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Abstract 
A person’s germline genome strongly influences their risk of developing cancer. Yet the 

molecular mechanisms linking the host genome to the specific somatic molecular phenotypes of 

individual cancers are largely unknown. We quantified the relationships between germline 

polymorphisms and somatic mutational features in prostate cancer. Across 1,991 prostate 

tumors, we identified 23 co-occurring germline and somatic events in close 2D or 3D spatial 

genomic proximity, affecting 10 cancer driver genes. These driver quantitative trait loci (dQTLs) 

overlap active regulatory regions, and shape the tumor epigenome, transcriptome and proteome. 

Some dQTLs are active in multiple cancer types, and information content analyses imply 

hundreds of undiscovered dQTLs. Specific dQTLs explain at least 16.7% ancestry-biases in rates 

of TMPRSS2-ERG gene fusions and 67.3% of ancestry-biases in rates of FOXA1 point mutations. 

These data reveal extensive influences of common germline variation on somatic mutational 

landscapes.  
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Introduction 
Cancers result from the accumulation of genomic and epigenomic aberrations that deregulate 

normal cellular processes1,2. These aberrations can arise from environmental influences, genetic 

susceptibility or stochastic errors3. The exact contribution of each of these three factors to the 

mutational landscape of any specific tumor is largely unknown, as are the ways in which these 

factors interact. Varying contributions of these factors and interactions between them result in 

each individual tumor having a unique mutational composition. This inter-tumoral heterogeneity 

is a key driver of clinical urgency for precision care. 

Of these three factors, the influences of germline genetics on cancer are well-known. About a 

third of the risk of cancer diagnosis is heritable4. Genome-wide association studies (GWAS) 

have identified hundreds of specific sequence variations associated with risk of diagnosis – 

predominantly single nucleotide polymorphisms (SNPs)5–7. The mechanisms by which germline 

predisposition loci modulate risk are mostly unknown, but one hypothesis is that they influence 

somatic mutational evolution. To test this, we focused on prostate cancer: the second most 

common malignancy in men worldwide8, and one of the most heritable. It is estimated that 57% 

of the variability in prostate cancer diagnosis is explained by genetic factors4. Polygenic risk 

scores (PRS) based on common germline variants can predict risk of a prostate cancer diagnosis 

for individual men9,10. Rare germline variants in DNA damage repair genes or transcription 

factors like HOXB13 are associated with both increased risk of diagnosis and increased disease 

aggression11–13. Genetic ancestry is also associated with the somatic landscape of prostate 

cancer: the TMPRSS2-ERG (T2E) fusion occurs less frequently in cancers arising in men of 

African and Asian ancestry than of European ancestry14–18. Localized prostate tumors arising in 

men who carry deleterious germline BRCA2 mutations have a somatic mutational profile 

resembling metastatic castrate-resistant disease19. Similarly, specific germline SNPs are 

associated with PTEN deletion20 and somatic point mutations in the driver gene SPOP21. The 

prostate cancer epigenome is strongly influenced by a patient’s germline genome, with 

thousands of SNPs influencing methylation status22,23, many associated with patient survival and 

tumor gene expression23. Thus, accumulating evidence from rare and common variants and 

studies of ancestry hint at broad germline-somatic interactions. 

We therefore quantified the relationships between germline SNPs and somatic mutational 

profiles in prostate cancer. We termed SNPs that co-occur with specific prostate cancer driver 

genes, driver quantitative trait loci (dQTLs). Integrating linear and three-dimensional analysis 

of DNA structure, we identify 35 dQTLs affecting 10 driver genes in primary localized prostate 
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cancer. Of these, 11 remained statistically significant in a 1,991-patient meta-analysis spanning 

early onset, primary and metastatic disease. These dQTLs associate with almost every aspect of 

prostate cancer: methylation, chromatin structure, mRNA abundance, protein abundance and 

grade at diagnosis. Several affect multiple cancer types. Specific dQTLs associated with somatic 

TMPRSS2-ERG fusion and FOXA1 point mutations explain significant fractions of observed 

differences in mutation frequencies across ancestry groups. Finally, information content analyses 

suggest hundreds of undiscovered dQTLs remain, quantifying how the germline genome shapes 

tumor evolution.  
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Results 
Experimental and cohort design 
We assembled a discovery cohort of 427 patients with localized prostate cancer, each with 

whole-genome sequencing (WGS) of blood (mean 39x coverage) and tumor (mean 64x 

coverage)24–27. All patients had localized disease at diagnosis and were treated by image-guided 

radiotherapy or surgery with curative intent. All discovery cohort samples were treatment-naïve 

and macro-dissected by a genitourinary pathologist to obtain 60%+ tumor cellularity, as verified 

computationally (Supplementary Table 1)28. Median follow-up was 7.7 years: clinical and 

molecular data, including indications of germline variants in homologous repair genes, mismatch 

repair genes and HOXB13, are in Supplementary Table 1. Patients were of European ancestry 

and identity-by-state clustering did not reveal population substructure (Supplementary Figure 

1a). Sequencing data were uniformly processed from read level using benchmarked 

pipelines29,30. We identified 17 somatic drivers occurring in at least 5% of patients based on 

enrichment over the local background mutational rate and with literature support and focused 

our analyses on these (range: 5.1-57.3%; Supplementary Figure 1b). These comprised 14 copy 

number aberrations (CNAs), two single nucleotide variants (SNVs) and the fusion of TMPRSS2 

and ERG (T2E) 28. CNAs were annotated as present in all tumor cells (i.e., clonal; referred to as 

trunk) vs. a subset of tumor cells (i.e., subclonal; referred to as branch). 

We sought to determine whether individual germline SNPs were associated with specific driver 

mutations; we termed these driver quantitative trait loci (dQTLs). A fully powered genome-wide 

discovery would require many thousands of patients with tumor whole-genome sequencing. To 

enrich for dQTLs, we therefore created three complementary, biologically motivated approaches 

(Figure 1a). First, we tested if germline SNPs associated with risk of diagnosis in prostate-

cancer GWAS studies were dQTLs. Second, we identified local dQTLs: regions in close 

proximity to each somatic driver based on linear DNA sequence. Third, we exploited knowledge 

of three-dimensional DNA structure to identify spatial local dQTLs. Altogether we evaluated 

5,516 independent SNPs against one of 17 somatic drivers. 

For replication we compiled a 552-patient cohort of tumors arising in men of European descent 

from The Cancer Genome Atlas (TCGA) 31 supplemented by 140 primary prostate cancers with 

blood and tumor whole genome sequencing analyzed identically to the discovery cohort 

(Supplementary Table 1)28. Finally, to assess dQTL generalizability, we analyzed cancer types 

in the Pan-Cancer Analysis of Whole Genomes (PCAWG) cohort with at least 90 individuals of 
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European descent (i.e., breast, ovarian and pancreatic)32. Supplementary Table 1 summarizes 

all cohorts evaluated. 

As a positive control, we first replicated previously reported SNP associations. Two SNPs 

associated with T2E were replicated: rs16901979 (OR = 0.50; P = 3.90 x 10-2; Supplementary 

Figure 1c) and rs1859962 (OR = 1.52; P = 5.05 x 10-3; Supplementary Figure 1d)33. Two SNPs 

in HSD3B1 associated with overall survival in advanced prostate cancer34 showed trend 

associations with clinical relapse (Prs1856888 = 0.11; Prs1047303 = 0.18; Supplementary Figure 1e-

f) and with tumor extent at diagnosis (Prs1856888 = 0.029; Prs1047303 = 0.091; Supplementary 

Figure 1g-h). SNPs reported to be associated with PTEN loss20 and SPOP point mutations were 

not replicated in this cohort21. Finally, the observation in melanoma that SNPs in APOE were 

associated with metastasis-free survival was generalized to prostate cancer (P = 0.027; 

Supplementary Figure 1i)35. Tumors with the APOE2 genotype had a significantly higher 

burden of genomic rearrangements (GRs) than APOE4 tumors (OR = 0.45; P = 0.05; 

Supplementary Figure 1j). These positive controls confirm our patient cohorts replicate known 

germline-somatic associations but highlight the potential for false negatives at this statistical 

power as well as false positives in published candidate gene approaches. 

