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Abstract

Background:

Systematic characterization of how genetic variation modulates gene regulation in a cell type
specific context is essential for understanding complex traits. To address this question, we
profiled gene expression and chromatin state of cells from healthy retinae of 20 human donors

with a single-cell multiomics approach, and performed genomic sequencing.

Results:

We mapped single-cell eQTL (sc-eQTLs), single-cell caQTL (sc-caQTL), single-cell allelic
specific chromatin accessibility (sc-ASCA) and single-cell allelic specific expression (sc-ASE) in
major retinal cell types. By integrating these results, we identified and characterized regulatory
elements and genetic variants effective on gene regulation in individual cell types. Most of the
sc-eQTLs and sc-caQTLs identified show cell type specific effects, while the cis-elements
containing the genetic variants with cell type specific effects tend to be accessible in multiple
cell types. Furthermore, the transcription factors with binding sites perturbed by genetic variants
tend to have higher expression in the cell types, where the variants have effect, than the cell
types where the variants do not have effect. Finally, we identified the enriched cell types,
candidate causal variants and genes, and cell type specific regulatory mechanism underlying

GWAS loci.

Conclusions:
Overall, genetic effects on gene regulation are highly context dependent. Our results suggest
that among cell types sharing a similar lineage, cell type dependent genetic effect is primarily

driven by trans-factors rather than cell type specific chromatin state of cis-elements. Our
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findings indicate a role for hierarchical transcription factors collaboration in cell type specific

effects of genetic variants on gene regulation.

Keywords:
Genetic effect, gene regulation, cell type specific effect, eQTL, caQTL, ASE, ASCA, single cell

multiomics, retina

Background

Gene regulation is cell type dependent[1], and the modulation of this process by genetic
variation among individuals is a major contributor to complex traits and diseases [2-5].
Substantial progress has been made in mapping, annotation, and functional validation of
regulatory variants[6—10]. However, the mechanisms by which genetic variants modulate gene
regulation in cell type specific context remain largely unclear[11,12]. Indeed, prior in vivo studies
conducted on bulk tissues have a limited ability to elucidate the cell type effects of gene
regulation. This gap can be addressed by recent advances in single-cell omics
technologies[1,13—16]. Recent studies using single-cell omics technologies, have generated cell
atlases for different tissues and development stages, revealing regulatory elements in cell
type/state resolution, facilitating the interpretation of non-coding variants[17-20]. Several
pioneer studies further mapped expression QTL (eQTL) or chromatin accessibility QTL (caQTL)
alone, based on molecular phenotypes profiled by single cell sequencing, which uncover the cell
type/state specific effect of genetic variants[21-27]. Even so, the mechanisms underlying cell
type/state specific effects of genetic variants are still elusive. To answer these questions, we

integrated genomic sequencing with single cell multiomics profiling of gene expression and


https://doi.org/10.1101/2022.11.16.516814
http://creativecommons.org/licenses/by-nc-nd/4.0/

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516814; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

chromatin state, which offers a unique opportunity to identify and characterize regulatory
elements, the effect of genetic variants, and the modulation mechanism underlying gene

regulation in individual cell type contexts in vivo.

We performed whole genome sequencing (WGS), single nuclei RNA-sequencing (snRNA-seq)
and single-nuclei assay for transposase-accessible chromatin sequencing (snATAC-seq) on the
cells of healthy retinae from 20 human donors. We mapped sc-eQTLs, sc-caQTLs, sc-ASE, and
sc-ASCA for major retinal cell types. Integration of these results leads to genome-wide
identification and characterization of gene regulatory elements, and genetic variants affecting
chromatin state and gene expression in individual cell type contexts. Intriguingly, most of sc-
QTLs identified are specific to one cell type, suggesting a significant proportion of variants
modulate gene expression and chromatin state depending on cell type. Further analyses
suggest for the cell types sharing a similar lineage, such as retinal cell types studied here, the
cell type specific effect of genetic variants seems not primarily due to cell type specific
chromatin state of the affected cis-elements, but may be driven by perturbing the binding of
trans-regulators. Finally, by integrating the single cell multiomics data, genetic association
results and GWAS, we identified the enriched cell types, fine-mapped candidate causal variants

and genes, and uncovered the regulatory mechanisms underlying GWAS loci.

Results

Single nuclei multiomics profiling of 20 healthy human donor retinae

To profile gene expression and chromatin state in cell type specific context, we performed

snRNA-seq and snATAC-seq on the healthy retinae from 20 human donors (Fig. 1a,

Supplementary Table 1). For snRNA-seq, upon quality control (QC), a total of 192,792 nuclei
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103  were clustered into 10 major retinal cell classes, including rod photoreceptors (Rod), cone

104  photoreceptors (Cone), bipolar cells (BC), amacrine cells (AC), horizontal cells (HC), miller glia
105 cells (MG), retinal ganglion cells (RGC), astrocytes (Astro), endothelial cells and microglia cells
106  (Methods, Fig. 1b). In parallel, snATAC-seq was performed for the same set of donor retinae.
107  After QC, a total of 245,541 nuclei were clustered into 9 major retinal cell classes (Fig. 1b).

108 Consistent with the cell type annotation, canonical cell type marker genes show specific

109 expression and gene activity in the corresponding cell clusters from snRNA-seq and snATAC-
110  seq respectively[28] (Fig. 1c). Furthermore, the distribution of different cell types profiled by the
111 two methods is highly concordant across the samples, ranging from 2.5% RGC to 55.2% Rod
112 (Fig. 1d, Supplementary Table 2).

113

114  Atotal of 430,567 open chromatin regions (OCRs) were identified from the snATAC-seq data,
115  ranging from 48,764 to 199,666 per cell type (Methods, Supplementary Table 3). To assess the
116  quality of these OCRs, we compared them with the ones from previously published bulk ATAC-
117  seq data[29]. The snATAC-seq OCRs showed high sensitivity, capturing most OCRs identified
118 by bulk ATAC-seq and the cell type specific OCRs that are largely missing by bulk ATAC-seq
119  (Supplementary Fig. 1a,b,c). Specifically, 74.9% and 84.2% of OCRs identified by bulk ATAC-
120  seq on the retina and macula tissues were detected in the snATAC-seq dataset respectively
121 [29], and 96.2% of putative active enhancers previously identified were found in the snATAC-
122  seq OCR list[29] (Supplementary Fig. 1a). Consistent with that Rod is the most abundant cell
123  type in the retina, OCRs in Rod show the highest correlation with the bulk retina data with a
124  Pearson correlation of 0.69 (Supplementary Fig. 1b). Lower correlations are observed in other
125  cell types, particularly rare cell types, for example, a Pearson correlation of 0.41 for RGC

126  (Supplementary Fig. 1b). Conversely, 74.0% of the OCRs are only detected by snATAC-seq,
127  indicating a large portion of OCRs are present in a subset of cell types. Indeed, 51.5% of the

128 snATAC-seq OCRs are unique to one cell type (Supplementary Table 2). As expected, the cell
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129  type specific OCRs are largely missed by the bulk ATAC-seq with a low detection rate of 14.3%
130  (Supplementary Fig. 1c). To further evaluate the snATAC-seq OCRs, we examined TF binding
131 motif enrichment in the OCRs for each cell type (Fig. 1€). Consistently, many TFs identified are
132  previously shown to play cell type specific role in the retina, such as OTX2, CRX, MEF2D in
133  photoreceptor cells, ONECUTZ2 in HC, NFIA, NFIB, NFIX, LHX2 in MG, supporting the quality of
134  this dataset[30-34].

