bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

Germline determinants of the prostate tumor genome

Kathleen E. Houlahan'***>%*  Jiapei Yuan’®, Tommer Schwarz”!?, Julie Livingstone'**'!, Natalie S.
Fox'***° Weerachai Jaratlerdsiri'>'", Job van Riet'*, Kodi Taraszka'’, Natalie Kurganovs'®'"'8, Helen
Zhu**'8, Jocelyn Sietsma Penington', Chol-Hee Jung®’, Takafumi N Yamaguchi'**!", Jue Jiang'?,
Lawrence E Heisler’, Richard Jovelin®, Susmita G Ramanand’, Connor Bell*!, Edward O'Connor?!,
Shingai B.A. Mutambirwa®, Ji-Heui Seo?', Anthony J. Costello®, Mark M. Pomerantz®', Bernard J.
Pope'"?***%> Noah Zaitlen’*?’, Amar U. Kishan®**, Niall M. Corcoran'®'7*?>3% Robert G. Bristow™'®3!,
Sebastian M. Waszak®>*, Riana M.S. Bornman®*, Alexander Gusev>>~%*’, Martijn P. Lolkema'**%,
Joachim Weischenfeldt’®***!, Rayjean J. Hung***, Housheng H. He*'®, Vanessa M. Hayes'>'****
Bogdan Pasaniuc**'*?’, Matthew L. Freedman?'~*"*>_ Christopher M. Hovens'®!", Ram S. Mani’*, Paul
C. Boutrosl,2,3,4,6,ll,47,§

! Department of Human Genetics, University of California, Los Angeles

2 Jonsson Comprehensive Cancer Center, University of California, Los Angeles

3 Department of Medical Biophysics, University of Toronto, Toronto, Canada

4 Institute for Precision Health, University of California, Los Angeles

3> Ontario Institute for Cancer Research, Toronto, Canada

®Vector Institute, Toronto, Canada

" Department of Pathology, UT Southwestern Medical Center, Dallas, Texas

8 State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases,
Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union
Medical College, Tianjin, China

? Bioinformatics Interdepartmental Program, University of California, Los Angeles

19 Department of Pathology and Laboratory Medicine, University of California, Los Angeles

" Department of Urology, University of California, Los Angeles, USA

12 Laboratory for Human Comparative and Prostate Cancer Genomics, Genomics and Epigenetics Theme, Garvan
Institute of Medical Research, Darlinghurst, NSW, Australia

13 School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia

14 Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University, Rotterdam, The
Netherlands

15 Department of Computer Science, University of California, Los Angeles

16 Australian Prostate Cancer Research Centre Epworth, Richmond, Victoria, Australia

17 Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia

18 Princess Margaret Cancer Centre, University Health Network, Toronto, Canada

19 Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, Victoria, Australia
20 Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
2! Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA

22 Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital,
Medunsa, South Africa

2 Division of Urology, Royal Melbourne Hospital, Parkville, Victoria, Australia
24 Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia

25 Department of Medicine, Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash
University, Australia

26 Department of Neurology, University of California, Los Angeles

27 Department of Computational Medicine, University of California, Los Angeles
28 Department of Radiation Oncology, University of California, Los Angeles

2 Department of Urology, Peninsula Health, Frankston, Victoria, Australia

39 The Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia

- Page 1 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

31 Manchester Cancer Research Centre, Manchester, United Kingdom

32 Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo
University Hospital, Oslo, Norway

33 Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Rikshospitalet, Oslo
University Hospital, Oslo, Norway

34School of Health Systems and Public Health, University of Pretoria, South Africa

35 Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
3¢ Division of Genetics, Brigham Women’s Hospital and Harvard Medical School, Boston, MA

37 The Eli and Edythe L. Broad Institute, Cambridge, MA

38 Center for Personalized Cancer Treatment, Rotterdam, The Netherlands.

39 Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark

40 Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark

41 Department of Urology, Charité-Universititsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
42 Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health
System, Toronto, Canada

43 Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
4 Faculty of Health Sciences, University of Limpopo, Turfloop Campus, South Africa

45 Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA
46 Department of Urology, UT Southwestern Medical Center, Dallas, Texas

47 Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
# Current affiliation: Stanford Cancer Institute, Stanford University School of Medicine, CA

$ Corresponding author at:
UCLA Department of Human Genetics
BOX 957088, 57200A South Tower CHS; Los Angeles, CA 90095
Email: pboutros@mednet.ucla.edu; Phone: 310 794-7160

- Page 2 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

Abstract

A person’s germline genome strongly influences their risk of developing cancer. Yet the
molecular mechanisms linking the host genome to the specific somatic molecular phenotypes of
individual cancers are largely unknown. We quantified the relationships between germline
polymorphisms and somatic mutational features in prostate cancer. Across 1,991 prostate
tumors, we identified 23 co-occurring germline and somatic events in close 2D or 3D spatial
genomic proximity, affecting 10 cancer driver genes. These driver quantitative trait loci (dQTLs)
overlap active regulatory regions, and shape the tumor epigenome, transcriptome and proteome.
Some dQTLs are active in multiple cancer types, and information content analyses imply
hundreds of undiscovered dQTLs. Specific dQTLs explain at least 16.7% ancestry-biases in rates
of TMPRSS2-ERG gene fusions and 67.3% of ancestry-biases in rates of FOXA 1 point mutations.
These data reveal extensive influences of common germline variation on somatic mutational

landscapes.

- Page 3 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

Introduction
Cancers result from the accumulation of genomic and epigenomic aberrations that deregulate

normal cellular processes'?. These aberrations can arise from environmental influences, genetic
susceptibility or stochastic errors®. The exact contribution of each of these three factors to the
mutational landscape of any specific tumor is largely unknown, as are the ways in which these
factors interact. Varying contributions of these factors and interactions between them result in
each individual tumor having a unique mutational composition. This inter-tumoral heterogeneity

is a key driver of clinical urgency for precision care.

Of these three factors, the influences of germline genetics on cancer are well-known. About a
third of the risk of cancer diagnosis is heritable*. Genome-wide association studies (GWAS)
have identified hundreds of specific sequence variations associated with risk of diagnosis —
predominantly single nucleotide polymorphisms (SNPs)°~’. The mechanisms by which germline
predisposition loci modulate risk are mostly unknown, but one hypothesis is that they influence
somatic mutational evolution. To test this, we focused on prostate cancer: the second most
common malignancy in men worldwide®, and one of the most heritable. It is estimated that 57%
of the variability in prostate cancer diagnosis is explained by genetic factors*. Polygenic risk
scores (PRS) based on common germline variants can predict risk of a prostate cancer diagnosis
for individual men®!?. Rare germline variants in DNA damage repair genes or transcription
factors like HOXB13 are associated with both increased risk of diagnosis and increased disease

11-13

aggression' ' °. Genetic ancestry is also associated with the somatic landscape of prostate

cancer: the TMPRSS2-ERG (T2E) fusion occurs less frequently in cancers arising in men of

African and Asian ancestry than of European ancestry!+'#

. Localized prostate tumors arising in
men who carry deleterious germline BRCA2 mutations have a somatic mutational profile
resembling metastatic castrate-resistant disease'®. Similarly, specific germline SNPs are
associated with PTEN deletion?® and somatic point mutations in the driver gene SPOP?!. The
prostate cancer epigenome is strongly influenced by a patient’s germline genome, with
thousands of SNPs influencing methylation status?>?*, many associated with patient survival and
tumor gene expression?’. Thus, accumulating evidence from rare and common variants and

studies of ancestry hint at broad germline-somatic interactions.

We therefore quantified the relationships between germline SNPs and somatic mutational
profiles in prostate cancer. We termed SNPs that co-occur with specific prostate cancer driver
genes, driver quantitative trait loci (dQTLs). Integrating linear and three-dimensional analysis

of DNA structure, we identify 35 dQTLs affecting 10 driver genes in primary localized prostate
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cancer. Of these, 11 remained statistically significant in a 1,991-patient meta-analysis spanning
early onset, primary and metastatic disease. These dQTLs associate with almost every aspect of
prostate cancer: methylation, chromatin structure, mRNA abundance, protein abundance and
grade at diagnosis. Several affect multiple cancer types. Specific dQTLs associated with somatic
TMPRSS2-ERG fusion and FOXAI point mutations explain significant fractions of observed
differences in mutation frequencies across ancestry groups. Finally, information content analyses
suggest hundreds of undiscovered dQTLs remain, quantifying how the germline genome shapes

tumor evolution.
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Results

Experimental and cohort design

We assembled a discovery cohort of 427 patients with localized prostate cancer, each with
whole-genome sequencing (WGS) of blood (mean 39x coverage) and tumor (mean 64x
coverage)®4?7. All patients had localized disease at diagnosis and were treated by image-guided
radiotherapy or surgery with curative intent. All discovery cohort samples were treatment-naive
and macro-dissected by a genitourinary pathologist to obtain 60%+ tumor cellularity, as verified
computationally (Supplementary Table 1)%. Median follow-up was 7.7 years: clinical and
molecular data, including indications of germline variants in homologous repair genes, mismatch
repair genes and HOXB13, are in Supplementary Table 1. Patients were of European ancestry
and identity-by-state clustering did not reveal population substructure (Supplementary Figure
1a). Sequencing data were uniformly processed from read level using benchmarked
pipelines®*3°. We identified 17 somatic drivers occurring in at least 5% of patients based on
enrichment over the local background mutational rate and with literature support and focused
our analyses on these (range: 5.1-57.3%; Supplementary Figure 1b). These comprised 14 copy
number aberrations (CNAs), two single nucleotide variants (SNVs) and the fusion of TMPRSS?2
and ERG (T2E) 2. CNAs were annotated as present in all tumor cells (i.e., clonal; referred to as

trunk) vs. a subset of tumor cells (i.e., subclonal; referred to as branch).

We sought to determine whether individual germline SNPs were associated with specific driver
mutations; we termed these driver quantitative trait loci (dQTLs). A fully powered genome-wide
discovery would require many thousands of patients with tumor whole-genome sequencing. To
enrich for dQTLs, we therefore created three complementary, biologically motivated approaches
(Figure 1a). First, we tested if germline SNPs associated with risk of diagnosis in prostate-
cancer GWAS studies were dQTLs. Second, we identified local dQTLs: regions in close
proximity to each somatic driver based on linear DNA sequence. Third, we exploited knowledge
of three-dimensional DNA structure to identify spatial local dQTLs. Altogether we evaluated

5,516 independent SNPs against one of 17 somatic drivers.

For replication we compiled a 552-patient cohort of tumors arising in men of European descent
from The Cancer Genome Atlas (TCGA) 3! supplemented by 140 primary prostate cancers with
blood and tumor whole genome sequencing analyzed identically to the discovery cohort
(Supplementary Table 1)?8. Finally, to assess dQTL generalizability, we analyzed cancer types
in the Pan-Cancer Analysis of Whole Genomes (PCAWG) cohort with at least 90 individuals of
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European descent (i.e., breast, ovarian and pancreatic)*?. Supplementary Table 1 summarizes

all cohorts evaluated.