Risk variants associated with somatic drivers in prostate cancer 
To identify germline SNPs associated with somatic drivers, we first considered risk alleles used 

in a polygenic risk score (PRS) derived from 147 variants9 (Figure 1a). Of the 134 individual 

risk SNPs with a minor allele frequency (MAF) > 0.05 in the discovery cohort, six were 

associated with one or more somatic driver mutations (logistic regression; Benjamini-Hochberg 

(BH) FDR < 0.1; labelled in light pink in Figure 1b; Supplementary Figure 2a; 

Supplementary Table 2&3). rs12500426, was associated with both loss of TMPRSS2 and T2E 

gene fusion, as expected (OR = 0.60 & 0.59; BH FDR = 0.095 & 0.027, respectively; Figure 

1b). To control for index event bias, we confirmed the six dQTLs after correcting for ISUP grade 

group, T category and PSA levels (P < 7.8x10-3; Supplementary Table 2). We replicated 

previous reports of rs7679673 (OR = 1.94; BH FDR = 0.011) and rs12653946 (OR = 0.53; BH 

FDR = 0.032) association with ERG status36 (Figure 1b). To increase statistical power, we 

grouped somatic driver by pathways: ETS fusions (i.e., fusions in any ETS gene), cell cycle (loss 

of CDKN1B or RB1) and AR signaling (loss of NKX3-1, SNVs in FOXA1 or gain of NCOA2). 

No additional pathway-based dQTLs were identified. 

Finally, we interrogated if the HOXB13 G84E variant was associated with risk of acquiring any 

of the 17 somatic drivers. Because HOXB13 G84E is not common (MAF = 0.0024), we 
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combined the 427 patients in the discovery cohort with the 552 patients in the replication cohort. 

In the 15 patients with HOXB13 G84E (Supplementary Table 1), there was a nominal 

association with T2E (OR = 0.27; P = 0.046) which did not survive multiple hypothesis testing 

(Supplementary Table 2). Cohorts with more HOXB13 G84E carriers will be required to 

robustly assess if HOXB13 G84E is a dQTL. 

Local dQTLs bias somatic drivers in prostate cancer 
The association of individual risk alleles with somatic mutations suggested that specific dQTLs 

might influence the mutational and evolutionary diversity of localized prostate cancer37. We 

evaluated common SNPs (MAF > 0.05) in “close proximity” to somatic driver mutations using 

three different definitions of “proximity” (Figure 1a). First, we defined proximity based on the 

primary DNA sequence and considered germline variants within ±500 kbp of the somatic event 

boundaries. This distance threshold was selected through sensitivity analysis (Supplementary 

Figure 2b). The 17 somatic drivers were each compared to 1,332-11,618 germline SNPs 

(median = 2,279, haplotype blocks = 80-1,379; median haplotype block size = 7 SNPs; 

Supplementary Figure 2c). After controlling for population structure and somatic mutation 

burden, 20 local dQTLs were identified in 11 haplotype blocks, involving five drivers (logistic 

regression; Bonferroni α=0.1 per driver; Punadjusted < 3.7x10-4; OR > 1.8; Figure 1b; 

Supplementary Table 3&4). We selected a tag dQTL – i.e., one SNP to represent each 

haplotype block – based on minimum p-value. A subset of patients in our discovery cohort 

(n=325/427) had additional CNA profiling using orthogonal array-based platforms, and all 11 

CNA tag SNPs were verified by this independent technology (Supplementary Figure 2d). 

Second, we defined proximity to the somatic event based on DNA secondary structure (Figure 

1a). Spatial local dQTLs were defined based on RNA polymerase II ChIA-PET in LNCaP, 

DU145 and VCaP prostate cancer cells and RWPE-1 benign prostate epithelial cells 38, along 

with RAD21 ChIA-PET in LNCaP and DU145 cell lines 39. We identified regions outside the 

linear local boundaries that interacted with the event region in at least two of four cell lines. Each 

of the 17 somatic drivers was evaluated for associations with 7-101 SNPs in this step (median = 

32; haplotype blocks = 2-16; median haplotype block size = 3 SNPs; Supplementary Figure 

2e). Two dQTLs associated with clonal (trunk) loss of RB1 were discovered (logistic regression; 

Bonferroni α=0.1 per driver; Punadjusted < 2.35x10-2; OR > 1.47; Figure 1b; Supplementary 

Table 3&4), and both verified using array-based CNAs (Supplementary Figure 2f). 

Finally, to further explore dQTLs in three-dimensional space, we considered proximity as 

defined by interacting enhancers identified via HiChIP H3K27ac profiling in LNCaP cell lines 
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(Figure 1a). We identified anchor regions outside of gene boundaries whose associated anchor 

fell within the driver gene of interest (see Methods). The 17 somatic drivers were evaluated for 

associations with 0-1,059 SNPs (median = 35; haplotype blocks = 0-81; median haplotype block 

size = 5 SNPs; Supplementary Figure 2g). We identified 11 dQTLs involving seven haplotype 

blocks and three somatic drivers (logistic regression; Bonferroni α=0.1 per driver; Punadjusted < 

1.27x10-2; OR > 1.50; Figure 1b; Supplementary Table 3&4). We verified 3/4 candidate CNA 

dQTLs using array-based data (3 dQTLs associated with SNVs in FOXA1 3’ UTR were not 

measured on the array platform used; Supplementary Figure 2h). 

dQTLs affect multiple drivers and cancer types 
We thus identified 26 tag dQTLs involving 25 unique loci using four strategies: risk dQTLs, 

linear local dQTLs, spatial local dQTLs and enhancer local dQTLs (Figure 1a). Despite being 

significantly under-powered, 16/26 showed consistent effect-sizes in our replication cohort (i.e., 

sign(log(ORdiscovery)) = sign(log(ORreplication)); Figure 2a) and four statistically replicated (BH 

FDR < 0.1). These four were rs11203152 with loss of TMPRSS2 (a proxy for T2E status), 

rs141393446 with loss of ZNF292 and both rs848047 and rs848048 with SNVs in 3’ UTR of 

FOXA1 (Supplementary Figure 3a-h). Next, we investigated dQTL replication in other cancer 

types, focusing on ovarian, breast and pancreatic cancers from PCAWG32. We tested only 

somatic drivers with mutation frequencies ≥ 5% in each cancer type (i.e., 20/26 tag dQTLs). Of 

these 20, 14 showed consistent effect sizes in breast, ovarian or pancreatic cancers 

(Supplementary Figure 3i-k). The association between rs76748266 and gain of NCOA2 

replicated in pancreatic cancer (ORpancreatic = 6.47; BH FDRpancreatic = 1.56 x 10-2; Supplementary 

Figure 3l-m) and the association between rs11203152 with loss of TMPRSS2 was nominally 

significant in ovarian cancer but did not survive multiple hypothesis testing correction (ORovarian 

= 4.87; BH FDRovarian = 0.11; Supplementary Figure 3n). Supplementary Table 5 includes 

the summary statistics for dQTLs across discovery and replication cohorts and Supplementary 

Table 1 summarizes the cohorts evaluated. Thus, a subset of dQTLs affect multiple cancer types. 

Prostate cancer genomic studies have identified mutually exclusive and co-occurring somatic 

mutations28. We therefore sought to identify local dQTLs that show associations with distal 

driver genes. Focusing on the 16 dQTLs with consistent ORs in the replication cohort, we 

screened each tag SNP against all 17 somatic drivers in a candidate analysis. This identified nine 

candidate distal dQTLs (BH FDR < 0.1; Supplementary Figure 3o; Supplementary Table 

3&6), seven of which showed concordant ORs in our replication cohort (Supplementary Figure 

3p). Next, we investigated if dQTLs were associated with chromothripsis, a mechanism that can 
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simultaneously disrupt multiple driver genes40, but did not find any associated dQTLs (BH FDR 

> 0.40; Supplementary Table 3). Integrating all our results, we discovered 35 dQTLs involving 

25 tag SNPs and 10 somatic drivers (Figure 2b). Two thirds showed consistent effect-sizes in 

our replication cohort (Fold Change (FC) = 1.33, P = 0.028; n = 10,000; permutation test; 

Supplementary Figure 3q), and five replicated (BH FDR < 0.1) in at least one cancer type. 

dQTLs generalize to other types of prostate cancer 

To extend these results to other forms of prostate cancer and increase our replication power, we 

considered early-onset (EOPC; diagnosis < 55 years) and metastatic prostate tumors 

(Supplementary Table 1). We conducted a meta-analysis across 1,991 European descent 

prostate tumors, including the discovery and replication cohorts as well as 238 EOPC tumors41, 

384 metastatic castrate resistant prostate tumors42, and 91 metastatic and 299 localized prostate 

tumors from the PROFILE cohort43. We focused on 23 dQTLs that showed concordant ORs in 

the discovery and replication cohorts (henceforth termed concordant dQTLs; Supplementary 

Figure 3q). Not all dQTLs could be tested in each cohort because of limitations in sequencing 

protocols – e.g., PROFILE used targeted sequencing – and limited power due to differences in 

driver mutation recurrence rates across disease stages. Figure 2c indicates in which cohorts each 

dQTL was tested. We identified 11 statistically replicated dQTLs (BH FDR < 0.1; Figure 2c; 

Supplementary Table 5) across these 1,991 patients. Thus, dQTLs can generalize across stages 

of prostate cancer.  