135

136  Putative linked cis regulatory elements (LCREs) among the OCRs were identified by calculating
137  the correlation between the accessibility of OCRs and the nearby (+/-250kb) promoter/gene
138  expression (Fig. 1f). As a result, about 16.6% (71,274) of the OCRs are linked to 13,405 target
139  genes, averaging 5.9 LCREs per gene per cell type. As expected, LCREs are enriched for the
140 CREs identified in previous studies, with 74.2% and 87.0% of the LCREs found in the ENCODE
141 cCRE registry[6] and recent cCREs atlas[17] respectively (1.44- and 1.26-fold enrichment

142  compared to all the OCRs, two-sided binomial test, p < 2.2 x 1071¢ ). Furthermore, LCREs are
143  highly enriched with active enhancers. For example, 83.8% of LCREs in Rod carry the

144  epigenetic modifications of active enhancers, concurrent H3K4me2 and H3K27ac, a 2.1-fold
145  enrichment compared to all the OCRs (two-sided binomial test, p < 2.2 x 1071 Fig. 1g).

146 Interestingly, LCREs are depleted from cell type specific OCRs. For each cell type, on average
147  5.9% of LCREs are in cell type specific OCRs, 62.1% of LCREs are from OCRs shared by

148  multiple cell types, and 32.0% of LCREs are from constant OCRs (Fig. 1g). Furthermore,

149 LCREs tend to be in more dynamic OCRs with overall 57.3% in the differential accessible

150  regions (DARs), a 2.2-fold enrichment compared to all the OCRs (p < 2.2 x 10716,

151  Supplementary Fig. 1d).

152

153  Significant proportion of sc-eQTLs are cell type specific in retina

154
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155  To profile genetic variation in the donors, WGS was performed for each donor and a total of 9.8
156  million genetic variants were identified after QC (Supplementary Fig. 2a). To identify genetic
157  variants that affect gene expression, we mapped sc-eQTLs for each major retinal cell type. Due
158  to the limited number of individuals available for our study, only variants with allele frequency >
159 0.1 that are within OCRs surrounding the genes (-/+250kb of gene transcription start site, TSS)
160  were tested, totaling 421,004 variants, averaging 59.9 variants per gene and 2.8 variants per
161 OCR per cell type.

162

163 14,377 sc-eQTLs that reach gene level significance with false discovery rate (FDR) < 10% were
164  identified. The variants that are in linkage disequilibrium (LD) (r? > 0.5) from the same sc-

165 eGene were grouped, resulting in a total of 5,688 independent sc-eQTL sets associated with
166 4,069 sc-eGenes, ranging from 704 to 1,175 sc-eQTL sets per cell type (Fig. 2a, b,

167  Supplementary Table 4). The majority (86.1%-91.8%) of sc-eGenes has one sc-eQTL set per
168  cell type (Supplementary Fig. 2b). Interestingly, most of sc-eQTLs are cell type specific, with
169  87.0%-92.3% identified in only one cell type (Fig. 2a). Furthermore, the remaining sc-eQTLs
170 that are observed in multiple cell types are often shared among closely related cell types, such
171 as between rod and cone photoreceptors (Supplementary Fig. 2c). Consistently, the effect of sc-
172  eQTLs is correlated with the cell type similarity (Fig. 2c); for example, a stronger correlation is
173  observed between rod and cone photoreceptors (Pearson correlation r = 0.6). These results
174  suggest that the same genetic variant has a more concordant effect on gene regulation among
175 closely related cell types, as they share a similar transcription program. Interestingly, the effect
176  size of sc-eQTLs shared by multiple cell types in distal OCRs (which are non-promoter OCRSs) is
177  greater than that of the ones unique to one cell type (e.g., Rod, two-sided Wilcoxon rank sum

178  test, p = 1.88 x 1075, Fig. 2d). Consistently, sc-eQTLs shared by multiple cell types in distal
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179  OCRs are closer to gene TSS than those unique to one cell type (e.g., Rod, two-sided Wilcoxon
180  rank sum test, p = 9.75 x 10711, Fig. 2e).

181

182  Validation of sc-eQTLs with bulk eQTLs and sc-ASE

183

184  To evaluate the quality of sc-eQTLs, we compared them with the eQTLs previously identified in
185  bulk retina and other tissues from the GTEx project[35]. sc-eQTLs are enriched for bulk eQTLs.
186  On average 35.6% of sc-eQTLs are overlapped with the bulk retina eQTLs (4.4-fold enrichment
187  compared to background variants, two-sided binomial test p < 1.2 x 1071%¢) and 56.0%

188  overlapped with the bulk eQTLs from all the 49 tissues (2.3-fold enrichment compared to

189  background, two-sided binomial test p < 2.1 x 10745, | Fig. 2f). The proportion of overlap

190 varies among cell types (Fig. 2f). As expected, the highest overlap (63.9%) is observed for the
191  most abundant cell type, Rod, while the lowest overlap is observed for HC at 49.0% (Fig. 2f).
192  Effect direction of eQTLs across different cell types and tissues is largely concordant (Fig. 2g).
193

194  We further validated these sc-eQTLs with sc-ASEs. sc-eQTLs are enriched for sc-ASEs. sc-
195  ASEs are detected in 18.8%-34.0% of the sc-eQTLs that were tested for sc-ASEs (with the

196  highest overlapping in Rod, 34.0%), on average 2.5-fold enrichment compared to background
197  variants (two-sided binomial test p < 1.2 x 10712, Supplementary Fig. 2d). The effect size and
198  direction are positively correlated (Pearson correlation, r in 0.68-0.77, p < 2.2 x 1071¢), with the
199  majority (82.5%-94.2%) of the overlapped variants having the same direction (Figure 2h,

200  Supplementary Fig. 2d). Altogether, these results support that the majority of sc-eQTLs

201 identified are likely to be true positives.

202

203
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204 Cell type specific sc-eQTLs often reside in OCRs shared by multiple cell types

205

206  Aninteresting observation is that most (87.0%-92.3%) of sc-eQTLs are unique to one cell type,
207  while the associated sc-eGenes (94.6%-98.9%) are almost always expressed in multiple cell
208 types (Fig. 2a, 3a). Specifically, only a small proportion (1.8%-6.0%) of sc-eQTLs and their

209 associated sc-eGenes share the same pattern of cell type specificity. In over 90% of the cases,
210  while the sc-eQTL is observed in one or a subset of cell types, the sc-eGenes are expressed in
211 multiple cell types. Interestingly, for the same sc-eGene, different sc-eQTLs are often observed
212 in different cell types (36.4% of total sc-eQTLs) (Fig. 3b), and these sc-eQTLs tend to be in

213  different OCRs (34.0% of total sc-eQTLs, Supplementary Fig. 2e). This does not result from cell
214  type specific accessibility of the OCRs, as OCRs are often accessible in multiple cell types while
215  sc-eQTL effect of the resident variants are only observed in one or subset of cell types. This is
216  not due to the differential accessibility of the OCRs as well, since only a small proportion (8.8%-
217  19.4%) of sc-eQTLs in the DARs of the corresponding cell types. Only a small fraction (11.4%)
218 of sc-eQTLs reside in OCRs whose accessibility have matching cell type specificity as those of
219  the sc-eQTLs (Fig. 3c). For example, the variant rs10793810 is a MG specific sc-eQTL of

220 SLC27A6, and enhances the binding of FOXP2 (highly expressed in MG), to a MG-specific

221 enhancer of SLC27A6 (Fig. 3d). In contrast, most (89.1%) of sc-eQTLs are within the OCRs
222  shared among multiple cell types (Fig. 3c), suggesting that modulation of gene expression by
223  genetic variants is primarily driven by activity of trans-factors such as cell type specific TFs,

224  rather than the accessibility of cis-elements. For example, the variant rs62308155 is identified
225 as a Rod specific sc-eQTL of REST, likely through disrupting the binding of NR3C1, which is
226  highly expressed in Rod but minimally in Cone, to an enhancer accessible in both Rod and

227  Cone (Fig. 3e). Supporting the roles of trans-factors in driving cell type specific sc-eQTL effect
228 genome-widely, the TFs, whose motifs are perturbed by genetic variants, have higher

229  expression in the cell types where the variants have sc-eQTL effect, compared to the cell types
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230  where the variants do not have effect (e.g., Rod, one-sided Wilcoxon rank sum test, p <

231 4.7 x107°, Fig. 3f).

