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Abstract 34 

Although sleep and anesthesia are predicted to share common neural signatures of transitions 35 
into and out of unconsciousness, supportive evidence has been elusive. We identified these 36 
signatures using intracranial electroencephalography in neurosurgical patients. We applied 37 
diffusion map embedding to map cortical location into a space where proximity indicates 38 
functional similarity using a normalized connectivity (‘diffusion’) matrix, itself a rich source of 39 
information about network properties. During reduced consciousness, diffusion matrices 40 
exhibited decreased effective dimensionality, reflecting reduced network entropy. 41 
Furthermore, functional brain regions exhibited tighter clustering in embedding space with 42 
greater distances between regions, corresponding to decreased differentiation and functional 43 
integration. These changes were not region-specific, suggesting global network reorganization. 44 
These results strongly suggest common neural substrates for loss and recovery of 45 
consciousness during anesthesia and sleep, providing a systems-level mechanistic 46 
understanding within an intuitive geometric context and laying the foundation for evaluation of 47 
cortical state transitions in clinical settings. 48 
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Introduction 50 

Leading theories of brain function predict that loss and recovery of consciousness (LOC, ROC) 51 
are precipitated by large-scale reorganization of cortical networks. This reorganization might 52 
result in altered functional integration and differentiation in the brain1, communication into or 53 
out of prefrontal cortex and amplification of sensory signals2, or feedback connectivity3 with 54 
concomitant effects on predictive processing4.  55 

It is postulated that changes in the brain underlying LOC and ROC should overlap regardless of 56 
the circumstances of their occurrence5,6, and thus comparison of changes in the brain in 57 
multiple contexts can be informative7. For example, general anesthesia and natural sleep 58 
exhibit common behavioral and physiological features, including both dreaming (i.e., conscious 59 
experience while disconnected from the environment) and unconsciousness8-10 and decreased 60 
cerebral blood flow and metabolic rate11-13. Recently, we observed similar changes in cortical 61 
functional connectivity during anesthesia and sleep. Stages of higher probability of 62 
consciousness, including wake, propofol sedation, and N1 and REM sleep, exhibited 63 
connectivity profiles that were similar to each other but distinct from stages of reduced 64 
probability of consciousness, including propofol unresponsiveness and N2 and N3 sleep7. These 65 
findings were consistent with a network transition boundary for consciousness common to 66 
anesthesia and natural sleep, which we linked to the ongoing debate about the locus of the 67 
neural correlates of consciousness14,15. However, the degree to which the brain traverses an 68 
overlapping complement of network states during anesthesia versus sleep remains 69 
controversial16,17.  70 

Questions remain as well about the specific features of network reorganization associated with 71 
transitions into and out of consciousness. For example, although altered network connectivity is 72 
observed consistently during both anesthesia and sleep, some studies report that connectivity 73 
is decreased18-24 and others that it is increased25-27. Furthermore, selective effects of anesthesia 74 
have been reported on both feedback19,28 and feedforward29 connectivity. Decreased thalamo-75 
cortical connectivity has been reported for both anesthesia and sleep30,31, but at least for 76 
anesthesia this change is unlikely to be causal for LOC11 . Distinct effects of anesthesia and sleep 77 
also have been reported in analyses of resting state networks (RSNs). Increased modularity of 78 
RSNs during NREM sleep was reported to be accompanied by greater connectivity overall27, 79 
suggesting differential effects on within- versus between-network connectivity. By contrast, 80 
during propofol anesthesia both between- and within-network connectivity was observed to 81 
decrease32,33.  82 

The organizational features of the conscious brain can be couched in terms of the balance 83 
between integration and differentiation, i.e., between the unified nature of conscious 84 
experience and its vast potential for variation. Investigations that operationalize changes in 85 
integration and differentiation during anesthesia and sleep have produced consistent results. 86 
Decreased differentiation of brain activity has been reported, indexed by reduced complexity of 87 
both evoked brain responses34-37 and of spontaneous brain signals38,39. Brain functional 88 
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integration decreases during both anesthesia40 and NREM sleep27; surprisingly, however, 89 
overall connectivity decreased in the former study and increased in the latter. 90 

In a small number of studies, data recorded during anesthesia and sleep has been compared 91 
directly17,25,41, but no clear and consistent mechanism for loss of consciousness emerges from 92 
these analyses. We seek a unifying framework for understanding network reorganization during 93 
the different stages of anesthesia and sleep and relating these changes to theoretical 94 
constructs. Here, we explore the functional geometry of cortical networks using diffusion map 95 
embedding (DME)42 and show that changes in connectivity across stages of sleep and 96 
anesthesia reflect changes in the organization of cortical networks that may contribute to loss 97 
of consciousness. As in our previous work, we distinguished stages corresponding to 98 
substantially reduced probability of consciousness (propofol unresponsiveness, NREM sleep), 99 
from the wake state and from stages of higher probability of conscious experience (propofol 100 
sedation, light sleep, REM sleep). We show that entry into states of reduced consciousness 101 
during both anesthesia and sleep can be indexed reliably by a single parameter, the effective 102 
dimensionality of the normalized connectivity matrix. We present an analytical framework that 103 
provides an intuitive, geometric understanding of changes in cortical networks associated with 104 
states of reduced consciousness and observed reductions in effective dimensionality. Globally, 105 
brain regions become more distinct (reduced functional integration), moving farther apart in 106 
functional embedding space. Locally, brain subregions become less distinguishable (reduced 107 
differentiation), moving closer to each other in the functional embedding space. This unifying 108 
framework has a practical utility in identifying cortical state transitions in clinical settings and 109 
broader implications for understanding the neural basis of consciousness. 110 

