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 2 

Abstract 26 

 27 

Background:  28 

Systematic characterization of how genetic variation modulates gene regulation in a cell type 29 

specific context is essential for understanding complex traits. To address this question, we 30 

profiled gene expression and chromatin state of cells from healthy retinae of 20 human donors 31 

with a single-cell multiomics approach, and performed genomic sequencing.  32 

 33 

Results:  34 

We mapped single-cell eQTL (sc-eQTLs), single-cell caQTL (sc-caQTL), single-cell allelic 35 

specific chromatin accessibility (sc-ASCA) and single-cell allelic specific expression (sc-ASE) in 36 

major retinal cell types. By integrating these results, we identified and characterized regulatory 37 

elements and genetic variants effective on gene regulation in individual cell types. Most of the 38 

sc-eQTLs and sc-caQTLs identified show cell type specific effects, while the cis-elements 39 

containing the genetic variants with cell type specific effects tend to be accessible in multiple 40 

cell types. Furthermore, the transcription factors with binding sites perturbed by genetic variants 41 

tend to have higher expression in the cell types, where the variants have effect, than the cell 42 

types where the variants do not have effect. Finally, we identified the enriched cell types, 43 

candidate causal variants and genes, and cell type specific regulatory mechanism underlying 44 

GWAS loci.  45 

 46 

Conclusions:  47 

Overall, genetic effects on gene regulation are highly context dependent. Our results suggest 48 

that among cell types sharing a similar lineage, cell type dependent genetic effect is primarily 49 

driven by trans-factors rather than cell type specific chromatin state of cis-elements. Our 50 
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 3 

findings indicate a role for hierarchical transcription factors collaboration in cell type specific 51 

effects of genetic variants on gene regulation.  52 

 53 

 54 

Keywords: 55 

Genetic effect, gene regulation, cell type specific effect, eQTL, caQTL, ASE, ASCA, single cell 56 

multiomics, retina 57 

 58 

 59 

Background 60 

 61 

Gene regulation is cell type dependent[1], and the modulation of this process by genetic 62 

variation among individuals is a major contributor to complex traits and diseases [2–5]. 63 

Substantial progress has been made in mapping, annotation, and functional validation of 64 

regulatory variants[6–10]. However, the mechanisms by which genetic variants modulate gene 65 

regulation in cell type specific context remain largely unclear[11,12]. Indeed, prior in vivo studies 66 

conducted on bulk tissues have a limited ability to elucidate the cell type effects of gene 67 

regulation. This gap can be addressed by recent advances in single-cell omics 68 

technologies[1,13–16]. Recent studies using single-cell omics technologies, have generated cell 69 

atlases for different tissues and development stages, revealing regulatory elements in cell 70 

type/state resolution, facilitating the interpretation of non-coding variants[17–20]. Several 71 

pioneer studies further mapped expression QTL (eQTL) or chromatin accessibility QTL (caQTL) 72 

alone, based on molecular phenotypes profiled by single cell sequencing, which uncover the cell 73 

type/state specific effect of genetic variants[21–27]. Even so, the mechanisms underlying cell 74 

type/state specific effects of genetic variants are still elusive. To answer these questions, we 75 

integrated genomic sequencing with single cell multiomics profiling of gene expression and 76 
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chromatin state, which offers a unique opportunity to identify and characterize regulatory 77 

elements, the effect of genetic variants, and the modulation mechanism underlying gene 78 

regulation in individual cell type contexts in vivo. 79 

 80 

We performed whole genome sequencing (WGS), single nuclei RNA-sequencing (snRNA-seq) 81 

and single-nuclei assay for transposase-accessible chromatin sequencing (snATAC-seq) on the 82 

cells of healthy retinae from 20 human donors. We mapped sc-eQTLs, sc-caQTLs, sc-ASE, and 83 

sc-ASCA for major retinal cell types. Integration of these results leads to genome-wide 84 

identification and characterization of gene regulatory elements, and genetic variants affecting 85 

chromatin state and gene expression in individual cell type contexts. Intriguingly, most of sc-86 

QTLs identified are specific to one cell type, suggesting a significant proportion of variants 87 

modulate gene expression and chromatin state depending on cell type. Further analyses 88 

suggest for the cell types sharing a similar lineage, such as retinal cell types studied here, the 89 

cell type specific effect of genetic variants seems not primarily due to cell type specific 90 

chromatin state of the affected cis-elements, but may be driven by perturbing the binding of 91 

trans-regulators. Finally, by integrating the single cell multiomics data, genetic association 92 

results and GWAS, we identified the enriched cell types, fine-mapped candidate causal variants 93 

and genes, and uncovered the regulatory mechanisms underlying GWAS loci.  94 

 95 

Results  96 

 97 

Single nuclei multiomics profiling of 20 healthy human donor retinae 98 

 99 

To profile gene expression and chromatin state in cell type specific context, we performed 100 

snRNA-seq and snATAC-seq on the healthy retinae from 20 human donors (Fig. 1a, 101 

Supplementary Table 1). For snRNA-seq, upon quality control (QC), a total of 192,792 nuclei 102 
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were clustered into 10 major retinal cell classes, including rod photoreceptors (Rod), cone 103 

photoreceptors (Cone), bipolar cells (BC), amacrine cells (AC), horizontal cells (HC), müller glia 104 

cells (MG), retinal ganglion cells (RGC), astrocytes (Astro), endothelial cells and microglia cells 105 

(Methods, Fig. 1b). In parallel, snATAC-seq was performed for the same set of donor retinae. 106 

After QC, a total of 245,541 nuclei were clustered into 9 major retinal cell classes (Fig. 1b). 107 

Consistent with the cell type annotation, canonical cell type marker genes show specific 108 

expression and gene activity in the corresponding cell clusters from snRNA-seq and snATAC-109 

seq respectively[28] (Fig. 1c). Furthermore, the distribution of different cell types profiled by the 110 

two methods is highly concordant across the samples, ranging from 2.5% RGC to 55.2% Rod 111 

(Fig. 1d, Supplementary Table 2).  112 

 113 

A total of 430,567 open chromatin regions (OCRs) were identified from the snATAC-seq data, 114 

ranging from 48,764 to 199,666 per cell type (Methods, Supplementary Table 3). To assess the 115 

quality of these OCRs, we compared them with the ones from previously published bulk ATAC-116 

seq data[29]. The snATAC-seq OCRs showed high sensitivity, capturing most OCRs identified 117 

by bulk ATAC-seq and the cell type specific OCRs that are largely missing by bulk ATAC-seq 118 

(Supplementary Fig. 1a,b,c). Specifically, 74.9% and 84.2% of OCRs identified by bulk ATAC-119 

seq on the retina and macula tissues were detected in the snATAC-seq dataset respectively 120 

[29], and 96.2% of putative active enhancers previously identified were found in the snATAC-121 

seq OCR list[29] (Supplementary Fig. 1a). Consistent with that Rod is the most abundant cell 122 

type in the retina, OCRs in Rod show the highest correlation with the bulk retina data with a 123 

Pearson correlation of 0.69 (Supplementary Fig. 1b). Lower correlations are observed in other 124 

cell types, particularly rare cell types, for example, a Pearson correlation of 0.41 for RGC 125 

(Supplementary Fig. 1b). Conversely, 74.0% of the OCRs are only detected by snATAC-seq, 126 

indicating a large portion of OCRs are present in a subset of cell types. Indeed, 51.5% of the 127 

snATAC-seq OCRs are unique to one cell type (Supplementary Table 2). As expected, the cell 128 
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type specific OCRs are largely missed by the bulk ATAC-seq with a low detection rate of 14.3% 129 

(Supplementary Fig. 1c). To further evaluate the snATAC-seq OCRs, we examined TF binding 130 

motif enrichment in the OCRs for each cell type (Fig. 1e). Consistently, many TFs identified are 131 

previously shown to play cell type specific role in the retina, such as OTX2, CRX, MEF2D in 132 

photoreceptor cells, ONECUT2 in HC, NFIA, NFIB, NFIX, LHX2 in MG, supporting the quality of 133 

this dataset[30–34].  134 

 135 

Putative linked cis regulatory elements (LCREs) among the OCRs were identified by calculating 136 

the correlation between the accessibility of OCRs and the nearby (+/-250kb) promoter/gene 137 

expression (Fig. 1f). As a result, about 16.6% (71,274) of the OCRs are linked to 13,405 target 138 

genes, averaging 5.9 LCREs per gene per cell type. As expected, LCREs are enriched for the 139 