Local dQTLs modulate the tumor epigenome 
Deregulation of tumor methylation is one mechanism by which the germline genome influences 

cancer risk 22,23. We investigated if dQTL tag SNPs were associated with methylation changes 

in tumor tissue (Supplementary Figure 4a). We focused on the 23 concordant tag dQTLs that 

showed consistent ORs in the replication cohort (Supplementary Figure 3q) and conducted a 

candidate local methylation quantitative trait loci (meQTL) analysis within ±500 kbp of dQTL 

tag SNPs. We used array-based methylomes from 226 patients in the discovery cohort and 412 

patients in the replication cohort, along with 47 profiles of histologically non-malignant 

reference prostate tissue (Supplementary Table 1). We identified 266 local meQTLs involving 

eight dQTLs (|βdiscovery| > 0.041; BH FDRdiscovery < 0.1). Our replication cohort had genotyping 

of 221/266 local meQTLs, and 110 replicated (|βreplication| > 0.039; BH FDRreplication < 0.1; Figure 

2d Supplementary Figure 4b; Supplementary Table 7). Three SNPs, rs12653946 associated 

with T2E and clonal loss of TMPRSS2, and rs111620024 and rs113433514 associated with T2E 

and subclonal loss of CHD1, were involved in tumor-specific meQTLs: they were associated 
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with methylation changes in tumor but not normal cells 23 (|βtumor| > 0.12; BH FDRtumor < 

8.50x10-2; |βreference| < 0.63; BH FDRreference > 0.12). There were significantly more methylation 

probes associated with dQTLs than expected by chance (P < 10-4; observed meQTLs = 110; 

expected meQTLs = 10; permutation test), but not more dQTLs exhibiting meQTL behavior (P 

= 0.42; permutation n = 1,000). 

To explore if dQTLs were associated with other changes in the tumor epigenome, we studied 

histone modifications in primary prostate tumors for H3K27ac (n=92 patients), H3K27me3 

(n=76) and H3K4me3 (n=56) and androgen receptor (AR; n=88) binding 44 (Supplementary 

Figure 4a; Supplementary Table 1). Of the 16 tag dQTLs, 10 overlap active regulatory regions: 

six dQTLs overlap H3K27ac sites (2-89 patients) of which five also overlap H3K4me3 (1-47 

patients) sites (Supplementary Figure 4c; Supplementary Table 7). Five dQTLs overlap 

H3K27me3, one of which overlapped H3K27ac sites in other patients, indicative of bivalent 

chromatin. We replicated these findings in a second cohort of 48 primary prostate cancer tumors 

profiled via ChIP-Seq for H3K27ac (n=48 patients), H3K4me2 (n=6 patients), H3K4me3 (n=4 

patients), FOXA1 (n=10 patients) and HOXB13 (n=9 patients; Figure 2e; Supplementary 

Figure 4a; Supplementary Table 7). Two of five dQTLs at H3K27ac modification sites 

demonstrated allelic imbalance specifically in tumor tissue and not in normal tissue, indicative 

of allele-specific regulation (Figure 2e). Further, of the 16 dQTL tag SNPs, 13 overlapped with 

active regulatory regions and master transcription factor binding sites in four prostate cancer cell 

lines and one epithelial cell line (Supplementary Figure 4d; Supplementary Table 7)45–58. 

Figure 2f summarizes all dQTLs overlapping transcription factor binding sites or regulatory 

chromatin, which was similar to that expected by chance (P > 0.40). Thus, a subset of dQTLs 

may modulate transcription factor binding or histone modifications, known determinants of local 

somatic mutation rates, but this is not a primary mechanism of their action59. 

Finally, to begin to elucidate a mechanism of dQTLs we focused on the impact of rs11203152 – 

associated with loss of TMPRSS2 – on the local chromatin structure. rs11203152 is in close 

proximity to multiple chromatin looping sites anchored by RNA Polymerase II (RNAPII), 

RAD21, AR and ERG in prostate cancer cell lines38 (Figure 2g). To quantify the observed 

enrichment of regulatory chromatin loops near rs11203152, we tested if the number of anchors 

within 1 Mbp of rs11203152 was more than expected by chance (permutation test; n = 100,000 

randomly selected regions of equal size). We discovered an enrichment of RAD21 chromatin 

loop anchors around rs11203152 in LNCaP cells (BH FDR = 0.04; observed number of anchors 

= 84; expected = 35) but not DU145 cells (BH FDR = 0.19; observed = 66; expected = 28; 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516773doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/


Houlahan et al. 

- Page 12 of 42- 

Figure 2h). As LNCaP cells are hormone sensitive prostate cancer cells while DU145 are 

hormone insensitive, this suggestions rs11203152 may impact AR regulation. VCaP cells, which 

have a T2E fusion, showed an enrichment of RNA Polymerase II (BH FDR = 0.04; observed = 

95; expected = 18), AR (BH FDR = 0.04; observed = 325; expected = 75) and ERG (BH FDR = 

0.04; observed = 83; expected = 22) anchored chromatin loops around rs11203152 (Figure 2h). 

These data suggest rs11203152 may interact with AR regulation to promote loss of TMPRSS2 
60. 

dQTLs modulate tumor gene expression 
Given the overlap of dQTLs in areas of active chromatin, we sought to quantify their influence 

on tumor gene expression. We assessed if any dQTL tag SNPs were expression quantitative trait 

loci (eQTLs) for their associated somatic driver gene (Supplementary Figure 4e; 

Supplementary Table 1). We identified two dQTL-eQTLs associated with RB1 mRNA 

abundance and one with TMPRSS2 (BH FDR < 0.1; Figure 2f; Supplementary Figures 4f-h). 

Both rs12385878 and rs7320595 were associated with RB1 protein abundance (β = 0.29; BH 

FDR = 7.87x10-2; Supplementary Figure 4i-j) and rs13048402 was nominally associated with 

TMPRSS2 protein abundance but did not survive multiple hypothesis testing correction (β = -

0.24; BH FDR = 0.11; Supplementary Figure 4k). To expand eQTL discovery beyond somatic 

driver genes we evaluated genes in close proximity to the dQTL, defined as ±500 kbp 

(Supplementary Figure 4l). To our surprise, only a single additional eQTL was significant after 

correcting for multiple hypothesis testing: rs12653946 – IRX4 61 (β = -0.79; BH FDR = 7.78x10-

14; Supplementary Figure 4m). To determine if there was broader transcriptome modeling, we 

quantified dQTL association with distal gene abundances, defined as >500 kbp from the SNP. 

We identified two distal eQTLs (Supplementary Figure 4l): rs11203152 – COX7B (β = 0.53; 

BH FDR = 4.46x10-2; Supplementary Figure 4n) and rs848047 – MTRR (β = 0.38; BH FDR = 

4.46x10-2; Supplementary Figure 4o). Figure 2f and Supplementary Table 7 summarize 

dQTLs influences on gene-expression. Finally, we leveraged the Genotype-Tissue Expression 

(GTEx) 62 project to evaluate if dQTL tag SNPs were associated with mRNA abundance in non-

malignant prostate tissue. Three dQTLs were involved in normal tissue eQTLs, including 

rs12653946 – IRX4 (P < 3.8x10-5; Supplementary Table 8). Thus, a subset of dQTLs may 

directly modulate the tumor transcriptome and proteome. 

We reasoned that if dQTLs provide a fitness advantage, tumors might acquire a similar 

advantage via somatic mutations as well 63 (Supplementary Figure 4a). To test this hypothesis, 

we evaluated whether somatic mutations were enriched within the region of individual dQTLs. 
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We focused on the 16 dQTL tag SNPs and identified somatic SNVs within ± 10 kbp of each. 