  111 
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Results 112 

Summary of experiments and recordings.  113 

Resting state iEEG recordings were obtained in neurosurgical patients undergoing intracranial 114 
monitoring for the purpose of identifying seizure foci. Demographic information and electrode 115 
coverage are summarized in Supplementary Tables 1 and 2. Typical electrode coverage is 116 
shown for one participant in Figure 1a, and a summary of the brain parcellation scheme and of 117 
electrode coverage across all participants are shown in Supplementary Figure 1. Each recording 118 
site was assigned to a region of interest (ROI), color-coded according to a functional 119 
parcellation scheme illustrated in Supplementary Figure 1a. This scheme was derived from ana 120 
analysis of daytime resting state iEEG data from a complementary dataset obtained during 121 
daytime wake43. To investigate changes in cortical network organization during transitions in 122 
arousal and awareness, data were recorded during induction of propofol anesthesia just prior 123 
to removal of electrodes (N = 14 participants; Supplementary Figure 2), and during overnight 124 
sleep (N = 15 participants; Supplementary Figure 3). As in our previous work, we identified 125 
stages of anesthesia (WA: pre-drug wake; S: sedated but responsive; U: unresponsive) using a 126 
standard clinical assessment tool (Observer’s Assessment of Arousal Score; OAA/S7,44). Sleep 127 
stages were identified using standard polysomnography (WS: wake; N1: light sleep; N2 and N3: 128 
NREM; R: REM). 129 

 130 

Changes in cortical network organization during anesthesia and sleep 131 

Functional connectivity was calculated as orthogonalized gamma band power envelope 132 
correlations43,45, yielding for each one-minute data segment an electrode × electrode 133 
connectivity matrix. The first steps of DME analysis are to create a similarity matrix by applying 134 
cosine similarity to the functional connectivity matrix, then normalize, threshold, and make 135 
symmetric the similarity matrix to yield a diffusion matrix Psymm. Psymm describes the diffusion of 136 
an input signal applied to nodes (i.e., recording sites) on the graph42. When Psymm is sorted by 137 
brain region (indicated by colored bars in Figure 1b), increasing community structure in the 138 
graph becomes evident in states of reduced consciousness under propofol anesthesia 139 
(sedated/S, unresponsive/U). The degree of community structure can be quantified by 140 
examining the eigenvalue spectrum of Psymm (Figure 1c). Random graphs, i.e., those with 141 
maximal entropy, have spectra that are approximately flat. Graphs with strong community 142 
structure have spectra that are more peaked. The underlying entropy of the graph, and hence 143 
the shape of the spectrum, can be quantified using the effective dimensionality 𝐷𝐷E ∈ (0,1), a 144 
function of the eigenvalue spectrum and a graph theoretic measure of complexity (see 145 
Methods). Importantly, the eigenvalue spectrum and calculation of DE do not require nodes to 146 
be ordered or classified. Like anesthesia, NREM sleep was associated with a more structured 147 
Psymm and more peaked spectrum (Figure 1d,e).  148 

 149 
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 150 

Figure 1. Network organization varies during anesthesia and sleep. a: Typical electrode coverage in one 151 
participant (L372). Recording sites are color-coded according to the ROI group. White symbols denote 152 
sites excluded from the analysis due to excessive noise, artifacts, location within seizure focus, in white 153 
matter, or outside the brain. Black symbols denote depth electrode insertion points. b: Diffusion 154 
matrices Psymm during propofol anesthesia for the participant in a. Each matrix is from one minute of 155 
data. C. Spectra of Psymm calculated from the example matrices in b. For these examples, DE(WA) = 0.30, 156 
DE(S) = 0.20, DE(U) = 0.10. d: Diffusion matrices Psymm during sleep for the participant in a. Each matrix is 157 
from one minute of data. e: Spectra of Psymm calculated from the matrices in d. For these examples, 158 
DE(WS) = 0.31, DE(N1) = 0.30, DE(N2) = 0.14, DE(REM) = 0.32. For panels b-e, data recorded during 159 
anesthesia and sleep experiments were divided into segments of length 60 s, and the diffusion matrix 160 
and spectrum computed for each segment. Matrices and spectra shown are from the segments with 161 
effective dimensionality closest to the median value for each stage of anesthesia and sleep in this 162 
participant. 163 
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The time series of DE computed for each 60-second data segment recorded during an 165 
experiment reveals striking changes in network structure over time during both anesthesia and 166 
sleep experiments, with transitions into S and U during anesthesia and into N2 during sleep 167 
accompanied by sharp decreases in DE (Figure 2). Notably, DE was consistently high during 168 
stages associated with higher probability of consciousness (WA, S, WS, N1, REM). Two 169 
additional examples from participants recorded during both propofol anesthesia and during 170 
sleep are shown in Supplementary Figure 4. 171 

Data were summarized across participants by first averaging DE within participant across all 172 
segments associated with each stage of anesthesia and sleep. DE varied significantly by state for 173 
both propofol anesthesia and sleep (likelihood ratio test for omitting state: propofol χ2(2) = 174 
42.0, p < 0.0001; sleep χ2(4) = 79.3, p < 0.0001) (Figure 3). For propofol anesthesia, mean DE 175 
decreased progressively from WA to S to U (Supplementary Table 4). During sleep, DE for N1 176 
and R were not significantly different from WS, but DE decreased in N2 and decreased further in 177 
N3 (Supplementary Table 4). These results were robust to the choice of threshold in calculating 178 
Psymm (Supplementary Figure 5). 179 
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 181 

 182 

Figure 2. Time series of DE from an example participant. Changes during anesthesia and sleep are 183 
shown in left and right panel, respectively. Each data point represents one minute of data. Time is 184 
depicted relative to the start of recording. Same participant(L372) as in Figure 1. 185 

 186 

 187 

Figure 3. Summary of changes in DE in states of reduced consciousness. Changes during propofol 188 
anesthesia and sleep are shown in left and right panel, respectively. Symbols are mean within a 189 
participant, connected by lines for data points from the same participant. Dashed lines are used to 190 
connect points when data in the intervening state (S; N3) is not available for that participant. P-values 191 
are from paired post-hoc comparisons, adjusted using multivariate t-distribution.  192 
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Changes in cortical network organization are not regionally specific 193 