CREs identified in previous studies, with 74.2% and 87.0% of the LCREs found in the ENCODE 140 

cCRE registry[6] and recent cCREs atlas[17] respectively (1.44- and 1.26-fold enrichment 141 

compared to all the OCRs, two-sided binomial test, 𝑝 < 2.2 × 10!"# ). Furthermore, LCREs are 142 

highly enriched with active enhancers. For example, 83.8% of LCREs in Rod carry the 143 

epigenetic modifications of active enhancers, concurrent H3K4me2 and H3K27ac, a 2.1-fold 144 

enrichment compared to all the OCRs (two-sided binomial test, 𝑝 < 2.2 × 10!"#  Fig. 1g). 145 

Interestingly, LCREs are depleted from cell type specific OCRs.  For each cell type, on average 146 

5.9% of LCREs are in cell type specific OCRs, 62.1% of LCREs are from OCRs shared by 147 

multiple cell types, and 32.0% of LCREs are from constant OCRs (Fig. 1g). Furthermore, 148 

LCREs tend to be in more dynamic OCRs with overall 57.3% in the differential accessible 149 

regions (DARs), a 2.2-fold enrichment compared to all the OCRs (𝑝 < 2.2 × 10!"#, 150 

Supplementary Fig. 1d).  151 

 152 

Significant proportion of sc-eQTLs are cell type specific in retina 153 

 154 
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To profile genetic variation in the donors, WGS was performed for each donor and a total of 9.8 155 

million genetic variants were identified after QC (Supplementary Fig. 2a). To identify genetic 156 

variants that affect gene expression, we mapped sc-eQTLs for each major retinal cell type. Due 157 

to the limited number of individuals available for our study, only variants with allele frequency ³ 158 

0.1 that are within OCRs surrounding the genes (-/+250kb of gene transcription start site, TSS) 159 

were tested, totaling 421,004 variants, averaging 59.9 variants per gene and 2.8 variants per 160 

OCR per cell type.   161 

 162 

14,377 sc-eQTLs that reach gene level significance with false discovery rate (FDR) < 10% were 163 

identified. The variants that are in linkage disequilibrium (LD) (𝑟$ > 0.5) from the same sc-164 

eGene were grouped, resulting in a total of 5,688 independent sc-eQTL sets associated with 165 

4,069 sc-eGenes, ranging from 704 to 1,175 sc-eQTL sets per cell type (Fig. 2a, b, 166 

Supplementary Table 4). The majority (86.1%-91.8%) of sc-eGenes has one sc-eQTL set per 167 

cell type (Supplementary Fig. 2b). Interestingly, most of sc-eQTLs are cell type specific, with 168 

87.0%-92.3% identified in only one cell type (Fig. 2a). Furthermore, the remaining sc-eQTLs 169 

that are observed in multiple cell types are often shared among closely related cell types, such 170 

as between rod and cone photoreceptors (Supplementary Fig. 2c). Consistently, the effect of sc-171 

eQTLs is correlated with the cell type similarity (Fig. 2c); for example, a stronger correlation is 172 

observed between rod and cone photoreceptors (Pearson correlation 𝑟 = 0.6). These results 173 

suggest that the same genetic variant has a more concordant effect on gene regulation among 174 

closely related cell types, as they share a similar transcription program. Interestingly, the effect 175 

size of sc-eQTLs shared by multiple cell types in distal OCRs (which are non-promoter OCRs) is 176 

greater than that of the ones unique to one cell type (e.g., Rod, two-sided Wilcoxon rank sum 177 

test,  𝑝 = 1.88 × 10!%, Fig. 2d). Consistently, sc-eQTLs shared by multiple cell types in distal 178 
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OCRs are closer to gene TSS than those unique to one cell type (e.g., Rod, two-sided Wilcoxon 179 

rank sum test, 𝑝 = 9.75 × 10!"", Fig. 2e). 180 

 181 

Validation of sc-eQTLs with bulk eQTLs and sc-ASE 182 

 183 

To evaluate the quality of sc-eQTLs, we compared them with the eQTLs previously identified in 184 

bulk retina and other tissues from the GTEx project[35]. sc-eQTLs are enriched for bulk eQTLs. 185 

On average 35.6% of sc-eQTLs are overlapped with the bulk retina eQTLs (4.4-fold enrichment 186 

compared to background variants, two-sided binomial test 𝑝 < 1.2 × 10!"##) and 56.0% 187 

overlapped with the bulk eQTLs from all the 49 tissues (2.3-fold enrichment compared to 188 

background, two-sided binomial test 𝑝 < 2.1 × 10!"&%,  , Fig. 2f). The proportion of overlap 189 

varies among cell types (Fig. 2f). As expected, the highest overlap (63.9%) is observed for the 190 

most abundant cell type, Rod, while the lowest overlap is observed for HC at 49.0% (Fig. 2f). 191 

Effect direction of eQTLs across different cell types and tissues is largely concordant (Fig. 2g).  192 

 193 

We further validated these sc-eQTLs with sc-ASEs. sc-eQTLs are enriched for sc-ASEs. sc-194 

ASEs are detected in 18.8%-34.0% of the sc-eQTLs that were tested for sc-ASEs (with the 195 

highest overlapping in Rod, 34.0%), on average 2.5-fold enrichment compared to background 196 

variants (two-sided binomial test 𝑝 < 1.2 × 10!"$, Supplementary Fig. 2d). The effect size and 197 

direction are positively correlated (Pearson correlation, 𝑟 in 0.68-0.77, 𝑝 < 2.2 × 10!"#), with the 198 

majority (82.5%-94.2%) of the overlapped variants having the same direction (Figure 2h, 199 

Supplementary Fig. 2d). Altogether, these results support that the majority of sc-eQTLs 200 

identified are likely to be true positives. 201 

 202 

 203 
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Cell type specific sc-eQTLs often reside in OCRs shared by multiple cell types  204 

 205 

An interesting observation is that most (87.0%-92.3%) of sc-eQTLs are unique to one cell type, 206 

while the associated sc-eGenes (94.6%-98.9%) are almost always expressed in multiple cell 207 

types (Fig. 2a, 3a). Specifically, only a small proportion (1.8%-6.0%) of sc-eQTLs and their 208 

associated sc-eGenes share the same pattern of cell type specificity. In over 90% of the cases, 209 

while the sc-eQTL is observed in one or a subset of cell types, the sc-eGenes are expressed in 210 

multiple cell types. Interestingly, for the same sc-eGene, different sc-eQTLs are often observed 211 

in different cell types (36.4% of total sc-eQTLs) (Fig. 3b), and these sc-eQTLs tend to be in 212 

different OCRs (34.0% of total sc-eQTLs, Supplementary Fig. 2e). This does not result from cell 213 

type specific accessibility of the OCRs, as OCRs are often accessible in multiple cell types while 214 

sc-eQTL effect of the resident variants are only observed in one or subset of cell types. This is 215 

not due to the differential accessibility of the OCRs as well, since only a small proportion (8.8%-216 

19.4%) of sc-eQTLs in the DARs of the corresponding cell types. Only a small fraction (11.4%) 217 

of sc-eQTLs reside in OCRs whose accessibility have matching cell type specificity as those of 218 

the sc-eQTLs (Fig. 3c). For example, the variant rs10793810 is a MG specific sc-eQTL of 219 

SLC27A6, and enhances the binding of FOXP2 (highly expressed in MG), to a MG-specific 220 

enhancer of SLC27A6 (Fig. 3d). In contrast, most (89.1%) of sc-eQTLs are within the OCRs 221 

shared among multiple cell types (Fig. 3c), suggesting that modulation of gene expression by 222 

genetic variants is primarily driven by activity of trans-factors such as cell type specific TFs, 223 

rather than the accessibility of cis-elements.  For example, the variant rs62308155 is identified 224 

as a Rod specific sc-eQTL of REST, likely through disrupting the binding of NR3C1, which is 225 

highly expressed in Rod but minimally in Cone, to an enhancer accessible in both Rod and 226 

