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ABSTRACT

Deep learning methods trained on brain MRI data from one
scanner or imaging protocol can fail catastrophically when
tested on data from other sites or protocols - a problem
known as domain shift. To address this, here we propose a
domain adaptation method that trains a 3D CycleGAN
(cycle-consistent  generative adversarial network) to
harmonize brain MRI data from 5 diverse sources (ADNI,
WHIMS, OASIS, AIBL, and UK Biobank; total N=4,941
MRIs, age range: 46-96 years). The approach uses 2
generators and 2 discriminators to generate an image
harmonized to a specific target dataset given an image from
the source domain distribution and vice versa. We train the
CycleGAN to jointly optimize an adversarial loss and cyclic
consistency. We use a patch-based discriminator and impose
identity loss to further regularize model training. To test the
benefit of the harmonization, we show that brain age
estimation - a common benchmarking task - is more
accurate in GAN-harmonized versus raw data. --SNE maps
show the improved distributional overlap of the harmonized
data in the latent space.

Index Terms - Generative Adversarial Networks (GANSs),
CycleGAN, Harmonization, Brain Age Estimation

1. INTRODUCTION

Deep learning methods are now widely applied to brain
MRI data for diagnostic classification, disease staging, and
prognosis for a range of neurological and
neurodevelopmental diseases. Even so, brain MRI protocols
vary widely, and models trained on data from one scanner
can fail when tested on data from a new site or protocol. To
tackle this ‘domain shift’ problem, domain adaptation
methods have been developed to adjust multisite brain MRI
data to match a reference dataset or training data to facilitate
machine learning on downstream tasks.

? Dept. of Statistical Sciences, Wake Forest

4 USC Information Sciences Institute, Marina del Rey, CA, USA

Two broad categories of domain adaptation methods
have emerged: (1) adversarial methods that map source data
into a site-invariant latent space [1, 2, 7], where features are
optimized for the main task (e.g., disease detection) but also
adapted to defeat an adversary that tries to predict which site
the data came from; and (2) synthetic methods that also
synthesize a new image to appear as if it came from another
scanner, often using neural style transfer methods [4, 5].
Such reconstruction methods can also be extended to
cross-modal data synthesis (e.g., simulating PET or CT
scans from MRI) or for image enhancement with
super-resolution [3].

Several GAN-based approaches have shown promising
results for domain harmonization. For instance, Liu et al. [4]
used style transfer methods to match brain MRI scans to a
reference dataset. Sinha et al. [5] used attention-guided
GANs for harmonization and demonstrated improvements
in Alzheimer’s disease classification with harmonized data.
Dinsdale et al. [2] developed a deep learning-based model to
remove dataset bias while improving performance on a
downstream task of brain age prediction.

Dewey et al. [6] presented DeepHarmony, a
UNET-based architecture that requires a paired dataset for
training. Many works limit the harmonization training to 2D
slices rather than the whole 3D volume [2, 5, 6]. Zuo et al.
[7] developed CALAMITI, which wuses information
bottleneck theory to learn a disentangled latent space that
contains both anatomical and contrast information, enabling
controllable harmonization in a parametrized protocol space.

Here we introduce an unsupervised CycleGAN method
for domain adaptation which does not need any paired data
across domains. We use 3D convolutions in our model’s
generators and discriminators to harmonize full 3D MRI
scans. We evaluate the harmonized scans by training
machine learning models on a common benchmark
downstream task (brain age estimation). We train
downstream models for brain age estimation with
harmonized and non-harmonized scans from five datasets.
Our results illustrate improved brain age prediction after
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harmonization, suggesting that harmonization can improve
the predictive performance of deep learning models in
multisite predictive modeling.

2. DATASETS

Table 1 summarizes the datasets analyzed in our study. We
used 5 datasets: UK Biobank [8], ADNI [9], AIBL [10],
OASIS-1 [11], and WHIMS [12]. Apart from WHIMS, we
used 1,000 samples from each dataset.