It is plausible that observed changes in DE between network states could be dominated by 194 
changes in a subset of recording sites in specific brain regions. We performed sensitivity 195 
analyses by repeating the analysis of Figure 3 after excluding recording sites from groups of 196 
cortical functional regions (Supplementary Figure 6; groups of regions were: Auditory, Limbic, 197 
Visual + Ventral, Ventromedial Prefrontal + Lateral Prefrontal + Executive, and Dorsal + Action). 198 
The significant decrease in DE during states of reduced consciousness was observed in all cases, 199 
regardless of which regions were eliminated. These results indicate that the changes in network 200 
structure associated with transitions into states of reduced consciousness could not be 201 
explained by connectivity changes of any single brain region. Thus, anesthesia and sleep are 202 
associated with global reorganization of cortical networks. 203 

Geometric correlates to changes in effective dimensionality 204 

We’ve shown that DE indexes entry and exit from states of reduced consciousness based on 205 
only the spectrum (eigenvalues) of Psymm. The observed changes in DE indicate a reorganization 206 
of brain networks; however, because there is no unique mapping between a spectrum and a 207 
network, changes in spectrum do not identify the specific features of this reorganization. To 208 
gain insight into these features, we can apply the next steps in DME analysis and consider data 209 
in the embedding space defined by the spectral decomposition of Psymm.  210 

A simple toy model is useful in this regard (Figure 4). We simulated a modular network 211 
consisting of five regions, with nine nodes in each region. Two types of connectivity were 212 
present in the model:  1) uniform random connectivity linking nodes regardless of region, and 213 
2) stronger within-region connectivity imposed on this nonspecific random connectivity. The 214 
strength of within-region connectivity was varied from weak (Figure 4a, left column) to strong 215 
(Figure 4a, right column), corresponding to an increasingly modular organization of the 216 
network. This increase in modular organization was associated with more peaked eigenvalue 217 
spectra and decreased DE (insets in Figure 4a). DME conveys the functional geometry of these 218 
changes in community structure by mapping the data into a lower dimensional embedding 219 
space using the eigenfunctions and eigenvalues of Psymm (Figure 4b). Nodes that are connected 220 
similarly to the rest of the network are mapped to nearby locations in the embedding space, 221 
indicating their functional similarity. A more modular network organization results in more 222 
tightly clustered nodes within each region; the neural responses of this more modular network 223 
would exhibit reduced differentiation. This is easily illustrated by considering the extreme case 224 
(right), in which the nodes within each region are so tightly coupled as to render them nearly 225 
equivalent, essentially transforming the original 40-node network into a 5-node network with a 226 
vastly reduced repertoire of possible network states. In addition, regions become more distinct 227 
and more distant from each other as modularity increases, corresponding to a decrease in 228 
functional integration across the whole network. 229 

 230 
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  231 

Figure 4. Toy example showing effects of stronger community structure on embeddings. A: Diffusion 232 
matrix (Psymm) representation of weak, intermediate, and strong community structure (left, middle and 233 
right panel, respectively). Insets depict Psymm spectra. DE = 0.44, 0.35, 0.18, respectively. B: Embedding 234 
space representation of weak, intermediate, and strong community structure (left, middle and right 235 
panel, respectively). Mean centroid distance = 0.35, 0.42, 0.50, respectively. 236 
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We observed similar changes in embeddings of functional connectivity data derived from 238 
intracranial recordings (Figure 5). Data recorded during states of reduced consciousness during 239 
propofol anesthesia (e.g., U; Figure 5a) or sleep (e.g., N2 or N3; Figure 5b) were more ‘clumpy’ 240 
in embedding space and regional clusters of nodes moved farther apart from each other, 241 
suggesting an increase in modular organization.   242 

We quantified these effects both with and without a priori assignments of electrodes to labeled 243 
clusters. Using labels from the nine regions illustrated in Supplementary Figure 1c, we assessed 244 
changes in cluster organization within embeddings. We measured inter-cluster distances 245 
between cluster centroids and regional grouping of nodes using an index of cluster quality 246 
(Calinski-Harabasz index) calculated as the ratio of between-cluster and within-cluster 247 
dispersion. We also considered the position of nodes in embedding space relative to their 248 
neighboring nodes without a priori assignments to functional regions. The analysis is illustrated 249 
in Supplementary Figure 7. For each node, we calculated a normalized ‘local distance’ as the 250 
average pairwise distance to the 5th-percentile closest nodes normalized to the median distance 251 
to all nodes. Much like cluster quality this measure captures combined aspects of 252 
differentiation (distance among similar nodes) and integration (distance between dissimilar 253 
nodes), but without requiring label assignments. 254 

Systematic changes in all three measures were observed across stages of anesthesia (Figure 6a, 255 
example participant). In U, inter-cluster distances increased, cluster quality improved, and local 256 
distances decreased. These results were consistent across subjects (likelihood ratio test for 257 
omitting state: inter-cluster distance χ2(2) = 37.8, p < 0.0001; cluster quality χ2(2) = 22.8, p < 258 
0.0001; local distance χ2(2) = 47.9, p < 0.0001; see pairwise comparisons in Supplementary 259 
Table 3). Accordingly, effective dimensionality was negatively correlated with inter-cluster 260 
distance and cluster quality, and positively correlated with local distance (Figure 6b). Similar 261 
relationships with sleep stage were observed in an example participant (Figure 6c) and across 262 
participants (likelihood ratio test for omitting state: inter-cluster distance χ2(4) = 42.7, p < 263 
0.0001; cluster quality χ2(4) = 22.5, p = 0.00016; local distance χ2(4) = 81.6, p < 0.0001; see 264 
pairwise comparisons in Supplementary Table 3) and were correlated with effective 265 
dimensionality (Figure 6d). 266 

For both sleep and anesthesia, the strongest correlations were observed between local distance 267 
and effective dimensionality. Local distance captures the reorganization in embedding space, 268 
and effective dimensionality allows for tracking changes in anesthesia or sleep stage, both 269 
without relying on a priori assumptions about the data. 270 

