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Abstract In this work, we expand the normative model repository introduced in Rutherford

et al. (2022a) to include normative models charting lifespan trajectories of structural surface area
and brain functional connectivity, measured using two unique resting-state network atlases
(Yeo-17 and Smith-10), and an updated online platform for transferring these models to new data
sources. We showcase the value of these models with a head-to-head comparison between the
features output by normative modeling and raw data features in several benchmarking tasks:
mass univariate group difference testing (schizophrenia versus control), classification
(schizophrenia versus control), and regression (predicting general cognitive ability). Across all
benchmarks, we confirm the advantage (i.e., stronger effect sizes, more accurate classification
and prediction) of using normative modeling features. We intend for these accessible resources
to facilitate wider adoption of normative modeling across the neuroimaging community.

Introduction

Normative modeling is a framework for mapping population-level trajectories of the relationships
between health-related variables while simultaneously preserving individual-level information Mar-
quand et al. (2016); Rutherford et al. (2022b); Marquand et al. (2019). Health-related variables is an
intentionally inclusive and broad definition that may involve demographics (i.e., age and gender),
simple (i.e., height and weight) or complex (i.e., brain structure and function, genetics) biological
measures, environmental factors (i.e., urbanicity, pollution), self-report measures (i.e., social satis-
faction, emotional experiences), or behavioral tests (i.e., cognitive ability, spatial reasoning). Chart-
ing the relationships, as mappings between a covariate (e.g. age) and response variable (e.g. brain
measure) in a reference population creates a coordinate system that defines the units in which
humans vary. Placing individuals into this coordinate system creates the opportunity to charac-
terize their profiles of deviation. While this is an important aspect of normative modeling, it is
often just the first step first, i.e. you are often interested in using the outputs of normative mod-
els in downstream analyses to detect case-control differences, stratification or individual statistics.
This framework provides a platform for such analyses as it effectively translates diverse data to a
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consistent scale, defined with respect to population norms.

Normative modeling has seen widespread use spanning diverse disciplines. The most well-
known example can be found within pediatric medicine, where conventional growth charts are
used to map height, weight, and head circumference trajectories of children Borghi et al. (2006).
Under the neuroscience umbrella, generalizations of this approach have been applied in the fields
of psychiatry Floris et al. (2020); Lv et al. (2020); Wolfers et al. (2015, 2017, 2021, 2018); Zabihi
et al. (2079, 2020), neurology Itdlinna et al. (2022); Verdi et al. (2021), developmental psychol-
ogy Holz et al. (2022); Kjelkenes et al. (2022), and cognitive neuroscience Marquand et al. (2017).
Throughout these numerous applications, normative models have exposed the shortcomings of
prior case-control framework, i.e., that they rely heavily on the assumption there is within-group
homogeneity. This case versus control assumption is often an oversimplification, particularly in
psychiatric diagnostic categories, where the clinical labels used to place individuals into group cat-
egories are often unreliable, poorly measured, and may not map cleanly onto underlying biological
mechanisms Cai et al. (2020); Cuthbert and Insel (2013); Flake and Fried (2020); Insel et al. (2010);
Linden (2012); Loth et al. (2021); Michelini et al. (2021); Moriarity and Alloy (2021); Nour et al. (2022);
Sanislow (2020); Zhang et al. (2021). Correspondingly, traditional analysis techniques for modeling
case versus control effects has often led to null findings Winter et al. (2022) or significant but very
small clinically meaningless differences. These effects are furthermore frequently unspecific to an
illness or disorder Baker et al. (2019); Goodkind et al. (2015); McTeague et al. (2017); Sprooten et al.
(2017) and inconsistent or contradictory Filip et al. (2022); Lee et al. (2007); Pereira-Sanchez and
Castellanos (20217) yielding questionable clinical utility Etkin (2019); Mottron and Bzdok (2022).

In addition to the applications of normative modeling, there is also active technical development
Dinga et al. (2021); Fraza et al. (2021, 2022); Kia and Marquand (2018); Kia et al. (2020, 2021, 2018);
Kumar (2021); Boer et al. (2022)). Due to the growing popularity of normative modeling and in
recognition of the interdisciplinary requirements using and developing this technology (clinical do-
main knowledge, statistical expertise, data management and computational demands), research
interests have been centered on open science, and inclusive, values Gau et al. (2021); Levitis et al.
(2021) that support this type of interdisciplinary scientific work. These values encompass open-
source software, sharing pre-trained big data models Rutherford et al. (2022a), online platforms
for communication and collaboration, extensive documentation, code tutorials, and protocol-style
publications Rutherford et al. (2022b).

The central contribution of this paper is to, first, augment the models in Rutherford et al.
(2022a), with additional normative models for surface area and functional connectivity, which are
made open and accessible to the community. Second, we comprehensively evaluate the utility of
normative models for a range of downstream analyses, including 1) mass univariate group differ-
ence testing (schizophrenia versus controls), 2) multivariate prediction - classification (using sup-
port vector machines to distinguish schizophrenia from controls), and 3) multivariate prediction -
regression (using principal component regression (PCR) to predict general cognitive ability). Within
these benchmarking tasks, we show the benefit of using normative modeling features compared
to using raw features. We aim for these benchmarking results, along with our publicly available
resources (code, documentation, tutorials, protocols, community forum, and website for running
models without using any code). Combined this provides practical utility as well as scientific evi-
dence for embracing normative modeling.

Methods and Materials

Dataset Selection and Scanner Parameters

Datasets used for training the functional normative models closely match the sample included in
Rutherford et al. (2022a), apart from sites that did not collect or were unable to share functional
data. The full details of the data included in the functional normative model training can be found
in the supplement methods (and Table 3). We leverage several data sets (Table 1) for the bench-
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Table 1. Data Set Inclusion and Sample Overview.