Cone (Fig. 3e). Supporting the roles of trans-factors in driving cell type specific sc-eQTL effect 227 

genome-widely, the TFs, whose motifs are perturbed by genetic variants, have higher 228 

expression in the cell types where the variants have sc-eQTL effect, compared to the cell types 229 
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where the variants do not have effect (e.g., Rod, one-sided Wilcoxon rank sum test, 𝑝 <230 

4.7 × 10!#, Fig. 3f).  231 

 232 

Significant proportion of sc-caQTLs are cell type specific in retina 233 

 234 

In parallel with sc-eQTL analysis, to identify genetic variants that affect chromatin accessibility, 235 

we performed sc-caQTL analysis by examining the association between each OCR and the 236 

common variants within it for each major retinal cell type. A total of 174,419 OCRs (ranging from 237 

54,716 to 95,020 OCRs per cell type) and the same set of variants tested for sc-eQTLs were 238 

analyzed (Methods). Upon genome-wide multiple testing corrections, a total of 23,287 sc-239 

caQTLs were identified (FDR < 10%), which were grouped into 12,482 independent sc-caQTLs 240 

sets mapped in 10,298 OCRs based on LD (𝑟$ > 0.5), ranging from 391 to 4,789 sc-caQTLs 241 

sets per cell type (Fig. 4a,b and Supplementary Table 5). The majority (88.0%) of sc-caQTL-242 

containing OCRs, namely sc-caQTL-associated peaks (sc-caPeaks) in this study, contain only 243 

one sc-caQTL set (Supplementary Fig. 3a). The majority of sc-caQTLs are cell type specific with 244 

62.3%-85.7% unique to one cell type, a lesser degree compared to sc-eQTLs. Similar to sc-245 

eQTLs, the effect sizes of sc-caQTLs are correlated across cell types, with stronger correlation 246 

observed between more closely related cell types (Fig. 4c and Supplementary Fig. 3b). The 247 

distal sc-caQTLs common in multiple cell types have significantly greater effect than the ones 248 

unique to one cell type (e.g., Rod, one-sided Wilcoxon rank sum test, 𝑝 < 2.2 × 10!"#, Fig. 4d).  249 

 250 

Validation of sc-caQTLs with sc-ASCA 251 

 252 

To assess the quality of the sc-caQTLs identified, we compared sc-caQTLs with sc-ASCAs. sc-253 

ASCAs are detected in 8.7%-41.8% of the sc-caQTLs that were tested for sc-ASCAs (with the 254 

highest overlapping rate in Rod, 41.8%), on average 15.9-fold enrichment compared to 255 
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background (two-sided binomial test, 𝑝 < 6.8 × 10!"", Supplementary Fig. 3c).  Furthermore, 256 

the effect size and direction of sc-ASCAs and the overlapped sc-caQTLs are positively 257 

correlated (Pearson correlation, 𝑟  in 0.75-0.90, 𝑝 < 5.4 × 10!&), with the majority (82.4%-100%) 258 

of the overlapped variants having the same direction (Fig. 4e, Supplementary Fig. 3c). These 259 

results support that the sc-caQTLs identified are indeed enriched of variants associated with 260 

change in chromatin accessibility. Conversely, 33.3%-54.5% of the identified sc-ASCAs overlap 261 

with sc-caQTLs depending on cell type. Interestingly, the size of OCRs containing sc-ASCA-262 

only variants (not overlapped with sc-caQTL) are significantly larger than the ones containing 263 

variants which are both sc-ASCA and sc-caQTL (Supplementary Fig. 3d, e.g., one-sided 264 

wilcoxon rank sum test, 𝑝 < 1.47 × 10!$" in Rod). This observation suggests that the variants in 265 

wider OCRs tend to have local effect, while the variants in the narrow OCRs are more likely to 266 

affect accessibility of the entire OCRs.    267 

 268 

Cell type specific sc-caQTLs can reside in OCRs accessible in multiple cell types 269 

 270 

Like sc-eQTLs, most (62.3%-85.7%) of sc-caQTLs are unique to one cell type, while the 271 

majority (74.8%) of sc-caPeaks are accessible in multiple cell types (Fig. 4a, f). Specifically, 272 

24.4% of sc-caQTLs and their caPeaks share the same pattern of cell type specificity. 75.6% of 273 

sc-caQTLs are found in one or a subset of cell types while the sc-caPeaks are accessible in 274 

multiple cell types (Fig. 4f). Furthermore, the cell type unique sc-caQTLs is not due to the 275 

differential accessibility of OCRs alone, since only a small proportion (14.9%-34.3%) of sc-276 

caQTLs were observed in the DARs of the corresponding cell types. Interestingly, for the sc-277 

caPeaks common in multiple cell types, different sc-caQTLs variants are observed in different 278 

cell types, accounting for 13.9% of total sc-caQTLs (Fig. 4g). As an example where the cell 279 

specificity matches between sc-caQTLs and their residing OCRs, the variant rs12447029 has 280 

MG specific sc-caQTL effect through strengthening the binding of NFE2L2, which is highly 281 
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expressed in multiple cell types, to a MG-specific enhancer (Fig. 5a). Consistently, the 282 

corresponding OCR is a LCRE of GRIN2A, and rs12447029 is a sc-eQTL for GRIN2A in MG 283 

(Supplementary Fig. 3e). In contrast, the cell type specificity of the vast majority of sc-caQTLs 284 

cannot be explained by the cell type specificity of the corresponding OCRs alone. 68.3% of the 285 

sc-caQTLs are unique to one cell type but reside in the OCRs observed in multiple cell types, 286 

indicating the modulation of chromatin accessibility by genetic variants is often cell type-287 

dependent, probably through affecting the binding of cell type specific trans-factors (Fig. 4f). For 288 

example, although accessible in Rod, Cone and BC, the variant rs6859300 affects the 289 

chromatin in Rod only, possibly through enhancing the binding of EPAS1, which is highly 290 

expressed in Rod while lowly expressed in Cone and BC (Fig 5b). Consistently, the 291 

corresponding OCR is a LCRE of WWC1, and rs6859300 is a sc-eQTL of WWC1 in Rod 292 

(Supplementary Fig. 3f). Furthermore, the TFs, whose motifs are perturbed by genetic variants, 293 

have higher expression in the cell types where the variants have sc-caQTL effect, compared to 294 

the cell types where the variants do not have effect, supporting the role of trans-factors in 295 

driving cell type specific sc-caQTL effect genome-widely (e.g., Rod, one-sided Wilcoxon rank 296 

sum test, 𝑝 < 4.5 × 10!"', Fig. 5c).  297 

 298 

Interaction among OCRs 299 

 300 

Previous studies suggest that multiple regulatory elements can be regulated by a single genetic 301 

variant[12]. One possible mechanism is that the accessibility of a “master” element affects the 302 

accessibility of neighboring “dependent” elements[12]. To examine this phenomenon in our 303 

dataset, we identified 2511 dependent regions associated with 1942 master regions (Methods). 304 

Among them, 360 master regions that are LCREs, are associated with 427 dependent regions 305 

that are LCREs of the same genes. The proportions of sc-caQTLs associated with the 306 

dependent OCRs (e.g., 1.8-fold enrichment compared to background variants in Rod, two-sided 307 
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binomial test, 𝑝 = 1.48 × 10!(() and dependent LCREs (e.g., 1.7-fold enrichment compared to 308 

background in Rod, two-sided binomial test, 𝑝 = 4.49 × 10!"$) are significantly enriched 309 

compared to background variants respectively, suggesting the association between sc-310 

caQTL/master elements and dependent elements are not random (Fig. 6a). The effect size of 311 

sc-caQTLs on the master regions and dependent regions are positively correlated (an average 312 

correlation coefficient of 0.60, 𝑝 = 1.5 × 10!)), with the majority (65.0%-82.0%) of the sc-313 

caQTLs having the same effect direction on the master and dependent regions (Fig. 6b). 314 