The number of somatic SNVs within dQTL elements were compared to the local background 

mutational burden. While regions harboring dQTLs also harbored multiple somatic SNVs 

(range: 0-6), we did not observe an enrichment of somatic SNVs above chance (P > 0.15; Poisson 

generalized linear regression; Supplementary Figure 5a). This was consistent in breast (range: 

3-18; P > 0.09; Supplementary Figure 5b), ovarian (range: 0-19; P > 0.13; Supplementary 

Figure 5c) and pancreatic cancers (range: 2-22; P > 0.06; Supplementary Figure 5d). Thus, 

based on this limited subset of dQTLs, germline dQTLs are not at somatic mutation hotspots. 

dQTL allelic frequencies are biased across ancestry populations 
It has been well established that genetic ancestry is associated with specific features of the 

somatic landscape of prostate cancer 14–18, but it is unknown if specific germline SNPs contribute 

a significant proportion of these differences. We quantified the differences in SNP allele 

frequencies (VAF) between individuals of European, African and East Asian ancestries for 

dQTL tag SNPs (Supplementary Figure 4a; Supplementary Table 7). All 16 dQTL tag SNPs 

had significantly different VAF between European and African or East Asian populations (BH 

FDR < 0.01; Fisher’s exact test; Supplementary Figure 5e-f). As a control, only two dQTL tag 

SNPs, rs439864 and rs7679673, had significantly different VAFs within European populations 

demonstrating dQTLs are not driven by population stratification (BH FDR = 6.75x10-3 and 

2.65x10-2; Supplementary Figure 5g). Leveraging a cohort of 91 men of African descent with 

localized prostate cancer31, we tested the 23 concordant dQTLs. Of these, 13 dQTLs had MAF 

> 0.05, six showed concordant ORs and none statistically replicated (Supplementary Figure 

5h; Supplementary Table 5). 

We then focused on SNPs associated with two mutations with strong ancestry associations: T2E 

and FOXA1 14–18. The T2E gene fusion occurs less frequently in individuals of African and East 

Asian ancestry. The rs11203152 dQTL was associated with an increased risk of loss of 

TMPRSS2 in both discovery and replication cohorts (Figure 1b & 2a). Concordant with these 

ancestry trends, the VAF for this SNP was significantly lower in both African and East Asian 

populations compared to European (VAFAfrican = 0.066; VAFEast Asian = 0.000; VAFEuropean = 

0.103; BH FDR < 0.01). We tested the association of rs11203152 with loss of TMPRSS2 in 115 

African men from South Africa, Australia or Brazil with prostate cancer, yielding a near-

identical effect-size (ORAfrican = 2.45; PAfrican = 0.13; Supplementary Figure 5i). Similarly, 

FOXA1 SNVs are more common in men of African ancestry than in men of European ancestry 
17, while in men of East Asian ancestry a coding hotspot SNV not found in other ancestries is 
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common 16. The rs848048 dQTL tag SNP was associated with occurrence of SNVs in the 3’ 

UTR of FOXA1 (Figure 1b & 2a). Concordant with these ancestry differences, the tag SNP had 

a significantly lower VAF in African populations than in European or Asian ones (VAFAfrican = 

0.231; VAFEuropean = 0.485; VAFEast Asian = 0.462; OR = 0.36; BH FDR < 0.1). We tested the 

association between rs848048 and SNVs in FOXA1 UTR in 115 African men. The allele 

distribution was substantially different in African individuals compared to European individuals 

and the association did not replicate in the African cohort (ORAfrican = 0.96; PAfrican = 1.00; 

Supplementary Figure 5j) supportive of a germline role in ancestry-related somatic differences. 

Assuming these dQTLs have a similar mechanism across ancestry populations, we estimated 

that 16.7-31.4% of the ancestral differences in T2E and 0.9-67.3% of the ancestral differences 

in FOXA1 may be explained by these individual dQTLs (Figure 2i). The low explanatory power 

of rs848048 in Asian populations may be due to different somatic mutational processes. In men 

of Asian descent, FOXA1 mutations were almost exclusively localized to a hotspot immediately 

after the forkhead domain, whereas mutations spanned the entire gene in individuals of European 

descent16. These data suggest dQTLs offer a way of understanding at least a subset of ancestral 

differences in cancer landscapes64. 

dQTLs are associated with clinical outcome 
Given that many somatic mutations and mutational processes are predictive of prostate cancer 

aggression37,65, we evaluated whether dQTLs might predict specific clinical features 

(Supplementary Figure 4a). We first considered biochemical relapse, defined by rising serum 

PSA levels following primary treatment, which is considered a surrogate for prostate-cancer 

specific mortality 66. One dQTL, rs7320595 associated with clonal loss of RB1, was nominally 

associated with biochemical relapse, but did not survive adjustment for multiple hypothesis 

testing (HR = 1.52; P = 0.05; Cox PH; Figure 2f; Supplementary Figure 5k-l; Supplementary 

Table 7). Four dQTLs associated with subclonal gain of NCOA2 were associated with ISUP 

grade group at diagnosis (BH FDR < 3.10 x 10-2; Figure 2f; Supplementary Figure 5m-p). 

One dQTL, rs848047 associated with SNVs in the 3’ UTR of FOXA1, was nominally associated 

with risk of prostate cancer diagnosis but did not survive multiple hypothesis testing correction 

(OR = 1.02; P = 0.05; Figure 2f; Supplementary Figure 5q). 

A long tail of dQTLs 
dQTL discovery requires matched blood and tumor tissue profiles. Despite using the largest 

whole-genome sequenced prostate cancer cohort available, the statistical power available is 

much smaller than modern GWAS cohorts. The low frequency of most prostate cancer somatic 
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drivers (~5-20%) further reduces the power of our analysis. A cohort of our size would have 

80% power to identify local dQTLs with MAF ≥ 0.4 and OR ≥ 1.7 for somatic drivers present 

in half the population (P < 5x10-4; Supplementary Figure 6a). For common somatic drivers (5-

20% frequency), we have at best 80% power to detect an OR above 2.0 (Supplementary Figure 

6b&c). We identified 35 dQTLs involving 11 somatic drivers and 27 SNPs (Figure 2b). From 

these figures, we estimate that at least 314 additional dQTLs remain to be discovered in larger 

cohorts at similar effect-sizes (see Methods). Identifying dQTLs genome-wide requires a more 

stringent p-value threshold (P < 5x10-8) than achievable with current cohorts. 

Given this large number of potentially undetected dQTLs, we evaluated whether there was 

evidence for a large landscape of subthreshold candidate dQTLs, as has been seen in many early 

GWAS analyses. We evaluated the five most recurrent somatic drivers: T2E, clonal loss of 

ZNF292, clonal loss of RB1, clonal loss of NKX3-1 and clonal loss within TMPRSS2. For each, 

we evaluated the distribution of p-values for the linear, spatial and enhancer local dQTL analyses 

to determine if there were more subthreshold p-values than expected by chance. We compared 

the skew of the real p-value distributions to empirical null distributions generated by randomly 

shuffling patient-driver assignments, maintaining driver frequency (Figure 3a-c; 

Supplementary Figure 6d-f). Both T2E and clonal loss of ZNF292 had significantly skewed p-

value distributions (Figure 3a). T2E showed a significant skew towards small p-values in linear 

local dQTL discovery (FCskew vs. null skew = 1.41; P = 0.016; Figure 3b; Supplementary Figure 

6g), while clonal loss of ZNF292 showed a significant skew towards small p-values in spatial 

local dQTL discovery (P = 0.046; Figure 3c; Supplementary Figure 6h). To supplement, we 

estimated the proportion of non-null p-values within the p-value distributions for local linear, 

spatial and enhancer dQTLs for the five most recurrent somatic drivers (i.e., the proportion of p-

values that deviate from a uniform distribution). An estimated 7.0-63.1% of dQTLs tested were 

estimated to be non-null for clonal loss of NKX3-1, clonal loss of ZNF292, clonal loss of 

TMPRSS2 and T2E (Figure 3d). Non-null p-values for spatial dQTLs associated with clonal loss 

of RB1 could not be estimated due to insufficient SNPs tested via this strategy. These data 

suggest many additional prostate dQTLs remain to be identified.  
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Discussion 
Every tumor is different, with a life history shaped by its encounters with mutagens, selective 

microenvironmental pressures, and by stochastic processes3. This life history occurs in the 

context of the patient’s unique germline genome. Subtle differences in germline structure or 

function have decades to exert their small effects to influence tumor evolution. There are many 

potential mechanisms of this influence. For example, if an individual possesses germline SNPs 

that enhance or reduce the efficacy of an oncogenic pathway, cells that acquire a somatic 

aberration in the same pathway may develop a stronger fitness advantage and experience clonal 

expansion. Germline SNPs could marginally up- or down-regulate specific pathways making it 

easier or harder for a tumor genome to further deregulate the same pathway67. Similarly, a dQTL 

deregulating the epigenome or mRNA and protein abundance of a specific gene may change the 

selective advantage of further amplification or deletion of that gene. These mechanisms are 

supported by the subset of dQTLs that were additionally meQTLs, eQTLs and pQTLs. 

Alternatively, if a specific germline SNP renders particular bases of the genome less amenable 

to DNA damage repair, mutations in these regions may be more likely. dQTLs could affect the 

structural integrity of the local chromatin, or influence activity of master regulators. This latter 

example may be illustrated by rs11203152 associated with loss of TMPRSS2 and located in a 

region enriched for AR-mediated chromatin looping. This large variety of potential mechanisms 

supports the idea of polygenic models, where many SNPs modestly influence somatic driver 

acquisition.  