Cortical Functional
Thickness Networks
Age Age
Stud Task N F, M (% N F, M (%
y (m, s.d.) (%) (m, s.d.) (%)
HCP Regression- | 5o9 | 288,36 | % | 499 | 289,36 | >+
predicting cognition 6.6 45.6
COBRE Classificationand | 5, | 370 427 | 242 | 121 | 354,124 | 227
Group Difference 75.8 76.9
lassificati .6, .6,
UMich_szg | classificationand 1 gq | 556 g6 | 906 87 | 330,101 | °%®
Group Difference 49.3 49.3

marking tasks, the Human Connectome Project Young Adult study (HCP) Van Essen et al. (2013),
The Center for Biomedical Research Excellence (COBRE) Aine et al. (2017); Sui et al. (2018), and
University of Michigan SchizGaze (UMich) Tso et al. (2021). The HCP data was chosen because it
is widely used by the neuroscience community, especially for prediction studies. Also, prior stud-
ies using HCP data have shown promising results for predicting general cognitive ability Sripada
et al. (2020). The HCP data was used in the prediction - regression benchmarking task. The CO-
BRE and UMich data sets are used in the classification and group difference testing benchmarking
tasks. Inclusion criteria across all the datasets was that the participant has necessary behavioral
and demographic variables, as well as high-quality MRI data. High-quality was defined for struc-
tural images as in our prior work Rutherford et al. (2022a), namely as the lack of any artifacts such
as ghosting or ringing, that Freesurfer surface reconstruction was able to run successfully, and
that the Euler number calculated from Freesurfer Klapwijk et al. (2019), which is a proxy metric
for scan quality, was below a chosen threshold (Euler < 10). High-quality functional data followed
recommended practices Siegel et al. (2017) and was defined as having a high-quality structural
MRI (required for co-registration and normalization) and at least 5 minutes of low motion data
(framewise displacement < 0.5mm). The HCP, COBRE, and UMich functional and structural data
were manually inspected for quality at several tasks during preprocessing (after co-registration of
functional and structural data and after normalization of functional data to MNI template space).

All subjects provided informed consent. Subject recruitment procedures and informed consent
forms, including consent to share de-identified data, were approved by the corresponding univer-
sity institutional review board where data were collected. The scanning acquisition parameters
were similar but varied slightly across the studies (details in supplement).

Demographic, Cognition, Clinical Diagnosis variables

Demographic variables included age, sex, and MRI scanner site. A latent variable of cognition, re-
ferred to as General Cognitive Ability (GCA), was created for the regression benchmarking task
using HCP data. The HCP study administered the NIHToolbox Cognition battery Gershon et al.
(2010), and a bi-factor model was fit (for further modeling details and assessment of model fit see
Sripada et al. (2020). For COBRE and UMich studies, clinical diagnosis of schizophrenia was con-
firmed using the Structured Clinical Interview used for DSM-5 disorders (SCID) First and Williams
(2016). All subjects were screened and excluded if they had: history of neurological disorder, men-
tal retardation, severe head trauma, or substance abuse/dependence within the last 6 (UMich) or
12 months (COBRE), were pregnant/nursing (UMich), or had any contraindications for MRI.

Image Preprocessing

Structural MRI data were preprocessed using the Freesurfer (version 6.0) recon-all pipeline Linden
(2012); Fischl and Dale (2000); Fischl et al. (2002) to reconstruct surface representations of the
volumetric data. Estimates of cortical thickness and subcortical volume were then extracted (aparc
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and aseg) for each subject from their Freesurfer output folder, then merged and formatted into a
csv file (rows = subjects, columns = brain ROIs). We also share models of surface area, extracted in
the same manner as the cortical thickness data from a similar dataset (described in supplemental
methods and table 4).

Resting-state data were preprocessed separately for each study using fMRIPrep Esteban et al.
(2018); however, similar steps were done to all resting-state data following best practices including
field-map correction of multi-band data, slice time correction (non-multi-band data), co-registration
of functional to structural data, normalization to MNI template space, spatial smoothing (2x voxel
size, 4-6mm), and regression of nuisance confounders (WM/CSF signals, non-aggressive AROMA
components Pruim et al. (2015h,a), linear and quadratic effects of motion).

Large scale brain networks from the 17 network Yeo atlas Yeo et al. (2077) were then extracted
and between network connectivity was calculated using full correlation. We also shared functional
normative models using the Smith-10 ICA-based parcellation Smith et al. (2009) which includes
subcortical coverage, however, the benchmarking tasks only use the Yeo-17 functional data. Fisher
r-to-z transformation was performed on the correlation matrices. If there were multiple functional
runs, connectivity matrices were calculated separately for each run then all runs for a subject were
averaged. For further details regarding the preparation of the functional MRI data, see the supple-
mental materials.

Normative Model Formulation

After dataset selection and preprocessing, normative models were estimated using the Predictive
Clinical Neuroscience toolkit (PCNtoolkit), an open-source python package for normative modeling
Marquand et al. (2021). For the structural data, we used a publicly shared repository of pre-trained
normative models that was estimated on approximately 58,000 subjects using a warped Bayesian
Linear Regression algorithm Fraza et al. (2027). Model fit was established using explained variance,
mean standardized log loss, skew, and kurtosis. The outputs of normative modeling also include
a Z-score, or deviation score, for all brain regions and all subjects. The deviation score represents
where the individual is in comparison to the population the model was estimated on, where a pos-
itive deviation score corresponds to greater cortical thickness or subcortical volume than average,
and a negative deviation score represents less cortical thickness or subcortical volume than aver-
age. The deviation (Z) scores that are output from the normative model are the features input for
the normative modeling data in the benchmarking analyses. In addition to normative models of
brain structure, we also expanded our repository by estimating normative models of brain func-
tional connectivity (resting-state brain networks, Yeo-17 and Smith-10) using the same algorithm
(Bayesian Linear Regression) as the structural models. Models were trained on a large multi-site
data set (approx. N=22,000) and evaluated in several test sets using explained variance, mean
standardized log loss, skew, and kurtosis. We transferred the functional normative models to the
data sets used in this work for benchmarking (Table 1) to generate deviation (Z) scores. HCP was
included in the initial training (half of the sample was held out in the test set), while the UMich and
COBRE datasets were not included in the training and can be considered as examples of transfer
to new, unseen sites.

Raw Input Data

The data that we compare the output of normative modeling to, referred to throughout this work
as “raw” input data, is simply the outputs of traditional preprocessing methods for structural and
functional MRI. For structural MR, this corresponds to the cortical thickness files that are output
after running the Freesurfer recon-all pipeline. We used the aparcstats2table and asegstats2table
functions to extract the cortical thickness and subcortical volume from each region in the Destrieux
atlas and Freesurfer subcortical atlas. For functional MRI, raw data refers to the Yeo17 brain net-
work connectomes which were extracted from the normalized, smoothed, de-noised functional
time-series. The upper triangle of each subject's connectivity matrix was vectorized, where each
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cell represents a unique between-network connection. For clarification, we also note that the raw
input data is the starting point of the normative modeling analysis, or in other words the raw in-
put data is the response variable or independent (Y) variable that is predicted from the vector of
covariates when estimating the normative model. Before entering into the benchmarking tasks,
to create a fair comparison between raw data and deviation scores, nuisance variables including
sex, site, linear and quadratic effects of age and head motion (only for functional models) were
regressed out of the raw data (structural and functional) using least squares regression.

