

1 **Title: ETV2 upregulation marks the specification of early cardiomyocytes and endothelial cells**
2 **during co-differentiation**

3
4 **Running head: ETV2 in early cardiac and EC co-differentiation**

5
6 **Authors:** Xu Cao¹, Maria Mircea², Gopala Krishna Yakala¹, Francijna E. van den Hil¹, Marcella Brescia¹,
7 Hailiang Mei³, Christine L. Mummery¹, Stefan Semrau^{2,*} and Valeria V. Orlova^{1,*}

8
9 ¹Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20,
10 2333ZC Leiden, The Netherlands

11 ²Leiden Institute of Physics, Leiden University, 2333 RA, Leiden, The Netherlands

12 ³Sequencing analysis support core, Leiden University Medical Center, Leiden, 2333ZA, The
13 Netherlands

14 *Corresponding author

15
16 **Names of Institutions:** Leiden University Medical Center and Leiden University

17
18 **Author contributions:**

19 X.C.: Conception and design, Collection and assembly of data, Data analysis and interpretation,
20 Manuscript writing

21 M.M.: Conception and design, Data analysis and interpretation, Manuscript writing

22 G.K.Y.: Collection of data, Data analysis and interpretation

23 F.E. van den H.: Collection of data, Data analysis and interpretation

24 M.B.: Collection of data, Data analysis and interpretation

25 H.M.: Data analysis and interpretation

26 C.L.M.: Conception and design, Final approval of manuscript

27 S.S.: Conception and design, Data analysis and interpretation, Manuscript writing

28 V.V.O.: Conception and design, Collection and assembly of data, Data analysis and interpretation,
29 Manuscript writing

30
31 **Correspondence information:**

32 Stefan Semrau: Ph.D., Leiden Institute of Physics, Leiden University, 2333 RA, Leiden, The Netherlands,
33 Semrau@Physics.LeidenUniv.nl

34 Valeria V. Orlova: Ph.D., Department of Anatomy and Embryology, Leiden University Medical Center,
35 Einthovenweg 20, 2333ZC Leiden, The Netherlands, V.Orlova@lumc.nl

36
37 **Funding:**

38 This project received funding from the European Union's Horizon 2020 Framework Programme
39 (668724); European Research Council (ERCAdG 323182 STEMCARDIOVASC); Netherlands Organ-on-
40 Chip Initiative, an NWO Gravitation project funded by the Ministry of Education, Culture and Science
41 of the government of the Netherlands (024.003.001), Health~Holland (LSHM20018) and the Novo
42 Nordisk Foundation Center for Stem Cell Medicine is supported by Novo Nordisk Foundation grants
43 (NNF21CC0073729). M. M. and S.S. were supported by the Netherlands Organisation for Scientific
44 Research (NWO/OCW, www.nwo.nl), as part of the Frontiers of Nanoscience (NanoFront) program.
45 The computational work was carried out on the Dutch national e-infrastructure with the support of
46 SURF Cooperative.

47
48 **Key words:** ETV2, Cardiomyocyte, Endothelial cell, Human induced pluripotent stem cells, Segregation,
49 RNA sequencing

50

51 **ABSTRACT**

52 The ability to differentiate human induced pluripotent stem cells (hiPSCs) efficiently into defined
53 cardiac lineages, such as cardiomyocytes and cardiac endothelial cells, is crucial to study human heart
54 development and model cardiovascular diseases *in vitro*. The mechanisms underlying the specification
55 of these cell types during human development are not well-understood which limits fine-tuning and
56 broader application of cardiac model systems. Here, we used the expression of ETV2, a master
57 regulator of hematoendothelial specification in mice, to identify functionally distinct subpopulations
58 during the co-differentiation of endothelial cells and cardiomyocytes from hiPSCs. Targeted analysis
59 of single-cell RNA sequencing data revealed differential ETV2 dynamics in the two lineages. A newly
60 created fluorescent reporter line allowed us to identify early lineage-predisposed states and show that
61 a transient ETV2-high state initiates the specification of endothelial cells. We further demonstrated,
62 unexpectedly, that functional cardiomyocytes can originate from progenitors expressing ETV2 at a low
63 level. Our study thus sheds light on the *in vitro* differentiation dynamics of two important cardiac
64 lineages.

65 **SIGNIFICANCE STATEMENT**

66 *In vitro* differentiation of cardiac cell types is of great importance for understanding heart
67 development, disease modeling and future regenerative medicine. Currently, underlying molecular
68 mechanisms are incompletely understood, which limits the efficiency and fine-tuning of present
69 differentiation protocols. Here, we investigated the master regulator ETV2 and showed that its
70 upregulation marks the specification of two cardiac cell types during co-differentiation. Using single-
71 cell RNA-seq and a new fluorescent reporter line we identified lineage-predisposed subpopulations in
72 the ETV2+ cells. We thus resolved ETV2 dynamics at the single-cell level in the context of *in vitro*
73 human cardiac differentiation.

74 **INTRODUCTION**

75 *In vivo*, cardiomyocytes (CMs) and endothelial cells (ECs) originate from *Mesp1*+ progenitors specified
76 during gastrulation. In mice, these cells appear in the primitive streak and subsequently migrate
77 towards the lateral plate mesoderm around E6.5 [1–4]. The timing of segregation of CMs and ECs from
78 their common progenitor is still controversial. Single-cell RNA-seq (scRNA-seq) of mouse *Mesp1*+
79 progenitors collected at E6.75 and E7.25 showed that these cells were already segregated into distinct
80 cardiovascular lineages, including CMs and ECs [5]. However, other studies showed that multipotential
81 progenitors were still present in *Flk-1*-expressing lateral plate mesoderm [6,7]. These cells were the
82 first to be recognized as multipotent cardiac progenitor cells (CPCs) [8]. Studies in mouse and chick
83 showed that CPCs come from two different sources [9,10]: the first- and the second heart field (FHF,
84 SHF). The FHF in the cardiac crescent contributes to the primitive heart tube, which serves as a scaffold
85 into which SHF cells can migrate before heart chamber morphogenesis. It has been shown that cells
86 from the SHF are patterned before migration to give rise to different parts of the heart [3,11]. CPCs
87 from FHF and SHF can be distinguished by the expression of ISL1, which is specific to the SHF [12].
88 *Nkx2-5*-expressing CPCs in both FHF and SHF from E7.5 to E7.75 contribute to both CMs and ECs in the
89 heart [13]. ETS Variant Transcription Factor 2 (Etv2) is a master regulator of endothelial and
90 hematopoietic cell lineages during early development [14]. Etv2 functions downstream of BMP, WNT
91 and NOTCH signaling pathways [15] and regulates the expression of early EC-specific markers, such as
92 *Tal1*, *Gata2*, *Lmo2*, *Tek*, *Notch1*, *Notch4* and *Cdh5* [15–18]. In mouse embryonic stem cells (ESCs),
93 VEGF-FLK1 signaling upregulates ETV2 expression to induce hemangiogenic specification via an ETV2
94 threshold-dependent mechanism [19]. ETV2 expression was also found to direct the segregation of
95 hemangioblasts and smooth muscle cells (SMCs) in mouse ESCs [20].

96 In human heart development, much less is known about the specification of endothelial and
97 myocardial lineages from multipotent CPCs, both in terms of timing and gene regulatory mechanisms.
98 More specifically, it is still unclear whether ETV2 also plays a role in the segregation of ECs and CMs
99 from CPCs in humans. Overexpression of ETV2 converts human fibroblasts into endothelial-like cells

102 [21] and ETV2 expression levels have been modified in several studies to drive hiPSCs towards ECs in
103 2D and 3D cultures [22–28]. Paik et al. performed scRNA-seq analysis of hiPSC-derived ECs (hiPSC-ECs),
104 which made up less than 10% of the cells that expressed the cardiac marker *TNNT2*. The developmental
105 dynamics of ECs and cardiac lineages as such were not further studied [29]. In an scRNA-seq study of
106 hiPSC-ECs obtained using a different differentiation protocol [30], ECs were collected at multiple time
107 points. This study showed that endothelial and mesenchymal lineages have a common developmental
108 origin in mesoderm cells but the identity and differentiation potential of these cells was not described.

109 Previously, we found that *MESP1*⁺ progenitors derived from human ESCs could give rise to CMs,
110 ECs and SMCs [31,32]. We also developed a co-differentiation system for ECs and CMs from hiPSCs
111 through a common cardiac mesoderm precursor [33]. Here we performed scRNA-seq analysis of this
112 co-differentiation system to elucidate the relationship between *ETV2* expression and specification of
113 ECs and CMs from cardiac mesoderm. *ETV2* expression was observed principally as an initial “pulse”
114 in the endothelial lineage but also in a subpopulation of the myocardial lineage. Using a newly
115 generated *ETV2*^{mCherry} hiPSC reporter line, we purified two subpopulations of *ETV2*⁺ cells and revealed
116 their derivative EC and CM expression characteristics by bulk RNA-seq. These sorted populations also
117 showed distinct differentiation potentials towards CMs and ECs upon further differentiation with
118 VEGF. In summary, this study detailed *ETV2* dynamics during segregation of human CMs and ECs
119 differentiated from hiPSCs.

120

121 MATERIAL AND METHODS

122

123 hiPSC culture

124 The NCRM1 hiPSC line (NIH Center for Regenerative Medicine (NIH CRM), obtained from RUDCR
125 Infinite Biologics at Rutgers University, hPSCreg number CRMi003-A) was used in this study, except for
126 the single-cell RNA-seq, which was done with LUMC0020iCTRL06 (hPSCreg number LUMCi028-A).
127 hiPSC control lines were cultured in TeSR-E8 on Vitronectin XF and routinely passaged once a week
128 using Gentle Cell Dissociation Reagent (all from Stem Cell Technologies). Prior to targeting, NCRM1
129 hiPSCs were passaged as a bulk on feeders in hESC medium [34]. RevitaCell (Life Technologies) was
130 added to the medium (1:200) after every passage to enhance viability after single cell passaging with
131 TrypLE (Life technologies).

132

133 Generation of hiPSC reporter line using CRISPR/Cas9

134 The p15a-cm-hETV2-P2A-NLS-mCherry-neo repair template plasmid was generated using overlap PCR
135 and restriction-based cloning and ligation. The ETV2 homology arms were amplified from genomic
136 DNA and the neomycin cassette flanked by two flippase recognition target (FRT) sites was amplified
137 from the P15 backbone vector (kindly provided by Dr. Konstantinos Anastassiadis, Technical University
138 Dresden). P2A-NLS-mCherry double-stranded DNA fragment was ordered from IDT. The sgRNA/Cas9
139 plasmid was modified from SpCas9-2A-Puro V2.0 plasmid (Addgene, Feng Zang).

140 NCRM1 hiPSCs were passaged at a 1:2 or 1:3 ratio into 60 mm dishes to reach 60-70%
141 confluence the next day for transfection. 20 μ l lipofectamine (Invitrogen), 8 μ g of repair template and
142 8 μ g of sgRNA/Cas9 plasmid were diluted in 600 μ l of Opti-MEM and added to each 60 mm dish. After
143 18 hours the medium was changed to hESC medium. After another 6 hours, G-418 (50 μ g/ml) selection
144 was started and was continued for 1 week. Surviving cells were cultured in hESC medium and passage
145 into 6-well plates for the transfection of Flp recombinase expression vector to remove the neomycin
146 cassette [35]. 300 μ l of Opti-MEM containing 10 μ l lipofectamine and 4 μ g CAGGs-Flpo-IRES-puro
147 plasmid was added per well for 18 hours. Puromycin (0.5 μ g/ml) selection was started 24 hours post
148 transfection for 2 days. Once recovered, cells were passaged into 96-well plates for clonal expansion
149 via limiting dilution. Targeted clones were identified by PCR and sequencing. Primers outside the ETV2
150 homology arms and primers inside the targeting construct were used to confirm on-target integration.
151 The absence of mutations within the inserted sequence and untargeted allele was confirmed by
152 Sanger sequencing (BaseClear).

153

154 **Endothelial and myocardial lineage co-differentiation from hiPSCs**

155 Endothelial and cardiac cells were induced from hiPSCs in monolayer culture using the CMEC protocol
156 described previously [33]. Briefly, hiPSCs were split at a 1:12 ratio and seeded on 6-well plates coated
157 with 75 µg/mL (growth factor reduced) Matrigel (Corning) on day -1. On day 0, cardiac mesoderm was
158 induced by changing TeSR-E8 to BPEL medium [36], supplemented with 20 ng/mL BMP4 (R&D
159 Systems), 20 ng/mL ACTIVIN A (Miltenyi Biotec) and 1.5 µM CHIR99021 (Axon Medchem). On day 3,
160 cells were refreshed with BPEL supplemented with 5 µM XAV939 (Tocris Bioscience) and 50 ng/ml
161 VEGF (R&D Systems). From day 6 onwards, cells were refreshed every 3 days with BPEL medium
162 supplemented with 50 ng/ml VEGF.

163

164 **Fluorescence-activated cell sorting**

165 For FACS sorting on day 4, 5, 6 and 8 of the CMEC protocol, CD144+mCherry+ (DP) and CD144-
166 mCherry+ (SP) cells were sorted using a FACSaria III (BD-Biosciences). Around 20k cells/cm² were
167 seeded on fibronectin- (from bovine plasma, 5µg/ml, Sigma Aldrich) coated plates. Cells were cultured
168 in BPEL supplemented with VEGF (50 ng/ml) until day 10. The medium was refreshed every 3 days.
169 For FACS sorting on day 7 of the CMEC protocol, CD144+mCherry+ (DP), CD144-mCherry+ (SP) and
170 CD144-mCherry- (DN) cells were sorted using a FACSaria III. 1 million cells were seeded in each well
171 of Matrigel-coated 12-well plates in BPEL supplemented with VEGF (50 ng/ml) and RevitaCell (1:200).
172 The medium was refreshed 24 h after seeding and every three days afterwards with BPEL
173 supplemented with VEGF (50 ng/ml).