As a positive control, we first replicated previously reported SNP associations. Two SNPs
associated with T2E were replicated: rs16901979 (OR = 0.50; P = 3.90 x 10-2; Supplementary
Figure 1¢) and rs1859962 (OR = 1.52; P =5.05 x 10-*; Supplementary Figure 1d)**. Two SNPs
in HSD3B1 associated with overall survival in advanced prostate cancer’** showed trend
associations with clinical relapse (Prsi8s6s88 = 0.11; Prs1047303 = 0.18; Supplementary Figure 1e-
f) and with tumor extent at diagnosis (Prsissesss = 0.029; Prsi047303 = 0.091; Supplementary
Figure 1g-h). SNPs reported to be associated with PTEN loss?® and SPOP point mutations were
not replicated in this cohort?!. Finally, the observation in melanoma that SNPs in APOE were
associated with metastasis-free survival was generalized to prostate cancer (P = 0.027;
Supplementary Figure 1i)*>. Tumors with the APOE2 genotype had a significantly higher
burden of genomic rearrangements (GRs) than APOE4 tumors (OR = 0.45; P = 0.05;
Supplementary Figure 1j). These positive controls confirm our patient cohorts replicate known
germline-somatic associations but highlight the potential for false negatives at this statistical

power as well as false positives in published candidate gene approaches.

Risk variants associated with somatic drivers in prostate cancer

To identify germline SNPs associated with somatic drivers, we first considered risk alleles used
in a polygenic risk score (PRS) derived from 147 variants’ (Figure 1a). Of the 134 individual
risk SNPs with a minor allele frequency (MAF) > 0.05 in the discovery cohort, six were
associated with one or more somatic driver mutations (logistic regression; Benjamini-Hochberg
(BH) FDR < 0.1; labelled in light pink in Figure 1b; Supplementary Figure 2a;
Supplementary Table 2&3). rs12500426, was associated with both loss of TMPRSS2 and T2E
gene fusion, as expected (OR = 0.60 & 0.59; BH FDR = 0.095 & 0.027, respectively; Figure
1b). To control for index event bias, we confirmed the six dQTLs after correcting for ISUP grade
group, T category and PSA levels (P < 7.8x1073; Supplementary Table 2). We replicated
previous reports of rs7679673 (OR = 1.94; BH FDR = 0.011) and rs12653946 (OR = 0.53; BH
FDR = 0.032) association with ERG status*® (Figure 1b). To increase statistical power, we
grouped somatic driver by pathways: ETS fusions (i.e., fusions in any E7S gene), cell cycle (loss
of CDKNIB or RBI) and AR signaling (loss of NKX3-1, SNVs in FOXAI or gain of NCOA?2).
No additional pathway-based dQTLs were identified.

Finally, we interrogated if the HOXB13 G84E variant was associated with risk of acquiring any
of the 17 somatic drivers. Because HOXBI3 G84E is not common (MAF = 0.0024), we
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combined the 427 patients in the discovery cohort with the 552 patients in the replication cohort.
In the 15 patients with HOXB13 G84E (Supplementary Table 1), there was a nominal
association with T2E (OR = 0.27; P = 0.046) which did not survive multiple hypothesis testing
(Supplementary Table 2). Cohorts with more HOXB13 G84E carriers will be required to
robustly assess if HOXB13 G84E is a dQTL.

Local dQTLs bias somatic drivers in prostate cancer

The association of individual risk alleles with somatic mutations suggested that specific dQTLs
might influence the mutational and evolutionary diversity of localized prostate cancer’’. We
evaluated common SNPs (MAF > 0.05) in “close proximity” to somatic driver mutations using
three different definitions of “proximity” (Figure 1a). First, we defined proximity based on the
primary DNA sequence and considered germline variants within +£500 kbp of the somatic event
boundaries. This distance threshold was selected through sensitivity analysis (Supplementary
Figure 2b). The 17 somatic drivers were each compared to 1,332-11,618 germline SNPs
(median = 2,279, haplotype blocks = 80-1,379; median haplotype block size = 7 SNPs;
Supplementary Figure 2¢). After controlling for population structure and somatic mutation
burden, 20 local dQTLs were identified in 11 haplotype blocks, involving five drivers (logistic
regression; Bonferroni o=0.1 per driver; Punadjused < 3.7x10%; OR > 1.8; Figure 1b;
Supplementary Table 3&4). We selected a tag dQTL — i.e.,, one SNP to represent each
haplotype block — based on minimum p-value. A subset of patients in our discovery cohort
(n=325/427) had additional CNA profiling using orthogonal array-based platforms, and all 11
CNA tag SNPs were verified by this independent technology (Supplementary Figure 2d).

Second, we defined proximity to the somatic event based on DNA secondary structure (Figure
1a). Spatial local dQTLs were defined based on RNA polymerase II ChIA-PET in LNCaP,
DU145 and VCaP prostate cancer cells and RWPE-1 benign prostate epithelial cells ¥, along
with RAD21 ChIA-PET in LNCaP and DU145 cell lines *°. We identified regions outside the
linear local boundaries that interacted with the event region in at least two of four cell lines. Each
of the 17 somatic drivers was evaluated for associations with 7-101 SNPs in this step (median =
32; haplotype blocks = 2-16; median haplotype block size = 3 SNPs; Supplementary Figure
2e). Two dQTLs associated with clonal (trunk) loss of RBI were discovered (logistic regression;
Bonferroni 0=0.1 per driver; Punadjusted < 2.35x1072; OR > 1.47; Figure 1b; Supplementary
Table 3&4), and both verified using array-based CNAs (Supplementary Figure 2f).

Finally, to further explore dQTLs in three-dimensional space, we considered proximity as

defined by interacting enhancers identified via HiIChIP H3K27ac profiling in LNCaP cell lines

- Page 8 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

(Figure 1a). We identified anchor regions outside of gene boundaries whose associated anchor
fell within the driver gene of interest (see Methods). The 17 somatic drivers were evaluated for
associations with 0-1,059 SNPs (median = 35; haplotype blocks = 0-81; median haplotype block
size = 5 SNPs; Supplementary Figure 2g). We identified 11 dQTLs involving seven haplotype
blocks and three somatic drivers (logistic regression; Bonferroni a=0.1 per driver; Punadjusted <
1.27x1072; OR > 1.50; Figure 1b; Supplementary Table 3&4). We verified 3/4 candidate CNA
dQTLs using array-based data (3 dQTLs associated with SNVs in FOXAI 3> UTR were not

measured on the array platform used; Supplementary Figure 2h).

dQTLs affect multiple drivers and cancer types

We thus identified 26 tag dQTLs involving 25 unique loci using four strategies: risk dQTLs,
linear local dQTLs, spatial local dQTLs and enhancer local dQTLs (Figure 1a). Despite being
significantly under-powered, 16/26 showed consistent effect-sizes in our replication cohort (i.e.,
sign(log(ORuiscovery)) = s1gn(log(ORrepiication)); Figure 2a) and four statistically replicated (BH
FDR < 0.1). These four were rs11203152 with loss of TMPRSS?2 (a proxy for T2E status),
rs141393446 with loss of ZNF292 and both rs848047 and rs848048 with SNVs in 3 UTR of
FOXAI (Supplementary Figure 3a-h). Next, we investigated dQTL replication in other cancer
types, focusing on ovarian, breast and pancreatic cancers from PCAWG?. We tested only
somatic drivers with mutation frequencies > 5% in each cancer type (i.e., 20/26 tag dQTLs). Of
these 20, 14 showed consistent effect sizes in breast, ovarian or pancreatic cancers
(Supplementary Figure 3i-k). The association between rs76748266 and gain of NCOA2
replicated in pancreatic cancer (OR pancreatic = 6.47; BH FDR pancreatic = 1.56 x 102; Supplementary
Figure 31-m) and the association between rs11203152 with loss of TMPRSS2 was nominally
significant in ovarian cancer but did not survive multiple hypothesis testing correction (ORovarian
= 4.87; BH FDRovarian = 0.11; Supplementary Figure 3n). Supplementary Table S includes
the summary statistics for dQTLs across discovery and replication cohorts and Supplementary

Table 1 summarizes the cohorts evaluated. Thus, a subset of dQTLs affect multiple cancer types.

Prostate cancer genomic studies have identified mutually exclusive and co-occurring somatic
mutations®®. We therefore sought to identify local dQTLs that show associations with distal
driver genes. Focusing on the 16 dQTLs with consistent ORs in the replication cohort, we
screened each tag SNP against all 17 somatic drivers in a candidate analysis. This identified nine
candidate distal dQTLs (BH FDR < 0.1; Supplementary Figure 30; Supplementary Table
3&6), seven of which showed concordant ORs in our replication cohort (Supplementary Figure

3p). Next, we investigated if dQTLs were associated with chromothripsis, a mechanism that can
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simultaneously disrupt multiple driver genes*’, but did not find any associated dQTLs (BH FDR
> (0.40; Supplementary Table 3). Integrating all our results, we discovered 35 dQTLs involving
25 tag SNPs and 10 somatic drivers (Figure 2b). Two thirds showed consistent effect-sizes in
our replication cohort (Fold Change (FC) = 1.33, P = 0.028; n = 10,000; permutation test;
Supplementary Figure 3q), and five replicated (BH FDR < 0.1) in at least one cancer type.

dQTLs generalize to other types of prostate cancer

To extend these results to other forms of prostate cancer and increase our replication power, we
considered early-onset (EOPC; diagnosis < 55 years) and metastatic prostate tumors
(Supplementary Table 1). We conducted a meta-analysis across 1,991 European descent
prostate tumors, including the discovery and replication cohorts as well as 238 EOPC tumors®*!,
384 metastatic castrate resistant prostate tumors*?, and 91 metastatic and 299 localized prostate
tumors from the PROFILE cohort®}. We focused on 23 dQTLs that showed concordant ORs in
the discovery and replication cohorts (henceforth termed concordant dQTLs; Supplementary
Figure 3q). Not all dQTLs could be tested in each cohort because of limitations in sequencing
protocols — e.g., PROFILE used targeted sequencing — and limited power due to differences in
driver mutation recurrence rates across disease stages. Figure 2¢ indicates in which cohorts each
dQTL was tested. We identified 11 statistically replicated dQTLs (BH FDR < 0.1; Figure 2c;
Supplementary Table 5) across these 1,991 patients. Thus, dQTLs can generalize across stages

of prostate cancer.

Local dQTLs modulate the tumor epigenome

Deregulation of tumor methylation is one mechanism by which the germline genome influences
cancer risk 2>23. We investigated if dQTL tag SNPs were associated with methylation changes
in tumor tissue (Supplementary Figure 4a). We focused on the 23 concordant tag dQTLs that
showed consistent ORs in the replication cohort (Supplementary Figure 3q) and conducted a
candidate local methylation quantitative trait loci (meQTL) analysis within £500 kbp of dQTL
tag SNPs. We used array-based methylomes from 226 patients in the discovery cohort and 412
patients in the replication cohort, along with 47 profiles of histologically non-malignant
reference prostate tissue (Supplementary Table 1). We identified 266 local meQTLs involving
eight dQTLs (|Bdiscovery] > 0.041; BH FDRuiscovery < 0.1). Our replication cohort had genotyping
0f221/266 local meQTLs, and 110 replicated (|Breplication] > 0.039; BH FDReplication < 0.1; Figure
2d Supplementary Figure 4b; Supplementary Table 7). Three SNPs, rs12653946 associated
with T2E and clonal loss of TMPRSS2, and rs111620024 and rs113433514 associated with T2E

and subclonal loss of CHDI1, were involved in tumor-specific meQTLs: they were associated
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with methylation changes in tumor but not normal cells 2* (|Bumor] > 0.12; BH FDRymor <
8.50x1072; |Breference] < 0.63; BH FDReference > 0.12). There were significantly more methylation
probes associated with dQTLs than expected by chance (P < 10#; observed meQTLs = 110;
expected meQTLs = 10; permutation test), but not more dQTLs exhibiting meQTL behavior (P
= 0.42; permutation n = 1,000).