 271 

 272 
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 273 

Figure 5. Changes in functional geometry during anesthesia and sleep in example participants. A: 274 
Arrangement of recorded data in embedding space (first three dimensions) during anesthesia in an 275 
example participant (R399). Each symbol represents an individual recording site. Colors indicate 276 
assignment to functional regions (legend). B: Similar to a, but for a second participant (L423) during 277 
sleep. 278 
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 280 

Figure 6. Changes in embedding geometry are correlated with effective dimensionality. During 281 
induction of anesthesia, inter-cluster distances, cluster quality, and local distance are state-dependent 282 
and therefore tend to correlate with effective dimensionality (a-b). a: Examples for a single participant 283 
(R399) where each point represents a 60-second segment of data. b: Pearson correlation coefficients 284 
across participants between DE and each embedding measure. Centroid distance and cluster quality are 285 
negatively correlated with DE and presented on a reversed axis. The strongest association with DE is with 286 
local distance. Similar associations are observed during sleep (c-d). c: Single participant example (L423). 287 
d: Pearson correlation coefficients between embedding measures and DE across participants.288 
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Discussion 289 

Summary of findings 290 

Identifying changes in the brain that underlie LOC and ROC is a fundamental and unresolved 291 
question in neuroscience. Previous work indicates that consciousness is a property specific to 292 
the organizational structure of brain networks1,46. In this context, LOC and ROC should involve 293 
changes in this organization that are not tied to specific precipitating factors, such as the 294 
concentration of an exogenous anesthetic agent or the activity patterns in specific subcortical 295 
sleep and arousal centers. Building on our previous work7, we distinguished responsiveness 296 
under anesthesia (S) from unresponsiveness (U) to control for drug effects not specific to LOC. 297 
Although S is likely a stage of fluctuating arousal, we expected that participants were conscious 298 
a greater percentage of time compared to the unresponsive state U. Similarly, we expect that 299 
participants spent the majority of time conscious but drowsy or having conscious experiences in 300 
the form of dreaming during N1 and REM; this contrasts with N2 and N3, which are 301 
characterized by lower probability of dreaming and higher probability of unconsciousness8. We 302 
present a novel analytical framework that links changes in the organization of cortical networks 303 
with changes in arousal and awareness during anesthesia and sleep. We quantified these 304 
changes using DE, the effective dimensionality of a matrix derived from the functional 305 
connectivity matrix. DE is robust to the choice of connectivity threshold used to construct the 306 
network graph, and is computationally efficient to calculate based on short data segments. DE is 307 
also attractive because it is easily understood geometrically through its link to DME analysis.  308 

 309 

Changes in functional geometry reflect changes in complexity, differentiation, and integration 310 

DE is related to spatial complexity, in that fewer dimensions are required to represent a less 311 
complicated network. Thus, the results presented here are consistent with the decreased 312 
spatial complexity and smaller repertoire of distinct network configurations reported during 313 
LOC47-51. As shown in Figure 4, changes in simulated network modularity are reflected by 314 
changes in DE: when nodes are more tightly connected within each sub-network relative to 315 
connections to other sub-networks, DE decreases (We note that there is not a strict relationship 316 
between DE and modularity, as it is theoretically possible to create a biologically unrealistic 317 
network with no modularity but low DE.) In embedding space, this increase in modularity is 318 
reflected in increased cluster quality and in the shift to more local connectivity (Figure 6). Thus, 319 
the observation that DE decreases during both anesthesia and sleep (Figure 3) links the results 320 
presented here with previous results derived from fMRI showing increased modularity during 321 
NREM sleep27. Reported decreases in within-network connectivity during anesthesia32,33 are 322 
harder to reconcile with increased modularity, though this could reflect differences in the 323 
spatial scale of the analyses. 324 

Proximity in embedding space corresponds to similarity in functional connectivity to the rest of 325 
the network; during states of reduced consciousness, recording sites become closer to their 326 
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nearest neighbors (less distinguishable) in embedding space, suggesting reduced differentiation 327 
of their activity patterns. Consistent with these results, perturbational complexity, a measure of 328 
differentiation and a well-validated measure of level of consciousness24, shows consistent 329 
decreases during anesthesia and sleep34-37. Similar results have been obtained using 330 
spatiotemporal complexity derived from resting state activity38,39,52.  331 

The results presented here also speak to functional integration across the network, previously 332 
reported to decrease during anesthesia40,53 (though interestingly not during NREM sleep27). This 333 
is mostly easily visualized in embedding space, where functional regions tend to move farther 334 
apart during states of reduced consciousness (Figure 6). Decreased functional integration and 335 
differentiation during sleep and anesthesia likely play a role in reducing network efficiency 336 
during anesthesia and in disorders of consciousness23,54,55. 337 

 338 

Dynamics of network transitions 339 

The dynamics of network transitions are becoming a rich vein of inquiry for understanding the 340 
neural basis of consciousness 33,56. Although these dynamics were not a focus of the current 341 
study, the framework presented here readily lends itself to their exploration. For example, 342 
simple clustering can distinguish integrated from segregated network states in resting state 343 
functional connectivity derived from fMRI data and enable exploration of the dynamics of state 344 
transitions during resting state and cognitive tasks57,58. These dynamics are altered under 345 
anesthesia, with a shift towards greater time spent in the segregated state and decreases in 346 
network complexity and information capacity53,59. 347 

Although we have divided stages of anesthesia and sleep into two categories, one of reduced 348 
consciousness and the other of relatively intact consciousness, this is clearly an 349 
oversimplification. These stages of anesthesia (S, U) and sleep are undoubtedly superpositions 350 
of the more generally relevant states of unconsciousness, disconnected consciousness (i.e., 351 
dreaming), and connected consciousness. Stages of reduced consciousness (U, N2, N3) are 352 
likely dominated by segments of unconsciousness, but also include periods of disconnected 353 
consciousness8,9. Similarly, S and N1 are likely mixtures of connected consciousness, 354 
disconnected consciousness, and unconsciousness. This continuum is reflected in the smoothly 355 
varying changes across stage in DE and other metrics presented here.  356 

