

18 **ABSTRACT**

19 Despite the enormous harms of alcohol use disorders (AUDs), many mechanisms, as well
20 as effective prevention or treatment strategies remain elusive. Genetic factors dictate a
21 majority of AUD risk. These risk factors can manifest as reduced naïve sensitivity to
22 alcohol's intoxicating effects and increased functional tolerance, i.e., brain-mediated
23 decreases in sensitivity upon repeat exposure. The underlying neurobiology of how
24 AUD-associated genes alter these endophenotypes remains poorly understood. Genes
25 implicated in AUDs include epigenetic modifiers, such as histone demethylases,
26 including *Kdm3*. We previously showed that whole-body and neuronal *Kdm3* strongly
27 affect ethanol sensitivity and tolerance in *Drosophila*. Here, we investigate the
28 mechanisms of these effects, and, by extension, mechanisms of sensitivity and tolerance.
29 RNA-seq and pathway analysis on *Kdm3*^{KO} flies revealed disproportionate upregulation
30 of genes involved in amino acid metabolism, including 1-carbon pathways. We show that
31 acute amino acid feeding modulates sensitivity and tolerance in a *Kdm3*-dependent
32 manner. Global manipulation of 1-carbon genes, especially glycine *N*-methyltransferase
33 (*Gnmt*), glycine decarboxylase (*Gldc*), and sarcosine dehydrogenase (*Sardh*), alters
34 alcohol sensitivity and tolerance. These changes in alcohol responses are likely mediated
35 by global glycine levels (a substrate of these enzymes) rather than by 1-carbon input.
36 Conversely, neuronal manipulations of 1-carbon pathways change alcohol sensitivity and
37 tolerance in a pattern that suggests a mechanism through *S*-adenosyl methionine (SAM),
38 a 1-carbon metabolite that is the universal methyl donor required for epigenetic
39 methylation. Increasing SAM production specifically in glutamatergic neurons increases
40 sensitivity and tolerance. Together, these findings reveal distinct mechanisms affecting

41 alcohol sensitivity and tolerance globally (via glycine) and neuronally (via SAM), thus
42 revealing an important and complex role of 1-carbon metabolism in mediating AUD
43 phenotypes.

44

45 INTRODUCTION

46 Alcohol use disorders (AUDs) exact an immense toll on individuals, families, and society.
47 Genetic factors determine up to 60% of an individual's risk of developing problematic
48 alcohol habits (Goldman, Oroszi, & Ducci, 2005). To better identify genetic factors,
49 alcohol addiction can be broken down into discrete endophenotypes, including naïve
50 sensitivity and rapid functional tolerance (i.e., brain-mediated decreases in sensitivity
51 measured after all EtOH from initial exposure has completely metabolized). The degree to
52 which an individual displays reduced naïve sensitivity to EtOH and develops rapid functional
53 tolerance suggests their propensity for developing AUDs (Atkinson, 2009; Mayfield, Harris,
54 & Schuckit, 2008; Schuckit, 2009). Yet, the genetic, neuronal, and molecular mechanisms
55 behind these two EtOH responses are not well understood (Goldman et al., 2005; Park,
56 Ghezzi, Wijesekera, & Atkinson, 2017; Rodan & Rothenfluh, 2010; Scholz, Ramond, Singh,
57 & Heberlein, 2000).

58 The genetic amenability of *Drosophila melanogaster* makes it an excellent model
59 system for discovering conserved genes and elucidating mechanisms. Vinegar flies exhibit
60 strong face and mechanistic validity as models for EtOH abuse (Gonzalez et al., 2018;
61 Narayanan & Rothenfluh, 2016; Ojelade, Jia, et al., 2015; Park et al., 2017; Robinson &
62 Atkinson, 2013; Rodan & Rothenfluh, 2010). Like humans, flies become hyperactive upon
63 exposure to low doses of EtOH but sedate at high doses (Rodan, Kiger, & Heberlein, 2002).

64 Further, *Drosophila* readily develop rapid functional tolerance to EtOH (Berger, Heberlein,
65 & Moore, 2004; Scholz et al., 2000). This tolerance is not due to altered pharmokinetics
66 (Scholz et al., 2000) and is similar to rapid ethanol tolerance in rodents, which is a proxy of
67 AUD-associated chronic tolerance (Kalant, 1998; Khanna, Kalant, Shah, & Weiner, 1991; Lê
68 & Kianmaa, 1988; Rustay & Crabbe, 2004). *Drosophila* also exhibit strong predictive
69 validity, as exemplified by unbiased alcohol studies implicating *Drosophila* orthologs of
70 genes that are subsequently implicated in human alcoholism (Gonzalez et al., 2018).

71 Recent studies using *Drosophila* and other model systems support an important role
72 of histone demethylases (HDMs) in AUD-associated behaviors (T. D. Berkel & Pandey,
73 2017; Ramirez-Roman, Billini, & Ghezzi, 2018; Shukla et al., 2008). Exposure to alcohol
74 and other drugs of abuse alters gene expression by changing cells' epigenetic landscapes (T.
75 D. Berkel & Pandey, 2017; Shukla et al., 2008). In addition, epigenetic modifiers such as
76 histone methyltransferases (HMTs) and HDMs affect EtOH phenotypes, likely by
77 influencing transcriptional control (Barbier et al., 2017; T. D. Berkel & Pandey, 2017; T. D.
78 M. Berkel, Zhang, Teppen, Sakharkar, & Pandey, 2019; Maze et al., 2010; Pinzon et al.,
79 2017; Ponomarev, 2013; Qiang, Denny, Lieu, Carreon, & Li, 2011; Zakhari, 2013). We
80 previously showed that among all *Drosophila* HDM orthologs, loss of lysine-specific histone
81 demethylase 3 (*Kdm3*) strongly alters alcohol phenotypes, increasing naïve sensitivity and
82 decreasing tolerance (Pinzon et al., 2017). However, as is true for most AUD-associated
83 genes, how *Kdm3* produces these responses is unknown.

84 HMTs require S-adenosyl methionine (SAM), the universal methyl donor for
85 methyltransferases. SAM is a key output of the methionine cycle and the folate cycle, which
86 together form the core of 1-carbon (1-C) metabolism. Recent evidence suggests that SAM,

87 1-C enzymes, and HDMs influence histone methylation (Friso, Udali, De Santis, & Choi,
88 2017; Liu, Barnes, & Pile, 2015; Mentch & Locasale, 2016; Mentch et al., 2015; Serefidou,
89 Venkatasubramani, & Imhof, 2019).

90 We investigated the mechanisms through which histone modifiers like *Kdm3*
91 modulate AUD phenotypes. Here, we show that *Kdm3* is linked to 1-C metabolism and that
92 1-C metabolites and enzymes alter ethanol sensitivity and tolerance. Globally, glycine and
93 enzymes involved in glycine metabolism alter alcohol phenotypes, whereas in neurons,
94 particularly glutamatergic neurons, SAM mediates alcohol sedation sensitivity and tolerance.

95

96 **RESULTS**

97 **Genes associated with 1-carbon metabolism are upregulated in *Kdm3*^{KO} flies**

98 As an epigenetic modifier, we hypothesized that *Kdm3* loss would result in substantial
99 changes in gene expression, which might in turn affect alcohol responses. Therefore, we
100 first asked how knocking out *Kdm3* altered gene expression. RNA-seq analysis of
101 *Kdm3*^{KO} fly heads revealed 359 downregulated genes and 457 upregulated genes (Fig.
102 1A). Gene ontology and pathway enrichment analysis revealed that pathways associated
103 with amino acid metabolism were enriched for upregulated genes (Fig. 1B; $p = 2.99 \times 10^{-14}$,
104 Benjamini-Hochberg adjusted). Many of these genes are components of 1-C pathways,
105 including glycine N-methyltransferase (*Gnmt*), serine hydroxymethyl transferase (*Shmt*),
106 and glycine dehydrogenase (*Gldc*, a.k.a. *CG3999* in flies) (Fig. 1A). Subsequent RT-
107 qPCR analysis confirmed elevated transcription of *Gnmt* and *Gldc*, but not of *Shmt* (Fig.
108 1C).

109

110 **Glycine decreases alcohol sensitivity and tolerance in a *Kdm3*-dependent manner**

111 Because *Kdm3* knockout upregulates genes involved in amino acid metabolism and 1-C
112 pathways, we hypothesized that changes in amino acids may play a role in *Kdm3*-
113 mediated alcohol phenotypes. To test this hypothesis, we fed adult flies casamino acids
114 for three days before testing alcohol sensitivity and tolerance. Casamino acids are a
115 mixture of all primary amino acids except tryptophan. In control flies, casamino acid
116 feeding dose-dependently decreased alcohol sensitivity without affecting tolerance (Fig.
117 2A). To determine whether altered amino acid metabolism affects alcohol phenotypes via
118 *Kdm3*, we performed equivalent experiments using *Kdm3*^{KO} flies. *Kdm3* knockout
119 abolished the casamino acid-induced sensitivity to alcohol (Fig. 2B). To home in on
120 which amino acids underlie the observed resistance to alcohol sedation, we fed flies
121 glycine, which is a substrate for *Gnmt* and *Gldc*. Glycine feeding caused decreased
122 sensitivity and tolerance in control flies (Fig. 2C). Again, these effects were abolished in
123 *Kdm3*^{KO} flies (Fig. 2D). The alcohol sedation and tolerance differences between controls
124 and *Kdm3*^{KO} flies were not due to lower amino acid consumption by *Kdm3*^{KO} flies
125 compared to controls (Fig. S1). Together, these results suggest that glycine is involved in
126 alcohol-induced sedation sensitivity and tolerance via a *Kdm3*-dependent mechanism.

127

128 **Increased folate cycle activity is not a primary driver of sensitivity and tolerance**

129 Through *Gldc*, glycine can be a source of methyl groups fueling the 1-C methionine cycle
130 (Fig. 3A). Glycine could decrease sensitivity and tolerance by increasing folate cycle
131 activity. In this case, *Gldc* loss would decrease methyl group input and cause the opposite
132 phenotype as glycine feeding. We tested this hypothesis using a *Gldc* null mutant, *Gldc*^{Mi},

133 which is an intronic Minos-mediated integration cassette (MiMIC) gene trap insertion
134 (Venken et al., 2011). qPCR using probes spanning the MiMIC-containing intron yielded
135 no amplification, indicating aberrant transcription. Mutating one or both copies of *Gldc*
136 led to decreased alcohol sensitivity and tolerance instead of the expected opposite
137 phenotype, suggesting that input into the folate cycle does not underlie the glycine-
138 induced phenotypes we observed (Fig. 3B-C). *Gldc* loss increases glycine levels (Leung
139 et al., 2017; Pai et al., 2015), so we wished to determine if increased glycine levels
140 themselves caused the glycine feeding and *Gldc*^{*Mi*} results. To that end, we tested whether
141 *Gldc* mutation potentiated glycine-induced phenotypes. Interestingly, *Gldc*^{*Mi*} flies died
142 when fed 1% or 3% glycine, suggesting that *Gldc* plays a critical role in glycine
143 breakdown. Indeed, *Gldc* loss induces glycine-dependent toxicity in mouse brain (Kim et
144 al., 2015), and elevated glycine levels cause cessation of feeding and growth in flies
145 (Zinke, Kirchner, Chao, Tetzlaff, & Pankratz, 1999). When previously fed 3% glycine,
146 control flies showed decreased alcohol sensitivity and tolerance (Fig. 2C). When fed only
147 0.3% glycine, control flies showed no changes in alcohol sensitivity or tolerance (Fig.
148 3D). As expected, *Gldc*^{*Mi*} flies again showed decreased sensitivity to alcohol and
149 decreased tolerance compared to control flies. In contrast with controls, feeding *Gldc*^{*Mi*}
150 flies with 0.3% glycine did not induce a sedation phenotype, but tolerance was decreased
151 (Fig. 3D). We detected significant main effects of genotype for both sensitivity and
152 tolerance and a significant genotype x glycine feeding interaction for tolerance. This
153 suggests that *Gldc* loss exacerbates rather than eliminates the effects of glycine.
154 Therefore, glycine levels, rather than input into the folate cycle, mediate our glycine-
155 feeding and *Gldc* phenotypes. Also consistent with this hypothesis, flies containing a

156 putative global *Shmt* mutation that disrupts serine-dependent folate cycle input did not
157 show altered alcohol sensitivity or tolerance (Fig. 3E). Finally, to confirm that the folate
158 cycle is not involved in glycine-induced resistance to alcohol, we fed flies with formate
159 for three days. Formate augments methylene-tetrahydrofolate (CH₂-THF) to act as an
160 alternate carbon source parallel to *Gldc*-dependent CH₂-THF synthesis from glycine
161 (Brosnan & Brosnan, 2016). We found no significant effects from supplemental formate
162 (Fig. 3F). Together, our results suggest that the folate cycle is not involved in glycine-
163 mediated decreases in alcohol sensitivity and tolerance, but rather that glycine levels
164 themselves are responsible. Further supporting this hypothesis, glycine may fail to
165 produce phenotypes in *Kdm3*^{KO} flies (Fig. 2D) because upregulation of *Gldc* and *Gnmt*
166 (Fig. 1A,C) enhances glycine catabolism and prevents glycine buildup, suggesting that
167 glycine rather than its metabolic products creates the alcohol phenotypes.