174

175 **Immunofluorescence staining and imaging**

176 Cultured cells were fixed in 4% paraformaldehyde for 15 min, permeabilized for 10 min with PBS
177 containing 0.1% Triton-X 100 (Sigma-Aldrich) and blocked for 1h with PBS containing 5% BSA (Sigma-
178 Aldrich). Then cells were stained with primary antibody overnight at 4°C. The next day, cells were
179 washed three times (20 min each time) with PBS. After that, cells were incubated with fluorochrome-
180 conjugated secondary antibodies for 1h at room temperature and washed three times (20 min each
181 time) with PBS. Then, cells were stained with DAPI (Life Technologies) for 10 min at room temperature
182 and washed once with PBS for 10min. Both primary and secondary antibodies were diluted in 5%
183 BSA/PBS. Images were taken with the EVOS FL AUTO2 imaging system (ThermoFischer Scientific) with
184 a 20x objective, or using the Incucyte® system (Sartorius). Confocal imaging was done using a Leica
185 SP8WLL confocal laser-scanning microscope using a 63x objective and z-stack acquisition. Details of
186 all antibodies used are provided in Table S1.

187

188 **FACS analysis**

189 Cells were washed once with FACS buffer (PBS containing 0.5% BSA and 2 mM EDTA) and stained with
190 FACS antibodies for 30 min at 4°C. Samples were washed once with FACS buffer and analyzed on the
191 MACSQuant VYB (Miltenyi Biotech) equipped with a violet (405 nm), blue (488 nm) and yellow (561
192 nm) laser. The results were analyzed using Flowjo v10 (FlowJo, LLC). Details of all fluorochrome
193 conjugated FACS antibodies are provided in Table S1.

194

195 **Quantitative Real-Time Polymerase Chain Reaction (qPCR)**

196 Total RNA was extracted using the NucleoSpin® RNA kit (Macherey-Nagel) according to the
197 manufacturer's protocol. cDNA was synthesized using an iScript-cDNA Synthesis kit (Bio-Rad). iTaq
198 Universal SYBR Green Supermixes (Bio-Rad) and the Bio-Rad CFX384 real-time system were used for
199 the PCR reaction and detection. Relative gene expression was determined according to the standard
200 ΔCT calculation and normalized to housekeeping genes (mean of HARP and RPL37A). Details of all
201 primers used are provided in Table S2.

202

203 **Bulk RNA sequencing and analysis**

204 Cells were sorted on differentiation day 4, 5, 6 and 8 for bulk RNA-Seq. Total RNA was extracted using
205 the NucleoSpin® RNA kit (Macherey-Nagel). Whole transcriptome data were generated at BGI
206 (Shenzhen, China) using the Illumina Hiseq4000 (100bp paired end reads). Raw data was processed
207 using the LUMC BIOPET Gentrap pipeline (<https://github.com/biopet/biopet>), which comprises FASTQ
208 preprocessing, alignment and read quantification. Sickle (v1.2) was used to trim low-quality read ends
209 (<https://github.com/najoshi/sickle>). Cutadapt (v1.1) was used for adapter clipping [37], reads were
210 aligned to the human reference genome GRCh38 using GSNAp (gmap-2014-12-23) [38,39] and gene
211 read quantification with htseq-count (v0.6.1p1) against the Ensembl v87 annotation [40]. Gene length
212 and GC content bias were normalized using the R package cqn (v1.28.1) [41]. Genes were excluded if
213 the number of reads was below 5 reads in ≥90% of the samples. The final dataset consisted of gene
214 expression levels of 31 samples and 22,419 genes.

215 Differentially expressed genes were identified using generalized linear models as implemented
216 in edgeR (3.24.3) [42]. P-values were adjusted using the Benjamini-Hochberg procedure and FDR \leq
217 0.05 was considered significant. Analyses were performed using R (version 3.5.2). The PCA plot was
218 generated with the built-in R function prcomp using the transposed normalized RPKM matrix.
219 Correlation among samples was calculated using the cor function with spearman method and the
220 correlation heatmap was generated with aheatmap function (NMF package).

221 Gene clusters were calculated with the CancerSubtypes package [43]. The top 3000 most variable
222 genes across all chosen samples were identified based on the Median Absolute Deviation (MAD) using
223 the FSbyMAD function, then expression was standardized for each gene. K clusters were calculated
224 using k-means clustering with Euclidean distance. Clustering was iterated 1000 times for each k in the
225 range of 2 to 10. Heatmaps of genes in all clusters were generated using the base R heatmap function.
226 Gene ontology enrichment for each cluster was performed using the compareCluster function of
227 clusterProfiler package (v3.10.1) [44] and $q \leq 0.05$ was considered significant.

228 **Single-cell RNA sequencing and analysis**

229 *Sample preparation and sequencing*

230 Cells were dissociated into single cells on day 6 of CMEC differentiation and loaded into the 10X
231 Chromium Controller for library construction using the Single-Cell 3' Library Kit. Next, indexed cDNA
232 libraries were sequenced on the HiSeq4000 platform. Mean reads per cell were 28,499 in the first
233 replicate and 29,388 in the second replicate.

234 *Pre-processing*

235 Both replicates of day 6 CMEC differentiation were merged into one data set. The average number of
236 detected genes was 2643 and the average total expression per cell was 10382 (Figure S1A-B). Then,
237 undetected genes (> 1 UMI count detected in less than two cells) and cells with low number of
238 transcripts were removed from further analysis (Figure S1A-B). This resulted in 5107 cells for the first
239 replicate, and 3743 cells for the second replicate and 13243 genes. Expression profiles were
240 normalized with the R package *scran* (V 1.10.2) using the method described in [45]. The 5% most highly
241 variable genes (HVGs) for each replicate were calculated with *scran* after excluding ribosomal genes
242 (obtained from the HGNC website without any filtering for minimum gene expression), stress-related
243 genes [46] and mitochondrial genes. For downstream analysis the top 5% HVGs were used after
244 excluding proliferation [47] and cell cycle [48] related genes.

245 *Cell cycle analysis*

246 For each data set, cell cycle analysis was performed with the *scran* package using the *cyclone* function
247 [49] on normalized counts. Cells with a G2/M score higher than 0.2 were considered to be in G2/M
248 phase. Otherwise, they were classified as G1/S. Using this binary classifier as predictor, we regressed
249 out cell cycle effects with the R package *limma* (V 3.42.2) [50] applied to log-transformed normalized
250 counts. The two replicates were then batch corrected with the fast mutual nearest neighbors (MNN)

255 correction method [51] on the cell cycle corrected counts, using the 30 first principal components and
256 20 nearest-neighbors.

257

258 *Clustering*

259 Batch-corrected counts were standardized per gene and then used to create a shared nearest
260 neighbour (SNN) graph with the *scran* R package ($d = 30$, $k = 20$). Louvain clustering was applied to the
261 SNN graph using the *igraph* python package (V 0.7.1) with 0.4 as the resolution parameter. This
262 resulted in 5 clusters. Two of these 5 clusters were excluded from further analysis based on the
263 expression of pluripotency markers [50].

264

265 *Dimensionality reduction and pseudotime*

266 Dimensionality reduction was performed using the python *scipy* pipeline (V 1.4.6). Firstly, a 20
267 nearest-neighbors (k_{nn} , $k=20$) graph was created from diffusion components of the batch corrected
268 data sets. Diffusion components are the eigenvectors of the diffusion operator which is calculated
269 from Euclidean distances and a Gaussian kernel. The aim is to find a lower dimensional embedding
270 that considers cellular dynamics. The graph was projected into two dimensions with the default force-
271 directed graph layout and starting positions obtained from the partition-based graph abstraction
272 (PAGA) algorithm [52]. PAGA estimates connectivities between partitions and performs an improved
273 version of diffusion pseudotime. Diffusion pseudotime [51,52] was calculated on these graphs with
274 root cells selected from the “Cardiac Mesoderm” cluster.

275 Average gene expression trajectories were calculated by dividing the cells of each cluster into
276 bins along pseudotime. 50 bins were created for cardiac mesoderm and 30 bins each for ECs and CMs.
277 The average log-expression per bin was then calculated. The value of the threshold indicated in Fig. 1
278 D,E was determined by calculating the point in pseudotime where the average ETV2 expression was
279 the lowest in the endothelial cell cluster before the peak expression, which corresponds to a value
280 around 0.25.

281

282 *Differential expression analysis and identification of cluster maker genes*

283 The R package *edgeR* (V 3.24.3, 31) [42] was used to perform differential expression analysis. We used
284 raw counts and a negative binomial distribution to fit the generalized linear model. The covariates
285 were comprised of 6 binary dummy variables that indicate the three remaining clusters per replicate
286 and a variable that corresponds to the total number of counts per cell. Finally, p-values for each cluster
287 considering both replicates were obtained and adjusted for multiple hypothesis testing with the
288 Benjamini-Hochberg method.

289

290 *Comparison to bulk RNA-sequencing data*

291 The MNN approach was used to integrate the two single-cell replicates, using normalized counts and
292 the 10% HVGs per replicate, and the bulk RNA-sequencing data, with $d = 30$ and $k = 20$. After batch
293 correction a diffusion map was calculated on the MNN corrected values with default parameters.

294

295 **Statistics**

296 Statistical analysis was conducted with GraphPad Prism 7 software. Data are represented as mean \pm
297 standard deviation. A Student’s t-test was used for the comparison of two samples. Ordinary one-way
298 ANOVA was used for multiple sample comparison, and uncorrected Fisher’s LSD test was applied. Two-
299 way ANOVA was used for multiple group comparison and uncorrected Fisher’s LSD test was applied.
300 $p < 0.05$ was considered significant.

301

302

303 **RESULTS**

304

305 *ETV2 is upregulated after bifurcation of progenitors into CMs and ECs*

306 To characterize the expression of *ETV2* during co-differentiation of ECs and CMs [33] (Figure 1A), we
307 collected scRNA-seq data on day 6 of differentiation (Figure 1B). We identified three distinct clusters:
308 cardiac mesoderm, CMs and ECs (Figure 1B, top right and Table S3). Pseudotime analysis revealed
309 cardiac mesoderm as the common developmental origin of CMs and ECs (Figure 1B, bottom right). We
310 found that *ETV2* was highly expressed in the EC cluster, as well as in a small fraction of cells in the
311 cardiac mesoderm and CM clusters (Figure 1B, left). We next focused on *ETV2* expression dynamics
312 along the developmental path from cardiac mesoderm to CMs and ECs. Notably, ECs extended to
313 larger pseudotimes (0.15-0.8) compared to CMs (0.15-0.3), which might indicate faster differentiation
314 kinetics in the EC lineage (Figure 1C, S1A). After the bifurcation into ECs and CMs (around pseudotime
315 0.15), *ETV2* increased only slightly in the CM lineage. In the EC lineage, however, it was initially strongly
316 upregulated (until pseudotime 0.25), and subsequently declined to a similar level as in cardiac
317 mesoderm (Figure 1C). *ETV2* downstream target genes, such as *TAL1*, *GATA2* and *LMO2* [18] , were
318 only slightly increased in the CM lineage (Figure 1D), while in the EC lineage, they were highly induced
319 and strongly correlated with *ETV2* (Figure 1E). Notably, *TAL1*, *GATA2* and *LMO2* only showed
320 significant expression after *ETV2* expression exceeded 0.25 in ECs, an expression level that was not
321 reached in CMs (Figure S1B-C). Endothelial specific genes *KDR*, *CD34*, *SOX17*, *CDH5* and *PECAM1*
322 increased on the path from cardiac mesoderm to ECs (Figure S1E). Most of these genes started to
323 increase when *ETV2* was already declining, as exemplified by *CDH5* (Figure S1D). Genes related to
324 cardiac or muscle function, like *ACTC1*, *PDLIM5*, *HAND1*, *PKP2* and *GATA4*, most of which were already
325 expressed in the cardiac mesoderm, were further increased in the CM lineage (Figure S1F).
326 Identification of genes that are differentially expressed between *ETV2*+ CMs and ECs showed
327 enrichment in CM- and EC-specific genes, respectively (Figure 1F, Table S4). Taken together, these
328 analyses confirmed the differentiation of cardiac mesoderm into CMs and ECs, which we had
329 discovered previously. They also revealed the increase of *ETV2* as a global indicator of early lineage
330 separation and a transient pulse of high *ETV2* at the beginning of EC specification.
331

332 **Generation and characterization of an *ETV2*^{mCherry} fluorescent hiPSC reporter line**

333 In order to follow *ETV2* expression in real-time, we introduced a fluorescent reporter for *ETV2* in
334 hiPSCs. P2A-mCherry with a nuclear localization signal (NLS) and a neomycin selection cassette was
335 inserted into the endogenous *ETV2* locus before the stop codon using CRISPR/Cas9-facilitated
336 homologous recombination (Figure 2A, S2A). After neomycin selection and excision of the selection
337 cassette, targeted hiPSC clones were validated by PCR (Figure S2A-D) and Sanger sequencing (data not
338 shown). The hiPSC clone with *ETV2*^{mCherry} in both alleles was further characterized by measuring
339 pluripotency marker expression and G-banding karyotyping (Figure S2E-H). Karyotype analysis
340 revealed an additional duplication in the 1q32.1 locus (Figure S2H). This duplication occurs frequently
341 in hPSCs possibly imposing positive natural selection [53]. However, this did not appear to affect the
342 differentiation of the hPSCs to ECs.