Dataset N C/P | Age (mean+SD) F/M
UK Biobank| 1,000 [1000 / 0* 64.6+7.6 517 /483
ADNI 1,000 |377 /623 747+7.1 558 /442
AIBL 1,000 | 743 /257 73.5+6.7 518 /482
WHIMS 941 |564 /377 70.0+3.6 941/ 0*
OASIS-1 1,000 1790 /210 66.9 9.4 559 /441

Table 1. Statistics of the Training Dataset used for
CycleGAN Training. N is the total number of samples. C,
P, F, and M indicate the number of samples controls,
patients, female, and male subjects, respectively. *WHIMS
scans women only.

ADNI, AIBL, OASISI1, and WHIMS datasets include
both controls and patient scans. The patients are diagnosed
with Alzheimer’s disease in ADNI, AIBL, and OASIS1
datasets, and with Parkinson’s disease in the WHIMS
dataset. UK Biobank has only controls. These datasets were
used to train 4 CycleGAN models, mapping each of the four
datasets (target datasets) ADNI, AIBL, OASIS, and
WHIMS to (source dataset) UK Biobank and vice-versa.

All 3D Tl-weighted MRI brain scans were
pre-processed using a sequence of steps detailed in [13].
These included nonparametric intensity normalization (N4
bias field correction), skull stripping, 6 degrees-of-freedom
registration to a template, and isotropic voxel resampling to
2 mm. Pre-processed images of size 91x109x91 were
resized to 64x64x64, and intensities were linearly mapped to
[0,1] using min-max normalization.

3. METHODS

Figure 1 summarizes our CycleGAN architecture. Similar
to [14], it consists of two generators (Gx: X—Y and Gy:
Y—X) and two discriminators (Dy and Dy) for source
domain X and target domain Y. With Gy, we want to
generate an image from the target distribution given an
image from the source domain distribution and vice versa
with Gy. We train the CycleGAN with an adversarial GAN
loss and cyclic consistency loss. We use a patch-based
discriminator and impose identity loss to regularize model
training.

Harmonized to Dataset Y
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Fig. 1. CycleGAN Architecture. Two generators and
discriminators are trained to harmonize scans from dataset
X to match the protocol of dataset Y and vice versa.

Harmonized to Dataset X Generator Y

3.1 Model Architecture
The generator first transforms the input using a 3D
convolution layer with 32 output channels and then passes it
to the downsampling block. The downsampling block
consists of two 3D convolution layers with 64 and 128
output channels that project the 64x64x64 input to
16x16x16. This is followed by 5 residual blocks, each
having two 3D convolution layers with 128 output channels,
and residual connections are made between each block [15].
Next, this output is passed to the upsampling block, which
has two 3D transposed convolution layers with 64 and
32-channel outputs. Like UNET, we concatenate the
downsampling block's output with the upsampling blocks'
input. Finally, we concatenate the output of the upsampling
block with the input image and pass it through a convolution
layer to compute the output. We use instance normalization
and ReLU non-linearity for all layers. For all convolution
layers, we use padding and stride of 1, and kernel size 3
except for upsampling and downsampling blocks, for which
stride was 2. The network’s output has the same dimensions
as the input.

The discriminator uses a PatchGAN architecture [16,
17, 18] and has five 3D Convolution layers with 32, 64, 128,
256, and 1 output channel with kernel size 4. All layers
except the first are followed by instance normalization and
have a stride of 2, and all the layers use ReLU non-linearity
except the last, which uses sigmoid activation. The output
shape of the discriminator is 6x6x6 when the input
dimension of the scan is 64x64x64.