168

169 ***Gnmt* modulates glycine-induced changes to alcohol sensitivity and tolerance**

170 Since glycine did not affect alcohol sensitivity and tolerance via its role in the folate
171 cycle, we next examined its role in the methionine cycle. *Gnmt*, which is upregulated in
172 *Kdm3*^{KO} flies, consumes glycine in the latter cycle (Fig. 4A). Using *Gnmt*^{Mi}, a validated
173 null mutation (Obata & Miura, 2015), we found that global *Gnmt* loss of either one or
174 both alleles decreased sensitivity and tolerance (Fig. 4B-C). These data indicate
175 haploinsufficiency of *Gnmt*, similar to *Gldc*, and sensitivity to total enzyme activity. We
176 corroborated our whole-body *Gnmt*^{Mi} results with whole-body *Gnmt* knockdown using
177 *tubulin84B-Gal4* driven *Gnmt*^{RNAi} (Fig. 4D). Notably, the *tubulin84B-Gal4* driver does
178 not induce alcohol phenotypes (Supp. 2A). A second RNAi construct targeting a distinct

179 region of *Gnmt* and validated by other groups (Obata et al., 2014; Obata & Miura, 2015)
180 caused the same phenotype (Supp. 3A-B). Both RNAi knockdowns yielded the same
181 result as *Gnmt* knockout and glycine feeding (i.e. decreased sensitivity and tolerance; Fig.
182 4D and Supp. 3A-B). Augmenting glycine may enhance *Gnmt* activity, so we again
183 performed 2-way ANOVA to determine if *Gnmt* is necessary for glycine-induced
184 phenotypes. Indeed, global *Gnmt*^{Mi} expression abolished sensitivity and tolerance
185 phenotypes induced by glycine feeding in control flies (Fig. 4E; we detected a significant
186 glycine main effect for sensitivity and a significant interaction for both sensitivity and
187 tolerance). This reduced phenotype could indicate a ceiling effect. However, a similar
188 possible ceiling effect from excess glycine in glycine-fed *Gldc* mutants caused lethality,
189 whereas *Gnmt* mutants tolerated 3% gly feeding. Therefore, our result showing occluded
190 glycine-induced reductions in sensitivity and tolerance could alternatively suggest that,
191 unlike *Gldc*, *Gnmt* is required for the effects of glycine on alcohol sensitivity and
192 tolerance. Thus, glycine may modify alcohol phenotypes via *Gnmt*-dependent buffering
193 of SAM (Fig. 4A). To further disrupt this buffering capability, we used an RNAi
194 construct (Obata et al., 2014; Obata & Miura, 2015) to globally knock down *Sardh*, an
195 enzyme that synthesizes glycine and performs the inverse function of *Gnmt* (Fig. 4A).
196 *Sardh* knockdown decreased alcohol sensitivity and tolerance (Fig. 4F) similar to *Gnmt*
197 loss, despite opposite expected effects on glycine. Thus, the functionality of the *Gnmt*-
198 *Sardh* cycle may predict alcohol phenotypes better than glycine levels alone.
199

200 **Neuronal S-adenosyl-methionine (SAM) increases sensitivity and tolerance**

201 Loss of *Gnmt* or *Sardh* may both increase SAM levels by interrupting *Gnmt* buffering in
202 the methionine cycle (Fig. 5A). Indeed, *Gnmt* mutants and *Sardh* mutants exhibit
203 increased SAM levels (Kashio et al., 2016; Luka, Capdevila, Mato, & Wagner, 2006;
204 Obata et al., 2014). Thus, we next tested the hypothesis that *Gnmt* acts via SAM to alter
205 alcohol responses. Opposite phenotypes from *Gnmt* loss (i.e., higher SAM) and SAM
206 reduction would support this hypothesis. However, when we fed flies cycloleucine, an
207 inhibitor of SAM synthase (*SamS*) (Sufrin, Coulter, & Talalay, 1979), we observed
208 decreased sensitivity and tolerance, similar to results using *Gnmt*^{Mi} flies (Fig. 5B-C).
209 Since ethanol sensitivity and tolerance are neuronal phenomena (Robinson & Atkinson,
210 2013; Rodan et al., 2002; Scholz et al., 2000) and numerous genes are required in
211 neurons for normal sensitivity and tolerance (Engel et al., 2016; Ojelade, Acevedo,
212 Kalahasti, Rodan, & Rothenfluh, 2015; Ojelade, Jia, et al., 2015; Pinzon et al., 2017; B. R.
213 Troutwine, Ghezzi, Pietrzykowski, & Atkinson, 2016), we next shifted our focus to
214 neurons. We hypothesized that altering *SamS* in neurons is sufficient to alter alcohol
215 responses. First, we verified that the pan-neuronal driver *elav-Gal4* alone did not cause
216 alcohol phenotypes (Supp. 3B). Expressing *SamS*-RNAi neuronally was lethal in males
217 but significantly reduced sensitivity and tolerance in females (Fig. 5D) (Obata & Miura,
218 2015). This result was consistent with cycloleucine feeding. Furthermore, *SamS*
219 overexpression (Obata & Miura, 2015), which increases SAM levels, caused increased
220 sensitivity and tolerance (Fig. 5E), suggesting that alcohol sensitivity is correlated with
221 *SamS* levels. Next, we increased SAM levels by knocking down *Gnmt* in neurons using
222 both RNAi constructs (Luka et al., 2006; Obata et al., 2014). Consistent with neuronal
223 *SamS* overexpression, neuronal *Gnmt* knockdown caused increased alcohol sensitivity

224 and tolerance (Fig. 5F and Supp. 3C). Though *Gnmt* is expressed at low levels in the
225 brain and in neurons (Li et al., 2022), our results indicate that neuronal *Gnmt* plays an
226 important role in alcohol sensitivity and tolerance. Taken together, these results suggest
227 that neuronal SAM levels affect alcohol sensitivity and tolerance phenotypes.

228 Surprisingly, neuronal *Gnmt* knockdown caused a phenotype opposite to global
229 *Gnmt* loss, suggesting that *Gnmt* has distinct mechanisms of action in neurons compared
230 to the whole body (i.e., SAM acts in neurons while glycine acts in the body). Consistent
231 with this hypothesis, glycine feeding and global *Gnmt* null mutation previously showed
232 an interaction (Fig. 4E; green bars), but glycine feeding in neuronal *Gnmt*^{RNAi 1} knock
233 down showed no interaction for the sensitivity phenotypes and only a subtle interaction
234 on tolerance (Fig. 5G; orange bars). These data suggest that whole-body *Gnmt* loss
235 affects the same pathways as glycine feeding, whereas neuronal *Gnmt* loss primarily
236 affects pathways distinct from global glycine. The slight tolerance interaction may
237 indicate that the global glycine effects dominate over the effects of neuronal *Gnmt*.

238 Glycine is used as an inhibitory neurotransmitter in the brain, so altered glycine
239 metabolism could affect glycinergic neurotransmission to produce neuronal *Gnmt*
240 knockdown phenotypes. Thus, we disrupted glycinergic neurotransmission by knocking
241 down a glycine receptor gene (*Grd* (Frenkel et al., 2017)) and a glycine synaptic reuptake
242 transporter (*GlyT*; Supp. 4A). Knocking down *Grd* in all neurons increased alcohol
243 sedation and tolerance (Supp. 4B), while knocking down *GlyT* only increased tolerance
244 (Supp. 4C). If elevated glycine or glycinergic signaling explained neuronal *Gnmt*
245 phenotypes, we would expect opposing results from *Gnmt* loss (and expected subsequent
246 glycine increases) and interruption of glycinergic signaling, but this was not the case.

247 These data suggest that SAM, rather than glycine or glycinergic neurotransmission,
248 mediates neuronal sensitivity and tolerance to alcohol.

249 Neuronal SAM levels could be regulated via mechanisms external to neurons,
250 such as input from the fat body or by glia. The fat body regulates metabolism and energy
251 storage, similar to the human liver and adipocytes (Rizki & Rizki, 1978). Further, *Gnmt*,
252 *Sardh*, *Shmt*, and *Gldc* are highly expressed in the fat body (Li et al., 2022). Additionally,
253 *Gnmt* expressed in the fat body is central to SAM regulation in flies (Obata et al., 2014).
254 Glia are critical for regulating synaptic levels of neurotransmitters and other molecules
255 (Y. Kim, Park, & Choi, 2019). Therefore, we tested if the fat body or glia might control
256 our observed global phenotypes by knocking down *Gnmt* in these structures using RNAi
257 (Supp. 5A). However, our results phenocopied *Gnmt* loss in neurons rather than *Gnmt*
258 loss in whole flies (Supp. 5B-C). Though the identity of the non-neuronal tissue
259 determining the global *Gnmt* phenotype remains to be determined, our experiments
260 indicate that neuronal SAM modulates alcohol sensitivity and tolerance.

261

262 **SAM in glutamatergic neurons modulates sensitivity and tolerance**

263 Alcohol-induced sedation can occur via dysregulation of the homeostatic balance
264 between competing excitatory and inhibitory neuron activity (Ghezzi, Li, Lew,
265 Wijesekera, & Atkinson, 2017). Glycine may influence the former via its role as required
266 co-agonist of NMDA-type glutamate receptors (NMDAR). Further, although no
267 glycinergic neuron-specific *Gal4* driver exists, glycine is often co-released with GABA at
268 inhibitory synapses, and both neurotransmitters rely on the vesicular transporter VGAT
269 (Aubrey & Supplisson, 2018). Thus, we knocked down *Gnmt* in excitatory glutamatergic

270 and inhibitory VGAT-expressing neurons (Fig. 6A). *Gnmt* knockdown in inhibitory
271 neurons did not affect sedation or tolerance (Fig. 6B). In contrast, *Gnmt* knockdown in
272 glutamatergic neurons increased alcohol sensitivity and tolerance, similar to pan-neuronal
273 *Gnmt* knockdown (Fig. 6C). These results suggest that SAM activity in glutamatergic
274 neurons regulates alcohol phenotypes.

275

276 **DISCUSSION**

277 The present study investigates *Kdm3*-dependent mechanisms of alcohol sedation
278 sensitivity and tolerance. In so doing, we have elucidated a role of amino acids and 1-C
279 metabolism in modulating AUD phenotypes, culminating in our finding that SAM levels
280 in glutamatergic neurons regulate alcohol sensitivity and tolerance phenotypes (Fig. 7).
281 We show that loss of *Kdm3* upregulates expression of 1-C enzymes. These genes in turn
282 affect alcohol phenotypes, consistent with *Kdm3* playing a role in regulating alcohol
283 behaviors (Pinzon et al., 2017). Many other studies indicate that *Kdm3* plays a critical role
284 in alcohol abuse (Mulligan et al., 2006; Ponomarev, Wang, Zhang, Harris, & Mayfield, 2012;
285 Qiang et al., 2011; Subbanna et al., 2013). An outstanding question is how *Kdm3* loss
286 changes expression of these genes. As a histone modifier, *Kdm3* may directly regulate
287 these genes by demethylating their associated histones. Alternatively, *Kdm3* loss may
288 affect expression of 1-C genes by altering methyl group availability and necessitating
289 compensatory homeostatic responses. Multiple studies have provided evidence that
290 histone methylation is more important as a methyl sink than as a regulator of gene
291 expression (Ye, Sutter, Wang, Kuang, & Tu, 2017; Ye et al., 2019). Under this
292 hypothetical framework, *Kdm3* loss results in hypermethylation of histones.

293 Hypermethylation may cause reduced recycling of methyl groups back into the folate
294 cycle and reduced methyl group availability in the form of SAM. Indeed, HDM loss can
295 decrease SAM (Ye et al., 2019). In response, other regulators of gene expression may
296 upregulate 1-C genes to augment SAM output, leading to our observed expression
297 changes. More work is needed to investigate these hypotheses.

298 We also show that amino acid feedings, particularly of glycine, are sufficient to
299 alter sensitivity and tolerance phenotypes. These effects disappear with *Kdm3* loss. The
300 reason that casamino acids and glycine fail to affect *Kdm3*^{KO} flies is unknown but may be
301 due to *Kdm3*^{KO}-induced upregulation of *Gldc* and *Gnmt*, which buffer out excess glycine.

302 Global and neuronal 1-C manipulations induce changes in sensitivity and
303 tolerance via different mechanisms. Globally, methyl group input into the folate cycle, as
304 assessed via *Gldc* knockout and formate feeding, does not drive sensitivity and tolerance
305 phenotypes. This may be true despite the neuronal importance of SAM because folate
306 cycle inputs must pass several intermediate steps of regulation and buffering before those
307 inputs can influence SAM. For instance, Wang et al. found that methionine depletion
308 caused large drops in methylation levels, whereas serine or glycine loss caused only
309 modest decreases (Wang et al., 2019). Leung et al. found that *Gldc* deficiency had no
310 effect on the abundance of SAM, SAH, or the ratio of SAM/SAH (Leung et al., 2017).
311 Further, mice with homozygous null mutation of a key folate cycle enzyme, *Mthfr*,
312 exhibited no neural defects. Indeed, our results suggest that global glycine levels, rather
313 than folate cycle methyl group levels, determine changes to alcohol sensitivity and
314 tolerance, such that decreased sensitivity and tolerance are almost unanimously
315 associated with expected global glycine elevation. These phenotypes are consistent even

316 though we would expect some to increase SAM (e.g., *Gnmt* loss) and others to decrease
317 SAM (e.g., cycloleucine feeding). Therefore, global glycine levels affect alcohol
318 sensitivity and tolerance in a SAM-independent manner.

319 Further supporting this hypothesis, many studies have implicated glycine in AUD.
320 EtOH targets and potentiates glycine receptors (Burgos, Muñoz, Guzman, & Aguayo,
321 2015; San Martin et al., 2020) and blocking the glial glycine transporter GlyT1 reduces
322 EtOH consumption, preference, and relapse in rats (Molander, Lidö, Löf, Ericson, &
323 Söderpalm, 2007; Vengeliene, Leonardi-Essmann, Sommer, Marston, & Spanagel, 2010).
324 Similarly, systemic glycine treatment attenuates EtOH intake and preference in rats
325 (Olsson, Höifödt Lidö, Danielsson, Ericson, & Söderpalm, 2021). In humans, fronto-
326 cortical glycine levels are associated with recent heavy drinking (Prisciandaro et al.,
327 2019).