343 *ETV2* and *mCherry* mRNAs were highly expressed on days 4 to 5 of differentiation and
344 downregulated from day 6 (Figure 2B-C). *ETV2* and *mCherry* protein appeared from day 4 and peaked
345 on day 5. *ETV2* protein was downregulated on day 6 and absent on day 8. *mCherry* was retained in a
346 fraction of the cell population for somewhat longer because of its half-life (Figure 2D-E, S3A and
347 supplemental online Video 1). Flow cytometry analysis at different stages of differentiation revealed
348 upregulation of *ETV2* (*mCherry* protein) as early as day 4 of differentiation followed by the
349 upregulation of the EC-specific marker *CD144* (Figure 2F, S3B). Quantification of the percentages of
350 single positive (SP; *ETV2*^{mCherry}+*CD144*-) and double positive (DP; *ETV2*^{mCherry}+*CD144*+) cells on day 4, 5,
351 6 and 8 of differentiation from at least three independent experiments showed a decrease and an
352 increase of SP and DP cells respectively (Figure 2G-H). *mCherry* protein remained present for a longer
353 period than *ETV2* protein and endogenous *ETV2* and *mCherry* mRNA (Figure 2B-H), likely due to the
354 relatively longer half-life of the *mCherry* protein. This explains the persistence of *mCherry* signal in
355 both the DP and SP population (Figure 2G-H), and offers the possibility to use *mCherry* as a lineage
356 tracer, identifying cells that previously passed through a stage of being *ETV2*+.

357

358 **The ETV2^{mCherry} fluorescent reporter allows the purification of differentiating cells with lineage-
359 specific expression profiles**

360 We next sorted DP and SP cells at different stages of differentiation (Figure 2F) and performed bulk
361 RNA-seq on at least three independent replicates. *ETV2* mRNA showed similar trends in DP and SP
362 cells (Figure S4), consistent with the earlier qPCR result (Figure 2B).

363 Principal component analysis (PCA) showed that DP and SP populations diverged progressively
364 over time (Figure 3A). Mapping of the bulk transcriptomes to the scRNA-seq data revealed that DP
365 samples aligned on the EC branch and SP cells on the CM branch (Figure 3B). Notably, SP and DP cells
366 collected at later time points were further away from cardiac mesoderm, reflecting ongoing
367 differentiation (Figure 3B).

368 We next leveraged the higher sensitivity and accuracy of bulk RNA-seq compared to scRNA-
369 seq, to get a more comprehensive and robust transcriptional characterization of the subpopulations.
370 By consensus clustering of the most variable genes across DP or SP cells (3000 genes each) we found
371 three gene clusters for each population, with distinct expression dynamics (Figure 3C-D, Figure S5A-B,
372 Table S5). In DP cells, cluster D1 (1226 genes) expression increased over time. Gene Ontology (GO)
373 terms enriched in cluster D1 included “angiogenesis”, “Notch signaling pathway”, “transforming
374 growth factor beta receptor signaling pathway”, “receptor-mediated endocytosis” and
375 “developmental maturation” (Figure 3E, Table S6). In accordance with this analysis, angiogenesis-
376 related genes (*CDH5*, *TIE1*, *TEK*, *EFNB2*, *SOX18*, *VEGFB*, *LEPR*), Notch and transforming growth factor
377 beta receptor signaling pathway related genes (*COL1A2*, *NOTCH1*, *HES4*, *DLL4*, *JAG2*, *HEY1*, *NOTCH3*,
378 *NOTCH4*, *TGFBR2*, *EGF*) and heart valve morphogenesis related genes (*SMAD6*, *EFNA1*, *GATA5*, *HEY2*,
379 *EMILIN1*, *NOS3*, *GATA3*) were upregulated over the course of differentiation in DP cells (Figure 3G,
380 Figure S5C). In the scRNA-seq data, cluster D1 genes were specifically expressed in the EC cluster and
381 showed increasing expression along pseudotime (Figure 3I). Cluster D1 genes are thus likely involved
382 in EC-specific functions. Cluster D2 (1127 genes), which was downregulated after day 4 (Figure 3C),
383 was enriched for cell cycle-related genes (*ITGB1*, *CDK4*, *CCND1*, *CDK2AP2*, *MYC*, *CDC6*) (Figure S5D).
384 Cluster D3 (647 genes), which was downregulated after day 5-6 (Figure 3C), contained cell
385 proliferation- and fatty-acyl-CoA biosynthetic process-related genes (*ACLY*, *FASN*, *ELOVL1*, *SLC25A1*,
386 *ACSL3*, *ACSL4*) (Figure S5E). Genes in clusters D2 and D3 were more broadly expressed in the scRNA-
387 seq data (Figure S5I). Their dynamics likely reflect changes in proliferation and metabolism at the exit
388 from the multipotent progenitor state.

389 In SP cells, cluster S1 (936 genes) increased over time and contained genes enriched for GO
390 terms related to heart development and function (Figure 3F, Table S6). In agreement, cardiac chamber
391 and cardiac muscle development related genes (*MYH6*, *HAND1*, *MYH10*, *TNNT2*, *NKX2-5*, *ISL1*, *TNNC1*,
392 *MYOD*, *LMO4* and *HEY1*, *MYL7*, *MYL4*, *ACTA2*, *KCNH2*) were upregulated over the course of
393 differentiation (Figure 3H, S5F). Cluster S1 genes were highly expressed in the cardiac mesoderm and
394 CM clusters in the scRNA-seq data, which showed an increase over pseudotime in the CM lineage
395 (Figure 3J). These genes are thus likely involved in CM-specific functions. Cluster S2 (746 genes), which
396 increased slightly until day 6 and was downregulated afterwards (Figure 3D), contained mitotic
397 nuclear division genes (*TPX2*, *CDC20*, *NEK2*, *PLK1*, *PRC1* and *CDC25C*) (Figure S5G). Cluster S3 (1318
398 genes), whose expression decreased continuously over time (Figure 3D), contained transcription and
399 translation process-related genes (*SF1*, *SNRPE*, *DDX23*, *RRP1B* and *PRMT5*) (Figure S5H). In the scRNA-
400 seq data, genes from clusters S2 and S3 showed broader expression patterns compared to cluster S1
401 genes (Figure S5J). The dynamics of clusters S2 and S3 likely reflect changes in proliferation and
402 metabolism in the CM lineage, analogous to the role of clusters D2 and D3 in the EC lineage.

403 Taken together, time-resolved bulk RNA-seq of sorted SP and DP populations confirmed that
404 ETV2-positive cells contained transcriptionally distinct subpopulations. DP cells were part of the EC
405 lineage, while SP cells corresponded to the CM lineage.

406

407 **ETV2+ cells contain lineage-predisposed subpopulations**

408 Next, we wanted to find out how the various subpopulations we identified differed in terms of their
409 further differentiation potential. To this end, we sorted cells on the basis of ETV2 reporter levels
410 shortly after the bifurcation (on day 5) and attempted to differentiate them further towards ECs by
411 adding VEGF (Figure 4A-B). After 5 days of additional differentiation, ETV2+ cells produced more than
412 90% CD144+CD31+ ECs, while ETV2- cells gave rise to only 10-15% ECs (Figure 4C-D, S6A). Only cells
413 derived from ETV2+ cells expressed endothelial-specific markers, as observed by qPCR and
414 immunofluorescence (Figure 4E-H, S6C). These cells also upregulated pro-inflammatory markers, such
415 as ICAM-1 and E-Selectin upon TNF- α stimulation (Figure 4I-L, S6B), as shown previously for hiPSC-
416 derived ECs [54]. We thus concluded that the majority of ETV2+ cells on day 5 has a strong propensity
417 to produce ECs.

418 Both the analysis of the scRNA-seq data and the time-resolved bulk RNA-seq of sorted cells
419 had identified a subpopulation of ETV2+ cells with CM characteristics. We strongly suspected that the
420 differentiation of these cells would be predisposed to the CM lineage. To test this hypothesis with our
421 reporter line, we co-differentiated cells until day 7. We chose a later time point for this experiment
422 because the majority of cells are past bifurcation at this point and it is therefore easier to identify the
423 ETV2+ population that does not correspond to early ECs. We co-stained for CD144 and sorted the cells
424 into DP, SP and double negative (DN) populations. These subpopulations were then further cultured
425 in the presence of VEGF until day 18 (Figure 4A, M). The majority (>80%) of DP cells differentiated into
426 CD144+CD31+ ECs, in agreement with the previous experiment (Figure 4N-O). In contrast, more than
427 50% of SP and DN cells differentiated into cTnT+ CMs while very few ECs were detected (Figure 4N-
428 O). Interestingly, CMs derived from SP cells seemed to proliferate more and formed a monolayer
429 composed of a contracting cell sheet, while CMs from DN cells proliferated to a lesser extent and
430 produced only a few, isolated clusters of contracting cells (supplemental online Video 2). Almost all
431 DP cells on day 18 expressed the EC marker CD31, while only few cells derived from SP and DN cells
432 were positive for CD31 (Figure 4P-R). Most cells derived from SP and DN expressed CM-specific α -
433 Actinin and cTnT and showed typical sarcomeric structures (Figure 4Q-R, S6D-E). A small number of
434 SP and DN-derived cells were also positive for the smooth muscle cell marker SM22, while negative
435 for cardiac markers (data not shown). Furthermore, the α -Actinin positive CMs derived from the SP
436 cell fraction were positive for SM22, possibly indicating their immaturity (Figure 4R).

437 Taken together, the VEGF differentiation experiments showed that DP and SP cells are
438 predisposed to the EC and CM lineages, respectively. DN cells were largely unable to give rise to EC
439 but produced CMs, albeit with lower efficiency than SP cells. Entering a transient state characterized
440 by high ETV2 expression, thus seems necessary to initiate EC specification.

441

442

443 DISCUSSION

444 In this study, we characterized the dynamics of EC and CM co-differentiation from hiPSCs [33]. ETV2
445 was identified as an early indicator of lineage segregation and found to be strongly, but transiently,
446 upregulated in ECs, in agreement with its essential role in hemangiogenic development [55].
447 Interestingly, ETV2 expression was also observed in a small population of cardiac mesoderm and CMs.
448 This is reminiscent of a recent study where *etv2* expression was observed in lateral plate mesoderm
449 and the CM population in zebrafish [56]. In our experiments, expression of ETV2 target genes seemed
450 to occur only above a threshold of ETV2 expression, although this observation could also be explained
451 by a temporal delay between ETV2 upregulation and target gene expression. An ETV2 threshold in
452 hiPSC differentiation would be in line with previous reports of an ETV2 threshold in hemangiogenic
453 specification [19,20]. Our results thus support an ETV2 pulse- and threshold dependent specification
454 of ECs.

455 With the ETV2^{mCherry} hiPSC reporter line, generated to track, isolate and characterize ETV2+ cells,
456 we showed that ETV2+ cells could give rise to both ECs and CMs. Over time, EC and CM precursors
457 acquired more specific endothelial and myocardial identities, respectively, as well as downregulating
458 cell cycle-related genes, which indicated exit from the progenitor state and further maturation.

459 In the DP subpopulation (EC precursors), several key angiogenesis and Notch signaling pathway
460 genes, like *LEPR*, *FOXO4*, *DLL4*, *NOTCH4* and *EGF*, strongly increased starting from day 4, indicating a
461 specified EC fate but an immature state on day 4. These relatively late expressed genes could
462 potentially be used as markers to distinguish early and late ECs during development *in vitro* or *in vivo*.
463 Genes involved in heart development and definitive hematopoiesis were also upregulated during EC
464 development, suggesting a mixture of cardiac endothelial- and hemogenic endothelial identity of
465 these ECs. A better characterization hematopoietic potential of these cells would be interesting but
466 beyond the scope of this study. ECs that were further differentiated with VEGF showed a clear
467 endothelial identity and were fully functional based on their inflammatory response upon TNF α
468 stimulation. Notably, they also expressed a number of cardiac markers like *MEOX2*, *GATA4*, *GATA6*
469 and *ISL1*, suggesting a cardiac specific EC identity [33].

470 The SP subpopulation (CM precursors) had already committed to a cardiac fate on day 4, as
471 evidenced by expression of cardiac genes *HAND1*, *MYH10*, *NKX2-5*, *ISL1*, *TNNC1*, *MYOCD* and *LMO4*.
472 However, some crucial CM genes were still absent, including *MYH6* and *TNNT2*. *MYH6* encodes the
473 major CM thick filament protein MHC- α and *TNNT2* is routinely used as a CM marker. Both genes are
474 essential for CM contractility and started to be expressed only after day 4. Their relatively late
475 expression could allow us to identify early and late cardiac progenitors during cardiac development in
476 future studies. CMs were still early progenitors on day 6 of the differentiation as no functionally
477 contracting CMs were observed yet at this stage. Pseudotime analysis also suggested that ECs had
478 differentiated further compared to CMs on day 6. After additional VEGF differentiation, SP cells gave
479 rise to contracting CM, which provided direct evidence they were CM precursors. More importantly,
480 it demonstrated that both ECs and CMs could be derived from ETV2+ progenitors, confirming the
481 presence of a common precursor implied by our earlier studies [33].

482 Notably, ETV2- cells (DN population) also gave rise to contracting CMs after VEGF treatment,
483 albeit less frequently than SP cells. This difference could be due to either the different cell growth
484 rates or their different developmental origins (FHF vs. SHF). More work is needed to establish the
485 identity of CMs from SP and DN populations in the future.