Furthermore, slightly higher enrichment in DARs and active enhancer modifications (the 315 

concurrent H3K27ac and H3K4me2) was observed in the master regions than the dependent 316 

regions (Fig. 6c). 317 

 318 

Although the majority (66.5%-87.7%) of the master regions have one dependent region, some 319 

have multiple dependent regions. For example, the sc-caQTL variant rs7596259 increases 320 

accessibility of its residing master region, and is associated with the increased accessibility of 321 

the other three dependent regions in Rod (Fig. 6d). This sc-caQTL is also a sc-eQTL and 322 

increases the gene expression of ITGA6 in Rod, suggesting some of the affected regions might 323 

be important for gene expression regulation (Fig. 6d). Indeed, the master region 324 

(chr2:173305356-173307494) and one dependent region (chr2:173284642-173285585) are the 325 

predicted LCREs of ITGA6 (Fig. 6d). Moreover, the sc-caQTLs affecting multiple regions in the 326 

same effect direction are more likely to overlap with sc-eQTLs in the corresponding cell type 327 

than the sc-caQTLs affecting multiple regions in different effect directions (in Rod 15.9% vs. 328 

4.2%, two-sided binomial test 𝑝 = 2.25 × 10!(), which might be due to compensation between 329 

the elements with opposite effect directions canceling out their impact on gene expression. For 330 

example, the sc-caQTL variant rs1493699 reduces the accessibility of its residing master region 331 

(chr15:77664198-77665218), and is associated with the increased accessibility of a dependent 332 
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region (chr15:77873253-77874263) in MG (Fig. 6e). Although the two elements are LCREs of 333 

PEAK1, this sc-caQTL is not a sc-eQTL of PEAK1, suggesting that these regulatory elements 334 

might compensate for each other and overall do not change gene expression (Fig. 6e). 335 

 336 

 337 

Prioritizing causal variants and cell type context underlying GWAS loci 338 

 339 

The single cell multiomics dataset provides opportunities to fine map GWAS loci in a cell type 340 

context. We first investigated the cell type enrichment of GWAS loci associated with 11 eye 341 

traits or disorders[36–42]  based on cell type chromatin accessibility and gene expression 342 

respectively[43][44–47] (Methods). Interestingly, the GWAS loci enrichment identified from 343 

chromatin state and gene expression converges to the same cell types (Fig. 7a,b, and 344 

Supplementary Fig. 4a, Benjamini-Hochberg correction, 𝑝. 𝑎𝑑𝑗 < 0.1). Specifically, primary 345 

open-angle glaucoma (POAG) related traits, such as cup areas (CA) and vertical cup-disc ratio 346 

(VCDR) of optic nerve, intraocular pressure (IOP), and POAG, displayed enrichment in the 347 

DARs, OCRs, and/or genes expressed in astrocytes and MG (𝑝 < 9.7 × 10!*, 𝑝. 𝑎𝑑𝑗 < 0.1, Fig. 348 

7a,b). Refractive error and myopia loci[42], displayed enrichment in the DARs, OCRs, and/or 349 

genes expressed in most of major retinal cell types (𝑝 < 8.2 × 10!*, 𝑝. 𝑎𝑑𝑗 < 0.1) (Fig. 7a,b and 350 

Supplementary Fig. 4a). The loci associated with choroid/retina disorders, retinal 351 

detachments/breaks, and retinal problems[41], showed enrichment in the DARs of MG (Fig. 7a, 352 

𝑝 < 7.2 × 10!*, 𝑝. 𝑎𝑑𝑗 < 0.1). 353 

 354 

To identify causal variants and target genes with a cellular context underlying GWAS loci, we 355 

fine-mapped GWAS variants associated with three eye diseases, glaucoma[36], age-related 356 

macular degeneration[40], and refraction error/myopia[42]. We incorporated functional 357 

annotation (including OCR and LCRE derived from single cell multiomics data) of variants to 358 
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prioritize GWAS loci[48]56. As a result, 818 variants with posterior inclusion probability (PIP) > 359 

0.1 were identified, which contain potential causal variants and are enriched of variants in 360 

regulatory regions (Supplementary Fig. 4b,c,d). Among them, 27 variants are sc-caQTL, sc-361 

eQTL, and/or sc-ASCA (Fig. 7c, Supplementary Fig. 4e,f, Supplementary Table 6). 22 (81.5%) 362 

of these 27 variants are in the regions with epigenetic modifications, H3K27ac and/or H3K4me2, 363 

supporting their regulatory role (Supplementary Table 6). To identify the target genes, 19 of the 364 

27 variants were linked to 24 target genes through sc-eQTLs, LCREs and gene annotation 365 

(Supplementary Table 7). As expected, 14 (58.3%) of the 24 candidate genes are the nearest 366 

genes adjacent to the variants. Furthermore, 6 of these 24 genes are also supported by the 367 

colocalization of GWAS signals with retinal bulk eQTL signals. For example, the variant 368 

rs511217 is a fine-mapped variant associated with refraction error and myopia (PIP= 0.176). 369 

This variant is a sc-eQTL of KCNA4 and a nominal significant sc-caQTL of its residing OCR in 370 

BC. The corresponding OCR is a predicted LCRE of KCNA4. Consistently, the GWAS signal is 371 

colocalized with the retinal bulk eQTL signal of KCNA4 as well (Supplementary Fig. 5).  372 

 373 

Our integrative analysis also provided potential insights for the cell type specific regulatory 374 

mechanisms of GWAS loci (Fig 7d). For example, rs1328363 is a fine-mapped variant 375 

associated with refraction error and myopia (PIP=0.308). This variant may achieve Rod specific 376 

effect (a sc-ASCA, nominal significant sc-eQTL, and nominal significant sc-caQTL) in increasing 377 

expression of GPC6 through strengthening the binding of a photoreceptor-specific TF (CRX) to 378 

a GPC6 enhancer which is accessible in multiple cell types (Fig 7d). This variant is also a 379 

marginal sc-eQTL in Cone, concordant with CRX also being a TF for Cone, much lower 380 

expression of GPC6, and lower accessibility of the corresponding enhancer in Cone. GPC6 381 

encodes a putative cell surface glypican coreceptor, implicating its role in controlling cell growth 382 

and division.  383 

 384 
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Discussion 385 

 386 

In this study, by combining single-cell multiomics to profile cells from human retina and genomic 387 

sequencing, we identified regulatory elements, mapped effect of genetic variants, and 388 

elucidated modulation mechanisms underlying gene regulation in individual cell type contexts in 389 

vivo. The genetic effects on gene expression measured by sc-eQTLs and sc-ASE are highly 390 

concordant, while the gene effects on chromatin accessibility assessed by sc-caQTLs and sc-391 

ASCAs also show consistency. Additionally, sc-eQTLs are enriched of bulk eQTLs from retina 392 

and other tissue types, and higher overlapping rate was observed for the sc-eQTLs identified in 393 

the most abundant cell type or the ones common in multiple cell types. Altogether, these results 394 

support the quality of the mapped genetic effects on gene expression and chromatin 395 

accessibility. Interestingly, a significant proportion (44.0%) of sc-eQTLs are missed from bulk 396 

eQTLs, which might be due to most of the sc-eQTLs being cell type specific, thus the cell type 397 

specific signals, in particular the ones associated with rare cell types, might be diluted and not 398 

detectable in the bulk level. It is also likely that some sc-eQTLs have opposite effect direction in 399 

different cell types, so the overall effect in the bulk level is canceled out, although we observed 400 

a very small proportion of sc-eQTLs in such cases.   401 

 402 

Intriguingly, most of the mapped sc-eQTLs and sc-caQTLs are cell type specific, while most of 403 

eGene and caPeaks are active in multiple cell types, suggesting genetic variants modulate gene 404 

expression and chromatin state in a cell type dependent manner. Surprisingly, the majority of 405 

cell type specific sc-eQTLs and sc-caQTLs reside in the regulatory elements accessible in 406 

multiple cell types. Furthermore, the TFs, whose motifs are perturbed by genetic variants, have 407 

higher expression level in the cell types where the variants have cell type specific effect, 408 

compared to the cell types where the variants do not have effect. Altogether, our study 409 

suggested that for the cell types sharing a similar lineage, cell type specificity of genetic effect is 410 
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not primarily due to cell type specificity of the affected cis-elements, but may be mainly achieved 411 

by perturbing the binding of cell type specific trans-factors (Fig. 8). Specifically, we hypothesized 412 

that some regulatory genomic regions in the cells sharing a similar lineage may be first opened 413 

and primed by pioneer factors, thus different cell types could have common OCRs, and these 414 