328 Glycine may act by directly enhancing inhibitory glycinergic neurotransmission.
329 The directionality of our results from neuronal *Gnmt* knockdowns and neuronal *Grd* or
330 *GlyT* knockdowns does not support a glycinergic-dependent explanation of our observed
331 neuronal phenotypes (i.e., both manipulations generally increased sensitivity and
332 tolerance despite opposite expected effects on glycinergic signaling). However, inhibiting
333 glycinergic signaling (via *Grd* and *GlyT* knockdowns) and feeding glycine or globally
334 knocking down *Gnmt* changed alcohol sensitivity and tolerance in opposite directions,
335 consistent with glycinergic neurotransmission mediating systemic glycine effects.
336 Supporting this hypothesis, glycinergic signaling in rodents modulates alcohol sedation
337 (Blednov, Benavidez, Homanics, & Harris, 2012; Quinlan, Ferguson, Jester, Firestone, &
338 Homanics, 2002; San Martin et al., 2020), dopamine release (Lidö, Ericson, Marston, &

339 Söderpalm, 2011; Molander, Löf, Stomberg, Ericson, & Söderpalm, 2005), and alcohol
340 consumption (Molander et al., 2005; San Martin et al., 2020). Additionally, an EtOH-
341 resistant knock-in mutation of GlyRs in mice increased alcohol consumption and EtOH-
342 induced conditioned place preference (Muñoz et al., 2020). Importantly, it also
343 substantially reduced EtOH sedation sensitivity (~40%) in a loss of righting reflex assay
344 and reduced tolerance in a rotarod motor assay (Aguayo et al., 2014). These studies and
345 our *Grd* and *GlyT* knockdowns suggest that glycine may affect alcohol sensitivity and
346 tolerance via glycnergic activity.

347 Alternatively, glycine could act through its role as a required NMDAR co-agonist.
348 NMDARs are a key locus of neural plasticity, a major target of EtOH inhibition, and a
349 modulator of many EtOH phenotypes (Carpenter-Hyland & Chandler, 2006; Ron &
350 Wang, 2009). Supporting this hypothesis, administration in rodents of an antagonist of
351 the NMDAR glycine binding site limited alcohol-related reward learning (Biała &
352 Kotlińska, 1999), dependence (Kotlińska, 2001), and withdrawal seizures (Kotlinska &
353 Liljequist, 1996). Moreover, mutation of a fly NMDAR subunit altered EtOH sensitivity
354 (B. Troutwine et al., 2019), and reduction of the same subunit reduced alcohol tolerance
355 (Maiya et al., 2012). Multiple association studies have implicated NMDARs in human
356 alcoholism (Karpyak, Geske, Colby, Mrazek, & Biernacka, 2012; J. H. Kim et al., 2006;
357 Rujescu et al., 2005; Wernicke et al., 2003). Other studies suggest that glycine modulates
358 and counteracts the inhibitory effect of EtOH on NMDARs (Buller, Larson, Morrisett, &
359 Monaghan, 1995; Dildy-Mayfield & Leslie, 1991; Popp, Lickteig, & Lovinger, 1999;
360 Rabe & Tabakoff, 1990; Woodward & Gonzales, 1990). Therefore, as NMDAR co-
361 agonist, glycine can enhance glutamatergic excitatory tone. This outcome would reduce

362 naïve sedation sensitivity, as we indeed observed. Glycine may also influence functional
363 tolerance by potentiating NMDAR-mediated neuronal plasticity. Therefore, the role of
364 glycine as NMDAR co-agonist may explain our results demonstrating that glycine levels
365 modulate alcohol sensitivity and tolerance, though further research is needed to test this
366 hypothesis.

367 We have furthermore shown distinct effects and mechanisms of whole-body and
368 neuronal experiments. Global changes influence neuronal milieu, so we expect global
369 *Gnmt* loss to increase both global glycine and neuronal SAM. Despite the activation of
370 both mechanisms, however, global *Gnmt* loss recapitulates glycine feeding rather than
371 neuronal *Gnmt* loss, indicating that the effects of augmented global glycine dominate
372 over neuronal effects.

373 In contrast to global mechanisms, we find through *SamS* knockdown and
374 overexpression that neuronal SAM levels (i.e., methylation potential) determine alcohol
375 phenotypes, wherein higher SAM produces greater alcohol sensitivity and tolerance.
376 Further supporting this hypothesis, *Gnmt* loss in flies raises SAM (Obata et al., 2014;
377 Obata & Miura, 2015) and the SAM/SAH ratio (Obata et al., 2014), which is sometimes
378 suggested as an alternate indicator of methylation potential. Our neuronal *Gnmt*
379 knockdowns (i.e., SAM increases) increased sensitivity and tolerance. Thus, together
380 with neuronal *SamS* knockdown and overexpression, we present three distinct lines of
381 evidence consistently indicating that neuronal SAM increases alcohol sensitivity and
382 tolerance. SAM is the universal donor of methyl groups for methyltransferase-mediated
383 methylation reactions, including methylation of nucleic acids, lipids, histones, and other
384 proteins. SAM is also critical to metabolic pathways such as synthesis of creatine,

385 phosphatidylcholine, cysteine, and glutathione. Thus, SAM represents a powerful
386 chokepoint capable of influencing metabolism, RNA processing, gene expression, protein
387 translocation, signal transduction, and other protein and lipid functions. Intracellular
388 SAM levels influence methylation rates, including histone methylation (Mentch &
389 Locasale, 2016; Mentch et al., 2015; Shyh-Chang et al., 2013; Wang et al., 2019) (Liu et
390 al., 2015; Liu & Pile, 2017), and even small fluctuations in SAM concentration may
391 drastically alter HMT activity and methylation rates (Mentch & Locasale, 2016; Mentch
392 et al., 2015). HDM loss enhances histone methylation (Liu et al., 2015; Liu & Pile, 2017),
393 and neuronal loss of the HDM *Kdm3* increases EtOH sensitivity (Pinzon et al., 2017).
394 Thus, these data support the hypothesis that greater methylation leads to greater
395 sensitivity and tolerance.

396 In our study, pharmacologically or genetically reducing SAM yielded less alcohol
397 sensitivity and tolerance. All our feedings were acute manipulations during the flies'
398 adulthood, suggesting that their effects on alcohol responses represent acute
399 physiological changes, not developmental insults. It is unknown if such physiological
400 changes arise from altered methylation in the brain or from homeostatic adaptations to
401 changes in SAM levels. To shed light on this question, future studies should examine the
402 impact of acutely elevated SAM on gene expression, histone methylation, and various
403 metabolites associated with the 1-C cycles, both before and after ethanol exposure. One
404 interesting possibility is that SAM levels affect alcohol phenotypes through SAM's
405 eventual conversion into glutathione, which reduces oxidative stress. SAM regulates
406 glutathione levels (Ouyang, Wu, Li, Sun, & Sun, 2020). EtOH administration rapidly
407 decreases glutathione (S. K. Kim, Seo, Jung, Kwak, & Kim, 2003), and glutathione and

408 oxidative stress have previously been linked to the damaging effects of AUDs and to
409 propensity to develop the disease (Björk et al., 2006; Covolo et al., 2005; Liang et al.,
410 2004). Alternatively, protein methylation affects neurite outgrowth (Amano et al., 2020;
411 Cimato, Ettinger, Zhou, & Aletta, 1997; Sontag, Nunbhakdi-Craig, Mitterhuber, Ogris, &
412 Sontag, 2010), so elevated SAM may facilitate neuronal connections. These heightened
413 connections may in turn contribute to faster spreading of EtOH-induced neuronal
414 sedation and to greater neuronal plasticity, enhancing tolerance. Indeed, ethanol promotes
415 growth of dendritic spines (Carpenter-Hyland & Chandler, 2006). Ultimately, future
416 studies should better elucidate the mechanisms by which SAM modulates alcohol
417 sensitivity and tolerance.

418 We have narrowed down SAM's influence to glutamatergic neurons, while
419 detecting no effects in inhibitory neurons. This contrast may suggest that *Drosophila*
420 glutamatergic systems play a generally larger role in alcohol sensitivity and tolerance.
421 Other studies have found that glutamatergic circuits modulate alcohol-associated
422 memories (Scaplen et al., 2020). However, glutamate is not the primary excitatory
423 neurotransmitter in the fly brain and thus may not be the best poised to alter
424 excitatory/inhibitory homeostatic balance (Chvilicek, Titos, & Rothenfluh, 2020). Thus,
425 glutamatergic neurons may not impact alcohol sensitivity and tolerance more than other
426 neurons per se; instead, SAM may more powerfully influence sensitivity and tolerance
427 via these neurons than it does via others, for reasons yet to be determined. Regardless,
428 our glutamate data supports our previous hypothesis that glycine levels may influence
429 alcohol sensitivity and tolerance by acting through glutamatergic NMDAR signaling. In
430 fact, glutamatergic signaling could mediate all our observed phenotypes: higher glycine

431 may enhance NMDAR activity to decrease sedation, while lower neuronal SAM could
432 decrease methylation reactions, ultimately enhancing glutamatergic neurotransmission
433 through unknown mechanisms and reducing sensitivity. Future studies should assess
434 neuronal activity in various neuronal subpopulations and NMDAR activity as functions
435 of glycine and SAM levels. Taken together, our study reveals a novel connection between
436 epigenetic modifiers, 1-C metabolism, and alcohol responses that opens the door to
437 greater understanding of AUDs.

438

439

440

441 **MATERIALS AND METHODS**

442

443 ***Fly Stocks and Husbandry***

444 Flies were kept on standard cornmeal/agar medium at 25°C with 70% relative humidity.

445 For all experiments, adult flies were sorted into separate vials 2-3 days prior to testing,

446 and flies were generally 2-7 days post-eclosion at the time of experimentation. Male flies

447 were used in all experiments except for those in Fig. 2 and Supp. 1 (because females

448 consumed more of the special food) and *SamS* neuronal knockdown (which was lethal in

449 males). *w^{*}* Berlin flies were used as +/+ controls. *Kdm3^{KO}*, *Gnmt^{Mi}*, *Gldc^{Mi}*, *elav^{C155}-Gal4*,

450 *tubulin84B-Gal4*, and *repo-Gal4* flies were outcrossed for at least five generations. In

451 experiments using *Gnmt^{RNAi 2}* as the variable, the unexpressed RNAi construct was first

452 confirmed to have no effect on alcohol responses. *Kdm3^{KO}* flies were generated in our

453 previous study (Shalaby et al., 2017). Transgenic flies were obtained from the

454 Bloomington Stock Center: *Gldc^{Mi}* (BDSC_59491), *Gnmt^{Mi}* (BDSC_67643), *Gnmt^{RNAi 1}*

455 (BDSC_43148), *VGlut-Gal4* (BDSC_84697), *vgat3-Gal4* (BDSC_58409), *Shmt^{KG}*

456 (BDSC_14948), and *Shmt^{RNAi}* (BDSC_57739). Dr. Clement Chow (University of Utah)

457 provided the *repo-Gal4* flies. Dr. Carl Thummel (University of Utah) provided the *r4-*

458 *Gal4* flies. Dr. Fernanda Ceriani (Fundación Instituto Leloir) graciously gifted us *Grd^{RNAi}*

459 (VDRC v2702) and *GlyT^{RNAi}* (NIG-FLY Stocks, Transformant ID 5549R). Dr. Masayuki

460 Miura and Dr. Fumiaki Obata (University of Tokyo) graciously gifted us *UAS-Gnmt^{RNAi 2}*

461 (*VDRC v25983*), *UAS-Sardh^{RNAi}* (Obata et al., 2014; Obata & Miura, 2015), *UAS-SamS*

462 (Obata & Miura, 2015), and *UAS-SamS^{RNAi}* (VDRC v103143).

463

464 ***RNA-seq***

465 Total RNA was isolated from heads of control and *Kdm3*^{KO} flies (50 flies per replicate; 3
466 replicates per genotype) using TRIzol Reagent (Invitrogen) and a PureLink RNA
467 purification kit (ThermoFisher). Then, rRNA was removed from each sample with a
468 Ribo-Zero rRNA Removal kit (Illumina). RNA libraries were constructed using a
469 NEBNext Ultra II RNA Library Kit for Illumina and NEBNext Multiplex Oligos for
470 Illumina, Primer Set 1 (New England Biolabs). Libraries were sequenced on an Illumina
471 HiSeq 2500 instrument using 50-bp single-end reads.

472

473 ***RNA-seq data analysis***

474 Fastq files were aligned to the BDGP6 genome assembly using the STAR aligner (Dobin
475 et al., 2013). The resulting BAM files were sorted and indexed using Samtools (Li et al.,
476 2009). HTSeq count was used to collect count data (Anders, Pyl, & Huber, 2015).
477 Differentially expressed genes were analyzed using the DEseq2 R package (Love, Huber,
478 & Anders, 2014). Gene ontology analysis was performed using the ChIPseeker package
479 in R (Yu, Wang, & He, 2015). Volcano plots were generated with the EnhancedVolcano
480 R package (version 1.14.0, <https://github.com/kevinblighe/EnhancedVolcano>).
481

482 ***Quantitative RT-PCR***

483 Total RNA was purified from ~100 male *Kdm3*^{KO} fly heads using TRIzol Reagent
484 (Invitrogen). RNase-free glycogen was used as a carrier to precipitate isolated RNA.
485 cDNA was made from 1 µg DNase-treated total RNA using iScript cDNA Synthesis Kits.
486 Quantitative PCR was performed using Taqman Gene Expression Assays (ThermoFisher;

487 Assay IDs: *Gnmt* – Dm02139745_g1; *CG3999* – Dm02138658_g1; *Shmt* –
488 Dm01796134_g1). Samples were run on an Applied Biosystems 7900HT real time PCR
489 instrument using *RpL32* (ThermoFisher; Assay ID: Dm02151827_g1) as internal control.

490

491 ***Specialized feedings***

492 Adult flies were allowed to feed for three days ad libitum on food made from 1% (w/v)
493 agar with 200 mM sucrose, with or without casamino acids (MP Biomedicals), glycine
494 (Fisher Bioreagents), formate (Sigma), or cycloleucine (TCI Chemicals). Vials were
495 replaced once if needed to prevent fungal/bacterial growth. Sensitivity and tolerance were
496 assayed at the end of the three days.

497

498 ***Ethanol sensitivity and tolerance assays***

499 Maples assays were performed as previously described, with minor modifications
500 (Maples & Rothenfluh, 2011). In brief, 10 flies were exposed to EtOH vapor for 22
501 minutes and scored for sedation. They were returned to their home vials at 25°C, then
502 exposed again four hours after the start of first exposure to assess tolerance. Casamino
503 acid feedings were performed using the Booze-o-mat as described previously (Wolf,
504 Rodan, Tsai, & Heberlein, 2002). Briefly, flies were allowed to acclimate to air flow for 5
505 minutes. Then, the flies were exposed to 110/40 vaporized EtOH/air, which flowed for 31
506 minutes. Flies were considered sedated when they lost their self-righting ability. In all
507 alcohol experiments, results were excluded for any vials in which $\geq 1/2$ of the flies died.

