

Consciousness is indexed by analogous cortical reorganization during sleep and anesthesia

Bryan M. Krause¹, Declan I. Campbell¹, Christopher K. Kovach², Rashmi N. Mueller^{2,3}, Hiroto Kawasaki², Kirill V. Nourski^{2,4}, Matthew I. Banks^{1,5*}

¹Department of Anesthesiology, University of Wisconsin, Madison, WI, USA

²Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA

³Department of Anesthesia, The University of Iowa, Iowa City, IA 52242, USA

⁴Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, USA

⁵Department of Neuroscience, University of Wisconsin, Madison, WI, USA

***Corresponding author:**

Matthew I. Banks, Ph.D.

Professor

Department of Anesthesiology

University of Wisconsin

1300 University Avenue, Room 4605

Madison, WI 53706

Tel.: (608) 261-1143

E-mail: mibanks@wisc.edu

Keywords:

Functional connectivity, intracranial electrophysiology, anesthesia, sleep

Acknowledgements:

This work was supported by the National Institutes of Health (grant numbers R01-DC04290, R01-GM109086, S10OD025025, UL1-RR024979). We are grateful to Haiming Chen, Brian Dlouhy, M. Eric Dyken, Phillip Gander, Christopher Garcia, Timothy Griffiths, Matthew Howard, William Mayner, Christopher Petkov, and Ariane Rhone for help with data collection, analysis, interpretation, and helpful comments on the manuscript.

33

34 **Abstract**

35 Although sleep and anesthesia are predicted to share common neural signatures of transitions
36 into and out of unconsciousness, supportive evidence has been elusive. We identified these
37 signatures using intracranial electroencephalography in neurosurgical patients. We applied
38 diffusion map embedding to map cortical location into a space where proximity indicates
39 functional similarity using a normalized connectivity ('diffusion') matrix, itself a rich source of
40 information about network properties. During reduced consciousness, diffusion matrices
41 exhibited decreased effective dimensionality, reflecting reduced network entropy.
42 Furthermore, functional brain regions exhibited tighter clustering in embedding space with
43 greater distances between regions, corresponding to decreased differentiation and functional
44 integration. These changes were not region-specific, suggesting global network reorganization.
45 These results strongly suggest common neural substrates for loss and recovery of
46 consciousness during anesthesia and sleep, providing a systems-level mechanistic
47 understanding within an intuitive geometric context and laying the foundation for evaluation of
48 cortical state transitions in clinical settings.

49

50 **Introduction**

51 Leading theories of brain function predict that loss and recovery of consciousness (LOC, ROC)
52 are precipitated by large-scale reorganization of cortical networks. This reorganization might
53 result in altered functional integration and differentiation in the brain¹, communication into or
54 out of prefrontal cortex and amplification of sensory signals², or feedback connectivity³ with
55 concomitant effects on predictive processing⁴.

56 It is postulated that changes in the brain underlying LOC and ROC should overlap regardless of
57 the circumstances of their occurrence^{5,6}, and thus comparison of changes in the brain in
58 multiple contexts can be informative⁷. For example, general anesthesia and natural sleep
59 exhibit common behavioral and physiological features, including both dreaming (i.e., conscious
60 experience while disconnected from the environment) and unconsciousness⁸⁻¹⁰ and decreased
61 cerebral blood flow and metabolic rate¹¹⁻¹³. Recently, we observed similar changes in cortical
62 functional connectivity during anesthesia and sleep. Stages of higher probability of
63 consciousness, including wake, propofol sedation, and N1 and REM sleep, exhibited
64 connectivity profiles that were similar to each other but distinct from stages of reduced
65 probability of consciousness, including propofol unresponsiveness and N2 and N3 sleep⁷. These
66 findings were consistent with a network transition boundary for consciousness common to
67 anesthesia and natural sleep, which we linked to the ongoing debate about the locus of the
68 neural correlates of consciousness^{14,15}. However, the degree to which the brain traverses an
69 overlapping complement of network states during anesthesia versus sleep remains
70 controversial^{16,17}.

71 Questions remain as well about the specific features of network reorganization associated with
72 transitions into and out of consciousness. For example, although altered network connectivity is
73 observed consistently during both anesthesia and sleep, some studies report that connectivity
74 is decreased¹⁸⁻²⁴ and others that it is increased²⁵⁻²⁷. Furthermore, selective effects of anesthesia
75 have been reported on both feedback^{19,28} and feedforward²⁹ connectivity. Decreased thalamo-
76 cortical connectivity has been reported for both anesthesia and sleep^{30,31}, but at least for
77 anesthesia this change is unlikely to be causal for LOC¹¹. Distinct effects of anesthesia and sleep
78 also have been reported in analyses of resting state networks (RSNs). Increased modularity of
79 RSNs during NREM sleep was reported to be accompanied by greater connectivity overall²⁷,
80 suggesting differential effects on within- versus between-network connectivity. By contrast,
81 during propofol anesthesia both between- and within-network connectivity was observed to
82 decrease^{32,33}.

83 The organizational features of the conscious brain can be couched in terms of the balance
84 between integration and differentiation, i.e., between the unified nature of conscious
85 experience and its vast potential for variation. Investigations that operationalize changes in
86 integration and differentiation during anesthesia and sleep have produced consistent results.
87 Decreased differentiation of brain activity has been reported, indexed by reduced complexity of
88 both evoked brain responses³⁴⁻³⁷ and of spontaneous brain signals^{38,39}. Brain functional

89 integration decreases during both anesthesia⁴⁰ and NREM sleep²⁷; surprisingly, however,
90 overall connectivity decreased in the former study and increased in the latter.

91 In a small number of studies, data recorded during anesthesia and sleep has been compared
92 directly^{17,25,41}, but no clear and consistent mechanism for loss of consciousness emerges from
93 these analyses. We seek a unifying framework for understanding network reorganization during
94 the different stages of anesthesia and sleep and relating these changes to theoretical
95 constructs. Here, we explore the functional geometry of cortical networks using diffusion map
96 embedding (DME)⁴² and show that changes in connectivity across stages of sleep and
97 anesthesia reflect changes in the organization of cortical networks that may contribute to loss
98 of consciousness. As in our previous work, we distinguished stages corresponding to
99 substantially reduced probability of consciousness (propofol unresponsiveness, NREM sleep),
100 from the wake state and from stages of higher probability of conscious experience (propofol
101 sedation, light sleep, REM sleep). We show that entry into states of reduced consciousness
102 during both anesthesia and sleep can be indexed reliably by a single parameter, the effective
103 dimensionality of the normalized connectivity matrix. We present an analytical framework that
104 provides an intuitive, geometric understanding of changes in cortical networks associated with
105 states of reduced consciousness and observed reductions in effective dimensionality. Globally,
106 brain regions become more distinct (reduced *functional integration*), moving farther apart in
107 functional embedding space. Locally, brain subregions become less distinguishable (reduced
108 *differentiation*), moving closer to each other in the functional embedding space. This unifying
109 framework has a practical utility in identifying cortical state transitions in clinical settings and
110 broader implications for understanding the neural basis of consciousness.

111

112 **Results**

113 *Summary of experiments and recordings.*

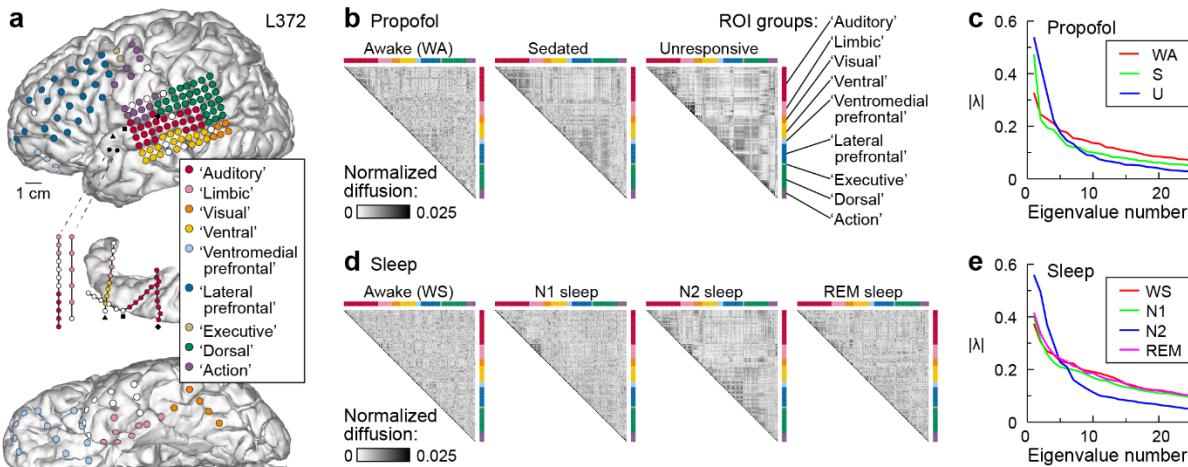
114 Resting state iEEG recordings were obtained in neurosurgical patients undergoing intracranial
115 monitoring for the purpose of identifying seizure foci. Demographic information and electrode
116 coverage are summarized in **Supplementary Tables 1** and **2**. Typical electrode coverage is
117 shown for one participant in **Figure 1a**, and a summary of the brain parcellation scheme and of
118 electrode coverage across all participants are shown in **Supplementary Figure 1**. Each recording
119 site was assigned to a region of interest (ROI), color-coded according to a functional
120 parcellation scheme illustrated in **Supplementary Figure 1a**. This scheme was derived from an
121 analysis of daytime resting state iEEG data from a complementary dataset obtained during
122 daytime wake⁴³. To investigate changes in cortical network organization during transitions in
123 arousal and awareness, data were recorded during induction of propofol anesthesia just prior
124 to removal of electrodes ($N = 14$ participants; **Supplementary Figure 2**), and during overnight
125 sleep ($N = 15$ participants; **Supplementary Figure 3**). As in our previous work, we identified
126 stages of anesthesia (WA: pre-drug wake; S: sedated but responsive; U: unresponsive) using a
127 standard clinical assessment tool (Observer's Assessment of Arousal Score; OAA/S^{7,44}). Sleep
128 stages were identified using standard polysomnography (WS: wake; N1: light sleep; N2 and N3:
129 NREM; R: REM).

