

1 Title: PTEX helps efficiently traffic haemoglobinases to the food vacuole in
2 *Plasmodium falciparum*.

3

4 Thorey K. Jonsdottir^{1,2,#a,b*}, Brendan Elsworth^{1,#c}, Simon Cobbold^{3,#d}, Mikha
5 Gabriela^{1,4,#e}, Sarah C. Charnaud^{1,#f}, Madeline G. Dans^{1,#e}, Molly Parkyn Schneider¹,
6 Malcolm McConville³, Hayley E. Bullen^{1,2,†}, Brendan S. Crabb^{1,2,5,†} and Paul R.
7 Gilson^{1,2,†*}

8

9 [†]These authors contributed equally to this work

10 ¹Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne,
11 Australia

12 ²Department of Immunology and Microbiology, University of Melbourne, Melbourne,
13 Australia

14 ³Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular
15 Science and Biotechnology, University of Melbourne, Melbourne, Australia

16 ⁴School of Medicine, Deakin University, Geelong, Australia

17 ⁵Department of Immunology and Pathology, Monash University, Melbourne,
18 Australia

19 **Current addresses:**

20 ^{#a}Department of Molecular Biology, Umeå University, Umeå, Sweden

21 ^{#b}The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden

22 ^{#c}Division of Emerging and Transfusion Transmitted Diseases, Office of Blood
23 Research and Review, Center for Biologics Evaluation and Research, Food and Drug
24 Administration, Silver Spring, MD, United States of America

25 ^{#d}Ubiquitin Signalling Division, Walter and Eliza Hall Institute, Melbourne, Australia

26 ^{#e}Infectious Diseases and Immune Defences Division, Walter and Eliza Hall Institute,
27 Melbourne, Australia

28 ^{#f} Research for Health Department, World Health Organization, Geneva, Switzerland

29 *Corresponding authors: paul.gilson@burnet.edu.au and thorey.jonsdottir@umu.se

30

31 **Abstract**

32 A key element of *Plasmodium* biology and pathogenesis is the trafficking of ~10% of
33 the parasite proteome into the host red blood cell (RBC) it infects. To cross the
34 parasite-encasing parasitophorous vacuole membrane, exported proteins utilise a
35 channel-containing protein complex termed the *Plasmodium* translocon of exported
36 proteins (PTEX). PTEX is obligatory for parasite survival, both *in vitro* and *in vivo*,
37 suggesting that at least some exported proteins have essential metabolic functions.

38 However, to date only one essential PTEX-dependent process, the new permeability
39 pathway, has been described. To identify other essential PTEX-dependant
40 proteins/processes, we conditionally knocked down the expression of one of its core
41 components, PTEX150, and examined which metabolic pathways were affected.
42 Surprisingly, the food vacuole mediated process of haemoglobin (Hb) digestion was
43 substantially perturbed by PTEX150 knockdown. Using a range of transgenic parasite
44 lines and approaches, we show that two major Hb proteases; falcipain 2a and
45 plasmepsin II, interact with PTEX core components, implicating the translocon's
46 involvement in the trafficking of Hb proteases. We propose a model where these
47 proteases are translocated into the PV via PTEX in order to reach the cytostome,
48 located at the parasite periphery, prior to food vacuole entry. This work offers a
49 another mechanistic explanation for why PTEX function is essential for growth of the
50 parasite within its host RBC.

51

52 **Author summary**

53 *Plasmodium falciparum* is the causative agent of the most severe form of malaria in
54 humans, where the symptoms of the disease are derived from the continuous asexual
55 replication of the parasite within the human red blood cells (RBCs) it infects. To
56 survive within this niche, the parasite exports hundreds of parasite effector proteins
57 across the vacuole it resides within and into the RBC. About a quarter of the exported
58 proteins appear to be essential during the blood stage but the functions of these
59 proteins largely remain uncharacterised. Protein export is facilitated by an essential
60 protein complex termed the *Plasmodium* translocon of exported proteins (PTEX).
61 Conditional depletion of PTEX's core components results in rapid parasite death
62 presumably because essential proteins do not reach their functional destination in the
63 RBC and their associated metabolic functions cannot be performed. To uncover what
64 these essential metabolic functions are we knocked down PTEX150, a core
65 component of PTEX. Metabolic analysis of the knockdown parasites indicated that
66 haemoglobin (Hb) digestion was inhibited resulting in a reduction of Hb derived
67 peptides, which serve as an amino acid source for the parasite. We determined that
68 knocking down HSP101, another PTEX core component, also disrupted the Hb
69 digestion pathway. Furthermore, we provide evidence that reduction of Hb digestion
70 might be due to the failure to efficiently deliver early acting Hb digesting proteases to
71 the cytostome, a specialised location where vesicles of Hb are taken into the parasite.
72 PTEX may therefore play a role in delivering Hb proteases to the cytostome.

73

74 **Introduction**

75 Malaria is a disease caused by *Plasmodium* parasites and transmitted to humans with
76 the bite of an infected female *Anopheles* mosquito. Malaria remains a major health

77 and economic burden and it is estimated that 627,000 people died of malaria in 2020
78 (1). The clinical symptoms of malaria are derived from the asexual replicative stage
79 of the parasite, which occurs within the red blood cells (RBCs) the parasite infects
80 (2). During this stage the parasite invades the RBC whereupon it resides within a
81 parasitophorous vacuole (PV); a membranous sac serving to occlude the parasite
82 away from the RBC cytosol. The intracellular parasite is thus encased in two
83 membranes, the parasite plasma membrane (PPM) and the parasitophorous vacuole
84 membrane (PVM) (3). For survival within the infected RBC (iRBC), the parasite
85 employs its own ATP-powered protein conduit at the PVM termed the *Plasmodium*
86 translocon of exported proteins (PTEX) to export parasite effector proteins across the
87 PVM and into the iRBC to establish essential host cell modifications (4-7).

88

89 PTEX is 1.6 MDa complex comprising three core proteins: Exported protein 2
90 (EXP2), PTEX150 and heat shock protein 101 (HSP101). Within this complex, EXP2
91 exists as a heptamer, which forms the PVM pore and binds directly to PTEX150,
92 another heptamer that serves as a stable channel for protein export. HSP101 exists as
93 a hexamer and unfolds proteins, which it then extrudes through PTEX150 for transit
94 through EXP2 and into the iRBC (4, 8-10). These three components cannot be
95 knocked out in the human malaria parasite *P. falciparum* or the rodent malaria
96 parasite *P. berghei* and conditional knockdown results in rapid parasite death and a
97 block in protein export across the PVM, indicating PTEX mediated export is essential
98 for parasite survival (4-7, 11-13).

99

100 Bioinformatic analyses have helped predict which proteins are likely exported based
101 on the presence of a pentameric motif at their N-terminus called the *Plasmodium*

102 export element (PEXEL) motif and other export related features (14-18). Some
103 exported proteins, however, lack the PEXEL motif, and are referred to as PEXEL
104 negative exported proteins (PNEPs). Since PNEPs lack a signature export motif it is
105 harder to predict their export (19). It is hypothesised that ~25% of the predicted
106 exported proteome (exportome) is essential for *in vitro* blood stage growth but the
107 essential functions remain unclear (20, 21). To date, only one essential function has
108 been assigned to exported proteins, the establishment of the new permeability
109 pathways (NPPs) at the iRBC surface, which help import essential nutrients from the
110 surrounding blood plasma (22-27). However, most exported protein functions
111 identified are not essential for *in vitro* growth and contribute to iRBC rigidity,
112 virulence and immune evasion (28-30).

113

114 Here we conditionally knocked down one of PTEX's core components, PTEX150,
115 and used metabolomics to identify biological processes affected when PTEX's
116 function is perturbed and thereby the potential function(s) of the essential exportome.
117 We initially anticipated a relative reduction in the levels of molecules known to enter
118 the iRBC via the NPPs but instead discovered an unexpected link between
119 haemoglobin (Hb) digestion and PTEX function. To strengthen this finding, we also
120 observed an association of two major Hb proteases, falcipain 2a (FP2a) and
121 plasmepsin II (PM II) with PTEX. Overall, the data provided in this study suggests
122 that PTEX core components help with efficient trafficking of Hb proteases within the
123 PV space *en route* to the food vacuole where Hb digestion occurs.

124

125 **Results**

126 **2.1 Conditional knockdown of PTEX150 reduces the level of digested Hb.**

127 To perturb the function of one of PTEX's principal components, we used a previously
128 established parasite line where PTEX150 was appended with a triple haemagglutinin
129 (HA) protein tag and a *glmS* riboswitch to conditionally knockdown PTEX150 in the
130 presence of glucosamine (GlcN) (6, 31). Metabolomic analyses were performed on
131 18, 24 and 30-h post invasion (hpi) parasites synchronised to a 4 h window one cell
132 cycle after the addition of 0.15 mM or 1 mM GlcN to induce knockdown of PTEX150
133 expression (Fig 1A).

134

135 Analysis of resultant data revealed that glycolysis and nucleotide metabolism was
136 perturbed in PTEX150 knockdown parasites, indicating cellular homeostasis was
137 dysregulated (S1 Table). This was predominantly observed in parasites 30-hpi, a
138 treatment time at which the PTEX150 knockdown parasites are known to stall (6).
139 These effects are therefore most likely a result of parasite growth arrest rather than a
140 direct involvement of PTEX in these pathways (S1 Table).

141

142 The data also revealed that PTEX150 knockdown resulted in a noticeably lower
143 abundance of Hb peptides when compared to untreated samples, indicating that Hb
144 digestion was reduced in these parasites (Fig 1A, S1A Fig, S1 Table). The largest
145 difference in Hb peptides abundance was observed at 24-hpi and 30-hpi in parasites
146 treated with 1 mM GlcN (Fig 1A). However, unlike for glycolysis and nucleotide
147 metabolism, this effect was also observed in parasites treated with 0.15 mM GlcN,
148 which does not significantly affect parasite growth (Fig 1A, S1A Fig) (6). Therefore,
149 reduction of digested Hb is likely due to PTEX150 knockdown and not due to a defect
150 in overall parasite growth. In further support of this, a moderate decrease in certain

151 Hb peptides was also observed at 18-hpi and a noticeable decrease in 24-hpi parasites
152 treated with either 0.15 or 1 mM GlcN, prior to when growth stalls due to PTEX150
153 knockdown (Fig 1A). Overall, these data indicate that knockdown of PTEX150
154 specifically reduces Hb digestion.

155

156 To corroborate these findings, the experiment was repeated using a single time point
157 and a 3D7 wild-type (WT) parasite control to monitor any effects caused by the GlcN
158 treatment itself on Hb peptide abundance. The parasites were synchronised and GlcN-
159 treated as before using a single time point (24-hpi). This time point was chosen
160 because the majority of Hb digestion occurs 18 – 32-hpi (32, 33). As previously
161 observed, the most dramatic metabolic differences between the lines following
162 PTEX150 knockdown are in the levels of Hb peptides (Fig 1B, S1B Fig, S1 Table).
163 Specifically, the 3D7 WT parasites showed a slight decrease in some Hb peptides
164 when treated with GlcN, but the reduction observed for PTEX150-HAglmS
165 expressing parasites was much greater (Fig 1, S1 Fig). Collectively these data indicate
166 that PTEX likely plays a role in the Hb digestion pathway.

167

168 **2.2 Establishing a falcipain 2a knockdown line as a positive control for**
169 **disturbance to Hb digestion.**

170 It was not immediately obvious how knockdown of PTEX reduces Hb peptides and so
171 we postulated that PTEX could either be involved in the uptake of Hb or involved in
172 the trafficking of the early acting falcipain and plasmepsin Hb proteases to the
173 cytostome *en route* to the food vacuole / digestive vacuole (34-36). The cytostome is
174 an invagination of both the PPM and the PVM from which Hb containing vesicles

175 bud off for transport to the food vacuole where the majority of Hb digestion occurs
176 (37, 38). Uptake of Hb and digestion are both important for parasite survival,
177 providing both amino acids (aa) and space for the growing parasite (33, 39-41).
178 Falcipain 2a (FP2a) is one of the early acting Hb proteases (42-44) and due to this, it
179 was chosen for this study to determine if knocking down FP2a expression would
180 mimic the effects observed for PTEX150 knockdown. We appended the C-terminus
181 of the *fp2a* gene (PF3D7_1115700) with a single HA-tag and the *glmS* riboswitch
182 using the CRISPR/Cas9 approach (S2A Fig). C-terminal tagging has not previously
183 been found to affect its trafficking or function (34-36). Furthermore, FP2a is not
184 individually essential for *in vitro* growth (45, 46), therefore knocking it down would
185 not be expected to severely reduce parasite growth.

186

187 Correct integration of the tag to the *fp2a* locus was confirmed via PCR (S2B Fig) and
188 western blotting was used to confirm the presence of FP2a-HA $glmS$, where both pro-
189 (54 kDa) and mature (27 kDa) forms of the protease were observed as has been
190 reported previously (43, 47) (S2C Fig). To investigate the level of knockdown, FP2a-
191 HA $glmS$ trophozoite stage parasites were treated with increasing concentrations of
192 GlcN for one cell cycle and >90% protein knockdown was observed by western
193 blotting (S2C Fig). Immunofluorescence assays (IFAs) were then used to determine
194 the localisation of FP2a-HA $glmS$ within iRBC where it showed diffuse localisation in
195 the parasite cytoplasm (S2D Fig), often with concentrated puncta around the parasite
196 surface, possibly representing the cytostome as has been previously observed (34, 36,
197 48) (S2D Fig, white arrows). While green fluorescent protein (GFP) tagged FP2a is
198 shown to concentrate in the food vacuole, FP2a-HA $glmS$ was found throughout the
199 parasite cytoplasm as previously observed with a native FP2a antibody (34). This is

200 not entirely unexpected, as previous reports of a HA-tagged food vacuole protein,
201 lipocalin (PF3D7_0925900), showed that the HA-tag is degraded upon food vacuole
202 entry (49). The HA-tag of our FP2a-HA*glmS* could therefore also be degraded and not
203 easily detectable inside the food vacuole by IFA.

204

205 To assess parasite growth upon FP2a-HA*glmS* knockdown, multi-cycle growth assays
206 were conducted on both 3D7 WT and FP2a-HA*glmS* parasites. Trophozoite stage
207 parasites were treated with increasing concentrations of GlcN over three consecutive
208 cell cycles and harvested at each cycle to measure lactate dehydrogenase (LDH)
209 activity as a proxy for parasite growth (50, 51). As expected, there was no growth
210 reduction observed in the FP2a-HA*glmS* knockdown parasites relative to untreated (0
211 mM GlcN) parasites or the 3D7 WT control which concurs with previous FP2a
212 knockout studies (52) (S2E Fig).

213

214 **2.3 Knocking down PTEX's core components, PTEX150 and HSP101, causes a
215 build-up of full-length Hb inside the parasite.**

216 To determine if reduced Hb peptides upon PTEX150 knockdown was due to either
217 reduced Hb uptake, or reduced Hb digestion, we completed western blotting on both
218 the PTEX150-HA*glmS* line, and an additional line in which the core PTEX
219 component HSP101 was similarly tagged (HSP101-HA*glmS*) (53). As a control for
220 Hb digestion we utilised the FP2a-HA*glmS* parasite line, as well as 3D7 WT parasites
221 as a negative control.

222

223 To complete these assays, tightly synchronised trophozoite stage parasites (~24-hpi)
224 were treated with 0, 0.15 or 1 mM GlcN for one cell cycle and the RBCs were
225 subsequently lysed in 0.09% saponin to remove RBC Hb. The parasite pellets were
226 washed extensively in PBS to remove Hb contamination prior to western blotting (Fig
227 2A and 2B). As expected, the 3D7 WT control showed minimal changes in Hb levels,
228 whereas following knockdown of PTEX150-HA*glmS*, HSP101-HA*glmS* or FP2a-
229 HA*glmS*, full-length Hb was found to accumulate inside the parasite. This
230 accumulation was found to be inversely proportional to the level of knockdown; a
231 reduction in PTEX150-HA*glmS*, HSP101-HA*glmS* or FP2a-HA*glmS* proteins was
232 associated with an increase in undigested Hb inside the parasite (Fig 2A and 2B).
233 Importantly, this effect was not due to an overall growth defect in the *glmS* lines upon
234 protein knockdown as build-up of full-length Hb was also detected at low GlcN
235 concentrations (0.15 mM) at which parasite growth of FP2a-HA*glmS* (S2E Fig) and
236 PTEX150-HA*glmS* (6) was not substantially perturbed. Although the Hb-build up was
237 only found to be significant for the FP2a-HA*glmS* parasites when comparing % Hb
238 build-up compared to untreated, both PTEX150-HA*glmS* and HSP101-HA*glmS*
239 showed a strong trend for Hb-build up with increased protein knockdown. We were
240 not able to establish a strong knockdown for either PTEX150-HA*glmS* or HSP101-
241 HA*glmS*, which might be why we don't observe a significant increase in full-length
242 Hb inside. FP2a was almost completely knocked down which is likely why we were
243 able to achieve statistically significant results. We therefore also performed a simple
244 linear regression analysis, where all three parasite lines (PTEX150-HA*glmS*, HSP101-
245 HA*glmS* and FP2a-HA*glmS*) showed significant regression slope for Hb build-up
246 when protein expression was reduced (S3A Fig).

247

248 To complement our results, we completed IFAs on saponin-lysed parasites probed
249 with antibodies against full-length Hb (Fig 2C, 2D and 2E). Following 1 mM GlcN
250 treatment of PTEX150-HA*glmS* parasites as described above, full-length Hb was also
251 observed accumulating within the parasite, independent of parasite size, confirming
252 previous results (Fig 2C, 2D and 2E).