3.2.1 Adversarial Loss

We used the standard adversarial training to train the
generator to synthesize real images. Instead of using the
negative log-likelihood objective, we used least-squares
loss, which provided stable training and better results. We
use separate discriminators for each domain to compute the
adversarial loss. The job of D, is to distinguish between
samples from the source data distribution, P(X), and the
output of Gy and similarly, Dy distinguishes between P(Y)
and the output of Gx. The overall adversarial loss is
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Loan(Gx, Gy, Dx, Dy) = Eypy[ [IDy(y) - 1P +DxGy(Y)I ]
+ Ecpe [ DX + [[DyGx(X)I ]
3.2.2 Cycle-Consistency Loss
To reduce the space of possible mapping functions, we
adopt the Cycle Consistency loss [14] which ensures that the
two generators are cycle-consistent. That is, the scan
translated to the target domain Gyx(x) and then translated
back to the source domain - i.e., Gy(Gx(x)) - must be
mapped to the input from domain X. Effectively, we want
GyGy to be identity mapping, i.e.,x — Gx(x) =GyGx(x) = x
and similarly for G,Gy. We enforce this with pixel-wise L,
loss in both forward and backward directions, ensuring
cycle consistency.
Leyo(Gx, Gy) = Explll Gy Gx(x)) — x||1]
+ Eyp[Il Gx Gy (y) — vlli]
3.2.3 Identity Loss
We further regularize the CycleGAN models by enforcing
the identity loss similar to Taigman et al. [19], which
showed that it helps to restrict the intensity range of the
image for the image-to-image translation task. In the case of
the grayscale scan, we noticed a slight improvement in the
quality of the harmonized scans. The identity loss is
computed as the pixel-wise L, loss between the output of the
generator (e.g., Gx: X—Y) and the corresponding input
(y~P(Y)):
Ligeniity(Gx> Gy) = Eyopy) 1Gx(y) — vl
+ Exp 1Gy(x) =X,

3.2.4 Full Objective
We introduce additional hyperparameters, A, and A, to
balance different loss terms. These are set to 10 and 0.1
during training. The overall objective loss for CycleGAN
training is:

L(Gx, Gy, Dx, Dy) = Loan(Gx, Gy, Dx, Dy) +

}\I‘Ccycle(GX: GY) + }\Z‘Cidentity(GXa GY)

The patch-based adversarial loss ensures that the generator
synthesizes images from distributions similar to the original
distribution. The cyclic consistency and identity loss
provide regularization on the generators.

3.3 Training

We trained 4 CycleGAN models, with X representing the
UK Biobank source dataset and Y representing each of the
ADNI, AIBL, OASIS, and WHIMS target datasets.

Each model was trained on pre-processed scans from
the source and target datasets. Both generators and
discriminators are trained with the Adam optimizer [20],
with a learning rate of 10 and batch size of 4. The model
was trained for 100 epochs with a multi-step learning rate
scheduler with a gamma of 0.1 and steps on 35 and 75
epochs. Overall, our model has 16 million (M) parameters.
Each generator and discriminator has 5M and 3M
parameters, respectively.

4. RESULTS

We evaluated our domain adaptation model (1) via +-SNE
for visual analysis of the data distributions, and (2) by
testing if data harmonization reduced error on the
downstream task of brain age estimation.

4.1 +-SNE and Clustering

Figure 2 visualizes the results of the harmonization of the
source and target domains. Scans from the target domain
were harmonized to the source domain. All the scans were
resized to 8x8x8 before passing to the ¢distributed
Stochastic Neighbor Embedding algorithm to yield a 2D
output for each scan. Figure 2 shows the #SNE
embeddings of the unharmonized source and target domain.
Without harmonization, source and target data are readily
distinguished: in ADNI, all source domain points are
clustered near the center, while target domain points are
scattered around the source cluster. WHIMS data initially
clustered almost entirely within the UK Biobank reference
data. The second row shows #-SNE results after harmonizing
the target to the source domain; there are now no
distinguishable clusters, and source and target distributions
overlap. This result is consistent with the goal that the
source of the scans is hard to distinguish once they are
harmonized.

4.2 Brain Age Prediction

We tested how harmonization affects ‘Brain Age’
estimation, where a 3D CNN is trained on healthy controls’
MRI data to predict a person’s age from their scan. We used
a model with 5 3D-Convolutional layers (output sizes: 32,
64, 128, 256, and 256), with a max pool in the first 3 layers.
These layers were followed by LeakyReLU non-linearity
and batch normalization. The last Conv. layer’s output was
flattened and passed through 2 linear layers.