232

233  Significant proportion of sc-caQTLs are cell type specific in retina

234

235 In parallel with sc-eQTL analysis, to identify genetic variants that affect chromatin accessibility,
236  we performed sc-caQTL analysis by examining the association between each OCR and the
237  common variants within it for each major retinal cell type. A total of 174,419 OCRs (ranging from
238 54,716 to 95,020 OCRs per cell type) and the same set of variants tested for sc-eQTLs were
239 analyzed (Methods). Upon genome-wide multiple testing corrections, a total of 23,287 sc-

240 caQTLs were identified (FDR < 10%), which were grouped into 12,482 independent sc-caQTLs
241  sets mapped in 10,298 OCRs based on LD (r? > 0.5), ranging from 391 to 4,789 sc-caQTLs
242  sets per cell type (Fig. 4a,b and Supplementary Table 5). The majority (88.0%) of sc-caQTL-
243  containing OCRs, namely sc-caQTL-associated peaks (sc-caPeaks) in this study, contain only
244  one sc-caQTL set (Supplementary Fig. 3a). The majority of sc-caQTLs are cell type specific with
245  62.3%-85.7% unique to one cell type, a lesser degree compared to sc-eQTLs. Similar to sc-
246  eQTLs, the effect sizes of sc-caQTLs are correlated across cell types, with stronger correlation
247  observed between more closely related cell types (Fig. 4c and Supplementary Fig. 3b). The
248  distal sc-caQTLs common in multiple cell types have significantly greater effect than the ones
249  unique to one cell type (e.g., Rod, one-sided Wilcoxon rank sum test, p < 2.2 x 10716, Fig. 4d).
250

251  Validation of sc-caQTLs with sc-ASCA

252

253  To assess the quality of the sc-caQTLs identified, we compared sc-caQTLs with sc-ASCAs. sc-
254  ASCAs are detected in 8.7%-41.8% of the sc-caQTLs that were tested for sc-ASCAs (with the

255  highest overlapping rate in Rod, 41.8%), on average 15.9-fold enrichment compared to

10
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256  background (two-sided binomial test, p < 6.8 x 10~11, Supplementary Fig. 3c). Furthermore,
257  the effect size and direction of sc-ASCAs and the overlapped sc-caQTLs are positively

258  correlated (Pearson correlation, r in 0.75-0.90, p < 5.4 x 10™*), with the majority (82.4%-100%)
259  of the overlapped variants having the same direction (Fig. 4e, Supplementary Fig. 3c). These
260 results support that the sc-caQTLs identified are indeed enriched of variants associated with
261  change in chromatin accessibility. Conversely, 33.3%-54.5% of the identified sc-ASCAs overlap
262  with sc-caQTLs depending on cell type. Interestingly, the size of OCRs containing sc-ASCA-
263  only variants (not overlapped with sc-caQTL) are significantly larger than the ones containing
264  variants which are both sc-ASCA and sc-caQTL (Supplementary Fig. 3d, e.g., one-sided

265  wilcoxon rank sum test, p < 1.47 x 10721 in Rod). This observation suggests that the variants in
266  wider OCRs tend to have local effect, while the variants in the narrow OCRs are more likely to
267  affect accessibility of the entire OCRs.

268

269 Cell type specific sc-caQTLs can reside in OCRs accessible in multiple cell types

270

271  Like sc-eQTLs, most (62.3%-85.7%) of sc-caQTLs are unique to one cell type, while the

272  majority (74.8%) of sc-caPeaks are accessible in multiple cell types (Fig. 4a, f). Specifically,
273  24.4% of sc-caQTLs and their caPeaks share the same pattern of cell type specificity. 75.6% of
274  sc-caQTLs are found in one or a subset of cell types while the sc-caPeaks are accessible in
275  multiple cell types (Fig. 4f). Furthermore, the cell type unique sc-caQTLs is not due to the

276  differential accessibility of OCRs alone, since only a small proportion (14.9%-34.3%) of sc-

277  caQTLs were observed in the DARs of the corresponding cell types. Interestingly, for the sc-
278  caPeaks common in multiple cell types, different sc-caQTLs variants are observed in different
279  cell types, accounting for 13.9% of total sc-caQTLs (Fig. 4g). As an example where the cell

280  specificity matches between sc-caQTLs and their residing OCRs, the variant rs12447029 has

281 MG specific sc-caQTL effect through strengthening the binding of NFE2L2, which is highly

11
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282  expressed in multiple cell types, to a MG-specific enhancer (Fig. 5a). Consistently, the

283 corresponding OCR is a LCRE of GRIN2A, and rs12447029 is a sc-eQTL for GRIN2A in MG
284  (Supplementary Fig. 3e). In contrast, the cell type specificity of the vast majority of sc-caQTLs
285 cannot be explained by the cell type specificity of the corresponding OCRs alone. 68.3% of the
286  sc-caQTLs are unique to one cell type but reside in the OCRs observed in multiple cell types,
287 indicating the modulation of chromatin accessibility by genetic variants is often cell type-

288 dependent, probably through affecting the binding of cell type specific trans-factors (Fig. 4f). For
289  example, although accessible in Rod, Cone and BC, the variant rs6859300 affects the

290 chromatin in Rod only, possibly through enhancing the binding of EPAS1, which is highly

291  expressed in Rod while lowly expressed in Cone and BC (Fig 5b). Consistently, the

292  corresponding OCR is a LCRE of WWC1, and rs6859300 is a sc-eQTL of WWC1 in Rod

293  (Supplementary Fig. 3f). Furthermore, the TFs, whose motifs are perturbed by genetic variants,
294  have higher expression in the cell types where the variants have sc-caQTL effect, compared to
295 the cell types where the variants do not have effect, supporting the role of trans-factors in

296  driving cell type specific sc-caQTL effect genome-widely (e.g., Rod, one-sided Wilcoxon rank
297  sumtest, p < 4.5 x 10719, Fig. 5c).

298

299 Interaction among OCRs

300

301  Previous studies suggest that multiple regulatory elements can be regulated by a single genetic
302  variant[12]. One possible mechanism is that the accessibility of a “master” element affects the
303  accessibility of neighboring “dependent” elements[12]. To examine this phenomenon in our
304 dataset, we identified 2511 dependent regions associated with 1942 master regions (Methods).
305 Among them, 360 master regions that are LCRES, are associated with 427 dependent regions
306 that are LCREs of the same genes. The proportions of sc-caQTLs associated with the

307 dependent OCRs (e.g., 1.8-fold enrichment compared to background variants in Rod, two-sided

12
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308 binomial test, p = 1.48 x 10~88) and dependent LCREs (e.g., 1.7-fold enrichment compared to
309 background in Rod, two-sided binomial test, p = 4.49 x 10712) are significantly enriched

310 compared to background variants respectively, suggesting the association between sc-

311 caQTL/master elements and dependent elements are not random (Fig. 6a). The effect size of
312  sc-caQTLs on the master regions and dependent regions are positively correlated (an average
313  correlation coefficient of 0.60, p = 1.5 x 10~7), with the majority (65.0%-82.0%) of the sc-

314  caQTLs having the same effect direction on the master and dependent regions (Fig. 6b).

315  Furthermore, slightly higher enrichment in DARs and active enhancer modifications (the

316  concurrent H3K27ac and H3K4me2) was observed in the master regions than the dependent
317  regions (Fig. 6¢).