508

509 ***Blue Dye Consumption Assay***

510 Flies were collected under CO₂ anesthesia and allowed to recover for 24 hours in
511 standard food vials. Flies were then transferred to vials with water-soaked cotton balls
512 and strips of filter paper (7 × 1.75 cm) soaked with 350 ul feeding solution (200 mM
513 sucrose, 0.68% (v/v) propionic acid, amino acids, and 0.3% (v/v) blue food dye (FD&C
514 Blue Dye no. 1). After 24 hours, dead flies were removed and frozen at -20°C. Flies were
515 grouped into sets of five and homogenized in 10 ul water. Homogenates were centrifuged
516 for 5 minutes at 14,000 rpm. A NanoDrop spectrophotometer was used to measure 630
517 nm and 700 nm absorbance of the dyed supernatant, avoiding the topmost lipid layer.
518 Feeding volume for each fly was calculated as $nL\ eaten = (OD\ 630\ nm - 1.1*OD\ 700\ nm)*CF$, where CF is a conversion factor specific to the Blue#1 stock solution.

520

521 ***Data Analysis and Statistics***

522 Statistical analyses were performed with GraphPad Prism 9. Previous studies indicate that
523 sensitivity and tolerance phenotypes follow normal distributions (Pinzon et al., 2017), so
524 we used Student's t-tests for all two-group comparisons and standard 1-way ANOVA (for
525 three-group comparisons) and 2-way ANOVA (for four-group comparisons), followed by
526 Tukey's post-hoc tests. Differences between standard deviations were tested with F tests
527 and the Brown–Forsythe test. Where significant differences were found, Welch's t-tests
528 were used.

529

530 **ACKNOWLEDGMENTS**

531 This work was supported by the University of Utah Genomics Core Facility, the High
532 Throughput Sequencing Core at the Huntsman Cancer Institute, and the National Cancer

533 Institute through Award Number 5P30CA042014. The content is solely the responsibility
534 of the authors and does not necessarily represent the official views of the National
535 Institutes of Health. We also thank all members of the Rothenfluh and Rodan labs for
536 frequent feedback and support.

537
538
539

540 REFERENCES

541 Aguayo, L. G., Castro, P., Mariqueo, T., Muñoz, B., Xiong, W., Zhang, L., . . . Homanics,
542 G. E. (2014). Altered sedative effects of ethanol in mice with α 1 glycine receptor
543 subunits that are insensitive to $G\beta\gamma$ modulation. *Neuropsychopharmacology*,
544 39(11), 2538-2548. doi:10.1038/npp.2014.100

545 Amano, G., Matsuzaki, S., Mori, Y., Miyoshi, K., Han, S., Shikada, S., . . . Katayama, T.
546 (2020). SCYL1 arginine methylation by PRMT1 is essential for neurite outgrowth
547 via Golgi morphogenesis. *Mol Biol Cell*, 31(18), 1963-1973.
548 doi:10.1091/mbc.E20-02-0100

549 Anders, S., Pyl, P. T., & Huber, W. (2015). HTSeq--a Python framework to work with
550 high-throughput sequencing data. *Bioinformatics*, 31(2), 166-169.
551 doi:10.1093/bioinformatics/btu638

552 Atkinson, N. S. (2009). Tolerance in Drosophila. *J Neurogenet*, 23(3), 293-302.
553 doi:10.1080/01677060802572937

554 Aubrey, K. R., & Supplisson, S. (2018). Heterogeneous Signaling at GABA and Glycine
555 Co-releasing Terminals. *Front Synaptic Neurosci*, 10, 40.
556 doi:10.3389/fnsyn.2018.00040

557 Barbier, E., Johnstone, A. L., Khomtchouk, B. B., Tapocik, J. D., Pitcairn, C., Rehman,
558 F., . . . Heilig, M. (2017). Dependence-induced increase of alcohol self-
559 administration and compulsive drinking mediated by the histone
560 methyltransferase PRDM2. *Mol Psychiatry*, 22(12), 1746-1758.
561 doi:10.1038/mp.2016.131

562 Berger, K. H., Heberlein, U., & Moore, M. S. (2004). Rapid and chronic: two distinct
563 forms of ethanol tolerance in Drosophila. *Alcohol Clin Exp Res*, 28(10), 1469-
564 1480. doi:10.1097/01.alc.0000141817.15993.98

565 Berkel, T. D., & Pandey, S. C. (2017). Emerging Role of Epigenetic Mechanisms in
566 Alcohol Addiction. *Alcohol Clin Exp Res*, 41(4), 666-680.
567 doi:10.1111/acer.13338

568 Berkel, T. D. M., Zhang, H., Teppen, T., Sakharkar, A. J., & Pandey, S. C. (2019).
569 Essential Role of Histone Methyltransferase G9a in Rapid Tolerance to the
570 Anxiolytic Effects of Ethanol. *Int J Neuropsychopharmacol*, 22(4), 292-302.
571 doi:10.1093/ijnp/ppy102

572 Biała, G., & Kotlińska, J. (1999). Blockade of the acquisition of ethanol-induced
573 conditioned place preference by N-methyl-D-aspartate receptor antagonists.
574 *Alcohol Alcohol*, 34(2), 175-182. doi:10.1093/alcalc/34.2.175

575 Björk, K., Saarikoski, S. T., Arlinde, C., Kovanen, L., Osei-Hyiaman, D., Ubaldi, M., . . .
576 Sommer, W. H. (2006). Glutathione-S-transferase expression in the brain:
577 possible role in ethanol preference and longevity. *Faseb j*, 20(11), 1826-1835.
578 doi:10.1096/fj.06-5896com

579 Blednov, Y. A., Benavidez, J. M., Homanics, G. E., & Harris, R. A. (2012). Behavioral
580 characterization of knockin mice with mutations M287L and Q266I in the glycine
581 receptor α 1 subunit. *J Pharmacol Exp Ther*, 340(2), 317-329.
582 doi:10.1124/jpet.111.185124

583 Brosnan, M. E., & Brosnan, J. T. (2016). Formate: The Neglected Member of One-
584 Carbon Metabolism. *Annu Rev Nutr*, 36, 369-388. doi:10.1146/annurev-nutr-
585 071715-050738

586 Buller, A. L., Larson, H. C., Morrisett, R. A., & Monaghan, D. T. (1995). Glycine
587 modulates ethanol inhibition of heteromeric N-methyl-D-aspartate receptors
588 expressed in *Xenopus* oocytes. *Mol Pharmacol*, 48(4), 717-723.

589 Burgos, C. F., Muñoz, B., Guzman, L., & Aguayo, L. G. (2015). Ethanol effects on
590 glycinergic transmission: From molecular pharmacology to behavior responses.
591 *Pharmacol Res*, 101, 18-29. doi:10.1016/j.phrs.2015.07.002

592 Carpenter-Hyland, E. P., & Chandler, L. J. (2006). Homeostatic plasticity during alcohol
593 exposure promotes enlargement of dendritic spines. *Eur J Neurosci*, 24(12), 3496-
594 3506. doi:10.1111/j.1460-9568.2006.05247.x

595 Chvilicek, M. M., Titos, I., & Rothenfluh, A. (2020). The Neurotransmitters Involved in
596 *Drosophila* Alcohol-Induced Behaviors. *Front Behav Neurosci*, 14, 607700.
597 doi:10.3389/fnbeh.2020.607700

598 Cimato, T. R., Ettinger, M. J., Zhou, X., & Aletta, J. M. (1997). Nerve growth factor-
599 specific regulation of protein methylation during neuronal differentiation of PC12
600 cells. *J Cell Biol*, 138(5), 1089-1103. doi:10.1083/jcb.138.5.1089

601 Covolo, L., Gelatti, U., Talamini, R., Garte, S., Trevisi, P., Franceschi, S., . . . Donato, F.
602 (2005). Alcohol dehydrogenase 3, glutathione S-transferase M1 and T1
603 polymorphisms, alcohol consumption and hepatocellular carcinoma (Italy).
604 *Cancer Causes Control*, 16(7), 831-838. doi:10.1007/s10552-005-2302-2

605 Dildy-Mayfield, J. E., & Leslie, S. W. (1991). Mechanism of inhibition of N-methyl-D-
606 aspartate-stimulated increases in free intracellular Ca²⁺ concentration by ethanol.
607 *J Neurochem*, 56(5), 1536-1543. doi:10.1111/j.1471-4159.1991.tb02048.x

608 Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., . . . Gingeras, T.
609 R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*, 29(1), 15-
610 21. doi:10.1093/bioinformatics/bts635

611 Engel, G. L., Marella, S., Kaun, K. R., Wu, J., Adhikari, P., Kong, E. C., & Wolf, F. W.
612 (2016). Sir2/Sirt1 Links Acute Inebriation to Presynaptic Changes and the
613 Development of Alcohol Tolerance, Preference, and Reward. *J Neurosci*, 36(19),
614 5241-5251. doi:10.1523/JNEUROSCI.0499-16.2016

615 Frenkel, L., Muraro, N. I., Beltran Gonzalez, A. N., Marcora, M. S., Bernabo, G.,
616 Hermann-Luibl, C., . . . Ceriani, M. F. (2017). Organization of Circadian
617 Behavior Relies on Glycinergic Transmission. *Cell Rep*, 19(1), 72-85.
618 doi:10.1016/j.celrep.2017.03.034

619 Friso, S., Udalı, S., De Santis, D., & Choi, S. W. (2017). One-carbon metabolism and
620 epigenetics. *Mol Aspects Med*, 54, 28-36. doi:10.1016/j.mam.2016.11.007

621 Ghezzi, A., Li, X., Lew, L. K., Wijesekera, T. P., & Atkinson, N. S. (2017). Alcohol-
622 Induced Neuroadaptation Is Orchestrated by the Histone Acetyltransferase CBP.
623 *Front Mol Neurosci*, 10, 103. doi:10.3389/fnmol.2017.00103

624 Goldman, D., Oroszi, G., & Ducci, F. (2005). The genetics of addictions: uncovering the
625 genes. *Nat Rev Genet*, 6(7), 521-532. doi:10.1038/nrg1635

626 Gonzalez, D. A., Jia, T., Pinzon, J. H., Acevedo, S. F., Ojelade, S. A., Xu, B., . . .
627 Rothenfluh, A. (2018). The Arf6 activator Efa6/PSD3 confers regional specificity
628 and modulates ethanol consumption in *Drosophila* and humans. *Mol Psychiatry*,
629 23(3), 621-628. doi:10.1038/mp.2017.112

630 Kalant, H. (1998). Research on tolerance: what can we learn from history? *Alcohol Clin
631 Exp Res*, 22(1), 67-76. doi:10.1111/j.1530-0277.1998.tb03618.x

632 Karpyak, V. M., Geske, J. R., Colby, C. L., Mrazek, D. A., & Biernacka, J. M. (2012).
633 Genetic variability in the NMDA-dependent AMPA trafficking cascade is
634 associated with alcohol dependence. *Addict Biol*, 17(4), 798-806.
635 doi:10.1111/j.1369-1600.2011.00338.x

636 Kashio, S., Obata, F., Zhang, L., Katsuyama, T., Chihara, T., & Miura, M. (2016). Tissue
637 nonautonomous effects of fat body methionine metabolism on imaginal disc
638 repair in *Drosophila*. *Proc Natl Acad Sci U S A*, 113(7), 1835-1840.
639 doi:10.1073/pnas.1523681113

640 Khanna, J. M., Kalant, H., Shah, G., & Weiner, J. (1991). Rapid tolerance as an index of
641 chronic tolerance. *Pharmacol Biochem Behav*, 38(2), 427-432. doi:10.1016/0091-
642 3057(91)90302-i

643 Kim, D., Fiske, B. P., Birsoy, K., Freinkman, E., Kami, K., Possemato, R. L., . . . Sabatini,
644 D. M. (2015). SHMT2 drives glioma cell survival in ischaemia but imposes a
645 dependence on glycine clearance. *Nature*, 520(7547), 363-367.
646 doi:10.1038/nature14363

647 Kim, J. H., Park, M., Yang, S. Y., Jeong, B. S., Yoo, H. J., Kim, J.-W., . . . Kim, S. A.
648 (2006). Association study of polymorphisms in N-methyl-d-aspartate receptor 2B
649 subunits (GRIN2B) gene with Korean alcoholism. *Neuroscience Research*, 56(2),
650 220-223. doi:<https://doi.org/10.1016/j.neures.2006.06.013>

651 Kim, S. K., Seo, J. M., Jung, Y. S., Kwak, H. E., & Kim, Y. C. (2003). Alterations in
652 hepatic metabolism of sulfur-containing amino acids induced by ethanol in rats.
653 *Amino Acids*, 24(1-2), 103-110. doi:10.1007/s00726-002-0324-6

654 Kim, Y., Park, J., & Choi, Y. K. (2019). The Role of Astrocytes in the Central Nervous
655 System Focused on BK Channel and Heme Oxygenase Metabolites: A Review.
656 *Antioxidants (Basel)*, 8(5). doi:10.3390/antiox8050121

657 Kotlińska, J. (2001). NMDA antagonists inhibit the development of ethanol dependence
658 in rats. *Pol J Pharmacol*, 53(1), 47-50.