486 CONCLUSION

488 Bulk- and single cell transcriptomic analysis in this study provide insight into the differentiation
489 dynamics of cardiomyocytes and cardiac endothelial cells, two important human cardiac lineages. This
490 rich data set is now available for comparison with *in vivo* data. The ETV2 fluorescent reporter we
491 generated in hiPSCs allowed identification of a new subpopulation of early CM precursors that
492 expressed ETV2.

493 ACKNOWLEDGEMENTS

495 S.L. Kloet and E. de Meijer (Leiden Genome Technology Center) for help with 10X Genomics
496 experiments (cell encapsulation, library preparation, single-cell sequencing, primary data mapping,
497 and quality control). K. Anastassiadis (Technical University Dresden) for providing P15 backbone with
498 a Neomycin resistance cassette surrounded by two FRT sequences and CAGGs-Flopo-IRES-puro vector.
499 R. Davis (Leiden University Medical Center) for comments on the manuscript. B. van Meer for input
500 into the realtime imaging using the Incucyte® system. Sartorius Stedim Biotech GmbH for usage of the
501 Incucyte® Live-Cell Analysis System.

502 Funding

504 This project received funding from the European Union's Horizon 2020 Framework Programme
505 (668724); European Research Council (ERCAdG 323182 STEMCARDIOVASC); Netherlands Organ-on-
506 Chip Initiative, an NWO Gravitation project funded by the Ministry of Education, Culture and Science
507 of the government of the Netherlands (024.003.001). Health~Holland (LSHM20018) and the Novo
508 Nordisk Foundation Center for Stem Cell Medicine is supported by Novo Nordisk Foundation grants
509 (NNF21CC0073729).. M. M. and S.S. were supported by the Netherlands Organisation for Scientific

510 Research (NWO/OCW, www.nwo.nl), as part of the Frontiers of Nanoscience (NanoFront) program.
511 The computational work was carried out on the Dutch national e-infrastructure with the support of
512 SURF Cooperative.
513
514

515 **DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST**

516 CLM is on the SAB of Sartorius Stedim Biotech GmbH. The other authors indicated no potential
517 conflicts of interest.
518

519 **Data Availability Statement**

520 The accession numbers for the bulk and single cell RNA sequencing datasets reported in this paper are
521 <https://www.ncbi.nlm.nih.gov/geo/> GEO: GSE157954 (bulk) and GEO: GSE202901 (single cell).
522

523 **REFERENCES**

524
525 1 Devine WP, Wythe JD, George M, et al. Early patterning and specification of cardiac progenitors in
526 gastrulating mesoderm. *Elife* 2014;3:e03848.
527 2 Lescroart F, Chabab S, Lin X, et al. Early lineage restriction in temporally distinct populations of
528 Mesp1 progenitors during mammalian heart development. *Nat Cell Biol* 2014;16:829–840.
529 3 Zaffran S, Kelly RG, Meilhac SM, et al. Right Ventricular Myocardium Derives From the Anterior Heart
530 Field. *Circ Res* 2004;95:261–268.
531 4 Y S, S M-T, A T, et al. MesP1 is expressed in the heart precursor cells and required for the formation
532 of a single heart tube. *Development* 1999;126:3437–3447.
533 5 Lescroart F, Wang X, Lin X, et al. Defining the earliest step of cardiovascular lineage segregation by
534 single-cell RNA-seq. *Science* 2018;359:1177–1181.
535 6 Ema M, Takahashi S, Rossant J. Deletion of the selection cassette, but not cis-acting elements, in
536 targeted Flk1-lacZ allele reveals Flk1 expression in multipotent mesodermal progenitors. *Blood*
537 2006;107:111–117.
538 7 Garry DJ, Olson EN. A Common Progenitor at the Heart of Development. *Cell* 2006;127:1101–1104.
539 8 P T P, M P, J K S, et al. The allocation of epiblast cells to the embryonic heart and other mesodermal
540 lineages: the role of ingressions and tissue movement during gastrulation. *Development*
541 1997;124:1631–1642.
542 9 Buckingham M, Meilhac S, Zaffran S. Building the mammalian heart from two sources of myocardial
543 cells. *Nat Rev Genet* 2005;6:826–835.
544 10 Vincent SD, Buckingham ME. How to make a heart: the origin and regulation of cardiac progenitor
545 cells. *Curr Top Dev Biol* 2010;90:1–41.
546 11 Galli D, Domínguez JN, Zaffran S, et al. Atrial myocardium derives from the posterior region of the
547 second heart field, which acquires left-right identity as Pitx2c is expressed. *Dev Camb Engl*
548 2008;135:1157–1167.
549 12 Cai C-L, Liang X, Shi Y, et al. Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to
550 Differentiation and Contributes a Majority of Cells to the Heart. *Dev Cell* 2003;5:877–889.
551 13 Paffett-Lugassy N, Singh R, Nevis KR, et al. Heart field origin of great vessel precursors relies on
552 nkx2.5-mediated vasculogenesis. *Nat Cell Biol* 2013;15:1362–1369.
553 14 Val SD, Black BL. Transcriptional Control of Endothelial Cell Development. *Dev Cell* 2009;16:180–
554 195.
555 15 Lee D, Park C, Lee H, et al. ER71 Acts Downstream of BMP, Notch, and Wnt Signaling in Blood and
556 Vessel Progenitor Specification. *Cell Stem Cell* 2008;2:497–507.
557 16 Val SD, Chi NC, Meadows SM, et al. Combinatorial regulation of endothelial gene expression by ets
558 and forkhead transcription factors. *Cell* 2008;135:1053–1064.

559 17 Ferdous A, Caprioli A, Iacovino M, et al. Nkx2-5 transactivates the Ets-related protein 71 gene and
560 specifies an endothelial/endocardial fate in the developing embryo. *Proc National Acad Sci*
561 2009;106:814–819.

562 18 Liu F, Li D, Yu YYL, et al. Induction of hematopoietic and endothelial cell program orchestrated by
563 ETS transcription factor ER71/ETV2. *Embo Rep* 2015;16:654–669.

564 19 Zhao H, Choi K. A CRISPR screen identifies genes controlling Etv2 threshold expression in murine
565 hemangiogenic fate commitment. *Nat Commun* 2017;8:541.

566 20 Zhao H, Choi K. Single cell transcriptome dynamics from pluripotency to FLK1+ mesoderm.
567 *Development* 2019;146:dev182097.

568 21 Morita R, Suzuki M, Kasahara H, et al. ETS transcription factor ETV2 directly converts human
569 fibroblasts into functional endothelial cells. *P Natl Acad Sci Usa* 2014;112:160–165.

570 22 Irina E, Vera B-V, Akhilesh K, et al. Direct induction of haematoendothelial programs in human
571 pluripotent stem cells by transcriptional regulators. *Nat Commun* 2014;5:4372.

572 23 Lindgren AG, Veldman MB, Lin S. ETV2 expression increases the efficiency of primitive endothelial
573 cell derivation from human embryonic stem cells. *Cell Regen* 2015;4:1.

574 24 Brok-Volchanskaya VS, Bennin DA, Suknuntha K, et al. Effective and Rapid Generation of Functional
575 Neutrophils from Induced Pluripotent Stem Cells Using ETV2-Modified mRNA. *Stem Cell Rep*
576 2019;13:1099–1110.

577 25 Suknuntha K, Tao L, Brok-Volchanskaya V, et al. Optimization of Synthetic mRNA for Highly Efficient
578 Translation and its Application in the Generation of Endothelial and Hematopoietic Cells from Human
579 and Primate Pluripotent Stem Cells. *Stem Cell Rev Rep* 2018;14:525–534.

580 26 Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-
581 like system. *Nat Methods* 2019;16:1169–1175.

582 27 Wang K, Lin R-Z, Hong X, et al. Robust differentiation of human pluripotent stem cells into
583 endothelial cells via temporal modulation of ETV2 with modified mRNA. *Sci Adv* 2020;6:eaba7606.

584 28 Palikuqi B, Nguyen D-HT, Li G, et al. Adaptable haemodynamic endothelial cells for organogenesis
585 and tumorigenesis. *Nature* 2020;585:426–432.

586 29 Paik DT, Tian L, Lee J, et al. Large-Scale Single-Cell RNA-Seq Reveals Molecular Signatures of
587 Heterogeneous Populations of Human Induced Pluripotent Stem Cell-Derived Endothelial Cells. *Circ
588 Res* 2018;123:443–450.

589 30 McCracken IR, Taylor RS, Kok FO, et al. Transcriptional dynamics of pluripotent stem cell-derived
590 endothelial cell differentiation revealed by single-cell RNA sequencing. *Eur Heart J* 2019;41:1024–1036.

591 31 Hartogh SCD, Schreurs C, Monshouwer-Kloots JJ, et al. Dual Reporter MESP1mCherry/w-NKX2-
592 5eGFP/w hESCs Enable Studying Early Human Cardiac Differentiation. *Stem Cells* 2014;33:56–67.

593 32 Moretti A, Caron L, Nakano A, et al. Multipotent Embryonic Isl1+ Progenitor Cells Lead to Cardiac,
594 Smooth Muscle, and Endothelial Cell Diversification. *Cell* 2006;127:1151–1165.

595 33 Giacomelli E, Bellin M, Sala L, et al. Three-dimensional cardiac microtissues composed of
596 cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells.
597 *Development* 2017;144:1008–1017.

598 34 Costa M, Sourris K, Hatzistavrou T, et al. Expansion of Human Embryonic Stem Cells In Vitro. *Curr
599 Protoc Stem Cell Biology* 2007;1:1C.1.1-1C.1.7.

600 35 Kranz A, Fu J, Duerschke K, et al. An improved Flp deleter mouse in C57Bl/6 based on Flpo
601 recombinase. *Genesis* 2010;48:512–520.

602 36 Ng ES, Davis R, Stanley EG, et al. A protocol describing the use of a recombinant protein-based,
603 animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid
604 bodies. *Nat Protoc* 2008;3:768–776.

605 37 Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. *Embo
606 J* 2011;17:10–12.

607 38 Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads.
608 *Bioinform Oxf Engl* 2010;26:873–881.

609 39 Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST
610 sequences. *Bioinformatics* 2005;21:1859–1875.

611 40 Yates A, Akanni W, Amode MR, et al. Ensembl 2016. *Nucleic Acids Res* 2015;44:D710-6.

612 41 Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional
613 quantile normalization. *Biostat Oxf Engl* 2012;13:204–216.

614 42 Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression
615 analysis of digital gene expression data. *Bioinform Oxf Engl* 2009;26:139–140.

616 43 Xu T, Le TD, Liu L, et al. CancerSubtypes: an R/Bioconductor package for molecular cancer subtype
617 identification, validation and visualization. *Bioinform Oxf Engl* 2017;33:3131–3133.

618 44 Yu G, Wang L-G, Han Y, et al. clusterProfiler: an R Package for Comparing Biological Themes Among
619 Gene Clusters. *Omics J Integr Biology* 2012;16:284–287.

620 45 Lun ATL, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with
621 many zero counts. *Genome Biol* 2016;17:75.

622 46 Brink SC van den, Sage F, Vértesy Á, et al. Single-cell sequencing reveals dissociation-induced gene
623 expression in tissue subpopulations. *Nat Methods* 2017;14:935–936.

624 47 Whitfield ML, George LK, Grant GD, et al. Common markers of proliferation. *Nat Rev Cancer*
625 2006;6:99–106.

626 48 Giotti B, Joshi A, Freeman TC. Meta-analysis reveals conserved cell cycle transcriptional network
627 across multiple human cell types. *Bmc Genomics* 2017;18:30.

628 49 Scialdone A, Natarajan KN, Saraiva LR, et al. Computational assignment of cell-cycle stage from
629 single-cell transcriptome data. *Methods San Diego Calif* 2015;85:54–61.

630 50 Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-
631 sequencing and microarray studies. *Nucleic Acids Res* 2015;43:e47.

632 51 Haghverdi L, Büttner M, Wolf FA, et al. Diffusion pseudotime robustly reconstructs lineage
633 branching. *Nat Methods* 2016;13:845–848.

634 52 Wolf FA, Hamey FK, Plass M, et al. PAGA: graph abstraction reconciles clustering with trajectory
635 inference through a topology preserving map of single cells. *Genome Biol* 2019;20:59.

636 53 Dekel-Naftali M, Aviram-Goldring A, Litmanovitch T, et al. Screening of human pluripotent stem
637 cells using CGH and FISH reveals low-grade mosaic aneuploidy and a recurrent amplification of
638 chromosome 1q. *Eur J Hum Genet* 2012;20:1248–1255.

639 54 V. H O, C. F, F. van den H, et al. Inflammatory Responses and Barrier Function of Endothelial Cells
640 Derived from Human Induced Pluripotent Stem Cells. *Stem Cell Rep* 2018;10:1642–1656.

641 55 Naoko K-N, J G Daniel. Etv2 as an essential regulator of mesodermal lineage development.
642 *Cardiovasc Res* 2017;113:1294–1306.

643 56 Chestnut B, Chetty SC, Koenig AL, et al. Single-cell transcriptomic analysis identifies the conversion
644 of zebrafish Etv2-deficient vascular progenitors into skeletal muscle. *Nat Commun* 2020;11:2796.

