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Abstract In this work, we expand the normative model repository introduced in Rutherford15

et al. (2022a) to include normative models charting lifespan trajectories of structural surface area16

and brain functional connectivity, measured using two unique resting-state network atlases17

(Yeo-17 and Smith-10), and an updated online platform for transferring these models to new data18

sources. We showcase the value of these models with a head-to-head comparison between the19

features output by normative modeling and raw data features in several benchmarking tasks:20

mass univariate group difference testing (schizophrenia versus control), classification21

(schizophrenia versus control), and regression (predicting general cognitive ability). Across all22

benchmarks, we confirm the advantage (i.e., stronger effect sizes, more accurate classification23

and prediction) of using normative modeling features. We intend for these accessible resources24

to facilitate wider adoption of normative modeling across the neuroimaging community.25

26

Introduction27

Normative modeling is a framework for mapping population-level trajectories of the relationships28

betweenhealth-related variableswhile simultaneously preserving individual-level informationMar-29

quand et al. (2016); Rutherford et al. (2022b);Marquand et al. (2019). Health-related variables is an30

intentionally inclusive and broad definition that may involve demographics (i.e., age and gender),31

simple (i.e., height and weight) or complex (i.e., brain structure and function, genetics) biological32

measures, environmental factors (i.e., urbanicity, pollution), self-report measures (i.e., social satis-33

faction, emotional experiences), or behavioral tests (i.e., cognitive ability, spatial reasoning). Chart-34

ing the relationships, as mappings between a covariate (e.g. age) and response variable (e.g. brain35

measure) in a reference population creates a coordinate system that defines the units in which36

humans vary. Placing individuals into this coordinate system creates the opportunity to charac-37

terize their profiles of deviation. While this is an important aspect of normative modeling, it is38

often just the first step first , i.e. you are often interested in using the outputs of normative mod-39

els in downstream analyses to detect case-control differences, stratification or individual statistics.40

This framework provides a platform for such analyses as it effectively translates diverse data to a41
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consistent scale, defined with respect to population norms.42

Normative modeling has seen widespread use spanning diverse disciplines. The most well-43

known example can be found within pediatric medicine, where conventional growth charts are44

used to map height, weight, and head circumference trajectories of children Borghi et al. (2006).45

Under the neuroscience umbrella, generalizations of this approach have been applied in the fields46

of psychiatry Floris et al. (2020); Lv et al. (2020); Wolfers et al. (2015, 2017, 2021, 2018); Zabihi47

et al. (2019, 2020), neurology Itälinna et al. (2022); Verdi et al. (2021), developmental psychol-48

ogy Holz et al. (2022); Kjelkenes et al. (2022), and cognitive neuroscience Marquand et al. (2017).49

Throughout these numerous applications, normative models have exposed the shortcomings of50

prior case-control framework, i.e., that they rely heavily on the assumption there is within-group51

homogeneity. This case versus control assumption is often an oversimplification, particularly in52

psychiatric diagnostic categories, where the clinical labels used to place individuals into group cat-53

egories are often unreliable, poorlymeasured, andmay notmap cleanly onto underlying biological54

mechanisms Cai et al. (2020); Cuthbert and Insel (2013); Flake and Fried (2020); Insel et al. (2010);55

Linden (2012); Loth et al. (2021);Michelini et al. (2021);Moriarity andAlloy (2021);Nour et al. (2022);56

Sanislow (2020); Zhang et al. (2021). Correspondingly, traditional analysis techniques for modeling57

case versus control effects has often led to null findingsWinter et al. (2022) or significant but very58

small clinically meaningless differences. These effects are furthermore frequently unspecific to an59

illness or disorder Baker et al. (2019);Goodkind et al. (2015);McTeague et al. (2017); Sprooten et al.60

(2017) and inconsistent or contradictory Filip et al. (2022); Lee et al. (2007); Pereira-Sanchez and61

Castellanos (2021) yielding questionable clinical utility Etkin (2019);Mottron and Bzdok (2022).62

In addition to the applications of normativemodeling, there is also active technical development63

Dinga et al. (2021); Fraza et al. (2021, 2022); Kia and Marquand (2018); Kia et al. (2020, 2021, 2018);64

Kumar (2021); Boer et al. (2022)). Due to the growing popularity of normative modeling and in65

recognition of the interdisciplinary requirements using and developing this technology (clinical do-66

main knowledge, statistical expertise, data management and computational demands), research67

interests have been centered on open science, and inclusive, values Gau et al. (2021); Levitis et al.68

(2021) that support this type of interdisciplinary scientific work. These values encompass open-69

source software, sharing pre-trained big data models Rutherford et al. (2022a), online platforms70

for communication and collaboration, extensive documentation, code tutorials, and protocol-style71

publications Rutherford et al. (2022b).72

The central contribution of this paper is to, first, augment the models in Rutherford et al.73

(2022a), with additional normative models for surface area and functional connectivity, which are74

made open and accessible to the community. Second, we comprehensively evaluate the utility of75

normative models for a range of downstream analyses, including 1) mass univariate group differ-76

ence testing (schizophrenia versus controls), 2) multivariate prediction – classification (using sup-77

port vector machines to distinguish schizophrenia from controls), and 3) multivariate prediction –78

regression (using principal component regression (PCR) to predict general cognitive ability). Within79

these benchmarking tasks, we show the benefit of using normative modeling features compared80

to using raw features. We aim for these benchmarking results, along with our publicly available81

resources (code, documentation, tutorials, protocols, community forum, and website for running82

models without using any code). Combined this provides practical utility as well as scientific evi-83

dence for embracing normative modeling.84

Methods and Materials85

Dataset Selection and Scanner Parameters86

Datasets used for training the functional normative models closely match the sample included in87

Rutherford et al. (2022a), apart from sites that did not collect or were unable to share functional88

data. The full details of the data included in the functional normative model training can be found89

in the supplement methods (and Table 3). We leverage several data sets (Table 1) for the bench-90
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Table 1. Data Set Inclusion and Sample Overview.
Cortical
Thickness

Functional
Networks

Study Task N Age
(m, s.d.) F, M (%) N Age

(m, s.d.) F, M (%)
HCP Regression -

predicting cognition 529 28.8, 3.6 53.4,
6.6 499 28.9, 3.6 54.3,

45.6
COBRE Classification and

Group Difference 124 37.0, 12.7 24.2,
75.8 121 35.4, 12.4 23.1,

76.9
UMich_SZG Classification and

Group Difference 89 32.6, 9.6 50.6,
49.3 87 33.0, 10.1 50.6,

49.3

marking tasks, the Human Connectome Project Young Adult study (HCP) Van Essen et al. (2013),91

The Center for Biomedical Research Excellence (COBRE) Aine et al. (2017); Sui et al. (2018), and92

University of Michigan SchizGaze (UMich) Tso et al. (2021). The HCP data was chosen because it93

is widely used by the neuroscience community, especially for prediction studies. Also, prior stud-94

ies using HCP data have shown promising results for predicting general cognitive ability Sripada95

et al. (2020). The HCP data was used in the prediction – regression benchmarking task. The CO-96

BRE and UMich data sets are used in the classification and group difference testing benchmarking97

tasks. Inclusion criteria across all the datasets was that the participant has necessary behavioral98

and demographic variables, as well as high-quality MRI data. High-quality was defined for struc-99

tural images as in our prior work Rutherford et al. (2022a), namely as the lack of any artifacts such100

as ghosting or ringing, that Freesurfer surface reconstruction was able to run successfully, and101

that the Euler number calculated from Freesurfer Klapwijk et al. (2019), which is a proxy metric102

for scan quality, was below a chosen threshold (Euler < 10). High-quality functional data followed103

recommended practices Siegel et al. (2017) and was defined as having a high-quality structural104

MRI (required for co-registration and normalization) and at least 5 minutes of low motion data105

(framewise displacement < 0.5mm). The HCP, COBRE, and UMich functional and structural data106

were manually inspected for quality at several tasks during preprocessing (after co-registration of107

functional and structural data and after normalization of functional data to MNI template space).108

All subjects provided informed consent. Subject recruitment procedures and informed consent109

forms, including consent to share de-identified data, were approved by the corresponding univer-110

sity institutional review board where data were collected. The scanning acquisition parameters111

were similar but varied slightly across the studies (details in supplement).112

Demographic, Cognition, Clinical Diagnosis variables113

Demographic variables included age, sex, and MRI scanner site. A latent variable of cognition, re-114

ferred to as General Cognitive Ability (GCA), was created for the regression benchmarking task115

using HCP data. The HCP study administered the NIHToolbox Cognition battery Gershon et al.116

(2010), and a bi-factor model was fit (for further modeling details and assessment of model fit see117

Sripada et al. (2020). For COBRE and UMich studies, clinical diagnosis of schizophrenia was con-118

firmed using the Structured Clinical Interview used for DSM-5 disorders (SCID) First and Williams119

(2016). All subjects were screened and excluded if they had: history of neurological disorder, men-120

tal retardation, severe head trauma, or substance abuse/dependence within the last 6 (UMich) or121

12 months (COBRE), were pregnant/nursing (UMich), or had any contraindications for MRI.122

Image Preprocessing123

Structural MRI data were preprocessed using the Freesurfer (version 6.0) recon-all pipeline Linden124

(2012); Fischl and Dale (2000); Fischl et al. (2002) to reconstruct surface representations of the125

volumetric data. Estimates of cortical thickness and subcortical volume were then extracted (aparc126

3 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


and aseg) for each subject from their Freesurfer output folder, then merged and formatted into a127

csv file (rows = subjects, columns = brain ROIs). We also share models of surface area, extracted in128

the same manner as the cortical thickness data from a similar dataset (described in supplemental129

methods and table 4).130

Resting-state data were preprocessed separately for each study using fMRIPrep Esteban et al.131

(2018); however, similar steps were done to all resting-state data following best practices including132

field-map correction ofmulti-banddata, slice time correction (non-multi-banddata), co-registration133

of functional to structural data, normalization to MNI template space, spatial smoothing (2x voxel134

size, 4-6mm), and regression of nuisance confounders (WM/CSF signals, non-aggressive AROMA135

components Pruim et al. (2015b,a), linear and quadratic effects of motion).136

Large scale brain networks from the 17 network Yeo atlas Yeo et al. (2011) were then extracted137

and between network connectivity was calculated using full correlation. We also shared functional138

normative models using the Smith-10 ICA-based parcellation Smith et al. (2009) which includes139

subcortical coverage, however, the benchmarking tasks only use the Yeo-17 functional data. Fisher140

r-to-z transformation was performed on the correlation matrices. If there were multiple functional141

runs, connectivity matrices were calculated separately for each run then all runs for a subject were142

averaged. For further details regarding the preparation of the functional MRI data, see the supple-143

mental materials.144

Normative Model Formulation145

After dataset selection and preprocessing, normative models were estimated using the Predictive146

Clinical Neuroscience toolkit (PCNtoolkit), an open-source python package for normativemodeling147

Marquand et al. (2021). For the structural data, we used a publicly shared repository of pre-trained148

normative models that was estimated on approximately 58,000 subjects using a warped Bayesian149

Linear Regression algorithm Fraza et al. (2021). Model fit was established using explained variance,150

mean standardized log loss, skew, and kurtosis. The outputs of normative modeling also include151

a Z-score, or deviation score, for all brain regions and all subjects. The deviation score represents152

where the individual is in comparison to the population the model was estimated on, where a pos-153

itive deviation score corresponds to greater cortical thickness or subcortical volume than average,154

and a negative deviation score represents less cortical thickness or subcortical volume than aver-155

age. The deviation (Z) scores that are output from the normative model are the features input for156

the normative modeling data in the benchmarking analyses. In addition to normative models of157

brain structure, we also expanded our repository by estimating normative models of brain func-158

tional connectivity (resting-state brain networks, Yeo-17 and Smith-10) using the same algorithm159