This study focused on identifying limited subsets of driver genes and of dQTLs in prostate cancer 

and very likely substantially underestimates the full catalogue. First, we only considered somatic 

drivers present in at least 5% of patients in our discovery cohort. Given the long tail of cancer 

driver genes32, this alone suggests more germline SNPs influence the molecular evolution of 

prostate cancer. Second, to enrich for promising candidates given limited statistical power, we 

focused on dQTLs in linear or spatial proximity to driver genes. This allowed us to focus on 

5,516 independent genetic SNPs across all 17 somatic drivers: ~0.6% of the ~900,000 

independent sites tested in a single GWAS68. Our statistical efficiency restricted us to finding 

local dQTLs. Any distal dQTLs remain to be uncovered. Third, our discovery identified dQTLs 

specifically biasing early vs. late mutational events suggesting different germline pressures 

emerge as a tumor evolves. Limited by available data, we were unable to account for differences 

in evolutionary timing of drivers during dQTL replication and may have diluted signal of dQTLs 

as a result. Fourth, the discovery and replication cohorts are comprised of men with low, 

intermediate and high-risk prostate cancer and the replication cohort included a larger proportion 
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of men with high-risk prostate cancer than the discovery cohort. We are not presently powered 

to identify dQTLs specific to each risk category and the increased proportion of high-risk 

prostate cancer in the replication cohort may have reduced the replication of dQTLs specific to 

low or intermediate-risk prostate cancer. Finally, we focused on germline SNPs present in at 

least 5% of populations with European ancestry. Our discovery of dQTLs explaining ancestry-

differences in somatic mutations motivates further exploration of nature vs. nurture by 

quantifying dQTLs in larger populations of different ethnicities from different geographical 

localities (e.g., African nationals vs. African Americans). 

Cancers arise as stochastic mutagenic processes induce variation within the genome, much but 

not all of which is successfully repaired. By probabilistically influencing these mutations and 

the effect of these mutations, germline features help explain why every tumor is different. These 

data strongly support generation of tumor and normal genomic sequencing of highly diverse 

genetic populations to quantify how our shared ancestry influences cancer development and 

further delineate contributions of nature vs. nurture.  
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Methods 
Discovery patient cohort 
The discovery patient cohort was comprised of 427 patients with pathologically confirmed 

prostate cancer and were hormone naive at time of therapy. All patients underwent image-guided 

external beam radiotherapy (IGRT) or radical prostatectomy (RadP) with curative intent. The 

discovery cohort consisted of 276 samples that were published and processed as previously 

described 28, 83 were previously published in Wedge et al. 26, 50 in Baca et al. 24, seven in Berger 

et al. 25 and 11 in Weischenfeldt et al. 27. All men were genetically of European descent. Genetic 

ancestry was determined by calculating genetic distance to well defined populations from the 

1000 Genomes Project according to Heinrich et al. 69. Genetic principal components were 

determined using plink –pca (v1.9) after pruning for linkage disequilibrium using plink –indep 

with default parameters.  

Whole-genome sequencing of discovery cohort 
For each patient, both blood and tumor sample underwent whole genome sequencing as 

previously described 28. FASTQ files were retrieved for each sample and processed consistently. 

Raw sequencing reads were aligned to the human reference genome, hs37d5, using BWA-mem 
70 (v0.7.12-0.7.15) at the lane level. Lane level bam files were merged across libraries with 

duplicates marked within libraries using Picard (v1.121-2.8.2). Local realignment and base 

quality recalibration were completed on tumor/normal pairs together with the Genome Analysis 

Toolkit 71 (GATK v3.4.0-3.7.0). Tumor and normal samples were extracted separately, headers 

corrected (SAMtools v0.1.9-1.5) 72 and files indexed (Picard v2.17.11) into individual sample-

level BAMs. Finally, sequencing coverage was computed using Picard (v2.17.11) 

CollectRawWgsMetrics with the default cut-off. 

Germline SNP detection in discovery cohort 
Germline SNPs were first identified using GATK (v3.4.0-3.7.0) for each patient individually 

using HaplotypeCaller followed by VariantRecalibration and ApplyRecalibration 71. Individual 

VCFs were merged using BCFtools (v.1.8) assuming SNPs not present in an individual VCF 

were homozygous reference. The minor allele frequency (MAF) in the discovery cohort of all 

SNPs within the merged VCF was calculated and filtered to consider only SNPs with MAF > 

0.01 based on the discovery cohort (n=10,058,344). Next, all patients were re-genotyped using 

GATK (v.4.0.2.1) at these sites to produce gVCFs (i.e., with option -ERC GVCF). Individual 

gVCFs were merged using GenomicsDBImport and joint genotyping was run using 
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GenotypeGVCFs. Finally, SNPs were recalibrated using VariantRecalibrator and ApplyVQSR. 

We determined pathogenic variants within National Comprehensive Cancer Network (NCCN) 

prostate cancer predisposition genes based on “pathogenic” or “likely pathogenic” annotations 

in ClinVar and ensuring more than one submitter (i.e., review status ³ 2/4 stars). 

Somatic variant detection in discovery cohort 
Somatic variants were detected as previously described 28. Briefly, somatic single nucleotide 

variants (SNVs) were detected with SomaticSniper (v1.0.5) with mapping quality threshold set 

to one and with all other parameters set to their defaults 73. SNVs were filtered using LOH, read 

count and high confidence filters provided with the SomaticSniper package. SNVs were further 

filtered using in-house filters to account for read coverage, germline contamination, mappability, 

among others. A full description of these filters can be found here 28. Small Indels were identified 

with cgpPindel v2.2.4 74 with default parameters and the following genomic rules (F004, F005, 

F006, F010, F012, F018, F015, F016) and soft results (F017). Indels were filtered based on a 

panel of non-cancer reference samples (pindel_np.gff3.gz), simple repeats, band anchors and 

germline contamination, amongst others. A full description of these filters can be found here 28. 

SNVs and Indels were annotated to genes using SnpEff (v4.3R) 75. Somatic copy number 

alterations (CNAs) were identified using Battenberg (cgpBattenberg v3.3.0, BattenBerg R-core 

v2.2.8, alleleCount v4.0.1, PCAP-core v4.3.2, cgpVcf v2.2.1, impute2 v2.3.3) 76. Clonal (i.e., 

trunk) and subclonal (i.e., branch) CNAs were predicted using the default cut-off of p-value 0.05 

and segments length below 10kb were filtered out. 

Recurrent somatic drivers in prostate cancer 
We considered a set of 180 somatic drivers were identified in 666 localized prostate tumors 28, 

and included those with a frequency ≥ 5% in the discovery cohort that has been previously 

reported in localized prostate cancer (15-19,26-30,33,40,46). Representative genes were selected 

for CNA drivers based on recurrent regions prioritized by GISTIC and previous literature on the 

CNA landscape of localized prostate cancer. CNAs represented by genes may be arm level 

chromosome alterations, such as loss of NKX3-1 which often represents loss of the p-arm of 

chromosome 8 31,40. This resulted in analysis of 17 somatic drivers: 11 CNA losses (seven trunk 

and four branch), three CNA gains (two trunk and one branch), one fusion (the recurrent T2E 

fusion between TMPRSS2 and ERG) and two SNVs. For a full definition of each somatic driver 

refer to Supplementary Table 1. 
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dQTL discovery: risk SNPs dQTLs 
The 147 SNP polygenic risk score generated by Schumacher et al. 9 was first considered for 

dQTL discovery. Of the 147 SNPs, 135 had a MAF > 0.05 in the discovery cohort. All 135 SNPs 

were tested for association with all 17 somatic drivers using a logistic regression model 

correcting for the first five genetic principal components, age and mutation burden. P-values 

were adjusted for multiple-hypothesis testing using Benjamini & Hochberg false discovery 

correction. Significance was defined as BH FDR < 0.1.  

dQTL discovery: linear local dQTLs 
Local dQTLs were first defined based on the linear orientation of the genome. Considering each 

somatic event could be defined by a single gene, germline SNPs within ±500 kbp of the affected 

gene were interrogated for their association with the somatic event. Associations were quantified 

using a logistic regression model correcting for the first five genetic principal components, age 

and the somatic mutation burden (i.e., PGA when testing CNAs and SNV mutation density when 

testing SNV). Haplotype blocks within the defined linear local region were calculated 

considering the definition by Gabriel et al. 77 and a Bonferroni threshold considering α = 0.1 was 

used to determine significance for each somatic driver. We selected α=0.1 as our significance 

threshold to reduce false negatives in our discovery given the relatively small size of our cohort. 