645

646

647

648 **FIGURE LEGENDS**
649

650 **Figure 1. scRNA-seq analysis of ECs and CMs during co-differentiation reveals transient ETV2**
651 **upregulation after bifurcation.** **(A)** Schematic overview of the co-differentiation protocol from day -1
652 to day 6. Cells were collected for scRNA-seq on day 6. **(B)** Two-dimensional representation of the
653 scRNA-seq data. Each data point is a single cell. Left: \log_2 transformed *ETV2* expression is indicated by
654 color. Top right: Cell identities are labeled with different colors. Bottom right: Pseudotime is indicated
655 by color. **(C)** Average expression of *ETV2* in bins of pseudotime for the developmental path of CMs or
656 ECs. Cell identities are labeled with different colors. **(D-E)** Average expression of *ETV2* and its direct
657 target genes *TAL1*, *GATA2*, *LMO* across binned pseudotime along the developmental path of CMs (D)
658 or ECs (E). Threshold (indicated in black) is set to the timepoint where the average *ETV2* expression in
659 EC reaches 0.25. **(F)** GO enrichment analysis of genes that were differentially expressed between
660 *ETV2*+ ECs and *ETV2*+ CMs in the scRNA-seq dataset. 128 and 136 genes were upregulated in *ETV2*+

661 ECs and CMs respectively ($P_{\text{adjusted}} < 0.05$). A complete list of GO terms can be found in Table S3. Color
662 represents the P_{adjusted} of the enrichment analysis and dot size represents the count of genes mapped
663 to the GO term.

664

665 **Figure 2. Generation and characterization of an *ETV2*^{mCherry} hiPSC reporter line**
666 **(A)** Schematic of CRISPR/Cas9-Mediated Knock-in of mCherry into the *ETV2* locus of hiPSCs. **(B-C)**
667 Quantification of *ETV2* and *mCherry* expression by qPCR during differentiation. **(D)** Representative
668 confocal images of *ETV2*, DAPI and *mCherry* expression on different days of differentiation. Scale bar
669 200 μm . **(E)** Quantification of percentage (%) of *ETV2*+ and *mCherry*+ nuclei in all DAPI+ nuclei in the
670 field of view in **(D)**. **(F)** Fluorescence activated cell sorting (FACS) based on *CD144* and *ETV2*^{mCherry}
671 expression on day 4, 5, 6 and 8 of differentiation. **(G-H)** Quantification of *ETV2*+*CD144*- (SP)
672 *ETV2*+*CD144*+ (DP) cells by flow cytometry on differentiation day 4, 5, 6 and 8. (B-C, G-H) Error bars
673 are standard deviations calculated from three independent experiments. Uncorrected Fisher's LSD
674 test. ns = non-significant, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$.

675

676 **Figure 3. Bulk RNA-seq of the *ETV2*^{mCherry} reporter line shows diverging transcriptional profiles.**
677 **(A)** PCA of all sorted DP and SP samples collected from three or four independent differentiations. **(B)**
678 Low-dimensional representation (diffusion map) of scRNA-seq and bulk RNA-seq samples collected on
679 day 4, 5, 6 and 8. The small data points correspond to individual cells, the large symbols correspond
680 to bulk samples. Different clusters of cells or bulk samples are labelled with different colors. **(C-D)**
681 Gene expression pattern in all DP (D) and SP (E) cells. The 3000 most variable genes across all DP or
682 SP samples were identified and grouped into three clusters by consensus clustering. The genes in each
683 cluster can be found in Table S5. The color scale represents relative expression (row-wise z-score). **(E-F)**
684 GO enrichment analysis of each gene cluster of DP (E) and SP (F) samples. Representative GO terms
685 are shown. The complete list of GO terms can be found in Table S6. Color represents the P_{adjusted} of the
686 enrichment analysis and dot size represents the count of genes mapped to the GO term. **(G-H)**
687 Representative genes mapped to representative GO terms of clusters D1 (G) and S1 (H) and their
688 expression levels from day 4 to day 8 are shown. **(I-J)** Low-dimensional representation of the scRNA-
689 seq data. Each data point is a single cell. Mean expression of genes in cluster D1 (I) and S1 (J) in the
690 scRNA-seq data is indicated by color. Gene expression was scaled gene-wise prior to averaging.

691

692 **Figure 4. *ETV2*+ cells contain two lineage-predisposed subpopulations**
693 **(A)** Schematic of the differentiation protocol and cell sorting. *ETV*+ and *ETV2*- cells were sorted on day
694 5 and cultured in VEGF until day 10. DP, SP, DN were sorted on day 7 and cultured in VEGF until day
695 18. **(B)** Representative flow cytometry analysis *ETV2*-*mCherry* expression on day 5 and gates for cell
696 sorting of *ETV2*+ and *ETV2*- cells are shown. **(C)** Flow cytometry analysis of endothelial markers *CD144*
697 and *CD31* on day 10 of sorted *ETV2*+ and *ETV2*- cell differentiation. **(D)** Quantification of *CD144*+*CD31*+

698 cells in the total population on day 10 of sorted *ETV2*+ and *ETV2*- cell differentiation. **(E-F)**

699 Quantification of *CDH5* and *PECAM1* expression in sorted ETV2+ and ETV2- cells on day 5 and day 10.
700 **(G-H)** Immuno-staining of CD144, CD31 and cell-cell junctional marker ZO-1 on day 10 for sorted ETV2+
701 cells. Scale bar 200 μ m. **(I-J)** Flow cytometry analysis of ICAM1, E-Selectin and CD144 for sorted ETV2+
702 cells on day 10. Cells were stimulated with TNF- α for 24 h before analysis. **(K-L)** Quantification of
703 CD144+ICAM-1+ (K) and CD144+E-Selectin+ (L) cells in the population on day 10. **(M)** Flow cytometry
704 analysis of CD144 and ETV2-mCherry expression on day 7. DP, SP and DN cells were gated and sorted.
705 **(N)** Flow cytometry analysis of CD144 and CM marker cTnT expression on day 18 of sorted DP, SP and
706 DN cells. Isotype control antibodies were included as negative control. **(O)** Quantification of CD144+
707 ECs and cTnT+ CMs on day 18 of DP, SP and DN cell differentiation. **(P)** Immuno-staining of CD31, a-
708 Actinin, cTnT and DAPI on day 18 of DP cell differentiation. Scale bar 50 μ m. **(Q-R)** Immuno-staining of
709 CD31, a-Actinin, cTnT, SM22 and DAPI on day 18 of SP and DN cells. Scale bar 50 μ m. Error bars are \pm
710 SD of three independent experiments in (D-F, K-L, O). T test (D, K, L) and uncorrected Fisher's LSD test
711 (E-F, O) were used. ns = non-significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
712

713 **Figure S1. Pseudotime analysis of EC and CM co-differentiation**

714 **(A)** Distribution in pseudotime for each cell cluster. **(B-C)** Average expression of *ETV2* and *ETV2* target
715 genes along the developmental path of CMs (B) and ECs (C). The vertical black line indicates an *ETV2*
716 expression level of 0.25. **(D)** Average expression of *CDH5* and *ETV2* in the EC cluster across pseudotime.
717 Binning and averaging were performed as for (B) and (C). The p-value for the correlation between
718 *CDH5* and *ETV2* expression is based on the null hypothesis that the correlation is zero. **(E)** Expression
719 of endothelial markers across pseudotime during the development path of ECs. **(F)** Expression of
720 cardiac markers across pseudotime during the development path of CMs.
721

722 **Figure S2 Generation and characterization of ETV2^{mCherry} hiPSC reporter line**

723 **(A)** Schematic of CRISPR/Cas9-Mediated Knock-in of mCherry into the *ETV2* locus of hiPSCs. mCherry
724 and Neomycin Resistance (NeoR) sequences were inserted into the *ETV2* locus through homologous
725 recombination. Then NeoR cassette was removed by flpo recombinase. 4 pairs of primers were used
726 for PCR screening of targeted clones. **(B-C)** PCR screening of targeted clones with correct insertion at
727 the *ETV2* locus. Two pairs of primers (for product 1 and 2) were used to confirm the integration of the
728 construct. Clone 1, 2, 3 were correctly targeted and clone 4 was not targeted. Non-targeted hiPSCs (-)
729 were included as negative control. **(D)** The excision of the neomycin-resistance cassette was confirmed
730 by PCR (product 3 and 4 are present before and after excision, respectively). Clones 1 and 2 were
731 successfully excised. Genomic DNA before excision (+) and non-targeted hiPSCs (-) were included as
732 positive and negative control, respectively. **(E)** Summary of CRISPR targeting efficiency. Of 35 colonies
733 screened, 1 colony was targeted in both alleles. 8 colonies were targeted in only one allele but the
734 other allele showed unwanted mutations. **(F)** Flow cytometry analysis of pluripotency markers in
735 targeted ETV2^{mCherry} hiPSC clone. **(H)** A representative karyogram (G-banding) of targeted ETV2^{mCherry}
736 hiPSC clone.
737

738 **Figure S3. Characterization of an ETV2^{mCherry} hiPSC reporter line**

739 **(A)** Immuno-staining of ETV2, mCherry expression and phase contrast were imaged on the Incucyte
740 system on different days of differentiation. Scale bar 400 μ m. **(B)** Unstained control for the FACS
741 analysis shown in Figure 2F.
742

743 **Figure S4. ETV2 expression in DP and SP cells during EC and CM co-differentiation**

744 **(A-B)** Normalized expression value (RPKM) of *ETV2* in DP **(A)** and SP **(B)** cells sorted on day 4, 5, 6 and
745 8. Error bars are \pm SD of four independent experiments. Uncorrected Fisher's LSD test. ns = non-
746 significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
747

748 **Figure S5. Bulk RNA-seq analysis of EC and CM differentiation**

749 **(A-B)** Consensus clustering of the 3000 most variant genes across all DP samples (A) and all SP samples
750 (B). All genes were divided into 3 clusters D1-D3 for DP (A) and S1-S3 for SP (B). Consensus value
751 indicates similarity between two genes. **(C-H)** Representative GO terms enriched in cluster D1 (C), D2
752 (D), D3 (E), S1 (F), S2 (G) and S3 (H). Representative genes mapped to these GO terms and their
753 expression levels from day 4 to day 8 are shown. **(I-J)** Low-dimensional representation of the scRNA-
754 seq data. Each data point is a single cell. Mean expression of genes in cluster D1 (I) and S1 (J) in the
755 scRNA-seq data is indicated by color. Gene expression was scaled gene-wise prior to averaging.
756
757

758 **Figure S6. Experimental control for flow cytometry analysis and immuno-staining**

759 **(A-B)** Isotype control for the FACS analysis shown in Figure 4C **(A)** and Figure I-J **(B)**. **(C)** Immuno-
760 staining of CD144, CD31 and cell-cell junctional marker ZO-1 on day 10 for sorted ETV2- cells. Scale
761 bar 200 μ m. **(E-F)** Immuno-staining of CD31, α -Actinin, cTnT, SM22 and DAPI on day 18 of DP, SP and
762 DN cells. Scale bar 50 μ m.
763

764 **SUPPLEMENTARY INFORMATION**

765

766 **Online supplementary files:**

767

768 Supplemental figures S1-S6 (uploaded as individual files)

769

770 Supplemental tables S1-S6 (uploaded as individual files):

771 Table S1. List of antibodies

772 Table S2. Sequence of primers used for qPCR

773 Table S3 Markers for each scRNA-seq cluster

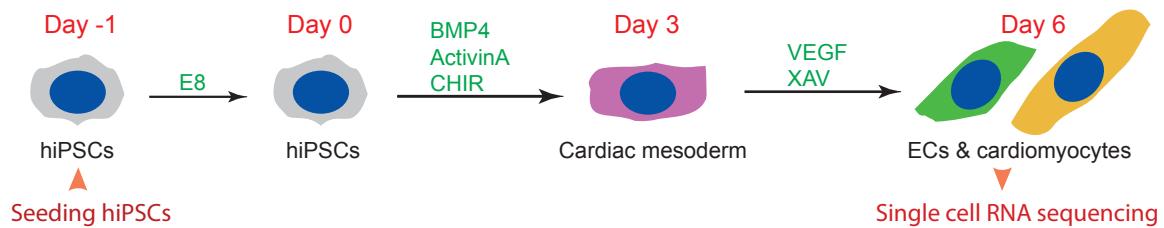
774 Table S4 List of GO terms for ETV2 expressing cells in EC and CM clusters