130

131 *Changes in cortical network organization during anesthesia and sleep*

132 Functional connectivity was calculated as orthogonalized gamma band power envelope
133 correlations^{43,45}, yielding for each one-minute data segment an electrode \times electrode
134 connectivity matrix. The first steps of DME analysis are to create a similarity matrix by applying
135 cosine similarity to the functional connectivity matrix, then normalize, threshold, and make
136 symmetric the similarity matrix to yield a diffusion matrix \mathbf{P}_{symm} . \mathbf{P}_{symm} describes the diffusion of
137 an input signal applied to nodes (i.e., recording sites) on the graph⁴². When \mathbf{P}_{symm} is sorted by
138 brain region (indicated by colored bars in **Figure 1b**), increasing community structure in the
139 graph becomes evident in states of reduced consciousness under propofol anesthesia
140 (sedated/S, unresponsive/U). The degree of community structure can be quantified by
141 examining the eigenvalue spectrum of \mathbf{P}_{symm} (**Figure 1c**). Random graphs, i.e., those with
142 maximal entropy, have spectra that are approximately flat. Graphs with strong community
143 structure have spectra that are more peaked. The underlying entropy of the graph, and hence
144 the shape of the spectrum, can be quantified using the effective dimensionality $D_E \in (0,1)$, a
145 function of the eigenvalue spectrum and a graph theoretic measure of complexity (see
146 Methods). Importantly, the eigenvalue spectrum and calculation of D_E do not require nodes to
147 be ordered or classified. Like anesthesia, NREM sleep was associated with a more structured
148 \mathbf{P}_{symm} and more peaked spectrum (**Figure 1d,e**).

149



150

151 **Figure 1. Network organization varies during anesthesia and sleep. a:** Typical electrode coverage in one
152 participant (L372). Recording sites are color-coded according to the ROI group. White symbols denote
153 sites excluded from the analysis due to excessive noise, artifacts, location within seizure focus, in white
154 matter, or outside the brain. Black symbols denote depth electrode insertion points. **b:** Diffusion
155 matrices \mathbf{P}_{symm} during propofol anesthesia for the participant in **a**. Each matrix is from one minute of
156 data. **c:** Spectra of \mathbf{P}_{symm} calculated from the example matrices in **b**. For these examples, $D_E(\text{WA}) = 0.30$,
157 $D_E(\text{S}) = 0.20$, $D_E(\text{U}) = 0.10$. **d:** Diffusion matrices \mathbf{P}_{symm} during sleep for the participant in **a**. Each matrix is
158 from one minute of data. **e:** Spectra of \mathbf{P}_{symm} calculated from the matrices in **d**. For these examples,
159 $D_E(\text{WS}) = 0.31$, $D_E(\text{N1}) = 0.30$, $D_E(\text{N2}) = 0.14$, $D_E(\text{REM}) = 0.32$. For panels **b-e**, data recorded during
160 anesthesia and sleep experiments were divided into segments of length 60 s, and the diffusion matrix
161 and spectrum computed for each segment. Matrices and spectra shown are from the segments with
162 effective dimensionality closest to the median value for each stage of anesthesia and sleep in this
163 participant.

164

165 The time series of D_E computed for each 60-second data segment recorded during an
166 experiment reveals striking changes in network structure over time during both anesthesia and
167 sleep experiments, with transitions into S and U during anesthesia and into N2 during sleep
168 accompanied by sharp decreases in D_E (**Figure 2**). Notably, D_E was consistently high during
169 stages associated with higher probability of consciousness (WA, S, WS, N1, REM). Two
170 additional examples from participants recorded during both propofol anesthesia and during
171 sleep are shown in **Supplementary Figure 4**.

172 Data were summarized across participants by first averaging D_E within participant across all
173 segments associated with each stage of anesthesia and sleep. D_E varied significantly by state for
174 both propofol anesthesia and sleep (likelihood ratio test for omitting state: propofol $\chi^2(2) =$
175 42.0, $p < 0.0001$; sleep $\chi^2(4) = 79.3$, $p < 0.0001$) (**Figure 3**). For propofol anesthesia, mean D_E
176 decreased progressively from WA to S to U (**Supplementary Table 4**). During sleep, D_E for N1
177 and R were not significantly different from WS, but D_E decreased in N2 and decreased further in
178 N3 (**Supplementary Table 4**). These results were robust to the choice of threshold in calculating
179 P_{symm} (**Supplementary Figure 5**).

180

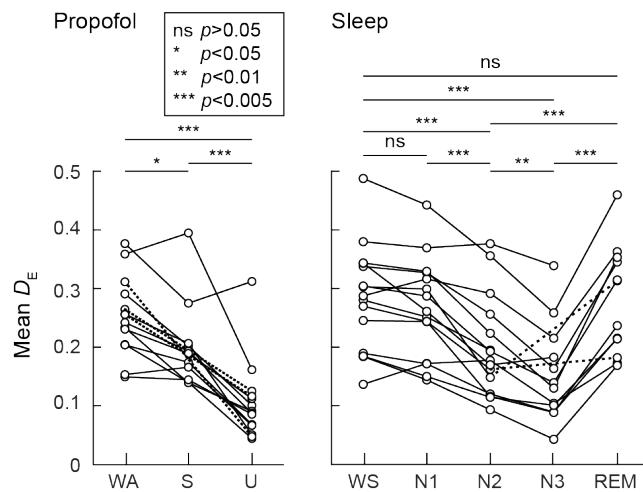
181



182

183 **Figure 2. Time series of D_E from an example participant.** Changes during anesthesia and sleep are
184 shown in left and right panel, respectively. Each data point represents one minute of data. Time is
185 depicted relative to the start of recording. Same participant(L372) as in **Figure 1**.

186



187

188 **Figure 3. Summary of changes in D_E in states of reduced consciousness.** Changes during propofol
189 anesthesia and sleep are shown in left and right panel, respectively. Symbols are mean within a
190 participant, connected by lines for data points from the same participant. Dashed lines are used to
191 connect points when data in the intervening state (S; N3) is not available for that participant. P -values
192 are from paired post-hoc comparisons, adjusted using multivariate t -distribution.

193 *Changes in cortical network organization are not regionally specific*

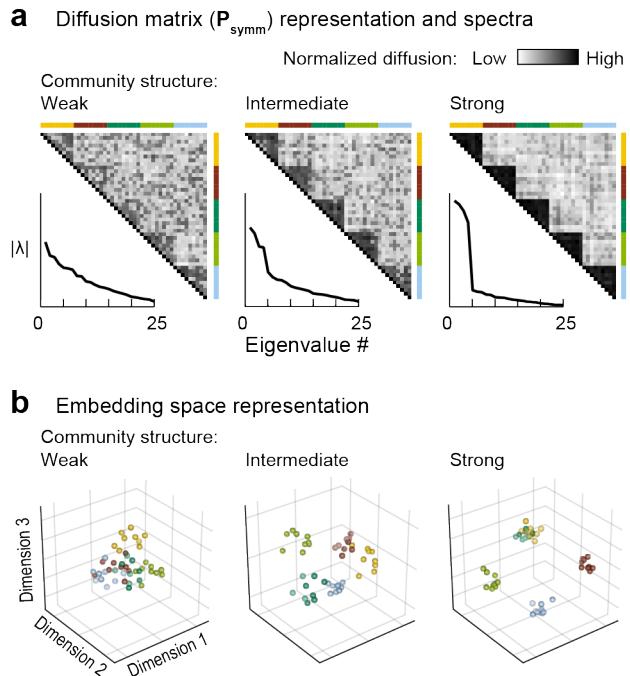
194 It is plausible that observed changes in D_E between network states could be dominated by
195 changes in a subset of recording sites in specific brain regions. We performed sensitivity
196 analyses by repeating the analysis of **Figure 3** after excluding recording sites from groups of
197 cortical functional regions (**Supplementary Figure 6**; groups of regions were: Auditory, Limbic,
198 Visual + Ventral, Ventromedial Prefrontal + Lateral Prefrontal + Executive, and Dorsal + Action).
199 The significant decrease in D_E during states of reduced consciousness was observed in all cases,
200 regardless of which regions were eliminated. These results indicate that the changes in network
201 structure associated with transitions into states of reduced consciousness could not be
202 explained by connectivity changes of any single brain region. Thus, anesthesia and sleep are
203 associated with global reorganization of cortical networks.