 357 

Theories of consciousness 358 

Central to the ongoing debate about the neural correlates of consciousness are their loci in the 359 
brain14,15. Global Neuronal Workspace Theory46 places prefrontal cortex and its connections 360 
with parietal regions central to these correlates, whereas Integrated Information Theory (IIT;1 361 
sites these correlates in the ‘back’ of the brain, a region spanning temporal, occipital, and 362 
parietal cortex. Although clinical considerations precluded an exhaustive and invariant sampling 363 
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of brain regions in our cohort of participants, our results indicate that transitions into and out of 364 
states of reduced consciousness involve a global network reorganization rather than relying on 365 
specific regions (Supplementary Figure 6). However, observation of global network changes 366 
during anesthesia and sleep does not exclude the possibility that local changes in key regions 367 
(i.e., prefrontal or parietal cortex) are sufficient to cause loss of consciousness. Additionally, 368 
even global cortical changes are likely coordinated by small brain areas with broad reach, such 369 
as central lateral thalamus60. 370 

Previous work investigating mechanisms of anesthesia focused on disruptions in connectivity, 371 
especially feedback cortico-cortical connectivity. Studies in both human subjects and animal 372 
models showed reduced feedback connectivity at doses of anesthetics causing loss of 373 
consciousness18,19,28,61. These data are consistent with the Global Neuronal Workspace Theory, 374 
in which feedback from prefrontal cortex to wide areas of the brain is critical for conscious 375 
experience. They also support a model based on predictive processing in which consciousness 376 
relies on active comparisons between internally-generated expectations and observed sensory 377 
information62,63. However, several findings are not easily reconciled with these models, 378 
including reports of increases in connectivity25-27 and the reported suppression of feedforward 379 
connectivity29.  380 

By focusing on network reorganization during states of reduced consciousness, we shift the 381 
focus beyond pathway-specific changes during LOC and ROC, and explore how local and global 382 
changes in connectivity combine to disrupt both differentiation and integration in the 383 
unconscious brain. However, we note that functional integration is not the same as information 384 
integration central to IIT as the latter distinguishes causal from non-causal interactions. Indeed, 385 
it is not possible to ascertain information integration using purely observational data. However, 386 
theoretical work has shown that differentiation can be used to establish an upper bound on 387 
integrated information64. Thus, the results presented here, when viewed through the lens of 388 
differentiation, are consistent with a decrease in information integration during reduced states 389 
of consciousness. 390 

 391 

Caveats & limitations 392 

We focused here on a specific functional connectivity measure (orthogonalized power envelope 393 
correlations) and a specific frequency band (gamma). We focused on this band and this measure 394 
because our previous work demonstrated its utility for performing DME analysis43 . However, we 395 
also note that the results of that paper were robust to choice of frequency band, and expect 396 
that the results presented here would also not depend strongly on that choice. Gamma band 397 
connectivity is also strongly related to connectivity derived from fMRI65, allowing comparisons 398 
to the body of work relying on neuroimaging for exploring changes in network organization 399 
during anesthesia and sleep.  400 

Because participants in the current study had a neurological disorder, they may not be entirely 401 
representative of a healthy population. This caveat is inherent to all human intracranial 402 
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electrophysiology studies, as discussed previously (e.g., Banks et al., 2020, 2022). However, we 403 
note that results presented in this study were consistent across participants with different 404 
seizure foci, clinical histories, and drug regimens. In addition, it is possible that seizures, AED 405 
use, and the hospital environment may affect sleep and sensitivity to anesthesia. Broadly, 406 
seizures can disrupt sleep architecture66-68. However, participants were monitored for seizure 407 
activity during the sleep recording session, and in the one participant with overnight seizures 408 
(L403), data collected after seizures began were excluded. Similarly, although AEDs are reported 409 
to alter the structure of sleep69, participants had discontinued their AEDs before collection of  410 
overnight sleep data, reducing the effect of  AEDs on sleep data in this cohort. The quality and 411 
structure of sleep may also have been affected by the hospital environment, possibly 412 
contributing to the absence of N3 sleep in three participants. Because we had sufficient 413 
representation of all studied sleep stages in the cohort (see Supplementary Table 1), the effect 414 
of AEDs or the environment on the likelihood of entering a particular stage was not a confound. 415 
Similarly, while the use of AEDs could lead to a reduction of the dose of propofol required to 416 
achieve surgical level of general anesthesia70, the present study relied on behavioral assessment 417 
of arousal. Thus, the definition of stages of anesthesia was not affected by factors secondary to 418 
the participants’ history of epilepsy.  419 

 420 

Future directions 421 

The iEEG results presented here support a model in which altered differentiation and functional 422 
integration of cortical networks underlie changes in consciousness, and suggest that the 423 
analytical framework presented here could contribute to understanding the neural correlates of 424 
consciousness. Next steps should include recapitulation of these results using non-invasive 425 
methods during anesthesia and sleep, and in patients with disorders of consciousness. 426 
Extending this analysis to scalp electroencephalography in particular would enhance the 427 
translational relevance of these findings. Assessments in clinical settings often require 428 
monitoring of consciousness in real time. Accordingly, tracking of the dynamics of DE and of data 429 
in embedding space will enable identification of rapid changes in brain state underlying 430 
transitions between drowsiness, disconnected consciousness, and unconsciousness. Finally, 431 
extending DME analysis to apply to effective connectivity would enable more thorough 432 
investigation of causal structure theories of consciousness such as IIT.  433 
 434 
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Materials and Methods 435 

