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Abstract

Although sleep and anesthesia are predicted to share common neural signatures of transitions
into and out of unconsciousness, supportive evidence has been elusive. We identified these
signatures using intracranial electroencephalography in neurosurgical patients. We applied
diffusion map embedding to map cortical location into a space where proximity indicates
functional similarity using a normalized connectivity (‘diffusion’) matrix, itself a rich source of
information about network properties. During reduced consciousness, diffusion matrices
exhibited decreased effective dimensionality, reflecting reduced network entropy.
Furthermore, functional brain regions exhibited tighter clustering in embedding space with
greater distances between regions, corresponding to decreased differentiation and functional
integration. These changes were not region-specific, suggesting global network reorganization.
These results strongly suggest common neural substrates for loss and recovery of
consciousness during anesthesia and sleep, providing a systems-level mechanistic
understanding within an intuitive geometric context and laying the foundation for evaluation of
cortical state transitions in clinical settings.
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Introduction

Leading theories of brain function predict that loss and recovery of consciousness (LOC, ROC)
are precipitated by large-scale reorganization of cortical networks. This reorganization might
result in altered functional integration and differentiation in the brain!, communication into or
out of prefrontal cortex and amplification of sensory signals?, or feedback connectivity? with
concomitant effects on predictive processing*.

It is postulated that changes in the brain underlying LOC and ROC should overlap regardless of
the circumstances of their occurrence>®, and thus comparison of changes in the brain in
multiple contexts can be informative’. For example, general anesthesia and natural sleep
exhibit common behavioral and physiological features, including both dreaming (i.e., conscious
experience while disconnected from the environment) and unconsciousness®'° and decreased
cerebral blood flow and metabolic rate!'13, Recently, we observed similar changes in cortical
functional connectivity during anesthesia and sleep. Stages of higher probability of
consciousness, including wake, propofol sedation, and N1 and REM sleep, exhibited
connectivity profiles that were similar to each other but distinct from stages of reduced
probability of consciousness, including propofol unresponsiveness and N2 and N3 sleep’. These
findings were consistent with a network transition boundary for consciousness common to
anesthesia and natural sleep, which we linked to the ongoing debate about the locus of the
neural correlates of consciousness'#1>. However, the degree to which the brain traverses an
overlapping complement of network states during anesthesia versus sleep remains
controversial®17,

Questions remain as well about the specific features of network reorganization associated with
transitions into and out of consciousness. For example, although altered network connectivity is
observed consistently during both anesthesia and sleep, some studies report that connectivity
is decreased'®24 and others that it is increased?>?’. Furthermore, selective effects of anesthesia
have been reported on both feedback!9?8 and feedforward?® connectivity. Decreased thalamo-
cortical connectivity has been reported for both anesthesia and sleep3%3!, but at least for
anesthesia this change is unlikely to be causal for LOC!! . Distinct effects of anesthesia and sleep
also have been reported in analyses of resting state networks (RSNs). Increased modularity of
RSNs during NREM sleep was reported to be accompanied by greater connectivity overall?’/,
suggesting differential effects on within- versus between-network connectivity. By contrast,
during propofol anesthesia both between- and within-network connectivity was observed to
decrease3%33,

The organizational features of the conscious brain can be couched in terms of the balance
between integration and differentiation, i.e., between the unified nature of conscious
experience and its vast potential for variation. Investigations that operationalize changes in
integration and differentiation during anesthesia and sleep have produced consistent results.
Decreased differentiation of brain activity has been reported, indexed by reduced complexity of
both evoked brain responses3*37 and of spontaneous brain signals3®3, Brain functional
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89 integration decreases during both anesthesia*® and NREM sleep?’; surprisingly, however,
90 overall connectivity decreased in the former study and increased in the latter.

91 Inasmall number of studies, data recorded during anesthesia and sleep has been compared

92  directly’” %41, but no clear and consistent mechanism for loss of consciousness emerges from

93  these analyses. We seek a unifying framework for understanding network reorganization during

94  the different stages of anesthesia and sleep and relating these changes to theoretical

95  constructs. Here, we explore the functional geometry of cortical networks using diffusion map

96 embedding (DME)*? and show that changes in connectivity across stages of sleep and

97  anesthesia reflect changes in the organization of cortical networks that may contribute to loss

98  of consciousness. As in our previous work, we distinguished stages corresponding to

99  substantially reduced probability of consciousness (propofol unresponsiveness, NREM sleep),
100 from the wake state and from stages of higher probability of conscious experience (propofol
101  sedation, light sleep, REM sleep). We show that entry into states of reduced consciousness
102  during both anesthesia and sleep can be indexed reliably by a single parameter, the effective
103  dimensionality of the normalized connectivity matrix. We present an analytical framework that
104  provides an intuitive, geometric understanding of changes in cortical networks associated with
105  states of reduced consciousness and observed reductions in effective dimensionality. Globally,
106  brain regions become more distinct (reduced functional integration), moving farther apart in
107  functional embedding space. Locally, brain subregions become less distinguishable (reduced
108 differentiation), moving closer to each other in the functional embedding space. This unifying
109 framework has a practical utility in identifying cortical state transitions in clinical settings and
110  broader implications for understanding the neural basis of consciousness.

111
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112 Results
113  Summary of experiments and recordings.