204 *Geometric correlates to changes in effective dimensionality*

205 We've shown that D_E indexes entry and exit from states of reduced consciousness based on
206 only the spectrum (eigenvalues) of \mathbf{P}_{symm} . The observed changes in D_E indicate a reorganization
207 of brain networks; however, because there is no unique mapping between a spectrum and a
208 network, changes in spectrum do not identify the specific features of this reorganization. To
209 gain insight into these features, we can apply the next steps in DME analysis and consider data
210 in the embedding space defined by the spectral decomposition of \mathbf{P}_{symm} .

211 A simple toy model is useful in this regard (**Figure 4**). We simulated a modular network
212 consisting of five regions, with nine nodes in each region. Two types of connectivity were
213 present in the model: 1) uniform random connectivity linking nodes regardless of region, and
214 2) stronger within-region connectivity imposed on this nonspecific random connectivity. The
215 strength of within-region connectivity was varied from weak (**Figure 4a**, left column) to strong
216 (**Figure 4a**, right column), corresponding to an increasingly modular organization of the
217 network. This increase in modular organization was associated with more peaked eigenvalue
218 spectra and decreased D_E (insets in **Figure 4a**). DME conveys the functional geometry of these
219 changes in community structure by mapping the data into a lower dimensional embedding
220 space using the eigenfunctions and eigenvalues of \mathbf{P}_{symm} (**Figure 4b**). Nodes that are connected
221 similarly to the rest of the network are mapped to nearby locations in the embedding space,
222 indicating their functional similarity. A more modular network organization results in more
223 tightly clustered nodes within each region; the neural responses of this more modular network
224 would exhibit reduced differentiation. This is easily illustrated by considering the extreme case
225 (right), in which the nodes within each region are so tightly coupled as to render them nearly
226 equivalent, essentially transforming the original 40-node network into a 5-node network with a
227 vastly reduced repertoire of possible network states. In addition, regions become more distinct
228 and more distant from each other as modularity increases, corresponding to a decrease in
229 functional integration across the whole network.

230



231

232 **Figure 4. Toy example showing effects of stronger community structure on embeddings. A:** Diffusion
233 matrix (\mathbf{P}_{symm}) representation of weak, intermediate, and strong community structure (left, middle and
234 right panel, respectively). Insets depict \mathbf{P}_{symm} spectra. $D_E = 0.44, 0.35, 0.18$, respectively. **B:** Embedding
235 space representation of weak, intermediate, and strong community structure (left, middle and right
236 panel, respectively). Mean centroid distance = 0.35, 0.42, 0.50, respectively.

237

238 We observed similar changes in embeddings of functional connectivity data derived from
239 intracranial recordings (**Figure 5**). Data recorded during states of reduced consciousness during
240 propofol anesthesia (e.g., U; **Figure 5a**) or sleep (e.g., N2 or N3; **Figure 5b**) were more ‘clumpy’
241 in embedding space and regional clusters of nodes moved farther apart from each other,
242 suggesting an increase in modular organization.

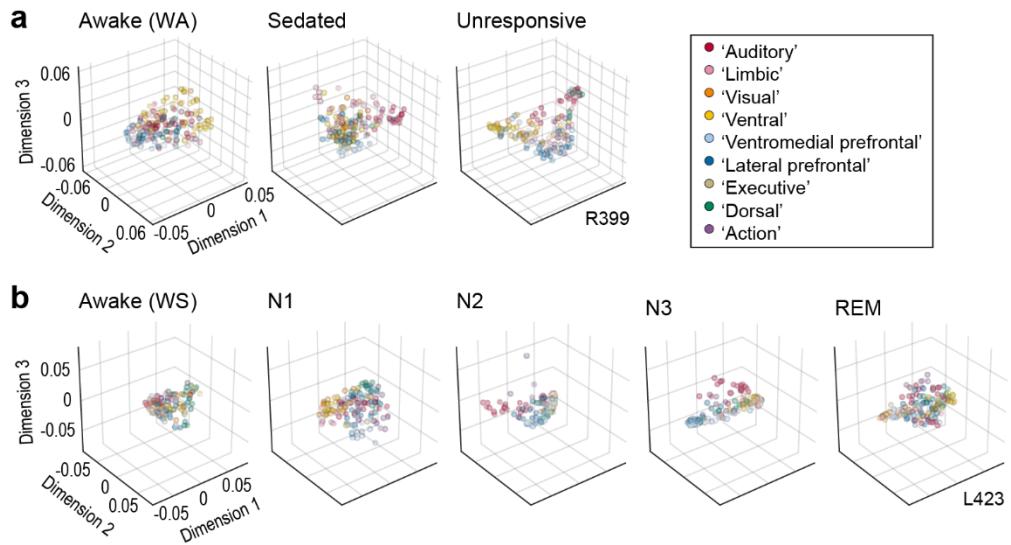
243 We quantified these effects both with and without *a priori* assignments of electrodes to labeled
244 clusters. Using labels from the nine regions illustrated in **Supplementary Figure 1c**, we assessed
245 changes in cluster organization within embeddings. We measured inter-cluster distances
246 between cluster centroids and regional grouping of nodes using an index of cluster quality
247 (Calinski-Harabasz index) calculated as the ratio of between-cluster and within-cluster
248 dispersion. We also considered the position of nodes in embedding space relative to their
249 neighboring nodes without *a priori* assignments to functional regions. The analysis is illustrated
250 in **Supplementary Figure 7**. For each node, we calculated a normalized ‘local distance’ as the
251 average pairwise distance to the 5th-percentile closest nodes normalized to the median distance
252 to all nodes. Much like cluster quality this measure captures combined aspects of
253 differentiation (distance among similar nodes) and integration (distance between dissimilar
254 nodes), but without requiring label assignments.

255 Systematic changes in all three measures were observed across stages of anesthesia (**Figure 6a**,
256 example participant). In U, inter-cluster distances increased, cluster quality improved, and local
257 distances decreased. These results were consistent across subjects (likelihood ratio test for
258 omitting state: inter-cluster distance $\chi^2(2) = 37.8$, $p < 0.0001$; cluster quality $\chi^2(2) = 22.8$, $p <$
259 0.0001 ; local distance $\chi^2(2) = 47.9$, $p < 0.0001$; see pairwise comparisons in **Supplementary**
260 **Table 3**). Accordingly, effective dimensionality was negatively correlated with inter-cluster
261 distance and cluster quality, and positively correlated with local distance (**Figure 6b**). Similar
262 relationships with sleep stage were observed in an example participant (**Figure 6c**) and across
263 participants (likelihood ratio test for omitting state: inter-cluster distance $\chi^2(4) = 42.7$, $p <$
264 0.0001 ; cluster quality $\chi^2(4) = 22.5$, $p = 0.00016$; local distance $\chi^2(4) = 81.6$, $p < 0.0001$; see
265 pairwise comparisons in **Supplementary Table 3**) and were correlated with effective
266 dimensionality (**Figure 6d**).

267 For both sleep and anesthesia, the strongest correlations were observed between local distance
268 and effective dimensionality. Local distance captures the reorganization in embedding space,
269 and effective dimensionality allows for tracking changes in anesthesia or sleep stage, both
270 without relying on *a priori* assumptions about the data.

271

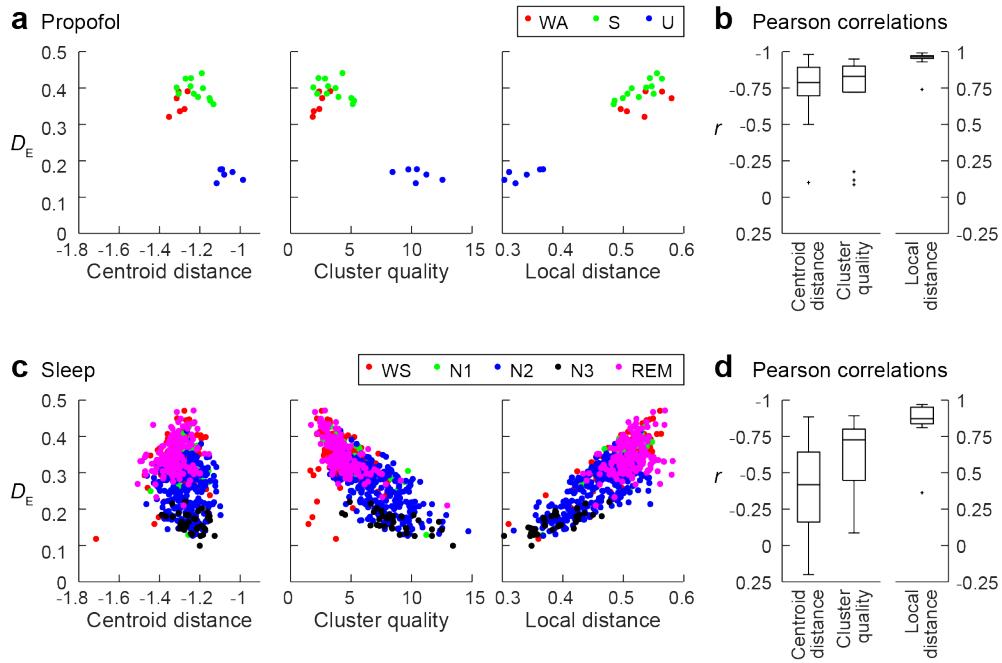
272



273

274 **Figure 5. Changes in functional geometry during anesthesia and sleep in example participants. A:**
275 Arrangement of recorded data in embedding space (first three dimensions) during anesthesia in an
276 example participant (R399). Each symbol represents an individual recording site. Colors indicate
277 assignment to functional regions (legend). **B:** Similar to **a**, but for a second participant (L423) during
278 sleep.