To explore if dQTLs were associated with other changes in the tumor epigenome, we studied
histone modifications in primary prostate tumors for H3K27ac (n=92 patients), H3K27me3
(n=76) and H3K4me3 (n=56) and androgen receptor (4R; n=88) binding ** (Supplementary
Figure 4a; Supplementary Table 1). Of the 16 tag dQTLs, 10 overlap active regulatory regions:
six dQTLs overlap H3K27ac sites (2-89 patients) of which five also overlap H3K4me3 (1-47
patients) sites (Supplementary Figure 4c; Supplementary Table 7). Five dQTLs overlap
H3K27me3, one of which overlapped H3K27ac sites in other patients, indicative of bivalent
chromatin. We replicated these findings in a second cohort of 48 primary prostate cancer tumors
profiled via ChIP-Seq for H3K27ac (n=48 patients), H3K4me2 (n=6 patients), H3K4me3 (n=4
patients), FOXA1 (n=10 patients) and HOXB13 (n=9 patients; Figure 2e; Supplementary
Figure 4a; Supplementary Table 7). Two of five dQTLs at H3K27ac modification sites
demonstrated allelic imbalance specifically in tumor tissue and not in normal tissue, indicative
of allele-specific regulation (Figure 2e). Further, of the 16 dQTL tag SNPs, 13 overlapped with
active regulatory regions and master transcription factor binding sites in four prostate cancer cell
lines and one epithelial cell line (Supplementary Figure 4d; Supplementary Table 7)*-8,
Figure 2f summarizes all dQTLs overlapping transcription factor binding sites or regulatory
chromatin, which was similar to that expected by chance (P > 0.40). Thus, a subset of dQTLs
may modulate transcription factor binding or histone modifications, known determinants of local

somatic mutation rates, but this is not a primary mechanism of their action’’.

Finally, to begin to elucidate a mechanism of dQTLs we focused on the impact of rs11203152 —
associated with loss of TMPRSS2 — on the local chromatin structure. rs11203152 is in close
proximity to multiple chromatin looping sites anchored by RNA Polymerase II (RNAPII),
RAD21, AR and ERG in prostate cancer cell lines®® (Figure 2g). To quantify the observed
enrichment of regulatory chromatin loops near rs11203152, we tested if the number of anchors
within 1 Mbp of rs11203152 was more than expected by chance (permutation test; n = 100,000
randomly selected regions of equal size). We discovered an enrichment of RAD21 chromatin
loop anchors around rs11203152 in LNCaP cells (BH FDR = 0.04; observed number of anchors
= 84; expected = 35) but not DU145 cells (BH FDR = 0.19; observed = 66; expected = 28;
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Figure 2h). As LNCaP cells are hormone sensitive prostate cancer cells while DU145 are
hormone insensitive, this suggestions rs11203152 may impact AR regulation. VCaP cells, which
have a T2E fusion, showed an enrichment of RNA Polymerase II (BH FDR = 0.04; observed =
95; expected = 18), AR (BH FDR = 0.04; observed = 325; expected = 75) and ERG (BH FDR =
0.04; observed = 83; expected = 22) anchored chromatin loops around rs11203152 (Figure 2h).

These data suggest rs11203152 may interact with AR regulation to promote loss of TMPRSS?2
60

dQTLs modulate tumor gene expression

Given the overlap of dQTLs in areas of active chromatin, we sought to quantify their influence
on tumor gene expression. We assessed if any dQTL tag SNPs were expression quantitative trait
loci (eQTLs) for their associated somatic driver gene (Supplementary Figure 4e;
Supplementary Table 1). We identified two dQTL-eQTLs associated with RB/ mRNA
abundance and one with TMPRSS2 (BH FDR < 0.1; Figure 2f; Supplementary Figures 4f-h).
Both rs12385878 and rs7320595 were associated with RB1 protein abundance (f = 0.29; BH
FDR = 7.87x107%; Supplementary Figure 4i-j) and rs13048402 was nominally associated with
TMPRSS?2 protein abundance but did not survive multiple hypothesis testing correction (B = -
0.24; BH FDR = 0.11; Supplementary Figure 4k). To expand eQTL discovery beyond somatic
driver genes we evaluated genes in close proximity to the dQTL, defined as +500 kbp
(Supplementary Figure 41). To our surprise, only a single additional eQTL was significant after
correcting for multiple hypothesis testing: rs12653946 — IRX4 ®' (B =-0.79; BH FDR = 7.78x10"
14. Supplementary Figure 4m). To determine if there was broader transcriptome modeling, we
quantified dQTL association with distal gene abundances, defined as >500 kbp from the SNP.
We identified two distal eQTLs (Supplementary Figure 41): rs11203152 — COX7B ( = 0.53;
BH FDR = 4.46x107?; Supplementary Figure 4n) and rs848047 — MTRR (B = 0.38; BH FDR =
4.46x10%; Supplementary Figure 40). Figure 2f and Supplementary Table 7 summarize
dQTLs influences on gene-expression. Finally, we leveraged the Genotype-Tissue Expression
(GTEXx) © project to evaluate if dQTL tag SNPs were associated with mRNA abundance in non-
malignant prostate tissue. Three dQTLs were involved in normal tissue eQTLs, including
rs12653946 — IRX4 (P < 3.8x10°; Supplementary Table 8). Thus, a subset of dQTLs may

directly modulate the tumor transcriptome and proteome.

We reasoned that if dQTLs provide a fitness advantage, tumors might acquire a similar
advantage via somatic mutations as well > (Supplementary Figure 4a). To test this hypothesis,

we evaluated whether somatic mutations were enriched within the region of individual dQTLs.
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We focused on the 16 dQTL tag SNPs and identified somatic SNVs within = 10 kbp of each.
The number of somatic SNVs within dQTL elements were compared to the local background
mutational burden. While regions harboring dQTLs also harbored multiple somatic SNV
(range: 0-6), we did not observe an enrichment of somatic SNVs above chance (P >0.15; Poisson
generalized linear regression; Supplementary Figure 5a). This was consistent in breast (range:
3-18; P > 0.09; Supplementary Figure 5b), ovarian (range: 0-19; P > 0.13; Supplementary
Figure Sc) and pancreatic cancers (range: 2-22; P > 0.06; Supplementary Figure 5d). Thus,

based on this limited subset of dQTLs, germline dQTLs are not at somatic mutation hotspots.

dQTL allelic frequencies are biased across ancestry populations

It has been well established that genetic ancestry is associated with specific features of the
somatic landscape of prostate cancer '4'8, but it is unknown if specific germline SNPs contribute
a significant proportion of these differences. We quantified the differences in SNP allele
frequencies (VAF) between individuals of European, African and East Asian ancestries for
dQTL tag SNPs (Supplementary Figure 4a; Supplementary Table 7). All 16 dQTL tag SNPs
had significantly different VAF between European and African or East Asian populations (BH
FDR < 0.01; Fisher’s exact test; Supplementary Figure Se-f). As a control, only two dQTL tag
SNPs, rs439864 and rs7679673, had significantly different VAFs within European populations
demonstrating dQTLs are not driven by population stratification (BH FDR = 6.75x10- and
2.65x1072; Supplementary Figure 5g). Leveraging a cohort of 91 men of African descent with
localized prostate cancer’!, we tested the 23 concordant dQTLs. Of these, 13 dQTLs had MAF
> 0.05, six showed concordant ORs and none statistically replicated (Supplementary Figure

5h; Supplementary Table 5).

We then focused on SNPs associated with two mutations with strong ancestry associations: T2E
and FOXA1 %8, The T2E gene fusion occurs less frequently in individuals of African and East
Asian ancestry. The rs11203152 dQTL was associated with an increased risk of loss of
TMPRSS?2 in both discovery and replication cohorts (Figure 1b & 2a). Concordant with these
ancestry trends, the VAF for this SNP was significantly lower in both African and East Asian
populations compared to European (VAFafican = 0.066; VAFEgast asian = 0.000; VAFEuropean =
0.103; BH FDR < 0.01). We tested the association of rs11203152 with loss of TMPRSS2 in 115
African men from South Africa, Australia or Brazil with prostate cancer, yielding a near-
identical effect-size (ORAafrican = 2.45; Pafiican = 0.13; Supplementary Figure 5i). Similarly,
FOXAI SNVs are more common in men of African ancestry than in men of European ancestry

17 while in men of East Asian ancestry a coding hotspot SNV not found in other ancestries is
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common '°, The rs848048 dQTL tag SNP was associated with occurrence of SNVs in the 3’
UTR of FOXAI (Figure 1b & 2a). Concordant with these ancestry differences, the tag SNP had
a significantly lower VAF in African populations than in European or Asian ones (VAF african =
0.231; VAFEuropean = 0.485; VAFEast asian = 0.462; OR = 0.36; BH FDR < 0.1). We tested the
association between rs848048 and SNVs in FOXAI! UTR in 115 African men. The allele
distribution was substantially different in African individuals compared to European individuals
and the association did not replicate in the African cohort (ORAfrican = 0.96; Pafrican = 1.00;
Supplementary Figure 5j) supportive of a germline role in ancestry-related somatic differences.
Assuming these dQTLs have a similar mechanism across ancestry populations, we estimated
that 16.7-31.4% of the ancestral differences in T2E and 0.9-67.3% of the ancestral differences
in FOXA1 may be explained by these individual dQTLs (Figure 2i). The low explanatory power
of rs848048 in Asian populations may be due to different somatic mutational processes. In men
of Asian descent, FOXA I mutations were almost exclusively localized to a hotspot immediately
after the forkhead domain, whereas mutations spanned the entire gene in individuals of European
descent'®. These data suggest dQTLs offer a way of understanding at least a subset of ancestral

differences in cancer landscapes®.

dQTLs are associated with clinical outcome

Given that many somatic mutations and mutational processes are predictive of prostate cancer
aggression®’®, we evaluated whether dQTLs might predict specific clinical features
(Supplementary Figure 4a). We first considered biochemical relapse, defined by rising serum
PSA levels following primary treatment, which is considered a surrogate for prostate-cancer
specific mortality . One dQTL, rs7320595 associated with clonal loss of RBI, was nominally
associated with biochemical relapse, but did not survive adjustment for multiple hypothesis
testing (HR = 1.52; P =0.05; Cox PH; Figure 2f; Supplementary Figure Sk-1; Supplementary
Table 7). Four dQTLs associated with subclonal gain of NCOA2 were associated with ISUP
grade group at diagnosis (BH FDR < 3.10 x 10%; Figure 2f; Supplementary Figure Sm-p).
One dQTL, rs848047 associated with SNVs in the 3° UTR of FOXA41, was nominally associated
with risk of prostate cancer diagnosis but did not survive multiple hypothesis testing correction

(OR =1.02; P =0.05; Figure 2f; Supplementary Figure 5q).

A long tail of dQTLs
dQTL discovery requires matched blood and tumor tissue profiles. Despite using the largest
whole-genome sequenced prostate cancer cohort available, the statistical power available is

much smaller than modern GWAS cohorts. The low frequency of most prostate cancer somatic
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drivers (~5-20%) further reduces the power of our analysis. A cohort of our size would have
80% power to identify local dQTLs with MAF > 0.4 and OR > 1.7 for somatic drivers present
in half the population (P < 5x10**; Supplementary Figure 6a). For common somatic drivers (5-
20% frequency), we have at best 80% power to detect an OR above 2.0 (Supplementary Figure
6b&c). We identified 35 dQTLs involving 11 somatic drivers and 27 SNPs (Figure 2b). From
these figures, we estimate that at least 314 additional dQTLs remain to be discovered in larger
cohorts at similar effect-sizes (see Methods). Identifying dQTLs genome-wide requires a more

stringent p-value threshold (P < 5x107®) than achievable with current cohorts.

