential role of germline background in the development of HSA in different

340 breeds, and, importantly, in outcome. Variants in *SETD2* and *NOTCH1* were associated with decreased

341 OST. *SETD2* is a known tumor suppressor gene encoding a histone methyltransferase, and decreased
342 *SETD2* protein expression or loss of function mutations have been implicated in tumor progression and
343 poor prognosis in multiple human cancers, including gastric, pancreatic, lung, and renal cancers.⁴⁹⁻⁵²
344 Mutations have also been recently identified in canine osteosarcoma.^{53,54}

345 The significant differences in age and suggestive differences in OST we observed between German
346 Shepherds (which were younger and had shorter survival times), golden retrievers, and Labrador
347 retrievers (which were older and had longer survival times) also point to the potential influence of the
348 genetic background of these breeds. As germline *CDKN2A* variants were significantly more likely to occur
349 in German Shepherds, it is possible that these variants contribute to underlying risk in this breed.
350 *CDKN2A* is a known tumor-suppressor gene and frequent deletions and copy number losses have been
351 documented in both radiation-induced AS and canine HSA.⁵⁵ Because these three breeds have different
352 average lifespans, it is difficult to ascertain whether German Shepherds (mean lifespan of 10.3 years)
353 age more rapidly compared to Golden retrievers (mean lifespan 12 years) and Labrador retrievers (12.6
354 years)⁵⁶⁻⁵⁸, or if instead they age at the same rate, but their strong predisposition to HSA⁵⁶⁻⁵⁹ and
355 tendency towards shorter OST depress the breed's overall average survival. As golden retrievers and
356 Labrador retrievers also have a high HSA risk, differences in genetic background and aging may be
357 playing a role.

358 *Limitations*

359 In addition to the previously stated limitations of this study's retrospective design, and the difficulty of
360 interpreting OST due to immortal time bias, there were also limitations in the sequencing methods.
361 Patient tumor samples were sequenced without matched normal tissues, making it impossible to
362 definitively distinguish germline mutations from somatic mutations. In addition, the targeted panel of 56
363 genes is fairly small, and we are unable to evaluate potential drivers not included in the panel, copy

364 number changes, or other structural variants. In addition, despite the large cohort size, we did not have
365 power to evaluate the efficacy of individual targeted therapies or combinations of therapies.

366 In conclusion, this study contributes significantly to our knowledge of the genomic landscape of primary
367 canine splenic HSA, including impact of age, size, breed and genetic background may influence clinical
368 presentation and outcome in this disease. Our findings also support the notion that the previously
369 established standard of care cytotoxic chemotherapy (DOX) may not impact patient outcomes,
370 providing a solid rationale for further research regarding the benefits of precision medicine in the
371 setting of HSA. Prospective work to refine matching of genomic landscapes with appropriate targeted
372 therapies in dogs may also facilitate improving outcomes of humans with AS.

5 REFERENCES

373 1. Vail DM. *Withrow and MacEwen's small animal clinical oncology*. Sixth edition. ed. Edinburgh ; New
374 York: Elsevier, 2020.

375 2. Griffin MA, Culp WTN, Rebhun RB. Canine and feline haemangiosarcoma. *Vet Rec* 2021;189:e585.

376 3. Hammer AS, Couto CG, Filippi J, et al. Efficacy and toxicity of VAC chemotherapy (vincristine,
377 doxorubicin, and cyclophosphamide) in dogs with hemangiosarcoma. *J Vet Intern Med* 1991;5:160-166.

378 4. Faulhaber EA, Janik E, Thamm DH. Adjuvant carboplatin for treatment of splenic hemangiosarcoma in
379 dogs: Retrospective evaluation of 18 cases (2011-2016) and comparison with doxorubicin-based
380 chemotherapy. *Journal of Veterinary Internal Medicine* 2021;35:1929-1934.

381 5. Tamburini BA, Trapp S, Phang TL, et al. Gene expression profiles of sporadic canine hemangiosarcoma
382 are uniquely associated with breed. *PLoS One* 2009;4:e5549.

383 6. Lahat G, Dhuka AR, Hallevi H, et al. Angiosarcoma: clinical and molecular insights. *Ann Surg*
384 2010;251:1098-1106.