OCRs can be bound by additional different trans-factors later depending on cell type/state 415 

context, in a collaborative manner. Therefore, genetic variants affecting the binding of cell 416 

type/state specific trans-factors within the common OCRs could have cell type specific effect on 417 

gene expression and chromatin accessibility. These results also suggested the accessibility of a 418 

genomic region does not necessarily indicate its activity, and an accessible regulatory element 419 

may be inactive and could be activated by the binding of additional trans-factors in a given cell 420 

type/state context. However, for the cell types from different lineages, the affected cis-elements 421 

may play important role in determining the cell type specificity of genetic variant effects, which 422 

needs further investigation. 423 

 424 

Moreover, we showed that integration of single cell multiomics and GWAS studies can increase 425 

the power to prioritize effective cell context, causal variants and genes, and better dissect the 426 

underlying regulatory mechanisms. In our study, the cell type enrichment of GWAS traits 427 

measured by gene expression and chromatin accessibility converged to the same cell types, 428 

supporting the accuracy of our result, and suggesting some GWAS loci may indeed affect 429 

regulatory elements linked to gene expression in specific cell type context. Intriguingly, our 430 

analyses showed that astrocyte and MG play important role in POAG, and MG may be involved 431 

in choroid/retina disorders, suggesting non-neuronal cell types, particularly glia cells, may be 432 

critical for neuronal diseases. MG and astrocyte are macroglia cells in the retina and play 433 

essential roles in maintaining the homeostasis and proper function of the retinal neurons[49]. In 434 

particular, astrocytes are located in the nerve fiber and ganglion cell layers, support the 435 

structure and physiology of the optic nerve head axon and modulate the extracellular matrix 436 
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under elevated IOP[50], supporting their important role in glaucoma. Furthermore, we fine-437 

mapped GWAS loci based on functional annotation of genetic variants, which prioritize the 438 

variants in regulatory regions as candidate causal variants. By overlapping the fine-mapped 439 

GWAS variants with sc-eQTL and LCREs, we identified the genes potentially contributing to 440 

myopia/refraction error and glaucoma. Moreover, combining gene expression, chromatin 441 

accessibility, and their variation driven by genetic variants in cell type context, we explained the 442 

cell type specific regulation mechanism underlying GWAS loci, which could be related to cell 443 

type specific trans-factor binding and/or cis-elements. These findings could facilitate the 444 

understanding of pathogenic mechanisms and provide guidance for functional analysis of 445 

GWAS loci and development of disease treatment.  446 

 447 

Conclusions: 448 

 449 

We conducted the first systematic study of how common genetic variants modulate gene 450 

expression and chromatin accessibility in major cell types of the human retina through 451 

integrative single-cell multiomics analysis. Our findings suggest effects of genetic variants on 452 

gene regulation are highly context dependent. For the cell types sharing a similar lineage, the 453 

cell type specific genetic effects may be mainly driven by trans-factors rather than the chromatin 454 

stat of the affected cis-elements. These results indicate hierarchical transcription factors 455 

collaboration may play an important role in genetic regulation of gene expression and 456 

chromatin. Our study provides novel insights on the mechanisms of gene regulation at a 457 

nucleotide level of cellular resolution, which may shed light on understanding and treating 458 

human diseases.  459 

 460 

  461 

Methods 462 
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 463 

Human retina sample collection  464 

 465 

Samples included in this study were retinal tissues of 20 donors from the Utah Lions Eye Bank 466 

(Supplement Table 1). All donors were screened for medical history, and only the ones with no 467 

records of retinal diseases were used in this study. Post-mortem phenotyping with OCT were 468 

performed to confirm that there were no drusen, atrophy, or any other disease phenotypes on 469 

retina by our previous approach[51]. One eye was collected from each donor. All eye tissues were 470 

collected and dissected within 6 hours post-mortem, according to previous protocol[52]. With 4mm 471 

and 6mm disposable biopsy punches, macula and peripheral retina were collected and flash-472 

frozen in liquid nitrogen, and stored at -80°C before nuclei isolation. All tissues were de-identified 473 

under HIPAA Privacy Rules. Institutional approval for the consent of patients for their tissue 474 

donation was obtained from the University of Utah and conformed to the tenets of the Declaration 475 

of Helsinki.  476 

 477 

Nuclei isolation and sorting 478 

 479 

Nuclei for snRNA-seq were isolated by fresh-made pre-chilled RNase-free lysis buffer (10mM 480 

Tris-HCl, 10mM NaCl, 3mM MgCl2, 0.02% NP40). The frozen tissue was resuspended and 481 

triturated in lysis buffer and homogenized with a Wheaton™ Dounce Tissue Grinder. Isolated 482 

nuclei were filtered with a 40μm Flowmi Cell Strainer. DAPI (4’,6-diamidino-2-phenylindole, 483 

10μg/ml) was added before loading the nuclei for fluorescent cytometry sorting with a BD (Becton 484 

Dickinson, San Jose, CA) Aria II flow sorter (70μm nozzle). The sorted nuclei are ready for 485 

snRNA-seq. 486 

 487 
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Nuclei for snATAC-seq were isolated in fresh-made pre-chilled lysis buffer (10mM Tris-HCl, 488 

10mM NaCl, 3mM MgCl2, 0.02% NP40, 1% BSA). Similar to the nuclei isolation process for 489 

snRNA-seq, frozen tissue was homogenized with a Dounce Tissue Grinder until no tissue 490 

pieces were visible. Nuclei were then washed (wash buffer: 10mM Tris-HCl, 10mM NaCl, 3mM 491 

MgCl2, 1% BSA) twice in a pre-coated (coating buffer: 10mM Tris-HCl, 10mM NaCl, 3mM 492 

MgCl2, 4% BSA) 5ml round-bottom Falcon tube (Cat. NO. 352054) at 500g, 4℃ for 5min. Nuclei 493 

were resuspended in 1X diluted nuclei buffer (10X PN-2000153, PN-2000207) for a final 494 

concentration of 3000-5000 nuclei/ul.  495 

 496 

Single-nuclei sequencing 497 

 498 

Single cell Gene Expression Library was prepared according to Chromium Next GEM Single Cell 499 

3' Reagent Kits v3.1 (10x Genomics). In Brief, single nuclei suspension, reverse transcription (RT) 500 

reagents, Gel Beads containing barcoded oligonucleotides, and oil were loaded on a Chromium 501 

controller (10x Genomics) to generate single cell GEMS (Gel Beads-In-Emulsions) where full 502 

length cDNA was synthesized and barcoded for each single cell. Subsequently the GEMS are 503 

broken and cDNA from each single cell are pooled. Following cleanup using Dynabeads MyOne 504 

Silane Beads, cDNA is amplified by PCR. The amplified product is fragmented to optimal size 505 

before end-repair, A-tailing, and adaptor ligation. Final library was generated by amplification. 506 

After quantification with KAPA Library Quantification kit (Roche), libraries were sequenced on a 507 

Novaseq 6000 Sequencer (Illumina). 508 

  509 

Single cell ATAC Library was prepared according to Chromium Next GEM Single cell ATAC 510 

Reagent kit v1.1 (10x Genomics). In Brief, prepared nuclei were incubated with transposome and 511 

transposase entered and preferentially fragmented DNA in open region of chromatin. Transposed 512 

single nuclei, a master mix, Gel Beads containing barcoded oligonucleotides, and oil were loaded 513 
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on a Chromium controller (10x Genomics) to generate GEMS (Gel Beads-In-Emulsions) where 514 

barcoded single strand DNA was synthesized. Subsequently the GEMS are broken and pooled. 515 

Following sequential cleanup using Dynabeads MyOne Silane Beads and SPRI beads, barcoded 516 

DNA fragments are amplified by PCR to generate indexed library. After quantification with KAPA 517 

Library Quantification kit (Roche), libraries were sequenced on a Novaseq 6000 Sequencer 518 