Given this large number of potentially undetected dQTLs, we evaluated whether there was
evidence for a large landscape of subthreshold candidate dQTLs, as has been seen in many early
GWAS analyses. We evaluated the five most recurrent somatic drivers: T2E, clonal loss of
ZNF292, clonal loss of RBI, clonal loss of NKX3-1 and clonal loss within TMPRSS2. For each,
we evaluated the distribution of p-values for the linear, spatial and enhancer local dQTL analyses
to determine if there were more subthreshold p-values than expected by chance. We compared
the skew of the real p-value distributions to empirical null distributions generated by randomly
shuffling patient-driver assignments, maintaining driver frequency (Figure 3a-c;
Supplementary Figure 6d-f). Both T2E and clonal loss of ZNF292 had significantly skewed p-
value distributions (Figure 3a). T2E showed a significant skew towards small p-values in linear
local dQTL discovery (FCskew vs. null skew = 1.41; P = 0.016; Figure 3b; Supplementary Figure
6g), while clonal loss of ZNF292 showed a significant skew towards small p-values in spatial
local dQTL discovery (P = 0.046; Figure 3¢; Supplementary Figure 6h). To supplement, we
estimated the proportion of non-null p-values within the p-value distributions for local linear,
spatial and enhancer dQTLs for the five most recurrent somatic drivers (i.e., the proportion of p-
values that deviate from a uniform distribution). An estimated 7.0-63.1% of dQTLs tested were
estimated to be non-null for clonal loss of NKX3-1, clonal loss of ZNF292, clonal loss of
TMPRSS?2 and T2E (Figure 3d). Non-null p-values for spatial dQTLs associated with clonal loss
of RBI could not be estimated due to insufficient SNPs tested via this strategy. These data

suggest many additional prostate dQTLs remain to be identified.
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Discussion
Every tumor is different, with a life history shaped by its encounters with mutagens, selective

microenvironmental pressures, and by stochastic processes®. This life history occurs in the
context of the patient’s unique germline genome. Subtle differences in germline structure or
function have decades to exert their small effects to influence tumor evolution. There are many
potential mechanisms of this influence. For example, if an individual possesses germline SNPs
that enhance or reduce the efficacy of an oncogenic pathway, cells that acquire a somatic
aberration in the same pathway may develop a stronger fitness advantage and experience clonal
expansion. Germline SNPs could marginally up- or down-regulate specific pathways making it
easier or harder for a tumor genome to further deregulate the same pathway®’. Similarly, a dQTL
deregulating the epigenome or mRNA and protein abundance of a specific gene may change the
selective advantage of further amplification or deletion of that gene. These mechanisms are
supported by the subset of dQTLs that were additionally meQTLs, eQTLs and pQTLs.
Alternatively, if a specific germline SNP renders particular bases of the genome less amenable
to DNA damage repair, mutations in these regions may be more likely. dQTLs could affect the
structural integrity of the local chromatin, or influence activity of master regulators. This latter
example may be illustrated by rs11203152 associated with loss of TMPRSS2 and located in a
region enriched for AR-mediated chromatin looping. This large variety of potential mechanisms
supports the idea of polygenic models, where many SNPs modestly influence somatic driver

acquisition.

This study focused on identifying limited subsets of driver genes and of dQTLs in prostate cancer
and very likely substantially underestimates the full catalogue. First, we only considered somatic
drivers present in at least 5% of patients in our discovery cohort. Given the long tail of cancer
driver genes®?, this alone suggests more germline SNPs influence the molecular evolution of
prostate cancer. Second, to enrich for promising candidates given limited statistical power, we
focused on dQTLs in linear or spatial proximity to driver genes. This allowed us to focus on
5,516 independent genetic SNPs across all 17 somatic drivers: ~0.6% of the ~900,000
independent sites tested in a single GWAS®®. Our statistical efficiency restricted us to finding
local dQTLs. Any distal dQTLs remain to be uncovered. Third, our discovery identified dQTLs
specifically biasing early vs. late mutational events suggesting different germline pressures
emerge as a tumor evolves. Limited by available data, we were unable to account for differences
in evolutionary timing of drivers during dQTL replication and may have diluted signal of dQTLs
as a result. Fourth, the discovery and replication cohorts are comprised of men with low,

intermediate and high-risk prostate cancer and the replication cohort included a larger proportion
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of men with high-risk prostate cancer than the discovery cohort. We are not presently powered
to identify dQTLs specific to each risk category and the increased proportion of high-risk
prostate cancer in the replication cohort may have reduced the replication of dQTLs specific to
low or intermediate-risk prostate cancer. Finally, we focused on germline SNPs present in at
least 5% of populations with European ancestry. Our discovery of dQTLs explaining ancestry-
differences in somatic mutations motivates further exploration of nature vs. nurture by
quantifying dQTLs in larger populations of different ethnicities from different geographical

localities (e.g., African nationals vs. African Americans).

Cancers arise as stochastic mutagenic processes induce variation within the genome, much but
not all of which is successfully repaired. By probabilistically influencing these mutations and
the effect of these mutations, germline features help explain why every tumor is different. These
data strongly support generation of tumor and normal genomic sequencing of highly diverse
genetic populations to quantify how our shared ancestry influences cancer development and

further delineate contributions of nature vs. nurture.
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Methods

Discovery patient cohort

The discovery patient cohort was comprised of 427 patients with pathologically confirmed
prostate cancer and were hormone naive at time of therapy. All patients underwent image-guided
external beam radiotherapy (IGRT) or radical prostatectomy (RadP) with curative intent. The
discovery cohort consisted of 276 samples that were published and processed as previously
described 28, 83 were previously published in Wedge et al. 26, 50 in Baca et al. **, seven in Berger
etal.?® and 11 in Weischenfeldt et al. . All men were genetically of European descent. Genetic
ancestry was determined by calculating genetic distance to well defined populations from the
1000 Genomes Project according to Heinrich et al. %°. Genetic principal components were
determined using plink —pca (v1.9) after pruning for linkage disequilibrium using plink —indep

with default parameters.

Whole-genome sequencing of discovery cohort

For each patient, both blood and tumor sample underwent whole genome sequencing as
previously described 2. FASTQ files were retrieved for each sample and processed consistently.
Raw sequencing reads were aligned to the human reference genome, hs37d5, using BWA-mem
70 (v0.7.12-0.7.15) at the lane level. Lane level bam files were merged across libraries with
duplicates marked within libraries using Picard (v1.121-2.8.2). Local realignment and base
quality recalibration were completed on tumor/normal pairs together with the Genome Analysis
Toolkit ' (GATK v3.4.0-3.7.0). Tumor and normal samples were extracted separately, headers
corrected (SAMtools v0.1.9-1.5) 72 and files indexed (Picard v2.17.11) into individual sample-
level BAMSs. Finally, sequencing coverage was computed using Picard (v2.17.11)

CollectRawWgsMetrics with the default cut-off.

Germline SNP detection in discovery cohort

Germline SNPs were first identified using GATK (v3.4.0-3.7.0) for each patient individually
using HaplotypeCaller followed by VariantRecalibration and ApplyRecalibration 7!. Individual
VCFs were merged using BCFtools (v.1.8) assuming SNPs not present in an individual VCF
were homozygous reference. The minor allele frequency (MAF) in the discovery cohort of all
SNPs within the merged VCF was calculated and filtered to consider only SNPs with MAF >
0.01 based on the discovery cohort (n=10,058,344). Next, all patients were re-genotyped using
GATK (v.4.0.2.1) at these sites to produce gVCFs (i.e., with option -ERC GVCF). Individual

gVCFs were merged using GenomicsDBImport and joint genotyping was run using
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GenotypeGVCFs. Finally, SNPs were recalibrated using VariantRecalibrator and ApplyVQSR.
We determined pathogenic variants within National Comprehensive Cancer Network (NCCN)
prostate cancer predisposition genes based on “pathogenic” or “likely pathogenic” annotations

in ClinVar and ensuring more than one submitter (i.e., review status > 2/4 stars).

Somatic variant detection in discovery cohort

Somatic variants were detected as previously described 8. Briefly, somatic single nucleotide
variants (SNVs) were detected with SomaticSniper (v1.0.5) with mapping quality threshold set
to one and with all other parameters set to their defaults 73. SNVs were filtered using LOH, read
count and high confidence filters provided with the SomaticSniper package. SNVs were further
filtered using in-house filters to account for read coverage, germline contamination, mappability,
among others. A full description of these filters can be found here ?%. Small Indels were identified
with cgpPindel v2.2.4 ™ with default parameters and the following genomic rules (F004, F005,
F006, F010, FO12, FO18, FO15, FO16) and soft results (FO17). Indels were filtered based on a
panel of non-cancer reference samples (pindel np.gff3.gz), simple repeats, band anchors and
germline contamination, amongst others. A full description of these filters can be found here 28,
SNVs and Indels were annotated to genes using SnpEff (v4.3R) 7°. Somatic copy number
alterations (CNAs) were identified using Battenberg (cgpBattenberg v3.3.0, BattenBerg R-core
v2.2.8, alleleCount v4.0.1, PCAP-core v4.3.2, cgpVef v2.2.1, impute2 v2.3.3) 7. Clonal (i.e.,
trunk) and subclonal (i.e., branch) CNAs were predicted using the default cut-off of p-value 0.05

and segments length below 10kb were filtered out.

Recurrent somatic drivers in prostate cancer

We considered a set of 180 somatic drivers were identified in 666 localized prostate tumors 23,
and included those with a frequency > 5% in the discovery cohort that has been previously
reported in localized prostate cancer (15-19,26-30,33,40,46). Representative genes were selected
for CNA drivers based on recurrent regions prioritized by GISTIC and previous literature on the
CNA landscape of localized prostate cancer. CNAs represented by genes may be arm level
chromosome alterations, such as loss of NKX3-1 which often represents loss of the p-arm of
chromosome 8 340, This resulted in analysis of 17 somatic drivers: 11 CNA losses (seven trunk
and four branch), three CNA gains (two trunk and one branch), one fusion (the recurrent T2E
fusion between TMPRSS2 and ERG) and two SNVs. For a full definition of each somatic driver
refer to Supplementary Table 1.
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dQTL discovery: risk SNPs dQTLs

The 147 SNP polygenic risk score generated by Schumacher et al. ° was first considered for
dQTL discovery. Of the 147 SNPs, 135 had a MAF > (.05 in the discovery cohort. All 135 SNPs
were tested for association with all 17 somatic drivers using a logistic regression model
correcting for the first five genetic principal components, age and mutation burden. P-values
were adjusted for multiple-hypothesis testing using Benjamini & Hochberg false discovery

correction. Significance was defined as BH FDR < 0.1.

dQTL discovery: linear local dQTLs

Local dQTLs were first defined based on the linear orientation of the genome. Considering each
somatic event could be defined by a single gene, germline SNPs within =500 kbp of the affected
gene were interrogated for their association with the somatic event. Associations were quantified
using a logistic regression model correcting for the first five genetic principal components, age
and the somatic mutation burden (i.e., PGA when testing CNAs and SNV mutation density when
testing SNV). Haplotype blocks within the defined linear local region were calculated
considering the definition by Gabriel e al. 7 and a Bonferroni threshold considering a.= 0.1 was
used to determine significance for each somatic driver. We selected a=0.1 as our significance
threshold to reduce false negatives in our discovery given the relatively small size of our cohort.
All discovered dQTLs were tested in an independent replication cohort in order to remove likely
false positives. Discovery dQTL statistics for all tested SNPs — unpruned for linkage

disequilibrium — are provided in Supplementary Table 4.