114  Resting state iEEG recordings were obtained in neurosurgical patients undergoing intracranial
115  monitoring for the purpose of identifying seizure foci. Demographic information and electrode
116  coverage are summarized in Supplementary Tables 1 and 2. Typical electrode coverage is

117  shown for one participant in Figure 1a, and a summary of the brain parcellation scheme and of
118  electrode coverage across all participants are shown in Supplementary Figure 1. Each recording
119  site was assigned to a region of interest (ROI), color-coded according to a functional

120  parcellation scheme illustrated in Supplementary Figure 1a. This scheme was derived from ana
121  analysis of daytime resting state iEEG data from a complementary dataset obtained during

122 daytime wake®. To investigate changes in cortical network organization during transitions in
123 arousal and awareness, data were recorded during induction of propofol anesthesia just prior
124  to removal of electrodes (N = 14 participants; Supplementary Figure 2), and during overnight
125  sleep (N = 15 participants; Supplementary Figure 3). As in our previous work, we identified

126  stages of anesthesia (WA: pre-drug wake; S: sedated but responsive; U: unresponsive) using a
127  standard clinical assessment tool (Observer’s Assessment of Arousal Score; OAA/S”44). Sleep
128  stages were identified using standard polysomnography (WS: wake; N1: light sleep; N2 and N3:
129 NREM; R: REM).

130
131  Changes in cortical network organization during anesthesia and sleep

132 Functional connectivity was calculated as orthogonalized gamma band power envelope

133 correlations***%, yielding for each one-minute data segment an electrode x electrode

134  connectivity matrix. The first steps of DME analysis are to create a similarity matrix by applying
135  cosine similarity to the functional connectivity matrix, then normalize, threshold, and make
136  symmetric the similarity matrix to yield a diffusion matrix Psymm. Psymm describes the diffusion of
137  aninput signal applied to nodes (i.e., recording sites) on the graph??. When Psymm is sorted by
138  brain region (indicated by colored bars in Figure 1b), increasing community structure in the
139  graph becomes evident in states of reduced consciousness under propofol anesthesia

140  (sedated/S, unresponsive/U). The degree of community structure can be quantified by

141  examining the eigenvalue spectrum of Psymm (Figure 1c). Random graphs, i.e., those with

142  maximal entropy, have spectra that are approximately flat. Graphs with strong community

143  structure have spectra that are more peaked. The underlying entropy of the graph, and hence
144  the shape of the spectrum, can be quantified using the effective dimensionality Dg € (0,1), a
145  function of the eigenvalue spectrum and a graph theoretic measure of complexity (see

146  Methods). Importantly, the eigenvalue spectrum and calculation of De do not require nodes to
147  be ordered or classified. Like anesthesia, NREM sleep was associated with a more structured
148  Psymm and more peaked spectrum (Figure 1d,e).

149
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Figure 1. Network organization varies during anesthesia and sleep. a: Typical electrode coverage in one
participant (L372). Recording sites are color-coded according to the ROI group. White symbols denote
sites excluded from the analysis due to excessive noise, artifacts, location within seizure focus, in white
matter, or outside the brain. Black symbols denote depth electrode insertion points. b: Diffusion
matrices Psymm during propofol anesthesia for the participant in a. Each matrix is from one minute of
data. C. Spectra of Psymm calculated from the example matrices in b. For these examples, De(WA) = 0.30,
De(S) = 0.20, De(U) = 0.10. d: Diffusion matrices Psymm during sleep for the participant in a. Each matrix is
from one minute of data. e: Spectra of Psymm calculated from the matrices in d. For these examples,
De(WS) =0.31, De(N1) = 0.30, De(N2) = 0.14, De(REM) = 0.32. For panels b-e, data recorded during
anesthesia and sleep experiments were divided into segments of length 60 s, and the diffusion matrix
and spectrum computed for each segment. Matrices and spectra shown are from the segments with
effective dimensionality closest to the median value for each stage of anesthesia and sleep in this
participant.
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165 The time series of De computed for each 60-second data segment recorded during an

166  experiment reveals striking changes in network structure over time during both anesthesia and
167  sleep experiments, with transitions into S and U during anesthesia and into N2 during sleep
168  accompanied by sharp decreases in De (Figure 2). Notably, Dt was consistently high during

169  stages associated with higher probability of consciousness (WA, S, WS, N1, REM). Two

170  additional examples from participants recorded during both propofol anesthesia and during
171  sleep are shown in Supplementary Figure 4.

172  Data were summarized across participants by first averaging De within participant across all

173  segments associated with each stage of anesthesia and sleep. Dt varied significantly by state for
174  both propofol anesthesia and sleep (likelihood ratio test for omitting state: propofol x%(2) =

175  42.0, p < 0.0001; sleep x2(4) = 79.3, p < 0.0001) (Figure 3). For propofol anesthesia, mean D¢

176  decreased progressively from WA to S to U (Supplementary Table 4). During sleep, Dt for N1
177  and R were not significantly different from WS, but De decreased in N2 and decreased further in
178 N3 (Supplementary Table 4). These results were robust to the choice of threshold in calculating
179  Psymm (Supplementary Figure 5).

180
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Figure 2. Time series of D from an example participant. Changes during anesthesia and sleep are
shown in left and right panel, respectively. Each data point represents one minute of data. Time is
depicted relative to the start of recording. Same participant(L372) as in Figure 1.
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Figure 3. Summary of changes in Dk in states of reduced consciousness. Changes during propofol
anesthesia and sleep are shown in left and right panel, respectively. Symbols are mean within a
participant, connected by lines for data points from the same participant. Dashed lines are used to
connect points when data in the intervening state (S; N3) is not available for that participant. P-values
are from paired post-hoc comparisons, adjusted using multivariate t-distribution.
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193  Changes in cortical network organization are not regionally specific

194  ltis plausible that observed changes in De between network states could be dominated by

195 changes in a subset of recording sites in specific brain regions. We performed sensitivity

196  analyses by repeating the analysis of Figure 3 after excluding recording sites from groups of

197  cortical functional regions (Supplementary Figure 6; groups of regions were: Auditory, Limbic,
198  Visual + Ventral, Ventromedial Prefrontal + Lateral Prefrontal + Executive, and Dorsal + Action).
199  The significant decrease in De during states of reduced consciousness was observed in all cases,
200 regardless of which regions were eliminated. These results indicate that the changes in network
201  structure associated with transitions into states of reduced consciousness could not be

202  explained by connectivity changes of any single brain region. Thus, anesthesia and sleep are
203  associated with global reorganization of cortical networks.