253

254 As Hb is digested by the parasite, toxic by-products from this process are sequestered
255 as haemozoin crystals, which can be observed by light microscopy. In the absence of
256 Hb digestion, these crystals are therefore not formed (54). We investigated the
257 presence of haemozoin crystals in our PTEX knockdown lines. Specifically, either
258 PTEX150-HA*glmS* or HSP101-HA*glmS* were treated for one cell cycle \pm 2.5 mM
259 GlcN to reduce respective protein expression (S3B, S3C and S3D Fig). 2.5 mM GlcN
260 treatment was used because it produces the largest degree of knockdown for *glmS*-
261 tagged proteins without noticeably reducing the growth of non-tagged parasites (6,
262 53). Both PTEX150-HA*glmS* and HSP101-HA*glmS* knockdown resulted in
263 significantly less haemozoin crystal formation (S3B and S3C Fig) indicating less Hb
264 was being digested which concurs with western blotting and IFA data above (Fig 2).
265 At this level of GlcN, we did observe a significant reduction in parasite size for the
266 PTEX150-HA*glmS* parasites but not for HSP101-HA*glmS* (S3D Fig). Collectively
267 these data demonstrate that upon modest knockdown of the PTEX components
268 PTEX150-HA*glmS* and HSP101-HA*glmS*, parasites still take up Hb. However, the
269 parasites are unable to properly digest Hb indicating that PTEX may be involved in
270 the trafficking of proteases involved in the degradation of Hb, and likely not the
271 process by which the Hb is taken into the parasite.

272 **2.4 Generation of FP2a trappable reporter cargoes to investigate FP2a**
273 **relationship with PTEX.**

274 Next, we sought to better understand the relationship between PTEX and Hb
275 digestion. To this end, we generated a series of FP2a reporter constructs to investigate
276 the reporters' trafficking and interaction with PTEX *en route* to the food vacuole as
277 the protease is thought to traffic to the food vacuole via the cytostome at the
278 PPM/PVM interface (34, 35, 43). Three FP2a reporters of differing lengths were
279 generated, all appended to a nanoluciferase (Nluc) ultra-bright bioluminescence
280 reporter (55), murine dihydrofolate reductase domain (DH) and a triple FLAG (FL)
281 epitope tag. The initial two constructs included the first 120 or 190 aa of FP2a, here
282 referred to as “120 aa” and “190 aa”, respectively (Fig 3A). Previous truncation
283 studies demonstrated that the first 105 aa of FP2a are sufficient for its trafficking to
284 the food vacuole (35), however a construct containing the first 120 aa was more
285 efficiently trafficked to the food vacuole which is why this length was chosen here
286 (34, 35). The longer 190 aa version was made to investigate if an N-terminus longer
287 than 120 aa would provide an even more efficient PPM extraction as this has been
288 shown to be important for exported transmembrane (TM) domain proteins (56). A
289 third reporter was generated as a negative control and contained the N-terminal
290 trafficking region of FP2a but lacked the N-terminal TM domain (Fig 3A) required
291 for entry into the secretory pathway (34, 35) and subsequent trafficking to the food
292 vacuole. This reporter is referred to as “NT” throughout the text (Fig 3A).

293

294 By adding an antifolate ligand such as WR99210 (WR) we can stabilise the globular
295 domain of DH and thereby inhibit the reporter proteins from unfolding. The DH
296 domain has been previously utilised to study both mitochondrial protein import (57)

297 and protein export in malaria parasites (56, 58, 59). PTEX requires cargo to be
298 unfolded prior to export (58) and therefore if FP2a is trafficked via PTEX, the 120
299 and 190 aa reporters should become trapped in PTEX when inhibited from being
300 unfolded via addition of WR as previously observed for exported protein reporters
301 (56, 59).

302

303 All reporters were episomally expressed in the HSP101-HA*glmS* background, under
304 the *efla* promoter (Fig 3A). They were successfully detected by western blotting,
305 where they migrated at the expected sizes (Fig 3B). Additionally, IFA analysis
306 confirmed that the 120 and 190 aa reporters were trafficked to the food vacuole where
307 they co-localised with the haemozoin crystals whilst the NT reporter displayed a
308 diffuse signal within the parasite cytoplasm, as expected (Fig 3C). The 190 aa reporter
309 appeared to be more concentrated at the food vacuole than the 120 aa reporter
310 indicating that the longer N-terminus could enable more efficient trafficking to the
311 food vacuole (Fig 3C). Brefeldin A (BFA), which blocks protein secretion from the
312 ER to the Golgi (60, 61), was also used to confirm that the reporters were secreted
313 from the ER as happens for the native protease (34, 35). In the presence of BFA the
314 120 and 190 aa reporters were retained within the ER whilst no changes were
315 observed for the distribution of the NT reporter as expected (Fig 3D). Overall, these
316 data confirm that the reporters are expressed and appropriate for use in subsequent
317 PTEX trapping experiments.

318 **2.5 The FP2a 120 aa reporter displays increased co-localisation with EXP2 when
319 inhibited from unfolding.**

320 To determine if FP2a associates with PTEX, the 120 aa, 190 aa and NT reporters were
321 trapped using WR and IFAs were performed to detect co-localisation with PTEX
322 components at the PVM. Tightly synchronised (4 h window) ring stage parasite
323 cultures were treated \pm 10 nM WR and harvested as trophozoites (24-28-hpi) for
324 IFA. Rabbit anti-Nluc was used to visualise the FP2a reporters and mouse anti-EXP2
325 served as both a PTEX and PVM marker (Fig 4A). The 120 and 190 aa reporters
326 displayed some labelling around the parasite surface/PVM, which was expected as
327 early acting Hb proteases are known to traffic there for loading into the cytostome
328 prior to delivery to the food vacuole (34-36). To quantify the co-localisation of
329 reporters with EXP2 \pm WR, Pearson's coefficients of the proteins were measured
330 (Fig 4B). The 120 aa co-localised significantly more with EXP2 when treated with
331 WR indicating that more cargo was trapped at the parasite periphery when rendered
332 unfoldable and therefore potentially trapped in PTEX (Fig 4A and 4B). However, the
333 190 aa and NT reporters did not show a significant difference \pm WR treatment (Fig
334 4A and 4B). Since the 120 and 190 aa reporters are identical except for their length, it
335 is likely that length is influencing trapping efficiency and that shorter cargo is more
336 easily trapped (discussed in later sections).

337

338 Interestingly, even though the 120 aa cargo co-localised with EXP2, it was never
339 observed inside EXP2 loops (Fig 4A, white arrows) which we commonly observe for
340 the exported reporter Hyp1-Nluc-DH upon WR trapping (59, 62). These loops are
341 thought to represent accumulated trapped cargo unable to be transported by the PTEX
342 complex at the PVM (59). The absence of the FP2a reporter cargo from these loops

343 could indicate that it might not be trapped at the PVM, but instead at the PPM. We
344 sought to further investigate the putative interaction between PTEX and FP2a using
345 co-immunoprecipitation assays (Co-IPs).

346

347 **2.6 Both the 120 aa and the 190 aa reporters associate with PTEX core**
348 **components, but this association is diminished when reporters are inhibited from**
349 **unfolding.**

350 To investigate the interaction between HSP101 and FP2a, Co-IPs were performed
351 with the three FP2a reporters (NT, 120 aa, 190 aa). We also employed an exported
352 protein reporter, Hyp1-Nluc-DH-FL or “Hyp1”, as a positive control for PTEX
353 interaction (53). Synchronised ring stage parasites were treated \pm 10 nM WR and
354 trophozoite stage iRBCs (~28-32-hpi) were isolated from uninfected RBCs (uRBCs)
355 by magnet purification. This time point was chosen because it was when the FP2a and
356 Hyp1 reporter proteins were optimally expressed with less degradation (S4 Fig) (53).
357 Parasite pellets were lysed in modified RIPA buffer and the resultant lysate was
358 incubated with anti-HA agarose beads to immunoprecipitate (IP) HSP101-HAglmS
359 and its interacting proteins for visualisation by western blotting (Fig 5A).

360

361 As expected, the Hyp1 reporter showed an increased association with HSP101 when
362 treated with WR reflective of the folded cargo becoming trapped in PTEX under these
363 conditions (53, 59) (Fig 5A, lanes 9 and 10, 5B and 5C). The NT reporter showed a
364 minimal level of association with HSP101 (Fig 5A, lanes 11 and 12, 5B and 5C) as
365 expected. Importantly, both the 120 and 190 aa reporters showed an enhanced
366 association with HSP101 in the absence of WR, demonstrating that FP2a does indeed

367 interact with HSP101 (Fig 5A, lanes 13 – 16, 5B and 5C). It should be noted that a
368 marked difference was observed between the retention of the 120 and 190 aa reporters
369 (Fig 5A lanes 13 and 14 vs. lanes 15 and 16) with HSP101, whereby substantially
370 more of the 120 aa reporter was bound by HSP101. This concurs with the greater
371 trapping efficiency of the 120 aa reporter at the parasite periphery with EXP2 as
372 visualised by IFA (Fig 4).

373

374 It was anticipated that in the presence of WR, the reporters would be more strongly
375 associated with HSP101 if they were trapped in PVM-resident PTEX, but instead the
376 association of the reporters with HSP101 was reduced (Fig 5A, lanes 13 – 16, 5B and
377 5C). These data therefore imply that WR treated 120 and 190 aa reporter proteins
378 might in fact be trapped in the PPM prior to PTEX association in the PV as has been
379 observed for PNEPs (56). This explains why we did not observe the FP2a reporters in
380 PVM loops by IFA (59) as mentioned above.

381

382 Association of the FP2a reporters was also confirmed for PTEX150 and EXP2 by Co-
383 IP using either rabbit anti-PTEX150 (r942) (S5A Fig) or rabbit anti-EXP2 (r1167)
384 (S5B Fig) antibodies. PTEX150 showed a similar association with FP2a cargo as
385 HSP101 (S5A Fig, lanes 13 – 16) and a weak association was observed for the
386 cargoes with EXP2 (S5B Fig, lanes 13 – 16). Densitometry measurements showed a
387 similar trend for the association of Hyp1 and FP2a reporters with both PTEX150 and
388 EXP2 when compared with HSP101 IPs (S6 Fig). Overall, these assays helped to
389 confirm that FP2a interacts with all PTEX core components, as was suggested by our
390 metabolomics and Hb digestion/build-up assays.

391 **2.7 The FP2a 120 aa reporter becomes trapped at the PPM with the N-terminus**
392 **facing into the PV compartment when inhibited from unfolding.**

393 Given that the 120 aa reporter cargo displayed an increased co-localisation by IFA
394 with EXP2 when inhibited from unfolding (Fig 4B) but showed reduced association
395 with PTEX components when trapped with WR (Fig 5 and S5 Fig), we utilised
396 proteinase K protection assays to determine which iRBC compartment the reporter
397 was being trapped in. For the assay, synchronised ring stage parasites were treated \pm
398 10 nM WR, prior to harvesting at the trophozoite stage (\sim 24-hpi) via magnet
399 purification. Isolated trophozoite-containing RBCs were treated with equinatoxin-II
400 (EQT) to form pores in the iRBC membrane (63) and release soluble exported
401 proteins (Fig 6A, lanes 1 and 6, SN). The subsequent iRBC pellet was then divided
402 into four fractions that were untreated, treated with proteinase K, or subjected to
403 differential lysis conditions and proteinase K treatment. Saponin was used to lyse the
404 parasite's PVM, releasing the PV contents (Fig 6A, lanes 4 and 9) and Triton X-100
405 (TX-100) was used to lyse all membranes (Fig 6A, lanes 5 and 10). Specific
406 antibodies were then used as markers for each lysed compartment, where GBP130
407 was used as a soluble exported protein marker (59, 64), SERA5 as a soluble PV
408 marker (65) and GAPDH as a marker of the parasite cytoplasm.

409

410 By analysing the distribution of FP2a bands across all treatments, it was possible to
411 infer the orientation and localisation of the 120 aa reporter protein. Firstly, the
412 reporter protein was not degraded in the presence of PBS and proteinase K, indicating
413 no part of the reporter resided within the iRBC cytoplasm, which concurs with our
414 IFA data (Figs 6A, lanes 3 and 8 and 4A). Concordantly, when the parasites were
415 treated with saponin and proteinase K, the FP2a reporter migrated 3.8 kDa smaller

416 than the full-length reporter (Fig 6A, lanes 4 and 9). This 3.8 kDa fragment is
417 proportional to the segment of the reporter protein that precedes the N-terminal TM
418 domain (4 kDa) suggesting that FP2a is oriented with its N-terminus facing into the
419 PV lumen, and the C-terminus is in the parasite cytoplasm (Fig 6C). The FP2a
420 reporter was completely degraded in the presence of TX-100 indicating that the
421 parasite membranes were completely permeabilised (Fig 6A, lanes 5 and 10).
422 GAPDH was not degraded, likely because the protein is highly abundant and
423 proteolytically resistant.

424

425 Following WR treatment, the FP2a reporter parasites that were lysed with saponin and
426 treated with proteinase K revealed that the reporter was more resistant to degradation
427 than it was in the absence of WR (Fig 6A and 6B, lanes 3 and 4 vs. lanes 8 and 9)
428 suggesting that FP2a needs to be unfolded before crossing the PPM and entering the
429 PV compartment. This demonstrates that the WR trapping occurs at the PPM interface
430 prior to PTEX association within the PV, which agrees with our IP data where FP2a
431 shows less interaction with PTEX components when treated with WR (Fig 5 and S5
432 Fig).

433 **2.8 PTEX150 co-precipitates native plasmepsin II Hb protease and PTEX150
434 knockdown affects protease trafficking.**

435 To study the relationship between PTEX and a native Hb protease, we tagged the
436 early acting Hb protease plasmepsin II (PM II, PF3D7_1408000) with mScarlet as
437 described for FP2a-HAglmS above (S7A Fig), however, the background line used for
438 transfection of this line was PTEX150-HAglmS. Integration was confirmed by PCR
439 (S7B Fig). A single band of 75 kDa was detected for PM II-mScarlet by western
440 blotting, where the tag accounted for approximately 27 kDa (Fig 7A). This agrees

441 with previously published results where only the pro form of the protease was
442 detected and not the mature cleaved protease (66). Live cell microscopy confirmed
443 the localisation of PM II-mScarlet during ring and trophozoite stage, where the
444 protease co-localised with the haemozion crystals (Fig 7B, white dotted line) as
445 expected. To determine if PTEX is involved in PM II trafficking, we knocked down
446 PTEX150-HAglmS expression at the trophozoite stage and harvested cells for
447 microscopy at the following late ring stage (~20-hpi). We observed a significant
448 accumulation of PM II-mScarlet at the parasite periphery when PTEX150 was
449 knocked down (crescent/circle) compared to a peripheral ‘dot’ when PTEX150 was
450 normally expressed (Fig 7C and 7D). While this is qualitative evidence for a role for
451 PTEX150 in PM II-mScarlet trafficking to the food vacuole, some observations could
452 merely represent PM II-mScarlet during its normal trafficking to the cytostome via
453 the parasite periphery. To support that our observations are indeed due to an
454 interaction with PTEX150, we targeted PTEX150-HAglmS for IP using anti-HA
455 agarose beads as previously described. A strong association was seen between
456 PTEX150-HAglmS and PM II-mScarlet (Fig 7E). Positive control antibodies against
457 HSP101 and EXP2 also revealed that they too associated with PTEX150 as expected,
458 while rabbit anti-GAPDH was used as a negative control and showed no association
459 (Fig 7E). 3D7 WT parasites were used to detect any non-specific antibody binding in
460 the assay and showed no interaction with PTEX150 or other PTEX components.
461 Overall, this assay confirmed a specific association between PTEX and a native Hb
462 protease (PM II-mScarlet) and agrees with our FP2a reporter data.

463

464 **Discussion**

465 This study sought to elucidate why PTEX is essential by determining which metabolic
466 pathways were perturbed due to the failure to export proteins into the iRBC
467 compartment when the protein components of PTEX were knocked down. Hundreds
468 of parasite proteins are exported into the iRBC, but we do not know what most of
469 these proteins do and why some of them are essential. Metabolomic analyses revealed
470 that knockdown of PTEX150 caused a slight dysregulation of some metabolite levels,
471 for example those involved in glycolysis and nucleotide metabolism, however this
472 was also observed in the 3D7 WT control indicating a non-specific effect from the
473 GlcN treatment. The only clearly defined effect of PTEX150 knockdown was upon
474 Hb digestion, possibly linking the PTEX machinery to this essential catabolic process
475 that provides the parasite with amino acids and helps maintain osmotic stability of the
476 iRBC (33, 39-41). Using several approaches, we were able to determine a physical
477 connection between PTEX and two major early acting Hb proteases, FP2a and PM II.
478 It is possible that these Hb proteases might rely on PTEX components as they transit
479 via the PPM *en route* to the cytostome (34-36).

480

481 Modest knockdown of PTEX150-HAgmS with 1 mM GlcN reduces PTEX150-
482 HAgmS expression to ~60% of normal levels (in our study) and arrests growth at the
483 late ring / early trophozoite stage in the cycle following addition of GlcN (6). As the
484 degree of growth inhibition would also likely produce many metabolic defects, we
485 also used 0.15 mM GlcN, which does not arrest parasite growth (6). This treatment
486 also resulted in a reduction in Hb digestive peptides and western blotting and
487 microscopy analysis demonstrated the reduction was likely due to diminished
488 capacity to digest Hb rather than a defect in total Hb uptake. This contradicts results
489 presented in a recent study by Gupta *et al.*, where they observed less Hb uptake in

490 HSP101 knockdown parasites (67). Their study was however performed differently to
491 ours whereby HSP101 expression was knocked down from late trophozoite stage of
492 the first cycle to the early schizont stage of the next cycle (42-44-hpi). This could
493 result in the HSP101 knockdown parasites stalling at the early trophozoite stage of the
494 second cycle and therefore not being able to take up as much Hb as the untreated
495 control parasites which had continued growing and transitioned into to the schizont
496 stage. This trophozoite stalling effect due to functional inactivation of HSP101 has
497 been previously noted using the same HSP101 knockdown line (5).