dQTL discovery: spatial local dQTLs

Local dQTLs were defined taking into consideration the three-dimensional structure of DNA.
The term spatial local was defined as regions of the DNA, outside £500kbp around the affected
gene, that loop to interact with the driver gene. First, these regions were defined by RAD21
ChIA-PET profiling in LNCaP and DU145 cell lines ** and RNA polymerase II ChIA-PET
profiling in LNCaP, DU145, VCaP and RWPE-1 cell lines 3. Coordinates of driver genes were
overlapped with peak anchor regions using BEDtools. Based on an interaction map, peak anchors
paired with driver-gene-overlapped peaks were defined as interacting regions. Similar to linear
local dQTLs, associations were quantified using a logistic regression model correcting for the
first five genetic principal components, age and the somatic mutation burden. Again, haplotype
blocks within the defined spatial local region were calculated considering the definition by

Gabriel et al. "7 and a Bonferroni threshold considering a=0.1 was used to determine significance

- Page 20 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

for each somatic driver. Discovery dQTL statistics for all tested SNPs — unpruned for linkage

disequilibrium — are provided in Supplementary Table 4.

dQTL discovery: enhancer local dQTLs

Spatial local regions were defined based on HiChIP H3K27ac profiling in LNCaP cell lines.
HiChIP was conducted as reported previously. Again, associations were quantified using a
logistic regression model correcting for the first five genetic principal components, age and the
somatic mutation burden and haplotype blocks within the defined enhancer local region were
calculated considering the definition by Gabriel et al. 77 and a Bonferroni threshold considering
a = 0.1 was used to determine significance for each somatic driver. Discovery dQTL statistics
for all tested SNPs — unpruned for linkage disequilibrium — are provided in Supplementary

Table 4.

Prostate cancer replication cohort

Individuals of European descent, as determined by Yuan et al. ®, from TCGA PRAD project
were used as a replication cohort *'. As described previously 23, concordance between SNP6
microarray (SNP6) genotypes and whole exome sequencing (WXS) of blood sample genotypes
was evaluated and only samples with >80% concordance were retained (n = 412 samples).
Genotypes, from SNP6 supplemented by WXS, were imputed using the Michigan Imputation
Server — pre-phasing using Eagle (v2.4) 78, imputation using Minimac4 7° and the Haplotype
Reference Consortium (release 1.1) panel 3. A final list of 40,401,582 SNPs was then available
for validation studies. SNV and CNA calls based on hg19 reference genome were downloaded
from GDC Archive legacy (https://portal.gdc.cancer.gov/legacy-archive/search/). T2E fusions
for TCGA samples were identified using FusionCatcher (v.0.99.7¢) 8!. A second cohort of 140
Australian men with localized prostate cancer was used to supplement the replication cohort. All
men were of European descent as determined according to Heinrich et al. %°. All patients had
blood and tumor WGS that was processed with the same pipelines as the discovery cohort,
including evolutionary timing of CNAs 28, Similar to the discovery cohort, germline SNPs were
identified using GATK (v3.4.0-3.7.0) 7', First, HaplotypeCaller was run on the normal and tumor
BAMs together, followed by Variant Recalibration and ApplyRecalibration, following GATK
best practices. Germline SNPs were filtered for somatic and ambiguous variants that had more
than one alternate base. Genetic principal components were determined using plink —pca (v1.9)

after pruning for linkage disequilibrium using plink —indep with default parameters.
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Pan-cancer replication cohort

We leveraged the Pan-Cancer Analysis of Whole Genomes (PCAWG) 32 to test the replication
of dQTLs in other cancer types, using germline VCFs and somatic CNA calls from the Pan-
Cancer Analysis of Whole Genomes from DCC (https://dcc.icgc.org/releases/PCAWG/). We

considered only adult cancers with >100 samples: breast, ovarian, pancreatic and liver cancer.
Next, we only considered patients of European ancestry which resulted in 134 breast, 91 ovarian,
116 pancreatic and 0 liver cancer patients. Thus, we did not consider liver cancer in replication

analysis. We tested somatic events with a recurrence rate > 5% in each cancer type.

Replication of dQTLs

dQTLs with available somatic profiling and germline genotyping were tested in the replication
cohort. TCGA does not have WGS so the evolutionary timing of CNAs could not be determined
in these patients. Thus, dQTLs involving CNAs were tested in TCGA without considering trunk
vs. branch classifications. As a result, there were significant differences in the proportion of cases
and controls between the discovery and replication cohorts (Supplementary Table 1). T2E calls
for TCGA samples in the replication cohort were based on RNA-sequencing alone compared to
the rest of the samples which considered DNA sequencing or the union of DNA and RNA
sequencing when available. dQTLs in all replication cohorts were tested using the same logistic
regression model as used in discovery, correcting for the first five genetic principal components,
age and the total burden of somatic mutation type being tested (i.e., PGA or SNV mutation
density). dQTLs were considered to have replicated if BH FDR < 0.1 and sign(log(ORuiscovery))
= sign(log(OReplication))-

Replication of dQTLs in ICGC EOPC

We identified nine dQTLs that were associated with somatic events with a recurrence rate > 5%
in the EOPC-DE cohort and had concordant ORs in the discovery and replication cohorts. The
candidate SNPs were studied across 238 prostate cancer patients with European ancestry from
the ICGC EOPC-DE cohort *!. Germline SNP genotyping and quality control was performed as
previously described #2. Association between germline SNP genotypes and presence of somatic
mutation was performed using logistic regression models in Python (stats package version

0.11.1) correcting for the first five principal components, age and mutational burden.

Replication of dQTLs in Hartwig Medical Foundation metastatic prostate cancer
We replicated dQTLs on the external CPCT-02/HMF dataset under data-requests DR-071 and

DR-208 #2. This as an extension of the metastatic prostate cancer cohort (n = 394 distinct
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patients) as previously described by van Dessel & van Riet et al *3. To select patients of
(predominantly) European descent, we utilized the established set of ancestry markers from the
EUROFORGEN Global AIM-SNP set 3 which consisted out of 128 bi-allelic and tri-allelic
germline markers and 934 respective reference samples of African, East Asian, European, Native
American and Oceanian ancestry. For these ancestry markers, we determined the respective
germline genotype (0/0, 0/1, 1/1, 0/2, 1/2 or 2/2) within all distinct patients within the CPCT-
02/HMF dataset. Subsequently, we performed a Principal Component Analysis (PCA) on the
combined dataset of genotypes from the CPCT-02/HMF dataset and reference samples. As input
for the PCA, genotypes were converted into six numerical categories (0 to 5) and zero centered
and scaled during PCA. To determine the putative ethnicity of the CPCT-02/HMF patients, we
performed a K-Means clustering (kK = 5, Hartigan and Wong algorithm on 50 random sets and
10,000 iterations) on all principal components (i.e., ancestry markers) as derived on the
combined genotype-matrix of the reference samples and the CPCT-02/HMF dataset. From this
analysis, we selected the distinct CPCT-02/HMF patients clustering within the European descent
reference-cluster (n = 384). For these 384 European CPCT-02/HMF metastatic patients, we
determined the germline genotypes of the dQTLs (n = 19) and the presence of the respective
somatic event within the tumor genome (somatic deletions of CDKNIB, CHD1, RB1, TMPRSS?2
and/or ZNF292, amplifications of NCOA2, somatic mutations within the 3° UTR of FOXA 1 and
genomic fusions of TMPRSS2-ERG). If multiple metastatic biopsies from the same patients were
available (n = 43), the aggregation of respective somatic events within a patient was used to
determine the presence of these somatic events. dQTLs were assessed within a logistic regression
model correcting for the first five genetic principal components (based on the ancestry markers),

age and mutational burden.

Replication of dQTLs in PROFILE

Dana-Farber Cancer Institute prospective cohort (PROFILE) was collected with informed
consent: 490 unrelated men of European descent with prostate cancer (91 with metastatic disease
and 399 primary or local tumors). All samples underwent targeted sequencing on the OncoPanel
platform with three panel versions that targeted the exons of 275, 300 and 447 genes,
respectively. Genotypes were imputed from off-target reads using STITCH (v.1.5.3) . To
determine genetic ancestry, reference principal components were computed by SNPweight tools
in HapMap populations of European, West African (Yoruban) and East Asian (Chinese) ancestry
86 In the PROFILE cohort, imputed dosages for variants with INFO > 0.4 and MAF > 0.01 were

projected the same PCA space using the PLINK2 ‘--score’ function. The mean principal
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component along both the West African-European cline and the East-Asian-European cline was
computed for all individuals who self-reported as white. Individuals within £ two standard
deviations were retained. Samples were filtered for relatedness using a GRM matrix with a 0.05
cutoff. SNPs were filtered to ensure Hardy-Weinberg equilibrium p-value > 0.001, MAF > 0.05
and INFO > 0.4. If the tag dQTL was not genotyped in the PROFILE cohort, a proxy SNP was
selected by maximizing the product of the INFO, R? and 1000 Genomes European MAF using
LDIinkR ¥’. Finally, associations were tested using a logistic regression in PLINK?2 with the first

five genetic principal components, tumor purity, panel version, age and PGA as covariates.

Meta-analysis across discovery, replication, HMF, EOPC and PROFILE cohorts
Effect sizes and standard errors of dQTL associations in the discovery, replication, HMF,
EOPC and PROFILE cohorts were combined using a restricted maximum likelihood

model as implemented in the metafor R package (v3.0.2).

Chromothripsis associations
We tested the association of dQTLs with chromothripsis as determined in Fraser et al. 4. We

applied a linear regression model correcting for the first five principal components and age.

Germline methylation (meQTL) associations

To assess the effect of dQTLs on the tumor methylome, the 16 concordant tag dQTLs were
evaluated for local meQTLs, defined as probes £500 kbp around the SNP, using a linear
regression correcting for the first five genetic principal components and age. P-values were
adjusted for multiple-hypothesis testing using Benjamini & Hochberg (BH) false discovery
correction. Significance was defined as BH FDR < 0.10. Significant meQTLs were next
replicated in the TCGA cohort using the same linear regression modeling. Here replication was
defined as BH FDReplication < 0.10 and sign(Breplication) = sign(Pdiscovery). Replicated meQTLs were
tested for tumor specificity considering patients that had matched tumor/reference methylation
profiling (n=50). Tumor specificity was defined as BH FDRumor < 0.10 and BH FDReference >
0.10 or sign(PBrumor) # SigN(Preference) using the same linear regression model. To assess enrichment
of meQTLs, we generated a null distribution of the number of SNPs involved in a replicated
meQTL and the number of replicated meQTLs. We randomly sampled 16 SNPs from the total
list of SNPs evaluated as a local dQTL against any driver. We identified and replicated local
meQTL +500 kbp around each of the 16 random SNPs using the same methods as the dQTL-
meQTL analysis. We calculated the number of SNPs involved in a replicated meQTL as well as

the total number of replicated meQTLs. We repeated this 1,000 times. P-values were calculated

- Page 24 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

as 1 — the fraction of iterations more dQTLs were involved in a replicated meQTL than random
SNPs or 1- the fraction of iterations dQTLs were involved in more replicated meQTLs than

random SNPs.