(Illumina). 519 

 520 

Whole genome sequencing 521 

 522 

1 ug genomic DNA was sheared with Covaris for 70 seconds and the purification was performed 523 

with Ampure XP beads. After end repair and A-tailing, the indexed adaptors were added to the 524 

product, and subsequently purified with Ampure XP beads. The diluted library was then 525 

sequenced in an Illumina Novaseq6000 Sequencer. 526 

 527 

WGS data processing 528 

 529 

The WGS variant calling followed the GATK pipeline for analyzing small sample cohorts 530 

(https://gatk.broadinstitute.org/hc/en-us/articles/360035890411-Calling-variants-on-cohorts-of-531 

samples-using-the-HaplotypeCaller-in-GVCF-mode). Briefly, WGS data was aligned to the 532 

human reference genome (build hg19) with BWA-MEM[53]. After removing duplicate reads with 533 

MarkDuplicates (Picard) from GATK, the bam files were realigned with base quality score 534 

recalibration and local realignment with GATK4[54]. With the realigned bam files, the variants 535 

were called to generate genome-wide genotype-per-site data for each sample (gVCF). The joint 536 

genotyping was performed on variants of all samples using GATK GenotypeGVCFs. Variants 537 

from joint genotyping underwent variant recalibration with GATK. The WGS variants were then 538 
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QC and filtered (Supplementary Note), and a total of 9,792,238 variants were obtained for 539 

downstream analysis.  540 

 541 

Quality control of sample genotypes 542 

 543 

The sample genotypes were QC using multidimensional scaling (MDS) analysis of plink with the 544 

genotype data from the Hapmap project[55,56] (including 84 CHB individuals, 117 CEU 545 

individuals, 115 YRI individuals). Briefly, the MDS analysis was performed with the filtered 546 

autosomal SNPs that were presented in both donors and Hapmap populations. The 20 samples 547 

were clustered with the Hapmap populations based on the MDS analysis, which is consistent 548 

with the reported ethnicity of these samples, including 16 Caucasian, 3 Hispanic, and 1 Asian 549 

(Supplementary Table 1, Supplementary Fig. 2a).  550 

  551 

Phasing with reference panel 552 

 553 

The SNPs aligned between the 1000 genome phase 3 reference panel and the genomes of the 554 

20 samples were extracted with shapeit2[57,58]. For each autosome, the overlapped SNPs of 555 

the sample genomes were phased with shapeit2 using the reference panel haplotypes with the 556 

same ethnicity as the sample group. 557 

  558 

 snRNA-seq processing 559 

 560 

The snRNA-seq raw data were processed with cell ranger. To remove the ambient RNA 561 

contamination, the read count matrix (gene x cell) was corrected with SoupX for each 562 

sample[59]. For each sample, to remove low quality cells, the corrected count matrix was 563 

filtered using the following parameters: min.cells = 5, nFeature_RNA ≥ 500,  percent.mt ≤ 15 by 564 
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Seurat[60]. To remove doublets, DoubletFinder was applied to each sample with doublet rate 565 

set at 𝑡ℎ𝑒	𝑐𝑒𝑙𝑙	𝑛𝑢𝑚𝑏𝑒𝑟/1000	 × 	0.01[61]. After removing doublets for each sample, cell types 566 

were predicted using scPred based on the reference retinal cell atlas[28,62]. The expression of 567 

marker genes per cell type per sample were examined to confirm cell type assignment. 568 

  569 

snRNA-seq gene expression quantification 570 

 571 

For each cell type, the average CPM of each gene across the cells from the same cell type of a 572 

sample was computed as the gene expression measurement per sample. For each cell type, 573 

the gene expression of all genes in the 20 samples were collected (gene x sample matrix) to 574 

perform quantile normalization. For each gene per cell type, the normalized gene expression 575 

levels were transformed using rank based inverse normal transformation[63]. For each cell type, 576 

only the genes with mean CPM (in the 20 samples) ≥5 were kept for downstream sc-eQTL 577 

analysis. To remove the effects of confounding variables (e.g., batch effect) from gene 578 

expression, the PEER factors were calculated from the transformed gene expression with the 579 

“PEER” R package[64,65]. 580 

  581 

 snATAC-seq processing 582 

 583 

The snATAC-seq raw data were processed with cell ranger and then analyzed with ArchR[66]. 584 

The QC and filtering of low quality cells and doublets were performed with ArchR using the 585 

default setting (minTSS = 4 and minFrags = 1000, doublet filterRatio=1). The cell types of 586 

snATAC-seq were assigned by integrating the snRNA-seq data of the 20 samples using ArchR. 587 

For each sample, the snATAC-seq bam file per cell type per donor was generated according to 588 

the cell type label. For each cell type, the bam files from the same cell type of the 20 donors 589 

were merged to call snATAC peaks with macs3 in the default setting[67]. To reduce false 590 
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positive peaks, only the peaks with mean FPKM ≥2 across samples per cell type were kept for 591 

each cell type. The filtered peaks from all cell types were combined to generate a set of 592 

standardized peak coordinates that can be compared among different cell types using the 593 

“Reduce” function in R. The peaks in the hg19 blacklist regions 594 

(wgEncodeHg19ConsensusSignalArtifactRegions) and chrY were filtered out. The standardized 595 

peak set was input into ArchR to generate peak to gene connection list, peak co-accessibility 596 

list, and the differential accessibility regions (DARs).  The TFs were identified from the OCRs 597 

per cell type by chromVAR and correlating the TF expression with their motif enrichment across 598 

cell types (p.adj < 0.01, correlation coefficient > 0.5, and a maximum inter-cluster difference in 599 

deviation z-score > 75th percentile) with ArchR.  600 

  601 

sc-eQTL mapping 602 

 603 

For each cell type, cis-eQTLs were mapped for the genes with mean CPM ≥5 using 604 

FastQTL[68]. Only the variants passing the following criteria were considered: 1) within +/-250 605 

kb of gene TSS, 2) in OCRs of the given cell type, 3) with minor allele frequency (MAF) ≥0.1 606 

across the 20 samples, and 4) minimum number of samples carrying the minor allele ≥ 4. Given 607 

the small sample size (N=20), three PEER factors and the first component of MDS analysis of 608 

the genotypes were used as covariates. The FastQTL were run in a nominal pass mode. To 609 

identify gene level significant sc-eQTLs, the p-value of each sc-eQTL per gene was corrected 610 

for multiple testing with Bonferroni method, based on the number of independent variants per 611 

gene estimated by eigenMT[69], for each cell type respectively. 612 

  613 

sc-ASE mapping 614 

 615 
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The snRNA-seq bam file per cell type per sample were generated according to the cell type 616 

label. To correct read mapping bias, the snRNA-seq bam file per cell type per sample were 617 

processed with WASP[70]. Duplicate reads were removed with UMI-tools[71]. For each sample, 618 

the reference-panel phased SNP VCF and corrected snRNA-seq bam files were used to 619 

generate haplotype count and genome-wide phased VCF with phASER[72]. The gene level 620 

haplotype counts for allelic expression were obtained using phASER Gene AE. For each cell 621 

type, the gene-level haplotypic counts per sample were combined to produce a haplotypic 622 

expression matrix (gene x sample) using phaser_expr_matrix.py of phASER-POP[73]. For each 623 

cell type, the effect sizes of all tested variant-gene pairs in the aforementioned sc-eQTL analysis 624 

were calculated using the aggregated haplotypic expression matrix and the genome-wide 625 

phased VCF with phaser_cis_var.py of phASER-POP. Only the variants with ≥4 heterozygotes 626 

are considered. For each cell type, genome-wide multiple testing correction was performed for 627 

each variant with Benjamini-Hochberg method. The variants with FDR <10% were identified as 628 

sc-ASEs. 629 

  630 

sc-ASCA mapping 631 

 632 

For each sample, to correct read mapping bias, the snATAC-seq bam file per cell type per 633 

sample were processed with WASP[70]. Duplicate reads were removed with MarkDuplicates 634 

(Picard) from GATK[54]. The allelic count of SNPs was obtained using ASEReadCounter from 635 

GATK. For each SNP per cell type per sample with at least 10 reads from WGS and 10 reads 636 

from snATAC-seq are considered, and one-sided Fisher test was used to compare whether the 637 

allelic count ratio from snATAC-seq was significantly greater or less than the allelic count ratio 638 

of from WGS. For each cell type, the Fisher test P values of the same SNP in all heterozygous 639 

samples were combined to calculate a meta P value using the Stouffer’s method with the 640 