498

499 To determine if PTEX knockdown was inhibiting the delivery of Hb proteases to
500 cytostomal vesicles we utilised FP2a reporter cargo constructs, which allowed us to
501 study the interactions between PTEX and this early acting Hb protease. The FP2a 120
502 aa and 190 aa reporters were directly co-precipitated with PTEX core components,
503 although much stronger with HSP101 and PTEX150 than EXP2. If the N-terminus of
504 the FP2a reporter that was poking into the PV (34 aa) was interacting with the PTEX
505 complex, it likely associates more with HSP101 and PTEX150 than EXP2, which is
506 further away (Fig 8). The slightly weaker association with EXP2, that was also
507 observed for the positive control Hyp1, could be due to IP efficiency. EXP2 has a
508 dual function; as a channel in the PTEX complex and as a nutrient channel on the
509 PVM (13, 68). This dual function could therefore influence the co-IP of EXP2 with
510 FP2a and Hyp1, as the pool of nutrient related EXP2 is not associated with PTEX
511 functioning. Importantly, each assay co-precipitated the other members of the PTEX
512 suggesting involvement of the full PTEX complex in protease binding (Fig 5 and S5
513 Fig) and a similar trend was observed for HSP101, PTEX150 and EXP2 IPs with
514 reporter cargoes (Fig 5B, 5C and S6A and S6B Fig). Importantly, this association was

515 also observed for a native early acting Hb protease, PM II, suggesting PTEX's
516 interaction with FP2a reporters reflected genuine trafficking interactions (Fig 7E). It
517 should be noted that conditionally inhibiting the function of HSP101 did not reduce
518 the proteolytic processing of native PM II (5) that normally occurs in the food vacuole
519 facilitated via FP2 and FP3 (69). Despite the knockdown of PTEX, some Hb peptides
520 were still produced and some haemozoin crystals did form. This indicates that
521 although PTEX was not essential for the trafficking of PM II (5), the translocon might
522 rather be important for efficient the delivery of Hb proteases to the cytostome.
523 However, given the modest level of knockdown achieved in this study the remaining
524 levels of PTEX expression could be sufficient to sustain protease trafficking and Hb
525 digestion. Although reduction in Hb digestion following PTEX knockdown probably
526 contributes to some growth arrest, the dysregulation of other metabolic pathways
527 might also play a greater role in reducing parasite growth, however, our analysis does
528 not indicate what these other pathways are.

529

530 As FP2a has been shown to traffic to the cytostomal vesicles via the parasite
531 periphery (34, 35) we investigated if PTEX may associate with the FP2a reporters at
532 the PPM. Here we demonstrated that the FP2a reporters likely need to be unfolded
533 prior to crossing the PPM, like exported proteins containing TM domains (10, 56, 70).
534 We showed this by appending an inducibly unfoldable DH domain to the reporters,
535 which in its unfoldable form was more strongly localised to the parasite periphery.
536 Our proteinase K protection assays further indicated the direction of insertion into the
537 PPM likely followed an N- to C-terminal direction. Immunoprecipitation assays
538 additionally showed that PTEX was in contact with the 120 aa and 190 aa FP2a
539 reporters and with the native PM II protein, suggesting PTEX could help extract these

540 proteins into the PV lumen. HSP101 has previously been suggested to facilitate the
541 extraction of TM exported proteins from the PPM (71). An explanation as to how
542 these proteases are trafficked to the cytostome via PTEX is that they are transferred
543 into the PVM via PTEX, which is anchored to the PVM via EXP2, and then
544 incorporated into the innermost membrane of the cytostomal vesicles. Although this is
545 an attractive explanation for how PTEX assists Hb proteases to enter the cytostome,
546 further experiments did not strongly support this scenario and PTEX does not have a
547 lateral gate to facilitate the transfer of proteins to the PVM (9, 72, 73) (Fig 8, red x
548 symbol).

549

550 Rather from our data it appears that the Hb proteases are not translocated through
551 PTEX into the PVM since the FP2a reporters containing the DH domain did not co-
552 localise to the PVM loops with EXP2 in the presence of WR as has been shown
553 previously for export-blocked PEXEL-DH reporter proteins (59). Secondly, the 120
554 aa FP2a reporter was protected from protease degradation when the iRBC was
555 permeabilised with EQT but not when the PVM was lysed with saponin indicating the
556 protease's short 34 aa N-terminal region upstream of its TM domain was projecting
557 into the PV. The fact that the FP2a reporter was more strongly degraded in the
558 absence of WR indicates that PTEX probably only extracts the reporter as far as the
559 PV and not beyond (Fig 8). If PTEX could capture FP2a reporters and deliver them to
560 the cytostome before translocating them into the cytostome lumen for uptake into
561 vesicles, PTEX would be expected to concentrate at the cytostome, which might
562 appear as one to a few distinct puncta at the parasite periphery (36). We observed
563 these concentrated puncta for FP2a (S2D Fig) but we never observed a particular
564 concentration of EXP2 overlapping with the cytostomal puncta. Instead, a continuous

565 circle or “necklace of beads” surrounding the parasite was observed as previously
566 reported, sometimes with 1-3 PVM loop extensions in older parasites (4-6, 8, 13, 53,
567 59, 74). This likely indicates that PTEX does not directly deposit Hb proteases into
568 the cytostome, however this should be more extensively investigated with markers for
569 both the cytostome (Kelch 13) and PTEX (75).

570

571 Following uptake into the PV the Hb proteases possibly employ signals within their
572 N-terminal pro-sequences to specify cytostome trafficking. This signal is likely
573 present between aa 84 to 105 of FP2a, given that truncation studies on FP2a show that
574 reporter cargoes with <84 aa of the FP2a N-terminus accumulate at the PPM but 95 aa
575 and 105 aa show partial and complete trafficking to the food vacuole, respectively
576 (35). We also found that the length of the FP2a reporter appears to be important for
577 efficient trafficking to food vacuole as the 190 aa FP2a reporter trafficked more
578 efficiently than the 120 aa reporter which could contribute to more efficient PPM
579 extraction.

580

581 In conclusion, we propose a new model for Hb protease trafficking involving PTEX
582 where the early acting FP2a, PM II and possibly other Hb proteases of these families
583 are extracted by the PTEX complex from the PPM and into the PV space. The Hb
584 proteases do not appear to be subsequently translocated across the PVM and beyond
585 into the iRBC since the 120 aa FP2a reporter was not detected in the iRBC or within
586 cargo-associated PVM loops (Fig 8). Furthermore, our FP2a reporter did not degrade
587 in the presence of EQT and proteinase K as the exported GBP130 protein did. We
588 therefore propose that HSP101 could bind to the short 34 aa N-terminal section of
589 FP2a that precedes the TM domain and projects into the PV. The HSP101/FP2a

590 complex could then dock with the rest of PTEX, which may activate HSP101 activity
591 to extract the FP2a reporter into the PV. Alternatively, the intact PTEX complex
592 could directly bind the N-terminal region of FP2a reporter and extract the protease
593 into the PV. The pro-domain of the Hb proteases could then help chaperone the
594 proteases to the lumen of the cytostome via an unknown process, where the
595 proteolytic domains could then face the interior of the Hb containing vesicles that bud
596 off the cytostome (Fig 8). Thereby, PTEX would act as a facilitator of the correct
597 orientation of the Hb proteases for their entry into the cytostome. Although our study
598 has not resolved the complete mechanism of protease transfer into the Hb containing
599 cytostomal vesicles, it could serve as a future starting point to better understand this
600 important process.

601

602 **Material and Methods**

603 **Cloning**

604 The *fp2a* gene was appended with a single HA-tag followed by a *glmS* before the 3'
605 stop codon using CRISPR/Cas9. The construct was designed using a multi-step PCR
606 where sections were amplified from 3D7 genomic DNA and sewn together with the
607 tagging sequence as shown in supplementary data (S2A Fig). The PM II-mScarlet was
608 designed the same way (S7A Fig). Flanks were then ligated into a pBSK bluescript
609 plasmid (Stratagene) and 50 µg of DNA was co-transfected into 3D7 WT (FP2a) or
610 PTEX150-HA $glmS$ (PM II-mScarlet) parasites with 50 µg of a Cas9 expressing
611 plasmid (pCas9) under the U6 promoter, containing relevant guide RNA and the
612 human dihydrofolate reductase (hDHFR) cassette (76). The mutated version of the
613 Cas9 plasmid (mpCas9) was prepared for PM II-mScarlet, where the hDHFR was
614 exchanged for a Blasticidin S Deaminase (BSD) drug selection marker since the

615 PTEX150-HA*glmS* line was already WR-resistant. The BSD coding sequence from
616 pEF-Hyp1-Nluc-DH-APEX (59) was amplified in two overlapping fragments so that
617 an internal *BbsI* site could be synonymously mutated to prevent unwanted cleavage
618 prior to insertion of the guide RNA. The first BSD fragment was amplified with
619 BSD_NcoF and BbsI_MutR and the second BSD fragment was amplified with
620 BbsI_MutF and BSD_SacIIR under standard conditions. PCR fragments were then
621 sewn together with BbsI_MutF and BSD_SacIIR and the full-size BSD coding
622 sequence was excised with *NcoI* and *SacII* and ligated into similarly digested pCas9.
623 DNA primers for guide RNAs were chosen according to the list provided by (77) and
624 annealed together prior to ligation into the Cas9 plasmids, which were pre-cut with
625 *BbsI*. The pCas9 was selected for by WR (Jacobs Pharmaceutical) or mpCas9 with
626 Blasticidin S (Life technologies) for 7 days and genomic DNA extracted when
627 parasites came up to confirm correct tagging by PCR. All primers and DNA
628 sequences are listed in S2 Table.

629

630 The previously published plasmid pEF-Hyp1-Nluc-DH (53) was used to generate the
631 three different FP2a constructs, pFP2a 120/FP2a 190/ FP2a NT-Nluc-DH-FL. The
632 Hyp1 region of the reporter was removed by excision with *XhoI* and *NcoI* and
633 replaced with the relevant FP2a sequence. FP2a 120 aa and 190 aa contained the first
634 120/190 aa from the FP2a gene. To generate the FP2a NT, a forward primer was
635 designed after the TM (57 aa of the FP2a sequence) and coupled with the reverse
636 primer created for the 190 aa construct giving a ~120 aa sequence. Plasmids were
637 transfected into the HSP101-HA*glmS* parasite line and expressed episomally under
638 Blasticidin S selection. Primers are listed in S2 Table.

639

640 **Parasite culturing**

641 Continuous culture of *P. falciparum* was maintained at 4% haematocrit in human
642 RBCs in AlbumaxII media (RPMI-1640, 25 mM HEPES (Gibco), 367 μ M
643 hypoxanthine (Sigma-Aldrich), 31.25 μ g/mL Gentamicin (Gibco), 0.5% AlbumaxII
644 (Gibco) and 25 mM NaHCO₃ (AnalR)) and kept at 37 °C in gas chambers (1% O₂,
645 5% CO₂ and 96% N₂). Method adapted from Trager and Jensen (78).

646

647 **Immunofluorescence assays**

648 For WR trapping experiments, parasite culture was treated with 100 μ g/mL heparin
649 (Sigma-Aldrich) to prevent invasion (79) and late schizont stages purified using a
650 67% percoll (Cytiva, diluted in PBS/RPMI) gradient. Heparin was then washed off
651 and parasites allowed to invade for 4 h. Ring stage parasites were then treated \pm 10
652 nM WR. For BFA assays, parasites were synchronised in 5% sorbitol (Sigma-
653 Aldrich) for 10 min at 37 °C. Late ring/early trophozoite stage parasites were then
654 treated with 18 μ M BFA/DMSO or 0.001% DMSO for 5 h and then culture harvested
655 for IFA. For haemozoin crystal experiments, HSP101-HAglmS and PTEX150-
656 HAglmS parasite lines were sorbitol synchronised at ring stage and treated \pm 2.5 mM
657 GlcN at trophozoite stage and harvested the next cell cycle at late ring stage/early
658 trophozoite stage for IFA.

659

660 For all assays, parasite culture was diluted in phosphate buffered saline (PBS) and
661 mounted on Poly-L-Lysine (Sigma-Aldrich) treated coverslips (Menzel), fixed in 4%
662 paraformaldehyde/ 0.0075% glutaraldehyde in PBS for 20 min and permeabilised in
663 0.1% TX-100 (Sigma-Aldrich) with 0.1 M glycine in PBS for 15 min as previously
664 described (80, 81). Samples were blocked for 1 h in 3% bovine serum albumin

665 (Sigma-Aldrich) and subsequently incubated in primary antibodies (overnight) and
666 secondary antibodies (1 h) with 3x 0.02% TX-100/PBS washes in-between.
667 Coverslips were mounted on slides containing mounting media with DAPI
668 (Vectashield) and sealed with nail polish. For the saponin lysis experiment, cells were
669 incubated with ice-cold 0.05% saponin/ PBS on ice for 10 min, pelleted at 50 g for 3
670 min and washed 3x in 500 μ L PBS. Cells were then fixed and probed with antibodies
671 as described above. Images were visualised using the Zeiss Axio Observer Z1
672 inverted widefield microscope and processed using Image J software. List of
673 antibodies can be found in S3 Table.

674

675 Pearson's correlation coefficients were used to determine co-localisation of Nluc and
676 EXP2. Images were acquired with identical exposure settings and analysis completed
677 on raw images using Fiji software with JACoP plugin. For the saponin lysis
678 experiment, exposure settings were the same for the fluorescent channel of interest for
679 all cells (\pm GlcN) for direct comparison of signal intensity using raw images. To
680 measure signal only within the parasite, an area was manually drawn around the
681 parasite using the EXP2 signal (PVM) for guidance. To quantify the signal, the
682 integrated density of cells was measured using Image J software and signal corrected
683 by subtracting the background fluorescence signal (cell integrated density –
684 background mean * cell area). Background mean was measured for each field of view
685 used for the analysis, where the average signal of three background areas was
686 subtracted from the cells analysed within the same field of view. For haemozooin
687 crystal experiments, the area was calculated as described for saponin experiments
688 using the DIC channel for guidance and crystals counted as “present” or “absent”
689 completed by two individual counters. All statistical analysis was completed using

690 GraphPad 8 Prism software using Student's t test with Welch correction. Number of
691 cells analysed and replicates are indicated within each figure.

692

693 **Live cell imaging**

694 Heparin synchronised parasite culture was diluted in media 1:1 and evenly distributed
695 over a glass slide and a coverslip placed on top and sealed with wax. Cells were
696 visualised by microscopy as described for IFAs. Analysis was done using Image J
697 where the mScarlet signal was categorised into either 'dot' inside the parasite or
698 'crescent/circle' at the parasite periphery by looking at the DIC channel and the
699 Scarlet channel. Three individual counters completed categorisation of cells.

700

701 **Growth assays**

702 Sorbitol synchronised trophozoite stage parasite culture was adjusted to 1%
703 haematocrit and 0.3% parasitemia and treated with 0, 0.15 or 1 mM GlcN and
704 subsequently plated in 100 μ L aliquots on 96-well plates in technical triplicate.
705 Parasite culture was harvested at trophozoite stage in each cell cycle, for three
706 consecutive cell cycles and stored at -80 °C until all time points had been collected.
707 LDH was then measured as a proxy for parasite growth as previously described (50,
708 51), where 30 μ L of parasite culture was resuspended with 75 μ L of malstat reagent
709 (0.083 M Tris, 185 mM lactic acid [adjusted to pH 7.5], 0.17% TX-100, 0.83 mM
710 acetylpyridine adenine dinucleotide, 0.17 mg/mL Nitroblue tetrazolium, 0.08 mg/mL
711 phenazine ethosulphate). Plates were incubated in the dark for 45 min and absorbance
712 measured at 650 nm. Growth was normalised to time point zero (assay set up) and 0
713 mM GlcN set as 100% growth for each cycle. Statistical analysis was done using
714 Student's t test with Welch correction in GraphPad Prism 8 for 2 biological replicates.

715

716 **Western blotting**

717 Trophozoite stage parasites were lysed in 0.09% saponin (Kodak) in PBS containing
718 protease inhibitors (PI, Roche) on ice for 10 min. For knockdown experiments and
719 FP2a reporter expression experiments, heparin synchronised (4 h invasion window)
720 trophozoite stage parasites were treated for one cell cycle (trophozoite to trophozoite)
721 with GlcN (Sigma-Aldrich) and parasite pellet extensively washed in PBS containing
722 protease inhibitor cocktail (PI, Roche) after saponin lysis. For other experiments,
723 parasites were sorbitol synchronised. Parasite pellets were diluted in 1x sample buffer
724 (6x: 0.3 M Tris (Astral Scientific, 60% v/v glycerol (Astral Scientific), 12 mM EDTA
725 (Sigma-Aldrich), 12% SDS (Sigma-Aldrich), 0.05% bromophenol blue (BioRad)),
726 sonicated 3x cycles (Bioruptor pico, 30 sec on/30 sec off) and reduced in 100 mM
727 Dithiothreitol (DTT, Sigma-Aldrich) prior to fractionation on 3-12% Bis-Tris gels
728 (Invitrogen). Proteins were transferred to nitrocellulose membranes (iBlot, 20V, 7
729 min), blocked in 1% casein/PBS (Sigma-Aldrich) for 1 h and incubated in primary
730 antibodies (S3 Table) overnight and in secondary antibodies for 1 h (Invitrogen) in the
731 dark. For chemiluminescence detection of chicken anti-FLAG and rat anti-RFP (to
732 detect mScarlet), the membrane was additionally incubated for 5 min in SuperSignal
733 substrate (Pierce). Blots were visualised and densitometry analysis performed using
734 the Odyssey LI-COR system. Graphs and statistical analysis, Student's t test with
735 Welch correction or simple linear regression, were completed using GraphPad 8
736 Prism Software. Full-length western blots in this study can be found in supplementary
737 information (S8 – S18 Figs).