204  Geometric correlates to changes in effective dimensionality

205  We've shown that Dr indexes entry and exit from states of reduced consciousness based on
206  only the spectrum (eigenvalues) of Psymm. The observed changes in De indicate a reorganization
207  of brain networks; however, because there is no uniqgue mapping between a spectrum and a
208  network, changes in spectrum do not identify the specific features of this reorganization. To
209  gaininsight into these features, we can apply the next steps in DME analysis and consider data
210  in the embedding space defined by the spectral decomposition of Psymm.

211 Asimple toy model is useful in this regard (Figure 4). We simulated a modular network

212 consisting of five regions, with nine nodes in each region. Two types of connectivity were

213 present in the model: 1) uniform random connectivity linking nodes regardless of region, and
214  2) stronger within-region connectivity imposed on this nonspecific random connectivity. The
215  strength of within-region connectivity was varied from weak (Figure 4a, left column) to strong
216  (Figure 4a, right column), corresponding to an increasingly modular organization of the

217  network. This increase in modular organization was associated with more peaked eigenvalue
218  spectra and decreased Dk (insets in Figure 4a). DME conveys the functional geometry of these
219  changes in community structure by mapping the data into a lower dimensional embedding

220  space using the eigenfunctions and eigenvalues of Psymm (Figure 4b). Nodes that are connected
221 similarly to the rest of the network are mapped to nearby locations in the embedding space,
222 indicating their functional similarity. A more modular network organization results in more

223 tightly clustered nodes within each region; the neural responses of this more modular network
224  would exhibit reduced differentiation. This is easily illustrated by considering the extreme case
225  (right), in which the nodes within each region are so tightly coupled as to render them nearly
226 equivalent, essentially transforming the original 40-node network into a 5-node network with a
227  vastly reduced repertoire of possible network states. In addition, regions become more distinct
228  and more distant from each other as modularity increases, corresponding to a decrease in

229  functional integration across the whole network.

230
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Figure 4. Toy example showing effects of stronger community structure on embeddings. A: Diffusion
matrix (Psymm) representation of weak, intermediate, and strong community structure (left, middle and
right panel, respectively). Insets depict Psymm spectra. De = 0.44, 0.35, 0.18, respectively. B: Embedding
space representation of weak, intermediate, and strong community structure (left, middle and right
panel, respectively). Mean centroid distance = 0.35, 0.42, 0.50, respectively.
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238  We observed similar changes in embeddings of functional connectivity data derived from

239  intracranial recordings (Figure 5). Data recorded during states of reduced consciousness during
240  propofol anesthesia (e.g., U; Figure 5a) or sleep (e.g., N2 or N3; Figure 5b) were more ‘clumpy’
241  in embedding space and regional clusters of nodes moved farther apart from each other,

242 suggesting an increase in modular organization.

243  We quantified these effects both with and without a priori assignments of electrodes to labeled
244  clusters. Using labels from the nine regions illustrated in Supplementary Figure 1c, we assessed
245  changes in cluster organization within embeddings. We measured inter-cluster distances

246  between cluster centroids and regional grouping of nodes using an index of cluster quality

247  (Calinski-Harabasz index) calculated as the ratio of between-cluster and within-cluster

248  dispersion. We also considered the position of nodes in embedding space relative to their

249  neighboring nodes without a priori assignments to functional regions. The analysis is illustrated
250 in Supplementary Figure 7. For each node, we calculated a normalized ‘local distance’ as the
251  average pairwise distance to the 5"-percentile closest nodes normalized to the median distance
252 to all nodes. Much like cluster quality this measure captures combined aspects of

253  differentiation (distance among similar nodes) and integration (distance between dissimilar
254  nodes), but without requiring label assignments.

255  Systematic changes in all three measures were observed across stages of anesthesia (Figure 6a,
256  example participant). In U, inter-cluster distances increased, cluster quality improved, and local
257  distances decreased. These results were consistent across subjects (likelihood ratio test for

258  omitting state: inter-cluster distance x?(2) = 37.8, p < 0.0001; cluster quality x*(2) = 22.8, p <
259  0.0001; local distance x3(2) = 47.9, p < 0.0001; see pairwise comparisons in Supplementary

260  Table 3). Accordingly, effective dimensionality was negatively correlated with inter-cluster

261  distance and cluster quality, and positively correlated with local distance (Figure 6b). Similar
262  relationships with sleep stage were observed in an example participant (Figure 6¢) and across
263  participants (likelihood ratio test for omitting state: inter-cluster distance x%(4) = 42.7, p <

264  0.0001; cluster quality x?(4) = 22.5, p = 0.00016; local distance x?(4) = 81.6, p < 0.0001; see

265  pairwise comparisons in Supplementary Table 3) and were correlated with effective

266  dimensionality (Figure 6d).

267  For both sleep and anesthesia, the strongest correlations were observed between local distance
268  and effective dimensionality. Local distance captures the reorganization in embedding space,
269  and effective dimensionality allows for tracking changes in anesthesia or sleep stage, both

270  without relying on a priori assumptions about the data.