All discovered dQTLs were tested in an independent replication cohort in order to remove likely 

false positives. Discovery dQTL statistics for all tested SNPs – unpruned for linkage 

disequilibrium – are provided in Supplementary Table 4.  

dQTL discovery: spatial local dQTLs 
Local dQTLs were defined taking into consideration the three-dimensional structure of DNA. 

The term spatial local was defined as regions of the DNA, outside ±500kbp around the affected 

gene, that loop to interact with the driver gene. First, these regions were defined by RAD21 

ChIA-PET profiling in LNCaP and DU145 cell lines 39 and RNA polymerase II ChIA-PET 

profiling in LNCaP, DU145, VCaP and RWPE-1 cell lines 38. Coordinates of driver genes were 

overlapped with peak anchor regions using BEDtools. Based on an interaction map, peak anchors 

paired with driver-gene-overlapped peaks were defined as interacting regions. Similar to linear 

local dQTLs, associations were quantified using a logistic regression model correcting for the 

first five genetic principal components, age and the somatic mutation burden. Again, haplotype 

blocks within the defined spatial local region were calculated considering the definition by 

Gabriel et al. 77 and a Bonferroni threshold considering α=0.1 was used to determine significance 
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for each somatic driver. Discovery dQTL statistics for all tested SNPs – unpruned for linkage 

disequilibrium – are provided in Supplementary Table 4. 

dQTL discovery: enhancer local dQTLs 
Spatial local regions were defined based on HiChIP H3K27ac profiling in LNCaP cell lines. 

HiChIP was conducted as reported previously. Again, associations were quantified using a 

logistic regression model correcting for the first five genetic principal components, age and the 

somatic mutation burden and haplotype blocks within the defined enhancer local region were 

calculated considering the definition by Gabriel et al. 77 and a Bonferroni threshold considering 

α = 0.1 was used to determine significance for each somatic driver. Discovery dQTL statistics 

for all tested SNPs – unpruned for linkage disequilibrium – are provided in Supplementary 

Table 4. 

Prostate cancer replication cohort 
Individuals of European descent, as determined by Yuan et al. 64, from TCGA PRAD project 

were used as a replication cohort 31. As described previously 23, concordance between SNP6 

microarray (SNP6) genotypes and whole exome sequencing (WXS) of blood sample genotypes 

was evaluated and only samples with >80% concordance were retained (n = 412 samples). 

Genotypes, from SNP6 supplemented by WXS, were imputed using the Michigan Imputation 

Server – pre-phasing using Eagle (v2.4) 78, imputation using Minimac4 79 and the Haplotype 

Reference Consortium (release 1.1) panel 80. A final list of 40,401,582 SNPs was then available 

for validation studies. SNV and CNA calls based on hg19 reference genome were downloaded 

from GDC Archive legacy (https://portal.gdc.cancer.gov/legacy-archive/search/). T2E fusions 

for TCGA samples were identified using FusionCatcher (v.0.99.7c) 81. A second cohort of 140 

Australian men with localized prostate cancer was used to supplement the replication cohort. All 

men were of European descent as determined according to Heinrich et al. 69. All patients had 

blood and tumor WGS that was processed with the same pipelines as the discovery cohort, 

including evolutionary timing of CNAs 28. Similar to the discovery cohort, germline SNPs were 

identified using GATK (v3.4.0-3.7.0) 71. First, HaplotypeCaller was run on the normal and tumor 

BAMs together, followed by Variant Recalibration and ApplyRecalibration, following GATK 

best practices. Germline SNPs were filtered for somatic and ambiguous variants that had more 

than one alternate base. Genetic principal components were determined using plink –pca (v1.9) 

after pruning for linkage disequilibrium using plink –indep with default parameters. 
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Pan-cancer replication cohort 
We leveraged the Pan-Cancer Analysis of Whole Genomes (PCAWG) 32 to test the replication 

of dQTLs in other cancer types, using germline VCFs and somatic CNA calls from the Pan-

Cancer Analysis of Whole Genomes from DCC (https://dcc.icgc.org/releases/PCAWG/). We 

considered only adult cancers with >100 samples: breast, ovarian, pancreatic and liver cancer. 

Next, we only considered patients of European ancestry which resulted in 134 breast, 91 ovarian, 

116 pancreatic and 0 liver cancer patients. Thus, we did not consider liver cancer in replication 

analysis. We tested somatic events with a recurrence rate ≥ 5% in each cancer type. 

Replication of dQTLs 
dQTLs with available somatic profiling and germline genotyping were tested in the replication 

cohort. TCGA does not have WGS so the evolutionary timing of CNAs could not be determined 

in these patients. Thus, dQTLs involving CNAs were tested in TCGA without considering trunk 

vs. branch classifications. As a result, there were significant differences in the proportion of cases 

and controls between the discovery and replication cohorts (Supplementary Table 1). T2E calls 

for TCGA samples in the replication cohort were based on RNA-sequencing alone compared to 

the rest of the samples which considered DNA sequencing or the union of DNA and RNA 

sequencing when available. dQTLs in all replication cohorts were tested using the same logistic 

regression model as used in discovery, correcting for the first five genetic principal components, 

age and the total burden of somatic mutation type being tested (i.e., PGA or SNV mutation 

density). dQTLs were considered to have replicated if BH FDR < 0.1 and sign(log(ORdiscovery)) 

= sign(log(ORreplication)). 

Replication of dQTLs in ICGC EOPC 
We identified nine dQTLs that were associated with somatic events with a recurrence rate ≥ 5% 

in the EOPC-DE cohort and had concordant ORs in the discovery and replication cohorts. The 

candidate SNPs were studied across 238 prostate cancer patients with European ancestry from 

the ICGC EOPC-DE cohort 41. Germline SNP genotyping and quality control was performed as 

previously described 82. Association between germline SNP genotypes and presence of somatic 

mutation was performed using logistic regression models in Python (stats package version 

0.11.1) correcting for the first five principal components, age and mutational burden.  

Replication of dQTLs in Hartwig Medical Foundation metastatic prostate cancer 
We replicated dQTLs on the external CPCT-02/HMF dataset under data-requests DR-071 and 

DR-208 42. This as an extension of the metastatic prostate cancer cohort (n = 394 distinct 
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patients) as previously described by van Dessel & van Riet et al 83. To select patients of 

(predominantly) European descent, we utilized the established set of ancestry markers from the 

EUROFORGEN Global AIM-SNP set 84 which consisted out of 128 bi-allelic and tri-allelic 

germline markers and 934 respective reference samples of African, East Asian, European, Native 

American and Oceanian ancestry. For these ancestry markers, we determined the respective 

germline genotype (0/0, 0/1, 1/1, 0/2, 1/2 or 2/2) within all distinct patients within the CPCT-

02/HMF dataset. Subsequently, we performed a Principal Component Analysis (PCA) on the 

combined dataset of genotypes from the CPCT-02/HMF dataset and reference samples. As input 

for the PCA, genotypes were converted into six numerical categories (0 to 5) and zero centered 

and scaled during PCA. To determine the putative ethnicity of the CPCT-02/HMF patients, we 

performed a K-Means clustering (k = 5, Hartigan and Wong algorithm on 50 random sets and 

10,000 iterations) on all principal components (i.e., ancestry markers) as derived on the 

combined genotype-matrix of the reference samples and the CPCT-02/HMF dataset. From this 

analysis, we selected the distinct CPCT-02/HMF patients clustering within the European descent 

reference-cluster (n = 384). For these 384 European CPCT-02/HMF metastatic patients, we 

determined the germline genotypes of the dQTLs (n = 19) and the presence of the respective 

somatic event within the tumor genome (somatic deletions of CDKN1B, CHD1, RB1, TMPRSS2 

and/or ZNF292, amplifications of NCOA2, somatic mutations within the 3’ UTR of FOXA1 and 

genomic fusions of TMPRSS2-ERG). If multiple metastatic biopsies from the same patients were 

available (n = 43), the aggregation of respective somatic events within a patient was used to 

determine the presence of these somatic events. dQTLs were assessed within a logistic regression 

model correcting for the first five genetic principal components (based on the ancestry markers), 

age and mutational burden. 