279



280

281 **Figure 6. Changes in embedding geometry are correlated with effective dimensionality.** During
282 induction of anesthesia, inter-cluster distances, cluster quality, and local distance are state-dependent
283 and therefore tend to correlate with effective dimensionality **(a-b)**. **a:** Examples for a single participant
284 (R399) where each point represents a 60-second segment of data. **b:** Pearson correlation coefficients
285 across participants between D_E and each embedding measure. Centroid distance and cluster quality are
286 negatively correlated with D_E and presented on a reversed axis. The strongest association with D_E is with
287 local distance. Similar associations are observed during sleep **(c-d)**. **c:** Single participant example (L423).
288 **d:** Pearson correlation coefficients between embedding measures and D_E across participants.

289 **Discussion**

290 *Summary of findings*

291 Identifying changes in the brain that underlie LOC and ROC is a fundamental and unresolved
292 question in neuroscience. Previous work indicates that consciousness is a property specific to
293 the organizational structure of brain networks^{1,46}. In this context, LOC and ROC should involve
294 changes in this organization that are not tied to specific precipitating factors, such as the
295 concentration of an exogenous anesthetic agent or the activity patterns in specific subcortical
296 sleep and arousal centers. Building on our previous work⁷, we distinguished responsiveness
297 under anesthesia (S) from unresponsiveness (U) to control for drug effects not specific to LOC.
298 Although S is likely a stage of fluctuating arousal, we expected that participants were conscious
299 a greater percentage of time compared to the unresponsive state U. Similarly, we expect that
300 participants spent the majority of time conscious but drowsy or having conscious experiences in
301 the form of dreaming during N1 and REM; this contrasts with N2 and N3, which are
302 characterized by lower probability of dreaming and higher probability of unconsciousness⁸. We
303 present a novel analytical framework that links changes in the organization of cortical networks
304 with changes in arousal and awareness during anesthesia and sleep. We quantified these
305 changes using D_E , the effective dimensionality of a matrix derived from the functional
306 connectivity matrix. D_E is robust to the choice of connectivity threshold used to construct the
307 network graph, and is computationally efficient to calculate based on short data segments. D_E is
308 also attractive because it is easily understood geometrically through its link to DME analysis.

309

310 *Changes in functional geometry reflect changes in complexity, differentiation, and integration*

311 D_E is related to spatial complexity, in that fewer dimensions are required to represent a less
312 complicated network. Thus, the results presented here are consistent with the decreased
313 spatial complexity and smaller repertoire of distinct network configurations reported during
314 LOC⁴⁷⁻⁵¹. As shown in **Figure 4**, changes in simulated network modularity are reflected by
315 changes in D_E : when nodes are more tightly connected within each sub-network relative to
316 connections to other sub-networks, D_E decreases (We note that there is not a strict relationship
317 between D_E and modularity, as it is theoretically possible to create a biologically unrealistic
318 network with no modularity but low D_E .) In embedding space, this increase in modularity is
319 reflected in increased cluster quality and in the shift to more local connectivity (**Figure 6**). Thus,
320 the observation that D_E decreases during both anesthesia and sleep (**Figure 3**) links the results
321 presented here with previous results derived from fMRI showing increased modularity during
322 NREM sleep²⁷. Reported decreases in within-network connectivity during anesthesia^{32,33} are
323 harder to reconcile with increased modularity, though this could reflect differences in the
324 spatial scale of the analyses.

325 Proximity in embedding space corresponds to similarity in functional connectivity to the rest of
326 the network; during states of reduced consciousness, recording sites become closer to their

327 nearest neighbors (less distinguishable) in embedding space, suggesting reduced differentiation
328 of their activity patterns. Consistent with these results, perturbational complexity, a measure of
329 differentiation and a well-validated measure of level of consciousness²⁴, shows consistent
330 decreases during anesthesia and sleep³⁴⁻³⁷. Similar results have been obtained using
331 spatiotemporal complexity derived from resting state activity^{38,39,52}.

332 The results presented here also speak to functional integration across the network, previously
333 reported to decrease during anesthesia^{40,53} (though interestingly not during NREM sleep²⁷). This
334 is mostly easily visualized in embedding space, where functional regions tend to move farther
335 apart during states of reduced consciousness (**Figure 6**). Decreased functional integration and
336 differentiation during sleep and anesthesia likely play a role in reducing network efficiency
337 during anesthesia and in disorders of consciousness^{23,54,55}.

338

339 *Dynamics of network transitions*

340 The dynamics of network transitions are becoming a rich vein of inquiry for understanding the
341 neural basis of consciousness^{33,56}. Although these dynamics were not a focus of the current
342 study, the framework presented here readily lends itself to their exploration. For example,
343 simple clustering can distinguish integrated from segregated network states in resting state
344 functional connectivity derived from fMRI data and enable exploration of the dynamics of state
345 transitions during resting state and cognitive tasks^{57,58}. These dynamics are altered under
346 anesthesia, with a shift towards greater time spent in the segregated state and decreases in
347 network complexity and information capacity^{53,59}.

348 Although we have divided stages of anesthesia and sleep into two categories, one of reduced
349 consciousness and the other of relatively intact consciousness, this is clearly an
350 oversimplification. These stages of anesthesia (S, U) and sleep are undoubtedly superpositions
351 of the more generally relevant states of unconsciousness, disconnected consciousness (i.e.,
352 dreaming), and connected consciousness. Stages of reduced consciousness (U, N2, N3) are
353 likely dominated by segments of unconsciousness, but also include periods of disconnected
354 consciousness^{8,9}. Similarly, S and N1 are likely mixtures of connected consciousness,
355 disconnected consciousness, and unconsciousness. This continuum is reflected in the smoothly
356 varying changes across stage in D_E and other metrics presented here.

357

358 *Theories of consciousness*

359 Central to the ongoing debate about the neural correlates of consciousness are their loci in the
360 brain^{14,15}. Global Neuronal Workspace Theory⁴⁶ places prefrontal cortex and its connections
361 with parietal regions central to these correlates, whereas Integrated Information Theory (IIT;¹
362 sites these correlates in the ‘back’ of the brain, a region spanning temporal, occipital, and
363 parietal cortex. Although clinical considerations precluded an exhaustive and invariant sampling

364 of brain regions in our cohort of participants, our results indicate that transitions into and out of
365 states of reduced consciousness involve a global network reorganization rather than relying on
366 specific regions (**Supplementary Figure 6**). However, observation of global network changes
367 during anesthesia and sleep does not exclude the possibility that local changes in key regions
368 (i.e., prefrontal or parietal cortex) are sufficient to cause loss of consciousness. Additionally,
369 even global cortical changes are likely coordinated by small brain areas with broad reach, such
370 as central lateral thalamus⁶⁰.

371 Previous work investigating mechanisms of anesthesia focused on disruptions in connectivity,
372 especially feedback cortico-cortical connectivity. Studies in both human subjects and animal
373 models showed reduced feedback connectivity at doses of anesthetics causing loss of
374 consciousness^{18,19,28,61}. These data are consistent with the Global Neuronal Workspace Theory,
375 in which feedback from prefrontal cortex to wide areas of the brain is critical for conscious
376 experience. They also support a model based on predictive processing in which consciousness
377 relies on active comparisons between internally-generated expectations and observed sensory
378 information^{62,63}. However, several findings are not easily reconciled with these models,
379 including reports of increases in connectivity²⁵⁻²⁷ and the reported suppression of feedforward
380 connectivity²⁹.

381 By focusing on network reorganization during states of reduced consciousness, we shift the
382 focus beyond pathway-specific changes during LOC and ROC, and explore how local and global
383 changes in connectivity combine to disrupt both differentiation and integration in the
384 unconscious brain. However, we note that functional integration is not the same as information
385 integration central to IIT as the latter distinguishes causal from non-causal interactions. Indeed,
386 it is not possible to ascertain information integration using purely observational data. However,
387 theoretical work has shown that differentiation can be used to establish an upper bound on
388 integrated information⁶⁴. Thus, the results presented here, when viewed through the lens of
389 differentiation, are consistent with a decrease in information integration during reduced states
390 of consciousness.

391

392 *Caveats & limitations*

393 We focused here on a specific functional connectivity measure (orthogonalized power envelope
394 correlations) and a specific frequency band (gamma). We focused on this band and this measure
395 because our previous work demonstrated its utility for performing DME analysis⁴³. However, we
396 also note that the results of that paper were robust to choice of frequency band, and expect
397 that the results presented here would also not depend strongly on that choice. Gamma band
398 connectivity is also strongly related to connectivity derived from fMRI⁶⁵, allowing comparisons
399 to the body of work relying on neuroimaging for exploring changes in network organization
400 during anesthesia and sleep.