271
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273

274 Figure 5. Changes in functional geometry during anesthesia and sleep in example participants. A:
275  Arrangement of recorded data in embedding space (first three dimensions) during anesthesia in an
276 example participant (R399). Each symbol represents an individual recording site. Colors indicate
277

assignment to functional regions (legend). B: Similar to a, but for a second participant (L423) during
278  sleep.
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281 Figure 6. Changes in embedding geometry are correlated with effective dimensionality. During

282 induction of anesthesia, inter-cluster distances, cluster quality, and local distance are state-dependent
283  and therefore tend to correlate with effective dimensionality (a-b). a: Examples for a single participant
284  (R399) where each point represents a 60-second segment of data. b: Pearson correlation coefficients
285 across participants between D and each embedding measure. Centroid distance and cluster quality are
286  negatively correlated with De and presented on a reversed axis. The strongest association with D is with
287 local distance. Similar associations are observed during sleep (c-d). c: Single participant example (L423).
288  d: Pearson correlation coefficients between embedding measures and D across participants.


https://doi.org/10.1101/2022.11.15.516653
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.11.15.516653; this version posted November 17, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

289 Discussion

290  Summary of findings

291 Identifying changes in the brain that underlie LOC and ROC is a fundamental and unresolved
292  question in neuroscience. Previous work indicates that consciousness is a property specific to
293  the organizational structure of brain networks'#®. In this context, LOC and ROC should involve
294  changes in this organization that are not tied to specific precipitating factors, such as the

295  concentration of an exogenous anesthetic agent or the activity patterns in specific subcortical
296 sleep and arousal centers. Building on our previous work’, we distinguished responsiveness

297 under anesthesia (S) from unresponsiveness (U) to control for drug effects not specific to LOC.
298  Although S is likely a stage of fluctuating arousal, we expected that participants were conscious
299  a greater percentage of time compared to the unresponsive state U. Similarly, we expect that
300 participants spent the majority of time conscious but drowsy or having conscious experiences in
301 the form of dreaming during N1 and REM; this contrasts with N2 and N3, which are

302 characterized by lower probability of dreaming and higher probability of unconsciousness®. We
303 present a novel analytical framework that links changes in the organization of cortical networks
304  with changes in arousal and awareness during anesthesia and sleep. We quantified these

305 changes using Dk, the effective dimensionality of a matrix derived from the functional

306  connectivity matrix. Dk is robust to the choice of connectivity threshold used to construct the
307 network graph, and is computationally efficient to calculate based on short data segments. Dg is
308 also attractive because it is easily understood geometrically through its link to DME analysis.

309

310  Changes in functional geometry reflect changes in complexity, differentiation, and integration

311  Deis related to spatial complexity, in that fewer dimensions are required to represent a less
312 complicated network. Thus, the results presented here are consistent with the decreased

313  spatial complexity and smaller repertoire of distinct network configurations reported during
314  LOC*-1, As shown in Figure 4, changes in simulated network modularity are reflected by

315 changes in De: when nodes are more tightly connected within each sub-network relative to

316  connections to other sub-networks, De decreases (We note that there is not a strict relationship
317 between D and modularity, as it is theoretically possible to create a biologically unrealistic

318 network with no modularity but low Dt.) In embedding space, this increase in modularity is

319 reflected in increased cluster quality and in the shift to more local connectivity (Figure 6). Thus,
320 the observation that De decreases during both anesthesia and sleep (Figure 3) links the results
321  presented here with previous results derived from fMRI showing increased modularity during
322  NREM sleep?’. Reported decreases in within-network connectivity during anesthesia3?33 are
323  harder to reconcile with increased modularity, though this could reflect differences in the

324  spatial scale of the analyses.

325  Proximity in embedding space corresponds to similarity in functional connectivity to the rest of
326 the network; during states of reduced consciousness, recording sites become closer to their
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327 nearest neighbors (less distinguishable) in embedding space, suggesting reduced differentiation
328  of their activity patterns. Consistent with these results, perturbational complexity, a measure of
329 differentiation and a well-validated measure of level of consciousness?*, shows consistent

330 decreases during anesthesia and sleep343”. Similar results have been obtained using

331  spatiotemporal complexity derived from resting state activity3%3952,

332  The results presented here also speak to functional integration across the network, previously
333  reported to decrease during anesthesia?®>3 (though interestingly not during NREM sleep?’). This
334  is mostly easily visualized in embedding space, where functional regions tend to move farther
335  apart during states of reduced consciousness (Figure 6). Decreased functional integration and
336 differentiation during sleep and anesthesia likely play a role in reducing network efficiency

337  during anesthesia and in disorders of consciousness?3>453,

338

339  Dynamics of network transitions

340 The dynamics of network transitions are becoming a rich vein of inquiry for understanding the
341  neural basis of consciousness 33°°, Although these dynamics were not a focus of the current
342  study, the framework presented here readily lends itself to their exploration. For example,

343  simple clustering can distinguish integrated from segregated network states in resting state
344  functional connectivity derived from fMRI data and enable exploration of the dynamics of state
345 transitions during resting state and cognitive tasks®”°8. These dynamics are altered under

346  anesthesia, with a shift towards greater time spent in the segregated state and decreases in
347  network complexity and information capacity®>>°.

348  Although we have divided stages of anesthesia and sleep into two categories, one of reduced
349  consciousness and the other of relatively intact consciousness, this is clearly an

350 oversimplification. These stages of anesthesia (S, U) and sleep are undoubtedly superpositions
351  of the more generally relevant states of unconsciousness, disconnected consciousness (i.e.,
352 dreaming), and connected consciousness. Stages of reduced consciousness (U, N2, N3) are

353  likely dominated by segments of unconsciousness, but also include periods of disconnected
354  consciousness®®. Similarly, S and N1 are likely mixtures of connected consciousness,

355  disconnected consciousness, and unconsciousness. This continuum is reflected in the smoothly
356  varying changes across stage in De and other metrics presented here.