Replication of dQTLs in PROFILE  
Dana-Farber Cancer Institute prospective cohort (PROFILE) was collected with informed 

consent: 490 unrelated men of European descent with prostate cancer (91 with metastatic disease 

and 399 primary or local tumors). All samples underwent targeted sequencing on the OncoPanel 

platform with three panel versions that targeted the exons of 275, 300 and 447 genes, 

respectively. Genotypes were imputed from off-target reads using STITCH (v.1.5.3) 85. To 

determine genetic ancestry, reference principal components were computed by SNPweight tools 

in HapMap populations of European, West African (Yoruban) and East Asian (Chinese) ancestry 
86. In the PROFILE cohort, imputed dosages for variants with INFO > 0.4 and MAF > 0.01 were 

projected the same PCA space using the PLINK2 ‘--score’ function. The mean principal 
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component along both the West African-European cline and the East-Asian-European cline was 

computed for all individuals who self-reported as white. Individuals within ± two standard 

deviations were retained. Samples were filtered for relatedness using a GRM matrix with a 0.05 

cutoff. SNPs were filtered to ensure Hardy-Weinberg equilibrium p-value > 0.001, MAF > 0.05 

and INFO > 0.4. If the tag dQTL was not genotyped in the PROFILE cohort, a proxy SNP was 

selected by maximizing the product of the INFO, R2 and 1000 Genomes European MAF using 

LDlinkR 87. Finally, associations were tested using a logistic regression in PLINK2 with the first 

five genetic principal components, tumor purity, panel version, age and PGA as covariates. 

Meta-analysis across discovery, replication, HMF, EOPC and PROFILE cohorts 

Effect sizes and standard errors of dQTL associations in the discovery, replication, HMF, 

EOPC and PROFILE cohorts were combined using a restricted maximum likelihood 

model as implemented in the metafor R package (v3.0.2). 

Chromothripsis associations 
We tested the association of dQTLs with chromothripsis as determined in Fraser et al. 40. We 

applied a linear regression model correcting for the first five principal components and age. 

Germline methylation (meQTL) associations 
To assess the effect of dQTLs on the tumor methylome, the 16 concordant tag dQTLs were 

evaluated for local meQTLs, defined as probes ±500 kbp around the SNP, using a linear 

regression correcting for the first five genetic principal components and age. P-values were 

adjusted for multiple-hypothesis testing using Benjamini & Hochberg (BH) false discovery 

correction. Significance was defined as BH FDR < 0.10. Significant meQTLs were next 

replicated in the TCGA cohort using the same linear regression modeling. Here replication was 

defined as BH FDRreplication < 0.10 and sign(βreplication) = sign(βdiscovery). Replicated meQTLs were 

tested for tumor specificity considering patients that had matched tumor/reference methylation 

profiling (n=50). Tumor specificity was defined as BH FDRtumor < 0.10 and BH FDRreference > 

0.10 or sign(βtumor) ≠ sign(βreference) using the same linear regression model. To assess enrichment 

of meQTLs, we generated a null distribution of the number of SNPs involved in a replicated 

meQTL and the number of replicated meQTLs. We randomly sampled 16 SNPs from the total 

list of SNPs evaluated as a local dQTL against any driver. We identified and replicated local 

meQTL ±500 kbp around each of the 16 random SNPs using the same methods as the dQTL-

meQTL analysis. We calculated the number of SNPs involved in a replicated meQTL as well as 

the total number of replicated meQTLs. We repeated this 1,000 times. P-values were calculated 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.16.516773doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.16.516773
http://creativecommons.org/licenses/by-nc-nd/4.0/


Houlahan et al. 

- Page 25 of 42- 

as 1 – the fraction of iterations more dQTLs were involved in a replicated meQTL than random 

SNPs or 1- the fraction of iterations dQTLs were involved in more replicated meQTLs than 

random SNPs. 

Germline-chromatin associations 
Peak BED files for H3K27ac (n = 92), H3K27me3 (n=76), AR (n=88) and H3K4me3 (n=56) 

were downloaded for an independent cohort of 94 localized prostate cancer patients from the 

Gene Expression Omnibus (GSE120738) 44. dQTLs overlapping each target were identified 

using the downloaded bed files. We considered a dQTL overlapping if any of the SNPs in its 

haplotype block overlapped the target. A second cohort of 48 localized prostate cancer patients 

was additionally profiled, as described previously 23. Briefly, both adenocarcinoma and non-

malignant prostate tissue from each patient was subjected to ChIP-Seq for H3k27ac (n=48), 

H3k4me2 (n=6), H3k4me3 (n=4), FOXA1 (n=10) and HOXB13 (n=9) and blood samples were 

genotyped for germline SNPs followed by imputation using the HRC panel 80. Sites of allelic 

imbalance in the ChIP-Seq peaks were identified by first correcting for mapping bias using the 

WASP pipeline 88, peak calling using MACS2 and finally testing for allele-specific signal using 

GATK ASEReadCounter 71 and a beta-binomial test. Each test was performed once for samples 

from normal, tumor, or both, as well as a test for difference in imbalance between tumor and 

normal. Peaks were considered “imbalanced” in each of these four test categories if any of the 

SNPs tested for that peak exhibited allele-specific signal at a 5% BH FDR. Finally, we tested the 

overlap of dQTLs with published ChIP-Seq data from LNCaP, PC3, 22Rv1, VCaP and RWPE-

1 cell lines 45–58. If multiple target:treatment pairs existed the median number of overlapping 

SNPs was used. For all ChIP-Seq analyses, dQTLs were considered overlapping if any of the 

SNPs within the entire LD block overlapped with the ChIP-Seq peak.  

Germline-RNA (eQTL) and germline-protein (pQTL) associations 
Next, the 16 SNPs involved in the 23 concordant dQTLs were tested for their effect on the 

transcriptome. We evaluated local eQTLs, defined as genes ±500 kbp around the SNP. mRNA 

abundance TPM values for each gene were rank inverse normalized. eQTLs were tested using a 

linear regression model correcting for the first five genetic principal components, age and ten 

PEER 89 factors to adjust for noise in the RNA-Seq data. P-values were adjusted for multiple-

hypothesis testing using the Benjamini & Hochberg false discovery correction. Nominally 

significant eQTLs were considered for pQTL discovery using protein abundances from mass 

spectrometry as described previously 90. pQTLs were tested using a linear regression model 
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correcting for the first five genetic principal components, age and ten PEER factors to adjust for 

noise in the mass spectrometry data. 

Germline-clinical associations 
Germline SNPs in dQTLs were associated with clinical characteristics including PSA, ISUP 

grade group, T-category, age at diagnosis and biochemical recurrence. PSA and age were tested 

using a linear regression model, correcting for the first five genetic principal components. The 

PSA model was also corrected for age. T-category was tested using a logistic regression model 

comparing T2 to ≥T3, correcting for the first five genetic principal components and age. ISUP 

was tested by using an ordinal linear regression model, correcting for the first five genetic 

principal components and age. Each clinical outcome was independently corrected for multiple 

hypothesis testing using the Benjamini & Hochberg false discovery correction. Survival analysis 

with biochemical recurrence was tested using a Cox Proportional Hazards model. Three genetic 

models, dominant, recessive and co-dominant, were tested and the model with the lowest AIC 

was reported. Kaplan-Meier curves were plotted, and HR adjusted for primary treatment. 

Somatic SNV enrichment 
For each of the 16 SNPs involved in the high confidence dQTLs, we assessed if the somatic 

SNV mutation burden ±10 Mbp of the dQTL was higher than expected. We leveraged 

ActiveDriverWGS 91 which uses a Poisson regression to compare the mutation burden of a 

region of interest to the adjacent genomic window (± 50 kbp). The narrow adjacent window 

reflects similar chromatin, structure and replication timing to the region of interest. 

ActiveDriverWGS also corrects for differences in the trinucleotide contexts of the region of 

interest compared to the flanking windows. P-values were adjusted for multiple hypothesis 

testing using Benjamini & Hochberg false discovery correction. 

Ancestral variant allele frequency bias 
Variant allele frequencies in European (n=7,718), African (n=4,359) and East Asian (n=780) 

populations for the 16 dQTL SNPs were extracted from gnomAD (v2.1.1) 92. Allele frequencies 

in African and East Asian populations were compared to European population using Fisher’s 

exact test and BH FDR was applied across all 16 SNPs in each comparison separately. As a 

control, North-West European VAFs were compared again Other Non-Finnish European VAFs 

using Fisher’s exact test. These two European populations were chosen because they had the 

largest sample number in gnomAD. To estimate the proportion of ancestral differences in T2E 

and FOXA1 mutation frequency explained by dQTLs, we compared the ORs of ancestry-somatic 
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associations and dQTLs ORs multiplied by normalized variant allele frequency differences 

between the two ancestry groups. For example: 

𝑂𝑅!"#$𝑥
𝑉𝐴𝐹%&'()*+, − 𝑉𝐴𝐹-.'/0+,

𝑉𝐴𝐹%&'()*+,
𝑂𝑅%&'()*+,12-.'/0+,

 

We estimated OREuropean vs. African (T2E) = 5.00 and OREuropean vs. African (FOXA1 SNVs) = 0.50 

based on Huang et al. 15 and Lindquist et al. 17 compared to the somatic driver frequency in the 

discovery cohort. We estimated OREuropean vs. East Asian (T2E) = 7.47 and OREuropean vs. East Asian 

(FOXA1 SNVs) = 0.07 based on Li et al. 16 compared to the somatic driver frequency in the 

discovery cohort. 

dQTL power analysis 
Power was estimated based on the non-centrality parameter of the χ2 statistic under the 

alternative hypothesis using the R package gwas-power (https://github.com/kaustubhad/gwas-

power). Power was calculated for varying MAF and effect size values considering sample sizes 

reflective of somatic driver frequencies 0.05, 0.20 and 0.50 in the discovery cohort. To estimate 

the number of non-detected dQTLs, discovered dQTLs were binned based on their MAF, effect 

size and somatic driver frequency and the number of detected dQTLs in each bin was divided 

by the corresponding power to estimate the total number of dQTLs expected. Next, we subtracted 

the number of discovered dQTLs from the total number of dQTLs to estimate the number of 

non-detected dQTLs.  