401 Because participants in the current study had a neurological disorder, they may not be entirely
402 representative of a healthy population. This caveat is inherent to all human intracranial

403 electrophysiology studies, as discussed previously (e.g., Banks et al., 2020, 2022). However, we
404 note that results presented in this study were consistent across participants with different
405 seizure foci, clinical histories, and drug regimens. In addition, it is possible that seizures, AED
406 use, and the hospital environment may affect sleep and sensitivity to anesthesia. Broadly,
407 seizures can disrupt sleep architecture⁶⁶⁻⁶⁸. However, participants were monitored for seizure
408 activity during the sleep recording session, and in the one participant with overnight seizures
409 (L403), data collected after seizures began were excluded. Similarly, although AEDs are reported
410 to alter the structure of sleep⁶⁹, participants had discontinued their AEDs before collection of
411 overnight sleep data, reducing the effect of AEDs on sleep data in this cohort. The quality and
412 structure of sleep may also have been affected by the hospital environment, possibly
413 contributing to the absence of N3 sleep in three participants. Because we had sufficient
414 representation of all studied sleep stages in the cohort (see **Supplementary Table 1**), the effect
415 of AEDs or the environment on the likelihood of entering a particular stage was not a confound.
416 Similarly, while the use of AEDs could lead to a reduction of the dose of propofol required to
417 achieve surgical level of general anesthesia⁷⁰, the present study relied on behavioral assessment
418 of arousal. Thus, the definition of stages of anesthesia was not affected by factors secondary to
419 the participants' history of epilepsy.

420

421 *Future directions*

422 The iEEG results presented here support a model in which altered differentiation and functional
423 integration of cortical networks underlie changes in consciousness, and suggest that the
424 analytical framework presented here could contribute to understanding the neural correlates of
425 consciousness. Next steps should include recapitulation of these results using non-invasive
426 methods during anesthesia and sleep, and in patients with disorders of consciousness.
427 Extending this analysis to scalp electroencephalography in particular would enhance the
428 translational relevance of these findings. Assessments in clinical settings often require
429 monitoring of consciousness in real time. Accordingly, tracking of the dynamics of D_E and of data
430 in embedding space will enable identification of rapid changes in brain state underlying
431 transitions between drowsiness, disconnected consciousness, and unconsciousness. Finally,
432 extending DME analysis to apply to effective connectivity would enable more thorough
433 investigation of causal structure theories of consciousness such as IIT.

434

435 **Materials and Methods**

436 *Participants*

437 The study was carried out in 21 neurosurgical patients (8 female; age 18-54 years old, median
438 age 34 years old) diagnosed with medically refractory epilepsy. The patients were undergoing
439 chronic invasive electrophysiological monitoring to identify seizure foci prior to resection
440 surgery (**Supplementary Table 1**). Research protocols aligned with best practices recently
441 aggregated in⁷¹ and were approved by the University of Iowa Institutional Review Board and
442 the National Institutes of Health; written informed consent was obtained from all participants.
443 Research participation did not interfere with acquisition of clinically necessary data, and
444 participants could rescind consent for research without interrupting their clinical management.
445 All participants underwent neuropsychological assessment prior to electrode implantation, and
446 none had cognitive deficits that would impact the results of this study. The participants were
447 tapered off their antiepileptic drugs during chronic monitoring when resting state data were
448 collected.

449

450 *Experimental procedures*

451 *Pre-implantation neuroimaging.* All participants underwent whole-brain high-resolution T1-
452 weighted structural MRI scans before electrode implantation. The scanner was a 3T GE
453 Discovery MR750W with a 32-channel head coil. The T1 scan (3D FSPGR BRAVO sequence) was
454 obtained with the following parameters: FOV = 25.6 cm, flip angle = 12 deg., TR = 8.50 ms, TE =
455 3.29 ms, inversion time = 450 ms, voxel size = 1.0 × 1.0 × 0.8 mm.

456 *iEEG recordings.* iEEG recordings were obtained using either subdural and depth electrodes, or
457 depth electrodes alone, based on clinical indications. Electrode arrays were manufactured by
458 Ad-Tech Medical (Racine, WI). Subdural arrays, implanted in 14 participants out of 21, consisted
459 of platinum-iridium discs (2.3 mm diameter, 5-10 mm inter-electrode distance), embedded in a
460 silicon membrane. Stereotactically implanted depth arrays included between 4 and 12
461 cylindrical contacts along the electrode shaft, with 5-10 mm inter-electrode distance. A
462 subgaleal electrode, placed over the cranial vertex near midline, was used as a reference in all
463 participants. All electrodes were placed solely on the basis of clinical requirements, as
464 determined by the team of epileptologists and neurosurgeons⁷².

465 Resting-state (RS) data were recorded during overnight sleep ($N = 15$ participants) and during
466 induction of propofol anesthesia ($N = 14$ participants). In 8 participants, both sets of data were
467 recorded, with sleep data collected first, followed several days later by anesthesia data.

468 *Sleep recordings.* Resting state iEEG, EEG, and video data were collected in the dedicated,
469 electrically shielded suite in The University of Iowa Clinical Research Unit while the participants
470 lay in the hospital bed. Sleep data were collected 7.5 +/- 1.1 days [range 6 – 9] after iEEG
471 electrode implantation surgery. Data were recorded using a Neuralynx Atlas System (Neuralynx

472 Inc., Bozeman, MT), amplified, filtered (0.1–500 Hz bandpass, 5 dB/octave rolloff), and digitized
473 at a sampling rate of 2000 Hz.

474 Stages of sleep were defined manually using facial EMG and scalp EEG data based on standard
475 clinical criteria (Berry et al., 2017) independently by two individuals who participate in the
476 inter-scorer reliability program of the American Academy of Sleep Medicine: a licensed
477 polysomnography technologist, certified by the Board of Registered Polysomnography
478 Technologists, and a physician certified in Sleep Medicine by the Accreditation Council for
479 Graduate Medical Education. The final staging report was agreed upon by the two scorers after
480 a collaborative review. Scalp and facial electrodes were placed by an accredited technician, and
481 data were recorded by a clinical acquisition system (Nihon Kohden EEG-2100) in parallel with
482 research data acquisition. Facial electrodes were placed following guidelines of the American
483 Academy of Sleep Medicine (Berry et al., 2017) at the left and right mentalis for EMG, and
484 adjacent to left and right outer canthi for EOG. EEG was obtained from electrodes placed
485 following the international 10-20 system at A1, A2, F3, F4, O1, and O2 in all participants, with
486 the following additional electrodes: C3 and C4 in all participants but R376; E1 and E2 in L372
487 and R376; Cz and Fz in L409, L423, and L585; F7 in L585; F8 in L423 and L585. All participants
488 had periods of N1 and N2 sleep identified; 12 out of 15 had N3 sleep periods and 12 out of 15
489 had REM. One participant (L403) experienced multiple seizures in the second half of the night;
490 those data were excluded from analysis. The durations of recordings for each sleep stage in
491 each participant are provided in **Supplementary Table 1**.

492 *Anesthesia data.* Resting state data were collected in the operating room during induction of
493 propofol anesthesia just prior to electrode removal and seizure focus resection surgery. Data
494 acquisition was controlled by a TDT RZ2 real-time processor (Tucker-Davis Technologies,
495 Alachua, FL) in participants R369 through L460 and by a Neuralynx Atlas System in participants
496 L514 and L585. Recorded data were amplified, filtered (0.7–800 Hz bandpass, 12 dB/octave
497 rolloff for TDT-recorded data; 0.1–500 Hz bandpass, 5 dB/octave rolloff for Neuralynx-recorded
498 data), and digitized at a sampling rate of 2034.5 Hz (TDT) or 2000 Hz (Neuralynx). Although no
499 specific instructions were given about keeping eyes open or closed, participants were observed
500 to have eyes closed during nearly all resting state recordings. Data were recorded in 3-4 blocks
501 (duration 3-6 minutes each), interleaved with auditory stimulus paradigms related to other
502 studies (e.g.,^{73,74}). Data were collected during an awake baseline period and during infusion of
503 increasing doses of propofol (50 – 150 µg/kg/min; **Supplementary Figure 2**).

504 Awareness was assessed using the Observer's Assessment of Alertness/Sedation (OAA/S) scale
505 (Chernik et al., 1990). Bispectral index (BIS) (Gan et al., 1997) was measured using BIS Complete
506 4-Channel Monitor (Medtronic plc, Minneapolis, MN), but was not used in the analyses
507 presented in this study. OAA/S was assessed just before and just after collection of each resting
508 state data block. Data segments were assigned labels corresponding to one of three stages of
509 the anesthesia experiment: wake (WA; i.e., pre-drug) and two levels of anesthesia: sedated but

510 responsive to command (S; OAA/S ≥ 3) and unresponsive (U; OAA/S ≤ 2) (Nourski et al., 2018a)
511 (**Supplementary Figure 2**).

512 In 6 of 14 participants, OAA/S values crossed the boundary between S and U over the course of
513 the resting state block (e.g. resting state block #1 in participant L372; see **Supplementary**
514 **Figure 2**). In these cases, only the first and last 60-second segments of the block were analyzed;
515 data from the first segment were labeled S, and data from the second segment were labeled U.
516 Data in the intervening segment were not assigned an anesthesia stage label and were not used
517 in the analysis. The durations of recordings used in the analyses for each stage and each
518 participant during the anesthesia experiment are provided in **Supplementary Table 1**.