Benchmarking

The benchmarking was performed in three separate tasks, mass univariate group difference test-
ing, multivariate prediction - classification, and multivariate prediction - regression, described in
further detail below. In each benchmarking task, a model was estimated using the deviation scores
as input features and then estimated again using the raw data as the input features. After each
model was fit, the performance metrics were evaluated and the difference in performance be-
tween the deviation score and raw data models was calculated, again described in more detail in
the evaluation section below. An overview of the analysis workflow is shown in Figure 1.

A B
) Included Datasets: ) Input Output
1. Raw Functional Brain Networks Normative model
N\ HUMAN § D % X .
= 8 v 3. Functional Brain Network
\% (s%(()vﬁltnle(:tome 3 AT Deviation (Z) Score
3 § |
"ot o Yni—
ks d~Ynd
g IIP - #nd = "2 ﬂz
8
° %+ (a*)d
2
y 8 ’ =
g Subject level statistics
Cr()B | 2 * 4. Cortical Thickness
Center of Biomedical Research Excellence in .
Brain Function and Mental Iliness Deviation (Z) Score
Clinically relevant covariates (x)
C) SVM Classification Group Difference Testing D)

(SZ vs. HC)

(SZ vs. HC)

;- SVM Classification » AUC > AUC Raw Raw
1. Raw Functional (SZ vs. HC) Vs, vs.
Brain Networks ° AUC Deviation Scores Deviation
for
2. Raw Cortical N Group §
Thickness Difference Count # of Count # Raw
3. Functional Brain Network Regression Testing FOR p<Q.05 Ve -4
: Deviation (2) Score (predicting cognition) (SZ vs. HC) group diff Count # Deviation Scores
4. Cortical Thickness ; Regression MSE MSE Raw
Deviation (Z) Score " (predicting " vs.

MSE Deviation Scores

cognition)

Figure 1. Figure 1 Overview of Workflow. A) Datasets included the Human Connectome Project (young adult)
study, University of Michigan schizophrenia study, and COBRE schizophrenia study. B) Openly shared,
pre-trained on big data, normative models were estimated for large scale resting state functional brain
networks and cortical thickness. C) Deviation (Z) scores and raw data, for both functional and structural data,
were input into three benchmarking tasks: support vector machine (SVM) classification, group difference
testing, and regression (predicting cognition). D) Evaluation metrics calculated for each task benchmarking
task. These metrics were calculated for the raw data models and the deviation score models. The difference
between each models’ performance was calculated for both functional and structural modalities.

Task 1 Mass Univariate Group Difference Testing
Mass univariate group difference (schizophrenia vs. control) testing was performed across all brain
regions. Two sample independent t-tests were estimated and run on the data using the SciPy
python package Virtanen et al. (2020). After addressing multiple comparison correction, brain
regions with FDR corrected p < .05 were considered significant and the total number of regions
displaying statistically significant group differences was counted.

For the purpose of comparing group difference effects to individual differences, we also summa-
rized the individual deviation maps and compare this map to the group difference map. Individual
deviation maps were summarized by counting the number of individuals with ‘extreme’ deviations
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(Z > 2o0r Z < -2) at a given brain region or network connectivity pair. This was done separately
for positive and negative deviations and for each group and visualized qualitatively (Figure 4B).
To quantify the individual difference maps in comparison to group differences, we performed a
Mann-Whitney U-test on the count of extreme deviations in each group.

Task 2 Multivariate Prediction - Classification

Support vector machine is a commonly used algorithm in machine learning studies and performs
well in classification settings. A support vector machine constructs a set of hyper-planes in a high
dimensional space and optimizes to find the hyper-plane that has the largest distance, or margin,
to the nearest training data points of any class. A larger margin represents better linear sepa-
ration between classes and will correspond to a lower the error of the classifier in new samples.
Samples that lie on the margin boundaries are also called “support vectors”. The decision function
provides per-class scores than can be turned into probabilities estimates of class membership. We
used Support vector classification (SVC) with a linear kernel as implemented in the scikit-learn pack-
age (version 1.0.9) Pedregosa et al. (2011) to classify a schizophrenia group from a control group.
This classification setting of distinguishing schizophrenia from a control group was chosen due to
past work showing the presence of both case-control group differences and individual differences
Wolfers et al. (2018).

Task 3 Multivariate Prediction - Regression

Alinear regression model was implemented to predict a latent variable of cognition (general cogni-
tive ability) in the HCP data set. Brain Basis Set (BBS) is a predictive modeling approach developed
and validated in previous studies Sripada et al. (2019a,b); see also studies by Wager and colleagues
for a broadly similar approach Woo et al. (2017); Wager et al. (2013). BBS is similar to principal com-
ponent regression, with an added predictive element. In the training set, PCA is performed on an
Roupicets X P fearures MAtrix using the PCA function from scikit-learn in Python, yielding components or-
dered by descending eigenvalues. Expression scores are then calculated for each of k components
for each subject by projecting each subject’s feature matrix onto each component. A linear regres-
sion model is then fit with these expression scores as predictors and the phenotype of interest
(general cognitive ability) as the outcome, saving B, the kx1 vector of fitted coefficients, for later
use. In a test partition, the expression scores for each of the k components for each subject are
again calculated. The predicted phenotype for each test subject is the dot product of B learned
from the training partition with the vector of component expression scores for that subject. We
set k = 15 in all models, following prior work Rutherford et al. (2020).

Evaluation

Evaluation for each benchmark task was done by estimating the appropriate model performance
metric. For task one, the metric was the total count of models with significant group differences
after multiple comparison correction (FDR-corrected p < 0.05). In task two, the metric was area
under the receiving operator curve (AUC) averaged across all folds within a 10-fold cross validation
framework. For task three, the metric was the mean squared error (MSE) of the prediction in the
test set. Evaluation metrics of each task were calculated independently for both deviation score
(2) and raw data (R) models. Higher AUC, higher count, and lower MSE represent better model per-
formance. We then have a statistic of interest that is observed, 8, which represents the difference
between deviation and raw data model performance.

0,451 = Count , — Count 1)
emskZ = AUCZ - AUCR (2)
etuskS = MSER_MSEZ (3)
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To assess whether 0 is more likely than would be expected by chance, we generated the null
distribution for 6 using permutations. Within one iteration of the permutation framework, a ran-
dom sample is generated by shuffling the labels (In task 1 and 2 we shuffle the clinical group labels,
and in task 3 we shuffle the g-factor labels). Then this sample is used to train both deviation and
raw models, ensuring the same row shuffling scheme across both deviation score and raw data
datasets (for each perm iteration). The shuffled models are evaluated, and we calculate 6,,,, for
each random shuffle of labels. We set #,,,, = 10,000 and use the distribution of 6, to calculate
a p-value for 6,,, at each benchmarking task. The permuted p-value is equal to (C + 1)/(n,,,, + D).
Where C is the number of permutations where 6,,,, > 6,,,,. The same evaluation procedure de-
scribed here (including permutations) was performed for both cortical thickness and functional

network modalities.