Assessment of skew of dQTL p-value distributions 
To determine if dQTL p-value distributions were significantly skewed to small p-values more 

than expected by chance alone, a null distribution for each analysis (i.e., linear local and spatial 

local) and each somatic driver was generated by permuting the somatic driver labels. That is, for 

a single somatic event, patients were randomly assigned whether or not they had the somatic 

event while maintaining the true frequency of the event in the cohort. Next, both linear and 

spatial local dQTL discovery was conducted as described above with the permuted somatic 

driver labels. The skew of the -log10 p-value distribution was calculated and compared to the true 

distribution. P-values were calculated by considering the number of permutation iterations that 

had skew > real skew divided by the number of iterations performed. One thousand iterations 

were performed for each somatic driver. To supplement these analyses, we also estimated the 

proportion of null p-values in the p-value distributions for linear, spatial and enhancer dQTLs 
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for the top five most recurrent somatic mutations using the pi0est() function in the qvalue R 

package (v2.18.0). 

Data visualization 
Visualizations were generated in the R statistical environment (v3.3.1) with the lattice (v0.24-

30), latticeExtra (v0.6-28) and BPG (v5.6.23) packages 93. 

Data Availability 
Raw sequencing data are available in the European Genome-phenome Archive under accession 

EGAS00001000900 (https://www.ebi.ac.uk/ega/studies/EGAS00001000900). Processed 

variant calls are available through the ICGC Data Portal under the project PRAD-CA 

(https://dcc.icgc.org/projects/PRAD-CA). Methylation data are available in the Gene Expression 

Omnibus under accession GSE84043. TCGA WGS/WXS data are available at Genomic Data 

Commons Data Portal (https://gdc-portal.nci.nih.gov/projects/TCGA-PRAD). Primary samples 

ChIP-Seq data was retrieved from Gene Expression Omnibus under accession GSE120738. 
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Figure 1 – dQTLs bias somatic mutational landscape 
a) Schematic of dQTL detection. First, 147 SNPs from the polygenic risk score proposed by 
Schumacher et al. 9 were interrogated for their association with 17 somatic drivers. Second, we 
identified linear local dQTLs by interrogating SNPs ±500kbp around the driver gene. Third, we 
identified spatial local dQTLs by interrogating SNPs that interacted with each driver gene in 3D 
space, outside of the linear gene region. Spatial local regions were defined using RNA Pol-II 
ChIA-PET profiling in LNCaP, DU145, VCaP and RWPE-1 cell lines and RAD21 ChIA-PET 
in LNCaP and DU145 cell lines. Finally, we identified enhancer local dQTLs by interrogating 
SNPs in enhancer regions that interacted with the driver gene. Enhancer regions were defined 
using H3K27ac HiChIP profiling in LNCaP cell lines. All discovered dQTLs were tested for 
replication in six replication cohorts. b) Summary of 26 discovery dQTLs involving 25 unique 
variants. Dot size and color indicates magnitude and direction of ORs between SNP, x-axis and 
somatic driver, y-axis. Background shading indicates p-values. Covariate on left indicates the 
type of somatic mutation while covariate along the top indicates the analysis in which the dQTL 
was discovered. 
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Figure 2 – Characterization of dQTLs 
a) Comparison of ORs in discovery, x-axis, vs. replication, y-axis, cohort of tag dQTLs. 
Horizontal and vertical dotted lines represent OR = 1 and diagonal line represents y=x. Halo 
around points indicates BH FDR < 0.1 in replication cohort. Dot color indicates the associated 
somatic driver. b) Summary of all 35 dQTLs involving 25 unique variants. Dot size and color 
indicates magnitude and direction of ORs between SNP, x-axis and somatic driver, y-axis. 
Background shading indicates strategy dQTL was discovered with. Covariate on left indicates 
the type of somatic mutation. c) Forest plot shows the OR and 95% confidence interval for dQTL 
associations from a meta-analysis of 2,019 prostate tumors. The grey shading indicates an BH 
FDR < 0.1. The covariate in the middle indicates the driver mutation the SNP is associated with. 
The heatmap on the right indicates which cohorts were included in the meta-analysis. d) A subset 
of dQTLs were associated with changes in tumor methylation. Heatmap indicates the number of 
methylation probes each variant, x-axis, was associated with in the discovery and replication 
TCGA cohort, y-axis. The third column indicates the number of replicated meQTLs that were 
tumor specific. The covariate on the right indicates if the variant is a risk variant and what 
somatic driver it is associated with. e) dQTL variants (x-axis) overlap with histone modification 
and transcription factor binding sites (y-axis). Grey shading indicates overlap with allelic 
balanced ChIP-Seq peak while black indicates overlap with allelic imbalanced ChIP-Seq peak. 
Red X indicates overlapping SNP is tag SNP. Covariate along the top indicates the tissue while 
the covariate along the right indicates if the SNP is a literature reported risk SNP and what 
somatic driver it was associated with. f) Summary of molecular and clinical characterization of 
dQTLs. Grey indicates dQTL was association with methylation (meQTL), RNA abundance 
(eQTL), protein abundance (pQTL), transcription factor binding, histone modification, ISUP 
grade group, biochemical recurrence (BCR) or risk of prostate cancer diagnosis (PCa Risk). 
Middle heatmap shows if dQTL replicated in meta-analysis or the replication cohort. Covariate 
on the left illustrates the somatic driver the dQTL is associated with. g) rs11203152 located 
within regulatory dense region. Tracks show chromatin looping anchored by RNA Polymerase 
II (RNAPII), RAD21, AR or ERG in RWPE-1, LNCaP, VCaP or DU145 cell lines. h) The 
number of chromatin loops was more than expected by chance in LNCaP and VCaP cell lines. 
Barplots shows number of anchors within 1 Mbp of rs11203152. Covariate along the bottom 
indicates cell line and target while the background shading indicates of the enrichment was more 
than expected by chance (BH FDR < 0.05). The red X indicates the expected number of 
chromatin loop anchors based on 100,000 randomly sampled, equally sized regions. i) dQTLs 
may, in part, explain differences in somatic mutation frequencies across ancestries. Barplot 
shows the risk (y-axis) of acquiring a FOXA1 SNV or T2E based African (green) or Asian 
(purple) ancestry compared to European ancestry (x-axis). The estimated percent of this risk 
explained by rs848048 (FOXA1) or rs11203152 (T2E) is shown in black and indicated above the 
bar. The covariate along the top indicates if the bar represents African (green) or Asian (purple) 
descent individuals and if the somatic mutation is observed more (pink) or less (teal) frequently 
in European-descent men compared to African or Asian-descent. 
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Figure 3 – dQTL discovery p-value distribution is significantly skewed 
a) dQTL discovery p-value distributions are significantly skewed towards smaller p-values. The 
p-value skew for each dQTL discovery for the top five most recurrent somatic drivers was 
compared to an empirically generated null distribution (iterations=1,000) and a p-value 
calculated as the number of null iterations with skew > real skew. Barplot shows the p-value 
from this permutation analysis. Horizontal line indicates P = 0.05 and colors represent the dQTL 
discovery approach. b) Null skew distribution for T2E dQTL discovery from 1,000 iterations. 
Horizontal red lines represent real skew values for each dQTL approach. P-values along the top 
represent the number of null iterations with skew > real skew divided by the number of null 
iterations. Boxplot represents median, 0.25 and 0.75 quantiles with whiskers at 1.5x interquartile 
range. c) Null skew distribution of clonal loss of ZNF292. d) Barplot of 1 – the estimated 
proportion of null p-values (y-axis) in linear, spatial or enhancer dQTL discovery for the top five 
most recurrent somatic events. The estimated proportion of null p-values of spatial dQTLs 
associated with clonal loss of RB1 could not be tested due to too few SNPs. 
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