519

520 Data analysis

521 *Anatomical reconstruction and ROI parcellation.* Localization of recording sites and their
522 assignment to ROIs relied on post-implantation T1-weighted anatomical MRI and post-
523 implantation computed tomography (CT). All images were initially aligned with pre-operative T1
524 scans using linear coregistration implemented in FSL (FLIRT)⁷⁵. Electrodes were identified in the
525 post-implantation MRI as magnetic susceptibility artifacts and in the CT as metallic
526 hyperdensities. Electrode locations were further refined within the space of the pre-operative
527 MRI using three-dimensional non-linear thin-plate spline warping⁷⁶, which corrected for post-
528 operative brain shift and distortion. The warping was constrained with 50-100 control points,
529 manually selected throughout the brain, which were visually aligned to landmarks in the pre-
530 and post-implantation MRI.

531 To sort recording sites for presentation of diffusion matrices and for assessment of centroid
532 distances and clustering, recording sites were assigned to one of 58 ROIs organized into 9
533 functional regions (see **Figure 1**, **Supplementary Figure 1**, **Supplementary Table 2**)⁴³ based on
534 anatomical reconstructions of electrode locations in each participant. For subdural arrays, ROI
535 assignment was informed by automated parcellation of cortical gyri^{77,78} as implemented in the
536 FreeSurfer software package. For depth arrays, it was informed by MRI sections along sagittal,
537 coronal, and axial planes. Subcortical recording sites, recording sites identified as seizure foci or
538 characterized by excessive noise, and depth electrode contacts localized to the white matter or
539 outside brain, were excluded from analyses and are not listed in **Supplementary Table 2**.

540 *Preprocessing of iEEG data.* Analysis of iEEG data was performed using custom software written
541 in MATLAB Version 2021b programming environment (MathWorks, Natick, MA, USA). After
542 initial rejection of recording sites identified as seizure foci, several automated steps were taken
543 to exclude recording channels and time intervals contaminated by noise. First, channels were
544 excluded if average power in any frequency band (broadband, delta, theta, alpha, beta, gamma,
545 or high gamma; see below) exceeded 3.5 standard deviations of the average power across all
546 channels for that participant. Next, transient artifacts were detected by identifying voltage
547 deflections exceeding 10 standard deviations on a given channel. A time window was identified

548 extending before and after the detected artifact until the voltage returned to the zero-mean
549 baseline plus an additional 100 ms buffer before and after. High-frequency artifacts were also
550 removed by masking segments of data with high gamma power exceeding 5 standard
551 deviations of the mean across all segments. Only time bins free of these artifact masks were
552 considered in subsequent analyses. Artifact rejection was applied across all channels
553 simultaneously so that all connectivity measures were derived from the same time windows.
554 Occasionally, particular channels survived the initial average power criteria yet had frequent
555 artifacts that led to loss of data across all the other channels. There is a tradeoff in rejecting
556 artifacts (losing time across all channels) and rejecting channels (losing all data for that
557 channel). If artifacts occur on many channels, there is little benefit to excluding any one
558 channel. However, if frequent artifacts occur on one or simultaneously on up to a few channels,
559 omitting these can save more data from other channels than those channels contribute at all
560 other times. We chose to optimize the total data retained, channels \times time windows, and
561 omitted some channels when necessary. To remove shared signals unlikely to derive from brain
562 activity, data from retained channels were high-pass filtered above 200 Hz, and a spatial filter
563 was derived from the singular value decomposition omitting the first singular vector. This
564 spatial filter was then applied to the broadband signal to remove this common signal.

565 For connectivity analysis, the orthogonalized gamma band (30-70 Hz) power envelope
566 correlation⁴⁵ was used. This measure avoids artifacts due to volume conduction by discounting
567 connectivity near zero phase lag. Data were divided into 60-second segments, pairwise
568 connectivity estimated in each segment, and then connectivity estimates averaged across all
569 segments for that participant.

570 Envelope correlations were estimated for each data segment and every recording site as in⁴⁵,
571 except time-frequency decomposition was performed using the demodulated band
572 transform⁷⁹, rather than wavelets. Gamma power at each time bin was calculated as the
573 average (across frequencies) log of the squared amplitude. For each pair of signals X and Y , one
574 was orthogonalized to the other by taking the magnitude of the imaginary component of the
575 product of one signal with the normalized complex conjugate of the other:

$$Y_{orth} = |\text{Im}\{Y \times X^*/|X|\}|$$

576 Both signals were band-pass filtered (0.2 – 1 Hz), and the Pearson correlation calculated
577 between signals. The process was repeated by orthogonalizing in the other direction and the
578 overall envelope correlation for a pair of recording sites was the average of the two Pearson
579 correlations.

580 Prior to diffusion map embedding, connectivity matrices were thresholded by saving at least
581 the top third (rounded up) connections for every row, as well as their corresponding columns
582 (to preserve symmetry). We also included any connections making up the minimum spanning
583 tree of the graph represented by the elementwise reciprocal of the connectivity matrix to
584 ensure the graph is connected.

586 To confirm that the results presented here did not depend on the specific threshold chosen,
587 two additional thresholds were tested: 1) a more strict procedure, using the same procedure as
588 above except saving only the top 10%, or 2) a more permissive procedure, only thresholding
589 out negative correlations.

590

591 *Diffusion map embedding.* See Banks et al. (2022)⁴³ for details about DME. In brief, cosine
592 similarity was applied to the functional connectivity matrix (here orthogonalized power
593 envelope correlations) to yield the similarity matrix $\mathbf{K} = [k(i,j)]$, which was normalized by degree
594 to yield a diffusion matrix $\mathbf{P} = \mathbf{D}^{-1}\mathbf{K}$, where \mathbf{D} is the degree matrix, i.e. the diagonal elements of \mathbf{D}
595 = $\sum_{j=1}^N k(i,j)$, where N is the number of recording sites, and the off-diagonal elements of \mathbf{D} are
596 zero. If the recording sites are conceptualized as nodes on a graph with edges defined by \mathbf{K} ,
597 then \mathbf{P} can be understood as the transition probability matrix for a ‘random walk’ or a
598 ‘diffusion’ on the graph (see^{42,80}). DME consists of mapping the recording sites into an
599 embedding space using an eigendecomposition of \mathbf{P} ,

600 $\Psi^{(t)}(x_i) = [\lambda_1^t \psi_1(x_i), \lambda_2^t \psi_2(x_i), \dots, \lambda_M^t \psi_M(x_i)]^T$,

601 where ψ_j are the eigenvectors of \mathbf{P} . The parameter t is the number of time steps in that random
602 walk; here, we fix $t = 1$. DME can be implemented alternatively based on a symmetric version of
603 diffusion matrix $\mathbf{P}_{\text{symm}} = \mathbf{D}^{-0.5}\mathbf{K}\mathbf{D}^{-0.5}$. Basing DME on \mathbf{P}_{symm} has the advantage that the
604 eigenvectors of \mathbf{P}_{symm} form an orthogonal basis set (unlike the eigenvectors of \mathbf{P}), providing
605 some additional convenience mathematically that is beyond the scope of this paper⁴².
606 Additionally, the eigenvalues of \mathbf{P} and \mathbf{P}_{symm} are identical.

607 *Effective dimensionality.* We used effective dimensionality (D_E)⁸¹, a graph theoretic measure of
608 network complexity, to characterize the shape of the spectrum of \mathbf{P}_{symm} , or equivalently the
609 complexity of its community structure. D_E was calculated from the eigenvalue spectrum $|\lambda_i|$ of
610 \mathbf{P}_{symm} and normalized to the total number of dimensions (N ; equal to the number of recording
611 sites) as $D_E = (\sum_{i=2}^N \lambda_i)^2 / \sum_{i=2}^N \lambda_i^2 / (N - 1)$. The first dimension for which $\lambda_1 = 1$ is skipped. D_E
612 gives information about how data is distributed in N dimensions (where N is the number of
613 recording sites). $D_E = 1$ for a random graph, as the data are distributed equally in every
614 dimension and the spectrum is flat. A graph with structure, e.g., nodes that connect to each
615 other more than the rest of the graph, has a peaked spectrum and $D_E < 1$.

616 *Dimensionality reduction via low rank approximations to \mathbf{P}_{symm} .* When calculating distances or
617 evaluating clustering in embedding space, we used a low rank approximation, discarding
618 dimensions associated with small eigenvalues that are likely dominated by noise. The choice of
619 threshold for this procedure is somewhat arbitrary; we used an algorithm to identify the
620 inflection point k_{infl} beyond which eigenvalues are small and decrease gradually⁸², and the
621 number of dimensions retained set equal to $k_{\text{infl}} - 1$.

622 *Clustering of functional regions in embedding space.* ROIs were categorized into 9 functional
623 regions based on analysis of resting state data from a different cohort of participants (Banks et
624 al., 2022). A small number of sites in ROIs that were not used in the scheme in Banks et al.,
625 2022 were assigned to ROI clusters based on anatomical and functional criteria.

626 Two measures were used to quantify the arrangement of nodes in embedding space according
627 to these functional regions. First, the distance between regions in embedding space was
628 measured by the pairwise (by region) Euclidean distance between centroids (mean position
629 across nodes within each region). Second, the Calinski-Harabasz index of cluster quality (the
630 ratio of between-cluster variance to within-cluster variance;⁸³) was used to quantify the extent
631 to which nodes segregated in embedding space according to these pre-identified functional
632 regions.