385 7. Zhang C, Xu G, Liu Z, et al. Epidemiology, tumor characteristics and survival in patients with
386 angiosarcoma in the United States: a population-based study of 4537 cases. *Jpn J Clin Oncol*
387 2019;49:1092-1099.

388 8. Megquier K, Turner-Maier J, Swofford R, et al. Comparative Genomics Reveals Shared Mutational
389 Landscape in Canine Hemangiosarcoma and Human Angiosarcoma. *Molecular Cancer Research*
390 2019;17:2410-2421.

391 9. Wang G, Wu M, Durham AC, et al. Molecular subtypes in canine hemangiosarcoma reveal similarities
392 with human angiosarcoma. *PLOS ONE* 2020;15:e0229728.

393 10. Wang G, Wu M, Maloneyhuss MA, et al. Actionable mutations in canine hemangiosarcoma. *PLOS*
394 *ONE* 2017;12:e0188667.

395 11. Wong K, Ludwig L, Krijgsman O, et al. Comparison of the oncogenomic landscape of canine and feline
396 hemangiosarcoma shows novel parallels with human angiosarcoma. *Disease Models & Mechanisms*
397 2021;14.

398 12. Wong S, Ehrhart EJ, Stewart S, et al. Genomic landscapes of canine splenic angiosarcoma
399 (hemangiosarcoma) contain extensive heterogeneity within and between patients. *PLoS One*
400 2022;17:e0264986.

401 13. Painter CA, Jain E, Tomson BN, et al. The Angiosarcoma Project: enabling genomic and clinical
402 discoveries in a rare cancer through patient-partnered research. *Nature Medicine* 2020;26:181-187.

403 14. Wagner MJ, Lyons YA, Siedel JH, et al. Combined VEGFR and MAPK pathway inhibition in
404 angiosarcoma. *Sci Rep* 2021;11:9362.

405 15. Italiano A, Chen CL, Thomas R, et al. Alterations of the p53 and PIK3CA/AKT/mTOR pathways in
406 angiosarcomas: a pattern distinct from other sarcomas with complex genomics. *Cancer* 2012;118:5878-
407 5887.

408 16. Wendelburg KM, Price LL, Burgess KE, et al. Survival time of dogs with splenic hemangiosarcoma
409 treated by splenectomy with or without adjuvant chemotherapy: 208 cases (2001–2012). *Journal of the*
410 *American Veterinary Medical Association* 2015;247:393-403.

411 17. Hoeppner MP, Lundquist A, Pirun M, et al. An improved canine genome and a comprehensive
412 catalogue of coding genes and non-coding transcripts. *PLoS One* 2014;9:e91172.

413 18. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM,
414 2013;arXiv:1303.3997.

415 19. Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls:
416 the Genome Analysis Toolkit best practices pipeline. *Curr Protoc Bioinformatics* 2013;43:11 10 11-11 10
417 33.

418 20. Barnett DW, Garrison EK, Quinlan AR, et al. BamTools: a C++ API and toolkit for analyzing and
419 managing BAM files. *Bioinformatics* 2011;27:1691-1692.

420 21. Rodrigues L, Watson J, Feng Y, et al. Shared hotspot mutations in spontaneously arising cancers
421 position dog as an unparalleled comparative model for precision therapeutics. *bioRxiv*
422 2021:2021.2010.2022.465469.

423 22. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population
424 genetical parameter estimation from sequencing data. *Bioinformatics* 2011;27:2987-2993.

425 23. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: somatic mutation and copy number alteration
426 discovery in cancer by exome sequencing. *Genome Res* 2012;22:568-576.

427 24. Smit AHA, Hubley R, Green P. RepeatMasker Open-3.0. 1996-2010; <http://www.repeatmasker.org>.

428 25. Martin M, Patterson M, Garg S, et al. WhatsHap: fast and accurate read-based phasing. *bioRxiv*
429 2016:085050.

430 26. Cingolani P, Patel VM, Coon M, et al. Using *Drosophila melanogaster* as a Model for Genotoxic
431 Chemical Mutational Studies with a New Program, SnpSift. *Front Genet* 2012;3:35.

432 27. Tate JG, Bamford S, Jubb HC, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. *Nucleic
433 Acids Research* 2019;47:D941-D947.

434 28. Plassais J, Kim J, Davis BW, et al. Whole genome sequencing of canids reveals genomic regions under
435 selection and variants influencing morphology. *Nat Commun* 2019;10:1489.