(Bayesian Linear Regression) as the structural models. Models were trained on a large multi-site160

data set (approx. N=22,000) and evaluated in several test sets using explained variance, mean161

standardized log loss, skew, and kurtosis. We transferred the functional normative models to the162

data sets used in this work for benchmarking (Table 1) to generate deviation (Z) scores. HCP was163

included in the initial training (half of the sample was held out in the test set), while the UMich and164

COBRE datasets were not included in the training and can be considered as examples of transfer165

to new, unseen sites.166

Raw Input Data167

The data that we compare the output of normative modeling to, referred to throughout this work168

as “raw” input data, is simply the outputs of traditional preprocessing methods for structural and169

functional MRI. For structural MRI, this corresponds to the cortical thickness files that are output170

after running the Freesurfer recon-all pipeline. We used the aparcstats2table and asegstats2table171

functions to extract the cortical thickness and subcortical volume from each region in the Destrieux172

atlas and Freesurfer subcortical atlas. For functional MRI, raw data refers to the Yeo17 brain net-173

work connectomes which were extracted from the normalized, smoothed, de-noised functional174

time-series. The upper triangle of each subject’s connectivity matrix was vectorized, where each175
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cell represents a unique between-network connection. For clarification, we also note that the raw176

input data is the starting point of the normative modeling analysis, or in other words the raw in-177

put data is the response variable or independent (𝑌 ) variable that is predicted from the vector of178

covariates when estimating the normative model. Before entering into the benchmarking tasks,179

to create a fair comparison between raw data and deviation scores, nuisance variables including180

sex, site, linear and quadratic effects of age and head motion (only for functional models) were181

regressed out of the raw data (structural and functional) using least squares regression.182

Benchmarking183

The benchmarking was performed in three separate tasks, mass univariate group difference test-184

ing, multivariate prediction – classification, and multivariate prediction – regression, described in185

further detail below. In each benchmarking task, amodel was estimated using the deviation scores186

as input features and then estimated again using the raw data as the input features. After each187

model was fit, the performance metrics were evaluated and the difference in performance be-188

tween the deviation score and raw data models was calculated, again described in more detail in189

the evaluation section below. An overview of the analysis workflow is shown in Figure 1.190

Figure 1. Figure 1 Overview of Workflow. A) Datasets included the Human Connectome Project (young adult)study, University of Michigan schizophrenia study, and COBRE schizophrenia study. B) Openly shared,pre-trained on big data, normative models were estimated for large scale resting state functional brainnetworks and cortical thickness. C) Deviation (Z) scores and raw data, for both functional and structural data,were input into three benchmarking tasks: support vector machine (SVM) classification, group differencetesting, and regression (predicting cognition). D) Evaluation metrics calculated for each task benchmarkingtask. These metrics were calculated for the raw data models and the deviation score models. The differencebetween each models’ performance was calculated for both functional and structural modalities.

Task 1 Mass Univariate Group Difference Testing191

Mass univariate group difference (schizophrenia vs. control) testing was performed across all brain192

regions. Two sample independent t-tests were estimated and run on the data using the SciPy193

python package Virtanen et al. (2020). After addressing multiple comparison correction, brain194

regions with FDR corrected 𝑝 < .05 were considered significant and the total number of regions195

displaying statistically significant group differences was counted.196

For the purpose of comparing groupdifference effects to individual differences, we also summa-197

rized the individual deviation maps and compare this map to the group difference map. Individual198

deviation maps were summarized by counting the number of individuals with ‘extreme’ deviations199
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(𝑍 > 2 or 𝑍 < −2) at a given brain region or network connectivity pair. This was done separately200

for positive and negative deviations and for each group and visualized qualitatively (Figure 4B).201

To quantify the individual difference maps in comparison to group differences, we performed a202

Mann-Whitney U-test on the count of extreme deviations in each group.203

Task 2 Multivariate Prediction – Classification204

Support vector machine is a commonly used algorithm in machine learning studies and performs205

well in classification settings. A support vector machine constructs a set of hyper-planes in a high206

dimensional space and optimizes to find the hyper-plane that has the largest distance, or margin,207

to the nearest training data points of any class. A larger margin represents better linear sepa-208

ration between classes and will correspond to a lower the error of the classifier in new samples.209

Samples that lie on the margin boundaries are also called “support vectors”. The decision function210

provides per-class scores than can be turned into probabilities estimates of class membership. We211

used Support vector classification (SVC) with a linear kernel as implemented in the scikit-learn pack-212

age (version 1.0.9) Pedregosa et al. (2011) to classify a schizophrenia group from a control group.213

This classification setting of distinguishing schizophrenia from a control group was chosen due to214

past work showing the presence of both case-control group differences and individual differences215

Wolfers et al. (2018).216

Task 3 Multivariate Prediction – Regression217

A linear regression model was implemented to predict a latent variable of cognition (general cogni-218

tive ability) in the HCP data set. Brain Basis Set (BBS) is a predictive modeling approach developed219

and validated in previous studies Sripada et al. (2019a,b); see also studies byWager and colleagues220

for a broadly similar approachWoo et al. (2017);Wager et al. (2013). BBS is similar to principal com-221

ponent regression, with an added predictive element. In the training set, PCA is performed on an222

𝑛𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 x 𝑝𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 matrix using the PCA function from scikit-learn in Python, yielding components or-223

dered by descending eigenvalues. Expression scores are then calculated for each of 𝑘 components224

for each subject by projecting each subject’s feature matrix onto each component. A linear regres-225

sion model is then fit with these expression scores as predictors and the phenotype of interest226

(general cognitive ability) as the outcome, saving 𝐵, the 𝑘𝑥1 vector of fitted coefficients, for later227

use. In a test partition, the expression scores for each of the 𝑘 components for each subject are228

again calculated. The predicted phenotype for each test subject is the dot product of 𝐵 learned229

from the training partition with the vector of component expression scores for that subject. We230

set 𝑘 = 15 in all models, following prior work Rutherford et al. (2020).231

Evaluation232

Evaluation for each benchmark task was done by estimating the appropriate model performance233

metric. For task one, the metric was the total count of models with significant group differences234

after multiple comparison correction (FDR-corrected 𝑝 < 0.05). In task two, the metric was area235

under the receiving operator curve (AUC) averaged across all folds within a 10-fold cross validation236

framework. For task three, the metric was the mean squared error (MSE) of the prediction in the237

test set. Evaluation metrics of each task were calculated independently for both deviation score238

(Z) and raw data (R) models. Higher AUC, higher count, and lower MSE represent better model per-239

formance. We then have a statistic of interest that is observed, 𝜃, which represents the difference240

between deviation and raw data model performance.241

𝜃𝑡𝑎𝑠𝑘1 = 𝐶𝑜𝑢𝑛𝑡𝑧 − 𝐶𝑜𝑢𝑛𝑡𝑅 (1)
242

𝜃𝑡𝑎𝑠𝑘2 = 𝐴𝑈𝐶𝑧 − 𝐴𝑈𝐶𝑅 (2)
243

𝜃𝑡𝑎𝑠𝑘3 = 𝑀𝑆𝐸𝑅 −𝑀𝑆𝐸𝑧 (3)

6 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


To assess whether 𝜃 is more likely than would be expected by chance, we generated the null244

distribution for 𝜃 using permutations. Within one iteration of the permutation framework, a ran-245

dom sample is generated by shuffling the labels (In task 1 and 2 we shuffle the clinical group labels,246

and in task 3 we shuffle the g-factor labels). Then this sample is used to train both deviation and247

raw models, ensuring the same row shuffling scheme across both deviation score and raw data248

datasets (for each perm iteration). The shuffled models are evaluated, and we calculate 𝜃𝑝𝑒𝑟𝑚 for249

each random shuffle of labels. We set 𝑛𝑝𝑒𝑟𝑚 = 10, 000 and use the distribution of 𝜃𝑝𝑒𝑟𝑚 to calculate250

a p-value for 𝜃𝑜𝑏𝑠 at each benchmarking task. The permuted p-value is equal to (𝐶 + 1)∕(𝑛𝑝𝑒𝑟𝑚 + 1).251

Where 𝐶 is the number of permutations where 𝜃𝑝𝑒𝑟𝑚 > 𝜃𝑜𝑏𝑠𝑑 . The same evaluation procedure de-252

scribed here (including permutations) was performed for both cortical thickness and functional253

network modalities.254

Results255

Figure 2. Functional brain network normative modeling. A) Age distribution per scanning site in all thetrain/test/transfer data partitions and across the full sample (train + test). B) The Yeo-17 brain network atlasused to generate connectomes Between network connectivity was calculated for all 17 networks, resulting in136 unique network pairs that were each individually input into a functional normative model. C) Theexplained variance in the controls test set (N=7244) of each of the unique 136 network pairs of the Yeo-17atlas.

Sharing of functional big data normative models256

The first result of this work is the evaluation of the functional big data normative models (Figure257

3). These models build upon the work of Rutherford et al. (2022a) in which we shared population-258

level structural normative models charting cortical thickness and subcortical volume across the259

human lifespan (ages 2-100). The data sets used for training the functional models, the age range260

of the sample, and the procedures for evaluation closely resemble the structural normativemodels.261

The sample size (approx. N=22,000) used for training and testing the functional models is smaller262

than the structural models (approx. N=58,000) due to data availability (i.e., some sites included in263

the structural models did not collect functional data or could not share the data) and the quality264

control procedures (seemethods). However, despite the smaller sample size of the functional data265

reference cohort, the ranges of the evaluation metrics are quite similar as the structural models266
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(Figure 3). Most importantly, we demonstrate the opportunity to transfer the functional models to267

new samples, or sites that were not included in the original training and testing sets, referred to as268

the transfer set and show that transfer works well in a clinical sample (Figure 3 - transfer patients)269

or sample of healthy controls (Figure 3 - transfer controls).270

Figure 3. Functional Normative Model Evaluation Metrics. A) Explained variance per network pair across thetest set (top), and both transfer sets (patients – middle, controls – bottom).We point out that the age range ofthe transfer (controls) sample (shown in Figure 2A) falls into a range with sparse data, and therefore the lowerexplained variance observed in the transfer (controls) group compared to the test and transfer (patients)groups is likely due to epistemic uncertainty (reducible with adding more data points) of the modelpredictions in this age range. B) The distribution across all models of the evaluation metrics (columns) in thetest set (top row) and both transfer sets (middle and bottom rows). Higher explained variance (closer to 1),more negative MSLL, and normally distributed skew and kurtosis correspond to better model fit.