357
358  Theories of consciousness

359 Central to the ongoing debate about the neural correlates of consciousness are their loci in the
360  brain'*>, Global Neuronal Workspace Theory?*® places prefrontal cortex and its connections

361  with parietal regions central to these correlates, whereas Integrated Information Theory (IIT;!
362  sites these correlates in the ‘back’ of the brain, a region spanning temporal, occipital, and

363  parietal cortex. Although clinical considerations precluded an exhaustive and invariant sampling
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364  of brain regions in our cohort of participants, our results indicate that transitions into and out of
365  states of reduced consciousness involve a global network reorganization rather than relying on
366  specific regions (Supplementary Figure 6). However, observation of global network changes

367 during anesthesia and sleep does not exclude the possibility that local changes in key regions
368 (i.e., prefrontal or parietal cortex) are sufficient to cause loss of consciousness. Additionally,

369  even global cortical changes are likely coordinated by small brain areas with broad reach, such
370 as central lateral thalamus®°,

371  Previous work investigating mechanisms of anesthesia focused on disruptions in connectivity,
372  especially feedback cortico-cortical connectivity. Studies in both human subjects and animal
373  models showed reduced feedback connectivity at doses of anesthetics causing loss of

374  consciousness'®192861 These data are consistent with the Global Neuronal Workspace Theory,
375 in which feedback from prefrontal cortex to wide areas of the brain is critical for conscious

376  experience. They also support a model based on predictive processing in which consciousness
377 relies on active comparisons between internally-generated expectations and observed sensory
378 information®%%3, However, several findings are not easily reconciled with these models,

379  including reports of increases in connectivity?>?” and the reported suppression of feedforward
380  connectivity?.

381 By focusing on network reorganization during states of reduced consciousness, we shift the
382  focus beyond pathway-specific changes during LOC and ROC, and explore how local and global
383  changes in connectivity combine to disrupt both differentiation and integration in the

384  unconscious brain. However, we note that functional integration is not the same as information
385 integration central to IIT as the latter distinguishes causal from non-causal interactions. Indeed,
386 itis not possible to ascertain information integration using purely observational data. However,
387 theoretical work has shown that differentiation can be used to establish an upper bound on
388 integrated information®*. Thus, the results presented here, when viewed through the lens of
389  differentiation, are consistent with a decrease in information integration during reduced states
390  of consciousness.

391
392 Caveats & limitations

393  We focused here on a specific functional connectivity measure (orthogonalized power envelope
394  correlations) and a specific frequency band (gamma). We focused on this band and this measure
395  because our previous work demonstrated its utility for performing DME analysis*® . However, we
396 also note that the results of that paper were robust to choice of frequency band, and expect

397 that the results presented here would also not depend strongly on that choice. Gamma band
398  connectivity is also strongly related to connectivity derived from fMRI®°, allowing comparisons
399  to the body of work relying on neuroimaging for exploring changes in network organization

400 during anesthesia and sleep.

401  Because participants in the current study had a neurological disorder, they may not be entirely
402 representative of a healthy population. This caveat is inherent to all human intracranial
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403  electrophysiology studies, as discussed previously (e.g., Banks et al., 2020, 2022). However, we
404 note that results presented in this study were consistent across participants with different

405  seizure foci, clinical histories, and drug regimens. In addition, it is possible that seizures, AED
406  use, and the hospital environment may affect sleep and sensitivity to anesthesia. Broadly,

407  seizures can disrupt sleep architecture®® %8, However, participants were monitored for seizure
408  activity during the sleep recording session, and in the one participant with overnight seizures
409  (L403), data collected after seizures began were excluded. Similarly, although AEDs are reported
410 to alter the structure of sleep®, participants had discontinued their AEDs before collection of
411  overnight sleep data, reducing the effect of AEDs on sleep data in this cohort. The quality and
412  structure of sleep may also have been affected by the hospital environment, possibly

413  contributing to the absence of N3 sleep in three participants. Because we had sufficient

414  representation of all studied sleep stages in the cohort (see Supplementary Table 1), the effect
415  of AEDs or the environment on the likelihood of entering a particular stage was not a confound.
416  Similarly, while the use of AEDs could lead to a reduction of the dose of propofol required to
417  achieve surgical level of general anesthesia’®, the present study relied on behavioral assessment
418  of arousal. Thus, the definition of stages of anesthesia was not affected by factors secondary to
419  the participants’ history of epilepsy.

420
421 Future directions

422  The iEEG results presented here support a model in which altered differentiation and functional
423  integration of cortical networks underlie changes in consciousness, and suggest that the

424  analytical framework presented here could contribute to understanding the neural correlates of
425  consciousness. Next steps should include recapitulation of these results using non-invasive

426  methods during anesthesia and sleep, and in patients with disorders of consciousness.

427  Extending this analysis to scalp electroencephalography in particular would enhance the

428  translational relevance of these findings. Assessments in clinical settings often require

429  monitoring of consciousness in real time. Accordingly, tracking of the dynamics of De and of data
430 in embedding space will enable identification of rapid changes in brain state underlying

431  transitions between drowsiness, disconnected consciousness, and unconsciousness. Finally,

432  extending DME analysis to apply to effective connectivity would enable more thorough

433  investigation of causal structure theories of consciousness such as IIT.