633 *Local distance.* To quantify the tendency of nodes to be functionally distinct from other nodes
634 (or, conversely, to aggregate in embedding space and be less differentiated) without needing to
635 rely on assignments of nodes to pre-defined ROIs or regional groupings, we defined a measure
636 called 'local distance' as the mean Euclidean distance in embedding space from a given node to
637 each of the 5% closest other nodes, divided by the median distance to all pairs of nodes.

638 *Statistical modeling.* All measures (D_E , centroid distance, Calinski-Harabasz index, local distance)
639 were computed for individual data segments, then averaged within each participant across all
640 segments of the same behavioral state (WA, S, U, WS, N1, N2, N3, R). Linear mixed effects
641 models were fit to these measures with behavioral state as a fixed effect and participant as a
642 random effect; fit models were compared to a reduced model omitting the fixed effect for state
643 using a likelihood ratio test. Pairwise planned contrasts were tested between WA-S, WA-U, and
644 S-U for propofol experiments, and WS-N1, WS-N2, WS-N3, WS-R, N1-N2, N2-N3, N2-R and N3-R
645 for sleep experiments; p-values were adjusted using a multivariate *t* distribution that accounts
646 for correlations among tested hypotheses. Statistical analyses were performed in R version
647 4.2.1 using the packages lme4⁸⁴ and emmeans⁸⁵.

648

649 **Data and code availability**

650 Full data is available via a request to the Authors pending establishment of a formal data
651 sharing agreement. Data required to reproduce figures from the manuscript and statistical
652 analyses are provided with the software. Software is available at:
653 <https://zenodo.org/record/7320253> or <https://doi.org/10.5281/zenodo.7320253>

654

655 **Declaration of Interests**

656 No competing interests.

657

658 **Author contributions**

659 Conceptualization: K.V.N., M.I.B.
660 Methodology: B.M.K., M.I.B, K.V.N.
661 Software: B.M.K., D.I.C.
662 Validation: B.M.K.
663 Formal Analysis: B.M.K., D.I.C., C.K.K., M.I.B.
664 Investigation: R.N.M., H.K., K.V.N, M.I.B.
665 Data Curation: B.M.K., C.K.K., K.V.N.
666 Writing – original draft: B.M.K., K.V.N., M.I.B.
667 Writing – Review & Editing: B.M.K., D.I.C., C.K.K., R.N.M., H.K., K.V.N, M.I.B.
668 Visualization: B.M.K, K.V.N.
669 Supervision: K.V.N., M.I.B.
670 Project Administration: K.V.N., M.I.B.
671 Funding Acquisition: K.V.N., M.I.B.
672

673

REFERENCES CITED

674

- 675 1. Tononi, G., Boly, M., Massimini, M. & Koch, C. Integrated information theory: from consciousness to
676 its physical substrate. *Nat Rev Neurosci* **17**, 450-461 (2016).
- 677 2. Dehaene, S. & Changeux, J.P. Experimental and theoretical approaches to conscious processing.
Neuron **70**, 200-227 (2011).
- 678 3. Mashour, G.A. Top-down mechanisms of anesthetic-induced unconsciousness. *Front Syst Neurosci* **8**,
680 115 (2014).
- 681 4. Bastos, A.M., *et al.* Canonical microcircuits for predictive coding. *Neuron* **76**, 695-711 (2012).
- 682 5. Alkire, M.T., Hudetz, A.G. & Tononi, G. Consciousness and anesthesia. *Science* **322**, 876-880 (2008).
- 683 6. Mashour, G.A. & Hudetz, A.G. Neural Correlates of Unconsciousness in Large-Scale Brain Networks.
Trends Neurosci **41**, 150-160 (2018).
- 684 7. Banks, M.I., *et al.* Cortical functional connectivity indexes arousal state during sleep and anesthesia.
Neuroimage **211**, 116627 (2020).
- 685 8. Siclari, F., Larocque, J.J., Postle, B.R. & Tononi, G. Assessing sleep consciousness within subjects
686 using a serial awakening paradigm. *Front Psychol* **4**, 542 (2013).
- 687 9. Leslie, K., *et al.* Dreaming and electroencephalographic changes during anesthesia maintained with
688 propofol or desflurane. *Anesthesiology* **111**, 547-555 (2009).
- 689 10. Eer, A.S., Padmanabhan, U. & Leslie, K. Propofol dose and incidence of dreaming during sedation.
Eur J Anaesthesiol **26**, 833-836 (2009).
- 690 11. Hudetz, A.G. General anesthesia and human brain connectivity. *Brain Connect* **2**, 291-302 (2012).
- 691 12. Aalling, N.N., Nedergaard, M. & DiNuzzo, M. Cerebral Metabolic Changes During Sleep. *Curr Neurol
692 Neurosci Rep* **18**, 57-57 (2018).
- 693 13. Elvsåshagen, T., *et al.* Cerebral blood flow changes after a day of wake, sleep, and sleep deprivation.
NeuroImage **186**, 497-509 (2019).
- 694 14. Boly, M., *et al.* Are the Neural Correlates of Consciousness in the Front or in the Back of the Cerebral
695 Cortex? Clinical and Neuroimaging Evidence. *J Neurosci* **37**, 9603-9613 (2017).
- 696 15. Odegaard, B., Knight, R.T. & Lau, H. Should a Few Null Findings Falsify Prefrontal Theories of
697 Conscious Perception? *J Neurosci* **37**, 9593-9602 (2017).
- 698 16. Akeju, O. & Brown, E.N. Neural oscillations demonstrate that general anesthesia and sedative states
700 are neurophysiologically distinct from sleep. *Curr Opin Neurobiol* **44**, 178-185 (2017).
- 701 17. Li, Y., *et al.* Comparison of NREM sleep and intravenous sedation through local information
702 processing and whole brain network to explore the mechanism of general anesthesia. *PLoS One* **13**,
703 e0192358 (2018).
- 704 18. Boly, M., *et al.* Connectivity changes underlying spectral EEG changes during propofol-induced loss
705 of consciousness. *J Neurosci* **32**, 7082-7090 (2012).
- 706 19. Lee, U., *et al.* Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane.
Anesthesiology **118**, 1264-1275 (2013).
- 707 20. Ranft, A., *et al.* Neural Correlates of Sevoflurane-induced Unconsciousness Identified by
708 Simultaneous Functional Magnetic Resonance Imaging and Electroencephalography. *Anesthesiology*
709 **125**, 861-872 (2016).
- 710 21. Spoormaker, V.I., *et al.* Development of a large-scale functional brain network during human non-
711 rapid eye movement sleep. *J Neurosci* **30**, 11379-11387 (2010).
- 712 22. Palanca, B.J., *et al.* Resting-state Functional Magnetic Resonance Imaging Correlates of Sevoflurane-
713 induced Unconsciousness. *Anesthesiology* **123**, 346-356 (2015).
- 714 23. Monti, M.M., *et al.* Dynamic change of global and local information processing in propofol-induced
715 loss and recovery of consciousness. *PLoS Comput Biol* **9**, e1003271 (2013).

720 24. Sarasso, S., *et al.* Consciousness and complexity: a consilience of evidence. *Neuroscience of*
721 *consciousness* (2021).

722 25. Murphy, M., *et al.* Propofol anesthesia and sleep: a high-density EEG study. *Sleep* **34**, 283-291A
723 (2011).

724 26. Lee, M., *et al.* Network Properties in Transitions of Consciousness during Propofol-induced Sedation.
725 *Sci Rep* **7**, 16791 (2017).

726 27. Boly, M., *et al.* Hierarchical clustering of brain activity during human nonrapid eye movement sleep.
727 *Proc Natl Acad Sci USA* **109**, 5856-5861 (2012).

728 28. Murphy, C., Krause, B. & Banks, M. Selective effects of isoflurane on cortico-cortical feedback
729 afferent responses in murine non-primary neocortex. *Br J Anaesth* **123**, 488-496 (2019).

730 29. Sanders, R.D., *et al.* Propofol-induced unresponsiveness is associated with impaired feedforward
731 connectivity in cortical hierarchy. *Br J Anaesth* **121**, 1084-1096 (2018).

732 30. Alkire, M.T., Haier, R.J. & Fallon, J.H. Toward a unified theory of narcosis: brain imaging evidence for
733 a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness.
734 *Conscious Cogn* **9**, 370-386 (2000).

735 31. Picchioni, D., *et al.* Decreased connectivity between the thalamus and the neocortex during human
736 nonrapid eye movement sleep. *Sleep* **37**, 387-397 (2014).

737 32. Boveroux, P., *et al.* Breakdown of within- and between-network resting state functional magnetic
738 resonance imaging connectivity during propofol-induced loss of consciousness. *Anesthesiology* **113**,
739 1038-1053 (2010).

740 33. Golkowski, D., *et al.* Changes in Whole Brain Dynamics and Connectivity Patterns during
741 Sevoflurane- and Propofol-induced Unconsciousness Identified by Functional Magnetic Resonance
742 Imaging. *Anesthesiology* **130**, 898-911 (2019).

743 34. Massimini, M., *et al.* Breakdown of cortical effective connectivity during sleep. *Science* **309**, 2228-
744 2232 (2005).

745 35. Ferrarelli, F., *et al.* Breakdown in cortical effective connectivity during midazolam-induced loss of
746 consciousness. *Proc Natl Acad Sci USA* **107**, 2681-2686 (2010).