659 Kotlinska, J., & Liljequist, S. (1996). Oral administration of glycine and polyamine
660 receptor antagonists blocks ethanol withdrawal seizures. *Psychopharmacology
661 (Berl)*, 127(3), 238-244. Retrieved from
662 <https://www.ncbi.nlm.nih.gov/pubmed/8912402>

663 Lê, A. D., & Kiiianmaa, K. (1988). Characteristics of ethanol tolerance in alcohol
664 drinking (AA) and alcohol avoiding (ANA) rats. *Psychopharmacology (Berl)*,
665 94(4), 479-483. doi:10.1007/bf00212841

666 Leung, K. Y., Pai, Y. J., Chen, Q., Santos, C., Calvani, E., Sudiwala, S., . . . Greene, N. D.
667 E. (2017). Partitioning of One-Carbon Units in Folate and Methionine
668 Metabolism Is Essential for Neural Tube Closure. *Cell Rep*, 21(7), 1795-1808.
669 doi:10.1016/j.celrep.2017.10.072

670 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., . . . Durbin, R.
671 (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*,
672 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352

673 Li, H., Janssens, J., De Waegeneer, M., Kolluru, S. S., Davie, K., Gardeux, V., . . .
674 Zinzen, R. P. (2022). Fly Cell Atlas: A single-nucleus transcriptomic atlas of the
675 adult fruit fly. *Science*, 375(6584), eabk2432. doi:10.1126/science.abk2432

676 Liang, T., Habegger, K., Spence, J. P., Foroud, T., Ellison, J. A., Lumeng, L., . . . Carr, L.
677 G. (2004). Glutathione S-transferase 8-8 expression is lower in alcohol-preferring
678 than in alcohol-nonpreferring rats. *Alcohol Clin Exp Res*, 28(11), 1622-1628.
679 doi:10.1097/01.alc.0000145686.79141.57

680 Lidö, H. H., Ericson, M., Marston, H., & Söderpalm, B. (2011). A role for accumbal
681 glycine receptors in modulation of dopamine release by the glycine transporter-1
682 inhibitor org25935. *Front Psychiatry*, 2, 8. doi:10.3389/fpsyg.2011.00008

683 Liu, M., Barnes, V. L., & Pile, L. A. (2015). Disruption of Methionine Metabolism in
684 *Drosophila melanogaster* Impacts Histone Methylation and Results in Loss of
685 Viability. *G3 (Bethesda)*, 6(1), 121-132. doi:10.1534/g3.115.024273

686 Liu, M., & Pile, L. A. (2017). The Transcriptional Corepressor SIN3 Directly Regulates
687 Genes Involved in Methionine Catabolism and Affects Histone Methylation,
688 Linking Epigenetics and Metabolism. *J Biol Chem*, 292(5), 1970-1976.
689 doi:10.1074/jbc.M116.749754

690 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and
691 dispersion for RNA-seq data with DESeq2. *Genome Biol*, 15(12), 550.
692 doi:10.1186/s13059-014-0550-8

693 Luka, Z., Capdevila, A., Mato, J. M., & Wagner, C. (2006). A glycine N-
694 methyltransferase knockout mouse model for humans with deficiency of this
695 enzyme. *Transgenic Res*, 15(3), 393-397. doi:10.1007/s11248-006-0008-1

696 Maiya, R., Lee, S., Berger, K. H., Kong, E. C., Slawson, J. B., Griffith, L. C., . . .
697 Heberlein, U. (2012). DlgS97/SAP97, a neuronal isoform of discs large, regulates
698 ethanol tolerance. *PLoS One*, 7(11), e48967. doi:10.1371/journal.pone.0048967

699 Maples, T., & Rothenfluh, A. (2011). A simple way to measure ethanol sensitivity in flies.
700 *J Vis Exp*(48), 2541. doi:10.3791/2541

701 Mayfield, R. D., Harris, R. A., & Schuckit, M. A. (2008). Genetic factors influencing
702 alcohol dependence. *Br J Pharmacol*, 154(2), 275-287. doi:10.1038/bjp.2008.88

703 Maze, I., Covington, H. E., 3rd, Dietz, D. M., LaPlant, Q., Renthal, W., Russo, S. J., . . .
704 Nestler, E. J. (2010). Essential role of the histone methyltransferase G9a in
705 cocaine-induced plasticity. *Science*, 327(5962), 213-216.
706 doi:10.1126/science.1179438

707 Menth, S. J., & Locasale, J. W. (2016). One-carbon metabolism and epigenetics:
708 understanding the specificity. *Ann N Y Acad Sci*, 1363, 91-98.
709 doi:10.1111/nyas.12956

710 Menth, S. J., Mehrmohamadi, M., Huang, L., Liu, X., Gupta, D., Mattocks, D., . . .
711 Locasale, J. W. (2015). Histone Methylation Dynamics and Gene Regulation
712 Occur through the Sensing of One-Carbon Metabolism. *Cell metabolism*, 22(5),
713 861-873. doi:10.1016/j.cmet.2015.08.024

714 Molander, A., Lidö, H. H., Löf, E., Ericson, M., & Söderpalm, B. (2007). The glycine
715 reuptake inhibitor Org 25935 decreases ethanol intake and preference in male
716 wistar rats. *Alcohol Alcohol*, 42(1), 11-18. doi:10.1093/alc/alc085

717 Molander, A., Löf, E., Stomberg, R., Ericson, M., & Söderpalm, B. (2005). Involvement
718 of accumbal glycine receptors in the regulation of voluntary ethanol intake in the
719 rat. *Alcohol Clin Exp Res*, 29(1), 38-45. doi:10.1097/01.alc.0000150009.78622.e0

720 Mulligan, M. K., Ponomarev, I., Hitzemann, R. J., Belknap, J. K., Tabakoff, B., Harris, R.
721 A., . . . Bergeson, S. E. (2006). Toward understanding the genetics of alcohol
722 drinking through transcriptome meta-analysis. *Proc Natl Acad Sci U S A*, 103(16),
723 6368-6373. doi:10.1073/pnas.0510188103

724 Muñoz, B., Gallegos, S., Peters, C., Murath, P., Lovinger, D. M., Homanics, G. E., &
725 Aguayo, L. G. (2020). Influence of nonsynaptic α 1 glycine receptors on ethanol
726 consumption and place preference. *Addict Biol*, 25(2), e12726.
727 doi:10.1111/adb.12726

728 Narayanan, A. S., & Rothenfluh, A. (2016). I Believe I Can Fly!: Use of Drosophila as a
729 Model Organism in Neuropsychopharmacology Research.
730 *Neuropsychopharmacology*, 41(6), 1439-1446. doi:10.1038/npp.2015.322

731 Obata, F., Kuranaga, E., Tomioka, K., Ming, M., Takeishi, A., Chen, C. H., . . . Miura, M.
732 (2014). Necrosis-driven systemic immune response alters SAM metabolism
733 through the FOXO-GNMT axis. *Cell Rep*, 7(3), 821-833.
734 doi:10.1016/j.celrep.2014.03.046

735 Obata, F., & Miura, M. (2015). Enhancing S-adenosyl-methionine catabolism extends
736 Drosophila lifespan. *Nat Commun*, 6, 8332. doi:10.1038/ncomms9332

737 Ojelade, S. A., Acevedo, S. F., Kalahasti, G., Rodan, A. R., & Rothenfluh, A. (2015).
738 RhoGAP18B Isoforms Act on Distinct Rho-Family GTPases and Regulate
739 Behavioral Responses to Alcohol via Cofilin. *PLoS One*, 10(9), e0137465.
740 doi:10.1371/journal.pone.0137465

741 Ojelade, S. A., Jia, T., Rodan, A. R., Chenyang, T., Kadrimas, J. L., Cattrell, A., . . .
742 Rothenfluh, A. (2015). Rsu1 regulates ethanol consumption in Drosophila and
743 humans. *Proc Natl Acad Sci U S A*, 112(30), E4085-4093.
744 doi:10.1073/pnas.1417222112

745 Olsson, Y., Höifödt Lidö, H., Danielsson, K., Ericson, M., & Söderpalm, B. (2021).
746 Effects of systemic glycine on accumbal glycine and dopamine levels and ethanol
747 intake in male Wistar rats. *J Neural Transm (Vienna)*, 128(1), 83-94.
748 doi:10.1007/s00702-020-02284-x

749 Ouyang, Y., Wu, Q., Li, J., Sun, S., & Sun, S. (2020). S-adenosylmethionine: A
750 metabolite critical to the regulation of autophagy. *Cell Prolif*, 53(11), e12891.
751 doi:10.1111/cpr.12891

752 Pai, Y. J., Leung, K. Y., Savery, D., Hutchin, T., Prunty, H., Heales, S., . . . Greene, N. D.
753 (2015). Glycine decarboxylase deficiency causes neural tube defects and features
754 of non-ketotic hyperglycinemia in mice. *Nat Commun*, 6, 6388.
755 doi:10.1038/ncomms7388

756 Park, A., Ghezzi, A., Wijesekera, T. P., & Atkinson, N. S. (2017). Genetics and genomics
757 of alcohol responses in *Drosophila*. *Neuropharmacology*, 122, 22-35.
758 doi:10.1016/j.neuropharm.2017.01.032

759 Pinzon, J. H., Reed, A. R., Shalaby, N. A., Buszczak, M., Rodan, A. R., & Rothenfluh, A.
760 (2017). Alcohol-Induced Behaviors Require a Subset of *Drosophila* JmjC-Domain
761 Histone Demethylases in the Nervous System. *Alcohol Clin Exp Res*, 41(12),
762 2015-2024. doi:10.1111/acer.13508

763 Ponomarev, I. (2013). Epigenetic control of gene expression in the alcoholic brain.
764 *Alcohol Res*, 35(1), 69-76. Retrieved from
765 <https://www.ncbi.nlm.nih.gov/pubmed/24313166>

766 Ponomarev, I., Wang, S., Zhang, L., Harris, R. A., & Mayfield, R. D. (2012). Gene
767 coexpression networks in human brain identify epigenetic modifications in
768 alcohol dependence. *J Neurosci*, 32(5), 1884-1897.
769 doi:10.1523/JNEUROSCI.3136-11.2012

770 Popp, R. L., Lickteig, R. L., & Lovinger, D. M. (1999). Factors that enhance ethanol
771 inhibition of N-methyl-D-aspartate receptors in cerebellar granule cells. *J Pharmacol Exp Ther*, 289(3), 1564-1574.

772 Prisciandaro, J. J., Schacht, J. P., Prescott, A. P., Brenner, H. M., Renshaw, P. F., Brown,
773 T. R., & Anton, R. F. (2019). Evidence for a unique association between fronto-
774 cortical glycine levels and recent heavy drinking in treatment naïve individuals
775 with alcohol use disorder. *Neurosci Lett*, 706, 207-210.
776 doi:10.1016/j.neulet.2019.05.030

777 Qiang, M., Denny, A., Lieu, M., Carreon, S., & Li, J. (2011). Histone H3K9
778 modifications are a local chromatin event involved in ethanol-induced
779 neuroadaptation of the NR2B gene. *Epigenetics*, 6(9), 1095-1104.
780 doi:10.4161/epi.6.9.16924

781 Quinlan, J. J., Ferguson, C., Jester, K., Firestone, L. L., & Homanics, G. E. (2002). Mice
782 with glycine receptor subunit mutations are both sensitive and resistant to volatile
783 anesthetics. *Anesth Analg*, 95(3), 578-582, table of contents.
784 doi:10.1097/00000539-200209000-00016

785 Rabe, C. S., & Tabakoff, B. (1990). Glycine site-directed agonists reverse the actions of
786 ethanol at the N-methyl-D-aspartate receptor. *Mol Pharmacol*, 38(6), 753-757.

787 Ramirez-Roman, M. E., Billini, C. E., & Ghezzi, A. (2018). Epigenetic Mechanisms of
788 Alcohol Neuroadaptation: Insights from *Drosophila*. *J Exp Neurosci*, 12,
789 1179069518779809. doi:10.1177/1179069518779809

790 Rizki, T. M., & Rizki, R. M. (1978). Larval adipose tissue of homoeotic bithorax mutants
791 of *Drosophila*. *Dev Biol*, 65(2), 476-482. doi:10.1016/0012-1606(78)90042-8

792 Robinson, B. G., & Atkinson, N. S. (2013). Is alcoholism learned? Insights from the fruit
793 fly. *Curr Opin Neurobiol*, 23(4), 529-534. doi:10.1016/j.conb.2013.01.016

794 Rodan, A. R., Kiger, J. A., Jr., & Heberlein, U. (2002). Functional dissection of
795 neuroanatomical loci regulating ethanol sensitivity in *Drosophila*. *J Neurosci*,
796 22(21), 9490-9501. Retrieved from
797 <https://www.ncbi.nlm.nih.gov/pubmed/12417673>

799 Rodan, A. R., & Rothenfluh, A. (2010). The genetics of behavioral alcohol responses in
800 *Drosophila*. *Int Rev Neurobiol*, 91, 25-51. doi:10.1016/S0074-7742(10)91002-7

801 Ron, D., & Wang, J. (2009). The NMDA Receptor and Alcohol Addiction. In A. M. Van
802 Dongen (Ed.), *Biology of the NMDA Receptor*. Boca Raton (FL): CRC
803 Press/Taylor & Francis

804 Taylor & Francis Group, LLC.

805 Rujescu, D., Soyka, M., Dahmen, N., Preuss, U., Hartmann, A. M., Giegling, I., . . .
806 Szegedi, A. (2005). GRIN1 locus may modify the susceptibility to seizures during
807 alcohol withdrawal. *Am J Med Genet B Neuropsychiatr Genet*, 133b(1), 85-87.
808 doi:10.1002/ajmg.b.30112

809 Rustay, N. R., & Crabbe, J. C. (2004). Genetic analysis of rapid tolerance to ethanol's
810 incoordinating effects in mice: inbred strains and artificial selection. *Behav Genet*,
811 34(4), 441-451. doi:10.1023/B:BEGE.0000023649.60539.dd

812 San Martin, L., Gallegos, S., Araya, A., Romero, N., Morelli, G., Comhair, J., . . .
813 Aguayo, L. G. (2020). Ethanol consumption and sedation are altered in mice
814 lacking the glycine receptor $\alpha 2$ subunit. *Br J Pharmacol*, 177(17), 3941-3956.
815 doi:10.1111/bph.15136

816 Scaplen, K. M., Talay, M., Nunez, K. M., Salamon, S., Waterman, A. G., Gang, S., . . .
817 Kaun, K. R. (2020). Circuits that encode and guide alcohol-associated preference.
818 *Elife*, 9. doi:10.7554/eLife.48730

819 Scholz, H., Ramond, J., Singh, C. M., & Heberlein, U. (2000). Functional ethanol
820 tolerance in *Drosophila*. *Neuron*, 28(1), 261-271. doi:10.1016/s0896-
821 6273(00)00101-x