738

739 **Co-immunoprecipitation assays**

740 Sorbitol synchronised ring stage parasites were treated \pm 10 nM WR for \sim 16 h and
741 subsequently harvested at trophozoite stage (\sim 28-32-hpi) via magnet purification (LS,
742 Militeyni). The iRBC pellet was resuspended in 20x pellet volume of 1x modified
743 radioimmunoprecipitation (RIPA) buffer (1% TX-100, 0.1% SDS, 10 mM Tris
744 [adjusted to pH 7.5], 150 mM NaCl) (56) containing PI. Cells were lysed via 2x
745 cycles of freeze/thawing, pelleted at 16,000 g for 10 min at 4 °C and resultant
746 supernatant was transferred to a new tube. Two different methods were used, either
747 HA or IgG IP assays:

748 1) For HA IP assays, 250 μ L of supernatant (\sim 2.5 mg of protein) was diluted in 750
749 μ L of lysis buffer and 50 μ L of diluted supernatant transferred to a new tube and used
750 as assay input. Diluted supernatant was incubated overnight with 50 μ L of pre-
751 washed 50/50 anti-HA agarose bead slurry (Sigma-Aldrich, diluted in lysis buffer)
752 2) For IgG IP assays, 200 μ L of supernatant (2 mg of protein) was diluted in lysis
753 buffer to make 1 mL total volume and 50 μ L of diluted supernatant transferred to a
754 new tube and used as assay input. The diluted supernatant was incubated with IgG
755 overnight. The next day, IgG assay samples were incubated with 100 μ L of pre-
756 washed 50/50 Protein Sepharose A slurry (Sigma-Aldrich, diluted in lysis buffer) for
757 1 h. Samples for both HA and IgG assays were then passed through a Micro-Bio spin
758 column (Bio-Rad) and eluted in 50 μ L 1x sample buffer for 5 min at room
759 temperature. Input was resuspended in 10 μ L of 6X sample buffer and both input and
760 elution were reduced (HA IP) by addition of in 100 mM DTT or kept non-reduced
761 (IgG IPs) prior to SDS-PAGE and western blotting.

762

763 **Proteinase K protection assay**

764 Sorbitol synchronized trophozoite stage parasites (~24-hpi) were enriched via magnet
765 purification and parasite pellet used immediately for proteinase K protection assays as
766 previously described (82) but with a few modifications. 20 μ L of the iRBC pellet was
767 resuspended in 80 μ L of PBS + PI supplemented with 1.6 μ g of recombinant EQT
768 (made in-house) and incubated for 10 min at 37 °C. Samples were centrifuged at
769 1,000 g for 3 min at 4 °C and supernatant transferred to a new tube and kept on ice.
770 The pellet was subsequently washed 3x in PBS and divided equally between four
771 tubes. Samples were pelleted and supernatant discarded. 100 μ L PBS was added to
772 tube 1, 100 μ L PBS + proteinase K (20 μ g) to tube 2, 100 μ L 0.03% saponin in PBS +
773 proteinase K to tube 3 and 100 μ L of 0.25% v/v TX-100 in PBS + proteinase K to
774 tube 4. All tubes were incubated on ice for 30 min. To stop the proteinase K activity
775 and precipitate proteins, 11.1 μ L of trichloroacetic acid (TCA, AnalR) was added to
776 each tube, resuspended thoroughly and incubated on ice for 10 min. Samples were
777 centrifuged at 16,000 g for 20 min at 4 °C. Supernatant was discarded and 500 μ L of
778 100% ice-cold acetone (Merck) was added to the pellet and centrifuged at 16,000 g
779 for 10 min at 4 °C. Supernatant was discarded and pellet left to air-dry. The dried
780 pellet was resuspended in 100 μ L of 1x sample buffer, and 26 μ L of 4x sample buffer
781 was added to EQT supernatant. All samples were reduced in 100 mM DTT and
782 prepared for western blotting.

783

784 **Metabolite extraction and analysis**

785 Sorbitol synchronised parasite culture with ~10% trophozoite stage parasites (~24
786 hpi) were treated with 0, 0.15 or 1 mM GlcN plus heparin (100 μ g/mL) to prevent
787 parasite invasion. At late schizont stage the heparin was removed and parasite culture
788 concentrated to 8% haematocrit and left shaking (85 RPM) at 37 °C for 4 h to allow

789 parasites to invade new RBCs. Culture was then sorbitol synchronised and parasite
790 pellet placed back into culture at 1% haematocrit at 37 °C. GlcN concentration was
791 maintained throughout all steps, except during sorbitol treatment. PTEX150-HA*glmS*
792 parasite culture was harvested at 18, 24 and 30-hpi or at a single time point 24-hpi
793 including additional 3D7 WT control. For metabolite extraction, samples were
794 prepared in three technical replicates, each replicate containing 1 mL warm media and
795 1x10⁸ cells. All 12 tubes (0, 0.15, 1 mM GlcN and uRBCs) were incubated at 37 °C.
796 Technical triplicates were processed together for the following steps at 4 °C. Samples
797 were centrifuged at 12,000 g for 30 s, supernatant removed, and pellet resuspended in
798 1 mL ice-cold PBS. Samples were centrifuged as before, and final pellet was
799 resuspended in 200 µL of 80% acetonitrile (Merck, in Milli-Q water). The samples
800 were centrifuged at 18,000 g for 5 min, supernatant transferred to fresh tubes and
801 stored at -80 °C until processed by mass spectrometry as previously described (83).

802

803 Polar metabolite detection was performed on an Agilent 6550 Q-TOF mass
804 spectrometer operating in negative mode. Metabolites were separated on a SeQuant
805 ZIC-pHILIC column (5 µM, 150 X 4.6 mm, Millipore) using a binary gradient with a
806 1,200 series HPLC system across a 45 min method using 20 mM ammonium
807 carbonate (pH 9) and acetonitrile, as described previously (83). The scan range was
808 25-1,200 m/z between 5 and 30 min at 0.9 spectra/s. An internal reference ion
809 solution was continually run (isocratic pump at 0.2 mL/min) throughout the
810 chromatographic separation to maintain mass accuracy. Other liquid chromatography
811 parameters were: autosampler temperature 4 °C, injection volume 5-10 µL and data
812 was collected in centroid mode with Mass Hunter Workstation software (Agilent).
813 Raw Agilent.d files were converted to mzXML with MSconvert and analysed using

814 the Maven software package (84). Following alignment, metabolite identification was
815 performed either with exact mass (<10 ppm) or retention time matching to authentic
816 standards (approximately 150 in-house metabolite standards).

817

818 **Acknowledgements**

819 We thank the Australian Red Cross for the human RBCs used in this study and
820 Jacobus Pharmaceutical for providing the WR. We thank Cat Nie for technical
821 assistance with troubleshooting of the initial metabolomics experiment, analysis and
822 sample preparation. We thank Paul R. Sanders for technical assistance during the
823 preliminary work of this project. We also thank Leann Tilley and Matthew Dixon for
824 gifting the CRT, ERC and GAPDH antibodies and the Malaria Experimental Genetics
825 2018 course for providing the pCas9 plasmid.

826

827 **Author contributions**

828 T.K.J., roles: Conceptualization, Data Curation, Formal Analysis, Investigation,
829 Methodology, Validation, Visualization, Writing – Original Draft Preparation,
830 Writing – Review & Editing. B.E., roles: Conceptualization, Investigation,
831 Methodology. S.C., roles: Formal analysis, Investigation, Methodology. M.G., roles:
832 Formal Analysis, Investigation, Methodology. S.C.C., role: Investigation. M.G.D.,
833 role: Formal Analysis. M.P.S., role: Formal Analysis. M.M., roles: Resources,
834 Funding acquisition. H.E.B., roles: Conceptualization, Data curation, Funding
835 acquisition, Methodology, Project Administration, Resources, Supervision,
836 Visualization, Writing – Review & Editing. B.S.C., roles: Conceptualization, Data
837 curation, Funding acquisition, Methodology, Project Administration, Resources,
838 Supervision, Writing – Review & Editing. P.R.G., roles: Conceptualization, Data

839 curation, Funding acquisition, Investigation, Methodology, Project Administration,
840 Resources, Supervision, Writing – Review & Editing

841

842 **Funding**

843 T.K.J was supported by the University of Melbourne Research Scholarship, M.G. was
844 supported by the Deakin University Postgraduate Research Scholarship (DUPRS) and
845 M.G.D. was supported by the Australian Government Research Training Program
846 Scholarship. This work was supported by the Victorian Operational Infrastructure
847 Support Program received by the Burnet Institute and by the National Health and
848 Medical Research Council (NHMRC) grant numbers: 1092789, 1128198 and
849 119780521.

850

851 **Conflict of interest**

852 Authors declare no conflict of interest.

853

854 **Figure legends**

855 **Fig 1. Conditional knockdown of PTEX150 perturbs the Hb digestion pathway.**
856 (A) Highly synchronous PTEX150-HAglmS trophozoite stage parasites were treated
857 with 0, 0.15 or 1 mM GlcN for one cell cycle to knockdown the expression of
858 PTEX150. The parasites were harvested at 18, 24 and 30-hpi and their metabolites
859 were extracted and fractionated for identification by mass spectrometry. The fold
860 change for 0.15 and 1 mM GlcN compared to untreated (UT) parasites is indicated.
861 The amino acid sequences of the Hb peptides are shown on the left of the heat map.
862 Heat map shows 1 biological replicate completed in technical triplicate. (B)
863 Metabolites from 3D7 WT and PTEX150-HAglmS parasite lines were prepared as
864 described for panel A and parasites harvested at 24-hpi. The heat map represents 1
865 biological replicate of 3 technical replicates, where fold change is shown for 0.15 or 1
866 mM GlcN compared to untreated. Fold change for both heat maps was calculated
867 using the following formula =log2(GlcN treated/untreated).

868

869 **Fig 2. Knockdown of PTEX150 and HSP101 results in build-up of full-length Hb**
870 **inside the parasite.**

871 (A) Trophozoite stage parasites were treated with 0, 0.15 or 1 mM GlcN for one cell
872 cycle, harvested via saponin lysis at ~20-24-hpi and prepared for western blotting.
873 Mouse anti-HA was used to probe for the target protein, rabbit anti-HSP70-1 was a
874 loading control and rabbit anti-human Hb a marker for undigested Hb inside the
875 parasites. Blots are representative of 3 biological replicates. (B) Protein band
876 densitometry of 3 biological replicates was used to indicate the relative levels of Hb
877 in the GlcN-induced knockdown parasites normalised to untreated parasites. 3D7 WT
878 was used as negative control and FP2a-HA*glmS* as a positive control for Hb build-up.
879 The densitometry for Hb was done on the monomer (indicated with an arrow in panel
880 A). The densitometry was adjusted to the loading control and normalised to untreated
881 to visualise changes when treated with GlcN. Error bars= SD. “%” refers to % build-
882 up of Hb compared to untreated and “exp.” refers to protein expression of the
883 knockdown protein following GlcN treatment. Statistical analysis was completed for
884 1 mM GlcN comparing 3D7 WT to PTEX150, HSP101 and FP2a-HA*glmS* lines using
885 Student’s t test with Welch correction. Only FP2a showed significant increase in Hb
886 levels compared to WT, where * P=0.0255. However, both PTEX150 and HSP101
887 knockdown showed trend towards Hb build-up inside the parasite when knocked
888 down. (C) Highly synchronous PTEX150-HA*glmS* parasites were treated \pm 1 mM
889 GlcN for one cell cycle and 20-24 hpi trophozoites were lysed in saponin and
890 prepared for IFA. Panels show representative figures from 1 biological replicate.
891 DAPI (4',6-diamidino-2-phenylindole) was used to stain the nucleus.
892 DIC=differential interference contrast. Scale bars= 5 μ m. (D) For cells from IFA
893 experiments in panel C the integrated density (mean intensity*area) of the parasite,
894 denoted by the boundary of EXP2 signal, was measured in the Hb channel. Statistical
895 analyses were completed using Student’s t test with Welch correction, where the
896 number of cells analysed is indicated on the right-hand side. A significant increase in
897 Hb integrated density was observed when parasites were treated with 1 mM GlcN
898 compared to 0 mM GlcN, where (****) indicates P=0.0001 and error bars=SD. (E)
899 Cells analysed in panel D were of similar size where Student’s t test with Welch
900 correction showed that there was no significant difference between treatments. Middle
901 line represents mean and error bars=SD.
902

903 **Fig 3. FP2a trappable reporters were generated to study the relationship of FP2a
904 with PTEX.**

905 (A) Three FP2a reporters were generated. 120 aa and 190 aa containing the first 120
906 aa and 190 aa of FP2a respectively. The NT reporter refers to the 190 aa reporter
907 without the N-terminal TM domain and served as a negative control. All FP2a
908 sequences were appended with nanoluciferase (Nluc), murine dihydrofolate reductase
909 (DH) and a 3X FLAG (FL) epitope tag. The complete protein map for FP2a is
910 indicated above for reference, where the reporter only contains the N-terminus
911 sufficient for food vacuole delivery and not the C-terminus necessary for protease
912 activity. The reporters were episomally expressed from a plasmid under the
913 bidirectional EF1a promoter in the HSP101-HA*glmS* parental line and maintained
914 under Blasticidin-S selection via the Blasticidin-S Deaminase (BSD) cassette. (B)
915 Western blot analysis demonstrated that the 120 aa, 190 aa and NT FP2a reporters are
916 expressed and migrate at the correct size indicated in panel A. Rabbit anti-Nluc was
917 used to detect the Nluc tag and chicken anti-FLAG to detect the FL tag. Mouse anti-
918 EXP2 was used as a loading control. (C) Immunofluorescence assays show that the
919 120 aa and 190 aa FP2a reporters are trafficked to the food vacuole. The NT FP2a
920 reporter displayed diffuse labelling within the parasite as expected. Rabbit anti-Nluc

921 was used to detect the reporter, mouse anti-EXP2 was used as a PVM marker and
922 haemozoin crystals in the DIC show food vacuole localisation (indicated with a white
923 dotted line). (D) Late ring/early trophozoites were treated \pm 18 μ M BFA to inhibit ER
924 to Golgi protein secretion. The 120 and 190 aa FP2a reporters were both trapped in
925 the ER upon BFA treatment as expected and no changes were observed for the NT
926 reporter. Rabbit anti-ERC was used as an ER marker and mouse anti-HA to label for
927 HSP101, which also traps in the ER upon BFA treatment (53). DAPI was used to
928 stain the nucleus. Scale bars = 5 μ m.
929

930 **Fig 4. The FP2a 120 aa reporter shows significantly more association with EXP2**
931 **upon WR trapping.**

932 (A) Parasites expressing the 120 aa, 190 aa and NT FP2a reporters were synchronised
933 and treated \pm 10 nM WR at ring stage to prevent unfolding of the reporters to see if
934 they would become trapped at the parasite periphery with PTEX. When treated with
935 WR, more 120 aa reporter was observed at the PPM/PVM indicating its trafficking
936 was affected. No substantial difference was observed for 190 aa or NT reporters.
937 Shown are representative images for 3 (120 aa) and 2 (190 aa and NT) biological
938 replicates. Rabbit anti-EXP2 was used as a PVM marker, rabbit anti-Nluc to detect
939 the reporters and DAPI to stain the nucleus. Scale bars= 5 μ m. Arrows point to PVM
940 loops. (B) Pearson's coefficient was used to measure the co-localisation of the FP2a
941 reporters (Nluc) and EXP2. There was significantly more co-localisation of 120 aa
942 with EXP2 when treated with WR as determined by student's t test with Welch
943 correction but no significant difference was observed for the 190 aa or NT reporters.
944 (****) Indicates P <0.0001, n= cells analysed (pooled from 3 (120 aa) or 2 (190 aa
945 and NT) biological replicates), middle line on the graph represents mean and error
946 bars=SD. Each dot on the graph represents a cell analysed.
947

948 **Fig 5. Both the 120 aa and the 190 aa FP2a reporters interact with HSP101 and**
949 **this interaction is weaker when reporters are inhibited from unfolding via**
950 **addition of WR.**

951 (A) Ring stage HSP101-HAglmS parasites episomally expressing Hyp1, NT, 120 aa,
952 or 190 aa reporters were treated \pm 10 nM WR and harvested at trophozoite stage
953 (~28-32 hpi). Anti-HA IgG beads were used to IP HSP101 and its interacting
954 proteins. Input shows 1% protein lysate used for the assay, and elution refers to
955 protein bound to the HA beads/HSP101-HAglmS indicating their interaction with
956 HSP101. Hyp1 was used as positive control and NT as a negative control. Mouse
957 anti-HA was used to probe for HSP101, chicken anti-FLAG for the reporter, rabbit
958 anti-741 for PTEX150 and mouse anti-EXP2 for EXP2. Blot is representative of 3
959 biological replicates. The asterisks indicate stronger signal when comparing the \pm
960 WR treatment for respective reporter as determined by densitometry of all biological
961 replicates. (B) The interaction of reporters with HSP101 was graphed, where FLAG
962 elution was adjusted to input. Each dot represents 1 biological replicate. (C) The
963 interaction of reporters with HSP101, where the fold difference of the FLAG
964 elution/input was adjusted to untreated (-WR). Error bars= SD from 3 biological
965 replicates.
966