Germline-chromatin associations

Peak BED files for H3K27ac (n = 92), H3K27me3 (n=76), AR (n=88) and H3K4me3 (n=56)
were downloaded for an independent cohort of 94 localized prostate cancer patients from the
Gene Expression Omnibus (GSE120738) #4. dQTLs overlapping each target were identified
using the downloaded bed files. We considered a dQTL overlapping if any of the SNPs in its
haplotype block overlapped the target. A second cohort of 48 localized prostate cancer patients
was additionally profiled, as described previously 3. Briefly, both adenocarcinoma and non-
malignant prostate tissue from each patient was subjected to ChIP-Seq for H3k27ac (n=48),
H3k4me2 (n=6), H3k4me3 (n=4), FOXA1 (n=10) and HOXB13 (n=9) and blood samples were
genotyped for germline SNPs followed by imputation using the HRC panel ¥. Sites of allelic
imbalance in the ChIP-Seq peaks were identified by first correcting for mapping bias using the
WASP pipeline %, peak calling using MACS2 and finally testing for allele-specific signal using
GATK ASEReadCounter 7' and a beta-binomial test. Each test was performed once for samples
from normal, tumor, or both, as well as a test for difference in imbalance between tumor and
normal. Peaks were considered “imbalanced” in each of these four test categories if any of the
SNPs tested for that peak exhibited allele-specific signal at a 5% BH FDR. Finally, we tested the
overlap of dQTLs with published ChIP-Seq data from LNCaP, PC3, 22Rv1, VCaP and RWPE-

1 cell lines +-38

. If multiple target:treatment pairs existed the median number of overlapping
SNPs was used. For all ChIP-Seq analyses, dQTLs were considered overlapping if any of the

SNPs within the entire LD block overlapped with the ChIP-Seq peak.

Germline-RNA (eQTL) and germline-protein (pQTL) associations

Next, the 16 SNPs involved in the 23 concordant dQTLs were tested for their effect on the
transcriptome. We evaluated local eQTLs, defined as genes 500 kbp around the SNP. mRNA
abundance TPM values for each gene were rank inverse normalized. eQTLs were tested using a
linear regression model correcting for the first five genetic principal components, age and ten
PEER % factors to adjust for noise in the RNA-Seq data. P-values were adjusted for multiple-
hypothesis testing using the Benjamini & Hochberg false discovery correction. Nominally
significant eQTLs were considered for pQTL discovery using protein abundances from mass

spectrometry as described previously *°. pQTLs were tested using a linear regression model
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correcting for the first five genetic principal components, age and ten PEER factors to adjust for

noise in the mass spectrometry data.

Germline-clinical associations

Germline SNPs in dQTLs were associated with clinical characteristics including PSA, ISUP
grade group, T-category, age at diagnosis and biochemical recurrence. PSA and age were tested
using a linear regression model, correcting for the first five genetic principal components. The
PSA model was also corrected for age. T-category was tested using a logistic regression model
comparing T2 to >T3, correcting for the first five genetic principal components and age. ISUP
was tested by using an ordinal linear regression model, correcting for the first five genetic
principal components and age. Each clinical outcome was independently corrected for multiple
hypothesis testing using the Benjamini & Hochberg false discovery correction. Survival analysis
with biochemical recurrence was tested using a Cox Proportional Hazards model. Three genetic
models, dominant, recessive and co-dominant, were tested and the model with the lowest AIC

was reported. Kaplan-Meier curves were plotted, and HR adjusted for primary treatment.

Somatic SNV enrichment

For each of the 16 SNPs involved in the high confidence dQTLs, we assessed if the somatic
SNV mutation burden 10 Mbp of the dQTL was higher than expected. We leveraged
ActiveDriverWGS °! which uses a Poisson regression to compare the mutation burden of a
region of interest to the adjacent genomic window (£ 50 kbp). The narrow adjacent window
reflects similar chromatin, structure and replication timing to the region of interest.
ActiveDriverWGS also corrects for differences in the trinucleotide contexts of the region of
interest compared to the flanking windows. P-values were adjusted for multiple hypothesis

testing using Benjamini & Hochberg false discovery correction.

Ancestral variant allele frequency bias

Variant allele frequencies in European (n=7,718), African (n=4,359) and East Asian (n=780)
populations for the 16 dQTL SNPs were extracted from gnomAD (v2.1.1) *2. Allele frequencies
in African and East Asian populations were compared to European population using Fisher’s
exact test and BH FDR was applied across all 16 SNPs in each comparison separately. As a
control, North-West European VAFs were compared again Other Non-Finnish European VAFs
using Fisher’s exact test. These two European populations were chosen because they had the
largest sample number in gnomAD. To estimate the proportion of ancestral differences in T2E

and FOXA I mutation frequency explained by dQTLs, we compared the ORs of ancestry-somatic
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associations and dQTLs ORs multiplied by normalized variant allele frequency differences

between the two ancestry groups. For example:

VAFEuropean - VAFAfrican
ORdQTLx VAFEuropean

OREuropeanvsAfrican

We estimated OREuropean vs. African (T2E) = 5.00 and ORGEuropean vs. African (FOXA1 SNVs) = 0.50
based on Huang et al. ' and Lindquist et al. '7 compared to the somatic driver frequency in the
discovery cohort. We estimated OREuropean vs. East Asian (T2E) = 7.47 and OREuropean vs. East Asian
(FOXAI SNVs) = 0.07 based on Li ef al. '® compared to the somatic driver frequency in the

discovery cohort.

dQTL power analysis

Power was estimated based on the non-centrality parameter of the y? statistic under the
alternative hypothesis using the R package gwas-power (https://github.com/kaustubhad/gwas-
power). Power was calculated for varying MAF and effect size values considering sample sizes
reflective of somatic driver frequencies 0.05, 0.20 and 0.50 in the discovery cohort. To estimate
the number of non-detected dQTLs, discovered dQTLs were binned based on their MAF, effect
size and somatic driver frequency and the number of detected dQTLs in each bin was divided
by the corresponding power to estimate the total number of dQTLs expected. Next, we subtracted
the number of discovered dQTLs from the total number of dQTLs to estimate the number of

non-detected dQTLs.

Assessment of skew of dQTL p-value distributions

To determine if dQTL p-value distributions were significantly skewed to small p-values more
than expected by chance alone, a null distribution for each analysis (i.e., linear local and spatial
local) and each somatic driver was generated by permuting the somatic driver labels. That is, for
a single somatic event, patients were randomly assigned whether or not they had the somatic
event while maintaining the true frequency of the event in the cohort. Next, both linear and
spatial local dQTL discovery was conducted as described above with the permuted somatic
driver labels. The skew of the -logio p-value distribution was calculated and compared to the true
distribution. P-values were calculated by considering the number of permutation iterations that
had skew > real skew divided by the number of iterations performed. One thousand iterations
were performed for each somatic driver. To supplement these analyses, we also estimated the

proportion of null p-values in the p-value distributions for linear, spatial and enhancer dQTLs
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for the top five most recurrent somatic mutations using the piOest() function in the qvalue R

package (v2.18.0).

Data visualization

Visualizations were generated in the R statistical environment (v3.3.1) with the lattice (v0.24-

30), latticeExtra (v0.6-28) and BPG (v5.6.23) packages °°.

Data Availability

Raw sequencing data are available in the European Genome-phenome Archive under accession
EGAS00001000900  (https://www.ebi.ac.uk/ega/studies/EGAS00001000900).  Processed
variant calls are available through the ICGC Data Portal under the project PRAD-CA
(https://dcc.icge.org/projects/PRAD-CA). Methylation data are available in the Gene Expression
Omnibus under accession GSE84043. TCGA WGS/WXS data are available at Genomic Data
Commons Data Portal (https://gdc-portal.nci.nih.gov/projects/TCGA-PRAD). Primary samples

ChIP-Seq data was retrieved from Gene Expression Omnibus under accession GSE120738.

- Page 28 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

Authors' contributions

Project Initiation: K.E.H., P.C.B

Sample Preparation: N.K., A.S., S.G.R.,J.S., A.J.C., M.\M.P, S.B.AM., P.D.S., RM.S.B.
Bioinformatic Analyses: K.E.H.,J.Y., T.S., J.L., N.S.F.,J.vR.,K.T.,J.S.P., CH.J., HZ.,

TN.Y.,LEH.,RJ,CB.,EO.,W.lJ.,JJ, SMW.

Statistical Analyses: K.E.H.,J.Y., JW. J.vR., K.T.

Manuscript First Draft: K.E.H.

Supervised Research: B.J.P., N.Z., A.G.,, M.P.L., A UK., NM.C, R.G.B., SM.W_, J.W.,
R.H.,,HHH., VMH.,, B.P., MLF., CM.H., RSM., P.C.B.

Manuscript Editing & Approval: All authors

Conflict of Interest Statement

A.U.K. has received personal fees from Varian Medical Systems, Inc., ViewRay, Inc., Janssen,
Inc., and Intelligent Automation, Inc. P.C.B. sits on the Scientific Advisory Boards of
BioSymetrics Inc. and Intersect Diagnostics Inc. All other authors declare they have no conflicts
of interest. At the time of publication, N.S.F was an employee of Hoffman-La Roche Limited
(Roche Canada). All contributions by N.S.F were completed prior to this employment.

Acknowledgements

The authors thank Anamay Shetty and all members of the Boutros lab for helpful suggestions
and support. The results described here are based in part upon data generated by the TCGA
Research Network: http://cancergenome.nih.gov/. This work was supported by Prostate Cancer
Canada and is proudly funded by the Movember Foundation (grant #RS2014-01 to P.C.B.).
P.C.B. was supported by a Terry Fox Research Institute New Investigator Award and a CIHR
New Investigator Award. This project was supported by Genome Canada through a Large-Scale
Applied Project contract to P.C.B., R. Morin and S. P. Shah. K.E.H was supported by a CIHR
Vanier Fellowship. This work was supported by the National Health and Medical Research
Council (NHMRC) of Australia, grants #APP1165762 to V.M.H. and #APP1104010 and
#APP1162514 to C.M.H., and Cancer Association of South Africa (CANSA) to V.M.H. This
work was supported by the NIH/NCI under award number P30CA016042, by grants from the
National Cancer Institute EDRN (U01CA2141941) and ITCR (U24CA248265). H.H.H. holds
Joey and Toby Tanenbaum Brazilian Ball Chair in Prostate Cancer. This work is supported by a
Terry Fox New Frontiers Program Project Grant (1090 P3 to H.H.H.). This work was supported
by a Prostate Cancer Foundation Special Challenge Award to PCB (Award ID #: 20CHASO1)
made possible by the generosity of Mr. Larry Ruvo. This publication and the underlying study
have been made possible partly on the basis of the data the Hartwig Medical Foundation and the
Center of Personalized Cancer Treatment (CPCT) have made available to the study. N.Z. and
K.T. were supported by NIH grants UOIHGO009080, ROIHG006399, RO1CA227237,
RO1ES029929, RO1CA227466, ROIHG011345 and the DoD grant W81 XWH-16-2-0018. This
work was supported by W81 XWH-19-1-0565, ROICA193910, ROICA251555 and H.L. Snyder
Medical Research Foundation to M.L.F. B.J.P. was supported by a Victorian Health and Medical
Research Fellowship. S.M.W. was supported by the Research Council of Norway (187615), the
South-Eastern Norway Regional Health Authority, and the University of Oslo. R.S.M.
acknowledges funding support from NCI grant (RO1CA245294), CPRIT Individual Investigator
Research Award (RP190454), US Department of Defense Impact Award (W81 XWH-17-1-
0675) and US Department of Defense Breakthrough Award (W81 XWH-21-1-0114).