822 Schuckit, M. A. (2009). An overview of genetic influences in alcoholism. *J Subst Abuse
823 Treat*, 36(1), S5-14. Retrieved from
824 <https://www.ncbi.nlm.nih.gov/pubmed/19062348>

825 Serefidou, M., Venkatasubramani, A. V., & Imhof, A. (2019). The Impact of One Carbon
826 Metabolism on Histone Methylation. *Front Genet*, 10, 764.
827 doi:10.3389/fgene.2019.00764

828 Shalaby, N. A., Sayed, R., Zhang, Q., Scoggin, S., Eliazer, S., Rothenfluh, A., &
829 Buszczak, M. (2017). Systematic discovery of genetic modulation by Jumonji
830 histone demethylases in *Drosophila*. *Sci Rep*, 7(1), 5240. doi:10.1038/s41598-
831 017-05004-w

832 Shukla, S. D., Velazquez, J., French, S. W., Lu, S. C., Ticku, M. K., & Zakhari, S. (2008).
833 Emerging role of epigenetics in the actions of alcohol. *Alcohol Clin Exp Res*,
834 32(9), 1525-1534. doi:10.1111/j.1530-0277.2008.00729.x

835 Shyh-Chang, N., Locasale, J. W., Lyssiotis, C. A., Zheng, Y., Teo, R. Y.,
836 Ratanasirinrawoot, S., . . . Cantley, L. C. (2013). Influence of threonine
837 metabolism on S-adenosylmethionine and histone methylation. *Science*,
838 339(6116), 222-226. doi:10.1126/science.1226603

839 Sontag, J. M., Nunbhakdi-Craig, V., Mitterhuber, M., Ogris, E., & Sontag, E. (2010).
840 Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a
841 critical role in differentiation of neuroblastoma cells. *J Neurochem*, 115(6), 1455-
842 1465. doi:10.1111/j.1471-4159.2010.07049.x

843 Subbanna, S., Shivakumar, M., Umapathy, N. S., Saito, M., Mohan, P. S., Kumar, A., . . .
844 Basavarajappa, B. S. (2013). G9a-mediated histone methylation regulates ethanol-
845 induced neurodegeneration in the neonatal mouse brain. *Neurobiology of Disease*,
846 54, 475-485. doi:10.1016/j.nbd.2013.01.022

847 Sufrin, J. R., Coulter, A. W., & Talalay, P. (1979). Structural and conformational
848 analogues of L-methionine as inhibitors of the enzymatic synthesis of S-adenosyl-
849 L-methionine. IV. Further mono-, bi- and tricyclic amino acids. *Mol Pharmacol*,
850 15(3), 661-677.

851 Troutwine, B., Park, A., Velez-Hernandez, M. E., Lew, L., Mihic, S. J., & Atkinson, N. S.
852 (2019). F654A and K558Q Mutations in NMDA Receptor 1 Affect Ethanol-
853 Induced Behaviors in Drosophila. *Alcohol Clin Exp Res*, 43(12), 2480-2493.
854 doi:10.1111/acer.14215

855 Troutwine, B. R., Ghezzi, A., Pietrzykowski, A. Z., & Atkinson, N. S. (2016). Alcohol
856 resistance in Drosophila is modulated by the Toll innate immune pathway. *Genes*
857 *Brain Behav*, 15(4), 382-394. doi:10.1111/gbb.12288

858 Vengeliene, V., Leonardi-Essmann, F., Sommer, W. H., Marston, H. M., & Spanagel, R.
859 (2010). Glycine transporter-1 blockade leads to persistently reduced relapse-like
860 alcohol drinking in rats. *Biol Psychiatry*, 68(8), 704-711.
861 doi:10.1016/j.biopsych.2010.05.029

862 Venken, K. J., Schulze, K. L., Haelterman, N. A., Pan, H., He, Y., Evans-Holm, M., . . .
863 Bellen, H. J. (2011). MiMIC: a highly versatile transposon insertion resource for
864 engineering Drosophila melanogaster genes. *Nature methods*, 8(9), 737-743.
865 doi:10.1038/nmeth.1662

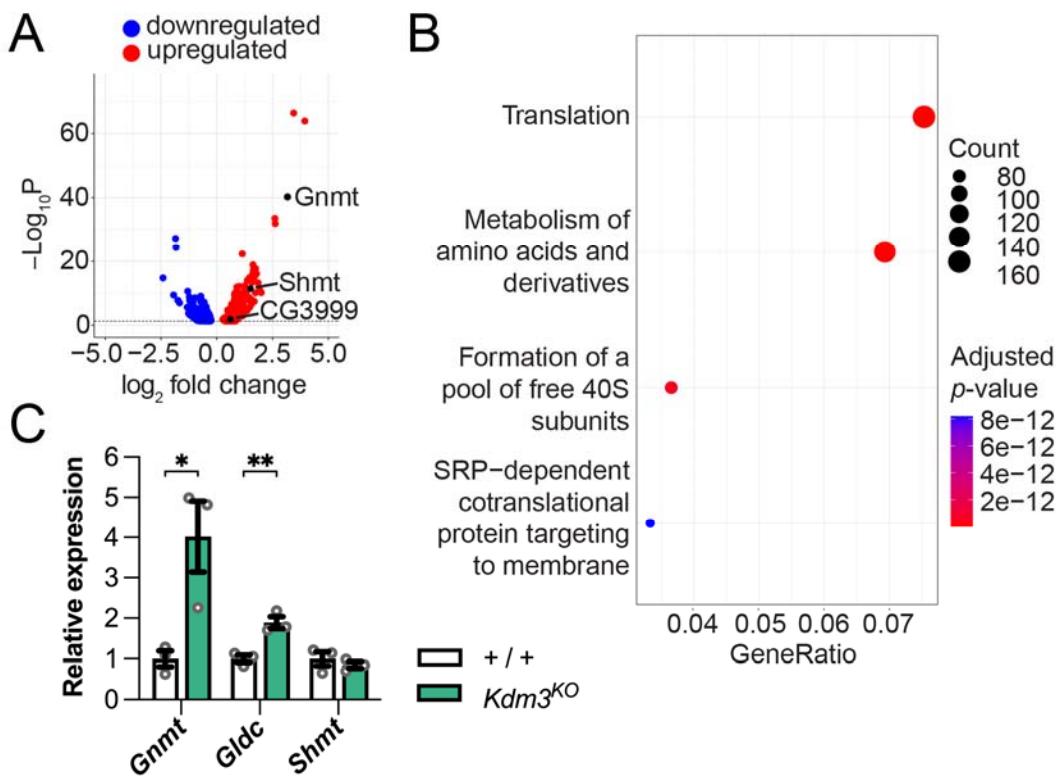
866 Wang, Z., Yip, L. Y., Lee, J. H. J., Wu, Z., Chew, H. Y., Chong, P. K. W., . . . Tam, W. L.
867 (2019). Methionine is a metabolic dependency of tumor-initiating cells. *Nature*
868 *Medicine*, 25(5), 825-837. doi:10.1038/s41591-019-0423-5

869 Wernicke, C., Samochowiec, J., Schmidt, L. G., Winterer, G., Smolka, M., Kucharska-
870 Mazur, J., . . . Rommelspacher, H. (2003). Polymorphisms in the N-methyl-D-
871 aspartate receptor 1 and 2B subunits are associated with alcoholism-related traits.
872 *Biol Psychiatry*, 54(9), 922-928. doi:10.1016/s0006-3223(03)00072-6

873 Wolf, F. W., Rodan, A. R., Tsai, L. T., & Heberlein, U. (2002). High-resolution analysis
874 of ethanol-induced locomotor stimulation in Drosophila. *J Neurosci*, 22(24),
875 11035-11044. doi:10.1523/jneurosci.22-24-11035.2002

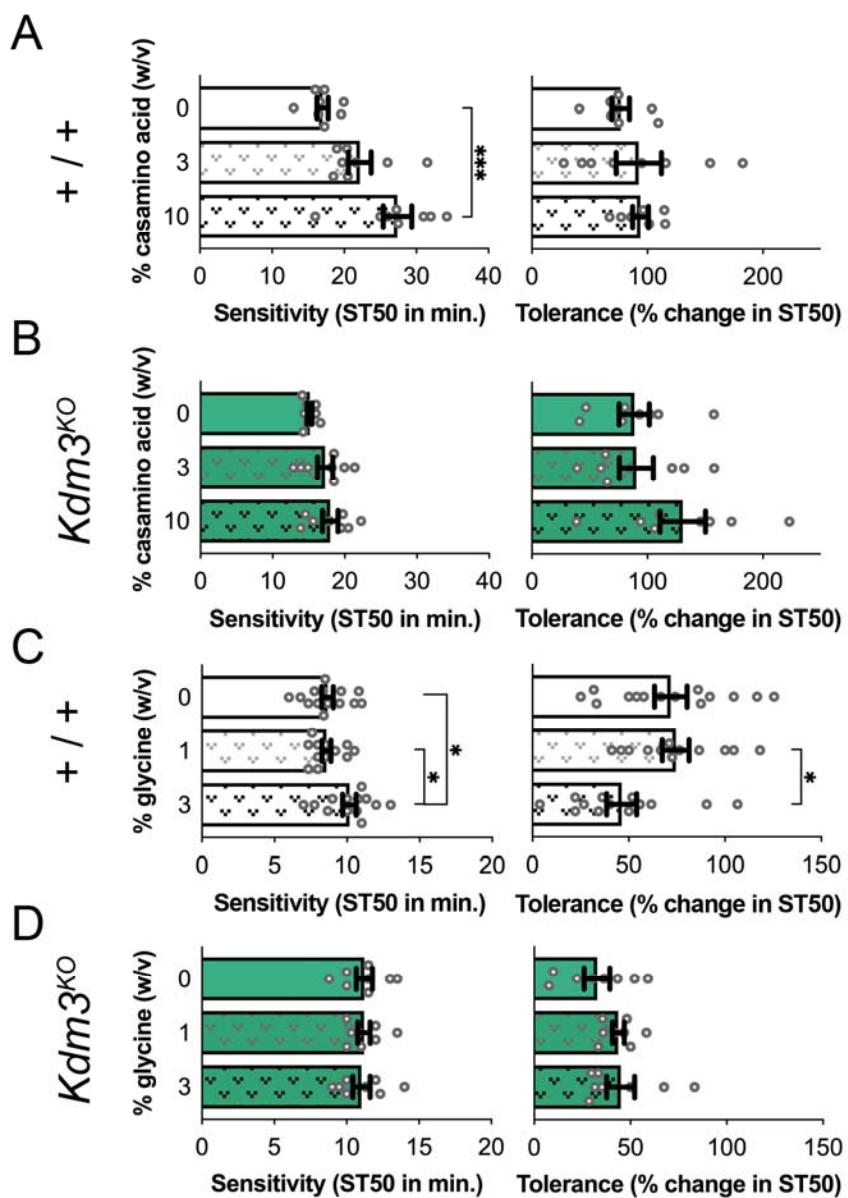
876 Woodward, J. J., & Gonzales, R. A. (1990). Ethanol inhibition of N-methyl-D-aspartate-
877 stimulated endogenous dopamine release from rat striatal slices: reversal by
878 glycine. *J Neurochem*, 54(2), 712-715. doi:10.1111/j.1471-4159.1990.tb01931.x

879 Ye, C., Sutter, B. M., Wang, Y., Kuang, Z., & Tu, B. P. (2017). A Metabolic Function for
880 Phospholipid and Histone Methylation. *Mol Cell*, 66(2), 180-193.e188.
881 doi:10.1016/j.molcel.2017.02.026

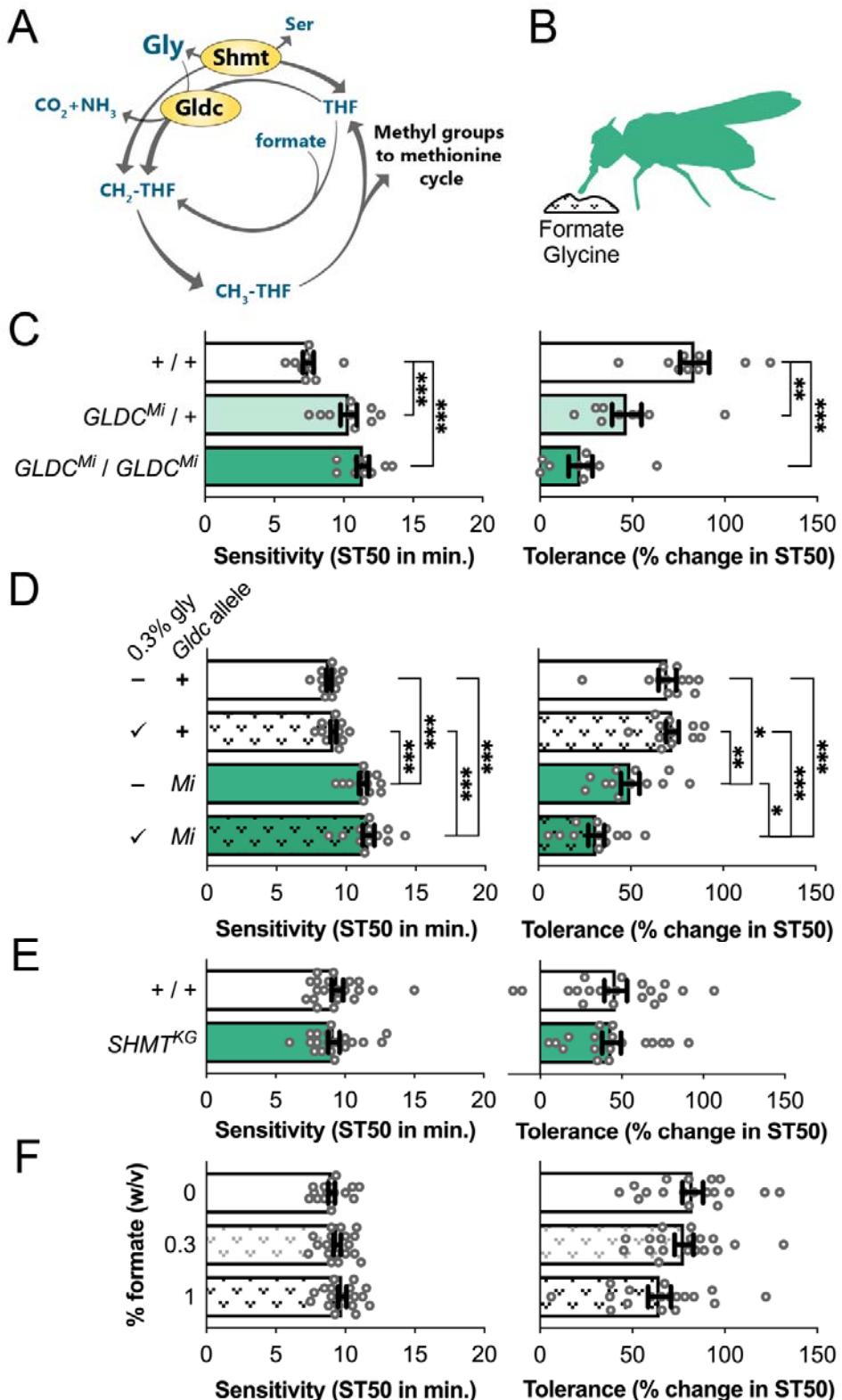

882 Ye, C., Sutter, B. M., Wang, Y., Kuang, Z., Zhao, X., Yu, Y., & Tu, B. P. (2019).
883 Demethylation of the Protein Phosphatase PP2A Promotes Demethylation of
884 Histones to Enable Their Function as a Methyl Group Sink. *Mol Cell*, 73(6),
885 1115-1126 e1116. doi:10.1016/j.molcel.2019.01.012