Participants 436 

The study was carried out in 21 neurosurgical patients (8 female; age 18-54 years old, median 437 
age 34 years old) diagnosed with medically refractory epilepsy. The patients were undergoing 438 
chronic invasive electrophysiological monitoring to identify seizure foci prior to resection 439 
surgery (Supplementary Table 1). Research protocols aligned with best practices recently 440 
aggregated in71 and were approved by the University of Iowa Institutional Review Board and 441 
the National Institutes of Health; written informed consent was obtained from all participants. 442 
Research participation did not interfere with acquisition of clinically necessary data, and 443 
participants could rescind consent for research without interrupting their clinical management. 444 
All participants underwent neuropsychological assessment prior to electrode implantation, and 445 
none had cognitive deficits that would impact the results of this study. The participants were 446 
tapered off their antiepileptic drugs during chronic monitoring when resting state data were 447 
collected.  448 

 449 

Experimental procedures 450 

Pre-implantation neuroimaging. All participants underwent whole-brain high-resolution T1-451 
weighted structural MRI scans before electrode implantation. The scanner was a 3T GE 452 
Discovery MR750W with a 32-channel head coil. The T1 scan (3D FSPGR BRAVO sequence) was 453 
obtained with the following parameters: FOV = 25.6 cm, flip angle = 12 deg., TR = 8.50 ms, TE = 454 
3.29 ms, inversion time = 450 ms, voxel size = 1.0 × 1.0 × 0.8 mm.  455 

iEEG recordings. iEEG recordings were obtained using either subdural and depth electrodes, or 456 
depth electrodes alone, based on clinical indications. Electrode arrays were manufactured by 457 
Ad-Tech Medical (Racine, WI). Subdural arrays, implanted in 14 participants out of 21, consisted 458 
of platinum-iridium discs (2.3 mm diameter, 5-10 mm inter-electrode distance), embedded in a 459 
silicon membrane. Stereotactically implanted depth arrays included between 4 and 12 460 
cylindrical contacts along the electrode shaft, with 5-10 mm inter-electrode distance. A 461 
subgaleal electrode, placed over the cranial vertex near midline, was used as a reference in all 462 
participants. All electrodes were placed solely on the basis of clinical requirements, as 463 
determined by the team of epileptologists and neurosurgeons72.  464 

Resting-state (RS) data were recorded during overnight sleep (N = 15 participants) and during 465 
induction of propofol anesthesia (N = 14 participants). In 8 participants, both sets of data were 466 
recorded, with sleep data collected first, followed several days later by anesthesia data.  467 

Sleep recordings. Resting state iEEG, EEG, and video data were collected in the dedicated, 468 
electrically shielded suite in The University of Iowa Clinical Research Unit while the participants 469 
lay in the hospital bed. Sleep data were collected 7.5 +/- 1.1 days [range 6 – 9] after iEEG 470 
electrode implantation surgery. Data were recorded using a Neuralynx Atlas System (Neuralynx 471 
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Inc., Bozeman, MT), amplified, filtered (0.1–500 Hz bandpass, 5 dB/octave rolloff), and digitized 472 
at a sampling rate of 2000 Hz. 473 

Stages of sleep were defined manually using facial EMG and scalp EEG data based on standard 474 
clinical criteria (Berry et al., 2017) independently by two individuals who participate in the 475 
inter-scorer reliability program of the American Academy of Sleep Medicine: a licensed 476 
polysomnography technologist, certified by the Board of Registered Polysomnography 477 
Technologists, and a physician certified in Sleep Medicine by the Accreditation Council for 478 
Graduate Medical Education. The final staging report was agreed upon by the two scorers after 479 
a collaborative review. Scalp and facial electrodes were placed by an accredited technician, and 480 
data were recorded by a clinical acquisition system (Nihon Kohden EEG-2100) in parallel with 481 
research data acquisition. Facial electrodes were placed following guidelines of the American 482 
Academy of Sleep Medicine (Berry et al., 2017) at the left and right mentalis for EMG, and 483 
adjacent to left and right outer canthi for EOG. EEG was obtained from electrodes placed 484 
following the international 10-20 system at A1, A2, F3, F4, O1, and O2 in all participants, with 485 
the following additional electrodes: C3 and C4 in all participants but R376; E1 and E2 in L372 486 
and R376; Cz and Fz in L409, L423, and L585; F7 in L585; F8 in L423 and L585. All participants 487 
had periods of N1 and N2 sleep identified; 12 out of 15 had N3 sleep periods and 12 out of 15 488 
had REM. One participant (L403) experienced multiple seizures in the second half of the night; 489 
those data were excluded from analysis. The durations of recordings for each sleep stage in 490 
each participant are provided in Supplementary Table 1. 491 

Anesthesia data. Resting state data were collected in the operating room during induction of 492 
propofol anesthesia just prior to electrode removal and seizure focus resection surgery. Data 493 
acquisition was controlled by a TDT RZ2 real-time processor (Tucker-Davis Technologies, 494 
Alachua, FL) in participants R369 through L460 and by a Neuralynx Atlas System in participants 495 
L514 and L585. Recorded data were amplified, filtered (0.7–800 Hz bandpass, 12 dB/octave 496 
rolloff for TDT-recorded data; 0.1–500 Hz bandpass, 5 dB/octave rolloff for Neuralynx-recorded 497 
data), and digitized at a sampling rate of 2034.5 Hz (TDT) or 2000 Hz (Neuralynx). Although no 498 
specific instructions were given about keeping eyes open or closed, participants were observed 499 
to have eyes closed during nearly all resting state recordings. Data were recorded in 3-4 blocks 500 
(duration 3-6 minutes each), interleaved with auditory stimulus paradigms related to other 501 
studies (e.g.,73,74). Data were collected during an awake baseline period and during infusion of 502 
increasing doses of propofol (50 – 150 µg/kg/min; Supplementary Figure 2).  503 

Awareness was assessed using the Observer's Assessment of Alertness/Sedation (OAA/S) scale 504 
(Chernik et al., 1990). Bispectral index (BIS) (Gan et al., 1997) was measured using BIS Complete 505 
4-Channel Monitor (Medtronic plc, Minneapolis, MN), but was not used in the analyses 506 
presented in this study. OAA/S was assessed just before and just after collection of each resting 507 
state data block. Data segments were assigned labels corresponding to one of three stages of 508 
the anesthesia experiment: wake (WA; i.e., pre-drug) and two levels of anesthesia: sedated but 509 
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responsive to command (S; OAA/S ≥ 3) and unresponsive (U; OAA/S ≤ 2) (Nourski et al., 2018a) 510 
(Supplementary Figure 2).  511 