- Page 29 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

References

1.

10.

11.

Garraway, L. A. & Lander, E. S. Lessons from the Cancer Genome. Cel/l 153, 17-37

(2013).
Vogelstein, B. et al. Cancer Genome Landscapes. Science 339, 1546—1558 (2013).

Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer

etiology, and cancer prevention. Science 355, 1330-1334 (2017).

Mucci, L. A. et al. Familial Risk and Heritability of Cancer Among Twins in Nordic

Countries. JAMA 3185, 68-76 (2016).

Michailidou, K. ef al. Association analysis identifies 65 new breast cancer risk loci.

Nature 551, 92-94 (2017).

Petersen, G. M. ef al. A genome-wide association study identifies pancreatic cancer
susceptibility loci on chromosomes 13g22.1, 1q32.1 and 5p15.33. Nat Genet 42, 224-228

(2010).

Tomlinson, I. P. et al. A genome-wide association study identifies colorectal cancer

susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet 40, 623—630 (2008).

SEER Cancer Statistics Review, 1975-2017. SEER

https://seer.cancer.gov/cst/1975 2017/index.html.

Schumacher, F. R. et al. Association analyses of more than 140,000 men identify 63 new

prostate cancer susceptibility loci. Nat Genet 50, 928-936 (2018).

Conti, D. V. et al. Trans-ancestry genome-wide association meta-analysis of prostate
cancer identifies new susceptibility loci and informs genetic risk prediction. Nat Genet

53, 65-75 (2021).

Ewing, C. M. et al. Germline Mutations in HOXB13 and Prostate-Cancer Risk. New
England Journal of Medicine 366, 141-149 (2012).

- Page 30 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

12. Leongamornlert, D. A. ef al. Germline DNA Repair Gene Mutations in Young-onset
Prostate Cancer Cases in the UK: Evidence for a More Extensive Genetic Panel.

European Urology 76, 329-337 (2019).

13. Pritchard, C. C. et al. Inherited DNA-Repair Gene Mutations in Men with Metastatic

Prostate Cancer. New England Journal of Medicine 375, 443—453 (2016).

14. Blackburn, J. et al. TMPRSS2-ERG fusions linked to prostate cancer racial health

disparities: A focus on Africa. The Prostate 79, 1191-1196 (2019).

15. Huang, F. W. ef al. Exome Sequencing of African-American Prostate Cancer Reveals

Loss-of-Function ERF Mutations. Cancer Discov 7, 973-983 (2017).

16. Li, J. et al. A genomic and epigenomic atlas of prostate cancer in Asian populations.

Nature 580, 93-99 (2020).

17. Lindquist, K. J. et al. Mutational Landscape of Aggressive Prostate Tumors in African

American Men. Cancer Res 76, 1860—1868 (2016).

18. Ren, S. et al. Whole-genome and Transcriptome Sequencing of Prostate Cancer Identify
New Genetic Alterations Driving Disease Progression. European Urology 73, 322—-339

(2018).

19. Taylor, R. A. et al. Germline BRCA2 mutations drive prostate cancers with distinct

evolutionary trajectories. Nat Commun 8, 13671 (2017).

20. Briollais, L. ef al. Germline Mutations in the Kallikrein 6 Region and Predisposition for

Aggressive Prostate Cancer. JNCI: Journal of the National Cancer Institute 109, (2017).

21. Romanel, A. et al. Inherited determinants of early recurrent somatic mutations in prostate

cancer. Nat Commun 8, 48 (2017).

- Page 31 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

Heyn, H. et al. Linkage of DNA Methylation Quantitative Trait Loci to Human Cancer

Risk. Cell Reports 7, 331-338 (2014).

Houlahan, K. E. et al. Genome-wide germline correlates of the epigenetic landscape of

prostate cancer. Nat Med 25, 1615-1626 (2019).

Baca, S. C. ef al. Punctuated Evolution of Prostate Cancer Genomes. Cell 153, 666677

(2013).

Berger, M. F. et al. The genomic complexity of primary human prostate cancer. Nature

470, 214-220 (2011).

Wedge, D. C. ef al. Sequencing of prostate cancers identifies new cancer genes, routes of

progression and drug targets. Nat Genet 50, 682—692 (2018).

Weischenfeldt, J. et al. Integrative Genomic Analyses Reveal an Androgen-Driven
Somatic Alteration Landscape in Early-Onset Prostate Cancer. Cancer Cell 23, 159-170

(2013).

Yamaguchi, T. N. et al. Molecular and evolutionary origins of prostate cancer grade.

Ewing, A. D. et al. Combining tumor genome simulation with crowdsourcing to

benchmark somatic single-nucleotide-variant detection. Nat Methods 12, 623—630 (2015).

Lee, A. Y. et al. Combining accurate tumor genome simulation with crowdsourcing to

benchmark somatic structural variant detection. Genome Biol 19, 188 (2018).

Abeshouse, A. et al. The Molecular Taxonomy of Primary Prostate Cancer. Cel/ 163,

1011-1025 (2015).

Pan-cancer analysis of whole genomes. Nature 578, 82-93 (2020).

- Page 32 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

33. Luedeke, M. ef al. Prostate cancer risk regions at 8q24 and 17q24 are differentially
associated with somatic TMPRSS2:ERG fusion status. Human Molecular Genetics 25,

5490-5499 (2016).

34. Chen, W. S. et al. Germline polymorphisms associated with impaired survival outcomes
and somatic tumor alterations in advanced prostate cancer. Prostate Cancer Prostatic Dis

23, 316-323 (2020).

35. Ostendorf, B. N. et al. Common germline variants of the human APOE gene modulate

melanoma progression and survival. Nat Med 26, 1048—1053 (2020).

36. Penney, K. L. ef al. Association of Prostate Cancer Risk Variants with TMPRSS2:ERG
Status: Evidence for Distinct Molecular Subtypes. Cancer Epidemiol Biomarkers Prev

25, 745-749 (2016).

37. Espiritu, S. M. G. et al. The Evolutionary Landscape of Localized Prostate Cancers

Drives Clinical Aggression. Cell 173, 1003-1013.e15 (2018).

38. Ramanand, S. G. et al. The landscape of RNA polymerase II-associated chromatin

interactions in prostate cancer. J Clin Invest 130, 39874005 (2020).

39. Grubert, F. et al. Landscape of cohesin-mediated chromatin loops in the human genome.

Nature 583, 737-743 (2020).

40. Fraser, M. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature

541, 359-364 (2017).

41. Gerhauser, C. et al. Molecular Evolution of Early-Onset Prostate Cancer Identifies

Molecular Risk Markers and Clinical Trajectories. Cancer Cell 34, 996-1011.e8 (2018).

42. Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature

575, 210-216 (2019).

- Page 33 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

43.

44,

45.

46.

47.

48.

49.

50.

51.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

Gusev, A., Groha, S., Taraszka, K., Semenov, Y. R. & Zaitlen, N. Constructing germline
research cohorts from the discarded reads of clinical tumor sequences.
2021.04.09.21255197 https://www.medrxiv.org/content/10.1101/2021.04.09.21255197v1

(2021) doi1:10.1101/2021.04.09.21255197.

Stelloo, S. et al. Integrative epigenetic taxonomy of primary prostate cancer. Nat

Commun 9, 4900 (2018).

Chen, Y. et al. ETS factors reprogram the androgen receptor cistrome and prime prostate

tumorigenesis in response to PTEN loss. Nat Med 19, 1023-1029 (2013).

Hazelett, D. J. et al. Comprehensive Functional Annotation of 77 Prostate Cancer Risk

Loci. PLOS Genetics 10, €1004102 (2014).

Jin, H.-J., Zhao, J. C., Wu, L., Kim, J. & Yu, J. Cooperativity and equilibrium with
FOXATI define the androgen receptor transcriptional program. Nat Commun 5, 3972

(2014).

Lee, J. K. ef al. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human

Prostate Epithelial Cells. Cancer Cell 29, 536547 (2016).

Liang, Y. et al. LSD1-Mediated Epigenetic Reprogramming Drives CENPE Expression

and Prostate Cancer Progression. Cancer Res 77, 5479-5490 (2017).

Rickman, D. S. et al. Oncogene-mediated alterations in chromatin conformation. PNAS

109, 9083-9088 (2012).

Sutinen, P., Malinen, M., Heikkinen, S. & Palvimo, J. J. SUMOylation modulates the
transcriptional activity of androgen receptor in a target gene and pathway selective

manner. Nucleic Acids Research 42, 8310-8319 (2014).

- Page 34 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

Taberlay, P. C., Statham, A. L., Kelly, T. K., Clark, S. J. & Jones, P. A. Reconfiguration
of nucleosome-depleted regions at distal regulatory elements accompanies DNA

methylation of enhancers and insulators in cancer. Genome Res. 24, 1421-1432 (2014).

Tan, P. Y. et al. Integration of Regulatory Networks by NKX3-1 Promotes Androgen-
Dependent Prostate Cancer Survival. Molecular and Cellular Biology 32, 399-414

(2012).

An Integrated Encyclopedia of DNA Elements in the Human Genome. Nature 489, 57-74

(2012).

Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally

defined by eRNA. Nature 474, 390-394 (2011).

Xu, K. et al. EZH2 Oncogenic Activity in Castration-Resistant Prostate Cancer Cells Is

Polycomb-Independent. Science 338, 1465—-1469 (2012).

Yu, J. et al. An Integrated Network of Androgen Receptor, Polycomb, and TMPRSS2-

ERG Gene Fusions in Prostate Cancer Progression. Cancer Cell 17, 443—454 (2010).

Zhang, X., Cowper-Sal-lari, R., Bailey, S. D., Moore, J. H. & Lupien, M. Integrative
functional genomics identifies an enhancer looping to the SOX9 gene disrupted by the

17q24.3 prostate cancer risk locus. Genome Res. 22, 1437-1446 (2012).

Gonzalez-Perez, A., Sabarinathan, R. & Lopez-Bigas, N. Local Determinants of the

Mutational Landscape of the Human Genome. Cell 177, 101-114 (2019).

Haffner, M. C. ef al. Androgen-induced TOP2B-mediated double-strand breaks and

prostate cancer gene rearrangements. Nat Genet 42, 668—675 (2010).

Xu, X. et al. Variants at IRX4 as prostate cancer expression quantitative trait loci. Eur J

Hum Genet 22, 558-563 (2014).

- Page 35 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

62. THE GTEX CONSORTIUM. The GTEx Consortium atlas of genetic regulatory effects

across human tissues. Science 369, 1318—1330 (2020).

63. Mazrooei, P. et al. Cistrome Partitioning Reveals Convergence of Somatic Mutations and
Risk Variants on Master Transcription Regulators in Primary Prostate Tumors. Cancer

Cell 36, 674-689.¢6 (2019).

64. Yuan, J. ef al. Integrated Analysis of Genetic Ancestry and Genomic Alterations across

Cancers. Cancer Cell 34, 549-560.e9 (2018).

65. Lalonde, E. ef al. Tumour genomic and microenvironmental heterogeneity for integrated
prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort

study. The Lancet Oncology 15, 1521-1532 (2014).

66. Jackson, W. C. et al. Intermediate Endpoints After Postprostatectomy Radiotherapy: 5-
Year Distant Metastasis to Predict Overall Survival. European Urology 74, 413419

(2018).