Benchmarking Task One Mass Univariate Group Difference Testing271

The strongest evidence for embracing normative modeling can be seen in the benchmarking task272

one group difference (schizophrenia vs. controls) testing results (Table 2, Figure 4A). In this appli-273

cation, we observe numerous group differences in both functional and structural deviation score274

models after applying stringentmultiple comparison correction (FDR 𝑝−𝑣𝑎𝑙𝑢𝑒 < 0.05). The strongest275

effects (𝐻𝐶 > 𝑆𝑍) in the structural models were located in the right hemisphere lateral occipito-276

temporal sulcus (S_oc_temp_lat) thickness, right hemisphere superior segment of the circular sul-277

cus of the insula (S_circular_ins_sup) thickness, right Accumbens volume, left hemisphere Supra-278

marginal gyrus (G_pariet_inf_Supramar) thickness, and left hemisphere Inferior occipital gyrus (O3)279

and sulcus (G_and_S_occipital_inf) thickness. For the functionalmodels, the strongest effects (𝐻𝐶 >280

𝑆𝑍 t-statistic) were observed in the between-network connectivity of Sensorimotor B-Default B,281

Dorsal Attention B-Default B, Sensorimotor B-Default A, Control B-Default A, and Ventral Attention282

A-Default B. In the raw data models, which were residualized of covariates including site, sex, and283

linear plus quadratic effects of age and head motion (only included for functional models), we ob-284

serve no group differences aftermultiple comparison correction. The lack of any group differences285

in the raw data was initially a puzzling finding due to reported group differences in the literature286

Arbabshirani et al. (2013); Cetin et al. (2015, 2016); Dansereau et al. (2017); Howes et al. (2022); Lei287
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Table 2. Benchmarking Results. Deviation (Z) score column shows the performance using deviation scores(AUC for classification, total number of regions with significant group differences FDR-corrected p<0.05 forcase vs. control, mean squared error for regression), Raw column represents the performance when usingthe raw data, and Difference column shows the difference between the deviation scores and raw data(Deviation - Raw). Higher AUC, higher count, and lower MSE represent better performance. Positive values inthe Difference column show that there is better performance when using deviation scores as input featuresfor classification and group difference tasks, and negative performance difference values for the regressiontask show there is better performance using the deviation scores. * = statistically significant differencebetween Z and Raw established using permutation testing (10k perms).

Benchmark Modality Normative Modeling
Deviation Score Data

Raw Data
Performance
Difference

Classification Cortical
Thickness 0.87 0.43 0.44*

Classification Functional
Networks 0.69 0.68 0.01

Group Difference Cortical
Thickness 117/187 0/187 117*

Group Difference Functional
Networks 50/136 0/136 50*

Regression Cortical
Thickness 0.699 0.708 0.008

Regression Functional
Networks 0.877 0.890 0.013

et al. (2020b,a);Meng et al. (2017); Rahim et al. (2017); Rosa et al. (2015); Salvador et al. (2017); Shi288

et al. (2021); van Erp et al. (2018); Venkataraman et al. (2012);Wannan et al. (2019); Yu et al. (2012),289

however, upon investigation of the uncorrected statistical maps, we observe that the raw data fol-290

lows a similar pattern to the deviation group difference map, but these results do not withstand291

multiple comparison correction.292

The qualitative (Figure 4B) and quantitative (Figure 4C) comparison of the group difference293

maps with the individual difference maps showed the additional benefit of normative modeling294

- that it can reveal subtle individual differences which are lost when only looking at group means.295

The individual difference maps shows that at every brain region or connection, there is at least296

one person, across both patient and clinical groups, that has an extreme deviation. We found297

significant differences in the count of negative deviations (𝑆𝑍 > 𝐻𝐶) for both cortical thickness298

(𝑝 = 0.0029) and functional networks (𝑝 = 0.013), and significant differences (𝐻𝐶 > 𝑆𝑍) in the count299

of positive cortical thickness (𝑝 = 0.0067).300

Benchmarking Task 2 Multivariate Prediction – Classification301

In benchmarking task two, we classified schizophrenia versus controls using support vector classi-302

fication within a 10-fold cross validation framework (Table 2, Figure 5). The best performing model303

used cortical thickness deviation scores to achieve a classification accuracy of 87% (𝐴𝑈𝐶 = 0.87).304

The raw cortical thickness model accuracy was indistinguishable from chance accuracy (𝐴𝑈𝐶 =305

0.43). The AUC performance difference between the cortical thickness deviation and raw datamod-306

els was 0.44, and this performance difference was statistically significant. The functional models,307

both deviation scores (0.69) and raw data (0.68), were more accurate than chance accuracy, how-308

ever, the performance difference (i.e., improvement in accuracy using the deviation scores) was309

small (0.01) and was not statistically significant.310
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Benchmarking Task 3 Multivariate Prediction – Regression311

In benchmarking task three we fit multivariate predictive models in a held-out test set of healthy312

individuals in the Human Connectome Project young-adult study to predict general cognitive ability313

(Table 2). The evidence provided by this task weakly favors the deviation score models. The most314

accurate (lowest mean squared error) model was the deviation cortical thickness model (𝑀𝑆𝐸 =315

0.699). However, there was only an improvement of 0.008 in the deviation score model compared316

to the raw data model (𝑀𝑆𝐸 = 0.708) and this difference was not statistically significant. For the317

functional models, both the deviation score (𝑀𝑆𝐸 = 0.877) and raw data (𝑀𝑆𝐸 = 0.890) models318

Figure 4. Group Difference Testing Evaluation. A) Significant group differences in the deviation score models,(top left) functional brain network deviation and (top right) cortical thickness deviation scores. The raw data,either cortical thickness or functional brain networks (residualized of sex and linear/ quadratic effects of ageand motion (mean framewise displacement)) resulted in no significant group differences after multiplecomparison correction. B) There are still individual differences observed that do not overlap with the groupdifference map, showing the benefit of normative modeling, which can detect both group and individualdifferences through proper modeling of variation. D) There are significant group differences in thesummaries (count) of the individual difference maps (panel B).
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Figure 5. Benchmark Task 2 Multivariate Prediction – Classification Evaluation. A) Support VectorClassification using cortical thickness deviation scores as input features (most accurate model). B) SupportVector Classification using cortical thickness (residualized of sex and linear/quadratic effects of age) as inputfeatures. C) Support Vector Classification using functional brain network deviation scores as input features.
D) Support Vector Classification using functional brain networks (residualized of sex and linear/ quadraticeffects of age and motion (mean framewise displacement)) as input features.

were less accurate than the structural models and the difference between them (0.013) was also319

not statistically significant.320

Discussion321

This work expands the available open-source tools for conducting normative modeling analyses322

and provides clear evidence for why normative modeling should be utilized by the neuroimaging323

community (and beyond). We updated our publicly available repository of pre-trained normative324

models to include a new MRI imaging modality (models of resting-state functional connectivity ex-325

tracted from the Yeo-17 and Smith-10 brain network atlases) and demonstrate how to transfer326

these models to new data sources. The repository includes an example transfer data set com-327

bined with a user-friendly interface. Next, we compared the features that are output from norma-328

tive modeling (deviation scores) against ‘raw’ data features across several benchmarking tasks in-329

cluding univariate group difference testing (schizophrenia versus control), multivariate prediction330

– classification (schizophrenia versus control), and multivariate prediction – regression (predicting331
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general cognitive ability). We found across all benchmarking tasks there were minor (regression)332

to strong (group difference testing) benefits of using deviation scores compared to the raw data333

features.334

The fact that the deviation score models perform better than the raw data models confirm the335

utility of placing individuals into reference models. Our results show that normative modeling can336

capture population trends, uncover clinical group differences, and preserve the ability to study337

individual differences. We have some intuition on why the deviation score models perform better338

on the benchmarking tasks than the raw data. With normative modeling we are accounting for339

many sources of variance that are not necessarily clinically meaningful (i.e., site) and we are able340

to capture clinicallymeaningful informationwithin the reference cohort perspective. The reference341

model helps beyond just removing confounding variables such as scanner noise, because we show342

that even when removing the nuisance covariates (age, sex, site, head motion) from the raw data,343

the normative modeling features still perform better.344

Prior works on the methodological innovation and application of normative modeling Kia et al.345

(2018); Kia and Marquand (2018); Kia et al. (2020, 2021); Boer et al. (2022)) have focused on the346

beginning foundational steps of the framework (i.e., data selection and preparation, algorithmic347

implementation, and carefully evaluating out of sample model performance). However, the frame-348

work does not end after the model has been fit to the data (estimation step) and performance349

metrics have been established (evaluation step). Transferring the models to new samples, inter-350

pretation of the results, and potential downstream analysis are equally important steps, but they351

have received less attention. When it comes time to interpret the model outputs, it is easy to fall352

back into the case-control thinking paradigm, even after fitting a normative model to one’s data353

(which is supposed to be an alternative to case versus control approaches). This is due in part to354

the challenges arising from the results existing in a very high dimensional space ( 100s to 1000s355

of brain regions from 100s to 1000s of subjects). There is a reasonable need to distill and sum-356

marize these high dimensional results. However, it is important to remember there is always a357

trade-off between having a complex enough of a model to explain the data and dimensionality re-358

duction for the sake of interpretation simplicity. This distillation process often leads back to placing359

individuals into groups (i.e., case-control thinking) and interpreting group patterns or looking for360

group effects, rather than interpreting results at the level of the individual. We acknowledge the361

value and complementary nature of understanding individual variation relative to group means362

(case-control thinking) and clarify that we do not claim superiority of normative modeling over363

case-control methods. Rather, our results, especially in the comparisons of group difference maps364

to individual difference maps (Figure 4), from this work show that the outputs of normative model-365

ing can be used to validate, refine, and further understand some of the inconsistencies in previous366

findings from case-control literature.367

There are several limitations of the present work. First, the representation of functional norma-368

tivemodelsmay be surprising and concerning. Typically, resting-state connectivitymatrices are cal-369

culated using parcellations containing between 100 to 1,000 nodes and 5,000-500,000 connections.370

However, the Yeo-17 atlas Yeo et al. (2011) was specifically chosen because of its widespread use371

and the fact that many other (higher resolution) functional brain parcellations have been mapped372

to the Yeo brain networks Eickhoff et al. (2018); Glasser et al. (2016); Kong et al. (2019); Laumann373

et al. (2015); Power et al. (2011); Schaefer et al. (2018); Shen et al. (2013). There is on-going de-374

bate about the best representation of functional brain activity. Using the Yeo-17 brain networks375

to model functional connectivity ignores important considerations regarding brain dynamics, flex-376

ible node configurations, overlapping functional modes, hard versus soft parcellations, and many377

other important issues. We have also shared functional normative models using the Smith-10378

ICA-based parcellation Smith et al. (2009), though we did not repeat the benchmarking tasks using379

these data. Apart fromour choice of parcellation, there are fundamental open questions regarding380

the nature of the brain’s functional architecture, including how it is defined and measured. While381

it is outside the scope of this work to engage in these debates, we acknowledge their importance382
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and refers curious readers to a thorough review on functional connectivity challenges Bijsterbosch383

et al. (2020).384

Wewould also like to expand on our prior discussion Rutherford et al. (2022a) on the limitations385

of the reference cohort demographics, and the use of the word “normative”. The included sample386

for training the functional normative models in this work, and the structural normative model-387

ing sample in Rutherford et al. (2022a) are most likely overrepresentative of European-ancestry388

(WEIRD population Henrich et al. (2010)) due to the data coming from academic research studies,389

which do not match population demographics. Our models do not include race or ethnicity as390

covariates due to data availability (many sites did not provide race or ethnicity information). Prior391

research supports the use of age-specific templates and ethnicity specific growth charts Dong et al.392

(2020). This is a major limitation which requires additional future work and should be considered393

carefully when transferring the model to diverse data Benkarim et al. (2022); Greene et al. (2022);394