775 Table S5 Gene list in all clusters of SP and DP samples

776 Table S6 List of GO terms for DP and SP clusters

777

778 Supplemental online Video 1 and 2 (uploaded as individual files):


779 Video 1 Time lapse of differentiation from day 3.5 to day 8.5. 20 min per frame

780 Video 2 SP and DN cells on day 18 of differentiation

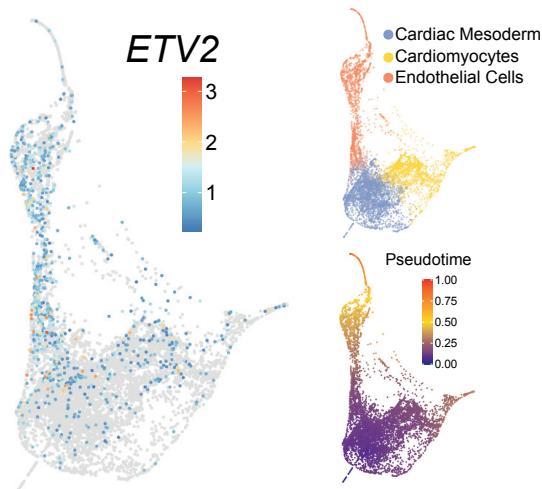
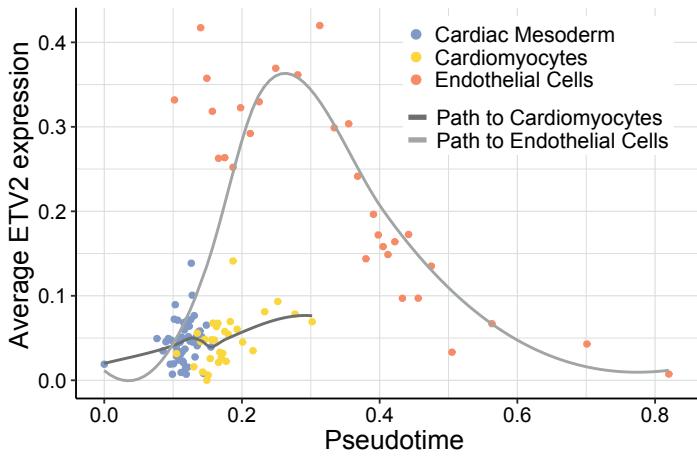
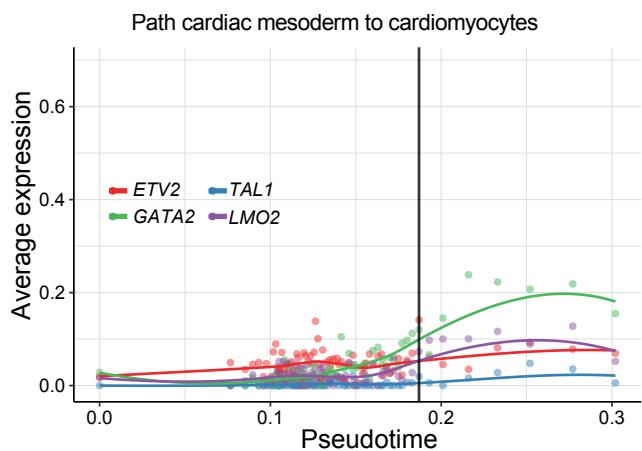
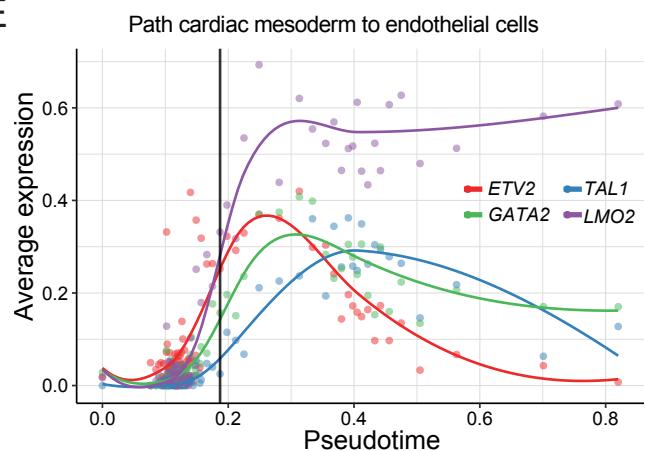
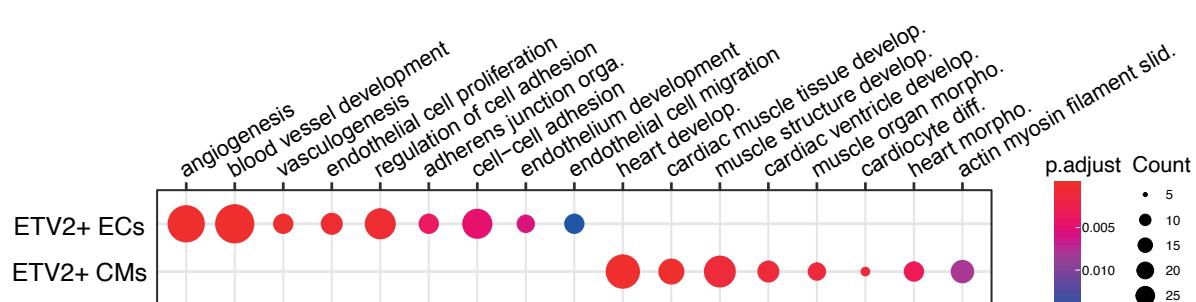

781

Figure 1.

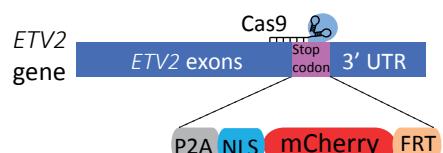

A


B


C


D

E



F

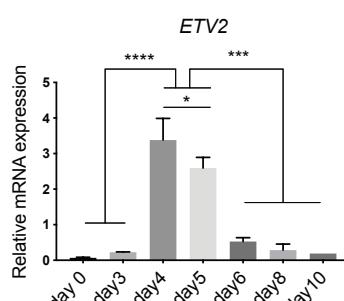
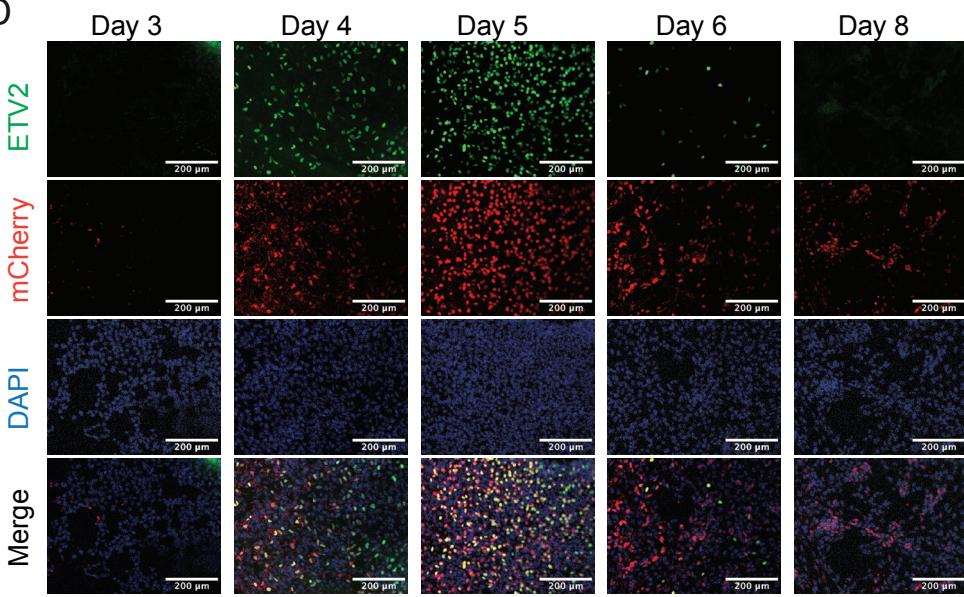
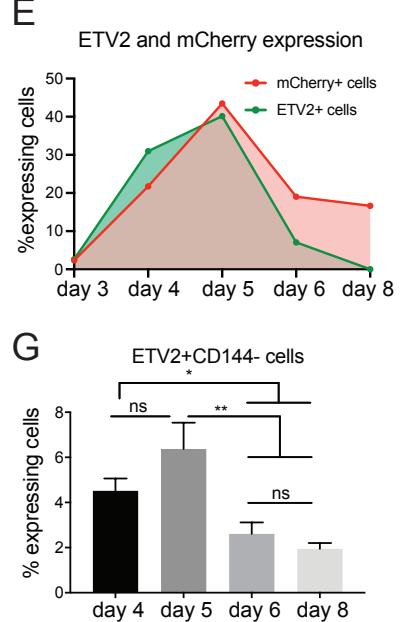
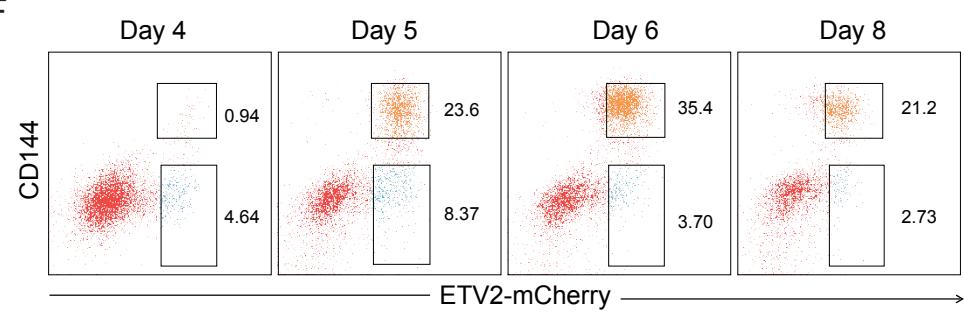


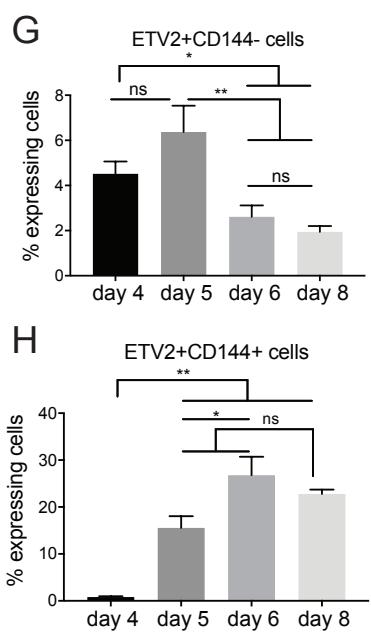
Figure 2.

A


B


C


D


E

F

G

H

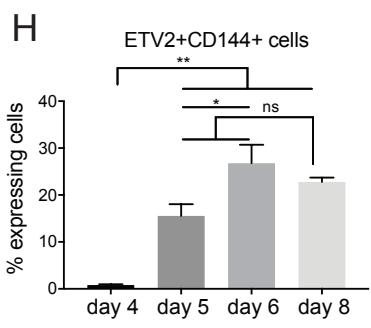
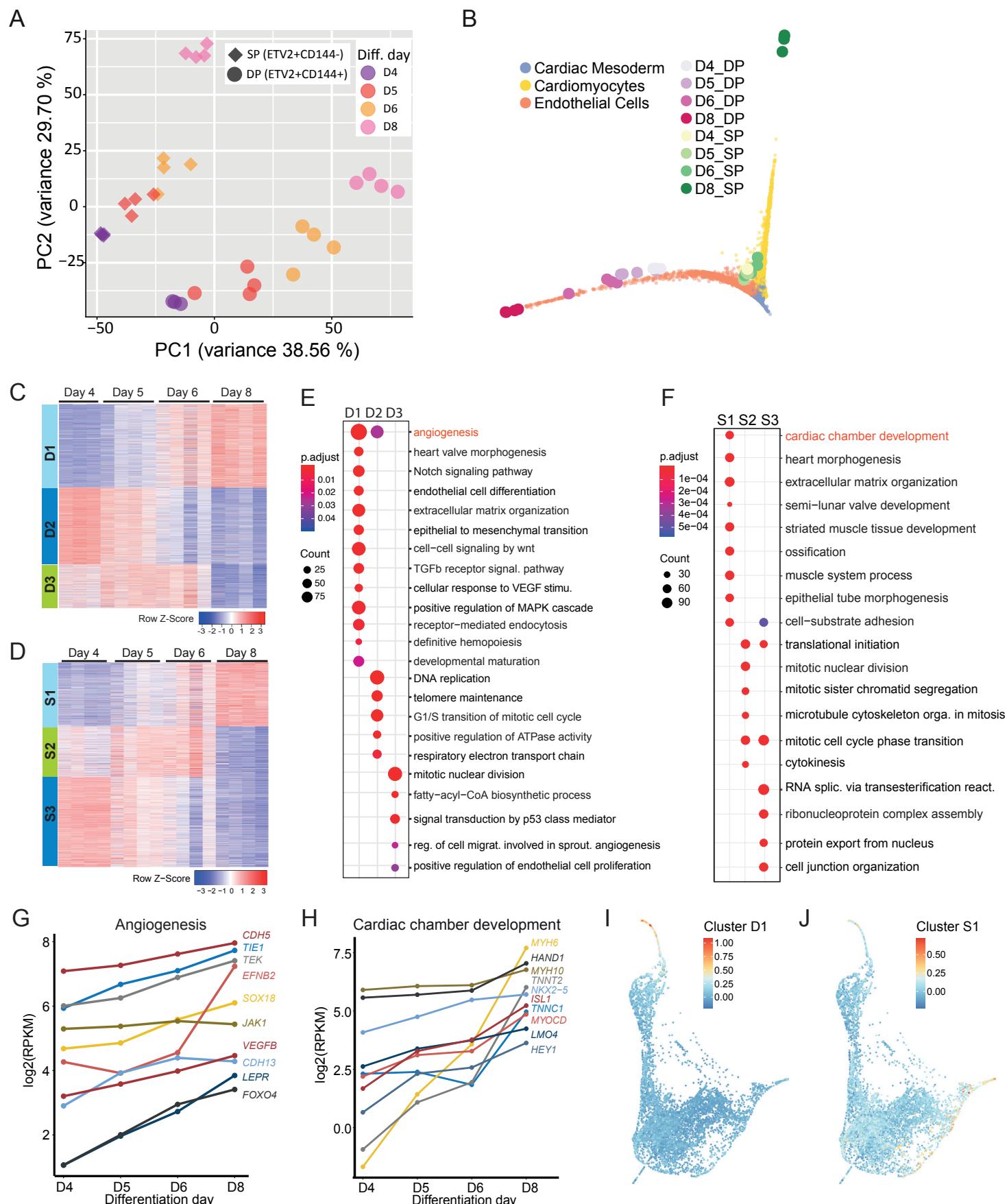
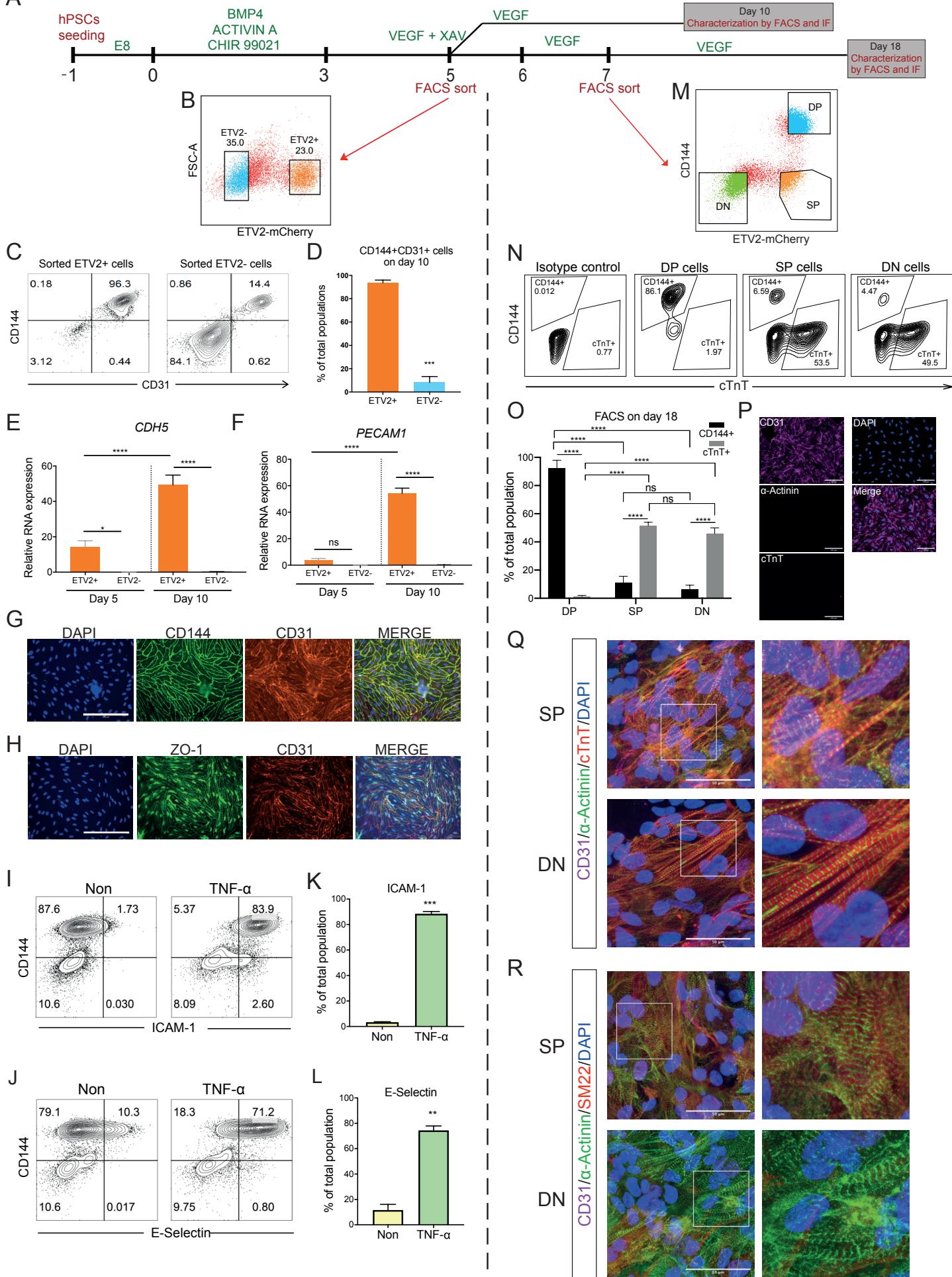
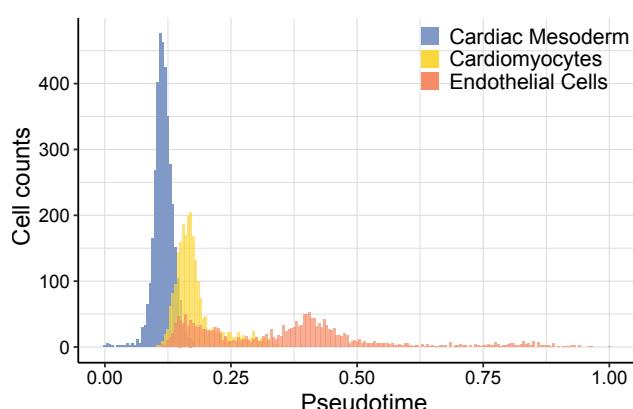