Results

A) B)

Per Site Age Distribution Yeo 17-network parcellation

R
Transfer

(controls)

A

years

Train Test

ABCD_01
ABCD_02
ABCD_03 ABCD_03 5000243
ABCD_04 ABCD_04 ds002843
ABCD_0S ABCD_05 45003798
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ABCD 07
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e wece R
ABCD_16 COBRE
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Figure 2. Functional brain network normative modeling. A) Age distribution per scanning site in all the
train/test/transfer data partitions and across the full sample (train + test). B) The Yeo-17 brain network atlas
used to generate connectomes Between network connectivity was calculated for all 17 networks, resulting in
136 unique network pairs that were each individually input into a functional normative model. C) The
explained variance in the controls test set (N=7244) of each of the unique 136 network pairs of the Yeo-17
atlas.

Sharing of functional big data normative models

The first result of this work is the evaluation of the functional big data normative models (Figure
3). These models build upon the work of Rutherford et al. (2022a) in which we shared population-
level structural normative models charting cortical thickness and subcortical volume across the
human lifespan (ages 2-100). The data sets used for training the functional models, the age range
of the sample, and the procedures for evaluation closely resemble the structural normative models.
The sample size (approx. N=22,000) used for training and testing the functional models is smaller
than the structural models (approx. N=58,000) due to data availability (i.e., some sites included in
the structural models did not collect functional data or could not share the data) and the quality
control procedures (see methods). However, despite the smaller sample size of the functional data
reference cohort, the ranges of the evaluation metrics are quite similar as the structural models
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(Figure 3). Most importantly, we demonstrate the opportunity to transfer the functional models to
new samples, or sites that were not included in the original training and testing sets, referred to as
the transfer set and show that transfer works well in a clinical sample (Figure 3 - transfer patients)
or sample of healthy controls (Figure 3 - transfer controls).
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Figure 3. Functional Normative Model Evaluation Metrics. A) Explained variance per network pair across the
test set (top), and both transfer sets (patients - middle, controls - bottom).We point out that the age range of
the transfer (controls) sample (shown in Figure 2A) falls into a range with sparse data, and therefore the lower
explained variance observed in the transfer (controls) group compared to the test and transfer (patients)
groups is likely due to epistemic uncertainty (reducible with adding more data points) of the model
predictions in this age range. B) The distribution across all models of the evaluation metrics (columns) in the
test set (top row) and both transfer sets (middle and bottom rows). Higher explained variance (closer to 1),
more negative MSLL, and normally distributed skew and kurtosis correspond to better model fit.

Benchmarking Task One Mass Univariate Group Difference Testing

The strongest evidence for embracing normative modeling can be seen in the benchmarking task
one group difference (schizophrenia vs. controls) testing results (Table 2, Figure 4A). In this appli-
cation, we observe numerous group differences in both functional and structural deviation score
models after applying stringent multiple comparison correction (FDR p—value < 0.05). The strongest
effects (HC > SZ) in the structural models were located in the right hemisphere lateral occipito-
temporal sulcus (S_oc_temp_lat) thickness, right hemisphere superior segment of the circular sul-
cus of the insula (S_circular_ins_sup) thickness, right Accumbens volume, left hemisphere Supra-
marginal gyrus (G_pariet_inf_Supramar) thickness, and left hemisphere Inferior occipital gyrus (O3)
and sulcus (G_and_S_occipital_inf) thickness. For the functional models, the strongest effects (HC >
S Z t-statistic) were observed in the between-network connectivity of Sensorimotor B-Default B,
Dorsal Attention B-Default B, Sensorimotor B-Default A, Control B-Default A, and Ventral Attention
A-Default B. In the raw data models, which were residualized of covariates including site, sex, and
linear plus quadratic effects of age and head motion (only included for functional models), we ob-
serve no group differences after multiple comparison correction. The lack of any group differences
in the raw data was initially a puzzling finding due to reported group differences in the literature
Arbabshirani et al. (2013); Cetin et al. (2015, 2016); Dansereau et al. (2017); Howes et al. (2022); Lei
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Table 2. Benchmarking Results. Deviation (Z) score column shows the performance using deviation scores
(AUC for classification, total number of regions with significant group differences FDR-corrected p<0.05 for
case vs. control, mean squared error for regression), Raw column represents the performance when using
the raw data, and Difference column shows the difference between the deviation scores and raw data
(Deviation - Raw). Higher AUC, higher count, and lower MSE represent better performance. Positive values in
the Difference column show that there is better performance when using deviation scores as input features
for classification and group difference tasks, and negative performance difference values for the regression
task show there is better performance using the deviation scores. * = statistically significant difference
between Z and Raw established using permutation testing (10k perms).

. Normative Modeling Performance
Benchmark Modality . Raw Data .
Deviation Score Data Difference

Classification cortical 1 g7 0.43 0.44%
Thickness

Classification Functional | 4 /o 0.68 0.01
Networks

Group Difference | <@ | 117187 0/187 117+
Thickness

Group Difference | L“"<1OMa | 50/136 0/136 50%
Networks

Regression Cortical | 699 0.708 0.008
Thickness

Regression Functional | 07 0.890 0.013
Networks

et al. (2020b,a); Meng et al. (2017); Rahim et al. (2017); Rosa et al. (2015); Salvador et al. (2017); Shi
et al. (2021); van Erp et al. (2018); Venkataraman et al. (2012); Wannan et al. (2019); Yu et al. (2012),
however, upon investigation of the uncorrected statistical maps, we observe that the raw data fol-
lows a similar pattern to the deviation group difference map, but these results do not withstand
multiple comparison correction.

The qualitative (Figure 4B) and quantitative (Figure 4C) comparison of the group difference
maps with the individual difference maps showed the additional benefit of normative modeling
- that it can reveal subtle individual differences which are lost when only looking at group means.
The individual difference maps shows that at every brain region or connection, there is at least
one person, across both patient and clinical groups, that has an extreme deviation. We found
significant differences in the count of negative deviations (SZ > HC) for both cortical thickness
(p = 0.0029) and functional networks (p = 0.013), and significant differences (HC > SZ) in the count
of positive cortical thickness (p = 0.0067).