747 36. Casali, A.G., *et al.* A theoretically based index of consciousness independent of sensory processing
748 and behavior. *Sci Transl Med* **5**, 198ra105 (2013).

749 37. Sarasso, S., *et al.* Consciousness and Complexity during Unresponsiveness Induced by Propofol,
750 Xenon, and Ketamine. *Curr Biol* **25**, 3099-3105 (2015).

751 38. Schartner, M., *et al.* Complexity of Multi-Dimensional Spontaneous EEG Decreases during Propofol
752 Induced General Anaesthesia. *PLoS One* **10**, e0133532 (2015).

753 39. Schartner, M.M., *et al.* Global and local complexity of intracranial EEG decreases during NREM sleep.
754 *Neuroscience of consciousness* **2017**, niw022 (2017).

755 40. Schrouff, J., *et al.* Brain functional integration decreases during propofol-induced loss of
756 consciousness. *Neuroimage* **57**, 198-205 (2011).

757 41. Wang, S., *et al.* Reorganization of rich-clubs in functional brain networks during propofol-induced
758 unconsciousness and natural sleep. *Neuroimage Clin* **25**, 102188 (2020).

759 42. Coifman, R.R. & Hirn, M.J. Diffusion maps for changing data. *Applied and Computational Harmonic
760 Analysis* **36**, 79-107 (2014).

761 43. Banks, M.I., *et al.* Functional geometry of auditory cortical resting state networks derived from
762 intracranial electrophysiology. *bioRxiv* **2022.02.06.479292** (2022).

763 44. Chernik, D.A., *et al.* Validity and reliability of the Observer's Assessment of Alertness/Sedation Scale:
764 study with intravenous midazolam. *J Clin Psychopharmacol* **10**, 244-251 (1990).

765 45. Hipp, J.F., Hawellek, D.J., Corbetta, M., Siegel, M. & Engel, A.K. Large-scale cortical correlation
766 structure of spontaneous oscillatory activity. *Nat Neurosci* **15**, 884-890 (2012).

767 46. Mashour, G.A., Roelfsema, P., Changeux, J.P. & Dehaene, S. Conscious Processing and the Global
768 Neuronal Workspace Hypothesis. *Neuron* **105**, 776-798 (2020).

769 47. Hudetz, A.G., Humphries, C.J. & Binder, J.R. Spin-glass model predicts metastable brain states that
770 diminish in anesthesia. *Front Syst Neurosci* **8**, 234 (2014).

771 48. Lee, U., et al. Brain networks maintain a scale-free organization across consciousness, anesthesia,
772 and recovery: evidence for adaptive reconfiguration. *Anesthesiology* **113**, 1081-1091 (2010).

773 49. Lee, H., et al. Diversity of functional connectivity patterns is reduced in propofol-induced
774 unconsciousness. *Hum Brain Mapp* **38**, 4980-4995 (2017).

775 50. Hutchison, R.M., Hutchison, M., Manning, K.Y., Menon, R.S. & Everling, S. Isoflurane induces dose-
776 dependent alterations in the cortical connectivity profiles and dynamic properties of the brain's
777 functional architecture. *Hum Brain Mapp* **35**, 5754-5775 (2014).

778 51. Barttfeld, P., et al. Signature of consciousness in the dynamics of resting-state brain activity. *Proc
779 Natl Acad Sci USA* **112**, 887-892 (2015).

780 52. Varley, T.F., et al. Consciousness & Brain Functional Complexity in Propofol Anaesthesia. *Sci Rep* **10**,
781 1018 (2020).

782 53. Luppi, A.I., et al. Brain network integration dynamics are associated with loss and recovery of
783 consciousness induced by sevoflurane. *Hum Brain Mapp* **42**, 2802-2822 (2021).

784 54. Hashmi, J.A., et al. Dexmedetomidine Disrupts the Local and Global Efficiencies of Large-scale Brain
785 Networks. *Anesthesiology* **126**, 419-430 (2017).

786 55. Chennu, S., et al. Spectral signatures of reorganized brain networks in disorders of consciousness.
787 *PLoS Comput Biol* **10**, e1003887 (2014).

788 56. Huang, Z., et al. Asymmetric neural dynamics characterize loss and recovery of consciousness.
789 *Neuroimage* **236**, 118042 (2021).

790 57. Shine, J.M., et al. The Dynamics of Functional Brain Networks: Integrated Network States during
791 Cognitive Task Performance. *Neuron* **92**, 544-554 (2016).

792 58. Fukushima, M., et al. Structure-function relationships during segregated and integrated network
793 states of human brain functional connectivity. *Brain Struct Funct* **223**, 1091-1106 (2018).

794 59. Luppi, A.I., et al. Consciousness-specific dynamic interactions of brain integration and functional
795 diversity. *Nat Commun* **10**, 4616 (2019).

796 60. Redinbaugh, M.J., et al. Thalamus Modulates Consciousness via Layer-Specific Control of Cortex.
797 *Neuron* **106**, 66-75.e12 (2020).

798 61. Raz, A., et al. Preferential effect of isoflurane on top-down versus bottom-up pathways in sensory
799 cortex. *Front Syst Neurosci* **8** (2014).

800 62. Friston, K. The free-energy principle: a unified brain theory? *Nat Rev Neurosci* **11**, 127-138 (2010).

801 63. Mashour, G.A. & Hudetz, A.G. Bottom-Up and Top-Down Mechanisms of General Anesthetics
802 Modulate Different Dimensions of Consciousness. *Front Neural Circuits* **11**, 44 (2017).

803 64. Marshall, W., Gomez-Ramirez, J. & Tononi, G. Integrated Information and State Differentiation.
804 *Frontiers in Psychology* **7** (2016).

805 65. Hacker, C.D., Snyder, A.Z., Pahwa, M., Corbetta, M. & Leuthardt, E.C. Frequency-specific
806 electrophysiologic correlates of resting state fMRI networks. *Neuroimage* **149**, 446-457 (2017).

807 66. Touchon, J., Baldy-Moulinier, M., Billiard, M., Basset, A. & Cadilhac, J. Sleep organization and
808 epilepsy. *Epilepsy Res Suppl* **2**, 73-81 (1991).

809 67. Derry, C.P. & Duncan, S. Sleep and epilepsy. *Epilepsy Behav* **26**, 394-404 (2013).

810 68. Jain, S.V. & Kothare, S.V. Sleep and Epilepsy. *Semin Pediatr Neurol* **22**, 86-92 (2015).

811 69. Jain, S.V. & Glauser, T.A. Effects of epilepsy treatments on sleep architecture and daytime
812 sleepiness: an evidence-based review of objective sleep metrics. *Epilepsia* **55**, 26-37 (2014).

813 70. Ouchi, K. & Sugiyama, K. Required propofol dose for anesthesia and time to emerge are affected by
814 the use of antiepileptics: prospective cohort study. *BMC Anesthesiol* **15**, 34 (2015).

815 71. Feinsinger, A., *et al.* Ethical commitments, principles, and practices guiding intracranial
816 neuroscientific research in humans. *Neuron* **110**, 188-194 (2022).

817 72. Nourski, K.V. & Howard, M.A., 3rd. Invasive recordings in the human auditory cortex. *Handb Clin
818 Neurol* **129**, 225-244 (2015).

819 73. Nourski, K.V., *et al.* Arousal State-Dependence of Interactions Between Short- and Long-Term
820 Auditory Novelty Responses in Human Subjects. *Front Hum Neurosci* **15**, 737230 (2021).

821 74. Nourski, K.V., *et al.* Auditory Predictive Coding across Awareness States under Anesthesia: An
822 Intracranial Electrophysiology Study. *J Neurosci* **38**, 8441-8452 (2018).

823 75. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and
824 accurate linear registration and motion correction of brain images. *Neuroimage* **17**, 825-841 (2002).

825 76. Rohr, K., *et al.* Landmark-based elastic registration using approximating thin-plate splines. *IEEE Trans
826 Med Imaging* **20**, 526-534 (2001).

827 77. Destrieux, C., Fischl, B., Dale, A. & Halgren, E. Automatic parcellation of human cortical gyri and sulci
828 using standard anatomical nomenclature. *Neuroimage* **53**, 1-15 (2010).

829 78. Destrieux, C., *et al.* A practical guide for the identification of major sulcogyrical structures of the
830 human cortex. *Brain Struct Funct* **222**, 2001-2015 (2017).

831 79. Kovach, C.K. & Gander, P.E. The demodulated band transform. *J Neurosci Methods* **261**, 135-154
832 (2016).

833 80. Coifman, R.R., *et al.* Geometric diffusions as a tool for harmonic analysis and structure definition of
834 data: diffusion maps. *Proc Natl Acad Sci U S A* **102**, 7426-7431 (2005).

835 81. Del Giudice, M. Effective Dimensionality: A Tutorial. *Multivariate Behavioral Research* **56**, 527-542
836 (2021).

837 82. Satopaa, V., Albrecht, J., Irwin, D. & Raghavan, B. Finding a "Kneedle" in a Haystack: Detecting Knee
838 Points in System Behavior. in *2011 31st International Conference on Distributed Computing Systems
839 Workshops* 166-171 (2011).

840 83. Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. *Communications in Statistics* **3**, 1-
841 27 (1974).

842 84. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. *J Stat
843 Software* **67**, 48 (2015).

844 85. Lenth, R.V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version
845 1.3.3. . (2019).

846