Figure 3.


Figure 4.

A

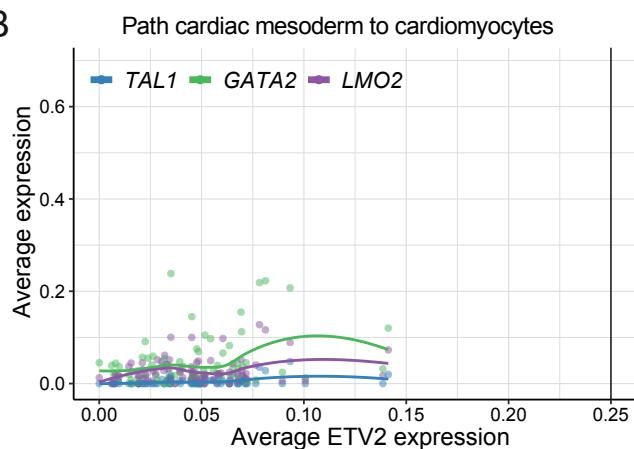
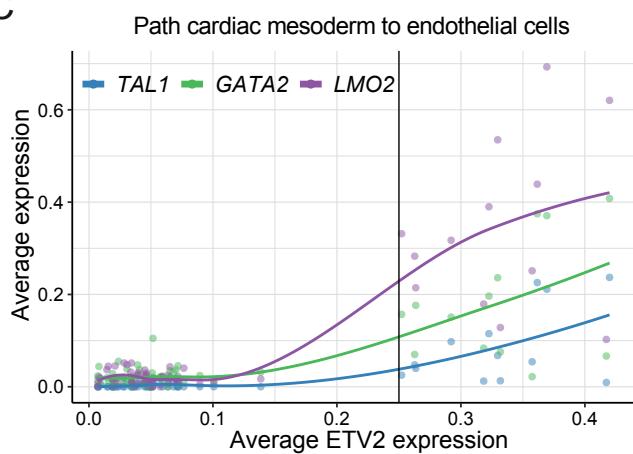
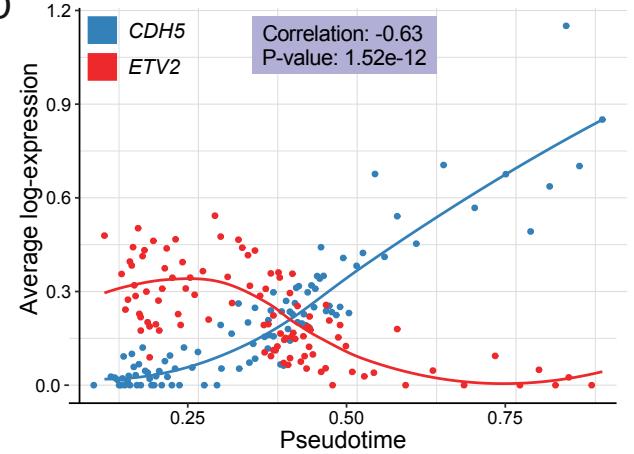
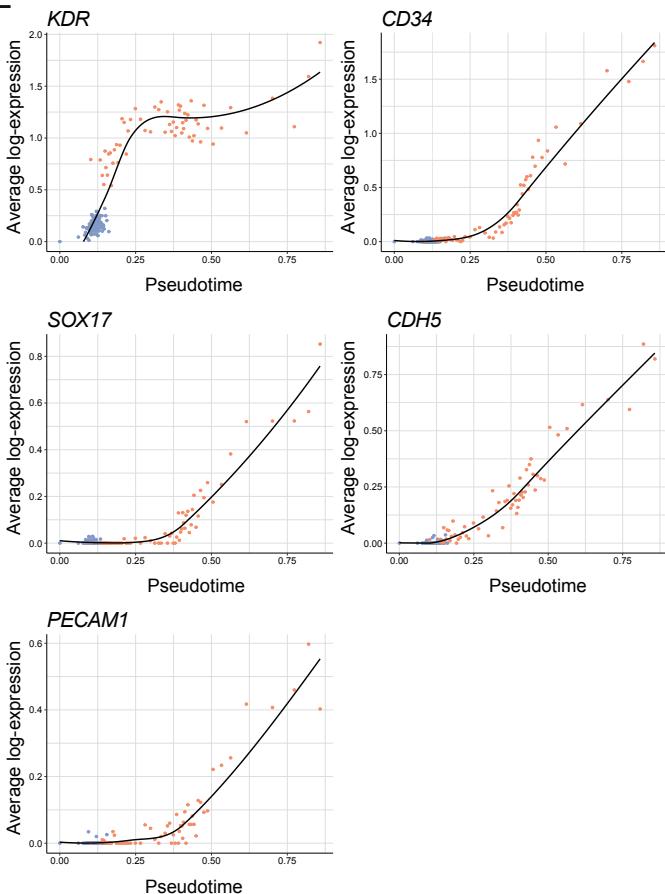
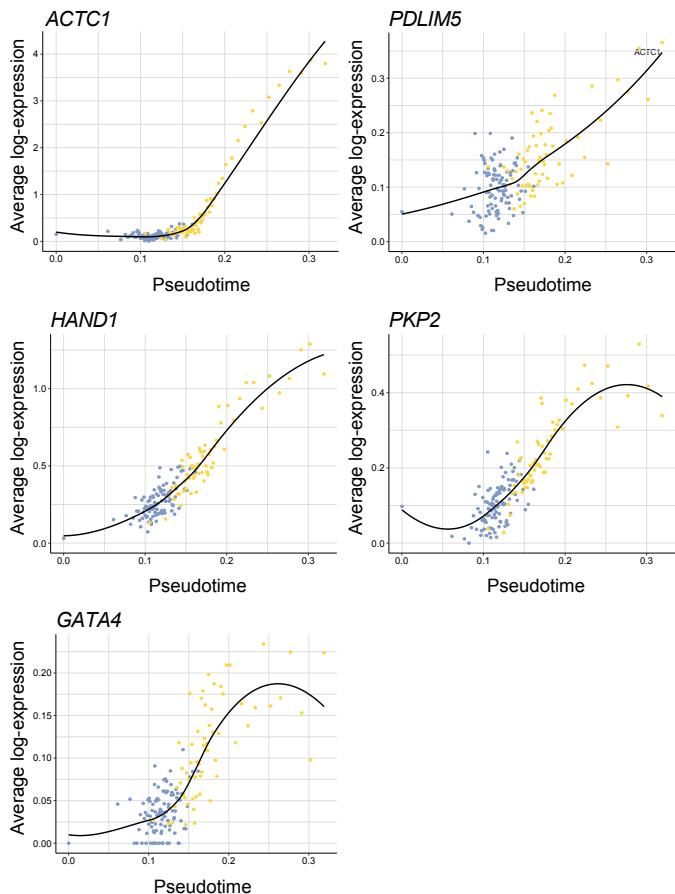


Figure S1.

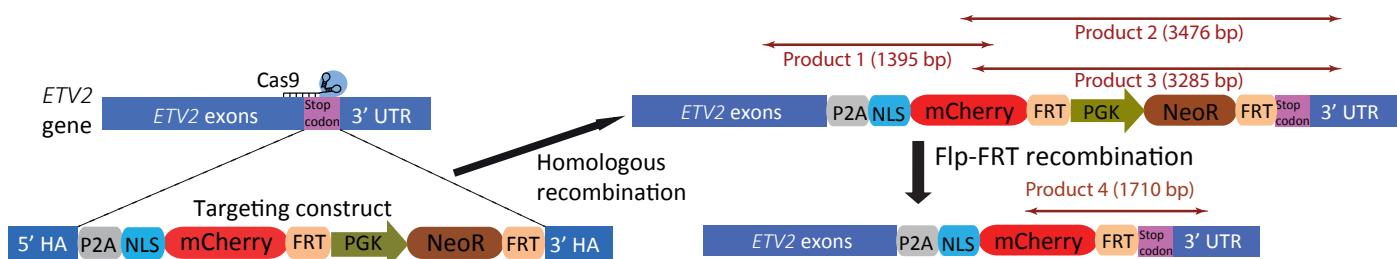

A


B


C


D

E



F

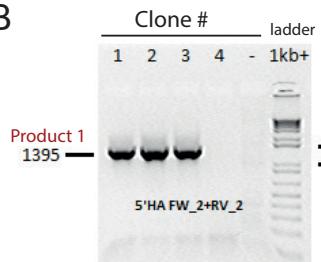
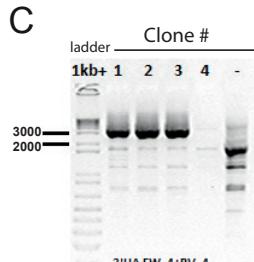
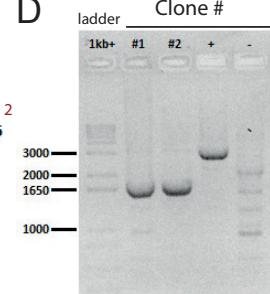
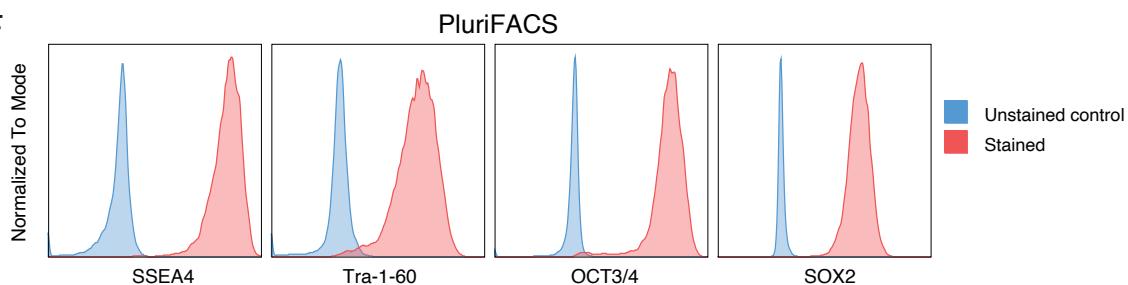


Figure S2.