Benchmarking Task 2 Multivariate Prediction - Classification

In benchmarking task two, we classified schizophrenia versus controls using support vector classi-
fication within a 10-fold cross validation framework (Table 2, Figure 5). The best performing model
used cortical thickness deviation scores to achieve a classification accuracy of 87% (AUC = 0.87).
The raw cortical thickness model accuracy was indistinguishable from chance accuracy (AUC =
0.43). The AUC performance difference between the cortical thickness deviation and raw data mod-
els was 0.44, and this performance difference was statistically significant. The functional models,
both deviation scores (0.69) and raw data (0.68), were more accurate than chance accuracy, how-
ever, the performance difference (i.e., improvement in accuracy using the deviation scores) was
small (0.01) and was not statistically significant.
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Benchmarking Task 3 Multivariate Prediction - Regression

In benchmarking task three we fit multivariate predictive models in a held-out test set of healthy
individuals in the Human Connectome Project young-adult study to predict general cognitive ability
(Table 2). The evidence provided by this task weakly favors the deviation score models. The most
accurate (lowest mean squared error) model was the deviation cortical thickness model (M SE =
0.699). However, there was only an improvement of 0.008 in the deviation score model compared
to the raw data model (M SE = 0.708) and this difference was not statistically significant. For the
functional models, both the deviation score (M. SE = 0.877) and raw data (M.SE = 0.890) models

Group Difference Testing on Deviation Scores. Schizophrenia vs. Controls (FDR p<0.05).
Functional Networks Cortical Thickness
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Figure 4. Group Difference Testing Evaluation. A) Significant group differences in the deviation score models,
(top left) functional brain network deviation and (top right) cortical thickness deviation scores. The raw data,
either cortical thickness or functional brain networks (residualized of sex and linear/ quadratic effects of age
and motion (mean framewise displacement)) resulted in no significant group differences after multiple
comparison correction. B) There are still individual differences observed that do not overlap with the group
difference map, showing the benefit of normative modeling, which can detect both group and individual
differences through proper modeling of variation. D) There are significant group differences in the
summaries (count) of the individual difference maps (panel B).
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Support Vector Classification: Schizophrenia vs. Controls

A) Deviation scores (cortical thickness) as features B) Traditional data (cortical thickness) as features
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AUC=0.43 +/-0.16

°

AUC =0.87 +/-0.08
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C) Deviation scores (Yeo networks) as features D) Traditional data (Yeo networks) as features

10

it label: 1)

AUC=0.69 +/-0.11
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c=069£0.11)
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Figure 5. Benchmark Task 2 Multivariate Prediction - Classification Evaluation. A) Support Vector
Classification using cortical thickness deviation scores as input features (most accurate model). B) Support
Vector Classification using cortical thickness (residualized of sex and linear/quadratic effects of age) as input
features. C) Support Vector Classification using functional brain network deviation scores as input features.
D) Support Vector Classification using functional brain networks (residualized of sex and linear/ quadratic
effects of age and motion (mean framewise displacement)) as input features.

were less accurate than the structural models and the difference between them (0.013) was also
not statistically significant.

Discussion

This work expands the available open-source tools for conducting normative modeling analyses
and provides clear evidence for why normative modeling should be utilized by the neuroimaging
community (and beyond). We updated our publicly available repository of pre-trained normative
models to include a new MRI imaging modality (models of resting-state functional connectivity ex-
tracted from the Yeo-17 and Smith-10 brain network atlases) and demonstrate how to transfer
these models to new data sources. The repository includes an example transfer data set com-
bined with a user-friendly interface. Next, we compared the features that are output from norma-
tive modeling (deviation scores) against ‘raw’ data features across several benchmarking tasks in-
cluding univariate group difference testing (schizophrenia versus control), multivariate prediction
- classification (schizophrenia versus control), and multivariate prediction - regression (predicting
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general cognitive ability). We found across all benchmarking tasks there were minor (regression)
to strong (group difference testing) benefits of using deviation scores compared to the raw data
features.

The fact that the deviation score models perform better than the raw data models confirm the
utility of placing individuals into reference models. Our results show that normative modeling can
capture population trends, uncover clinical group differences, and preserve the ability to study
individual differences. We have some intuition on why the deviation score models perform better
on the benchmarking tasks than the raw data. With normative modeling we are accounting for
many sources of variance that are not necessarily clinically meaningful (i.e., site) and we are able
to capture clinically meaningful information within the reference cohort perspective. The reference
model helps beyond just removing confounding variables such as scanner noise, because we show
that even when removing the nuisance covariates (age, sex, site, head motion) from the raw data,
the normative modeling features still perform better.

Prior works on the methodological innovation and application of normative modeling Kia et al.
(2018); Kia and Marquand (2018); Kia et al. (2020, 2021); Boer et al. (2022)) have focused on the
beginning foundational steps of the framework (i.e., data selection and preparation, algorithmic
implementation, and carefully evaluating out of sample model performance). However, the frame-
work does not end after the model has been fit to the data (estimation step) and performance
metrics have been established (evaluation step). Transferring the models to new samples, inter-
pretation of the results, and potential downstream analysis are equally important steps, but they
have received less attention. When it comes time to interpret the model outputs, it is easy to fall
back into the case-control thinking paradigm, even after fitting a normative model to one’s data
(which is supposed to be an alternative to case versus control approaches). This is due in part to
the challenges arising from the results existing in a very high dimensional space ( 100s to 1000s
of brain regions from 100s to 1000s of subjects). There is a reasonable need to distill and sum-
marize these high dimensional results. However, it is important to remember there is always a
trade-off between having a complex enough of a model to explain the data and dimensionality re-
duction for the sake of interpretation simplicity. This distillation process often leads back to placing
individuals into groups (i.e., case-control thinking) and interpreting group patterns or looking for
group effects, rather than interpreting results at the level of the individual. We acknowledge the
value and complementary nature of understanding individual variation relative to group means
(case-control thinking) and clarify that we do not claim superiority of normative modeling over
case-control methods. Rather, our results, especially in the comparisons of group difference maps
to individual difference maps (Figure 4), from this work show that the outputs of normative model-
ing can be used to validate, refine, and further understand some of the inconsistencies in previous
findings from case-control literature.

There are several limitations of the present work. First, the representation of functional norma-
tive models may be surprising and concerning. Typically, resting-state connectivity matrices are cal-
culated using parcellations containing between 100 to 1,000 nodes and 5,000-500,000 connections.
However, the Yeo-17 atlas Yeo et al. (2011) was specifically chosen because of its widespread use
and the fact that many other (higher resolution) functional brain parcellations have been mapped
to the Yeo brain networks Eickhoff et al. (2018); Glasser et al. (2016); Kong et al. (2019); Laumann
et al. (2015); Power et al. (2011); Schaefer et al. (2018); Shen et al. (2013). There is on-going de-
bate about the best representation of functional brain activity. Using the Yeo-17 brain networks
to model functional connectivity ignores important considerations regarding brain dynamics, flex-
ible node configurations, overlapping functional modes, hard versus soft parcellations, and many
other important issues. We have also shared functional normative models using the Smith-10
ICA-based parcellation Smith et al. (2009), though we did not repeat the benchmarking tasks using
these data. Apart from our choice of parcellation, there are fundamental open questions regarding
the nature of the brain’s functional architecture, including how it is defined and measured. While
it is outside the scope of this work to engage in these debates, we acknowledge their importance
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and refers curious readers to a thorough review on functional connectivity challenges Bijsterbosch
et al. (2020).