967 **Fig 6. Proteinase K protection assay shows that FP2a needs to be unfolded before**
968 **crossing the PPM with its N-terminus first.**

969 (A) Ring stage parasites were treated \pm 10 nM WR to inhibit the 120 aa FP2a
970 reporter from unfolding. Trophozoite stage parasites were magnet purified and used

971 for proteinase K (PK) protection assays. EQT was used to permeabilise the iRBC
972 membrane, saponin (SAP) to lyse the PVM, and TX-100 to lyse all membranes. A 3.8
973 kDa shift was observed in the reporter size when the PV was lysed and treated with
974 PK (lanes 4 and 9), which matches the predicted size of the 34 aa (4 kDa) N-terminus
975 preceding TM domain (measured in Odyssey LICOR). FP2a reporter appears to be
976 more protected against PK degradation when treated with WR vs. non-treated,
977 indicating trapping at the PPM not PVM. Chicken anti-FLAG was used to probe for
978 the FP2a reporter, GBP130 is a soluble exported protein marker, SERA5 is a PV
979 marker and GAPDH is a parasite cytoplasm marker. Blot is representative of 3
980 biological replicates, which showed a similar trend, SN= supernatant, P= pellet. (B)
981 The fold difference for protection of the FP2a reporter (FLAG) was measured by
982 densitometry, where the FLAG signal was adjusted to GAPDH and the fold difference
983 measured by adjusting the EQT + PK and SAP + PK signal to EQT + PBS. The fold
984 difference (X) compared with untreated is indicated with a red dotted line on the
985 graph. Error bars = SD from 3 biological replicates. (C) A suggested model derived
986 from the PK assay results. When parasites were not treated with WR more reporter
987 cargo was degraded indicating that when inhibited from unfolding the reporter was
988 trapped at the PPM. This likely hindered extraction into the PV potentially facilitated
989 by HSP101 as suggested for TM exported proteins.
990

**991 Fig 7. The PM II-mScarlet fusion protein in the PTEX150-HAglmS parental line
992 accumulates at the parasite periphery when PTEX150 is knocked down and co-
993 precipitates with PTEX150.**

994 (A) Western blot was used to confirm the correct size of PM II-mScarlet, detected by
995 rat anti-RFP (red fluorescent protein), which detects the mScarlet tag. Mouse anti-HA
996 was used to detect the PTEX150-HAglmS of the parental line and rabbit anti-HSP70-
997 1 was used as a loading control. Only the pro form of the protease was detected. (B)
998 Live cell microscopy was used to visualise the localisation of the mScarlet (PM II) in
999 both ring and trophozoite stage parasites, where the tag was observed inside the
1000 parasite and overlapping with the food vacuole (haemozoin crystals), which are
1001 indicated with a dotted white line. Scale bars= 5 μ m. (C) PM II-mScarlet parasites
1002 were treated \pm 1 mM GlcN at trophozoite stage and harvested at late ring/early
1003 trophozoite stage (~20 hpi) for live cell microscopy. The mScarlet signal was
1004 subsequently categorised as either 'dot' or 'crescent/circle' around the parasite
1005 periphery. Panel shows representative images for each category, the experiment was
1006 completed in 3 biological replicates. Scale bars=5 μ m. (D) Graphs show the
1007 percentage of parasites with dots vs. crescent/circular labelling from the experiment in
1008 panel C. Statistical analysis was completed using Student's t test with Welch
1009 correction. n = total number of cells counted per condition with 3 biological replicates
1010 combined. Error bars= SD for 3 individuals counting. (**) Indicates P= 0.0048. (E)
1011 Anti-HA IgG beads were used to IP PTEX150 and its interacting proteins. EXP2 and
1012 HSP101 were used as positive control for interaction, GAPDH as a negative control
1013 and 3D7 WT as a negative control for non-specific interaction with beads. Blot is
1014 representative of 2 biological replicates.
1015

**1016 Fig 8. Model depicting newly identified steps in the FP2a trafficking pathway to
1017 the food vacuole.**

1018 By integrating the data from this study, we propose a new model for the trafficking of
1019 FP2a, and potentially other Hb proteases, to the food vacuole. (A) The FP2a protein
1020 enters the secretory pathway and travels from the ER to the PV, (B) where the protein

1021 is deposited in the PPM via its TM domain (pink), in an N- to C-terminal direction.
1022 (C) HSP101 could help extract FP2a from the PPM and into the PV as proposed for
1023 TM exported proteins and then interact with the rest of PTEX, or (D) all the PTEX
1024 core components could participate in FP2a extraction from the PPM. FP2a is then
1025 escorted to the cytostome, which likely involves additional sorting in the PV by an
1026 unknown mechanism. (E) The proteolytic domain (purple) of FP2a is likely placed
1027 with the C-terminus inside the cytostome for easy access to the Hb, which is taken up
1028 via the cytostome formed by invagination of the PVM and PPM. (F) FP2a is then
1029 transported to the food vacuole (FV) together with Hb. (G) Inside the FV the Hb is
1030 digested into smaller peptides, releasing haem, which is sequestered into haemoglobin
1031 crystals (Hz). (H) Reduced PTEX expression results in accumulation of Hb proteases
1032 (as shown with PM II-mScarlet) at the parasite periphery. (I) This would subsequently
1033 lead to accumulation of full-length Hb inside the FV and reduced levels of haemoglobin
1034 crystal formation. Figure is partially based on Hb trafficking models provided by (32,
1035 38). A Red cross is drawn over FP2a incorporation into the PVM by PTEX, as this is
1036 likely not possible since PTEX does not have lateral gate to facilitate this.
1037

1038 **Supporting information**

1040 **S1 Fig. Metabolite heat maps.**

1041 (A) Heat map corresponding to S1 Table for PTEX150-HAglmS metabolomics time
1042 course (18, 24, 30-hpi) experiment. (B) Heat map corresponding to S1 Table for 3D7
1043 and PTEX150-HAglmS metabolomics experiment. Numbers represent metabolites
1044 listed in S1 Table, where Hb peptides have been highlighted in bold. Fold change for
1045 both heat maps was calculated using the following formula = $\log_2(\text{GlcN treated/untreated})$.
1046

1047 **S2 Fig. Generation and characterisation of the FP2a-HAglmS parasite line.**

1048 (A) CRISPR-Cas9 was used to append the *fp2a* gene with a HA tag and a *glmS*
1049 riboswitch. (B) PCR was used to confirm the correct integration of the tag to the
1050 target gene, where 3D7 WT was used as a negative control for integration. The
1051 position of PCR primers used to confirm integration are shown in panel A, where
1052 FInt, is the forward PCR integration primer. F, forward primer. *glmS_R*, reverse
1053 primer. (C) Correct size and level of FP2a knockdown was confirmed using western
1054 blotting. >90% of FP2a was knocked down after one cell cycle of GlcN treatment. P
1055 stands for pro FP2a and M stands for mature FP2a. The HA-tag adds approximately 3
1056 kDa to the target protein. The mark on the right-hand side of the blot is an artefact.
1057 Mouse anti-HA detects FP2a-HAglmS and rabbit anti-HSP70-1 was used as a loading
1058 control. Blot is representative of 3 biological replicates. (D) Immunofluorescence
1059 assays where mouse anti-HA detects target protein and rabbit anti-EXP2 was used as
1060 a PVM marker. The images indicate that FP2a displays diffused localisation in the
1061 parasite cytoplasm, sometimes with a concentrated puncta at the parasite periphery,
1062 likely representing the cytostome (white arrows). The HA antibody signal against
1063 FP2a-HAglmS partly overlaps with rabbit anti-CRT which labels the food vacuole
1064 membranes. Food vacuole lumen, indicated by the dark haemoglobin crystals in the
1065 DIC images, are not well labelled for FP2a-HAglmS likely due to the HA epitope tag
1066 being proteolytically degraded in the food vacuole. Scale bars= 5 μm . (E) Multi-cycle
1067 LDH growth assays were performed over 3 consecutive cell cycles. No significant
1068 growth defect was observed for FP2a or 3D7 WT when treated with different
1069 concentrations of GlcN. T = number of cycles. Statistics were completed using
1070

1071 Student's t test with Welch correction. Graphs show 2 biological replicates completed
1072 in technical triplicate. Error bars= SD. Data for each parasite line was normalised to 0
1073 GlcN treatment for each time point.

1074

**1075 S3 Fig. Knockdown of PTEX150 and HSP101 results in build-up of full-length
1076 Hb inside the parasite and reduced haemozoin crystal formation.**

1077 (A) Simple linear regression analysis was performed on protein expression and Hb
1078 build-up from western blots presented in Fig 2B for PTEX150-HA $glmS$, HSP101-
1079 HA $glmS$ and FP2a-HA $glmS$. All parasite lines showed significant regression slope,
1080 where P values are shown in each graph along with R². The 6 blue dots on the graphs
1081 represent 3 biological replicates for 0.15 and 1 mM GlcN for protein expression (x-
1082 axis) plotted against the mean for 3 biological replicates for Hb build-up (y-axis). (B)
1083 Both PTEX150-HA $glmS$ and HSP101-HA $glmS$ trophozoite stage parasites were
1084 treated \pm 2.5 mM GlcN for one cell cycle and harvested for IFA. Haemozoin crystals
1085 in the DIC channel were counted (present or absent). Images are representative of 3
1086 (PTEX150) or 2 (HSP101) biological replicates. (C) Both PTEX150 and HSP101
1087 knockdown experiments shown in panel B resulted in significantly less crystal
1088 formation compared to untreated cells when using Student's t test with Welch
1089 correction. (*) Indicates P= 0.0247 (PTEX150) and P=0.0277 (HSP101). Error bars =
1090 SD from 2 individuals counting. (D) Area of the parasites analysed in panel C
1091 (completed as described in Fig 2E) showed significant difference in size for GlcN
1092 treated PTEX150 parasites compared with untreated indicating parasite growth was
1093 affected but no significant difference was observed for HSP101 knockdown. Middle
1094 line represents mean and error bars=SD. (****) Indicates P=<0.0001. Each dot on the
1095 graph represents one cell analysed.

1096

**1097 S4 Fig. Western blot time course indicates that the 120 and 190 aa FP2a
1098 reporters are expressed similarly from 24-40-hpi while the NT reporter is
1099 degraded as the parasite matures.**

1100 Synchronous (4 h invasion window) parasite cultures for the three FP2a reporter lines
1101 were divided in four and harvested via saponin lysis at four sequential time points:
1102 24-28 hpi, 28-32 hpi, 32-36 hpi and 36-40 hpi. Chicken anti-FLAG and rabbit anti-
1103 Nluc were used to visualise the FP2a reporters, mouse anti-HA to visualise the
1104 HSP101-HA $glmS$ (parental line) and rabbit anti-HSP70-1 was used as a loading
1105 control. The expected size of each reporter is indicated with (*), where the cleavage
1106 of Nluc from the 120 and 190 aa reporters was observed in each time point (lanes 2, 3,
1107 5, 6, 8, 9, 11 and 12), likely due to cleavage upon entry into the food vacuole. This
1108 cleavage of Nluc was not observed for the NT reporter (lanes 1, 4, 7 and 10), which
1109 does not enter the food vacuole. The NT reporter was also degraded more, and the
1110 expression of the full-length reporter diminishes as the parasite matures (lanes 1 and 4
1111 vs. lanes 7 and 10), whilst expression of the 120 and 190 aa reporters remains stable
1112 across each time point. These data indicate that the optimal time point to study these
1113 three reporters was in the range of 24-32 hpi, as indicated in bold. This blot represents
1114 2 biological replicates.

1115

**1116 S5 Fig. The 120 aa and the 190 aa FP2a reporters interact with PTEX150 and
1117 EXP2.**

1118 Immunoprecipitation assays with parasites treated with \pm 10 nM WR were
1119 completed on the four reporter lines using Protein Sepharose A where (A) PTEX150
1120 or (B) EXP2 protein specific antibodies were incubated with parasite lysate to Co-IP

1121 interacting proteins. Both 120 aa (line 13) and 190 aa (line 15) showed stronger
1122 association with (A) PTEX150 and (B) EXP2 in -WR treatment as determined by
1123 densitometry (S6 Fig). The Hyp1 reporter showed reverse association to FP2a
1124 reporters and NT showed some background signal in both conditions. (A) PTEX150
1125 and (B) EXP2 both co-precipitated with other PTEX components (lanes 9 – 16).
1126 Chicken anti-FLAG was used to probe for the reporter, mouse anti-HA for HSP101
1127 and rabbit 741 for PTEX150. Both (A) and (B) blots represent 3 biological replicates.
1128 The asterisks indicate stronger signal when comparing the \pm WR treatment for
1129 respective reporter measured by densitometry of 3 biological replicates.
1130

1131 **S6 Fig. Densitometry measurements for PTEX150 and EXP2 IPs.**

1132 (A) The interaction of reporters with PTEX150 (r942) and EXP2 (r1167) presented in
1133 S5 Fig A was graphed, where FLAG elution was adjusted to input. Each dot
1134 represents 1 biological replicate. (B) The interaction of reporters with PTEX150
1135 (r942) and EXP2 (r1167), where the fold difference of the FLAG elution/input was
1136 adjusted to untreated (-WR). Error bars= SD from 3 biological replicates.
1137

1138 **S7 Fig. Establishment of PM II mScarlet in a PTEX150-HAglmS background.**

1139 (A) The *pm ii* gene was C-terminally tagged with mScarlet as described for FP2a in
1140 S2 Fig A and introduced into a PTEX150-HAglmS background. (B) Correct
1141 integration of mScarlet to PM II was confirmed via PCR, where genotyping primers
1142 are displayed in panel A.
1143

1144 **S8 – S18 Figs. Full-length western blots presented in this study.**

1145

1146 **References**

- 1147 1. W.H.O. World Malaria Report 2021. Geneva: World Health Organisation; 2021.
- 1149 2. Milner DA, Jr. Malaria Pathogenesis. *Cold Spring Harb Perspect Med.* 2018;8(1):a025569.
- 1151 3. Marti M, Spielmann T. Protein export in malaria parasites: many
1152 membranes to cross. *Curr Opin Microbiol.* 2013;16(4):445-51.
- 1153 4. de Koning-Ward TF, Gilson PR, Boddey JA, Rug M, Smith BJ, Papenfuss AT,
1154 et al. A newly discovered protein export machine in malaria parasites. *Nature.* 2009;459(7249):945-9.
- 1156 5. Beck JR, Muralidharan V, Oksman A, Goldberg DE. PTEX component
1157 HSP101 mediates export of diverse malaria effectors into host erythrocytes.
1158 *Nature.* 2014;511(7511):592-5.
- 1159 6. Elsworth B, Matthews K, Nie CQ, Kalanon M, Charnaud SC, Sanders PR, et
1160 al. PTEX is an essential nexus for protein export in malaria parasites. *Nature.* 2014;511(7511):587-91.
- 1162 7. Charnaud SC, Kumarasingha R, Bullen HE, Crabb BS, Gilson PR.
1163 Knockdown of the translocon protein EXP2 in *Plasmodium falciparum* reduces
1164 growth and protein export. *PLoS One.* 2018;13(11):e0204785.
- 1165 8. Bullen HE, Charnaud SC, Kalanon M, Riglar DT, Dekiwadia C,
1166 Kangwanrangsang N, et al. Biosynthesis, localization, and macromolecular

1167 arrangement of the *Plasmodium falciparum* translocon of exported proteins
1168 (PTEX). *J Biol Chem.* 2012;287(11):7871-84.

1169 9. Ho CM, Beck JR, Lai M, Cui Y, Goldberg DE, Egea PF, et al. Malaria parasite
1170 translocon structure and mechanism of effector export. *Nature.* 2018;561(7721):70-5.

1171 10. Matthews KM, Kalanon M, de Koning-Ward TF. Uncoupling the threading
1172 and unfoldase actions of *Plasmodium* HSP101 reveals differences in export
1173 between soluble and insoluble proteins. *mBio.* 2019;10(3).

1174 11. Matthews K, Kalanon M, Chisholm SA, Sturm A, Goodman CD, Dixon MW,
1175 et al. The *Plasmodium* translocon of exported proteins (PTEX) component
1176 thioredoxin-2 is important for maintaining normal blood-stage growth. *Mol
1177 Microbiol.* 2013;89(6):1167-86.

1178 12. Matz JM, Matuschewski K, Kooij TW. Two putative protein export
1179 regulators promote *Plasmodium* blood stage development *in vivo*. *Mol Biochem
1180 Parasitol.* 2013;191(1):44-52.

1181 13. Garten M, Nasamu AS, Niles JC, Zimmerberg J, Goldberg DE, Beck JR. EXP2
1182 is a nutrient-permeable channel in the vacuolar membrane of *Plasmodium* and is
1183 essential for protein export via PTEX. *Nat Microbiol.* 2018;3(10):1090-8.

1184 14. van Ooij C, Tamez P, Bhattacharjee S, Hiller NL, Harrison T, Liolios K, et al.
1185 The malaria secretome: from algorithms to essential function in blood stage
1186 infection. *PLoS Pathog.* 2008;4(6):e1000084.

1187 15. Sargeant TJ, Marti M, Caler E, Carlton JM, Simpson K, Speed TP, et al.
1188 Lineage-specific expansion of proteins exported to erythrocytes in malaria
1189 parasites. *Genome Biol.* 2006;7(2):R12.

1190 16. Boddey JA, Carvalho TG, Hodder AN, Sargeant TJ, Sleebs BE, Marapana D,
1191 et al. Role of plasmepsin V in export of diverse protein families from the
1192 *Plasmodium falciparum* exportome. *Traffic.* 2013;14(5):532-50.