“metap” R package[74] (with the total read count in WGS-seq and snATAC-seq as the weight 641 
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for each sample). For each SNP per cell type, only the meta P value in the effect direction with 642 

more significance was kept. For each cell type, the SNPs passing the follow criteria were 643 

considered: 1) with at least of three heterozygous samples and 2) considered in the 644 

aforementioned sc-eQTL analysis. To correct for genome-wide multiple testing, for each cell 645 

type, Benjamini-Hochberg correction was applied to meta P value of each SNPs to identify sc-646 

ASCAs with FDR <10%. 647 

  648 

sc-caQTL mapping 649 

 650 

For each cell type, the fragment count matrices (peak x sample) were generated based on the 651 

standardized peak coordinates in the given cell type and the snATAC-seq bam file (after WASP 652 

correction and removal of duplicate reads) per sample per cell type using featuerCounts[75]. For 653 

each cell type, the reference-panel phased SNPs were annotated with allelic read counts using 654 

RASQUAL tools[76]. To correct for library size and GC content bias in feature-level fragment 655 

counts per sample, the sample specific offset was computed using the 656 

rasqualCalculateSampleOffsets() function with the “GC-correction” option. The fragment count 657 

covariates were calculated with make_covariates() function of rasqual package (with variable 658 

number of covariates in different cell types) and were included into the model.  For each cell 659 

type, sc-caQTL analysis was performed for the variants that were considered in sc-eQTL 660 

analysis. RASQUAL was run in two modes: 1) in the default setting and 2) with permuted 661 

sample labels using the “—random-permutation” option. To correct for multiple testing in feature 662 

level, the number of independent variants/tests per peak was determined with eigenMT[69]. 663 

Based on the number of independent tests, the true association P values and empirical 664 

permuted P values were corrected with Bonferroni method respectively. To correct for multiple 665 

testing genome-wide, the corrected true association P values were compared to the corrected 666 

empirical null distribution to determine the true P value threshold with FDR < 10%.  667 
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 668 

 LCRE identification 669 

 670 

The gene-peak links were identified based on the correlation of gene expression and chromatin 671 

accessibility of snATAC-seq OCRs (-/+250kb) using the addPeak2GeneLinks() function in 672 

ArchR[66] with binarized peak read counts. The peak co-accessibility was estimated with the 673 

addCoAccessibility() function in ArchR with binarized peak read counts (for OCRs in -/+250kb). 674 

The snATAC-seq OCRs were annotated with ChIPseeker[77] and the OCRs within -/+1kb 675 

surrounding the promoter regions were defined as promoters. From the gene-peak links, we 676 

selected the OCRs that are not promoters as the CREs of the linked genes, while from the peak 677 

co-accessibility links, we selected the OCRs linked to promoters as the CREs of the target 678 

genes. The union set of gene-peak links and peak co-accessibility links were defined as the 679 

linked cis regulatory elements (LCRE) of the associated genes.  680 

  681 

Predicting the motif disrupting effects of SNPs 682 

 683 

To determine if genetic variants within OCRs affect TF binding sites (TFBSs), we identified 684 

known TF motifs to the sequence surrounding genetic variants with motifBreakR[78], based on 685 

2817 TF motifs (Hsapiens) from MotifBreakR database. The relative entropy of the motifs with 686 

reference allele and alternative allele was calculated, and only the TFBSs that were strongly 687 

affected (effect = “strong”) by SNPs were considered (with the parameters: filterp=TRUE, 688 

threshold= 1e-4, method=”ic”). We further required a TF with CPM ≥ 50 in the corresponding 689 

cell types to determine if its motif is perturbed by genetic variants.  690 

 691 

Identification of LD-independent sc-caQTL and LD-independent sc-eQTL  692 

 693 
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PLINK v1.90b5.2[55] (with the parameters: --clump-p1 0.05 --clump-p2 0.05 --clump-r2 0.50 --694 

clump-kb 250) was used to clump sc-eQTLs per eGene per cell type and to clump sc-caQTLs 695 

per caPeak per cell type. The SNPs with the smallest p-value were assigned as the index 696 

SNPs. For multiple index SNPs with the same p-value, the SNP that is closest to gene TSS was 697 

assigned as the index sc-eQTL SNP, while the SNP that is closest to peak summit was 698 

assigned as the index sc-caQTL SNP. 699 

 700 

Identification of caQTLs associated with multiple genomic regions  701 

 702 

For each common variant within snATAC-seq OCRs, we tested the association between the 703 

variant and the accessibility of snATAC-seq OCRs in -/+250kb surrounding the variant and took 704 

𝑝 < 0.005	as significant association. If the variant itself is a sc-caQTL of its residing OCR and 705 

also associated with other surrounding OCRs, we defined it as a sc-caQTL associated with 706 

multiple genomic regions and the residing OCR as the master caPeak while the other 707 

surrounding peaks as the dependent caPeaks. To avoid the confounding effect that two sc-708 

caQTLs affecting two master caPeaks are in LD, the OCR that is a master caPeak and has its 709 

own resident caQTL that is in LD with the tested variant (𝑟$ > 0.5) was filtered out.  710 

 711 

Cell type enrichment of GWAS loci 712 

 713 

To determine the cell type enrichment of GWAS loci, we analyzed chromatin accessibility and 714 

gene expression derived from single cell multiomics data respectively. For chromatin 715 

accessibility, we partitioned the heritability of GWAS traits into the cell type OCRs and DARs 716 

through stratified LD score regression based on the summary statistics of GWAS traits with 717 

LDSC[43] (Supplementary Note). For gene expression, we assessed whether there is linear 718 
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positive correlation between gene expression cell type specificity and gene-level genetic 719 

association with GWAS studies by MAGMA.Celltype[44–47]  (Supplementary Note). 720 

  721 

Fine-mapping GWAS loci 722 

 723 

We fine-mapped GWAS loci based on the summary statistics of GWAS studies[36,40,42,48]. 724 

For each GWAS study, the SNPs with 𝑝 < 5 × 10!( and present in 1000 genome (phase 3) 725 

European population were considered and were divided in the LD blocks identified by previous 726 

study[79]. The prior of each SNP was computed based on GWAS Z-score and the functional 727 

annotation of the SNP with “TORUS” package[80]. The annotation of a SNP was assigned to 728 

one of the categories: “4” if the SNP in the exonic/UTR regions, “3” if the SNP in the promoter 729 

region, “2” if the SNP in LCRE, “1” if the SNP in snATAC-seq OCR, “0” if the SNP not in 730 

snATAC-seq OCR. For each LD block, we calculated the PIP of each SNP and credible set of 731 

SNPs with the aforementioned prior weight generated by TORUS (i.e. functional PIP) and 732 

without the weighted prior (uniform PIP), respectively with “susieR” package[81]. Then we 733 

overlapped the fine-mapped variants with functional PIP > 0.1 with sc-eQTL, sc-caQTL and sc-734 

ASCA.  735 

 736 

 737 
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Figure titles and legends 771 

Fig. 1: Profiling gene expression and chromatin accessibility of retinal cells.  772 

a Schematics of experiment design. b Uniform Manifold Approximation and Projection (UMAP) 773 

of cells from snRNA-seq and snATAC-seq. The cells were clustered into major retinal cell types. 774 

The same cell types from the two modalities are labeled with the same colors. c Marker gene 775 

expression measured by snRNA-seq and marker gene activity scores derived from chromatin 776 

accessibility measured by snATAC-seq are specific in the corresponding cell type. d The 777 

proportion of each cell type from snRNA-seq and snATAC-seq is similar across different 778 

samples. The number of cells per cell type per sample was listed in Supplementary Table 2. e 779 

Heatmap shows gene expression of the transcription factors identified in each cell type, based 780 

on chromVAR and the correlation between motif enrichment and gene expression. f Heatmap 781 

shows the chromatin accessibility (left) and gene expression (right) of 75154 significantly linked 782 

CRE-gene pairs. Rows were clustered using k-means clustering (k=25).  g The proportions of 783 

Rod OCRs that are cell type specific LCRE, cell type specific non-LCRE, cell group specific 784 