We would also like to expand on our prior discussion Rutherford et al. (2022a) on the limitations
of the reference cohort demographics, and the use of the word “normative”. The included sample
for training the functional normative models in this work, and the structural normative model-
ing sample in Rutherford et al. (2022a) are most likely overrepresentative of European-ancestry
(WEIRD population Henrich et al. (2010)) due to the data coming from academic research studies,
which do not match population demographics. Our models do not include race or ethnicity as
covariates due to data availability (many sites did not provide race or ethnicity information). Prior
research supports the use of age-specific templates and ethnicity specific growth charts Dong et al.
(2020). This is a major limitation which requires additional future work and should be considered
carefully when transferring the model to diverse data Benkarim et al. (2022); Greene et al. (2022);
Li et al. (2022). The term ‘normative model’ can be defined in other fields in a very different man-
ner than ours Colyvan (2013); Baron (2004); Catita et al. (2020). We clarify that ours is strictly a
statistical notion (normative=being within the central tendency for a population). Critically, we do
not use normative in a moral or ethical sense, and we are not suggesting that individuals with high
deviation scores require action or intervention to be pulled towards the population average. Al-
though in some cases this may be true, we in no way assume that high deviations are problematic
or unhealthy (they may in fact represent compensatory changes that are adaptive). In any case,
we treat large deviations from statistical normality strictly as markers predictive of clinical states
or conditions of interest.

There are of many open research questions regarding normative modeling. Future research
directions are likely to include: 1) further expansion of open-source pre-trained normative mod-
eling repositories to include additional MRl imaging modalities such as task-based functional MRI
and diffusion weighted imaging, other neuroimaging modalities such as EEG or MEG, and models
that include other non-biological measures, 2) increase in the resolution of existing models (i.e.,
voxel, vertex, models of brain structure and higher resolution functional parcellations), 3) replica-
tion and refinement of the proposed benchmarking tasks in other datasets including improving the
regression benchmarking task, and 4) including additional benchmarking tasks beyond the ones
considered here.

There has been recent interesting work on “failure analysis” of brain-behavior models Greene
et al. (2022), and we would like to highlight that normative modeling is an ideal method for con-
ducting this type of analysis. Through normative modeling, research questions such as ‘what are
the common patterns in the subjects that are classified well versus those that are not classified
well’ can be explored. Additional recent work Marek et al. (2022) has highlighted important issues
the brain-behavior modeling community must face, such as poor reliability of the imaging data,
poor stability and accuracy of the predictive models, and the very large sample sizes (exceeding
that of even the largest neuroimaging samples) required for accurate predictions. There has also
been work showing that brain-behavior predictions are more reliable than the underlying func-
tional data Taxali et al. (2021), and other ideas for improving brain-behavior predictive models are
discussed in-depth here Finn and Rosenberg (2021); Rosenberg and Finn (2022). Nevertheless, we
acknowledge these challenges and believe that sharing pre-trained machine learning models and
further development of transfer learning of these models could help further address these issues.

In this work we have focused on the downstream steps of the normative modeling framework
involving evaluation and interpretation, and how insights can be made on multiple levels. Through
the precise modeling of different sources of variation, there is much knowledge to be gained at
the level of populations, clinical groups, and individuals.

Code and Data Availability
Pre-trained normative models are available on GitHub and Google Colab. Scripts for running the
benckmarking analysis and visualizations are available on GitHub here. Online portal for running
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models without code is in beta testing phase and will be available here shortly.
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sss Functional MRI Acquisition Parameters

saz  In the HCP study, four runs of resting state fMRI data (14.5 minutes each) were acquired on a
sae  Siemens Skyra 3 Tesla scanner using multi-band gradient-echo EPI (TR=720ms, TE=33ms, flip an-
sa0  gle=52, multiband acceleration factor=8, 2mm isotropic voxels, FOV=208%x180mm, 72 slices, alter-
sso nating RL/LR phase encode direction). T1 weighted scans were acquired with 3D MPRAGE sequence
ss1 (TR=2400ms, TE=2.14ms, TI=1000ms, flip angle=8, 0.7mm isotropic voxels, FOV=224mm, 256 sagit-
ss2  tal slices) and T2 weighted scans were acquired with a SPACE sequence (TR=3200ms, TE=565ms,
ss3  0.7mm isotropic voxels, FOV=224mm, 256 sagittal slices). In the COBRE study, the T1 weighted
gsa acquisition is a multi-echo MPRAGE (MEMPR) sequence (1 mm isotropic). Resting state functional
sss  MRI data was collected with single-shot full k-space echo-planar imaging (EPI) (TR = 2000 ms, TE =
sse 29 ms, FOV = 64x64, 32 slices in axial plane interleaved multi slice series ascending, voxel size =
ss7  3x3x4 mm3). The University of Michigan SchizGaze study was collected in two phases with different
sss parameters but using the same MRI machine (3.0 T GE MR 750 Discovery scanner). In SchizGaze1
sso  (N=47), functional images were acquired with a T2*-weighted, reverse spiral acquisition sequence
sso (TR =2000 ms, 240 volumes (8 minutes), 3mm isotropic voxels) and a T1-weighted image was ac-
ss1 quired in the same prescription as the functional images to facilitate co-registration. In SchizGaze2
ss2 (N=68), functional images were acquired with a T2*-weighted multi-band EPI sequence (multi-band
se3 acceleration factor of 8, TR = 800 ms, 453 volumes (6 minutes), 2.4mm isotropic voxels) and T1w
ssa (MPRAGE) and T2w structural scans were acquired for co-registration with the functional data. In
ses addition, field maps were acquired to correct for intensity and geometric distortions.

sss Functional MRI Preprocessing Methods

sez 11w images are corrected for intensity nonuniformity, reconstructed with recon-all (FreeSurfer),
ses Spatially normalized (ANTs), and segmented with FAST (FSL). For every BOLD run, data are co-
seo  registered to the corresponding T1w reference, and the BOLD signal is sampled onto the subject's
e7o  surfaces with mri_vol2surf (FreeSurfer). A set of noise regressors are generated during the pre-
er1  ceding steps that are used to remove a number of artifactual signals from the data during subse-
e72 quent processing, and these noise regressors include: head-motion parameters (via MCFLIFT; FSL)
s73  framewise displacement and DVARS, and physiological noise regressors for use in component-
s7a based noise correction (CompCor). ICA-based denoising is implemented via ICA-AROMA and we
e7s  COmpute ‘non-aggressive’ noise regressors. Resting state connectomes are generated from the
s7e TMRIPrep processed resting state data using Nilearn, denoising using the noise regressors gener-
e77  ated above, with orthogonalization of regressors to avoid reintroducing artifactual signals.