436 29. High quality variant calls from multiple dog genome project - Run2.
<https://www.ebi.ac.uk/eva/?eva-study=PRJEB32865>.

438 30. Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observations. *Journal of the
439 American Statistical Association* 1958;53:457-481.

440 31. R: A language and environment for statistical computing: R Foundation for Statistical Computing,
441 Vienna, Austria, 2021.

442 32. Therneau T. A Package for Survival Analysis in R. R package version 3.3-1, 2022.

443 33. Kassambara A, Kosinski M, Biecek P. survminer: Drawing Survival Curves using 'ggplot2'. R package
444 version 0.4.9, 2021.

445 34. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring
446 multidimensional cancer genomics data. *Cancer Discov* 2012;2:401-404.

447 35. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical
448 profiles using the cBioPortal. *Sci Signal* 2013;6:pl1.

449 36. Jay JJ, Brouwer C. Lollipops in the Clinic: Information Dense Mutation Plots for Precision Medicine.
450 *PLoS One* 2016;11:e0160519.

451 37. Mayakonda A, Lin DC, Assenov Y, et al. Maftools: efficient and comprehensive analysis of somatic
452 variants in cancer. *Genome Res* 2018;28:1747-1756.

453 38. Wood CA, Moore AS, Gliatto JM, et al. Prognosis for dogs with stage I or II splenic hemangiosarcoma
454 treated by splenectomy alone: 32 cases (1991-1993). *J Am Anim Hosp Assoc* 1998;34:417-421.

455 39. Batschinski K, Nobre A, Vargas-Mendez E, et al. Canine visceral hemangiosarcoma treated with
456 surgery alone or surgery and doxorubicin: 37 cases (2005-2014). *Can Vet J* 2018;59:967-972.

457 40. Yadav K, Lewis RJ. Immortal Time Bias in Observational Studies. *JAMA* 2021;325:686-687.

458 41. Chen Y-T, Tan KA, Pang LY, et al. The class I PI3K/Akt pathway is critical for cancer cell survival in dogs
459 and offers an opportunity for therapeutic intervention. *BMC Veterinary Research* 2012;8:73.

460 42. Adachi M, Hoshino Y, Izumi Y, et al. Effects of inhibitors of vascular endothelial growth factor
461 receptor 2 and downstream pathways of receptor tyrosine kinases involving phosphatidylinositol 3-
462 kinase/Akt/mammalian target of rapamycin or mitogen-activated protein kinase in canine
463 hemangiosarcoma cell lines. *Can J Vet Res* 2016;80:209-216.

464 43. Dickerson EB, Thomas R, Fosmire SP, et al. Mutations of Phosphatase and Tensin Homolog Deleted
465 from Chromosome 10 in Canine Hemangiosarcoma. *Veterinary Pathology* 2005;42:618-632.

466 44. Castellano E, Downward J. RAS Interaction with PI3K: More Than Just Another Effector Pathway.
467 *Genes Cancer* 2011;2:261-274.

468 45. Posch C, Moslehi H, Feeney L, et al. Combined targeting of MEK and PI3K/mTOR effector pathways is
469 necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. *Proc Natl Acad Sci U S A*
470 2013;110:4015-4020.

471 46. Drosten M, Sum EY, Lechuga CG, et al. Loss of p53 induces cell proliferation via Ras-independent
472 activation of the Raf/Mek/Erk signaling pathway. *Proc Natl Acad Sci U S A* 2014;111:15155-15160.

473 47. Alsaihati BA, Ho K-L, Watson J, et al. Canine tumor mutational burden is correlated with TP53
474 mutation across tumor types and breeds. *Nature Communications* 2021;12.

475 48. Tonomura N, Elvers I, Thomas R, et al. Genome-wide Association Study Identifies Shared Risk Loci
476 Common to Two Malignancies in Golden Retrievers. *PLOS Genetics* 2015;11:e1004922.

477 49. Chen R, Zhao W-Q, Fang C, et al. Histone methyltransferase SETD2: a potential tumor suppressor in
478 solid cancers. *Journal of Cancer* 2020;11:3349-3356.

479 50. Chen Z, Raghunundun C, Chen W, et al. SETD2 indicates favourable prognosis in gastric cancer and
480 suppresses cancer cell proliferation, migration, and invasion. *Biochem Biophys Res Commun*
481 2018;498:579-585.