A


B

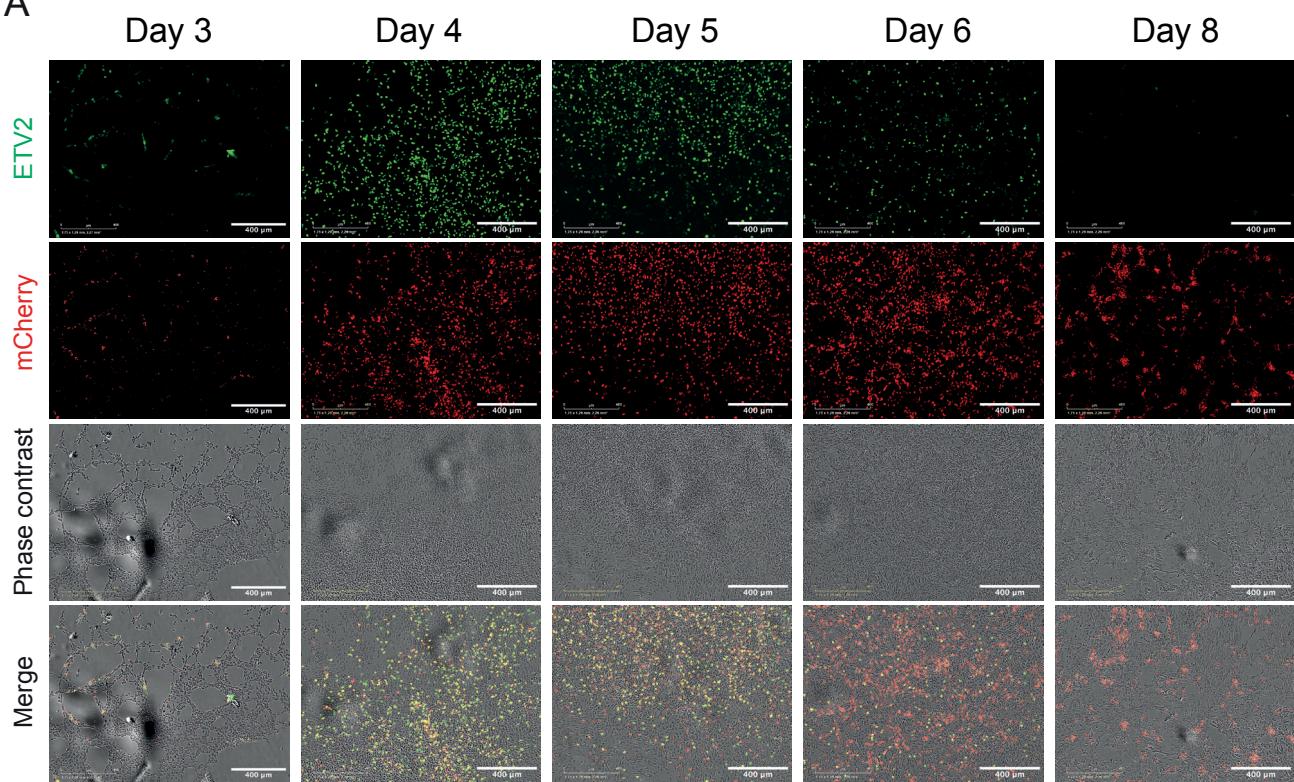
C


D

E

Total colonies screened	35
Targeted colonies	9 (26%)
Both alleles targeted	1 (3%)
Single allele targeted	8 (23%)
Single allele targeted, WT allele intact	0 (0%)

F



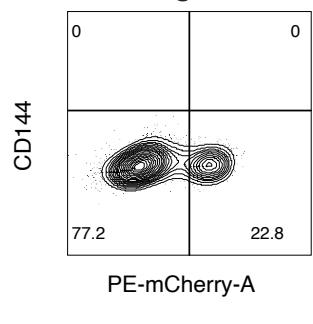
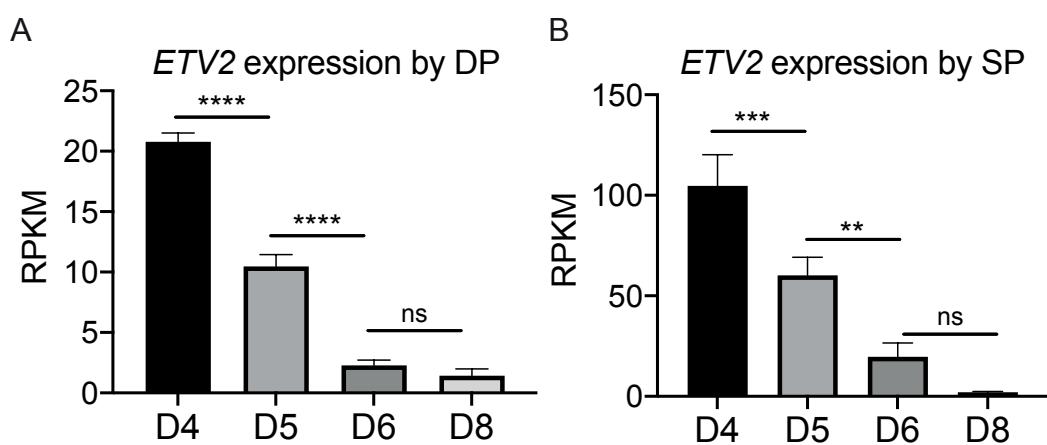
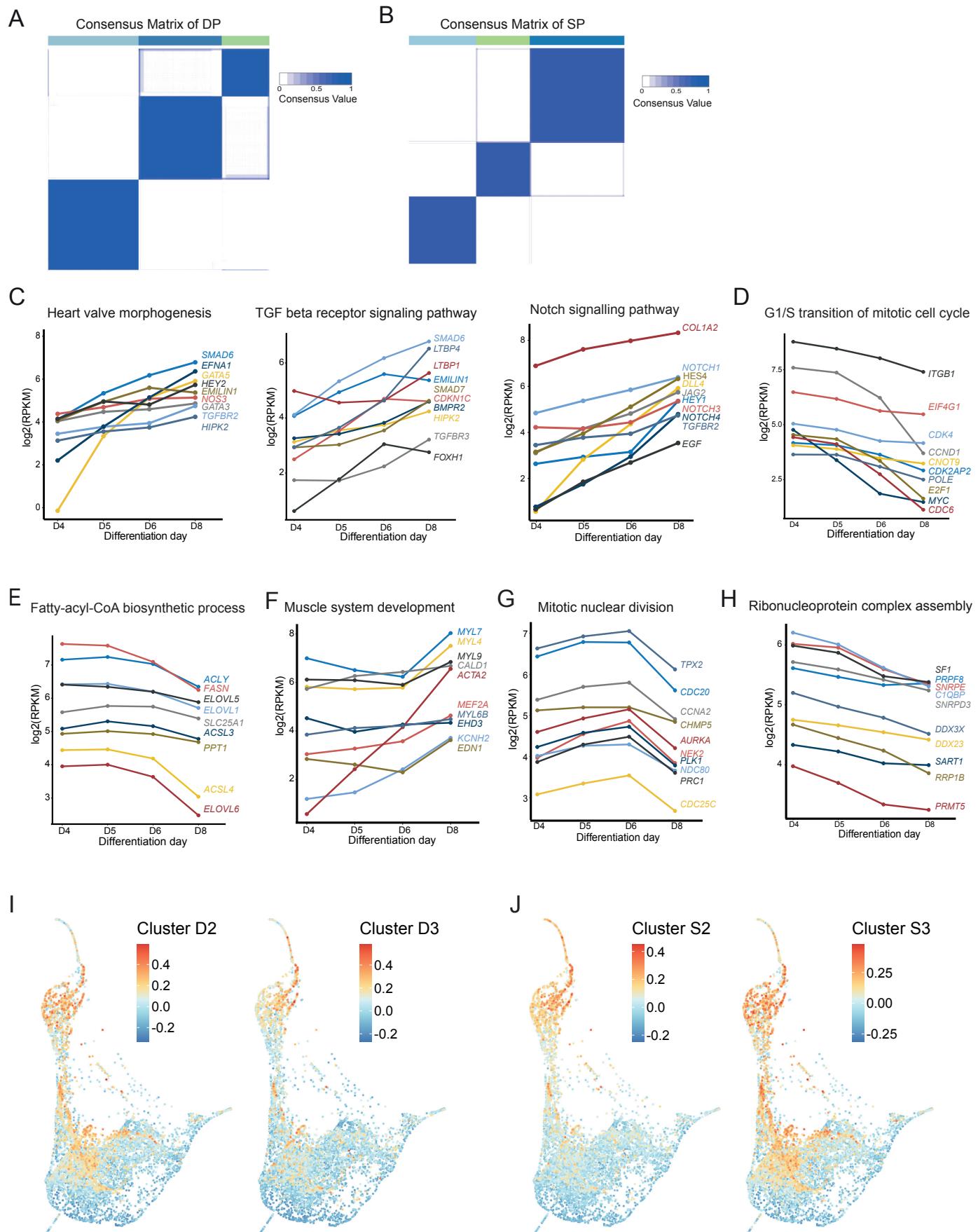
H

Figure S3.

A

B

Unstained control
(For Figure 2F)

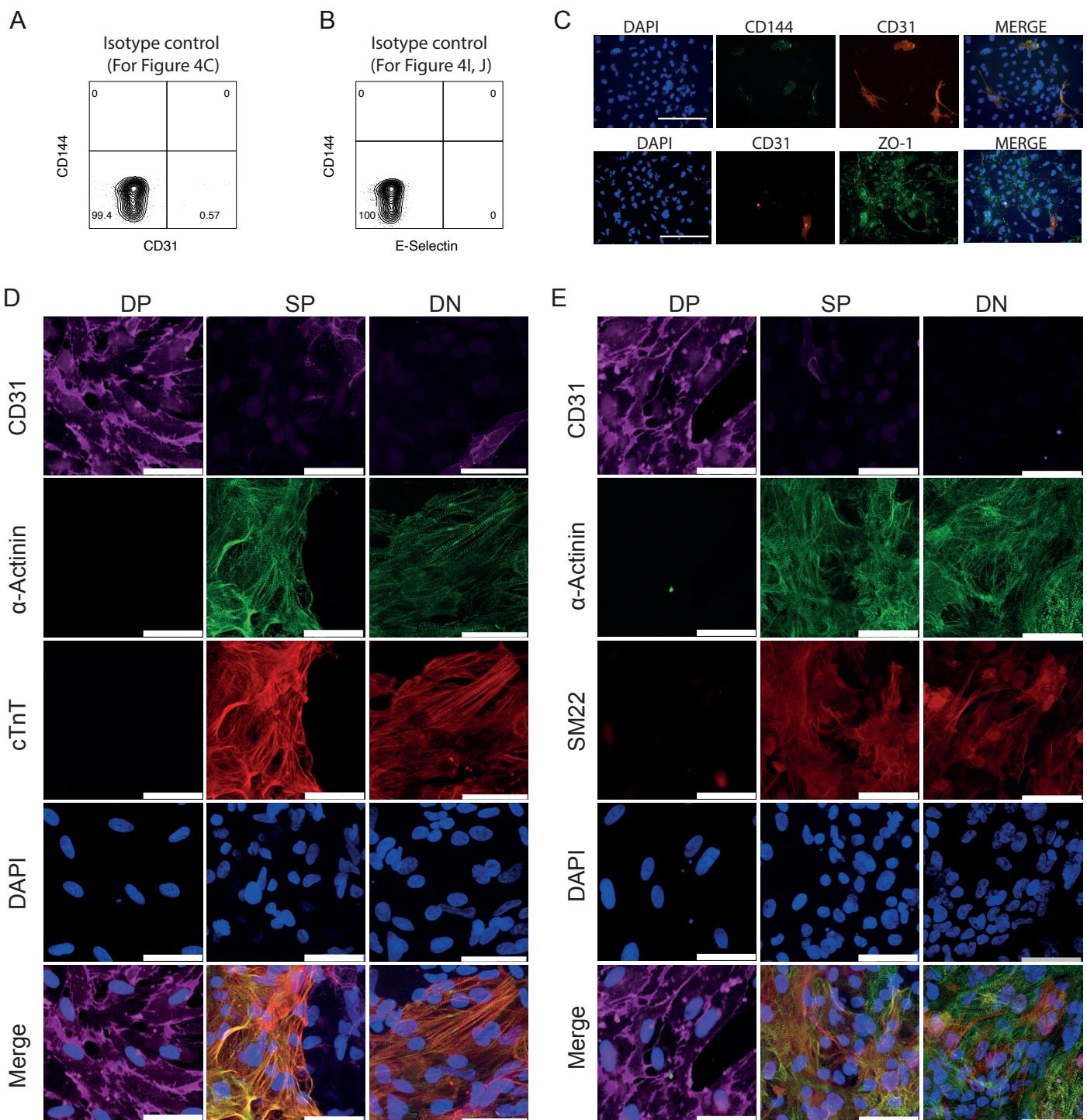

Figure S4.

Figure S5.

Figure S6.