434
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435  Materials and Methods
436  Participants

437  The study was carried out in 21 neurosurgical patients (8 female; age 18-54 years old, median
438  age 34 years old) diagnosed with medically refractory epilepsy. The patients were undergoing
439  chronic invasive electrophysiological monitoring to identify seizure foci prior to resection

440  surgery (Supplementary Table 1). Research protocols aligned with best practices recently

441  aggregated in’! and were approved by the University of lowa Institutional Review Board and
442  the National Institutes of Health; written informed consent was obtained from all participants.
443  Research participation did not interfere with acquisition of clinically necessary data, and

444  participants could rescind consent for research without interrupting their clinical management.
445  All participants underwent neuropsychological assessment prior to electrode implantation, and
446  none had cognitive deficits that would impact the results of this study. The participants were
447  tapered off their antiepileptic drugs during chronic monitoring when resting state data were
448  collected.

449
450  Experimental procedures

451  Pre-implantation neuroimaging. All participants underwent whole-brain high-resolution T1-
452  weighted structural MRI scans before electrode implantation. The scanner was a 3T GE

453  Discovery MR750W with a 32-channel head coil. The T1 scan (3D FSPGR BRAVO sequence) was
454  obtained with the following parameters: FOV = 25.6 cm, flip angle = 12 deg., TR = 8.50 ms, TE =
455  3.29 ms, inversion time = 450 ms, voxel size = 1.0 x 1.0 x 0.8 mm.

456  iEEG recordings. iEEG recordings were obtained using either subdural and depth electrodes, or
457  depth electrodes alone, based on clinical indications. Electrode arrays were manufactured by
458  Ad-Tech Medical (Racine, WI). Subdural arrays, implanted in 14 participants out of 21, consisted
459  of platinum-iridium discs (2.3 mm diameter, 5-10 mm inter-electrode distance), embedded in a
460  silicon membrane. Stereotactically implanted depth arrays included between 4 and 12

461  cylindrical contacts along the electrode shaft, with 5-10 mm inter-electrode distance. A

462  subgaleal electrode, placed over the cranial vertex near midline, was used as a reference in all
463  participants. All electrodes were placed solely on the basis of clinical requirements, as

464  determined by the team of epileptologists and neurosurgeons’?.

465  Resting-state (RS) data were recorded during overnight sleep (N = 15 participants) and during
466  induction of propofol anesthesia (N = 14 participants). In 8 participants, both sets of data were
467 recorded, with sleep data collected first, followed several days later by anesthesia data.

468  Sleep recordings. Resting state iEEG, EEG, and video data were collected in the dedicated,
469  electrically shielded suite in The University of lowa Clinical Research Unit while the participants
470 lay in the hospital bed. Sleep data were collected 7.5 +/- 1.1 days [range 6 — 9] after iEEG
471  electrode implantation surgery. Data were recorded using a Neuralynx Atlas System (Neuralynx
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472  Inc., Bozeman, MT), amplified, filtered (0.1-500 Hz bandpass, 5 dB/octave rolloff), and digitized
473  at a sampling rate of 2000 Hz.

474  Stages of sleep were defined manually using facial EMG and scalp EEG data based on standard
475  clinical criteria (Berry et al., 2017) independently by two individuals who participate in the

476  inter-scorer reliability program of the American Academy of Sleep Medicine: a licensed

477  polysomnography technologist, certified by the Board of Registered Polysomnography

478  Technologists, and a physician certified in Sleep Medicine by the Accreditation Council for

479  Graduate Medical Education. The final staging report was agreed upon by the two scorers after
480  a collaborative review. Scalp and facial electrodes were placed by an accredited technician, and
481  data were recorded by a clinical acquisition system (Nihon Kohden EEG-2100) in parallel with
482  research data acquisition. Facial electrodes were placed following guidelines of the American
483  Academy of Sleep Medicine (Berry et al., 2017) at the left and right mentalis for EMG, and

484  adjacent to left and right outer canthi for EOG. EEG was obtained from electrodes placed

485  following the international 10-20 system at A1, A2, F3, F4, O1, and 02 in all participants, with
486  the following additional electrodes: C3 and C4 in all participants but R376; E1 and E2 in L372
487 and R376; Cz and Fz in L409, L423, and L585; F7 in L585; F8 in L423 and L585. All participants
488  had periods of N1 and N2 sleep identified; 12 out of 15 had N3 sleep periods and 12 out of 15
489  had REM. One participant (L403) experienced multiple seizures in the second half of the night;
490 those data were excluded from analysis. The durations of recordings for each sleep stage in
491  each participant are provided in Supplementary Table 1.

492  Anesthesia data. Resting state data were collected in the operating room during induction of
493  propofol anesthesia just prior to electrode removal and seizure focus resection surgery. Data
494  acquisition was controlled by a TDT RZ2 real-time processor (Tucker-Davis Technologies,

495  Alachua, FL) in participants R369 through L460 and by a Neuralynx Atlas System in participants
496 L514 and L585. Recorded data were amplified, filtered (0.7-800 Hz bandpass, 12 dB/octave
497  rolloff for TDT-recorded data; 0.1-500 Hz bandpass, 5 dB/octave rolloff for Neuralynx-recorded
498  data), and digitized at a sampling rate of 2034.5 Hz (TDT) or 2000 Hz (Neuralynx). Although no
499  specific instructions were given about keeping eyes open or closed, participants were observed
500 to have eyes closed during nearly all resting state recordings. Data were recorded in 3-4 blocks
501 (duration 3-6 minutes each), interleaved with auditory stimulus paradigms related to other
502  studies (e.g.,”>74). Data were collected during an awake baseline period and during infusion of
503 increasing doses of propofol (50 — 150 ug/kg/min; Supplementary Figure 2).