482 51. Lu M, Zhao B, Liu M, et al. Pan-cancer analysis of SETD2 mutation and its association with the
483 efficacy of immunotherapy. *npj Precision Oncology* 2021;5.

484 52. Niu N, Lu P, Yang Y, et al. Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and
485 epithelia-mesenchymal transition during pancreatic carcinogenesis. *Gut* 2020;69:715-726.

486 53. Gardner HL, Sivaprakasam K, Briones N, et al. Canine osteosarcoma genome sequencing identifies
487 recurrent mutations in DMD and the histone methyltransferase gene SETD2. *Commun Biol* 2019;2:266.

488 54. Sakthikumar S, Elvers I, Kim J, et al. SETD2 is recurrently mutated in whole-exome sequenced canine
489 osteosarcoma. *Cancer Research* 2018;canres.3558.3201.

490 55. Jones P, Chase K, Martin A, et al. Single-nucleotide-polymorphism-based association mapping of dog
491 stereotypes. *Genetics* 2008;179:1033-1044.

492 56. Carnio A, Eleni C, Cocomelli C, et al. Evaluation of intrinsic and extrinsic risk factors for dog visceral
493 hemangiosarcoma: A retrospective case-control study register-based in Lazio region, Italy. *Prev Vet Med*
494 2020;181:105074.

495 57. Davies O, Taylor AJ. Refining the "double two-thirds" rule: Genotype-based breed grouping and
496 clinical presentation help predict the diagnosis of canine splenic mass lesions in 288 dogs. *Vet Comp
497 Oncol* 2020;18:548-558.

498 58. Yamamoto S, Hoshi K, Hirakawa A, et al. Epidemiological, clinical and pathological features of
499 primary cardiac hemangiosarcoma in dogs: a review of 51 cases. *J Vet Med Sci* 2013;75:1433-1441.

500 59. Dobson JM. Breed-predispositions to cancer in pedigree dogs. *ISRN Vet Sci* 2013;2013:941275.

6 TABLES AND FIGURES

Age (years)	Median (range)	10 (4-14)
Sex	MC	59
	MI	8
	FS	42
Weight (kg)	Median (range)	29 (4.7-59.2)
Breed	Mixed breed	32
	Golden retriever	16
	German shepherd	14
	Labrador retriever	14
	Pit bull	3
	Bichon Frise	2
	Flat-coated retriever	2
	Boxer	2
	Australian shepherd	2
	Other (1 each)	23
Stage	I/II	67
	III	33
	Unknown	9
# Censored	Alive	4
	Lost to follow-up	9

Table 1. Summary characteristics of the 109 dogs in the study, including age, weight, breed, stage, and number censored.

Gene	Cases	Individual Mutations
<i>TP53</i>	45	55
<i>NRAS</i>	20	20
<i>PIK3CA</i>	19	19

Table 2. Summary of genes with somatic mutations in 10 or more cases, including total number of individual mutations per gene.