szs  Functional Brain Networks Normative Modeling

s7o Data from 40 sites were combined to create the initial full sample. These sites are described in
sso detail in 3, including the sample size, age (mean and standard deviation), and sex distribution of
ss1 each site. Many sites were pulled from publicly available data sets including ABCD, CAMCAN, CMI-
ss2  HBN, HCP-Aging, HCP-Development, HCP-Early Psychosis, HCP-Young Adult, NKI-RS, OpenNeuro,
sss  PNC, and UKBiobank. For data sets that include repeated visits (i.e., ABCD, UKBiobank), only the
ssa first visit was included. Full details regarding sample characteristics, diagnostic procedures and
sss acquisition protocols can be found in the publications associated with each of the studies. Training
sse and testing data sets (80/20) were created using scikit-learn’s train_test_split function, stratifying
ss7 ON the site variable. To show generalizability of the models to new data not included in training, we
sss leveraged three datasets (ds000243, ds002843, ds003798) from OpenNeuro to create a multi-site
sso transfer data set.

890 Normative modeling was run using python 3.8 and the PCNtoolkit package (version 0.26). Bayesian
so1 Linear Regression (BLR) with likelihood warping was used to predict each between network connec-
so2 tivity pair (Yeo-17 and Smith-10) from a vector of covariates (age, sex, site, meanFD). For a detailed
g0z Mathematical description see (Fraza et al., 2021). Briefly, for each brain region of interest, y is
sea predicted as:
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y=o'p(x)+e (4)

Where o' is the estimated weight vector, ¢(x) is a basis expansion of the of covariate vector x,
consisting of a B-spline basis expansion (cubic spline with 5 evenly spaced knots) to model non-
linear effects of age, and e = (0, #) a Gaussian noise distribution with mean zero and noise preci-
sion term g (the inverse variance). A likelihood warping approach (Rios and Tobar, 2019; Snelson
et al., ????) was used to model non-Gaussian effects. This involves applying a bijective nonlinear
warping function to the non-Gaussian response variables to map them to a Gaussian latent space
where inference can be performed in closed form. We employed a ‘sinarcsinsh’ warping function,
which is equivalent to the SHASH distribution commonly used in the generalized additive modeling
literature (Jones and Pewsey, 2009) and which we have found to perform well in prior work (Dinga
etal., 2021; Fraza et al., 2021). Site variation was modeled using fixed effects, which we have shown
in prior work provides relatively good performance (Kia et al., 2021), although random effects for
site may provide additional flexibility at higher computational cost. A fast numerical optimization
algorithm was used to optimize hyperparameters ('Powell’). Computational complexity of hyperpa-
rameter optimization was controlled by minimizing the negative log likelihood. Deviation scores
(Z-scores) are calculated for the n,, subject, and d,, brain area, in the test set as:

Vg =
7Z =" "M (5)

Y ey e,y

Where y, isthe true response, y, isthe predicted mean, 7 is the estimated noise variance (re-
flecting uncertainty in the data), and de is the variance attributed to modeling uncertainty. Model
fit for each brain region was evaluated by calculating the explained variance (which measures cen-
tral tendency), the mean squared log-loss (MSLL, central tendency and variance) plus skew and
kurtosis of the deviation scores (equation 5) which measures how well the shape of the regression
function matches the data (Dinga et al., 2021).

Appendix 0 Table 3. Functional normative model train/test demographics per site.

Train Test
Site N Sex Age N Sex Age
(F/M)% (m, s.d) (F/M)% (m, s.d)

ABCD_01 60 48.33,51.67 | 9.87,0.58 73 56.16,43.84 | 9.95/0.61
ABCD_02 244 | 47.54,52.46 | 10.12,0.64 | 258 | 47.29,52.71 | 10.1, 0.62
ABCD_03 282 | 47.87,52.13 | 9.87,0.62 260 50, 50 9.91, 0.61
ABCD_04 258 | 49.61,50.39 | 9.91,0.64 | 268 50.37,49.63 | 9.77,0.64
ABCD_05 161 62.11,37.89 | 9.85, 0.63 144 | 42.36,57.64 | 9.96, 0.63
ABCD_06 228 54.82,45.18 | 9.98, 0.58 240 | 48.75,51.25 | 10.02,0.59
ABCD_07 128 50.78,49.22 | 9.86, 0.64 128 | 42.97,57.03 | 9.93, 0.61
ABCD_08 113 50.44, 49.56 | 9.98, 0.63 104 | 45.19,54.81 | 10.1,0.59
ABCD_09 173 | 48.55,51.45 | 10.05,0.59 | 175 56, 44 9.89, 0.60
ABCD_10 187 | 48.66,51.34 | 9.88,0.62 223 | 45.29,54.71 | 9.93,0.64
ABCD_11 192 51.04, 48.96 | 9.88, 0.65 173 51.45,48.55 | 9.79, 0.62
ABCD_12 70 50, 50 9.85, 0.60 68 1.47,54.41 9.95,0.55
ABCD_13 209 51.67,48.33 | 9.84, 0.61 191 52.88,47.12 | 9.84, 0.60
ABCD_14 286 | 48.6,51.4 10.24,0.51 | 220 | 45.45,54.55 | 10.2,0.54
ABCD_15 138 55.07,44.93 | 9.94,0.62 149 | 45.64,54.36 | 10.0,0.58
ABCD_16 458 | 46.29,53.71 | 9.89,0.64 | 462 | 42.64,48.7 | 9.90, 0.66
ABCD_17 204 | 54.9,45.1 9.84,0.61 221 41.63,58.37 | 9.87,0.65
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ABCD_18 97 37.11,62.89 | 9.91, 0.67 109 53.21,46.79 | 10.0, 0.60
ABCD_19 187 55.08,44.92 | 10.12,0.55 | 205 52.68,47.32 | 10.1,0.54
ABCD_20 278 50.72,49.28 | 10.05,0.48 | 259 54.44,45.56 | 10.1, 0.50
ABCD_21 212 44.81,55.19 | 9.97,0.63 238 49.58,50.42 | 9.94,0.61
AOMIC_PIPO1 162 58.64,41.36 | 22.2,1.8 41 53.66,46.34 | 22.4,1.7
AOMIC_PIPO2 166 59.64,40.36 | 22.2,1.7 41 46.34,53.66 | 22.1,2.2
CAMCAN 495 49.49,50.51 | 53.2,18.3 124 54.84,45.16 | 55.3,20.0
CMI-HBN_CBIC | 133 37.59,62.41 | 11.9,34 33 48.48,51.52 | 11.7,3.6
CMI-HBN_RU 74 37.84,62.16 | 11.6,3.6 18 38.89,61.11 | 10.9,3.5
CNP-35343.0 79 44.3,55.7 31.1,9.1 19 52.63,47.37 | 32.1,7.4
CNP-35426.0 18 44.44,55.56 | 31.1,8.2 4 75, 25 34.8,10.9
HCP_A_MGH 130 51.54,48.46 | 62.1, 16.1 33 51.52,48.48 | 59.1,15.6
HCP_A_UCLA 118 56.78,43.22 | 55.9,13.1 30 60, 40 59.3,15.8
HCP_A_UM 164 56.71,43.29 | 61.9,17.0 41 48.78,51.22 | 60.8, 16.2
HCP_A_WU 167 61.08,38.92 | 61.0,15.4 42 52.38,47.62 | 60.2,15.2
HCP_D_MGH 137 54.01,45.99 | 14.7,3.8 34 55.88,44.12 | 13.1,3.4
HCP_D_UCLA 82 50, 50 14.6,3.7 21 23.81,28.57 | 14.7,4.0
HCP_D_UM 99 54.55,44.44 | 13.8, 3.7 24 66.67, 37.5 13.7,3.9
HCP_D_WU 94 48.94,51.06 | 14.5,3.9 23 52.17,47.83 | 15.2,4.2
HCP_YA 500 51.8,48.2 28.5,3.8 501 54.49,45.51 | 28.9,3.6
NKI-RS 136 48.53,51.47 | 21.1,6.5 34 50, 50 17.8,6.5
PNC 630 56.03,43.97 | 14.6,3.3 158 43.04,56.96 | 14.6,8.0
ukb 6924 | 55.37,44.63 | 62.4,7.5 1732 | 55.25,44.75 | 63.3,7.5
UMich_IMPs 235 52.77,47.23 | 12.9,3.4 59 54.24,45.76 | 12.5,3.6
Appendix 0 Table 4. Surface area normative model demographics per site
Site N Age Sex
(m, s.d.) (F/M) %