318

319  Although the majority (66.5%-87.7%) of the master regions have one dependent region, some
320 have multiple dependent regions. For example, the sc-caQTL variant rs7596259 increases

321  accessibility of its residing master region, and is associated with the increased accessibility of
322  the other three dependent regions in Rod (Fig. 6d). This sc-caQTL is also a sc-eQTL and

323 increases the gene expression of ITGAG in Rod, suggesting some of the affected regions might
324  be important for gene expression regulation (Fig. 6d). Indeed, the master region

325  (chr2:173305356-173307494) and one dependent region (chr2:173284642-173285585) are the
326  predicted LCREs of ITGAG6 (Fig. 6d). Moreover, the sc-caQTLs affecting multiple regions in the
327  same effect direction are more likely to overlap with sc-eQTLs in the corresponding cell type
328 than the sc-caQTLs affecting multiple regions in different effect directions (in Rod 15.9% vs.
329  4.2%, two-sided binomial test p = 2.25 x 10~8), which might be due to compensation between
330 the elements with opposite effect directions canceling out their impact on gene expression. For
331  example, the sc-caQTL variant rs1493699 reduces the accessibility of its residing master region

332 (chr15:77664198-77665218), and is associated with the increased accessibility of a dependent

13


https://doi.org/10.1101/2022.11.16.516814
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516814; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

333  region (chr15:77873253-77874263) in MG (Fig. 6e). Although the two elements are LCREs of
334  PEAKI1, this sc-caQTL is not a sc-eQTL of PEAK1, suggesting that these regulatory elements
335  might compensate for each other and overall do not change gene expression (Fig. 6e).

336

337

338 Prioritizing causal variants and cell type context underlying GWAS loci

339

340 The single cell multiomics dataset provides opportunities to fine map GWAS loci in a cell type
341  context. We first investigated the cell type enrichment of GWAS loci associated with 11 eye
342  traits or disorders[36—42] based on cell type chromatin accessibility and gene expression

343  respectively[43][44—47] (Methods). Interestingly, the GWAS loci enrichment identified from

344  chromatin state and gene expression converges to the same cell types (Fig. 7a,b, and

345  Supplementary Fig. 4a, Benjamini-Hochberg correction, p.adj < 0.1). Specifically, primary

346  open-angle glaucoma (POAG) related traits, such as cup areas (CA) and vertical cup-disc ratio
347  (VCDR) of optic nerve, intraocular pressure (IOP), and POAG, displayed enrichment in the
348 DARs, OCRs, and/or genes expressed in astrocytes and MG (p < 9.7 x 1073, p.adj < 0.1, Fig.
349  7a,b). Refractive error and myopia loci[42], displayed enrichment in the DARs, OCRs, and/or
350 genes expressed in most of major retinal cell types (p < 8.2 x 1073, p.adj < 0.1) (Fig. 7a,b and
351  Supplementary Fig. 4a). The loci associated with choroid/retina disorders, retinal

352  detachments/breaks, and retinal problems[41], showed enrichment in the DARs of MG (Fig. 7a,
353 p<72x1073 p.adj <0.1).

354

355  Toidentify causal variants and target genes with a cellular context underlying GWAS loci, we
356 fine-mapped GWAS variants associated with three eye diseases, glaucoma[36], age-related
357  macular degeneration[40], and refraction error/myopia[42]. We incorporated functional

358  annotation (including OCR and LCRE derived from single cell multiomics data) of variants to
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359  prioritize GWAS loci[48]. As a result, 818 variants with posterior inclusion probability (PIP) >
360 0.1 were identified, which contain potential causal variants and are enriched of variants in

361 regulatory regions (Supplementary Fig. 4b,c,d). Among them, 27 variants are sc-caQTL, sc-
362 eQTL, and/or sc-ASCA (Fig. 7c, Supplementary Fig. 4e,f, Supplementary Table 6). 22 (81.5%)
363  of these 27 variants are in the regions with epigenetic modifications, H3K27ac and/or H3K4me2,
364  supporting their regulatory role (Supplementary Table 6). To identify the target genes, 19 of the
365 27 variants were linked to 24 target genes through sc-eQTLs, LCREs and gene annotation

366  (Supplementary Table 7). As expected, 14 (58.3%) of the 24 candidate genes are the nearest
367  genes adjacent to the variants. Furthermore, 6 of these 24 genes are also supported by the
368  colocalization of GWAS signals with retinal bulk eQTL signals. For example, the variant

369 rs511217 is a fine-mapped variant associated with refraction error and myopia (PIP= 0.176).
370  This variant is a sc-eQTL of KCNA4 and a nominal significant sc-caQTL of its residing OCR in
371  BC. The corresponding OCR is a predicted LCRE of KCNA4. Consistently, the GWAS signal is
372  colocalized with the retinal bulk eQTL signal of KCNA4 as well (Supplementary Fig. 5).

373

374  Our integrative analysis also provided potential insights for the cell type specific regulatory

375  mechanisms of GWAS loci (Fig 7d). For example, rs1328363 is a fine-mapped variant

376  associated with refraction error and myopia (PIP=0.308). This variant may achieve Rod specific
377  effect (a sc-ASCA, nominal significant sc-eQTL, and nominal significant sc-caQTL) in increasing
378  expression of GPC6 through strengthening the binding of a photoreceptor-specific TF (CRX) to
379 a GPC6 enhancer which is accessible in multiple cell types (Fig 7d). This variant is also a

380 marginal sc-eQTL in Cone, concordant with CRX also being a TF for Cone, much lower

381  expression of GPC6, and lower accessibility of the corresponding enhancer in Cone. GPC6
382  encodes a putative cell surface glypican coreceptor, implicating its role in controlling cell growth
383  and division.

384
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385 Discussion

386

387 In this study, by combining single-cell multiomics to profile cells from human retina and genomic
388  sequencing, we identified regulatory elements, mapped effect of genetic variants, and

389  elucidated modulation mechanisms underlying gene regulation in individual cell type contexts in
390 vivo. The genetic effects on gene expression measured by sc-eQTLs and sc-ASE are highly
391  concordant, while the gene effects on chromatin accessibility assessed by sc-caQTLs and sc-
392  ASCAs also show consistency. Additionally, sc-eQTLs are enriched of bulk eQTLs from retina
393 and other tissue types, and higher overlapping rate was observed for the sc-eQTLs identified in
394  the most abundant cell type or the ones common in multiple cell types. Altogether, these results
395  support the quality of the mapped genetic effects on gene expression and chromatin

396  accessibility. Interestingly, a significant proportion (44.0%) of sc-eQTLs are missed from bulk
397  eQTLs, which might be due to most of the sc-eQTLs being cell type specific, thus the cell type
398  specific signals, in particular the ones associated with rare cell types, might be diluted and not
399 detectable in the bulk level. It is also likely that some sc-eQTLs have opposite effect direction in
400 different cell types, so the overall effect in the bulk level is canceled out, although we observed
401  avery small proportion of sc-eQTLs in such cases.

402

403 Intriguingly, most of the mapped sc-eQTLs and sc-caQTLs are cell type specific, while most of
404 eGene and caPeaks are active in multiple cell types, suggesting genetic variants modulate gene
405 expression and chromatin state in a cell type dependent manner. Surprisingly, the majority of
406  cell type specific sc-eQTLs and sc-caQTLs reside in the regulatory elements accessible in

407  multiple cell types. Furthermore, the TFs, whose motifs are perturbed by genetic variants, have
408 higher expression level in the cell types where the variants have cell type specific effect,

409 compared to the cell types where the variants do not have effect. Altogether, our study

410  suggested that for the cell types sharing a similar lineage, cell type specificity of genetic effect is
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411 not primarily due to cell type specificity of the affected cis-elements, but may be mainly achieved
412 by perturbing the binding of cell type specific trans-factors (Fig. 8). Specifically, we hypothesized
413  that some regulatory genomic regions in the cells sharing a similar lineage may be first opened
414  and primed by pioneer factors, thus different cell types could have common OCRs, and these
415 OCRs can be bound by additional different trans-factors later depending on cell type/state

416  context, in a collaborative manner. Therefore, genetic variants affecting the binding of cell

417  type/state specific trans-factors within the common OCRs could have cell type specific effect on
418  gene expression and chromatin accessibility. These results also suggested the accessibility of a
419  genomic region does not necessarily indicate its activity, and an accessible regulatory element
420 may be inactive and could be activated by the binding of additional trans-factors in a given cell
421  type/state context. However, for the cell types from different lineages, the affected cis-elements
422  may play important role in determining the cell type specificity of genetic variant effects, which
423  needs further investigation.