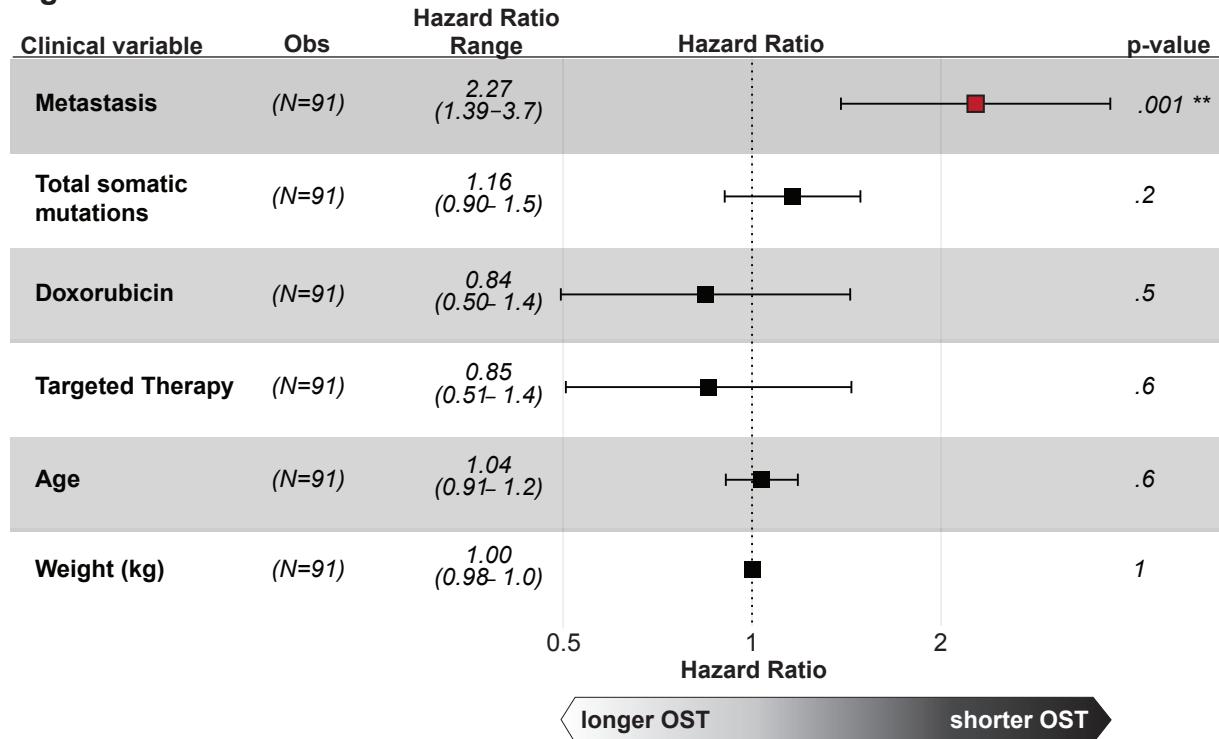
Gene	Cases	Individual Variants
<i>NOTCH1</i>	32	38
<i>ROS1</i>	30	32
<i>KMT2C</i>	28	32
<i>KMT2D</i>	25	32
<i>MET</i>	22	22
<i>BRCA2</i>	21	26
<i>PDGFRB</i>	21	23
<i>CDKN2A</i>	17	18
<i>BRCA1</i>	14	37
<i>FLT3</i>	14	15
<i>PARP1</i>	12	13
<i>SETD2</i>	11	13

Table 3. Summary of genes with germline variants in 10 or more cases, including total number of individual variants per gene.