Li et al. (2022). The term ‘normative model’ can be defined in other fields in a very different man-395

ner than ours Colyvan (2013); Baron (2004); Catita et al. (2020). We clarify that ours is strictly a396

statistical notion (normative=being within the central tendency for a population). Critically, we do397

not use normative in a moral or ethical sense, and we are not suggesting that individuals with high398

deviation scores require action or intervention to be pulled towards the population average. Al-399

though in some cases this may be true, we in no way assume that high deviations are problematic400

or unhealthy (they may in fact represent compensatory changes that are adaptive). In any case,401

we treat large deviations from statistical normality strictly as markers predictive of clinical states402

or conditions of interest.403

There are of many open research questions regarding normative modeling. Future research404

directions are likely to include: 1) further expansion of open-source pre-trained normative mod-405

eling repositories to include additional MRI imaging modalities such as task-based functional MRI406

and diffusion weighted imaging, other neuroimaging modalities such as EEG or MEG, and models407

that include other non-biological measures, 2) increase in the resolution of existing models (i.e.,408

voxel, vertex, models of brain structure and higher resolution functional parcellations), 3) replica-409

tion and refinement of the proposed benchmarking tasks in other datasets including improving the410

regression benchmarking task, and 4) including additional benchmarking tasks beyond the ones411

considered here.412

There has been recent interesting work on “failure analysis” of brain-behavior models Greene413

et al. (2022), and we would like to highlight that normative modeling is an ideal method for con-414

ducting this type of analysis. Through normative modeling, research questions such as ‘what are415

the common patterns in the subjects that are classified well versus those that are not classified416

well’ can be explored. Additional recent workMarek et al. (2022) has highlighted important issues417

the brain-behavior modeling community must face, such as poor reliability of the imaging data,418

poor stability and accuracy of the predictive models, and the very large sample sizes (exceeding419

that of even the largest neuroimaging samples) required for accurate predictions. There has also420

been work showing that brain-behavior predictions are more reliable than the underlying func-421

tional data Taxali et al. (2021), and other ideas for improving brain-behavior predictive models are422

discussed in-depth here Finn and Rosenberg (2021); Rosenberg and Finn (2022). Nevertheless, we423

acknowledge these challenges and believe that sharing pre-trained machine learning models and424

further development of transfer learning of these models could help further address these issues.425

In this work we have focused on the downstream steps of the normative modeling framework426

involving evaluation and interpretation, and how insights can bemade onmultiple levels. Through427

the precise modeling of different sources of variation, there is much knowledge to be gained at428

the level of populations, clinical groups, and individuals.429

Code and Data Availability430

Pre-trained normative models are available on GitHub and Google Colab. Scripts for running the431

benckmarking analysis and visualizations are available on GitHub here. Online portal for running432
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models without code is in beta testing phase and will be available here shortly.433

Acknowledgments and Contributions434

Conception of the work - SR. Data curation and management - SR. Data analysis and interpreta-435

tion - SR, PB. Writing the article - SR. Revision of the article - PB, IFT, CS, CFB, HG, AFM. Supervi-436

sion and Funding - IFT, CS, CFB, HG, AFM. This research was supported by grants from the Euro-437

pean Research Council (ERC, grant “MENTALPRECISION” 10100118 and “BRAINMINT” 802998), the438

Wellcome Trust under an Innovator award (“BRAINCHART”, 215698/Z/19/Z) and a Strategic Award439

(098369/Z/12/Z), the Dutch Organisation for Scientific Research (VIDI grant 016.156.415 ). IFT was440

funded by National Institute of Mental Health K23MH108823. CS was funded by the National Insti-441

tute of Mental Health R01MH107741.442

Conflicts of Interest443

CFB is director and shareholder of SBGNeuro Ltd. HGR received speaker’s honorarium from Lund-444

beck and Janssen. The other authors report no conflicts of interest.445

References446

Aine CJ, Bockholt HJ, Bustillo JR, Cañive JM, Caprihan A, Gasparovic C, Hanlon FM, Houck JM, Jung RE, Lauriello447 J, Liu J, Mayer AR, Perrone-Bizzozero NI, Posse S, Stephen JM, Turner JA, Clark VP, Calhoun VD. Multimodal448 Neuroimaging in Schizophrenia: Description and Dissemination. Neuroinformatics. 2017; 15(4):343–364.449

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671541/, doi: 10.1007/s12021-017-9338-9.450

ArbabshiraniMR, Kiehl KA, PearlsonGD, Calhoun VD. Classification of schizophrenia patients based on resting-451 state functional network connectivity. Frontiers in Neuroscience. 2013; 7. https://www.ncbi.nlm.nih.gov/pmc/452

articles/PMC3744823/, doi: 10.3389/fnins.2013.00133.453

Baker JT, Dillon DG, Patrick LM, Roffman JL, Brady RO, Pizzagalli DA, Öngür D, Holmes AJ. Functional con-454 nectomics of affective and psychotic pathology. Proceedings of the National Academy of Sciences. 2019;455 116(18):9050–9059. https://www.pnas.org/doi/abs/10.1073/pnas.1820780116, doi: 10.1073/pnas.1820780116,456 publisher: Proceedings of the National Academy of Sciences.457

Baron J. Normative Models of Judgment and Decision Making. In: Koehler DJ, Harvey N, editors. Blackwell458

Handbook of Judgment and Decision Making Blackwell Publishing Ltd; 2004.p. 19–36. https://onlinelibrary.wiley.459

com/doi/10.1002/9780470752937.ch2, doi: 10.1002/9780470752937.ch2.460

Benkarim O, Paquola C, Park By, Kebets V, Hong SJ, Wael RVd, Zhang S, Yeo BTT, Eickenberg M, Ge T, Poline JB,461 Bernhardt BC, Bzdok D. Population heterogeneity in clinical cohorts affects the predictive accuracy of brain462 imaging. PLOS Biology. 2022; 20(4):e3001627. https://journals.plos.org/plosbiology/article?id=10.1371/journal.463

pbio.3001627, doi: 10.1371/journal.pbio.3001627, publisher: Public Library of Science.464

Bijsterbosch J, Harrison SJ, Jbabdi S, Woolrich M, Beckmann C, Smith S, Duff EP. Challenges and future direc-465 tions for representations of functional brain organization. Nature Neuroscience. 2020; 23(12):1484–1495.466

https://www.nature.com/articles/s41593-020-00726-z, doi: 10.1038/s41593-020-00726-z, number: 12 Pub-467 lisher: Nature Publishing Group.468

Boer AAAd, Kia SM, Rutherford S, Zabihi M, Fraza C, Barkema P, Westlye LT, Andreassen OA, Hinne M, Beck-469 mann CF, Marquand A. Non-Gaussian Normative Modelling With Hierarchical Bayesian Regression. bioRxiv.470 2022; https://www.biorxiv.org/content/10.1101/2022.10.05.510988v1, doi: 10.1101/2022.10.05.510988.471

Borghi E, Onis Md, Garza C, Broeck JVd, Frongillo EA, Grummer-Strawn L, Buuren SV, Pan H, Moli-472 nari L, Martorell R, Onyango AW, Martines JC. Construction of the World Health Organization child473 growth standards: selection of methods for attained growth curves. Statistics in Medicine. 2006;474 25(2):247–265. http://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2227, doi: 10.1002/sim.2227, _eprint:475 https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.2227.476

Cai N, Choi KW, Fried EI. Reviewing the genetics of heterogeneity in depression: operationalizations, manifesta-477 tions and etiologies. Human Molecular Genetics. 2020; 29:R10–R18. https://academic.oup.com/hmg/article/478

29/R1/R10/5860824, doi: 10.1093/hmg/ddaa115.479

14 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

https://pcnportal.dccn.nl
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671541/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744823/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744823/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744823/
10.3389/fnins.2013.00133
https://www.pnas.org/doi/abs/10.1073/pnas.1820780116
10.1073/pnas.1820780116
https://onlinelibrary.wiley.com/doi/10.1002/9780470752937.ch2
https://onlinelibrary.wiley.com/doi/10.1002/9780470752937.ch2
https://onlinelibrary.wiley.com/doi/10.1002/9780470752937.ch2
10.1002/9780470752937.ch2
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001627
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001627
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001627
10.1371/journal.pbio.3001627
https://www.nature.com/articles/s41593-020-00726-z
https://www.biorxiv.org/content/10.1101/2022.10.05.510988v1
10.1101/2022.10.05.510988
http://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2227
10.1002/sim.2227
https://academic.oup.com/hmg/article/29/R1/R10/5860824
https://academic.oup.com/hmg/article/29/R1/R10/5860824
https://academic.oup.com/hmg/article/29/R1/R10/5860824
https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


Catita M, Águas A, Morgado P. Normality in medicine: a critical review. Philosophy, Ethics, and Humanities480 in Medicine. 2020; 15(1):3. https://peh-med.biomedcentral.com/articles/10.1186/s13010-020-00087-2, doi:481 10.1186/s13010-020-00087-2.482

Cetin MS, Houck JM, Rashid B, Agacoglu O, Stephen JM, Sui J, Canive J, Mayer A, Aine C, Bustillo JR, Calhoun483 VD. Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic484 Connectivity Measures. Frontiers in Neuroscience. 2016; 10. https://www.ncbi.nlm.nih.gov/pmc/articles/485

PMC5070283/, doi: 10.3389/fnins.2016.00466.486

Cetin MS, Houck JM, Vergara VM, Miller RL, Calhoun V. Multimodal Based Classification of Schizophrenia Pa-487 tients. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and488 Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2015; 2015:2629–2632.489

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880008/, doi: 10.1109/EMBC.2015.7318931.490

Colyvan M. Idealisations in normative models. Synthese. 2013; 190(8):1337–1350. https://doi.org/10.1007/491

s11229-012-0166-z, doi: 10.1007/s11229-012-0166-z.492

Cuthbert BN, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Medicine.493 2013; 11:126. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653747/, doi: 10.1186/1741-7015-11-126.494

Dansereau C, Benhajali Y, Risterucci C, Pich EM, Orban P, Arnold D, Bellec P. Statistical power and prediction ac-495 curacy inmultisite resting-state fMRI connectivity. NeuroImage. 2017; 149:220–232. http://www.sciencedirect.496

com/science/article/pii/S1053811917300939, doi: 10.1016/j.neuroimage.2017.01.072.497

Dinga R, Fraza CJ, Bayer JMM, Kia SM, Beckmann CF, Marquand AF. Normative modeling of neuroimaging data498 using generalized additive models of location scale and shape. bioRxiv. 2021; http://biorxiv.org/lookup/doi/499

10.1101/2021.06.14.448106, doi: 10.1101/2021.06.14.448106.500

DongHM, Castellanos FX, YangN, Zhang Z, ZhouQ,He Y, Zhang L, Xu T, HolmesAJ, Thomas YeoBT, Chen F,Wang501 B, Beckmann C, White T, Sporns O, Qiu J, Feng T, Chen A, Liu X, Chen X, et al. Charting brain growth in tandem502 with brain templates at school age. Science Bulletin. 2020; 65(22):1924–1934. https://www.sciencedirect.com/503

science/article/pii/S2095927320304965, doi: 10.1016/j.scib.2020.07.027.504

Eickhoff SB, Yeo BTT, Genon S. Imaging-based parcellations of the human brain. Nature ReviewsNeuroscience.505 2018; 19(11):672–686. https://www.nature.com/articles/s41583-018-0071-7, doi: 10.1038/s41583-018-0071-7,506 number: 11 Publisher: Nature Publishing Group.507

van Erp TGM, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, Pearlson GD, Yao N, Fukunaga M, Hashimoto508 R, Okada N, Yamamori H, Bustillo JR, Clark VP, Agartz I, Mueller BA, Cahn W, de Zwarte SMC, Hulshoff Pol509 HE, Kahn RS, et al. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control510 Subjects via the Enhancing Neuro Imaging Genetics ThroughMeta Analysis (ENIGMA) Consortium. Biological511 Psychiatry. 2018; 84(9):644–654. doi: 10.1016/j.biopsych.2018.04.023.512

Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, DuPre E, Snyder M,513 Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ. fMRIPrep: a robust preprocessing pipeline514 for functional MRI. Nature Methods. 2018; p. 1. https://www.nature.com/articles/s41592-018-0235-4, doi:515 10.1038/s41592-018-0235-4.516

Etkin A. A Reckoning and Research Agenda for Neuroimaging in Psychiatry. American Journal of Psy-517 chiatry. 2019; 176(7):507–511. https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2019.19050521, doi:518 10.1176/appi.ajp.2019.19050521, publisher: American Psychiatric Publishing.519

Filip P, Bednarik P, Eberly LE, Moheet A, Svatkova A, Grohn H, Kumar AF, Seaquist ER, Mangia S. Different520 FreeSurfer versions might generate different statistical outcomes in case–control comparison studies. Neu-521 roradiology. 2022; 64(4):765–773. https://doi.org/10.1007/s00234-021-02862-0, doi: 10.1007/s00234-021-522 02862-0.523

Finn ES, Rosenberg MD. Beyond fingerprinting: Choosing predictive connectomes over reliable connectomes.524 NeuroImage. 2021; 239:118254. https://www.sciencedirect.com/science/article/pii/S1053811921005310, doi:525 10.1016/j.neuroimage.2021.118254.526

FirstMB, Williams BW. SCID-5-CV: structured clinical interview for DSM-5 disorders: clinician version. American527 Psychiatric Association Publishing,; 2016. Publication Title: SCID-5-CV: structured clinical interview for DSM-5528 disorders: clinician version.529

15 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

https://peh-med.biomedcentral.com/articles/10.1186/s13010-020-00087-2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070283/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070283/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070283/
10.3389/fnins.2016.00466
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880008/
10.1109/EMBC.2015.7318931
https://doi.org/10.1007/s11229-012-0166-z
https://doi.org/10.1007/s11229-012-0166-z
https://doi.org/10.1007/s11229-012-0166-z
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653747/
http://www.sciencedirect.com/science/article/pii/S1053811917300939
http://www.sciencedirect.com/science/article/pii/S1053811917300939
http://www.sciencedirect.com/science/article/pii/S1053811917300939
10.1016/j.neuroimage.2017.01.072
http://biorxiv.org/lookup/doi/10.1101/2021.06.14.448106
http://biorxiv.org/lookup/doi/10.1101/2021.06.14.448106
http://biorxiv.org/lookup/doi/10.1101/2021.06.14.448106
10.1101/2021.06.14.448106
https://www.sciencedirect.com/science/article/pii/S2095927320304965
https://www.sciencedirect.com/science/article/pii/S2095927320304965
https://www.sciencedirect.com/science/article/pii/S2095927320304965
10.1016/j.scib.2020.07.027
https://www.nature.com/articles/s41583-018-0071-7
10.1016/j.biopsych.2018.04.023
https://www.nature.com/articles/s41592-018-0235-4
https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2019.19050521
10.1176/appi.ajp.2019.19050521
10.1176/appi.ajp.2019.19050521
10.1176/appi.ajp.2019.19050521
https://doi.org/10.1007/s00234-021-02862-0
https://www.sciencedirect.com/science/article/pii/S1053811921005310
10.1016/j.neuroimage.2021.118254
10.1016/j.neuroimage.2021.118254
10.1016/j.neuroimage.2021.118254
https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance im-530 ages. Proc Natl Acad Sci U S A. 2000; 97(20):11050–11055. http://dx.doi.org/10.1073/pnas.200033797, doi:531 10.1073/pnas.200033797.532

Fischl B, Salat DH, Busa E, AlbertM,DieterichM,HaselgroveC, vander KouweA, Killiany R, KennedyD, Klaveness533 S, Montillo A, Makris N, Rosen B, Dale AM. Whole Brain Segmentation. Neuron. 2002; 33(3):341–355. http:534

//dx.doi.org/10.1016/s0896-6273(02)00569-x, doi: 10.1016/s0896-6273(02)00569-x.535

Flake JK, Fried EI. Measurement Schmeasurement: Questionable Measurement Practices and How to Avoid536 Them. Advances in Methods and Practices in Psychological Science. 2020; p. 2515245920952393. https:537

//doi.org/10.1177/2515245920952393, doi: 10.1177/2515245920952393, publisher: SAGE Publications Inc.538

Floris DL, Wolfers T, Zabihi M, Holz NE, ZwiersMP, Charman T, Tillmann J, Ecker C, Dell’Acqua F, Banaschewski T,539 Moessnang C, Baron-Cohen S, Holt R, Durston S, Loth E, Murphy DGM, Marquand A, Buitelaar JK, Beckmann540 CF, Ahmad J, et al. Atypical Brain Asymmetry in Autism—A Candiyear for Clinically Meaningful Stratifica-541 tion. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2020; https://www.sciencedirect.com/542

science/article/pii/S2451902220302433, doi: 10.1016/j.bpsc.2020.08.008.543

Fraza C, Zabihi M, Beckmann CF, Marquand AF, The Extremes of Normative Modelling. bioRxiv; 2022.544

https://www.biorxiv.org/content/10.1101/2022.08.23.505049v1, doi: 10.1101/2022.08.23.505049, pages:545 2022.08.23.505049 Section: New Results.546

Fraza CJ, Dinga R, Beckmann CF, Marquand AF. Warped Bayesian linear regression for normative mod-547 elling of big data. NeuroImage. 2021; 245:118715. https://www.sciencedirect.com/science/article/pii/548

S1053811921009873, doi: 10.1016/j.neuroimage.2021.118715.549

Gau R, Noble S, Heuer K, Bottenhorn KL, Bilgin IP, Yang YF, Huntenburg JM, Bayer JMM, Bethlehem RAI,550 Rhoads SA, Vogelbacher C, Borghesani V, Levitis E, Wang HT, Van Den Bossche S, Kobeleva X, Legarreta551 JH, Guay S, Atay SM, Varoquaux GP, et al. Brainhack: Developing a culture of open, inclusive, community-552 driven neuroscience. Neuron. 2021; 109(11):1769–1775. https://www.sciencedirect.com/science/article/pii/553

S0896627321002312, doi: 10.1016/j.neuron.2021.04.001.554

Gershon RC, Cella D, Fox NA, Havlik RJ, Hendrie HC, Wagster MV. Assessment of neurological and behavioural555 function: the NIH Toolbox. The Lancet Neurology. 2010; 9(2):138–139. http://www.sciencedirect.com/science/556

article/pii/S1474442209703357, doi: 10.1016/S1474-4422(09)70335-7.557

Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF,558 Jenkinson M. A multi-modal parcellation of human cerebral cortex. Nature. 2016; 536(7615):171–178.559

Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, Ortega BN, Zaiko YV, Roach EL, Kor-560 gaonkar MS, Grieve SM, Galatzer-Levy I, Fox PT, Etkin A. Identification of a Common Neurobiological Sub-561 strate for Mental Illness. JAMA Psychiatry. 2015; 72(4):305–315. https://doi.org/10.1001/jamapsychiatry.2014.562

2206, doi: 10.1001/jamapsychiatry.2014.2206.563

Greene AS, Shen X, Noble S, Horien C, Hahn CA, Arora J, Tokoglu F, Spann MN, Carrión CI, Barron DS, Sanacora564 G, Srihari VH, Woods SW, Scheinost D, Constable RT. Brain–phenotype models fail for individuals who defy565 sample stereotypes. Nature. 2022; 609(7925):109–118. https://www.nature.com/articles/s41586-022-05118-w,566 doi: 10.1038/s41586-022-05118-w, number: 7925 Publisher: Nature Publishing Group.567

Henrich J, Heine SJ, Norenzayan A. The weirdest people in the world? Behavioral and Brain Sci-568 ences. 2010; 33(2):61–83. https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/569

abs/weirdest-people-in-the-world/BF84F7517D56AFF7B7EB58411A554C17, doi: 10.1017/S0140525X0999152X,570 publisher: Cambridge University Press.571

Holz NE, Floris DL, Llera A, Aggensteiner PM, Kia SM,Wolfers T, Baumeister S, Böttinger B, Glennon JC, Hoekstra572 PJ, Dietrich A, SaamMC, Schulze UME, LythgoeDJ,Williams SCR, Santosh P, Rosa-JusticiaM, Bargallo N, Castro-573 Fornieles J, Arango C, et al. Age-related brain deviations and aggression. Psychological Medicine. 2022; p.574 1–10. doi: 10.1017/S003329172200068X.575

Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings576 and their implications for synaptic changes. Neuropsychopharmacology. 2022; p. 1–17. https://www.nature.577

com/articles/s41386-022-01426-x, doi: 10.1038/s41386-022-01426-x, publisher: Nature Publishing Group.578

Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P. Research Domain Criteria579 (RDoC): Toward a New Classification Framework for Research on Mental Disorders. American Journal of580 Psychiatry. 2010; 167(7):748–751. http://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2010.09091379, doi:581 10.1176/appi.ajp.2010.09091379, publisher: American Psychiatric Publishing.582

16 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

http://dx.doi.org/10.1073/pnas.200033797
10.1073/pnas.200033797
10.1073/pnas.200033797
10.1073/pnas.200033797
http://dx.doi.org/10.1016/s0896-6273(02)00569-x
http://dx.doi.org/10.1016/s0896-6273(02)00569-x
http://dx.doi.org/10.1016/s0896-6273(02)00569-x
https://doi.org/10.1177/2515245920952393
https://doi.org/10.1177/2515245920952393
https://doi.org/10.1177/2515245920952393
https://www.sciencedirect.com/science/article/pii/S2451902220302433
https://www.sciencedirect.com/science/article/pii/S2451902220302433
https://www.sciencedirect.com/science/article/pii/S2451902220302433
10.1016/j.bpsc.2020.08.008
https://www.biorxiv.org/content/10.1101/2022.08.23.505049v1
10.1101/2022.08.23.505049
https://www.sciencedirect.com/science/article/pii/S1053811921009873
https://www.sciencedirect.com/science/article/pii/S1053811921009873
https://www.sciencedirect.com/science/article/pii/S1053811921009873
10.1016/j.neuroimage.2021.118715
https://www.sciencedirect.com/science/article/pii/S0896627321002312
https://www.sciencedirect.com/science/article/pii/S0896627321002312
https://www.sciencedirect.com/science/article/pii/S0896627321002312
10.1016/j.neuron.2021.04.001
http://www.sciencedirect.com/science/article/pii/S1474442209703357
http://www.sciencedirect.com/science/article/pii/S1474442209703357
http://www.sciencedirect.com/science/article/pii/S1474442209703357
https://doi.org/10.1001/jamapsychiatry.2014.2206
https://doi.org/10.1001/jamapsychiatry.2014.2206
https://doi.org/10.1001/jamapsychiatry.2014.2206
10.1001/jamapsychiatry.2014.2206
https://www.nature.com/articles/s41586-022-05118-w
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/abs/weirdest-people-in-the-world/BF84F7517D56AFF7B7EB58411A554C17
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/abs/weirdest-people-in-the-world/BF84F7517D56AFF7B7EB58411A554C17
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/abs/weirdest-people-in-the-world/BF84F7517D56AFF7B7EB58411A554C17
https://www.nature.com/articles/s41386-022-01426-x
https://www.nature.com/articles/s41386-022-01426-x
https://www.nature.com/articles/s41386-022-01426-x
http://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2010.09091379
10.1176/appi.ajp.2010.09091379
10.1176/appi.ajp.2010.09091379
10.1176/appi.ajp.2010.09091379
https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