424

425  Moreover, we showed that integration of single cell multiomics and GWAS studies can increase
426  the power to prioritize effective cell context, causal variants and genes, and better dissect the
427  underlying regulatory mechanisms. In our study, the cell type enrichment of GWAS traits

428 measured by gene expression and chromatin accessibility converged to the same cell types,
429  supporting the accuracy of our result, and suggesting some GWAS loci may indeed affect

430 regulatory elements linked to gene expression in specific cell type context. Intriguingly, our

431  analyses showed that astrocyte and MG play important role in POAG, and MG may be involved
432 in choroid/retina disorders, suggesting non-neuronal cell types, particularly glia cells, may be
433 critical for neuronal diseases. MG and astrocyte are macroglia cells in the retina and play

434  essential roles in maintaining the homeostasis and proper function of the retinal neurons[49]. In
435  particular, astrocytes are located in the nerve fiber and ganglion cell layers, support the

436  structure and physiology of the optic nerve head axon and modulate the extracellular matrix
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437  under elevated IOP[50], supporting their important role in glaucoma. Furthermore, we fine-
438 mapped GWAS loci based on functional annotation of genetic variants, which prioritize the
439 variants in regulatory regions as candidate causal variants. By overlapping the fine-mapped
440  GWAS variants with sc-eQTL and LCREs, we identified the genes potentially contributing to
441 myopia/refraction error and glaucoma. Moreover, combining gene expression, chromatin

442  accessibility, and their variation driven by genetic variants in cell type context, we explained the
443  cell type specific regulation mechanism underlying GWAS loci, which could be related to cell
444  type specific trans-factor binding and/or cis-elements. These findings could facilitate the

445  understanding of pathogenic mechanisms and provide guidance for functional analysis of
446  GWAS loci and development of disease treatment.

447

448  Conclusions:

449

450  We conducted the first systematic study of how common genetic variants modulate gene

451  expression and chromatin accessibility in major cell types of the human retina through

452  integrative single-cell multiomics analysis. Our findings suggest effects of genetic variants on
453  gene regulation are highly context dependent. For the cell types sharing a similar lineage, the
454  cell type specific genetic effects may be mainly driven by trans-factors rather than the chromatin
455  stat of the affected cis-elements. These results indicate hierarchical transcription factors

456  collaboration may play an important role in genetic regulation of gene expression and

457  chromatin. Our study provides novel insights on the mechanisms of gene regulation at a

458 nucleotide level of cellular resolution, which may shed light on understanding and treating
459  human diseases.

460

461

462 Methods
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463

464 Human retina sample collection

465

466  Samples included in this study were retinal tissues of 20 donors from the Utah Lions Eye Bank
467  (Supplement Table 1). All donors were screened for medical history, and only the ones with no
468 records of retinal diseases were used in this study. Post-mortem phenotyping with OCT were
469 performed to confirm that there were no drusen, atrophy, or any other disease phenotypes on
470 retina by our previous approach[51]. One eye was collected from each donor. All eye tissues were
471  collected and dissected within 6 hours post-mortem, according to previous protocol[52]. With 4mm
472 and 6mm disposable biopsy punches, macula and peripheral retina were collected and flash-
473  frozen in liquid nitrogen, and stored at -80°C before nuclei isolation. All tissues were de-identified
474  under HIPAA Privacy Rules. Institutional approval for the consent of patients for their tissue
475  donation was obtained from the University of Utah and conformed to the tenets of the Declaration
476  of Helsinki.

477

478 Nuclei isolation and sorting

479

480 Nuclei for snRNA-seq were isolated by fresh-made pre-chilled RNase-free lysis buffer (10mM
481  Tris-HCI, 10mM NaCl, 3mM MgCl2, 0.02% NP40). The frozen tissue was resuspended and
482  triturated in lysis buffer and homogenized with a Wheaton™ Dounce Tissue Grinder. Isolated
483 nuclei were filtered with a 40um Flowmi Cell Strainer. DAPI (4’,6-diamidino-2-phenylindole,
484  10ug/ml) was added before loading the nuclei for fluorescent cytometry sorting with a BD (Becton
485  Dickinson, San Jose, CA) Aria Il flow sorter (70um nozzle). The sorted nuclei are ready for
486  snRNA-seq.

487
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488 Nuclei for snATAC-seq were isolated in fresh-made pre-chilled lysis buffer (10mM Tris-HCI,

489  10mM NaCl, 3mM MgCl2, 0.02% NP40, 1% BSA). Similar to the nuclei isolation process for
490 snRNA-seq, frozen tissue was homogenized with a Dounce Tissue Grinder until no tissue

491  pieces were visible. Nuclei were then washed (wash buffer: 10mM Tris-HCI, 10mM NaCl, 3mM
492  MgCI2, 1% BSA) twice in a pre-coated (coating buffer: 10mM Tris-HCI, 10mM NaCl, 3mM

493  MgCI2, 4% BSA) 5ml round-bottom Falcon tube (Cat. NO. 352054 ) at 500g, 4°C for 5min. Nuclei
494  were resuspended in 1X diluted nuclei buffer (10X PN-2000153, PN-2000207) for a final

495  concentration of 3000-5000 nuclei/ul.

496

497  Single-nuclei sequencing

498

499  Single cell Gene Expression Library was prepared according to Chromium Next GEM Single Cell
500 3'ReagentKits v3.1 (10x Genomics). In Brief, single nuclei suspension, reverse transcription (RT)
501 reagents, Gel Beads containing barcoded oligonucleotides, and oil were loaded on a Chromium
502  controller (10x Genomics) to generate single cell GEMS (Gel Beads-In-Emulsions) where full
503 length cDNA was synthesized and barcoded for each single cell. Subsequently the GEMS are
504  broken and cDNA from each single cell are pooled. Following cleanup using Dynabeads MyOne
505 Silane Beads, cDNA is amplified by PCR. The amplified product is fragmented to optimal size
506 before end-repair, A-tailing, and adaptor ligation. Final library was generated by amplification.
507  After quantification with KAPA Library Quantification kit (Roche), libraries were sequenced on a
508 Novaseq 6000 Sequencer (lllumina).

509

510  Single cell ATAC Library was prepared according to Chromium Next GEM Single cell ATAC
511  Reagent kit v1.1 (10x Genomics). In Brief, prepared nuclei were incubated with transposome and
512  transposase entered and preferentially fragmented DNA in open region of chromatin. Transposed

513  single nuclei, a master mix, Gel Beads containing barcoded oligonucleotides, and oil were loaded
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514  on a Chromium controller (10x Genomics) to generate GEMS (Gel Beads-In-Emulsions) where
515  barcoded single strand DNA was synthesized. Subsequently the GEMS are broken and pooled.
516  Following sequential cleanup using Dynabeads MyOne Silane Beads and SPRI beads, barcoded
517  DNA fragments are amplified by PCR to generate indexed library. After quantification with KAPA
518 Library Quantification kit (Roche), libraries were sequenced on a Novaseq 6000 Sequencer
519  (lllumina).

520

521  Whole genome sequencing

522

523 1 ug genomic DNA was sheared with Covaris for 70 seconds and the purification was performed
524  with Ampure XP beads. After end repair and A-tailing, the indexed adaptors were added to the
525  product, and subsequently purified with Ampure XP beads. The diluted library was then

526  sequenced in an lllumina Novaseg6000 Sequencer.