ABCD_01 388 9.90, 0.62 | 51.29, 48.71

ABCD_02 542 10.1,0.62 | 46.49, 53.51

ABCD_03 569 9.88,0.66 | 47.1,52.9

ABCD_04 631 9.82,0.71 | 48.65,51.35

ABCD_05 345 9.89,0.63 | 51.59, 48.41

ABCD_06 564 9.94,0.59 | 50.71,49.29

ABCD_07 325 9.87,0.62 | 47.08,52.92

ABCD_08 336 9.95,0.62 | 47.62,52.38

ABCD_09 407 9.96, 0.61 | 49.14, 50.86

ABCD_10 575 9.86,0.62 | 48.7,51.3

ABCD_11 414 9.82,0.62 | 49.76,50.24

ABCD_12 161 9.88,0.59 | 47.83,52.17

ABCD_13 555 9.82,0.59 | 49.91, 50.09

ABCD_14 583 10.2,0.57 | 45.8,54.2

ABCD_15 396 9.90, 0.60 | 44.95, 55.05

ABCD_16 921 9.90, 0.65 | 44.95, 55.05

ABCD_17 557 9.82,0.63 | 47.94,52.06

ABCD_18 341 9.91,0.63 | 46.92, 53.08

ABCD_19 534 10.1, 0.55 | 50.94, 49.06
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ABCD_20 640 10.0,0.49 | 50, 50
ABCD_21 491 9.91,0.62 | 45.21,54.79
ABCD_22 35 10.2,0.55 | 62.86,37.14
ATT 31 23.0,1.88 | 9.68, 90.32
ATV 77 22.7,1.98 | 77.92,22.08
CAMCAN 647 54.2,18.6 | 50.85,49.15
CIN 136 52.4,15.5 | 36.76,63.24
CMI-RU 563 10.3,3.49 | 34.81,65.19
CMI-SI 341 11.2,3.83 | 43.11, 56.89
CNP-35343.0 153 33.3,9.38 | 47.71,52.29
CNP-35426.0 79 33.3,9.24 | 32.91,67.09
col 193 49.4,13.5 | 61.14,38.86
ds001734 108 25.5,3.59 | 55.56,44.44
ds002236 86 11.5,2.04 | 44.19, 55.81
ds002330 65 26.2,4.30 | 55.38,44.62
ds002345 207 21.7,4.71 | 63.29, 36.71
ds002731 59 21.3,1.45 | 47.46,52.54
ds002837 86 26.7,10.1 | 48.84,51.16

HCP-Aging_MGH 171 59.8,15.5 | 50.29, 49.71
HCP-Aging_UCLA 124 53.3,12.8 | 57.26,42.74
HCP-Aging_UMinn | 204 61.6,16.3 | 58.82,41.18
HCP-Aging_WashU | 178 58.5,13.8 | 62.92,37.08
HCP-Dev_MGH 216 13.8,3.87 | 50.46, 49.54
HCP-Dev_UCLA 127 14.1,3.82 | 48.82,51.18
HCP-Dev_UMinn 156 13.3,3.64 | 54.49, 45.51
HCP-Dev_WashU 154 14.0,3.87 | 48.7,51.3

HCP-EP_BWH 31 22.6,4.00 | 32.26,67.74
HCP-EP_IU 84 23.2,3.82 | 39.29, 60.71
HCP-EP_McL 44 24.1,3.56 | 43.18,56.82
HCP-EP_MGH 21 241,544 | 28.57,71.43
HCP-YA 1113 28.8,3.70 | 54.45,45.55
HKH 62 45.1,10.5 | 48.39,51.61
HRC 65 41.4,11.5 | 70.77,29.23
HUH 124 38.7,13.3 | 50.81,49.19
IXI 581 49.5,16.7 | 56.28,43.72
KTT 121 32.4,10.3 | 38.84,61.16
KUT 220 38.0,13.1 | 43.64, 56.36
NKI 482 42.6,21.2 | 63.9, 36.1

NKN 9 63.6, 18.5 | 44.44,55.56
Oasis3 2044 70.4,9.51 | 42.37,57.63
PNC 1378 14.2,3.51 | 50.87,49.13
SWA 234 31.4,8.75 | 14.53,85.47
SWU_SLIM 569 20.1,1.27 | 56.24,43.76
TOP 823 33.2,10.2 | 47.14,52.86
ukb-11025.0 16132 | 62.5,7.50 | 51.83,48.17
ukb-11026.0 658 65.3,7.37 | 54.86,45.14
ukb-11027.0 3880 63.7,7.46 | 53.92,46.08
uTo 351 35.4,14.6 | 45.58,54.42
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