Itälinna V, Kaltiainen H, Forss N, Liljeström M, Parkkonen L, Detecting mild traumatic brain injury with MEG,583 normative modelling and machine learning. medRxiv; 2022. https://www.medrxiv.org/content/10.1101/2022.584

09.29.22280521v1, doi: 10.1101/2022.09.29.22280521, pages: 2022.09.29.22280521.585

Jones MC, Pewsey A. Sinh-arcsinh distributions. Biometrika. 2009; 96(4):761–780. https://www.jstor.org/stable/586

27798865.587

Kia SM, Beckmann CF, Marquand AF. Scalable Multi-Task Gaussian Process Tensor Regression for Normative588 Modeling of Structured Variation in Neuroimaging Data. arXiv:180800036 [cs, stat]. 2018; http://arxiv.org/589

abs/1808.00036.590

Kia SM, Huijsdens H, Dinga R, Wolfers T, Mennes M, Andreassen OA, Westlye LT, Beckmann CF, Marquand AF.591 Hierarchical Bayesian Regression for Multi-site Normative Modeling of Neuroimaging Data. In: Martel AL,592 Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, Racoceanu D, Joskowicz L, editors.Medical Im-593

age Computing and Computer Assisted Intervention – MICCAI 2020 Lecture Notes in Computer Science, Springer594 International Publishing; 2020. p. 699–709. doi: 10.1007/978-3-030-59728-3_68.595

Kia SM, Huijsdens H, Rutherford S, Dinga R, Wolfers T, Mennes M, Andreassen OA, Westlye LT, Beckmann596 CF, Marquand AF. Federated Multi-Site Normative Modeling using Hierarchical Bayesian Regression.597 bioRxiv. 2021; p. 2021.05.28.446120. https://www.biorxiv.org/content/10.1101/2021.05.28.446120v1, doi:598 10.1101/2021.05.28.446120, publisher: Cold Spring Harbor Laboratory Section: New Results.599

Kia SM, Marquand A. NormativeModeling of Neuroimaging Data using ScalableMulti-Task Gaussian Processes.600 arXiv:180601047 [cs, stat]. 2018; http://arxiv.org/abs/1806.01047.601

Kjelkenes R, Wolfers T, Alnæs D, van der Meer D, Pedersen ML, Dahl A, Voldsbekk I, Moberget T, Tamnes602 CK, Andreassen OA, Marquand AF, Westlye LT. Mapping Normative Trajectories of Cognitive Func-603 tion and Its Relation to Psychopathology Symptoms and Genetic Risk in Youth. Biological Psychia-604 try Global Open Science. 2022; https://www.sciencedirect.com/science/article/pii/S266717432200012X, doi:605 10.1016/j.bpsgos.2022.01.007.606

Klapwijk ET, van de Kamp F, van der Meulen M, Peters S, Wierenga LM. Qoala-T: A supervised-learning607 tool for quality control of FreeSurfer segmented MRI data. NeuroImage. 2019; 189:116–129. doi:608 10.1016/j.neuroimage.2019.01.014.609

Kong R, Li J, Orban C, SabuncuMR, Liu H, Schaefer A, Sun N, Zuo XN, Holmes AJ, Eickhoff SB, Yeo BTT. Spatial To-610 pography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion. Cere-611 bral Cortex (New York, NY). 2019; 29(6):2533–2551. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519695/,612 doi: 10.1093/cercor/bhy123.613

Kumar S. NormVAE: Normative Modeling on Neuroimaging Data using Variational Autoencoders. aRxiv. 2021;614

https://arxiv.org/abs/2110.04903v2.615

Laumann T, Gordon E, Adeyemo B, Snyder A, Joo S, Chen MY, Gilmore A, McDermott K, Nelson S, Dosenbach616 NF, Schlaggar B, Mumford J, Poldrack R, Petersen S. Functional System and Areal Organization of a Highly617 Sampled Individual Human Brain. Neuron. 2015; 87(3):657–670. https://www.sciencedirect.com/science/618

article/pii/S0896627315006005, doi: 10.1016/j.neuron.2015.06.037.619

Lee W, Bindman J, Ford T, Glozier N, Moran P, Stewart R, Hotopf M. Bias in psychiatric case–control620 studies: Literature survey. The British Journal of Psychiatry. 2007; 190(3):204–209. https://www.621

cambridge.org/core/journals/the-british-journal-of-psychiatry/article/bias-in-psychiatric-casecontrol-studies/622

CA1B1AD515086BE2E546BEDDD8E77614, doi: 10.1192/bjp.bp.106.027250, publisher: Cambridge University623 Press.624

Lei D, Pinaya WHL, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Gill M, Vieira S,625 Huang X, Lui S, Scarpazza C, Young J, Arango C, Bullmore E, Qiyong G, McGuire P, Mechelli A. Detecting626 schizophrenia at the level of the individual: relative diagnostic value of whole-brain images, connectome-627 wide functional connectivity and graph-based metrics. Psychological Medicine. 2020; 50(11):1852–1861. doi:628 10.1017/S0033291719001934.629

Lei D, Pinaya WHL, Young J, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Vieira S, Huang630 X, Lui S, Scarpazza C, Arango C, Bullmore E, Gong Q, McGuire P, Mechelli A. Integrating machining learning631 and multimodal neuroimaging to detect schizophrenia at the level of the individual. Human Brain Mapping.632 2020; 41(5):1119–1135. doi: 10.1002/hbm.24863.633

17 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

https://www.medrxiv.org/content/10.1101/2022.09.29.22280521v1
https://www.medrxiv.org/content/10.1101/2022.09.29.22280521v1
https://www.medrxiv.org/content/10.1101/2022.09.29.22280521v1
10.1101/2022.09.29.22280521
https://www.jstor.org/stable/27798865
https://www.jstor.org/stable/27798865
https://www.jstor.org/stable/27798865
http://arxiv.org/abs/1808.00036
http://arxiv.org/abs/1808.00036
http://arxiv.org/abs/1808.00036
https://www.biorxiv.org/content/10.1101/2021.05.28.446120v1
10.1101/2021.05.28.446120
10.1101/2021.05.28.446120
10.1101/2021.05.28.446120
http://arxiv.org/abs/1806.01047
https://www.sciencedirect.com/science/article/pii/S266717432200012X
10.1016/j.bpsgos.2022.01.007
10.1016/j.bpsgos.2022.01.007
10.1016/j.bpsgos.2022.01.007
10.1016/j.neuroimage.2019.01.014
10.1016/j.neuroimage.2019.01.014
10.1016/j.neuroimage.2019.01.014
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519695/
https://arxiv.org/abs/2110.04903v2
https://www.sciencedirect.com/science/article/pii/S0896627315006005
https://www.sciencedirect.com/science/article/pii/S0896627315006005
https://www.sciencedirect.com/science/article/pii/S0896627315006005
10.1016/j.neuron.2015.06.037
https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/bias-in-psychiatric-casecontrol-studies/CA1B1AD515086BE2E546BEDDD8E77614
https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/bias-in-psychiatric-casecontrol-studies/CA1B1AD515086BE2E546BEDDD8E77614
https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/bias-in-psychiatric-casecontrol-studies/CA1B1AD515086BE2E546BEDDD8E77614
https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/bias-in-psychiatric-casecontrol-studies/CA1B1AD515086BE2E546BEDDD8E77614
https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/bias-in-psychiatric-casecontrol-studies/CA1B1AD515086BE2E546BEDDD8E77614
10.1192/bjp.bp.106.027250
10.1002/hbm.24863
https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


Levitis E, van Praag CDG, Gau R, Heunis S, DuPre E, Kiar G, Bottenhorn KL, Glatard T, Nikolaidis A, Whitaker634 KJ, Mancini M, Niso G, Afyouni S, Alonso-Ortiz E, Appelhoff S, Arnatkeviciute A, Atay SM, Auer T, Baracchini635 G, Bayer JMM, et al. Centering inclusivity in the design of online conferences—An OHBM–Open Science636 perspective. GigaScience. 2021; 10(8):giab051. https://doi.org/10.1093/gigascience/giab051, doi: 10.1093/gi-637 gascience/giab051.638

Li J, Bzdok D, Chen J, Tam A, Ooi LQR, Holmes AJ, Ge T, Patil KR, Jabbi M, Eickhoff SB, Yeo BTT, Genon S.639 Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectiv-640 ity. Science Advances. 2022; 8(11):eabj1812. https://www.science.org/doi/full/10.1126/sciadv.abj1812, doi:641 10.1126/sciadv.abj1812, publisher: American Association for the Advancement of Science.642

LindenDEJ. TheChallenges andPromise ofNeuroimaging in Psychiatry. Neuron. 2012; 73(1):8–22. https://www.643

cell.com/neuron/abstract/S0896-6273(11)01095-6, doi: 10.1016/j.neuron.2011.12.014, publisher: Elsevier.644

Loth E, Ahmad J, Chatham C, López B, Carter B, Crawley D, Oakley B, Hayward H, Cooke J, Cáceres ASJ, Bz-645 dok D, Jones E, Charman T, Beckmann C, Bourgeron T, Toro R, Buitelaar J, Murphy D, Dumas G. The646 meaning of significant mean group differences for biomarker discovery. PLOS Computational Biology.647 2021; 17(11):e1009477. https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009477, doi:648 10.1371/journal.pcbi.1009477, publisher: Public Library of Science.649

Lv J, Di Biase M, Cash RFH, Cocchi L, Cropley VL, Klauser P, Tian Y, Bayer J, Schmaal L, Cetin-Karayumak S,650 Rathi Y, Pasternak O, Bousman C, Pantelis C, Calamante F, Zalesky A. Individual deviations from normative651 models of brain structure in a large cross-sectional schizophrenia cohort. Molecular Psychiatry. 2020; p. 1–12.652

https://www.nature.com/articles/s41380-020-00882-5, doi: 10.1038/s41380-020-00882-5, publisher: Nature653 Publishing Group.654

Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, Donohue MR, Foran W, Miller RL,655 Hendrickson TJ, Malone SM, Kandala S, Feczko E, Miranda-Dominguez O, Graham AM, Earl EA, Perrone AJ,656 Cordova M, Doyle O, Moore LA, et al. Reproducible brain-wide association studies require thousands of657 individuals. Nature. 2022; p. 1–7. https://www.nature.com/articles/s41586-022-04492-9, doi: 10.1038/s41586-658 022-04492-9, publisher: Nature Publishing Group.659

Marquand A, Rutherford S, Kia SM, Wolfers T, Fraza C, Dinga R, Zabihi M, PCNToolkit. Zenodo; 2021. https:660

//zenodo.org/record/5207839, doi: 10.5281/zenodo.5207839.661

MarquandAF, Haak KV, Beckmann CF. Functional corticostriatal connection topographies predict goal directed662 behaviour in humans. Nature human behaviour. 2017; 1(8). https://www.ncbi.nlm.nih.gov/pmc/articles/663

PMC5549843/, doi: 10.1038/s41562-017-0146.664

Marquand AF, Kia SM, Zabihi M, Wolfers T, Buitelaar JK, Beckmann CF. Conceptualizing mental disorders as665 deviations from normative functioning. Molecular Psychiatry. 2019; 24(10):1415–1424. https://www.nature.666

com/articles/s41380-019-0441-1, doi: 10.1038/s41380-019-0441-1, number: 10 Publisher: Nature Publishing667 Group.668