527

528 WGS data processing

529

530 The WGS variant calling followed the GATK pipeline for analyzing small sample cohorts

531  (https://gatk.broadinstitute.org/hc/en-us/articles/360035890411-Calling-variants-on-cohorts-of-
532  samples-using-the-HaplotypeCaller-in-GVCF-mode). Briefly, WGS data was aligned to the

533  human reference genome (build hg19) with BWA-MEM[53]. After removing duplicate reads with
534  MarkDuplicates (Picard) from GATK, the bam files were realigned with base quality score

535 recalibration and local realignment with GATK4[54]. With the realigned bam files, the variants
536  were called to generate genome-wide genotype-per-site data for each sample (gVCF). The joint
537  genotyping was performed on variants of all samples using GATK GenotypeGVCFs. Variants

538 from joint genotyping underwent variant recalibration with GATK. The WGS variants were then
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539 QC and filtered (Supplementary Note), and a total of 9,792,238 variants were obtained for

540 downstream analysis.

541

542  Quality control of sample genotypes

543

544  The sample genotypes were QC using multidimensional scaling (MDS) analysis of plink with the
545  genotype data from the Hapmap project[55,56] (including 84 CHB individuals, 117 CEU

546 individuals, 115 YRI individuals). Briefly, the MDS analysis was performed with the filtered

547  autosomal SNPs that were presented in both donors and Hapmap populations. The 20 samples
548  were clustered with the Hapmap populations based on the MDS analysis, which is consistent
549  with the reported ethnicity of these samples, including 16 Caucasian, 3 Hispanic, and 1 Asian
550 (Supplementary Table 1, Supplementary Fig. 2a).

551

552  Phasing with reference panel

553

554  The SNPs aligned between the 1000 genome phase 3 reference panel and the genomes of the
555 20 samples were extracted with shapeit2[57,58]. For each autosome, the overlapped SNPs of
556 the sample genomes were phased with shapeit2 using the reference panel haplotypes with the
557  same ethnicity as the sample group.

558

559 snRNA-seq processing

560

561 The snRNA-seq raw data were processed with cell ranger. To remove the ambient RNA

562  contamination, the read count matrix (gene x cell) was corrected with SoupX for each

563 sample[59]. For each sample, to remove low quality cells, the corrected count matrix was

564 filtered using the following parameters: min.cells = 5, nFeature_RNA > 500, percent.mt < 15 by
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565  Seurat[60]. To remove doublets, DoubletFinder was applied to each sample with doublet rate
566  set at the cell number /1000 x 0.01[61]. After removing doublets for each sample, cell types
567  were predicted using scPred based on the reference retinal cell atlas[28,62]. The expression of
568  marker genes per cell type per sample were examined to confirm cell type assignment.

569

570 snRNA-seq gene expression quantification

571

572  For each cell type, the average CPM of each gene across the cells from the same cell type of a
573 sample was computed as the gene expression measurement per sample. For each cell type,
574  the gene expression of all genes in the 20 samples were collected (gene x sample matrix) to
575  perform quantile normalization. For each gene per cell type, the normalized gene expression
576 levels were transformed using rank based inverse normal transformation[63]. For each cell type,
577  only the genes with mean CPM (in the 20 samples) >5 were kept for downstream sc-eQTL
578 analysis. To remove the effects of confounding variables (e.g., batch effect) from gene

579  expression, the PEER factors were calculated from the transformed gene expression with the
580 “PEER” R package[64,65].

581

582 snATAC-seq processing

583

584  The snATAC-seq raw data were processed with cell ranger and then analyzed with ArchR[66].
585 The QC and filtering of low quality cells and doublets were performed with ArchR using the

586  default setting (minTSS = 4 and minFrags = 1000, doublet filterRatio=1). The cell types of

587  snATAC-seq were assigned by integrating the snRNA-seq data of the 20 samples using ArchR.
588  For each sample, the snATAC-seq bam file per cell type per donor was generated according to
589 the cell type label. For each cell type, the bam files from the same cell type of the 20 donors

590 were merged to call snATAC peaks with macs3 in the default setting[67]. To reduce false

23


https://doi.org/10.1101/2022.11.16.516814
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516814; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

591 positive peaks, only the peaks with mean FPKM >2 across samples per cell type were kept for
592  each cell type. The filtered peaks from all cell types were combined to generate a set of

593  standardized peak coordinates that can be compared among different cell types using the

594  “Reduce” function in R. The peaks in the hg19 blacklist regions

595 (wgEncodeHg19ConsensusSignalArtifactRegions) and chrY were filtered out. The standardized
596  peak set was input into ArchR to generate peak to gene connection list, peak co-accessibility
597 list, and the differential accessibility regions (DARs). The TFs were identified from the OCRs
598  per cell type by chromVAR and correlating the TF expression with their motif enrichment across
599 cell types (p.adj < 0.01, correlation coefficient > 0.5, and a maximum inter-cluster difference in
600 deviation z-score > 75th percentile) with ArchR.

601

602 sc-eQTL mapping

603

604  For each cell type, cis-eQTLs were mapped for the genes with mean CPM >5 using

605 FastQTL[68]. Only the variants passing the following criteria were considered: 1) within +/-250
606 kb of gene TSS, 2) in OCRs of the given cell type, 3) with minor allele frequency (MAF) >0.1
607  across the 20 samples, and 4) minimum number of samples carrying the minor allele > 4. Given
608 the small sample size (N=20), three PEER factors and the first component of MDS analysis of
609 the genotypes were used as covariates. The FastQTL were run in a nominal pass mode. To
610 identify gene level significant sc-eQTLs, the p-value of each sc-eQTL per gene was corrected
611  for multiple testing with Bonferroni method, based on the number of independent variants per
612  gene estimated by eigenMT[69], for each cell type respectively.

613

614  sc-ASE mapping

615

24


https://doi.org/10.1101/2022.11.16.516814
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516814; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

616  The snRNA-seq bam file per cell type per sample were generated according to the cell type
617 label. To correct read mapping bias, the snRNA-seq bam file per cell type per sample were

618  processed with WASP[70]. Duplicate reads were removed with UMI-tools[71]. For each sample,
619 the reference-panel phased SNP VCF and corrected snRNA-seq bam files were used to

620 generate haplotype count and genome-wide phased VCF with phASER[72]. The gene level

621 haplotype counts for allelic expression were obtained using phASER Gene AE. For each cell
622 type, the gene-level haplotypic counts per sample were combined to produce a haplotypic

623  expression matrix (gene x sample) using phaser_expr_matrix.py of phASER-POP[73]. For each
624  cell type, the effect sizes of all tested variant-gene pairs in the aforementioned sc-eQTL analysis
625  were calculated using the aggregated haplotypic expression matrix and the genome-wide

626 phased VCF with phaser_cis_var.py of phASER-POP. Only the variants with >4 heterozygotes
627  are considered. For each cell type, genome-wide multiple testing correction was performed for
628  each variant with Benjamini-Hochberg method. The variants with FDR <10% were identified as
629  sc-ASEs.

630

631  sc-ASCA mapping

632

633  For each sample, to correct read mapping bias, the snATAC-seq bam file per cell type per

634  sample were processed with WASP[70]. Duplicate reads were removed with MarkDuplicates
635  (Picard) from GATK][54]. The allelic count of SNPs was obtained using ASEReadCounter from
636  GATK. For each SNP per cell type per sample with at least 10 reads from WGS and 10 reads
637 from snATAC-seq are considered, and one-sided Fisher test was used to compare whether the
638 allelic count ratio from snATAC-seq was significantly greater or less than the allelic count ratio
639  of from WGS. For each cell type, the Fisher test P values of the same SNP in all heterozygous
640 samples were combined to calculate a meta P value using the Stouffer's method with the

641  “metap” R package[74] (with the total read count in WGS-seq and snATAC-seq as the weight
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642  for each sample). For each SNP per cell type, only the meta P value in the effect direction with
643  more significance was kept. For each cell type, the SNPs passing the follow criteria were

644  considered: 1) with at least of three heterozygous samples and 2) considered in the

645  aforementioned sc-eQTL analysis. To correct for genome-wide multiple testing, for each cell
646  type, Benjamini-Hochberg correction was applied to meta P value of each SNPs to identify sc-
647  ASCAs with FDR <10%.