504 Awareness was assessed using the Observer's Assessment of Alertness/Sedation (OAA/S) scale
505 (Chernik et al., 1990). Bispectral index (BIS) (Gan et al., 1997) was measured using BIS Complete
506  4-Channel Monitor (Medtronic plc, Minneapolis, MN), but was not used in the analyses

507 presented in this study. OAA/S was assessed just before and just after collection of each resting
508 state data block. Data segments were assigned labels corresponding to one of three stages of
509 the anesthesia experiment: wake (WA; i.e., pre-drug) and two levels of anesthesia: sedated but
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responsive to command (S; OAA/S > 3) and unresponsive (U; OAA/S < 2) (Nourski et al., 2018a)
(Supplementary Figure 2).

In 6 of 14 participants, OAA/S values crossed the boundary between S and U over the course of
the resting state block (e.g. resting state block #1 in participant L372; see Supplementary
Figure 2). In these cases, only the first and last 60-second segments of the block were analyzed;
data from the first segment were labeled S, and data from the second segment were labeled U.
Data in the intervening segment were not assigned an anesthesia stage label and were not used
in the analysis. The durations of recordings used in the analyses for each stage and each
participant during the anesthesia experiment are provided in Supplementary Table 1.

Data analysis

Anatomical reconstruction and ROI parcellation. Localization of recording sites and their
assignment to ROIs relied on post-implantation T1-weighted anatomical MRI and post-
implantation computed tomography (CT). All images were initially aligned with pre-operative T1
scans using linear coregistration implemented in FSL (FLIRT)’>. Electrodes were identified in the
post-implantation MRI as magnetic susceptibility artifacts and in the CT as metallic
hyperdensities. Electrode locations were further refined within the space of the pre-operative
MRI using three-dimensional non-linear thin-plate spline warping’®, which corrected for post-
operative brain shift and distortion. The warping was constrained with 50-100 control points,
manually selected throughout the brain, which were visually aligned to landmarks in the pre-
and post-implantation MRI.

To sort recording sites for presentation of diffusion matrices and for assessment of centroid
distances and clustering, recording sites were assigned to one of 58 ROIs organized into 9
functional regions (see Figure 1, Supplementary Figure 1, Supplementary Table 2)* based on
anatomical reconstructions of electrode locations in each participant. For subdural arrays, ROI
assignment was informed by automated parcellation of cortical gyri’”’® as implemented in the
FreeSurfer software package. For depth arrays, it was informed by MRI sections along sagittal,
coronal, and axial planes. Subcortical recording sites, recording sites identified as seizure foci or
characterized by excessive noise, and depth electrode contacts localized to the white matter or
outside brain, were excluded from analyses and are not listed in Supplementary Table 2.

Preprocessing of iEEG data. Analysis of iEEG data was performed using custom software written
in MATLAB Version 2021b programming environment (MathWorks, Natick, MA, USA). After
initial rejection of recording sites identified as seizure foci, several automated steps were taken
to exclude recording channels and time intervals contaminated by noise. First, channels were
excluded if average power in any frequency band (broadband, delta, theta, alpha, beta, gamma,
or high gamma; see below) exceeded 3.5 standard deviations of the average power across all
channels for that participant. Next, transient artifacts were detected by identifying voltage
deflections exceeding 10 standard deviations on a given channel. A time window was identified
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548  extending before and after the detected artifact until the voltage returned to the zero-mean
549  baseline plus an additional 100 ms buffer before and after. High-frequency artifacts were also
550 removed by masking segments of data with high gamma power exceeding 5 standard

551  deviations of the mean across all segments. Only time bins free of these artifact masks were
552  considered in subsequent analyses. Artifact rejection was applied across all channels

553  simultaneously so that all connectivity measures were derived from the same time windows.
554  Occasionally, particular channels survived the initial average power criteria yet had frequent
555 artifacts that led to loss of data across all the other channels. There is a tradeoff in rejecting
556 artifacts (losing time across all channels) and rejecting channels (losing all data for that

557 channel). If artifacts occur on many channels, there is little benefit to excluding any one

558 channel. However, if frequent artifacts occur on one or simultaneously on up to a few channels,
559  omitting these can save more data from other channels than those channels contribute at all
560 other times. We chose to optimize the total data retained, channels x time windows, and

561 omitted some channels when necessary. To remove shared signals unlikely to derive from brain
562  activity, data from retained channels were high-pass filtered above 200 Hz, and a spatial filter
563  was derived from the singular value decomposition omitting the first singular vector. This

564  spatial filter was then applied to the broadband signal to remove this common signal.

565  For connectivity analysis, the orthogonalized gamma band (30-70 Hz) power envelope

566 correlation* was used. This measure avoids artifacts due to volume conduction by discounting
567  connectivity near zero phase lag. Data were divided into 60-second segments, pairwise

568  connectivity estimated in each segment, and then connectivity estimates averaged across all
569  segments for that participant.

570 Envelope correlations were estimated for each data segment and every recording site as in®,
571  except time-frequency decomposition was performed using the demodulated band

572  transform’S, rather than wavelets. Gamma power at each time bin was calculated as the

573  average (across frequencies) log of the squared amplitude. For each pair of signals X and Y, one
574  was orthogonalized to the other by taking the magnitude of the imaginary component of the
575  product of one signal with the normalized complex conjugate of the other:

576 Yoren = [Im{Y X X"/ X[}

577  Both signals were band-pass filtered (0.2 — 1 Hz), and the Pearson correlation calculated

578 between signals. The process was repeated by orthogonalizing in the other direction and the
579  overall envelope correlation for a pair of recording sites was the average of the two Pearson
580  correlations.