Marquand AF, Rezek I, Buitelaar J, Beckmann CF. Understanding Heterogeneity in Clinical Cohorts Using Nor-669 mative Models: Beyond Case-Control Studies. Biological Psychiatry. 2016; 80(7):552–561. https://www.670

sciencedirect.com/science/article/pii/S0006322316000020, doi: 10.1016/j.biopsych.2015.12.023.671

McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of Common Neu-672 ral Circuit Disruptions in Cognitive Control Across Psychiatric Disorders. American Journal of Psychi-673 atry. 2017; 174(7):676–685. https://ajp.psychiatryonline.org/doi/full/10.1176/appi.ajp.2017.16040400, doi:674 10.1176/appi.ajp.2017.16040400, publisher: American Psychiatric Publishing.675

Meng X, Jiang R, Lin D, Bustillo J, Jones T, Chen J, Yu Q, Du Y, Zhang Y, Jiang T, Sui J, Calhoun VD. Predicting676 individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data.677 NeuroImage. 2017; 145:218–229. http://www.sciencedirect.com/science/article/pii/S105381191630146X, doi:678 10.1016/j.neuroimage.2016.05.026.679

Michelini G, Palumbo IM, DeYoung CG, Latzman RD, Kotov R. Linking RDoC and HiTOP: A new interface for680 advancing psychiatric nosology and neuroscience. Clinical Psychology Review. 2021; 86:102025. https://681

www.sciencedirect.com/science/article/pii/S0272735821000684, doi: 10.1016/j.cpr.2021.102025.682

Moriarity DP, Alloy LB. Back to Basics: The Importance of Measurement Properties in Biological Psychiatry.683 Neuroscience & Biobehavioral Reviews. 2021; 123:72–82. https://www.sciencedirect.com/science/article/pii/684

S0149763421000221, doi: 10.1016/j.neubiorev.2021.01.008.685

18 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

https://doi.org/10.1093/gigascience/giab051
https://www.science.org/doi/full/10.1126/sciadv.abj1812
10.1126/sciadv.abj1812
10.1126/sciadv.abj1812
10.1126/sciadv.abj1812
https://www.cell.com/neuron/abstract/S0896-6273(11)01095-6
https://www.cell.com/neuron/abstract/S0896-6273(11)01095-6
https://www.cell.com/neuron/abstract/S0896-6273(11)01095-6
10.1016/j.neuron.2011.12.014
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009477
10.1371/journal.pcbi.1009477
10.1371/journal.pcbi.1009477
10.1371/journal.pcbi.1009477
https://www.nature.com/articles/s41380-020-00882-5
https://www.nature.com/articles/s41586-022-04492-9
https://zenodo.org/record/5207839
https://zenodo.org/record/5207839
https://zenodo.org/record/5207839
10.5281/zenodo.5207839
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549843/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549843/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549843/
https://www.nature.com/articles/s41380-019-0441-1
https://www.nature.com/articles/s41380-019-0441-1
https://www.nature.com/articles/s41380-019-0441-1
https://www.sciencedirect.com/science/article/pii/S0006322316000020
https://www.sciencedirect.com/science/article/pii/S0006322316000020
https://www.sciencedirect.com/science/article/pii/S0006322316000020
10.1016/j.biopsych.2015.12.023
https://ajp.psychiatryonline.org/doi/full/10.1176/appi.ajp.2017.16040400
10.1176/appi.ajp.2017.16040400
10.1176/appi.ajp.2017.16040400
10.1176/appi.ajp.2017.16040400
http://www.sciencedirect.com/science/article/pii/S105381191630146X
10.1016/j.neuroimage.2016.05.026
10.1016/j.neuroimage.2016.05.026
10.1016/j.neuroimage.2016.05.026
https://www.sciencedirect.com/science/article/pii/S0272735821000684
https://www.sciencedirect.com/science/article/pii/S0272735821000684
https://www.sciencedirect.com/science/article/pii/S0272735821000684
10.1016/j.cpr.2021.102025
https://www.sciencedirect.com/science/article/pii/S0149763421000221
https://www.sciencedirect.com/science/article/pii/S0149763421000221
https://www.sciencedirect.com/science/article/pii/S0149763421000221
10.1016/j.neubiorev.2021.01.008
https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


Mottron L, Bzdok D. Diagnosing as autistic people increasingly distant from prototypes lead neither to clinical686 benefit nor to the advancement of knowledge. Molecular Psychiatry. 2022; 27(2):773–775. https://www.687

nature.com/articles/s41380-021-01343-3, doi: 10.1038/s41380-021-01343-3, number: 2 Publisher: Nature688 Publishing Group.689

Nour MM, Liu Y, Dolan RJ. Functional neuroimaging in psychiatry and the case for failing better.690 Neuron. 2022; 110(16):2524–2544. https://www.cell.com/neuron/abstract/S0896-6273(22)00647-X, doi:691 10.1016/j.neuron.2022.07.005, publisher: Elsevier.692

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,693 Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Ma-694 chine Learning in Python. Journal of Machine Learning Research. 2011; 12(85):2825–2830. http://jmlr.org/695

papers/v12/pedregosa11a.html.696

Pereira-Sanchez V, Castellanos FX. Neuroimaging in attention-deficit/hyperactivity disorder. Current Opin-697 ion in Psychiatry. 2021; 34(2):105–111. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879851/, doi:698 10.1097/YCO.0000000000000669.699

Power J, Cohen A, Nelson S, Wig G, Barnes K, Church J, Vogel A, Laumann T, Miezin F, Schlaggar B, Petersen S.700 Functional NetworkOrganization of theHumanBrain. Neuron. 2011; 72(4):665–678. http://www.sciencedirect.701

com/science/article/pii/S0896627311007926, doi: 10.1016/j.neuron.2011.09.006.702

Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: A robust ICA-based strat-703 egy for removingmotion artifacts from fMRI data. NeuroImage. 2015; 112:267–277. http://www.sciencedirect.704

com/science/article/pii/S1053811915001822, doi: 10.1016/j.neuroimage.2015.02.064.705

Pruim RHR, Mennes M, Buitelaar JK, Beckmann CF. Evaluation of ICA-AROMA and alternative strategies for706 motion artifact removal in resting state fMRI. NeuroImage. 2015; 112:278–287. http://linkinghub.elsevier.707

com/retrieve/pii/S1053811915001809, doi: 10.1016/j.neuroimage.2015.02.063.708

RahimM, Thirion B, BzdokD, Buvat I, VaroquauxG. Joint prediction ofmultiple scores captures better individual709 traits from brain images. NeuroImage. 2017; 158:145–154. http://www.sciencedirect.com/science/article/pii/710

S1053811917305438, doi: 10.1016/j.neuroimage.2017.06.072.711

Rios G, Tobar F. Compositionally-warped Gaussian processes. Neural Networks. 2019; 118:235–246. https:712

//linkinghub.elsevier.com/retrieve/pii/S0893608019301856, doi: 10.1016/j.neunet.2019.06.012.713

Rosa MJ, Portugal L, Hahn T, Fallgatter AJ, Garrido MI, Shawe-Taylor J, Mourao-Miranda J. Sparse714 network-based models for patient classification using fMRI. NeuroImage. 2015; 105:493–506. doi:715 10.1016/j.neuroimage.2014.11.021.716

Rosenberg MD, Finn ES. How to establish robust brain–behavior relationships without thousands of individu-717 als. Nature Neuroscience. 2022; 25(7):835–837. https://www.nature.com/articles/s41593-022-01110-9, doi:718 10.1038/s41593-022-01110-9, number: 7 Publisher: Nature Publishing Group.719

Rutherford S, Angstadt M, Sripada C, Chang SE. Leveraging big data for classification of children who stutter720 from fluent peers. bioRxiv. 2020; p. 2020.10.28.359711. https://www.biorxiv.org/content/10.1101/2020.10.28.721

359711v1, doi: 10.1101/2020.10.28.359711, publisher: Cold Spring Harbor Laboratory Section: New Results.722

Rutherford S, Fraza C, Dinga R, Kia SM, Wolfers T, Zabihi M, Berthet P, Worker A, Verdi S, Andrews D, Han LK,723 Bayer JM, Dazzan P, McGuire P, Mocking RT, Schene A, Sripada C, Tso IF, Duval ER, Chang SE, et al. Charting724 brain growth and aging at high spatial precision. eLife. 2022; 11:e72904. https://doi.org/10.7554/eLife.72904,725 doi: 10.7554/eLife.72904, publisher: eLife Sciences Publications, Ltd.726

Rutherford S, Kia SM, Wolfers T, Fraza C, Zabihi M, Dinga R, Berthet P, Worker A, Verdi S, Ruhe HG, Beckmann727 CF,Marquand AF. The normativemodeling framework for computational psychiatry. Nature Protocols. 2022;728 p. 1–24. https://www.nature.com/articles/s41596-022-00696-5, doi: 10.1038/s41596-022-00696-5, publisher:729 Nature Publishing Group.730

Salvador R, Radua J, Canales-Rodríguez EJ, Solanes A, Sarró S, Goikolea JM, Valiente A, Monté GC, Natividad731 MDC, Guerrero-Pedraza A, Moro N, Fernández-Corcuera P, Amann BL, Maristany T, Vieta E, McKenna PJ,732 Pomarol-Clotet E. Evaluation of machine learning algorithms and structural features for optimal MRI-based733 diagnostic prediction in psychosis. PloS One. 2017; 12(4):e0175683. doi: 10.1371/journal.pone.0175683.734

Sanislow CA. RDoC at 10: changing the discourse for psychopathology. World Psychiatry. 2020;735 19(3):311–312. https://onlinelibrary.wiley.com/doi/abs/10.1002/wps.20800, doi: 10.1002/wps.20800, _eprint:736 https://onlinelibrary.wiley.com/doi/pdf/10.1002/wps.20800.737

19 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

https://www.nature.com/articles/s41380-021-01343-3
https://www.nature.com/articles/s41380-021-01343-3
https://www.nature.com/articles/s41380-021-01343-3
https://www.cell.com/neuron/abstract/S0896-6273(22)00647-X
10.1016/j.neuron.2022.07.005
10.1016/j.neuron.2022.07.005
10.1016/j.neuron.2022.07.005
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879851/
10.1097/YCO.0000000000000669
10.1097/YCO.0000000000000669
10.1097/YCO.0000000000000669
http://www.sciencedirect.com/science/article/pii/S0896627311007926
http://www.sciencedirect.com/science/article/pii/S0896627311007926
http://www.sciencedirect.com/science/article/pii/S0896627311007926
10.1016/j.neuron.2011.09.006
http://www.sciencedirect.com/science/article/pii/S1053811915001822
http://www.sciencedirect.com/science/article/pii/S1053811915001822
http://www.sciencedirect.com/science/article/pii/S1053811915001822
10.1016/j.neuroimage.2015.02.064
http://linkinghub.elsevier.com/retrieve/pii/S1053811915001809
http://linkinghub.elsevier.com/retrieve/pii/S1053811915001809
http://linkinghub.elsevier.com/retrieve/pii/S1053811915001809
10.1016/j.neuroimage.2015.02.063
http://www.sciencedirect.com/science/article/pii/S1053811917305438
http://www.sciencedirect.com/science/article/pii/S1053811917305438
http://www.sciencedirect.com/science/article/pii/S1053811917305438
10.1016/j.neuroimage.2017.06.072
https://linkinghub.elsevier.com/retrieve/pii/S0893608019301856
https://linkinghub.elsevier.com/retrieve/pii/S0893608019301856
https://linkinghub.elsevier.com/retrieve/pii/S0893608019301856
10.1016/j.neunet.2019.06.012
10.1016/j.neuroimage.2014.11.021
10.1016/j.neuroimage.2014.11.021
10.1016/j.neuroimage.2014.11.021
https://www.nature.com/articles/s41593-022-01110-9
https://www.biorxiv.org/content/10.1101/2020.10.28.359711v1
https://www.biorxiv.org/content/10.1101/2020.10.28.359711v1
https://www.biorxiv.org/content/10.1101/2020.10.28.359711v1
10.1101/2020.10.28.359711
https://doi.org/10.7554/eLife.72904
10.7554/eLife.72904
https://www.nature.com/articles/s41596-022-00696-5
10.1371/journal.pone.0175683
https://onlinelibrary.wiley.com/doi/abs/10.1002/wps.20800
10.1002/wps.20800
https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, Eickhoff SB, Yeo BTT. Local-Global Par-738 cellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cerebral Cortex (New739 York, NY). 2018; 28(9):3095–3114. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095216/, doi: 10.1093/cer-740 cor/bhx179.741