LCRE, cell group specific non-LCRE, constant LCRE, and constant non-LCRE. 785 

 786 

Fig. 2: Identification of sc-eQTLs in retinal cell types. 787 

a The number of independent index sc-eQTLs reaching gene-level FDR < 0.1 per cell type. b 788 

The number of sc-eGenes reaching gene-level FDR < 0.1 per cell type. c Heatmap shows the 789 

Pearson correlation of sc-eQTL effect size across retinal cell types. d The sc-eQTLs identified in 790 

two or more cell types in distal OCRs have greater effect size than the ones identified in one cell 791 

type in distal OCRs in Rod. Two-sided Wilcoxon rank sum test, 𝑝 = 1.88 × 10!%. e The sc-792 

eQTLs identified in two or more cell types in distal OCRs are closer to gene TSS than the ones 793 

unique to one cell type in distal OCRs in Rod. Two-sided Wilcoxon rank sum test, 𝑝 =794 

9.75 × 10!"". f The proportions of gene-level significant sc-eQTLs overlapping with gene-level 795 
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significant bulk eQTLs. sc: the identified sc-eQTLs. Other: other tissue bulk eQTLs. g Heatmap 796 

shows effects of the sc-eQTLs and the overlapped bulk eQTLs are largely consistent across 797 

different retinal cell types and tissues. h The effect size of the overlapped sc-eQTLs and sc-798 

ASEs in the corresponding cell type are significantly positively correlated. The Pearson 799 

correlation coefficient and p-values are indicated in the figure. 800 

 801 

Fig. 3: Cell type specific sc-eQTLs are often within OCRs shared by multiple cell types. 802 

a The sc-eGenes of sc-eQTLs are often expressed in multiple cell types. b sc-eQTLs of the 803 

same sc-eGene are often different across cell types. c The majority of the sc-eQTL-containing 804 

OCRs are accessible in multiple cell types. d The variant rs10793810 is a MG-specific sc-eQTL 805 

of SLC27A6 and located in a MG-specific OCR. This variant is predicted to enhance the binding 806 

of FOXP2, which is highly expressed in MG. This OCR is a predicted LCRE of SLC27A6. e The 807 

variant rs62308155 is a Rod-specific sc-eQTL of REST, and resides in an OCR accessible in 808 

Rod and Cone. This variant is predicted to disrupt the binding of NR3C1, which is highly 809 

expressed in Rod but minimally in Cone. This OCR is a predicted LCRE of REST. f The TFs, 810 

whose binding sites are perturbed by a variant that is sc-eQTL in Rod but not in another cell 811 

type, have higher expression in Rod than the other cell type. One-sided Wilcoxon rank sum test. 812 

The p-value and sample size n are indicated in the figure. The Y axis was set between 0 and 813 

250 for better visualization of the data.   814 

 815 

Fig. 4: Identification of sc-caQTL in retinal cell types. 816 

a The number of independent index sc-caQTLs reaching genome-level FDR < 0.1 per cell type. 817 

b The number of sc-caPeak reaching genome-level FDR < 0.1 per cell type. c Heatmap shows 818 

the Pearson correlation of sc-caQTL effect size across retinal cell types. d The distal sc-caQTLs 819 

identified in two or more cell types have greater effect size than the ones identified in one cell 820 

type in Rod. Two-sided Wilcoxon rank sum test, 𝑝 < 2.2 × 10!"# . e The effect size of sc-ASCA 821 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516814doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516814
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33 

and the population effect size of sc-caQTLs is significantly positively correlated for each cell 822 

type. The Pearson correlation coefficient and p-values are indicated in the figure. f The majority 823 

of the sc-caPeaks (i.e. sc-caQTL-containing OCRs) are accessible in multiple cell types. g The 824 

sc-caQTLs of the same sc-caPeak can be different across cell types.  825 

 826 

Fig 5: Examples of cell type specific sc-caQTLs.  827 

a The variant rs12447029 is a MG-specific sc-caQTL of its residing OCR, and resides in a MG-828 

specific OCR. This variant is predicted to enhance the binding of NFE2L2, increasing chromatin 829 

accessibility of its residing OCR in MG. NFE2L2 is highly expressed in multiple cell types. This 830 

OCR is a predicted LCRE of GRIN2A. b The variant rs6859300 is a Rod-specific sc-caQTL of 831 

its residing OCR, and resides in an OCR accessible in Rod, Cone, and BC. This variant is 832 

predicted to enhance binding of EPAS1, increasing chromatin accessibility of its residing OCR 833 

in Rod. EPAS1 is highly expressed in Rod but lowly in Cone and BC. This OCR is a predicted 834 

LCRE of WWC1. c The TFs, whose binding sites are perturbed by a variant that is sc-caQTL in 835 

Rod but not in another cell type, have higher expression in Rod than the other cell type. One-836 

sided Wilcoxon rank sum test. The p-value and sample size n are indicated in the figure. The Y 837 

axis was set between 0 and 250 for better visualization of the data.   838 

 839 

Fig. 6: The sc-caQTLs with effects on multiple genomic regions. 840 

a The proportion of variants affecting dependent OCRs and the proportion of variants affecting 841 

dependent LCREs. The proportions associated with sc-caQTLs are significantly higher than the 842 

proportions associated with background variants. The numbers of variants affecting dependent 843 

OCRs are indicated in the figure. b The effect size of sc-caQTLs on master regions and the 844 

effect size of sc-caQTLs on dependent regions are positively correlated. c The proportion of 845 

OCRs that are DARs and have concurrent H3K27ac and H3K4me2 modifications in Rod. The 846 

numbers of caPeaks with different features are indicated in the figure. d The variant rs7596259 847 
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is a sc-caQTL and affects a master region (red) and three dependent regions (yellow) in the 848 

same effect direction in Rod. The master region and one dependent region are LCREs of 849 

ITGA6. This variant is also a sc-eQTL of ITGA6 in Rod. e The variant rs1493699 is a sc-caQTL 850 

and affects a master region (red) and a dependent region (yellow) in the opposite direction in 851 

MG. Although the two regions are LCREs of PEAK1, this variant is not a sc-eQTL of PEAK1 in 852 

MG.    853 

 854 

Fig. 7: Cell type enrichment and causal variant prioritization underlying GWAS loci. 855 

a The cell type enrichment of 11 eye-related and one control GWAS loci by partitioning the 856 

heritability enrichment in cell type DARs with LDSC. POAG: primary open-angle glaucoma. IOP: 857 

intraocular pressure. VCDR: vertical cup-disc ratio of optic nerve. CA: cup area of optic nerve. 858 

DA: disc area of optic nerve. PCAG: primary angle closure glaucoma. AMD: age-related 859 

macular degeneration. b The cell type enrichment of 11 eye-related and one control GWAS loci 860 

based on gene expression cell type specificity from snRNA-seq data with MAGMA.Celltyping. c 861 

Venn diagram showing the features of the prioritized GWAS loci overlapped with sc-QTL and/or 862 

sc-ASCA. d The variant rs1328363 associated with refraction error and myopia with PIP=0.308 863 

is a sc-eQTL of GPC6, a sc-caQTL of its residing OCR and a sc-ASCA in Rod. Its residing OCR 864 

is accessible in Rod, Cone, BC and MG, and a predicted LCRE of GPC6. This variant 865 

strengthens the binding of a photoreceptor-specific TF (CRX). This variant is also a marginal sc-866 

eQTL of GPC6 in Cone, consistent with CRX also being a TF for Cone, much lower expression 867 

of GPC6 and lower accessibility of the corresponding LCRE in Cone. 868 

 869 

Fig. 8: A model of the cell type specific effect of genetic variants. 870 

The schematic plot shows that for the cell types sharing a similar lineage, the cell type specific 871 

effect of genetic variants is not primarily due to cell type specific chromatin accessibility of cis-872 

elements but may be mainly driven by perturbing the binding of cell type specific trans-873 
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regulators, indicating hierarchical transcription factors collaboration may play important role in 874 

cell type specific effects of genetic variants on gene regulation. 875 

 876 

 877 

Additional Files 878 

Supplementary Information: Supplementary Figures, Supplementary Table Titles and 879 

Supplementary Note. 880 
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