886 Yu, G., Wang, L. G., & He, Q. Y. (2015). ChIPseeker: an R/Bioconductor package for
887 ChIP peak annotation, comparison and visualization. *Bioinformatics*, 31(14),
888 2382-2383. doi:10.1093/bioinformatics/btv145

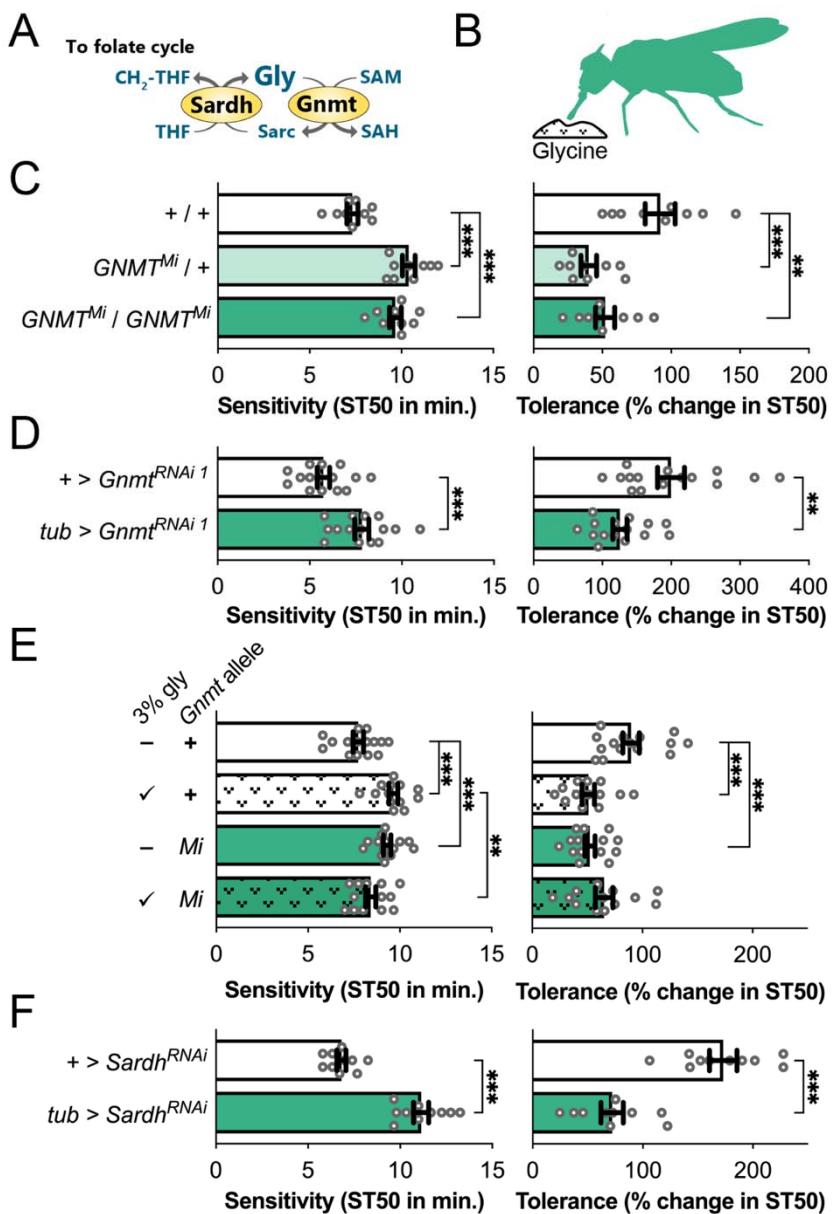
889 Zakhari, S. (2013). Alcohol metabolism and epigenetics changes. *Alcohol Res*, 35(1), 6-
890 16. Retrieved from <https://www.ncbi.nlm.nih.gov/pubmed/24313160>


891 Zinke, I., Kirchner, C., Chao, L. C., Tetzlaff, M. T., & Pankratz, M. J. (1999).
892 Suppression of food intake and growth by amino acids in Drosophila: the role of
893 pumppless, a fat body expressed gene with homology to vertebrate glycine
894 cleavage system. *Development*, 126(23), 5275-5284.
895 doi:10.1242/dev.126.23.5275

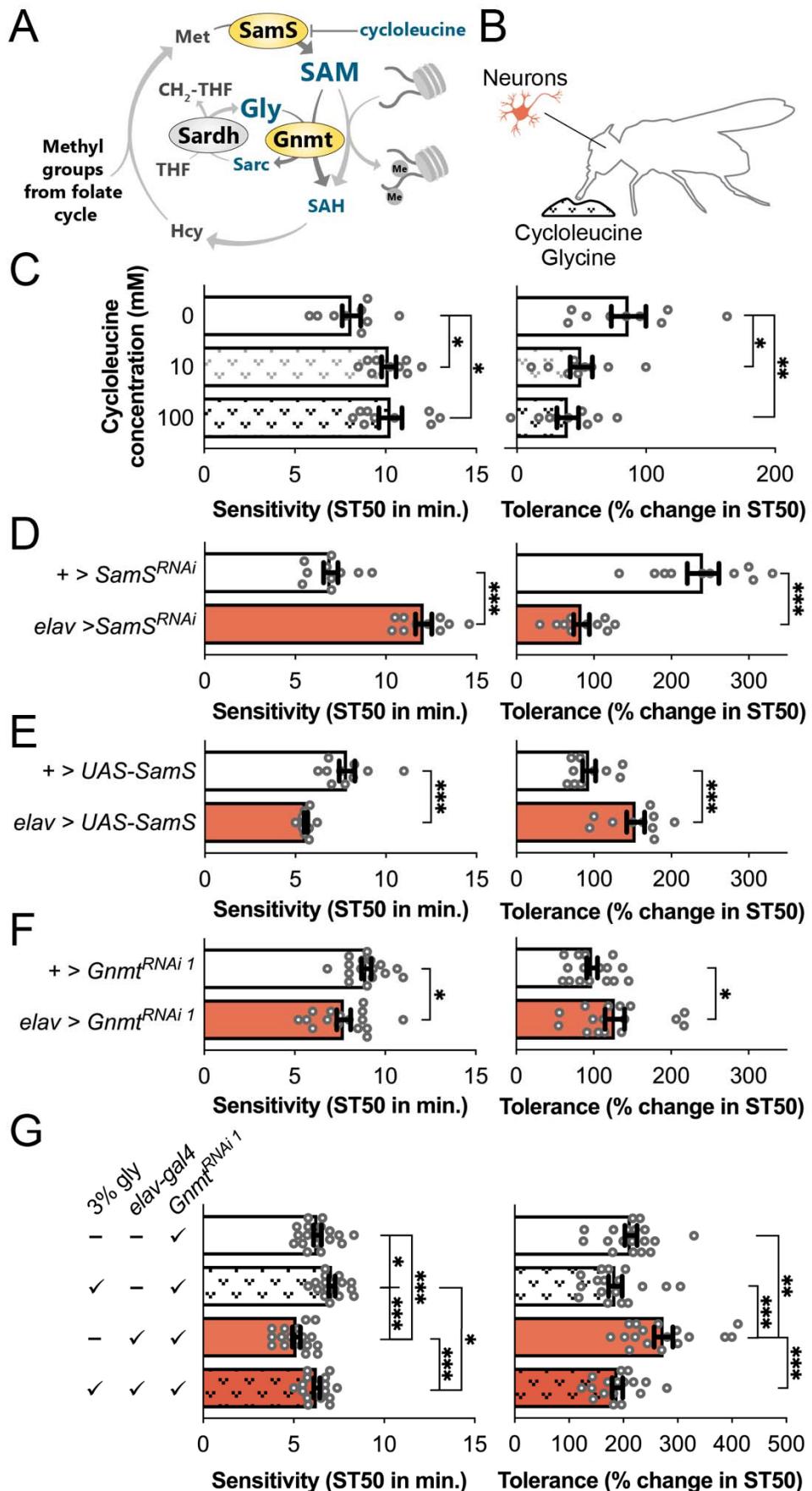
896


Fig. 1 – Genes associated with 1-C metabolism are upregulated in *Kdm3*^{KO} flies.

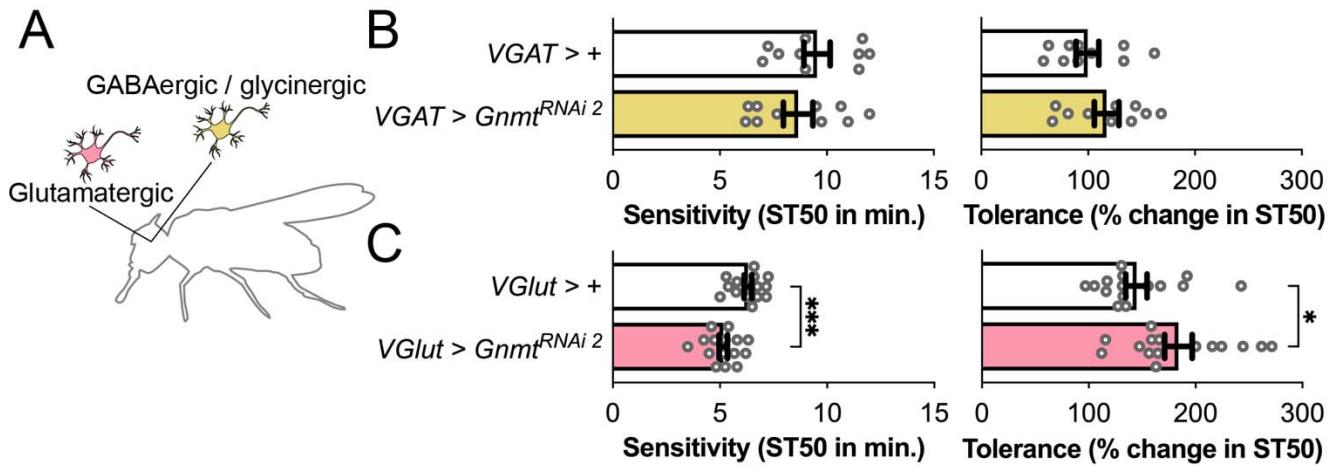
(A) Significantly upregulated (red) or downregulated (blue) transcripts in *Kdm3*^{KO} fly heads. (B) Gene ontology (GO) and enriched pathway analysis of genes upregulated in *Kdm3*^{KO} flies showing the top four overrepresented pathway terms. Gene ratio indicates the ratio of genes in the dataset to all genes associated with GO pathways. (C) RT-qPCR confirming *Gnmt* and *Gldc* upregulation in *Kdm3*^{KO} fly heads. Gene expression was normalized to *Rpl32* expression. Statistical differences were analyzed using Student's *t*-tests in (C) and in all subsequent two-group comparisons. The data in (C) and in all subsequent graphs represent the mean \pm SEM, with * p < 0.05; ** p < 0.01; *** p < 0.001. n = 3.


Fig. 2 – Glycine feeding decreases sensitivity and tolerance in a *Kdm3*-dependent manner.

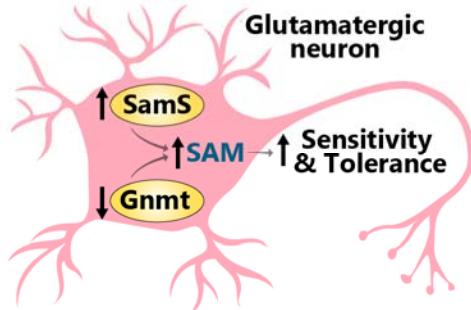
(A-B) Casamino acid consumption for three days decreased sensitivity in control flies (A) but not in *Kdm3*^{KO} flies (B). Sensitivity was measured as the time at which 50% of the flies in each vial were sedated (ST50). A higher initial ST50 represents reduced sensitivity. Tolerance was measured as the percent change between the ST50 at the second exposure and the initial ST50. (C-D) Glycine consumption for three days decreases sensitivity and tolerance in control flies (C) but not in *Kdm3*^{KO} flies (D). Statistical differences were analyzed using one-way ANOVA followed by Tukey post-hoc tests, as well as in all subsequent three-group comparisons. $n \geq 7$. Each dot in (A-B) represents 20 flies. Each dot in (C-D) and all other EtOH experiments represents 10 flies.


Fig. 3 – Increased folate cycle activity is not a primary driver of alcohol sensitivity or tolerance.