581  Prior to diffusion map embedding, connectivity matrices were thresholded by saving at least
582  the top third (rounded up) connections for every row, as well as their corresponding columns
583  (to preserve symmetry). We also included any connections making up the minimum spanning
584  tree of the graph represented by the elementwise reciprocal of the connectivity matrix to
585  ensure the graph is connected.
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586 To confirm that the results presented here did not depend on the specific threshold chosen,
587  two additional thresholds were tested: 1) a more strict procedure, using the same procedure as
588  above except saving only the top 10%, or 2) a more permissive procedure, only thresholding
589  out negative correlations.

590

591  Diffusion map embedding. See Banks et al. (2022)*3 for details about DME. In brief, cosine

592  similarity was applied to the functional connectivity matrix (here orthogonalized power

593  envelope correlations) to yield the similarity matrix K = [k(i,j)], which was normalized by degree

594  to yield a diffusion matrix P = DK, where D is the degree matrix, i.e. the diagonal elements of D
595 = Z?’zl k(i,j), where N is the number of recording sites, and the off-diagonal elements of D are

596  zero. If the recording sites are conceptualized as nodes on a graph with edges defined by K,

597  then P can be understood as the transition probability matrix for a ‘random walk’ or a

598  ‘diffusion’ on the graph (see**%%). DME consists of mapping the recording sites into an

599 embedding space using an eigendecomposition of P,

600  WO(x;) = [Aafwa(x), Mbwa(X), .., Avbwm(xi)]T,

601  where y; are the eigenvectors of P. The parameter t is the number of time steps in that random
602  walk; here, we fix t = 1. DME can be implemented alternatively based on a symmetric version of
603  diffusion matrix Psymm = D°KD ™, Basing DME on Psymm has the advantage that the

604  eigenvectors of Psymm form an orthogonal basis set (unlike the eigenvectors of P), providing

605 some additional convenience mathematically that is beyond the scope of this paper*

606  Additionally, the eigenvalues of P and Psymm are identical.

607  Effective dimensionality. We used effective dimensionality (Dg)8?, a graph theoretic measure of
608  network complexity, to characterize the shape of the spectrum of Psymm , Or equivalently the
609  complexity of its community structure. De was calculated from the eigenvalue spectrum |Ai| of
610  Psymm and normalized to the total number of dimensions (N; equal to the number of recording
611 sites)as Dy = (XN, 2,)%/3N, 2% /(N — 1). The first dimension for which A1 = 1 is skipped. De
612  gives information about how data is distributed in N dimensions (where N is the number of
613  recording sites). De = 1 for a random graph, as the data are distributed equally in every

614  dimension and the spectrum is flat. A graph with structure, e.g., nodes that connect to each
615  other more than the rest of the graph, has a peaked spectrum and De <1.

616  Dimensionality reduction via low rank approximations to Psymm. When calculating distances or
617  evaluating clustering in embedding space, we used a low rank approximation, discarding

618  dimensions associated with small eigenvalues that are likely dominated by noise. The choice of
619  threshold for this procedure is somewhat arbitrary; we used an algorithm to identify the

620 inflection point kini beyond which eigenvalues are small and decrease gradually®?, and the

621 number of dimensions retained set equal to kinsi — 1.
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622  Clustering of functional regions in embedding space. ROls were categorized into 9 functional
623  regions based on analysis of resting state data from a different cohort of participants (Banks et
624  al., 2022). A small number of sites in ROls that were not used in the scheme in Banks et al.,

625 2022 were assigned to ROI clusters based on anatomical and functional criteria.

626 Two measures were used to quantify the arrangement of nodes in embedding space according
627 tothese functional regions. First, the distance between regions in embedding space was

628 measured by the pairwise (by region) Euclidean distance between centroids (mean position
629  across nodes within each region). Second, the Calinski-Harabasz index of cluster quality (the
630 ratio of between-cluster variance to within-cluster variance;®3) was used to quantify the extent
631 to which nodes segregated in embedding space according to these pre-identified functional
632  regions.

633  Local distance. To quantify the tendency of nodes to be functionally distinct from other nodes
634  (or, conversely, to aggregate in embedding space and be less differentiated) without needing to
635 rely on assignments of nodes to pre-defined ROIs or regional groupings, we defined a measure
636 called ‘local distance’ as the mean Euclidean distance in embedding space from a given node to
637 each of the 5% closest other nodes, divided by the median distance to all pairs of nodes.

638  Statistical modeling. All measures (Dg, centroid distance, Calinski-Harabasz index, local distance)
639  were computed for individual data segments, then averaged within each participant across all
640 segments of the same behavioral state (WA, S, U, WS, N1, N2, N3, R). Linear mixed effects

641 models were fit to these measures with behavioral state as a fixed effect and participant as a
642 random effect; fit models were compared to a reduced model omitting the fixed effect for state
643  using a likelihood ratio test. Pairwise planned contrasts were tested between WA-S, WA-U, and
644  S-U for propofol experiments, and WS-N1, WS-N2, WS-N3, WS-R, N1-N2, N2-N3, N2-R and N3-R
645 for sleep experiments; p-values were adjusted using a multivariate t distribution that accounts
646  for correlations among tested hypotheses. Statistical analyses were performed in R version

647  4.2.1 using the packages Ime42* and emmeans®.

648
649  Data and code availability

650  Full data is available via a request to the Authors pending establishment of a formal data
651  sharing agreement. Data required to reproduce figures from the manuscript and statistical
652  analyses are provided with the software. Software is available at:

653  https://zenodo.org/record/7320253 or https://doi.org/10.5281/zenodo0.7320253

654
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