648

649 sc-caQTL mapping

650

651 For each cell type, the fragment count matrices (peak x sample) were generated based on the
652  standardized peak coordinates in the given cell type and the snATAC-seq bam file (after WASP
653  correction and removal of duplicate reads) per sample per cell type using featuerCounts[75]. For
654  each cell type, the reference-panel phased SNPs were annotated with allelic read counts using
655 RASQUAL tools[76]. To correct for library size and GC content bias in feature-level fragment
656  counts per sample, the sample specific offset was computed using the

657  rasqualCalculateSampleOffsets() function with the “GC-correction” option. The fragment count
658  covariates were calculated with make_covariates() function of rasqual package (with variable
659  number of covariates in different cell types) and were included into the model. For each cell
660 type, sc-caQTL analysis was performed for the variants that were considered in sc-eQTL

661  analysis. RASQUAL was run in two modes: 1) in the default setting and 2) with permuted

662  sample labels using the “—random-permutation” option. To correct for multiple testing in feature
663 level, the number of independent variants/tests per peak was determined with eigenMT[69].
664 Based on the number of independent tests, the true association P values and empirical

665 permuted P values were corrected with Bonferroni method respectively. To correct for multiple
666 testing genome-wide, the corrected true association P values were compared to the corrected

667  empirical null distribution to determine the true P value threshold with FDR < 10%.
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668

669 LCRE identification

670

671 The gene-peak links were identified based on the correlation of gene expression and chromatin
672  accessibility of sSnATAC-seq OCRs (-/+250kb) using the addPeak2GeneLinks() function in

673  ArchR[66] with binarized peak read counts. The peak co-accessibility was estimated with the
674  addCoAccessibility() function in ArchR with binarized peak read counts (for OCRs in -/+250kb).
675 The snATAC-seq OCRs were annotated with ChlPseeker[77] and the OCRs within -/+1kb

676  surrounding the promoter regions were defined as promoters. From the gene-peak links, we
677  selected the OCRs that are not promoters as the CREs of the linked genes, while from the peak
678  co-accessibility links, we selected the OCRs linked to promoters as the CREs of the target

679 genes. The union set of gene-peak links and peak co-accessibility links were defined as the
680 linked cis regulatory elements (LCRE) of the associated genes.

681

682  Predicting the motif disrupting effects of SNPs

683

684  To determine if genetic variants within OCRs affect TF binding sites (TFBSs), we identified
685  known TF motifs to the sequence surrounding genetic variants with motifBreakR[78], based on
686 2817 TF motifs (Hsapiens) from MotifBreakR database. The relative entropy of the motifs with
687 reference allele and alternative allele was calculated, and only the TFBSs that were strongly
688  affected (effect = “strong”) by SNPs were considered (with the parameters: filterp=TRUE,

689 threshold= 1e-4, method="ic”). We further required a TF with CPM > 50 in the corresponding
690 cell types to determine if its motif is perturbed by genetic variants.

691

692 Identification of LD-independent sc-caQTL and LD-independent sc-eQTL

693
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694  PLINK v1.90b5.2[55] (with the parameters: --clump-p1 0.05 --clump-p2 0.05 --clump-r2 0.50 --
695 clump-kb 250) was used to clump sc-eQTLs per eGene per cell type and to clump sc-caQTLs
696 per caPeak per cell type. The SNPs with the smallest p-value were assigned as the index

697  SNPs. For multiple index SNPs with the same p-value, the SNP that is closest to gene TSS was
698  assigned as the index sc-eQTL SNP, while the SNP that is closest to peak summit was

699  assigned as the index sc-caQTL SNP.

700

701  Identification of caQTLs associated with multiple genomic regions

702

703  For each common variant within snATAC-seq OCRs, we tested the association between the
704  variant and the accessibility of snATAC-seq OCRs in -/+250kb surrounding the variant and took
705 p < 0.005 as significant association. If the variant itself is a sc-caQTL of its residing OCR and
706  also associated with other surrounding OCRs, we defined it as a sc-caQTL associated with
707  multiple genomic regions and the residing OCR as the master caPeak while the other

708 surrounding peaks as the dependent caPeaks. To avoid the confounding effect that two sc-
709 caQTLs affecting two master caPeaks are in LD, the OCR that is a master caPeak and has its
710  own resident caQTL that is in LD with the tested variant (r? > 0.5) was filtered out.

711

712 Cell type enrichment of GWAS loci

713

714 To determine the cell type enrichment of GWAS loci, we analyzed chromatin accessibility and
715 gene expression derived from single cell multiomics data respectively. For chromatin

716  accessibility, we partitioned the heritability of GWAS traits into the cell type OCRs and DARs
717  through stratified LD score regression based on the summary statistics of GWAS traits with

718  LDSC[43] (Supplementary Note). For gene expression, we assessed whether there is linear

28


https://doi.org/10.1101/2022.11.16.516814
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516814; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

719  positive correlation between gene expression cell type specificity and gene-level genetic

720  association with GWAS studies by MAGMA.Celltype[44—47] (Supplementary Note).

721

722  Fine-mapping GWAS loci

723

724  We fine-mapped GWAS loci based on the summary statistics of GWAS studies[36,40,42,48].
725  For each GWAS study, the SNPs with p < 5 x 108 and present in 1000 genome (phase 3)
726  European population were considered and were divided in the LD blocks identified by previous
727  study[79]. The prior of each SNP was computed based on GWAS Z-score and the functional
728  annotation of the SNP with “TORUS” package[80]. The annotation of a SNP was assigned to
729  one of the categories: “4” if the SNP in the exonic/UTR regions, “3” if the SNP in the promoter
730 region, “2” if the SNP in LCRE, “1” if the SNP in snATAC-seq OCR, “0” if the SNP not in

731 snATAC-seq OCR. For each LD block, we calculated the PIP of each SNP and credible set of
732  SNPs with the aforementioned prior weight generated by TORUS (i.e. functional PIP) and

733  without the weighted prior (uniform PIP), respectively with “susieR” package[81]. Then we

734  overlapped the fine-mapped variants with functional PIP > 0.1 with sc-eQTL, sc-caQTL and sc-
735  ASCA.

736

737
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771 Figure titles and legends

772  Fig. 1: Profiling gene expression and chromatin accessibility of retinal cells.

773  a Schematics of experiment design. b Uniform Manifold Approximation and Projection (UMAP)
774  of cells from snRNA-seq and snATAC-seq. The cells were clustered into major retinal cell types.
775  The same cell types from the two modalities are labeled with the same colors. ¢ Marker gene
776  expression measured by snRNA-seq and marker gene activity scores derived from chromatin
777  accessibility measured by snATAC-seq are specific in the corresponding cell type. d The

778  proportion of each cell type from snRNA-seq and snATAC-seq is similar across different

779  samples. The number of cells per cell type per sample was listed in Supplementary Table 2. e
780 Heatmap shows gene expression of the transcription factors identified in each cell type, based
781 on chromVAR and the correlation between motif enrichment and gene expression. f Heatmap
782  shows the chromatin accessibility (left) and gene expression (right) of 75154 significantly linked
783  CRE-gene pairs. Rows were clustered using k-means clustering (k=25). g The proportions of
784  Rod OCRs that are cell type specific LCRE, cell type specific non-LCRE, cell group specific