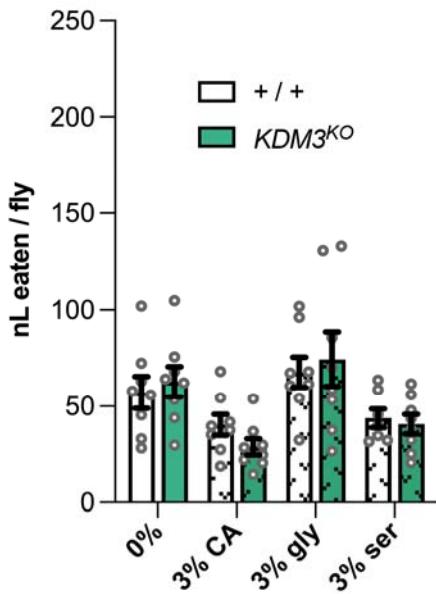
(A) Schematic of the folate cycle. (B) Schematic of manipulation locations. Green represents whole-body manipulations. (C) Heterozygous or homozygous *Gldc* null mutation decreases alcohol sensitivity and tolerance. (D) Low glycine feeding had no effect on sedation sensitivity in control or *Gldc* mutants but had a synergistic effect on tolerance in *Gldc* mutants. (*Sensitivity*: glycine main effect, $p = .236$; genotype main effect, $p < .001$; interaction, $p = .896$. *Tolerance*: glycine main effect, $p = .087$; genotype main effect, $p < .001$; interaction, $p = .022$). Statistical differences were analyzed using two-way ANOVA followed by Tukey post-hoc tests, as well as in all subsequent two-factor comparisons. (E) *Shmt* knockout mutation does not affect alcohol sensitivity or tolerance. (F) Formate feeding for three days does not affect alcohol sensitivity or tolerance. $n \geq 9$.


Fig. 4 – *Gnmt* modulates glycine-induced changes to alcohol sensitivity and tolerance.

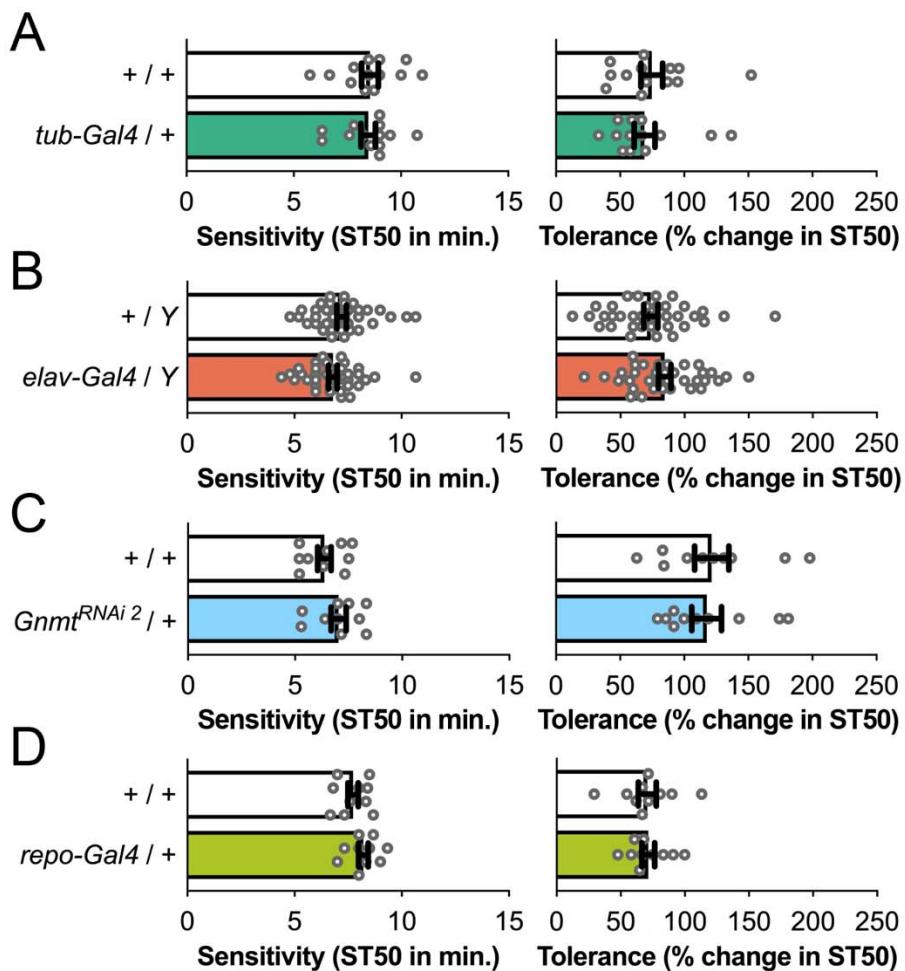
(A) Schematic depicting the relationships between *Gnmt*, *Sardh*, and glycine. (B) Color-coded schematic of manipulation locations. (C) Heterozygous or homozygous *Gnmt* knockout decreases alcohol sensitivity and tolerance. (D) Whole-body *Gnmt* knockdown driven by *Tubulin84B-Gal4* decreases alcohol sensitivity and increases tolerance. (E) Control flies fed 3% glycine show decreased sensitivity and tolerance to alcohol-induced sedation, while *Gnmt*-null mutants show no changes. Glycine feeding and *Gnmt* knockout show inhibitory interaction in both sensitivity and tolerance (*Sensitivity*: glycine main effect, $p = .049$; genotype main effect, $p = .512$; interaction, $p < .001$. *Tolerance*: glycine main effect, $p = .055$; genotype main effect, $p = .087$; interaction, $p < .001$). (F) Whole-body *Sardh* knockdown decreases alcohol sensitivity and tolerance. $n \geq 9$.


Fig. 5 – Neuronal S-adenosyl methionine (SAM) increases alcohol sensitivity and tolerance.

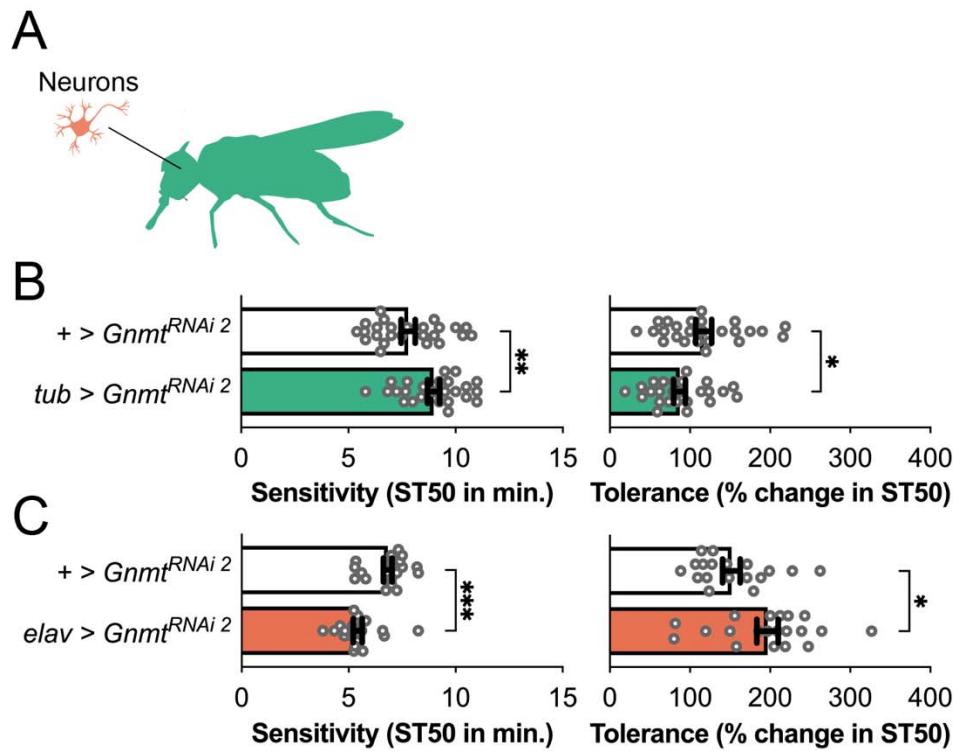
(A) Schematic of the methionine cycle. (B) Color-coded schematic of manipulation locations. (C) Cycloleucine feeding for three days decreases alcohol sensitivity and tolerance. (D) Pan-neuronal *SamS* knockdown using *elav-Gal4* and *UAS-SamS^{RNAi}* substantially decreases sensitivity and tolerance, whereas pan-neuronal *SamS* overexpression shows the opposite effect. (E) Pan-neuronal *Gnmt* knockdown increases alcohol sensitivity and tolerance. (F) 2-way ANOVA with glycine feeding and neuronal *Gnmt* knockdown shows no sensitivity interaction and slight tolerance interaction. (*Sensitivity*: glycine main effect, $p < .001$; genotype main effect, $p < .001$; interaction, $p = .406$. *Tolerance*: glycine main effect, $p < .001$; genotype main effect, $p = .016$; interaction, $p = .034$). $n \geq 9$.


Fig. 6 – S-adenosyl methionine (SAM) in glutamatergic neurons modulates alcohol sensitivity and tolerance.

(A) Color-coded schematic of manipulated neurons. (B) *Gnmtr* loss in inhibitory neurons using *VGAT-Gal4*, a GABAergic/glycinergic neuron-specific driver, did not affect alcohol sedation and tolerance, whereas *Gnmtr* loss in glutamatergic neurons using *vGlut-Gal4*, a glutamatergic neuron-specific driver, increased alcohol sensitivity and tolerance. $n \geq 10$.


Fig. 7 – Increasing *S*-adenosyl methionine (SAM) in glutamatergic neurons enhances alcohol-induced sedation sensitivity and tolerance.

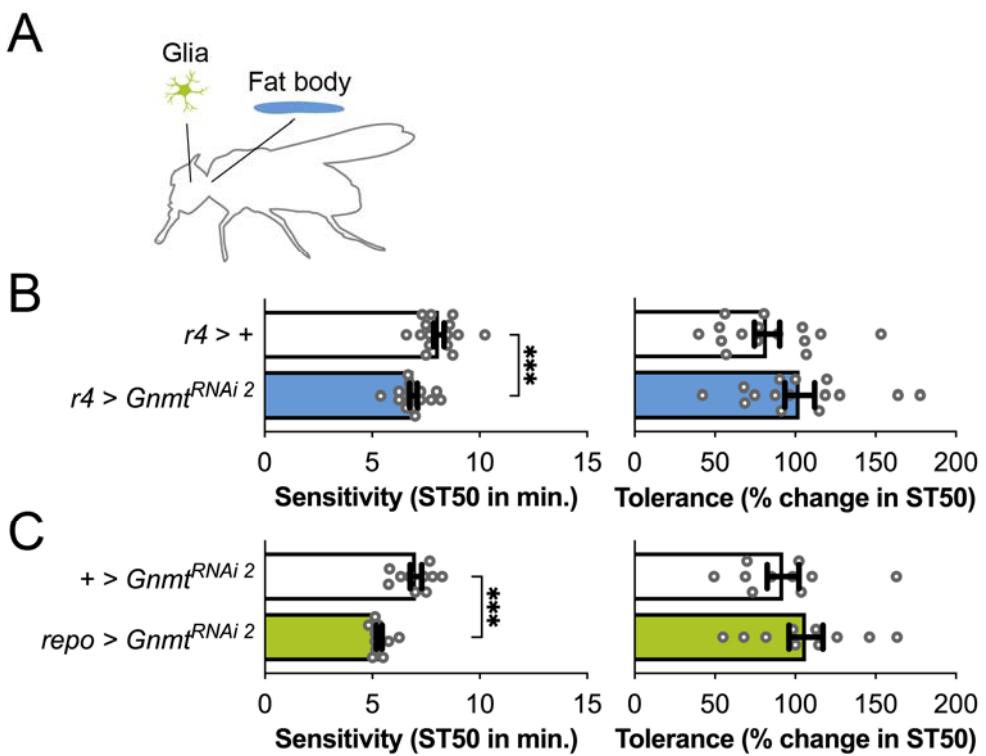
Upregulating *SamS* or reducing *GnmT* increases SAM levels in glutamatergic neurons, which in turn increases alcohol sensitivity and tolerance.


Fig. S1 – *Kdm3^{KO}* does not decrease amino acid consumption.

Blue feeding analysis reveals that *Kdm3^{KO}* flies do not eat less amino acid-filled food than controls [CA, casamino acids; gly, glycine; ser, serine]. $n = 9$. Each dot represents five flies.

Fig. S2 – *Gal4* and UAS-RNAi constructs do not alter alcohol sensitivity and tolerance.

(A) The *Tubulin84B-Gal4* global driver alone does not affect alcohol sensitivity or tolerance. (B) *elav-Gal4*, (C) *Gnm1tRNAi2*, nor (D) *repo-Gal4* affect alcohol sedation or tolerance. $n \geq 10$.


Fig. S3 – Second RNAi construct confirms global and neuronal *Gnmt* phenotypes.

(A) Schematic of manipulation locations. Green represents whole-fly manipulations and orange represents neuronal manipulations. (B) Consistent with the first RNAi construct, global *Gnmt* knockdown using *Tubulin84B-Gal4* and *UAS-Gnmt^{RNAi} 2* decreases alcohol sensitivity and tolerance. (C) Neuronal *Gnmt* knockdown using *UAS-Gnmt^{RNAi} 2* increases alcohol sensitivity and tolerance, consistent with *UAS-Gnmt^{RNAi} 1*. $n \geq 18$.

Fig. S4 – Glycinergic signaling plays a role in alcohol sensitivity and tolerance.

(A) Schematic of experimental setup. (B) Pan-neuronal glycine receptor (*Grd*) knockdown increased alcohol sensitivity and tolerance. (C) Glycine reuptake transporter (*GlyT*) knockdown only increased tolerance. $n \geq 15$.

Supp. 5 – *Gnmtr* knockdown in the fat body or glia recapitulates neuronal, but not global, *Gnmtr* knockdown.

(A) Color-coded schematic of manipulations in glia (olive) or the fat body (blue). (B) *Gnmtr* knockdown in the fat body using *r4-Gal4*, a fat body-specific driver, increases sensitivity, consistent with neuronal phenotypes rather than global phenotypes. (C) *Gnmtr* knockdown in glia using *repo-Gal4*, a glia-specific driver, causes the same result. $n \geq 10$.