In 6 of 14 participants, OAA/S values crossed the boundary between S and U over the course of 512 
the resting state block (e.g. resting state block #1 in participant L372; see Supplementary 513 
Figure 2). In these cases, only the first and last 60-second segments of the block were analyzed; 514 
data from the first segment were labeled S, and data from the second segment were labeled U. 515 
Data in the intervening segment were not assigned an anesthesia stage label and were not used 516 
in the analysis. The durations of recordings used in the analyses for each stage and each 517 
participant during the anesthesia experiment are provided in Supplementary Table 1. 518 

 519 

Data analysis 520 

Anatomical reconstruction and ROI parcellation. Localization of recording sites and their 521 
assignment to ROIs relied on post-implantation T1-weighted anatomical MRI and post-522 
implantation computed tomography (CT). All images were initially aligned with pre-operative T1 523 
scans using linear coregistration implemented in FSL (FLIRT)75. Electrodes were identified in the 524 
post-implantation MRI as magnetic susceptibility artifacts and in the CT as metallic 525 
hyperdensities. Electrode locations were further refined within the space of the pre-operative 526 
MRI using three-dimensional non-linear thin-plate spline warping76, which corrected for post-527 
operative brain shift and distortion. The warping was constrained with 50-100 control points, 528 
manually selected throughout the brain, which were visually aligned to landmarks in the pre- 529 
and post-implantation MRI. 530 

To sort recording sites for presentation of diffusion matrices and for assessment of centroid 531 
distances and clustering, recording sites were assigned to one of 58 ROIs organized into 9 532 
functional regions (see Figure 1, Supplementary Figure 1, Supplementary Table 2)43 based on 533 
anatomical reconstructions of electrode locations in each participant. For subdural arrays, ROI 534 
assignment was informed by automated parcellation of cortical gyri77,78 as implemented in the 535 
FreeSurfer software package. For depth arrays, it was informed by MRI sections along sagittal, 536 
coronal, and axial planes. Subcortical recording sites, recording sites identified as seizure foci or 537 
characterized by excessive noise, and depth electrode contacts localized to the white matter or 538 
outside brain, were excluded from analyses and are not listed in Supplementary Table 2.  539 

Preprocessing of iEEG data. Analysis of iEEG data was performed using custom software written 540 
in MATLAB Version 2021b programming environment (MathWorks, Natick, MA, USA). After 541 
initial rejection of recording sites identified as seizure foci, several automated steps were taken 542 
to exclude recording channels and time intervals contaminated by noise. First, channels were 543 
excluded if average power in any frequency band (broadband, delta, theta, alpha, beta, gamma, 544 
or high gamma; see below) exceeded 3.5 standard deviations of the average power across all 545 
channels for that participant. Next, transient artifacts were detected by identifying voltage 546 
deflections exceeding 10 standard deviations on a given channel. A time window was identified 547 
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extending before and after the detected artifact until the voltage returned to the zero-mean 548 
baseline plus an additional 100 ms buffer before and after. High-frequency artifacts were also 549 
removed by masking segments of data with high gamma power exceeding 5 standard 550 
deviations of the mean across all segments. Only time bins free of these artifact masks were 551 
considered in subsequent analyses. Artifact rejection was applied across all channels 552 
simultaneously so that all connectivity measures were derived from the same time windows. 553 
Occasionally, particular channels survived the initial average power criteria yet had frequent 554 
artifacts that led to loss of data across all the other channels. There is a tradeoff in rejecting 555 
artifacts (losing time across all channels) and rejecting channels (losing all data for that 556 
channel). If artifacts occur on many channels, there is little benefit to excluding any one 557 
channel. However, if frequent artifacts occur on one or simultaneously on up to a few channels, 558 
omitting these can save more data from other channels than those channels contribute at all 559 
other times. We chose to optimize the total data retained, channels × time windows, and 560 
omitted some channels when necessary. To remove shared signals unlikely to derive from brain 561 
activity, data from retained channels were high-pass filtered above 200 Hz, and a spatial filter 562 
was derived from the singular value decomposition omitting the first singular vector. This 563 
spatial filter was then applied to the broadband signal to remove this common signal.  564 

For connectivity analysis, the orthogonalized gamma band (30-70 Hz) power envelope 565 
correlation45 was used. This measure avoids artifacts due to volume conduction by discounting 566 
connectivity near zero phase lag. Data were divided into 60-second segments, pairwise 567 
connectivity estimated in each segment, and then connectivity estimates averaged across all 568 
segments for that participant. 569 

Envelope correlations were estimated for each data segment and every recording site as in45, 570 
except time-frequency decomposition was performed using the demodulated band 571 
transform79, rather than wavelets. Gamma power at each time bin was calculated as the 572 
average (across frequencies) log of the squared amplitude. For each pair of signals X and Y, one 573 
was orthogonalized to the other by taking the magnitude of the imaginary component of the 574 
product of one signal with the normalized complex conjugate of the other:  575 

𝑌𝑌𝑜𝑜𝑜𝑜𝑜𝑜ℎ =  |Im{𝑌𝑌 × 𝑋𝑋∗/|𝑋𝑋|}| 576 

Both signals were band-pass filtered (0.2 – 1 Hz), and the Pearson correlation calculated 577 
between signals. The process was repeated by orthogonalizing in the other direction and the 578 
overall envelope correlation for a pair of recording sites was the average of the two Pearson 579 
correlations. 580 

Prior to diffusion map embedding, connectivity matrices were thresholded by saving at least 581 
the top third (rounded up) connections for every row, as well as their corresponding columns 582 
(to preserve symmetry). We also included any connections making up the minimum spanning 583 
tree of the graph represented by the elementwise reciprocal of the connectivity matrix to 584 
ensure the graph is connected. 585 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2022. ; https://doi.org/10.1101/2022.11.15.516653doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.15.516653
http://creativecommons.org/licenses/by-nc/4.0/