1193 17. Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano
1194 C, et al. A host-targeting signal in virulence proteins reveals a secretome in
1195 malarial infection. *Science.* 2004;306(5703):1934-7.

1196 18. Marti M, Good RT, Rug M, Knuepfer E, Cowman AF. Targeting malaria
1197 virulence and remodeling proteins to the host erythrocyte. *Science.* 2004;306(5703):1930-3.

1198 19. Heiber A, Kruse F, Pick C, Gruring C, Flemming S, Oberli A, et al.
1199 Identification of new PNEPs indicates a substantial non-PEXEL exportome and
1200 underpins common features in *Plasmodium falciparum* protein export. *PLoS
1201 Pathog.* 2013;9(8):e1003546.

1202 20. Maier AG, Rug M, O'Neill MT, Brown M, Chakravorty S, Szestak T, et al.
1203 Exported proteins required for virulence and rigidity of *Plasmodium falciparum*-
1204 infected human erythrocytes. *Cell.* 2008;134(1):48-61.

1205 21. Jonsdottir TK, Gabriela M, Crabb BS, T FdK-W, Gilson PR. Defining the
1206 essential exportome of the malaria parasite. *Trends Parasitol.* 2021;37(7):664-
1207 75.

1208 22. Nguitragool W, Bokhari AA, Pillai AD, Rayavara K, Sharma P, Turpin B, et
1209 al. Malaria parasite *clag3* genes determine channel-mediated nutrient uptake by
1210 infected red blood cells. *Cell.* 2011;145(5):665-77.

1211 23. Counihan NA, Chisholm SA, Bullen HE, Srivastava A, Sanders PR,
1212 Jonsdottir TK, et al. *Plasmodium falciparum* parasites deploy RhopH2 into the
1213 host erythrocyte to obtain nutrients, grow and replicate. *Elife.* 2017;6:e23217.

1214

1216 24. Ito D, Schureck MA, Desai SA. An essential dual-function complex
1217 mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria
1218 parasites. *Elife*. 2017;6:e23485.

1219 25. Sherling ES, Knuepfer E, Brzostowski JA, Miller LH, Blackman MJ, van Ooij
1220 C. The *Plasmodium falciparum* rhoptry protein RhopH3 plays essential roles in
1221 host cell invasion and nutrient uptake. *Elife*. 2017;6:e23239.

1222 26. Ahmad M, Manzella-Lapeira J, Saggù G, Ito D, Brzostowski JA, Desai SA.
1223 Live-cell FRET reveals that malaria nutrient channel proteins CLAG3 and
1224 RhopH2 remain associated throughout their tortuous trafficking. *mBio*.
1225 2020;11(5):e01354-20.

1226 27. Pasternak M, Verhoef JMJ, Wong W, Triglia T, Mlodzianoski MJ, Geoghegan
1227 N, et al. RhopH2 and RhopH3 export enables assembly of the RhopH complex on
1228 *P. falciparum*-infected erythrocyte membranes. *Commun Biol*. 2022;5(1):333.

1229 28. Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that
1230 remodel the host erythrocyte. *Nat Rev Microbiol*. 2009;7(5):341-54.

1231 29. Gomes PS, Bhardwaj J, Rivera-Correa J, Freire-De-Lima CG, Morrot A.
1232 Immune escape strategies of malaria parasites. *Front Microbiol*. 2016;7:1617.

1233 30. de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR. *Plasmodium* species:
1234 master renovators of their host cells. *Nat Rev Microbiol*. 2016;14(8):494-507.

1235 31. Prommano P, Uthaipibull C, Wongsombat C, Kamchonwongpaisan S,
1236 Yuthavong Y, Knuepfer E, et al. Inducible knockdown of *Plasmodium* gene
1237 expression using the *glmS* ribozyme. *PLoS One*. 2013;8(8):e73783.

1238 32. Milani KJ, Schneider TG, Taraschi TF. Defining the morphology and
1239 mechanism of the hemoglobin transport pathway in *Plasmodium falciparum*-
1240 infected erythrocytes. *Eukaryot Cell*. 2015;14(4):415-26.

1241 33. Egan TJ, Combrinck JM, Egan J, Hearne GR, Marques HM, Ntenteni S, et al.
1242 Fate of haem iron in the malaria parasite *Plasmodium falciparum*. *Biochem J*.
1243 2002;365(Pt 2):343-7.

1244 34. Dasaradhi PV, Korde R, Thompson JK, Tanwar C, Nag TC, Chauhan VS, et
1245 al. Food vacuole targeting and trafficking of falcipain-2, an important cysteine
1246 protease of human malaria parasite *Plasmodium falciparum*. *Mol Biochem
1247 Parasitol*. 2007;156(1):12-23.

1248 35. Subramanian S, Sijwali PS, Rosenthal PJ. Falcipain cysteine proteases
1249 require bipartite motifs for trafficking to the *Plasmodium falciparum* food
1250 vacuole. *J Biol Chem*. 2007;282(34):24961-9.

1251 36. Klemba M, Beatty W, Gluzman I, Goldberg DE. Trafficking of plasmepsin II
1252 to the food vacuole of the malaria parasite *Plasmodium falciparum*. *J Cell Biol*.
1253 2004;164(1):47-56.

1254 37. Lazarus MD, Schneider TG, Taraschi TF. A new model for hemoglobin
1255 ingestion and transport by the human malaria parasite *Plasmodium falciparum*. *J
1256 Cell Sci*. 2008;121(11):1937-49.

1257 38. Abu Bakar N, Klonis N, Hanssen E, Chan C, Tilley L. Digestive-vacuole
1258 genesis and endocytic processes in the early intraerythrocytic stages of
1259 *Plasmodium falciparum*. *J Cell Sci*. 2010;123(Pt 3):441-50.

1260 39. Krugliak M, Zhang J, Ginsburg H. Intraerythrocytic *Plasmodium falciparum*
1261 utilizes only a fraction of the amino acids derived from the digestion of host cell
1262 cytosol for the biosynthesis of its proteins. *Mol Biochem Parasitol*.
1263 2002;119(2):249-56.

1264 40. Lew VL, Tiffert T, Ginsburg H. Excess hemoglobin digestion and the
1265 osmotic stability of *Plasmodium falciparum*-infected red blood cells. *Blood*.
1266 2003;101(10):4189-94.

1267 41. Esposito A, Tiffert T, Mauritz JM, Schlachter S, Bannister LH, Kaminski CF,
1268 et al. FRET imaging of hemoglobin concentration in *Plasmodium falciparum*-
1269 infected red cells. *PLoS One*. 2008;3(11):e3780.

1270 42. Goldberg DE, Slater AF, Beavis R, Chait B, Cerami A, Henderson GB.
1271 Hemoglobin degradation in the human malaria pathogen *Plasmodium*
1272 *falciparum*: a catabolic pathway initiated by a specific aspartic protease. *J Exp*
1273 *Med*. 1991;173(4):961-9.

1274 43. Dahl EL, Rosenthal PJ. Biosynthesis, localization, and processing of
1275 falcipain cysteine proteases of *Plasmodium falciparum*. *Mol Biochem Parasitol*.
1276 2005;139(2):205-12.

1277 44. Banerjee R, Liu J, Beatty W, Pelosof L, Klemba M, Goldberg DE. Four
1278 plasmepsins are active in the *Plasmodium falciparum* food vacuole, including a
1279 protease with an active-site histidine. *Proc Natl Acad Sci U S A*. 2002;99(2):990-
1280 5.

1281 45. Sijwali PS, Rosenthal PJ. Gene disruption confirms a critical role for the
1282 cysteine protease falcipain-2 in hemoglobin hydrolysis by *Plasmodium*
1283 *falciparum*. *Proc Natl Acad Sci U S A*. 2004;101(13):4384-9.

1284 46. Omara-Opyene AL, Moura PA, Sulsona CR, Bonilla JA, Yowell CA, Fujioka
1285 H, et al. Genetic disruption of the *Plasmodium falciparum* digestive vacuole
1286 plasmepsins demonstrates their functional redundancy. *J Biol Chem*.
1287 2004;279(52):54088-96.

1288 47. Shenai BR, Sijwali PS, Singh A, Rosenthal PJ. Characterization of native
1289 and recombinant falcipain-2, a principal trophozoite cysteine protease and
1290 essential hemoglobinase of *Plasmodium falciparum*. *J Biol Chem*.
1291 2000;275(37):29000-10.

1292 48. Klonis N, Tan O, Jackson K, Goldberg D, Klemba M, Tilley L. Evaluation of
1293 pH during cytosomal endocytosis and vacuolar catabolism of haemoglobin in
1294 *Plasmodium falciparum*. *Biochem J*. 2007;407(3):343-54.

1295 49. Matz JM, Drepper B, Blum TB, van Genderen E, Burrell A, Martin P, et al. A
1296 lipocalin mediates unidirectional heme biominerilization in malaria parasites.
1297 *Proc Natl Acad Sci U S A*. 2020;117(28):16546-56.

1298 50. Makler MT, Hinrichs DJ. Measurement of the lactate dehydrogenase
1299 activity of *Plasmodium falciparum* as an assessment of parasitemia. *Am J Trop*
1300 *Med Hyg*. 1993;48(2):205-10.

1301 51. Persson KE, Lee CT, Marsh K, Beeson JG. Development and optimization of
1302 high-throughput methods to measure *Plasmodium falciparum*-specific growth
1303 inhibitory antibodies. *J Clin Microbiol*. 2006;44(5):1665-73.

1304 52. Sijwali PS, Koo J, Singh N, Rosenthal PJ. Gene disruptions demonstrate
1305 independent roles for the four falcipain cysteine proteases of *Plasmodium*
1306 *falciparum*. *Mol Biochem Parasitol*. 2006;150(1):96-106.

1307 53. Gabriela M, Matthews KM, Boshoven C, Kouskousis B, Jonsdottir TK,
1308 Bullen HE, et al. A revised mechanism for how *Plasmodium falciparum* recruits
1309 and exports proteins into its erythrocytic host cell. *PLoS Pathog*.
1310 2022;18(2):e1009977.

1311 54. Egan TJ. Recent advances in understanding the mechanism of hemozoin
1312 (malaria pigment) formation. *J Inorg Biochem*. 2008;102(5-6):1288-99.

1313 55. Azevedo MF, Nie CQ, Elsworth B, Charnaud SC, Sanders PR, Crabb BS, et al.
1314 *Plasmodium falciparum* transfected with ultra bright NanoLuc luciferase offers
1315 high sensitivity detection for the screening of growth and cellular trafficking
1316 inhibitors. *PLoS One*. 2014;9(11):e112571.

1317 56. Mesen-Ramirez P, Reinsch F, Blancke Soares A, Bergmann B, Ullrich AK,
1318 Tenzer S, et al. Stable translocation intermediates jam global protein export in
1319 *Plasmodium falciparum* parasites and link the PTEX component EXP2 with
1320 translocation activity. *PLoS Pathog*. 2016;12(5):e1005618.

1321 57. Eilers M, Schatz G. Binding of a specific ligand inhibits import of a purified
1322 precursor protein into mitochondria. *Nature*. 1986;322(6076):228-32.

1323 58. Gehde N, Hinrichs C, Montilla I, Charpian S, Lingelbach K, Przyborski JM.
1324 Protein unfolding is an essential requirement for transport across the
1325 parasitophorous vacuolar membrane of *Plasmodium falciparum*. *Mol Microbiol*.
1326 2009;71(3):613-28.

1327 59. Charnaud SC, Jonsdottir TK, Sanders PR, Bullen HE, Dickerman BK,
1328 Kouskousis B, et al. Spatial organization of protein export in malaria parasite
1329 blood stages. *Traffic*. 2018;19(8):605-23.

1330 60. Benting J, Mattei D, Lingelbach K. Brefeldin A inhibits transport of the
1331 glycophorin-binding protein from *Plasmodium falciparum* into the host
1332 erythrocyte. *Biochem J*. 1994;300 (Pt 3):821-6.

1333 61. Crary JL, Haldar K. Brefeldin A inhibits protein secretion and parasite
1334 maturation in the ring stage of *Plasmodium falciparum*. *Mol Biochem Parasitol*.
1335 1992;53(1-2):185-92.

1336 62. Bullen HE, Sanders PR, Dans MG, Jonsdottir TK, Riglar DT, Looker O, et al.
1337 The *Plasmodium falciparum* parasitophorous vacuole protein P113 interacts
1338 with the parasite protein export machinery and maintains normal vacuole
1339 architecture. *Mol Microbiol*. 2022;117(5):1245-62.

1340 63. Jackson KE, Spielmann T, Hanssen E, Adisa A, Separovic F, Dixon MW, et
1341 al. Selective permeabilization of the host cell membrane of *Plasmodium*
1342 *falciparum*-infected red blood cells with streptolysin O and equinatoxin II.
1343 *Biochem J*. 2007;403(1):167-75.

1344 64. Perkins M. Stage-dependent processing and localization of a *Plasmodium*
1345 *falciparum* protein of 130,000 molecular weight. *Exp Parasitol*. 1988;65(1):61-8.

1346 65. Blackman MJ. Malarial proteases and host cell egress: an 'emerging'
1347 cascade. *Cell Microbiol*. 2008;10(10):1925-34.

1348 66. Klemba M, Gluzman I, Goldberg DE. A *Plasmodium falciparum* dipeptidyl
1349 aminopeptidase I participates in vacuolar hemoglobin degradation. *J Biol Chem*.
1350 2004;279(41):43000-7.

1351 67. Gupta P, Pandey R, Thakur V, Parveen S, Kaur I, Panda A, et al. Heme
1352 Detoxification Protein (PfHDP) is essential for the hemoglobin uptake and
1353 metabolism in *Plasmodium falciparum*. *FASEB BioAdvances*. 2022;00:1-13.

1354 68. Mesen-Ramirez P, Bergmann B, Tran TT, Garten M, Stacker J, Naranjo-
1355 Prado I, et al. EXP1 is critical for nutrient uptake across the parasitophorous
1356 vacuole membrane of malaria parasites. *PLoS Biol*. 2019;17(9):e3000473.

1357 69. Drew ME, Banerjee R, Uffman EW, Gilbertson S, Rosenthal PJ, Goldberg
1358 DE. *Plasmodium* food vacuole plasmepsins are activated by falcipains. *J Biol*
1359 *Chem*. 2008;283(19):12870-6.

1360 70. Gruring C, Heiber A, Kruse F, Flemming S, Franci G, Colombo SF, et al.
1361 Uncovering common principles in protein export of malaria parasites. *Cell Host*
1362 *Microbe*. 2012;12(5):717-29.

1363 71. Matthews KM, Pitman EL, de Koning-Ward TF. Illuminating how malaria
1364 parasites export proteins into host erythrocytes. *Cell Microbiol*.
1365 2019;21(4):e13009.

1366 72. Egea PF, Stroud RM. Lateral opening of a translocon upon entry of protein
1367 suggests the mechanism of insertion into membranes. *Proc Natl Acad Sci U S A*.
1368 2010;107(40):17182-7.

1369 73. Schureck MA, Darling JE, Merk A, Shao J, Daggupati G, Srinivasan P, et al.
1370 Malaria parasites use a soluble RhopH complex for erythrocyte invasion and an
1371 integral form for nutrient uptake. *Elife*. 2021;10:e65282.

1372 74. Riglar DT, Rogers KL, Hanssen E, Turnbull L, Bullen HE, Charnaud SC, et
1373 al. Spatial association with PTEX complexes defines regions for effector export
1374 into *Plasmodium falciparum*-infected erythrocytes. *Nat Commun*. 2013;4:1415.

1375 75. Birnbaum J, Scharf S, Schmidt S, Jonscher E, Hoeijmakers WAM, Flemming
1376 S, et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance
1377 in malaria parasites. *Science*. 2020;367(6473):51-9.