67. Carter, H. et al. Interaction Landscape of Inherited Polymorphisms with Somatic Events

in Cancer. Cancer Discov 7, 410-423 (2017).

68. A haplotype map of the human genome. Nature 437, 1299-1320 (2005).

69. Heinrich, V. et al. Estimating exome genotyping accuracy by comparing to data from

large scale sequencing projects. Genome Medicine S, 69 (2013).

70. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler

transform. Bioinformatics 25, 1754—1760 (2009).

71. McKenna, A. et al. The Genome Analysis Toolkit: A MapReduce framework for

analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303 (2010).

- Page 36 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

72. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25,

2078-2079 (2009).

73. Larson, D. E. ef al. SomaticSniper: identification of somatic point mutations in whole

genome sequencing data. Bioinformatics 28, 311-317 (2012).

74. Raine, K. M. et al. cgpPindel: Identifying Somatically Acquired Insertion and Deletion
Events from Paired End Sequencing. Current Protocols in Bioinformatics 52, 15.7.1-

15.7.12 (2015).

75. Cingolani, P. ef al. A program for annotating and predicting the effects of single

nucleotide polymorphisms, SnpEff. Fly 6, 80-92 (2012).

76. Nik-Zainal, S. et al. The Life History of 21 Breast Cancers. Cell 149, 994-1007 (2012).

77. Gabriel, S. B. et al. The Structure of Haplotype Blocks in the Human Genome. Science

296, 2225-2229 (2002).

78. Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium

panel. Nat Genet 48, 14431448 (2016).

79. Das, S. et al. Next-generation genotype imputation service and methods. Nat Genet 48,

12841287 (2016).

80. McCarthy, S. ef al. A reference panel of 64,976 haplotypes for genotype imputation. Nat

Genet 48, 1279-1283 (2016).

81. Nicorici, D. et al. FusionCatcher — a tool for finding somatic fusion genes in paired-end
RNA-sequencing data. 011650 https://www.biorxiv.org/content/10.1101/011650v1 (2014)

doi:10.1101/011650.

82. Waszak, S. M. et al. Germline Elongator mutations in Sonic Hedgehog medulloblastoma.

Nature 580, 396401 (2020).

- Page 37 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

83. wvan Dessel, L. F. ef al. The genomic landscape of metastatic castration-resistant prostate
cancers reveals multiple distinct genotypes with potential clinical impact. Nat Commun

10, 5251 (2019).

84. Phillips, C. et al. Building a forensic ancestry panel from the ground up: The
EUROFORGEN Global AIM-SNP set. Forensic Science International: Genetics 11, 13—

25 (2014).

85. Davies, R. W, Flint, J., Myers, S. & Mott, R. Rapid genotype imputation from sequence

without reference panels. Nat Genet 48, 965-969 (2016).

86. Chen, C.-Y. ef al. Improved ancestry inference using weights from external reference

panels. Bioinformatics 29, 1399-1406 (2013).

87. Mpyers, T. A., Chanock, S. J. & Machiela, M. J. LDIlinkR: An R Package for Rapidly
Calculating Linkage Disequilibrium Statistics in Diverse Populations. Frontiers in

Genetics 11, 157 (2020).

88. wvan de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific
software for robust molecular quantitative trait locus discovery. Nat Methods 12, 1061—

1063 (2015).

89. Stegle, O., Parts, L., Durbin, R. & Winn, J. A Bayesian Framework to Account for
Complex Non-Genetic Factors in Gene Expression Levels Greatly Increases Power in

eQTL Studies. PLOS Computational Biology 6, €1000770 (2010).

90. Sinha, A. ef al. The Proteogenomic Landscape of Curable Prostate Cancer. Cancer Cell

35, 414-427.e6 (2019).

91. Zhu, H. et al. Candidate Cancer Driver Mutations in Distal Regulatory Elements and

Long-Range Chromatin Interaction Networks. Molecular Cell 77, 1307-1321.e10 (2020).

- Page 38 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

92. Karczewski, K. J. ef al. The mutational constraint spectrum quantified from variation in

141,456 humans. Nature 581, 434-443 (2020).

93. P’ng, C. et al. BPG: Seamless, automated and interactive visualization of scientific data.

BMC Bioinformatics 20, 1-5 (2019).

- Page 39 of 42-


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1 bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a)
427 Localized Tumors \
Prostate Cancer
552 Localized
Blood | | Tumor Somatic . dQTL 384 mCRPC
17 drivers |< . =
WGS WGS Variants Replication 238 EOPC
/ 390 PROFILE )
i PRS dQTLs N
Germline 147 SNP PRS Pan-Cancer
Polymorphisms 134 Breast
116 Pancreatic
91 Ovarian
@ Linear local dQTLs
-500 kbp +500 kbp
— Ny il
o Spatial local dQTLs
"} Spatial local region
== H3K27ac
o Enhancer local dQTLs - —/ " Enhancer local region
b)
. . CITTTTTT T T [ [[[[]
Somatic Analysis
Event Enhancer TMPRSS2 Trunk
Loss S.patlal NCOA2 Branch
Gain Linear
SNV Risk @ CHD1Branch
Fusion a RB1 Trunk o|o]|e
. >
P-value  Odds Ratio .= foxAtUTR | g
l:- . > 4 (a] MYC Trunk
1 107* I’ 2 ZNF292 Trunkl
0 el | |l
® 82 NCOA2 Trunk
‘ < 02 TP63 Trunk.
- N OO ANNMNINDNECAYSNIFTIT S ONDODIEITNOINDSAH ONMOO
N NTOOVWOIMUVOANMEHNOONOITTONTONONDNMN
mMoOME M NSNOMOINNO YR BARNMS & & M
NP eSO RMIITIOIINGONIIoOLmMNO NN
= g R I R R R N R R R
popyp 297 L @ -
25 SNPs


https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.16.516773; this version posted November 17, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Houlahan et al.

Figure 1 — dQTLs bias somatic mutational landscape

a) Schematic of dQTL detection. First, 147 SNPs from the polygenic risk score proposed by
Schumacher et al. ° were interrogated for their association with 17 somatic drivers. Second, we
identified linear local dQTLs by interrogating SNPs £500kbp around the driver gene. Third, we
identified spatial local dQTLs by interrogating SNPs that interacted with each driver gene in 3D
space, outside of the linear gene region. Spatial local regions were defined using RNA Pol-II
ChIA-PET profiling in LNCaP, DU145, VCaP and RWPE-1 cell lines and RAD21 ChIA-PET
in LNCaP and DU145 cell lines. Finally, we identified enhancer local dQTLs by interrogating
SNPs in enhancer regions that interacted with the driver gene. Enhancer regions were defined
using H3K27ac HiChIP profiling in LNCaP cell lines. All discovered dQTLs were tested for
replication in six replication cohorts. b) Summary of 26 discovery dQTLs involving 25 unique
variants. Dot size and color indicates magnitude and direction of ORs between SNP, x-axis and
somatic driver, y-axis. Background shading indicates p-values. Covariate on left indicates the
type of somatic mutation while covariate along the top indicates the analysis in which the dQTL
was discovered.
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Figure 2 — Characterization of dQTLs

a) Comparison of ORs in discovery, x-axis, vs. replication, y-axis, cohort of tag dQTLs.
Horizontal and vertical dotted lines represent OR = 1 and diagonal line represents y=x. Halo
around points indicates BH FDR < 0.1 in replication cohort. Dot color indicates the associated
somatic driver. b) Summary of all 35 dQTLs involving 25 unique variants. Dot size and color
indicates magnitude and direction of ORs between SNP, x-axis and somatic driver, y-axis.
Background shading indicates strategy dQTL was discovered with. Covariate on left indicates
the type of somatic mutation. ¢) Forest plot shows the OR and 95% confidence interval for dQTL
associations from a meta-analysis of 2,019 prostate tumors. The grey shading indicates an BH
FDR <0.1. The covariate in the middle indicates the driver mutation the SNP is associated with.
The heatmap on the right indicates which cohorts were included in the meta-analysis. d) A subset
of dQTLs were associated with changes in tumor methylation. Heatmap indicates the number of
methylation probes each variant, x-axis, was associated with in the discovery and replication
TCGA cohort, y-axis. The third column indicates the number of replicated meQTLs that were
tumor specific. The covariate on the right indicates if the variant is a risk variant and what
somatic driver it is associated with. ) dQTL variants (x-axis) overlap with histone modification
and transcription factor binding sites (y-axis). Grey shading indicates overlap with allelic
balanced ChIP-Seq peak while black indicates overlap with allelic imbalanced ChIP-Seq peak.
Red X indicates overlapping SNP is tag SNP. Covariate along the top indicates the tissue while
the covariate along the right indicates if the SNP is a literature reported risk SNP and what
somatic driver it was associated with. f) Summary of molecular and clinical characterization of
dQTLs. Grey indicates dQTL was association with methylation (meQTL), RNA abundance
(eQTL), protein abundance (pQTL), transcription factor binding, histone modification, ISUP
grade group, biochemical recurrence (BCR) or risk of prostate cancer diagnosis (PCa Risk).
Middle heatmap shows if dQTL replicated in meta-analysis or the replication cohort. Covariate
on the left illustrates the somatic driver the dQTL is associated with. g) rs11203152 located
within regulatory dense region. Tracks show chromatin looping anchored by RNA Polymerase
I (RNAPII), RAD21, AR or ERG in RWPE-1, LNCaP, VCaP or DU145 cell lines. h) The
number of chromatin loops was more than expected by chance in LNCaP and VCaP cell lines.
Barplots shows number of anchors within 1 Mbp of rs11203152. Covariate along the bottom
indicates cell line and target while the background shading indicates of the enrichment was more
than expected by chance (BH FDR < 0.05). The red X indicates the expected number of
chromatin loop anchors based on 100,000 randomly sampled, equally sized regions. i) dQTLs
may, in part, explain differences in somatic mutation frequencies across ancestries. Barplot
shows the risk (y-axis) of acquiring a FOXAI SNV or T2E based African (green) or Asian
(purple) ancestry compared to European ancestry (x-axis). The estimated percent of this risk
explained by rs848048 (FOXAI) orrs11203152 (T2E) is shown in black and indicated above the
bar. The covariate along the top indicates if the bar represents African (green) or Asian (purple)
descent individuals and if the somatic mutation is observed more (pink) or less (teal) frequently
in European-descent men compared to African or Asian-descent.
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Figure 3 — dQTL discovery p-value distribution is significantly skewed

a) dQTL discovery p-value distributions are significantly skewed towards smaller p-values. The
p-value skew for each dQTL discovery for the top five most recurrent somatic drivers was
compared to an empirically generated null distribution (iterations=1,000) and a p-value
calculated as the number of null iterations with skew > real skew. Barplot shows the p-value
from this permutation analysis. Horizontal line indicates P = 0.05 and colors represent the dQTL
discovery approach. b) Null skew distribution for T2E dQTL discovery from 1,000 iterations.
Horizontal red lines represent real skew values for each dQTL approach. P-values along the top
represent the number of null iterations with skew > real skew divided by the number of null
iterations. Boxplot represents median, 0.25 and 0.75 quantiles with whiskers at 1.5x interquartile
range. ¢) Null skew distribution of clonal loss of ZNF292. d) Barplot of 1 — the estimated
proportion of null p-values (y-axis) in linear, spatial or enhancer dQTL discovery for the top five
most recurrent somatic events. The estimated proportion of null p-values of spatial dQTLs
associated with clonal loss of RBI could not be tested due to too few SNPs.
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