785  LCRE, cell group specific non-LCRE, constant LCRE, and constant non-LCRE.

786

787  Fig. 2: Identification of sc-eQTLs in retinal cell types.

788 a The number of independent index sc-eQTLs reaching gene-level FDR < 0.1 per cell type. b
789  The number of sc-eGenes reaching gene-level FDR < 0.1 per cell type. ¢ Heatmap shows the
790  Pearson correlation of sc-eQTL effect size across retinal cell types. d The sc-eQTLs identified in
791 two or more cell types in distal OCRs have greater effect size than the ones identified in one cell
792  type in distal OCRs in Rod. Two-sided Wilcoxon rank sum test, p = 1.88 x 1075 e The sc-

793  eQTLs identified in two or more cell types in distal OCRs are closer to gene TSS than the ones
794  unique to one cell type in distal OCRs in Rod. Two-sided Wilcoxon rank sum test, p =

795 9.75x 10711, f The proportions of gene-level significant sc-eQTLs overlapping with gene-level
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796  significant bulk eQTLs. sc: the identified sc-eQTLs. Other: other tissue bulk eQTLs. g Heatmap
797  shows effects of the sc-eQTLs and the overlapped bulk eQTLs are largely consistent across
798  different retinal cell types and tissues. h The effect size of the overlapped sc-eQTLs and sc-
799  ASEs in the corresponding cell type are significantly positively correlated. The Pearson

800 correlation coefficient and p-values are indicated in the figure.

801

802 Fig. 3: Cell type specific sc-eQTLs are often within OCRs shared by multiple cell types.
803 a The sc-eGenes of sc-eQTLs are often expressed in multiple cell types. b sc-eQTLs of the

804  same sc-eGene are often different across cell types. ¢ The majority of the sc-eQTL-containing
805 OCRs are accessible in multiple cell types. d The variant rs10793810 is a MG-specific sc-eQTL
806  of SLC27A6 and located in a MG-specific OCR. This variant is predicted to enhance the binding
807  of FOXP2, which is highly expressed in MG. This OCR is a predicted LCRE of SLC27A6. e The
808 variant rs62308155 is a Rod-specific sc-eQTL of REST, and resides in an OCR accessible in
809 Rod and Cone. This variant is predicted to disrupt the binding of NR3C1, which is highly

810  expressed in Rod but minimally in Cone. This OCR is a predicted LCRE of REST. f The TFs,
811  whose binding sites are perturbed by a variant that is sc-eQTL in Rod but not in another cell
812  type, have higher expression in Rod than the other cell type. One-sided Wilcoxon rank sum test.
813  The p-value and sample size n are indicated in the figure. The Y axis was set between 0 and
814 250 for better visualization of the data.

815

816  Fig. 4: Identification of sc-caQTL in retinal cell types.

817  a The number of independent index sc-caQTLs reaching genome-level FDR < 0.1 per cell type.
818 b The number of sc-caPeak reaching genome-level FDR < 0.1 per cell type. ¢ Heatmap shows
819  the Pearson correlation of sc-caQTL effect size across retinal cell types. d The distal sc-caQTLs
820 identified in two or more cell types have greater effect size than the ones identified in one cell

821  type in Rod. Two-sided Wilcoxon rank sum test, p < 2.2 x 10716 . e The effect size of sc-ASCA
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822  and the population effect size of sc-caQTLs is significantly positively correlated for each cell
823 type. The Pearson correlation coefficient and p-values are indicated in the figure. f The majority
824  of the sc-caPeaks (i.e. sc-caQTL-containing OCRs) are accessible in multiple cell types. g The
825 sc-caQTLs of the same sc-caPeak can be different across cell types.

826

827  Fig 5: Examples of cell type specific sc-caQTLs.

828 a The variant rs12447029 is a MG-specific sc-caQTL of its residing OCR, and resides in a MG-
829  specific OCR. This variant is predicted to enhance the binding of NFE2L2, increasing chromatin
830  accessibility of its residing OCR in MG. NFE2L2 is highly expressed in multiple cell types. This
831 OCRiis a predicted LCRE of GRIN2A. b The variant rs6859300 is a Rod-specific sc-caQTL of
832 itsresiding OCR, and resides in an OCR accessible in Rod, Cone, and BC. This variant is

833  predicted to enhance binding of EPAS1, increasing chromatin accessibility of its residing OCR
834 in Rod. EPAS1 is highly expressed in Rod but lowly in Cone and BC. This OCR is a predicted
835 LCRE of WWCH1. ¢ The TFs, whose binding sites are perturbed by a variant that is sc-caQTL in
836  Rod but not in another cell type, have higher expression in Rod than the other cell type. One-
837  sided Wilcoxon rank sum test. The p-value and sample size n are indicated in the figure. The Y
838  axis was set between 0 and 250 for better visualization of the data.

839

840 Fig. 6: The sc-caQTLs with effects on multiple genomic regions.

841  a The proportion of variants affecting dependent OCRs and the proportion of variants affecting
842  dependent LCREs. The proportions associated with sc-caQTLs are significantly higher than the
843  proportions associated with background variants. The numbers of variants affecting dependent
844  OCRs are indicated in the figure. b The effect size of sc-caQTLs on master regions and the
845  effect size of sc-caQTLs on dependent regions are positively correlated. ¢ The proportion of
846  OCRs that are DARs and have concurrent H3K27ac and H3K4me2 modifications in Rod. The

847  numbers of caPeaks with different features are indicated in the figure. d The variant rs7596259
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848 is a sc-caQTL and affects a master region (red) and three dependent regions (yellow) in the
849  same effect direction in Rod. The master region and one dependent region are LCREs of

850 ITGAG. This variant is also a sc-eQTL of ITGAG in Rod. e The variant rs1493699 is a sc-caQTL
851  and affects a master region (red) and a dependent region (yellow) in the opposite direction in
852  MG. Although the two regions are LCREs of PEAK1, this variant is not a sc-eQTL of PEAK1 in
853 MG.

854

855 Fig. 7: Cell type enrichment and causal variant prioritization underlying GWAS loci.

856 a The cell type enrichment of 11 eye-related and one control GWAS loci by partitioning the

857 heritability enrichment in cell type DARs with LDSC. POAG: primary open-angle glaucoma. IOP:
858 intraocular pressure. VCDR: vertical cup-disc ratio of optic nerve. CA: cup area of optic nerve.
859  DA: disc area of optic nerve. PCAG: primary angle closure glaucoma. AMD: age-related

860  macular degeneration. b The cell type enrichment of 11 eye-related and one control GWAS loci
861 based on gene expression cell type specificity from snRNA-seq data with MAGMA.Celltyping. ¢
862  Venn diagram showing the features of the prioritized GWAS loci overlapped with sc-QTL and/or
863  sc-ASCA. d The variant rs1328363 associated with refraction error and myopia with PIP=0.308
864 is a sc-eQTL of GPCB, a sc-caQTL of its residing OCR and a sc-ASCA in Rod. Its residing OCR
865 is accessible in Rod, Cone, BC and MG, and a predicted LCRE of GPC6. This variant

866  strengthens the binding of a photoreceptor-specific TF (CRX). This variant is also a marginal sc-
867 eQTL of GPC6 in Cone, consistent with CRX also being a TF for Cone, much lower expression
868  of GPC6 and lower accessibility of the corresponding LCRE in Cone.

869

870 Fig. 8: A model of the cell type specific effect of genetic variants.

871  The schematic plot shows that for the cell types sharing a similar lineage, the cell type specific
872  effect of genetic variants is not primarily due to cell type specific chromatin accessibility of cis-

873  elements but may be mainly driven by perturbing the binding of cell type specific trans-
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874  regulators, indicating hierarchical transcription factors collaboration may play important role in
875 cell type specific effects of genetic variants on gene regulation.
876

877

878 Additional Files

879  Supplementary Information: Supplementary Figures, Supplementary Table Titles and
880  Supplementary Note.

881

882  Supplementary Table: Supplementary Tables 1-7
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