The CycleGAN can translate source datasets to target
and target to source as well. Thus, when pooling the training
datasets for the downstream task, we experimented with
harmonizing all the target data to the source (UK Biobank in
our case) and harmonizing UK Biobank data to the target
datasets. We report the MAE score for the transformed
dataset (a mixed hold-out test set from the source and the
target) after applying harmonization in each direction. Table
2 compares models trained on the pooled source and target
datasets (a) with no harmonization (B, for baseline
performance), or (b) after harmonizing the pooled data to
either the source (To Source) or target (To Target).

In Table 2, N represents the total number of control
subjects, which are split 70:30 ratio for training and
evaluation. The datasets used in Table 2 contain samples
that were used to train the unsupervised CycleGAN models.
This gives insights into using the same samples for
unsupervised harmonization as well as the downstream task.
We also report the results of training and evaluation on the
samples which were not seen by CycleGAN in Table 3
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t-SNE visualization of harmonized (bottom row) and unharmonized (fop row) scan from source and target

domains. After CycleGAN harmonization, source and target scans are harder to distinguish in the -SNE embedding

which gives us insights into the generalization capabilities
of our harmonization approach.

AIBL ADNI OASIS | WHIMS
S 729+6.5]75.1+6.5(6537+9.3]69.5+3.6
N 743 377 790 564
B 4.557 3.437 5.109 3.856
To Source 4.250 3.772 5.487 3.645
To Target 4.551 3.149 4.770 3.552

Table 2. Brain Age Estimation on healthy controls used for
training the unsupervised CycleGAN. S: subject’s ages, N:
sample size. In the AIBL column, for example, we take 743
AIBL controls and 743 UKB controls, mix them, and split
them into 1040 training and 446 test samples. After training,
we report the MAE on the test samples with no
harmonization (B, baseline). Then we harmonize all scans
to ‘look like’ UKB and report the test MAE (to Source) and
harmonize all scans to look ‘like AIBL’ (to Target) and
report the test MAE.

Table 2 shows improved brain age MAE on all 4 target
domains after harmonization. We see similar trends with
mean square error (MSE) but it is omitted due to space. For
ADNI, WHIMS, and AIBL, we get better predictions when
we translate from source to target when UK Biobank scans
are harmonized to the target domain. For OASIS,
harmonizing OASIS to UK Biobank was better. Visual
insights after training at different numbers of epochs may be
found on our GitHub repository
(https://github.com/dheeraj-komandur/3D-Cycle GAN-based
-Harmonization).

Table 3 reports brain age results for ADNI and OASIS
datasets on a held-out set not used for training the
CycleGAN. Prediction error changes little between Tables 2

and 3, suggesting that training on harmonized data can
generalize to unseen samples.

ADNI OASIS
S 76.4+£6.4 65.4+8.9
N 1,000 742
Before After Before | After
MAE 4.387 3.929 4.344 4.339
MSE 30.539 | 25.428 | 29.780 | 31.231

Table 3. Brain age prediction results for ADNI and OASIS
on a held-out set that were not used for training the
CycleGAN. MAE is lower (better) after harmonization.

5. CONCLUSION

We trained four CycleGAN models for deep
learning-based harmonization of multicohort MRI,
using the UK Biobank as the source domain and ADNI,
AIBL, OASIS, and WHIMS as targets. Each
CycleGAN model was trained with a joint adversarial
loss, cycle consistency, and identity loss. We visualized
the positive effects of harmonization in overlaying
distributions by performing #-SNE on data before and
after harmonization; clusters in the data distributions,
found initially, were indistinguishable after
harmonization. Further, brain age estimation improved

in controls across all target domains after
harmonization. In the future, we will assess if
GAN-based  harmonization  improves multisite

predictive modeling in AD and MRI-based amyloid
level prediction. We also aim to train a model for
multisite domain harmonization instead of 1-to-1
source-to-target mapping.
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