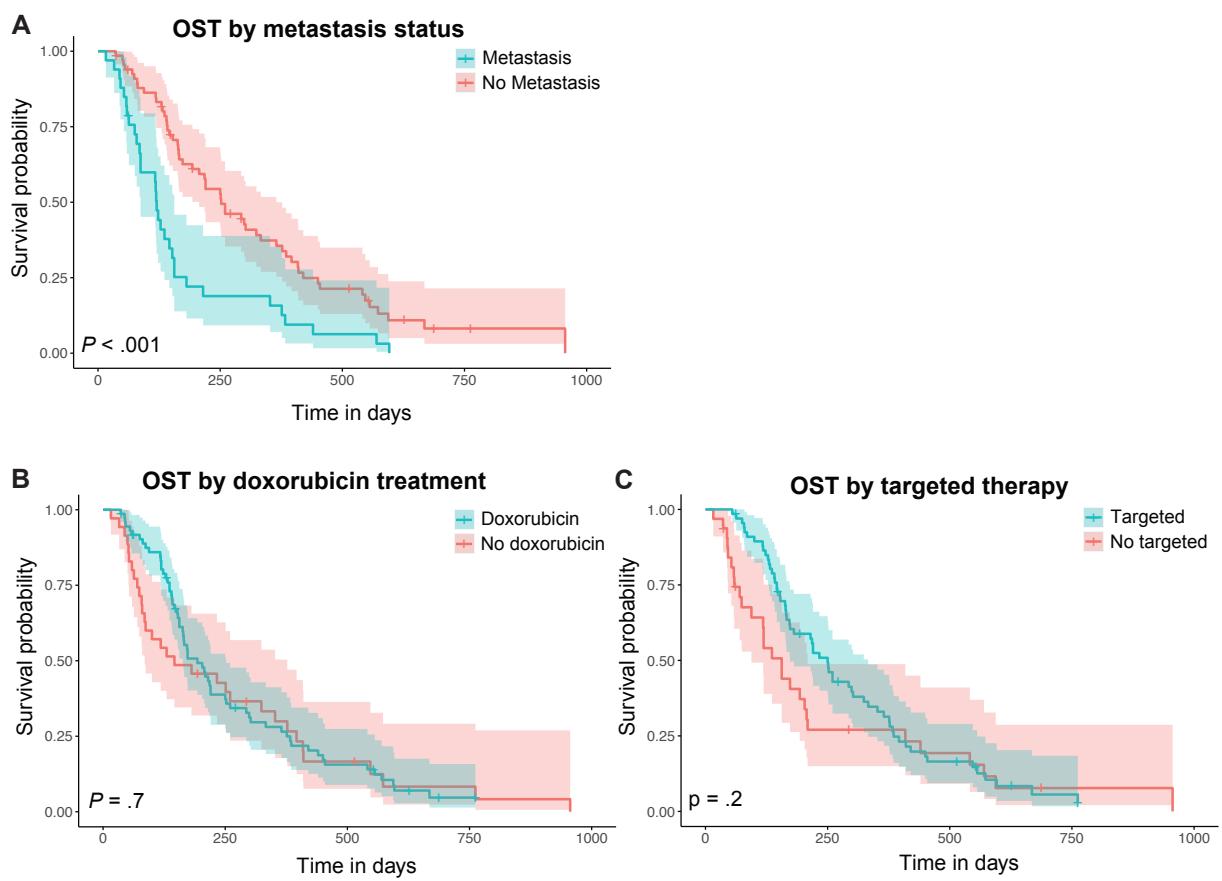
Figure Legends

1. Effect of clinical variables on survival. Forest plot of Cox Proportional Hazards model effects of multiple clinical variables on overall survival (OST). Dogs with detectable metastases at the time of diagnosis had a significantly shorter overall survival.

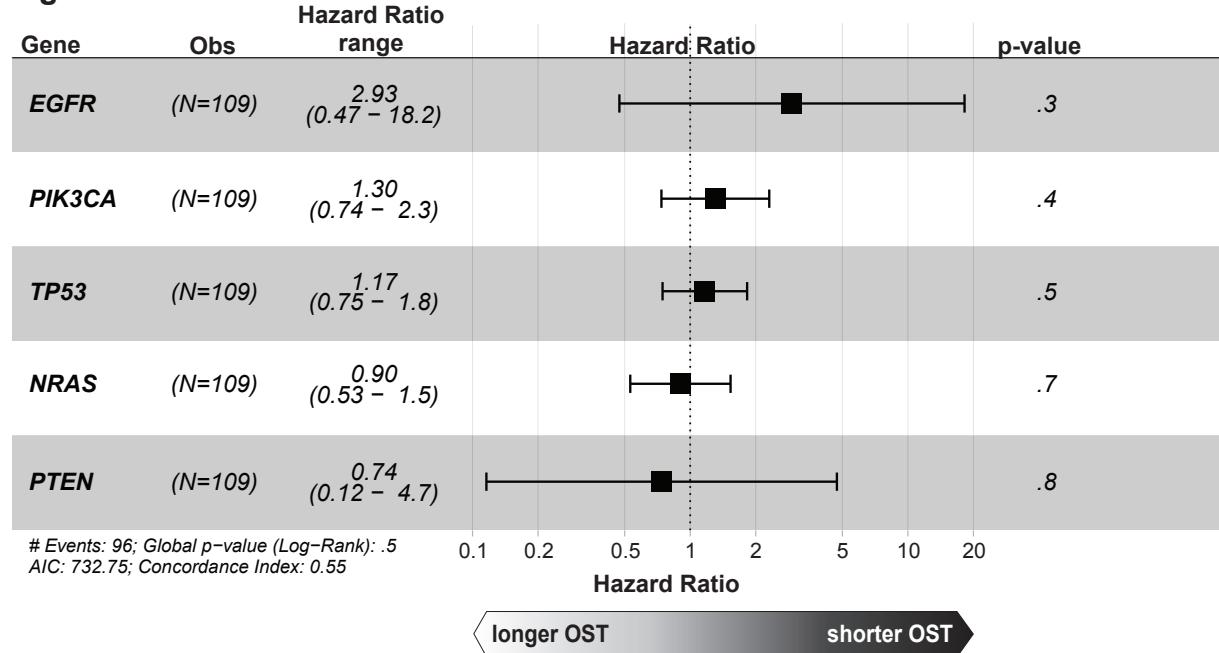
2. Clinical variable survival curves. Kaplan-Meier survival curves comparing dogs (A) with or without metastases at time of presentation; (B) with and without doxorubicin therapy; (C) with and without targeted therapy.