To confirm that the results presented here did not depend on the specific threshold chosen, 586 
two additional thresholds were tested: 1) a more strict procedure, using the same procedure as 587 
above except saving only the top 10%, or 2) a more permissive procedure, only thresholding 588 
out negative correlations.  589 

 590 

Diffusion map embedding. See Banks et al. (2022)43 for details about DME. In brief, cosine 591 
similarity was applied to the functional connectivity matrix (here orthogonalized power 592 
envelope correlations) to yield the similarity matrix K = [k(i,j)], which was normalized by degree 593 
to yield a diffusion matrix P = D-1K, where D is the degree matrix, i.e. the diagonal elements of D 594 
= ∑ 𝑘𝑘(𝑖𝑖, 𝑗𝑗)𝑁𝑁

𝑗𝑗=1 , where N is the number of recording sites, and the off-diagonal elements of D are 595 
zero. If the recording sites are conceptualized as nodes on a graph with edges defined by K, 596 
then P can be understood as the transition probability matrix for a ‘random walk’ or a 597 
‘diffusion’ on the graph (see42,80). DME consists of mapping the recording sites into an 598 
embedding space using an eigendecomposition of P,  599 

Ψ(t)(xi) = [λ1tψ1(xi), λ1tψ1(xi), …, λMtψM(xi)]T , 600 

where ψj are the eigenvectors of P. The parameter t is the number of time steps in that random 601 
walk; here, we fix t = 1. DME can be implemented alternatively based on a symmetric version of 602 
diffusion matrix Psymm = D-0.5KD-0.5. Basing DME on Psymm has the advantage that the 603 
eigenvectors of Psymm form an orthogonal basis set (unlike the eigenvectors of P), providing 604 
some additional convenience mathematically that is beyond the scope of this paper42. 605 
Additionally, the eigenvalues of P and Psymm are identical. 606 

Effective dimensionality. We used effective dimensionality (DE)81, a graph theoretic measure of 607 
network complexity, to characterize the shape of the spectrum of Psymm , or equivalently the 608 
complexity of its community structure. DE was calculated from the eigenvalue spectrum |λi| of 609 
Psymm and normalized to the total number of dimensions (N; equal to the number of recording 610 
sites) as 𝐷𝐷𝐸𝐸 = (∑ 𝜆𝜆𝑖𝑖𝑁𝑁

𝑖𝑖=2 )2 ∑ 𝜆𝜆𝑖𝑖2𝑁𝑁
𝑖𝑖=2⁄ /(𝑁𝑁 − 1). The first dimension for which λ1 = 1 is skipped. DE 611 

gives information about how data is distributed in N dimensions (where N is the number of 612 
recording sites). DE = 1 for a random graph, as the data are distributed equally in every 613 
dimension and the spectrum is flat. A graph with structure, e.g., nodes that connect to each 614 
other more than the rest of the graph, has a peaked spectrum and DE <1.  615 

Dimensionality reduction via low rank approximations to Psymm. When calculating distances or 616 
evaluating clustering in embedding space, we used a low rank approximation, discarding 617 
dimensions associated with small eigenvalues that are likely dominated by noise. The choice of 618 
threshold for this procedure is somewhat arbitrary; we used an algorithm to identify the 619 
inflection point kinfl beyond which eigenvalues are small and decrease gradually82, and the 620 
number of dimensions retained set equal to kinfl – 1.  621 
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Clustering of functional regions in embedding space. ROIs were categorized into 9 functional 622 
regions based on analysis of resting state data from a different cohort of participants (Banks et 623 
al., 2022). A small number of sites in ROIs that were not used in the scheme in Banks et al., 624 
2022 were assigned to ROI clusters based on anatomical and functional criteria. 625 

Two measures were used to quantify the arrangement of nodes in embedding space according 626 
to these functional regions. First, the distance between regions in embedding space was 627 
measured by the pairwise (by region) Euclidean distance between centroids (mean position 628 
across nodes within each region). Second, the Calinski-Harabasz index of cluster quality (the 629 
ratio of between-cluster variance to within-cluster variance;83) was used to quantify the extent 630 
to which nodes segregated in embedding space according to these pre-identified functional 631 
regions. 632 

Local distance. To quantify the tendency of nodes to be functionally distinct from other nodes 633 
(or, conversely, to aggregate in embedding space and be less differentiated) without needing to 634 
rely on assignments of nodes to pre-defined ROIs or regional groupings, we defined a measure 635 
called ‘local distance’ as the mean Euclidean distance in embedding space from a given node to 636 
each of the 5% closest other nodes, divided by the median distance to all pairs of nodes. 637 

Statistical modeling. All measures (DE, centroid distance, Calinski-Harabasz index, local distance) 638 
were computed for individual data segments, then averaged within each participant across all 639 
segments of the same behavioral state (WA, S, U, WS, N1, N2, N3, R). Linear mixed effects 640 
models were fit to these measures with behavioral state as a fixed effect and participant as a 641 
random effect; fit models were compared to a reduced model omitting the fixed effect for state 642 
using a likelihood ratio test. Pairwise planned contrasts were tested between WA-S, WA-U, and 643 
S-U for propofol experiments, and WS-N1, WS-N2, WS-N3, WS-R, N1-N2, N2-N3, N2-R and N3-R 644 
for sleep experiments; p-values were adjusted using a multivariate t distribution that accounts 645 
for correlations among tested hypotheses. Statistical analyses were performed in R version 646 
4.2.1 using the packages lme484 and emmeans85. 647 

 648 

Data and code availability 649 

Full data is available via a request to the Authors pending establishment of a formal data 650 
sharing agreement. Data required to reproduce figures from the manuscript and statistical 651 
analyses are provided with the software. Software is available at: 652 
https://zenodo.org/record/7320253 or https://doi.org/10.5281/zenodo.7320253 653 
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