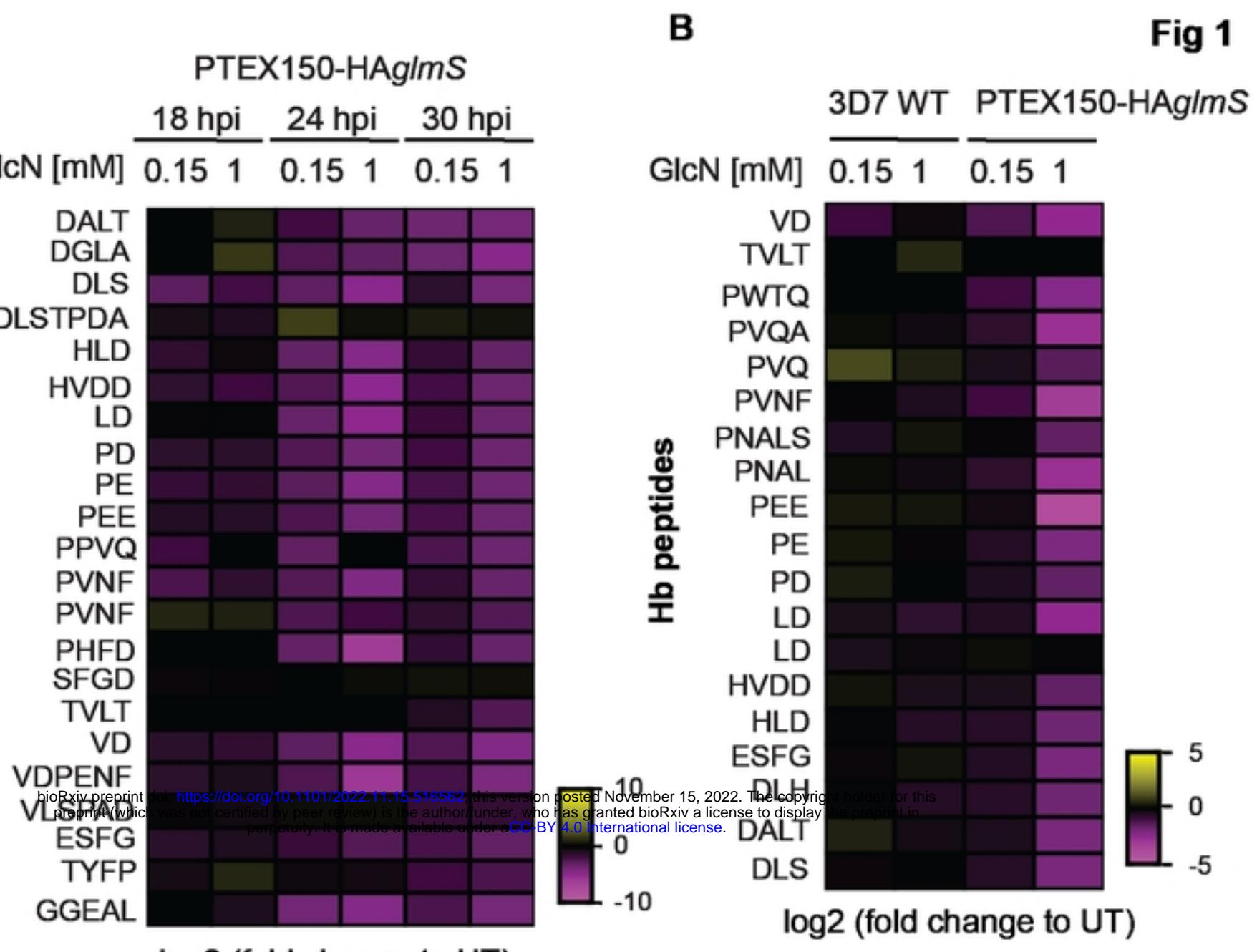
1378 76. Adjalley S, Lee MCS. CRISPR/Cas9 Editing of the *Plasmodium falciparum*
1379 Genome. *Methods Mol Biol*. 2022;2470:221-39.

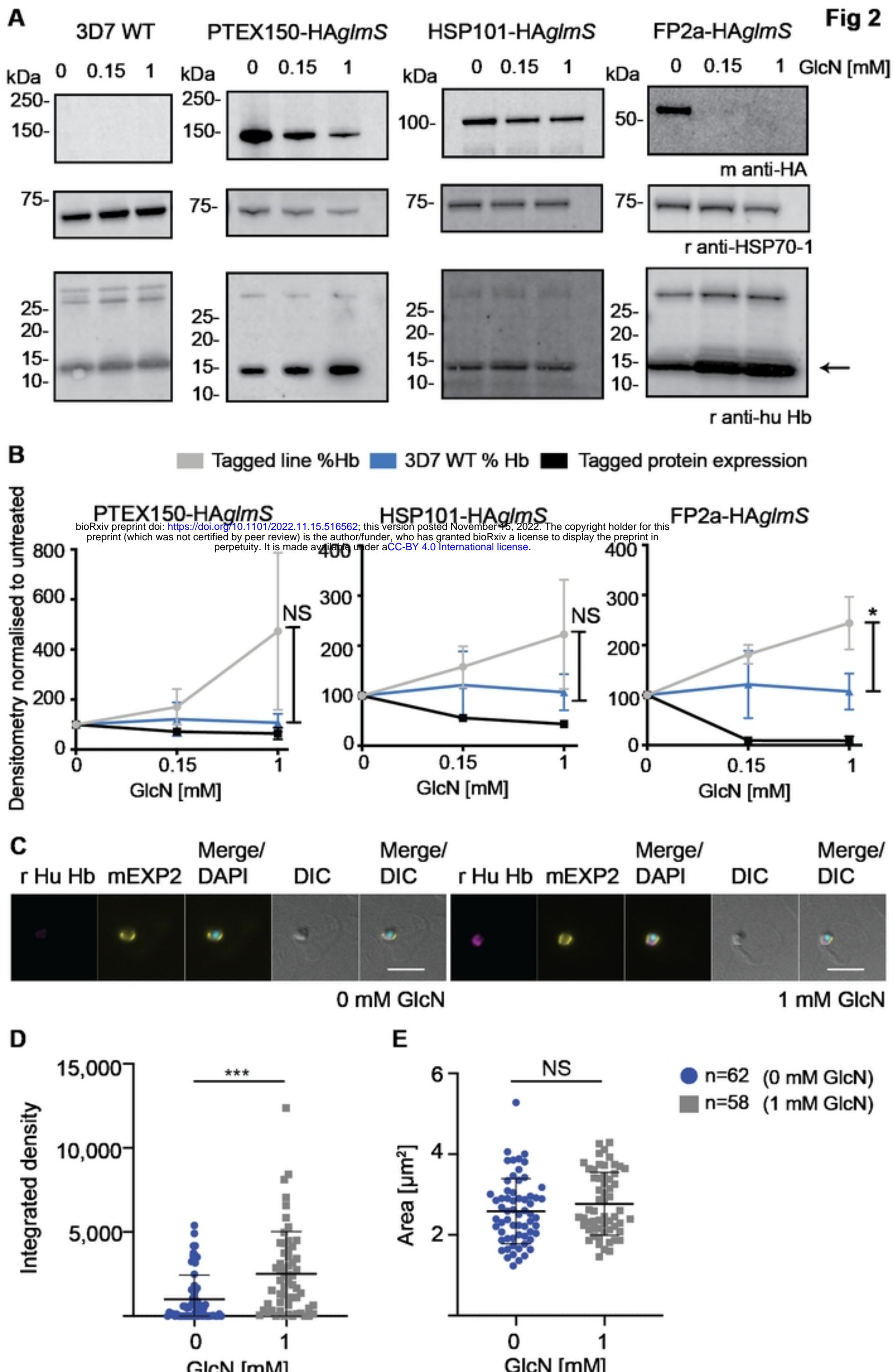
1380 77. Ribeiro JM, Garriga M, Potchen N, Crater AK, Gupta A, Ito D, et al. Guide
1381 RNA selection for CRISPR-Cas9 transfections in *Plasmodium falciparum*. *Int J*
1382 *Parasitol*. 2018;48(11):825-32.

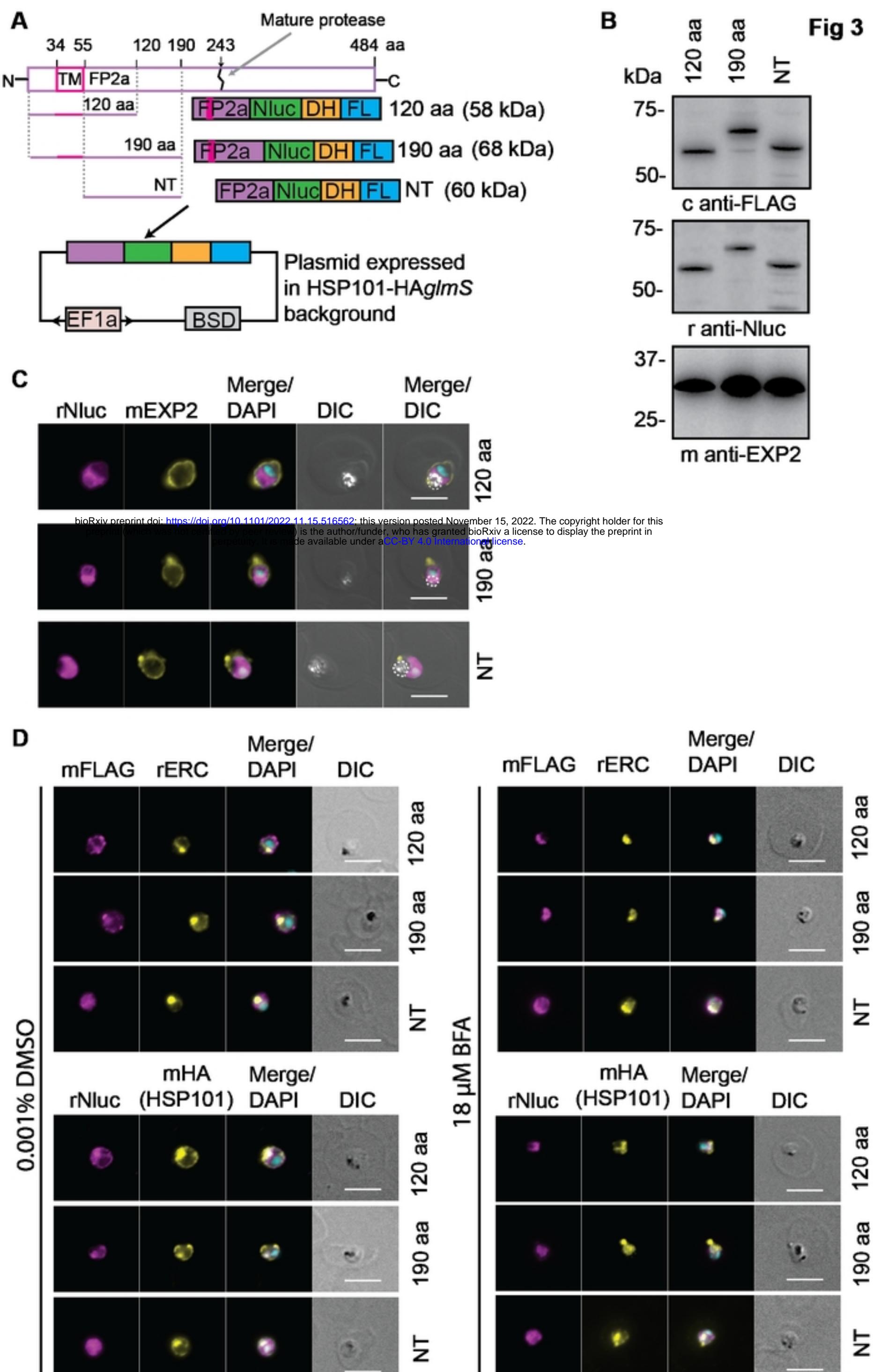
1383 78. Trager W, Jensen JB. Human malaria parasites in continuous culture.
1384 *Science*. 1976;193(4254):673-5.

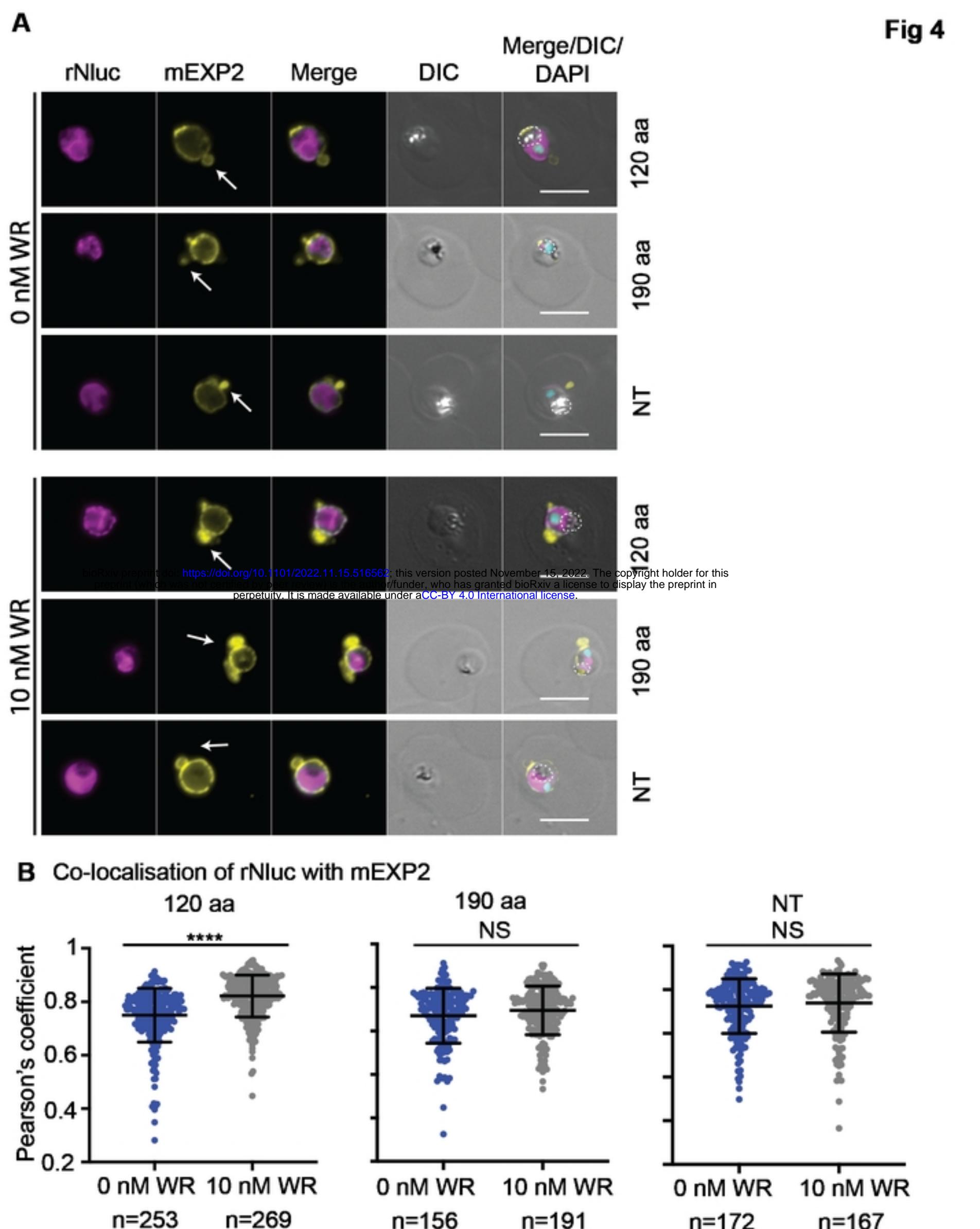
1385 79. Boyle MJ, Richards JS, Gilson PR, Chai W, Beeson JG. Interactions with
1386 heparin-like molecules during erythrocyte invasion by *Plasmodium falciparum*
1387 merozoites. *Blood*. 2010;115(22):4559-68.