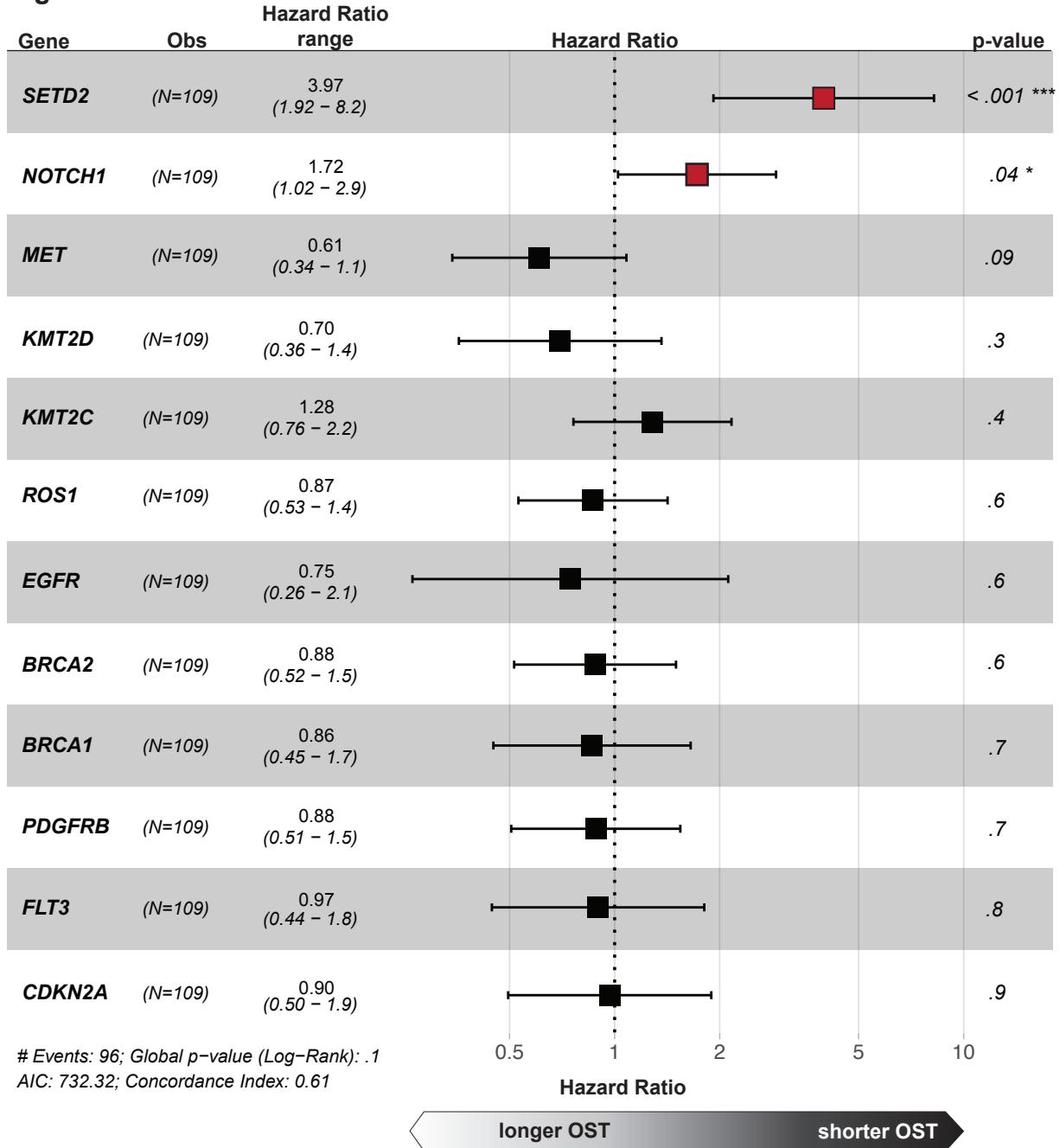

3. Effect of somatic mutations on survival. Forest plot of Cox Proportional Hazards model effects of the most commonly somatically mutated genes on OST. None had a significant effect.

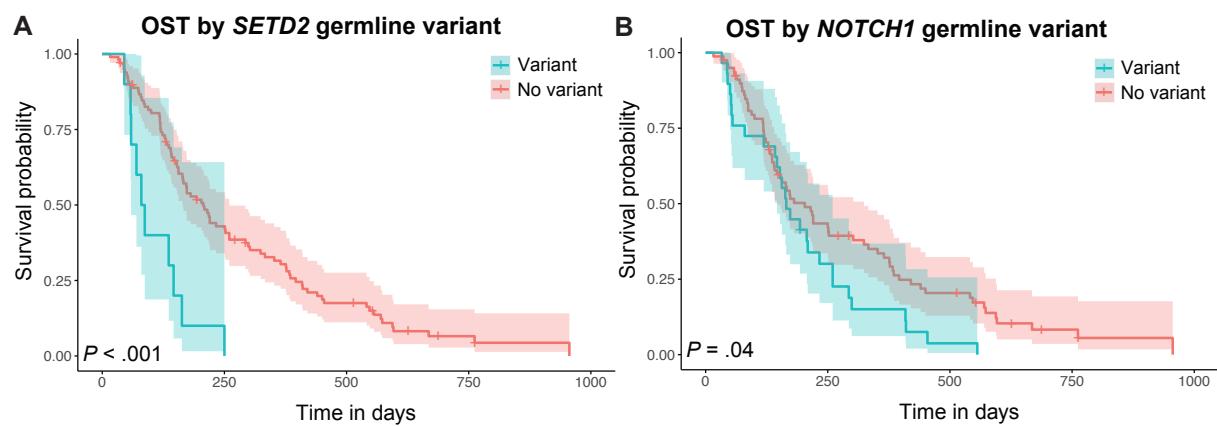
4. Effect of germline variants on survival. Forest plot of Cox Proportional Hazards model effects of the genes most commonly harboring germline variants on OST. Variants in *SETD2* and *NOTCH1* both were associated with significantly shorter OST.


5. Germline variant survival curves. Kaplan-Meier curves comparing the survival of dogs with and without germline variants in (A) *SETD2*; and (B) *NOTCH1*.

6. Breed effects. Box plots comparing (A) age and (B) OST in the three most common breeds in the cohort, golden retrievers (n = 16), German shepherd dogs (n = 14) and Labrador retrievers (n = 14).


Figure 1


Figure 2


Figure 3

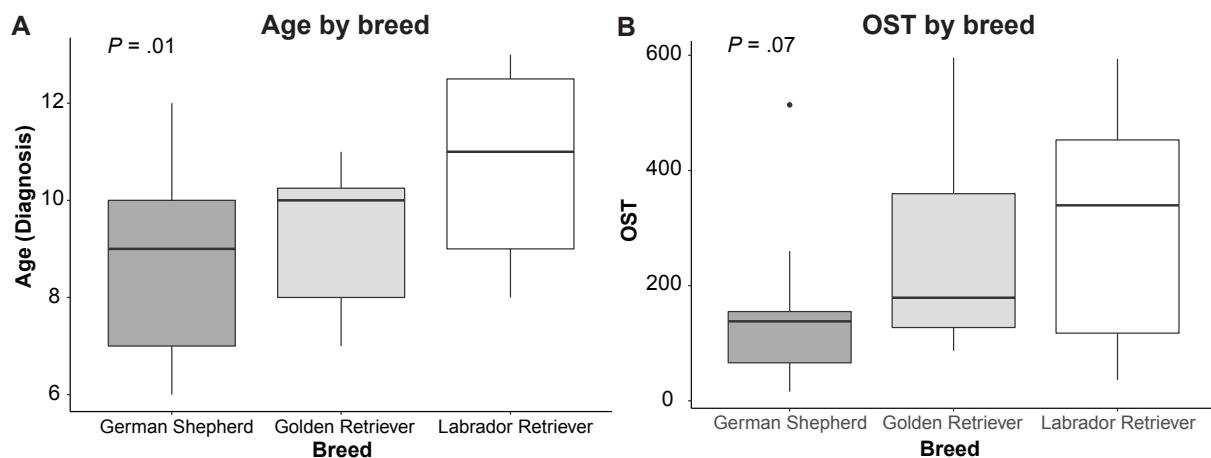

Figure 4

Figure 5

Figure 6