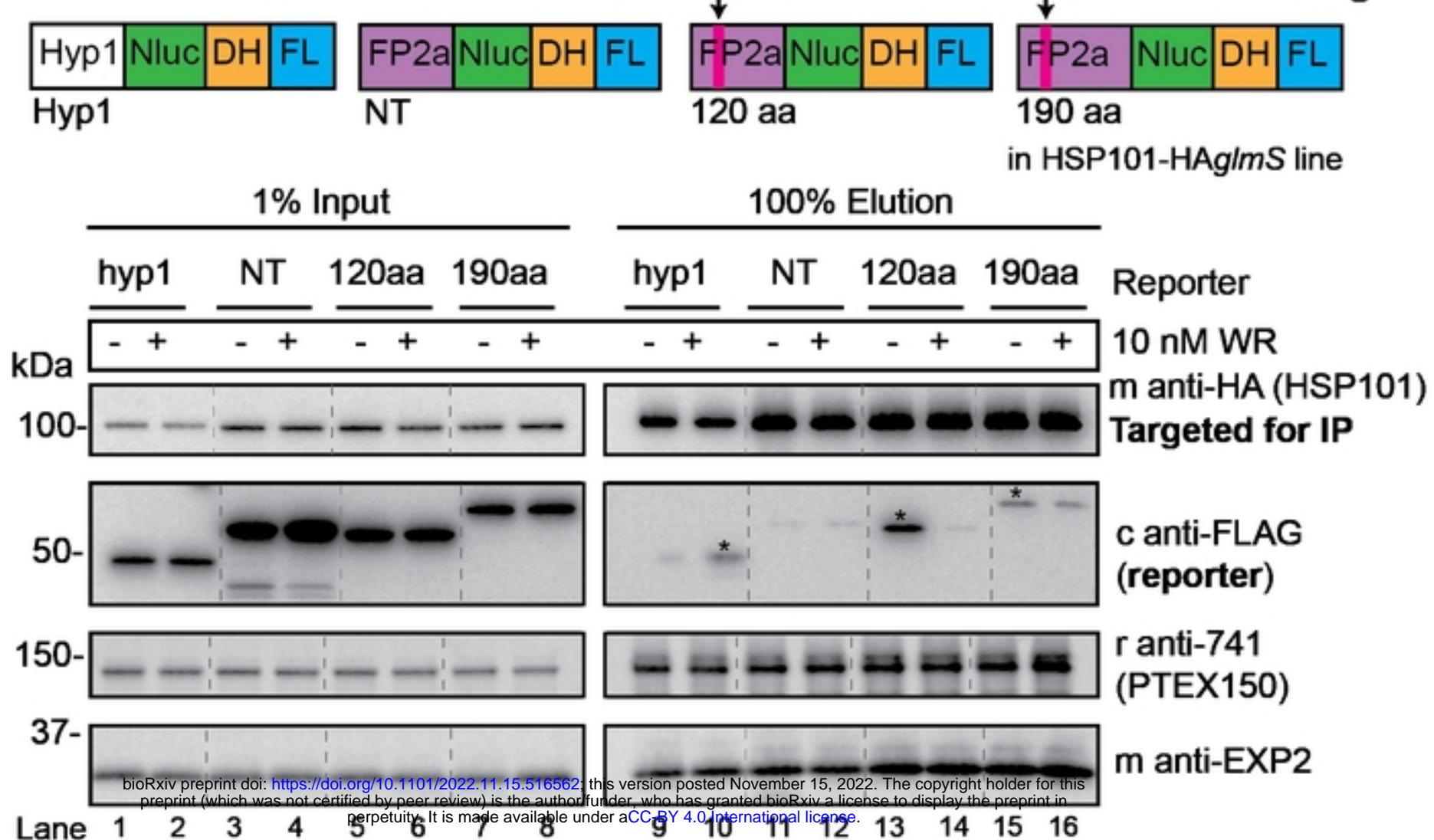
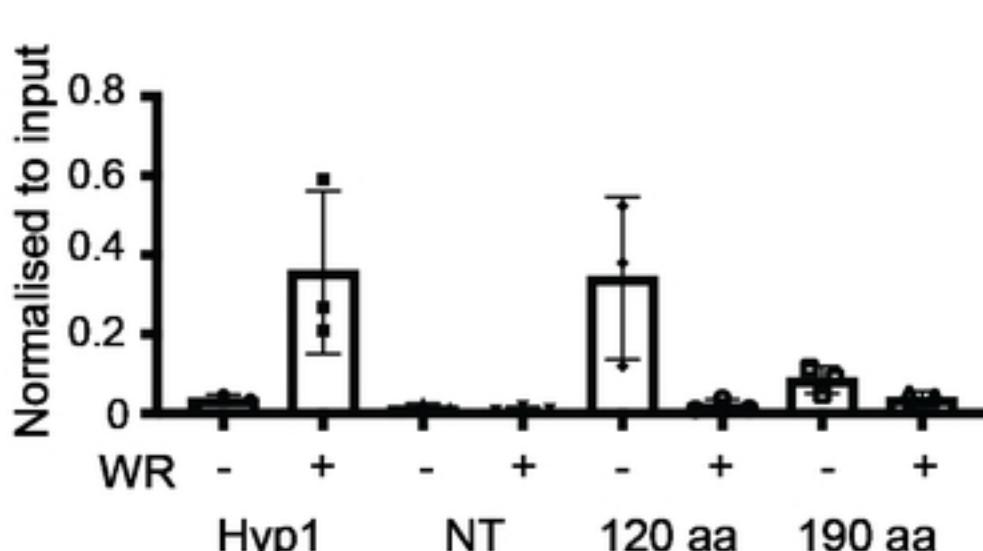
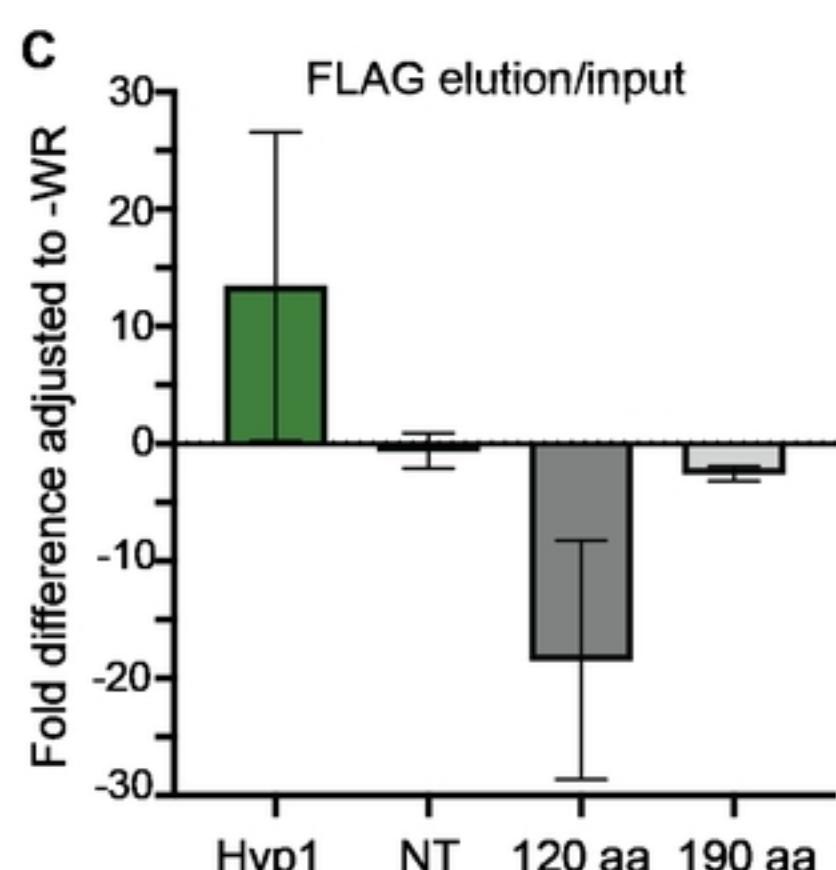
1388 80. Jonsdottir TK, Counihan NA, Modak JK, Kouskousis B, Sanders PR,
1389 Gabriela M, et al. Characterisation of complexes formed by parasite proteins
1390 exported into the host cell compartment of *Plasmodium falciparum* infected red
1391 blood cells. *Cellular Microbiology*. 2021;23(8):e13332.


1392 81. Tonkin CJ, van Dooren GG, Spurck TP, Struck NS, Good RT, Handman E, et
1393 al. Localization of organellar proteins in *Plasmodium falciparum* using a novel set
1394 of transfection vectors and a new immunofluorescence fixation method. *Mol*
1395 *Biochem Parasitol*. 2004;137(1):13-21.


1396 82. Sanders PR, Dickerman BK, Charnaud SC, Ramsland PA, Crabb BS, Gilson
1397 PR. The N-terminus of EXP2 forms the membrane-associated pore of the protein
1398 exporting translocon PTEX in *Plasmodium falciparum*. *J Biochem*.
1399 2019;165(3):239-48.


1400 83. Cobbold SA, Chua HH, Nijagal B, Creek DJ, Ralph SA, McConville MJ.
1401 Metabolic dysregulation induced in *Plasmodium falciparum* by
1402 dihydroartemisinin and other front-line antimalarial drugs. *J Infect Dis*.
1403 2016;213(2):276-86.


1404 84. Clasquin MF, Melamud E, Rabinowitz JD. LC-MS data processing with
1405 MAVEN: a metabolomic analysis and visualization engine. *Curr Protoc*
1406 *Bioinformatics*. 2012;Chapter 14:Unit14 1.




1407

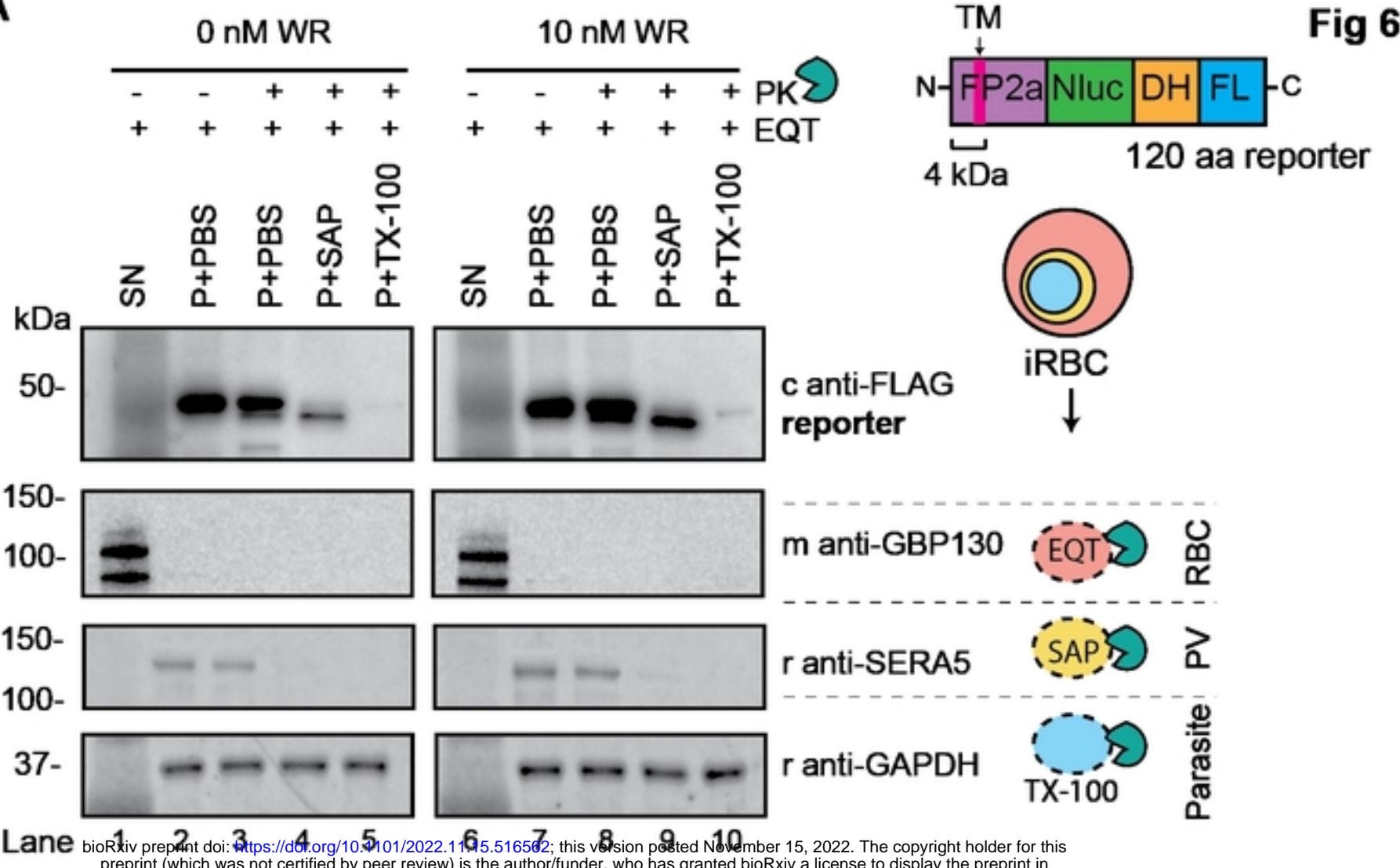

Fig 1**A****B****Figure 1**

Fig 2**Figure 2**

Fig 3**Figure 3**

Fig 4**Figure 4**

A**Fig 5****B****C****Figure 5**

A

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.15.516502>; this version posted November 15, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

B FLAG normalised to GAPDH

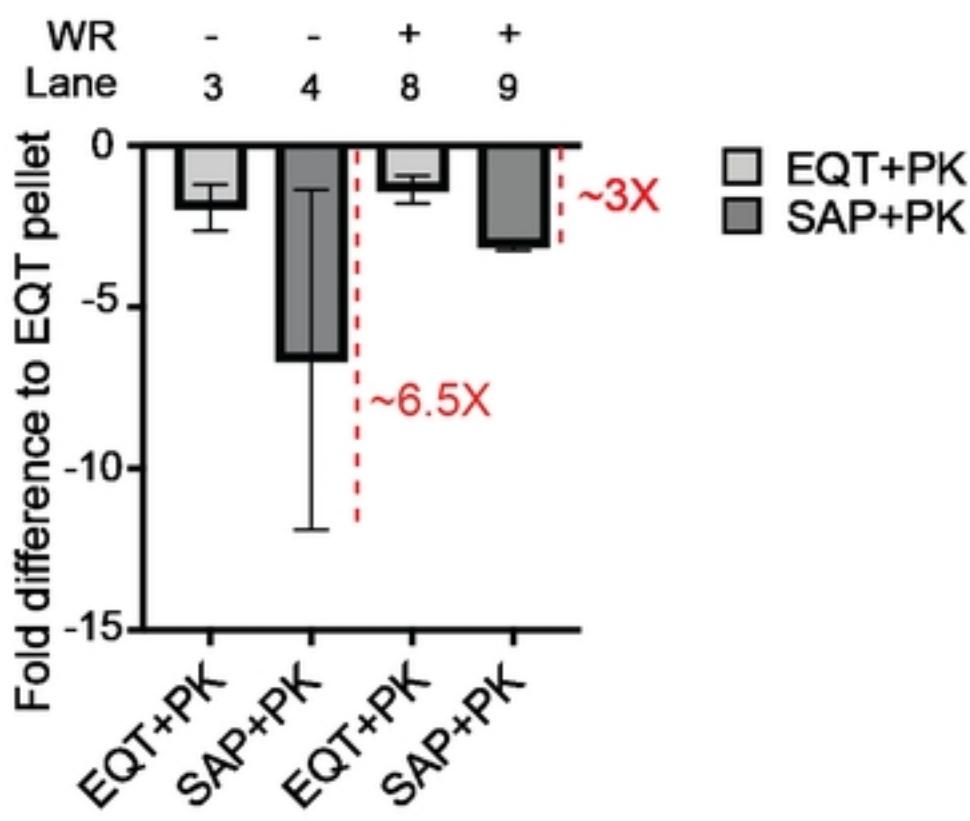
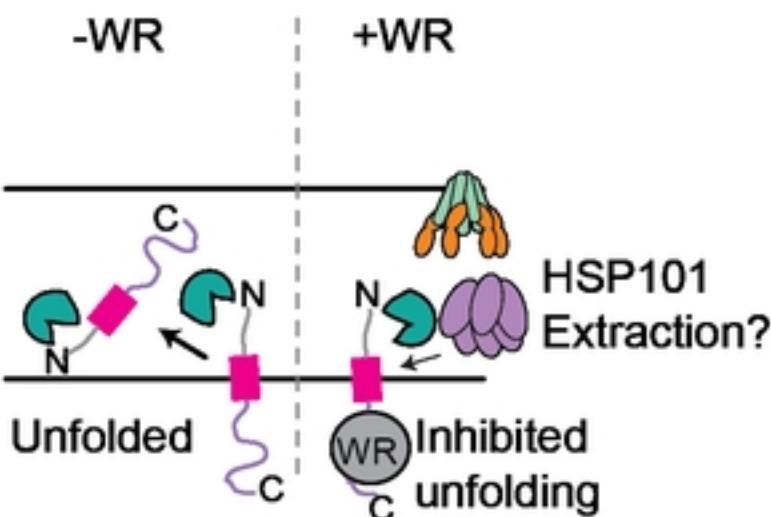
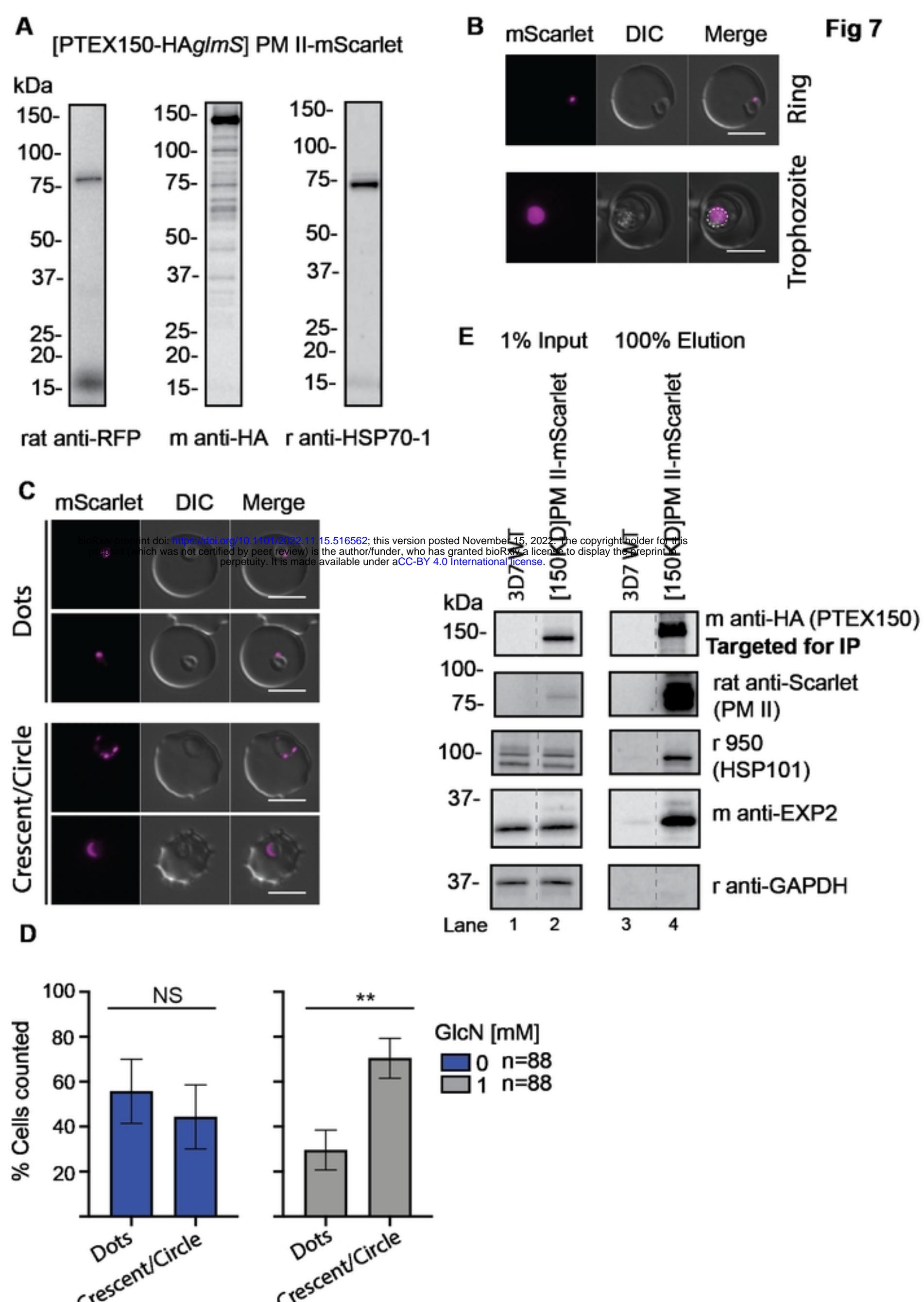



C

Figure 6

Fig 7**Figure 7**

iRBC

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.15.516562>; this version posted November 15, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 8