Shen X, Tokoglu F, Papademetris X, Constable RT. Groupwise whole-brain parcellation from resting-state fMRI742 data for network node identification. NeuroImage. 2013; 82:403–415. http://linkinghub.elsevier.com/retrieve/743

pii/S1053811913005818, doi: 10.1016/j.neuroimage.2013.05.081.744

Shi D, Li Y, ZhangH, Yao X,Wang S,WangG, Ren K. Machine Learning of Schizophrenia Detectionwith Structural745 and Functional Neuroimaging. Disease Markers. 2021; 2021:9963824. doi: 10.1155/2021/9963824.746

Siegel JS, Mitra A, Laumann TO, Seitzman BA, Raichle M, Corbetta M, Snyder AZ. Data Quality Influences747 Observed Links Between Functional Connectivity and Behavior. Cerebral Cortex (New York, NY). 2017;748 27(9):4492–4502. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410500/, doi: 10.1093/cercor/bhw253.749

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann750 CF. Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the751 National Academy of Sciences of the United States of America. 2009; 106(31):13040–13045. https://www.752

ncbi.nlm.nih.gov/pmc/articles/PMC2722273/, doi: 10.1073/pnas.0905267106.753

Snelson E, Rasmussen CE, Ghahramani Z. Warped Gaussian processes. In: Proceedings of the 16th International754

Conference on Neural Information Processing Systems NIPS’03, MIT Press;. p. 337–344.755

Sprooten E, Rasgon A, Goodman M, Carlin A, Leibu E, Lee WH, Frangou S. Addressing reverse inference in756 psychiatric neuroimaging: Meta-analyses of task-related brain activation in common mental disorders. Hu-757 man Brain Mapping. 2017; 38(4):1846–1864. https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23486, doi:758 10.1002/hbm.23486, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.23486.759

Sripada C, Angstadt M, Rutherford S, Kessler D, Kim Y, Yee M, Levina E. Basic Units of Inter-Individual Vari-760 ation in Resting State Connectomes. Scientific Reports. 2019; 9(1):1900. https://www.nature.com/articles/761

s41598-018-38406-5, doi: 10.1038/s41598-018-38406-5.762

Sripada C, Angstadt M, Rutherford S, Taxali A, Shedden K. Toward a “treadmill test” for cognition: Im-763 proved prediction of general cognitive ability from the task activated brain. Human Brain Mapping. 2020;764 41(12):3186–3197. https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25007, doi: 10.1002/hbm.25007,765 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.25007.766

Sripada C, Rutherford S, Angstadt M, Thompson WK, Luciana M, Weigard A, Hyde LH, Heitzeg M. Prediction767 of neurocognition in youth from resting state fMRI. Molecular Psychiatry. 2019; https://doi.org/10.1038/768

s41380-019-0481-6, doi: 10.1038/s41380-019-0481-6.769

Sui J, Qi S, van Erp TGM, Bustillo J, Jiang R, Lin D, Turner JA, Damaraju E, Mayer AR, Cui Y, Fu Z, Du Y, Chen J,770 Potkin SG, Preda A, Mathalon DH, Ford JM, Voyvodic J, Mueller BA, Belger A, et al. Multimodal neuromarkers771 in schizophrenia via cognition-guided MRI fusion. Nature Communications. 2018; 9:3028. https://www.ncbi.772

nlm.nih.gov/pmc/articles/PMC6072778/, doi: 10.1038/s41467-018-05432-w.773

Taxali A, Angstadt M, Rutherford S, Sripada C. Boost in Test–Retest Reliability in Resting State fMRI with774 Predictive Modeling. Cerebral Cortex. 2021; 31(6):2822–2833. https://doi.org/10.1093/cercor/bhaa390, doi:775 10.1093/cercor/bhaa390.776

Tso IF, Angstadt M, Rutherford S, Peltier S, Diwadkar VA, Taylor SF. Dynamic causal modeling of eye gaze777 processing in schizophrenia. Schizophrenia Research. 2021; 229:112–121. https://www.sciencedirect.com/778

science/article/pii/S092099642030551X, doi: 10.1016/j.schres.2020.11.012.779

Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, WU-Minn HCP Consortium.780 The WU-Minn Human Connectome Project: an overview. NeuroImage. 2013; 80:62–79. doi:781 10.1016/j.neuroimage.2013.05.041.782

Venkataraman A, Whitford TJ, Westin CF, Golland P, Kubicki M. Whole Brain Resting State Functional Connec-783 tivity Abnormalities in Schizophrenia. Schizophrenia Research. 2012; 139(1):7–12. https://www.ncbi.nlm.nih.784

gov/pmc/articles/PMC3393792/, doi: 10.1016/j.schres.2012.04.021.785

Verdi S, Marquand AF, Schott JM, Cole JH. Beyond the average patient: how neuroimaging models can address786 heterogeneity in dementia. Brain. 2021; https://doi.org/10.1093/brain/awab165, doi: 10.1093/brain/awab165.787

20 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095216/
http://linkinghub.elsevier.com/retrieve/pii/S1053811913005818
http://linkinghub.elsevier.com/retrieve/pii/S1053811913005818
http://linkinghub.elsevier.com/retrieve/pii/S1053811913005818
10.1016/j.neuroimage.2013.05.081
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410500/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722273/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722273/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722273/
10.1073/pnas.0905267106
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23486
10.1002/hbm.23486
10.1002/hbm.23486
10.1002/hbm.23486
https://www.nature.com/articles/s41598-018-38406-5
https://www.nature.com/articles/s41598-018-38406-5
https://www.nature.com/articles/s41598-018-38406-5
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25007
10.1002/hbm.25007
https://doi.org/10.1038/s41380-019-0481-6
https://doi.org/10.1038/s41380-019-0481-6
https://doi.org/10.1038/s41380-019-0481-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072778/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072778/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072778/
https://doi.org/10.1093/cercor/bhaa390
https://www.sciencedirect.com/science/article/pii/S092099642030551X
https://www.sciencedirect.com/science/article/pii/S092099642030551X
https://www.sciencedirect.com/science/article/pii/S092099642030551X
10.1016/j.schres.2020.11.012
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2013.05.041
10.1016/j.neuroimage.2013.05.041
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393792/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393792/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393792/
10.1016/j.schres.2012.04.021
https://doi.org/10.1093/brain/awab165
https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


Virtanen P, Gommers R, Oliphant TE, HaberlandM, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser788 W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E,789 Carey CJ, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods. 2020;790 17(3):261–272. http://dx.doi.org/10.1038/s41592-019-0686-2, doi: 10.1038/s41592-019-0686-2.791

Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-Based Neurologic Signature792 of Physical Pain. New England Journal of Medicine. 2013; 368(15):1388–1397. https://doi.org/10.793

1056/NEJMoa1204471, doi: 10.1056/NEJMoa1204471, publisher: Massachusetts Medical Society _eprint:794 https://doi.org/10.1056/NEJMoa1204471.795

Wannan CMJ, Cropley VL, Chakravarty MM, Bousman C, Ganella EP, Bruggemann JM,Weickert TW,Weickert CS,796 Everall I, McGorry P, Velakoulis D, Wood SJ, Bartholomeusz CF, Pantelis C, Zalesky A. Evidence for Network-797 Based Cortical Thickness Reductions in Schizophrenia. The American Journal of Psychiatry. 2019; 176(7):552–798 563. doi: 10.1176/appi.ajp.2019.18040380.799

Winter NR, Leenings R, Ernsting J, Sarink K, Fisch L, Emden D, Blanke J, Goltermann J, Opel N, Barkhau C, Mein-800 ert S, Dohm K, Repple J, Mauritz M, Gruber M, Leehr EJ, Grotegerd D, Redlich R, Jansen A, Nenadic I, et al.801 Quantifying Deviations of Brain Structure and Function in Major Depressive Disorder Across Neuroimaging802 Modalities. JAMA Psychiatry. 2022; 79(9):879–888. https://doi.org/10.1001/jamapsychiatry.2022.1780, doi:803 10.1001/jamapsychiatry.2022.1780.804

Wolfers T, Arenas AL, Onnink AMH, Dammers J, Hoogman M, Zwiers MP, Buitelaar JK, Franke B, Marquand AF,805 Beckmann CF. Refinement by integration: aggregated effects ofmultimodal imagingmarkers on adult ADHD.806 Journal of Psychiatry & Neuroscience : JPN. 2017; 42(6):386–394. https://www.ncbi.nlm.nih.gov/pmc/articles/807

PMC5662460/, doi: 10.1503/jpn.160240.808

Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to pre-809 dicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neu-810 roscience & Biobehavioral Reviews. 2015; 57:328–349. http://www.sciencedirect.com/science/article/pii/811

S0149763415002018, doi: 10.1016/j.neubiorev.2015.08.001.812

Wolfers T, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, Buitelaar JK, Ueland T, Melle I, Franke813 B, Andreassen OA, Beckmann CF, Westlye LT, Marquand AF. Mapping the Heterogeneous Phenotype of814 Schizophrenia and Bipolar Disorder Using Normative Models. JAMA Psychiatry. 2018; 75(11):1146–1155.815

https://doi.org/10.1001/jamapsychiatry.2018.2467, doi: 10.1001/jamapsychiatry.2018.2467.816

Wolfers T, Rokicki J, Alnæs D, Berthet P, Agartz I, Kia SM, Kaufmann T, Zabihi M, Moberget T, Melle I, Beck-817 mann CF, Andreassen OA, Marquand AF, Westlye LT. Replicating extensive brain structural heterogene-818 ity in individuals with schizophrenia and bipolar disorder. Human Brain Mapping. 2021; 42(8):2546–2555.819

https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25386, doi: https://doi.org/10.1002/hbm.25386, _eprint:820 https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.25386.821

Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational822 neuroimaging. Nature Neuroscience. 2017; 20(3):365–377. http://www.nature.com/articles/nn.4478, doi:823 10.1038/nn.4478.824

Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L,825 Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic826 functional connectivity. Journal of Neurophysiology. 2011; 106(3):1125–1165. https://www.ncbi.nlm.nih.gov/827

pmc/articles/PMC3174820/, doi: 10.1152/jn.00338.2011.828

Yu Q, Allen EA, Sui J, Arbabshirani MR, Pearlson G, Calhoun VD. Brain connectivity networks in schizophrenia829 underlying resting state functionalmagnetic resonance imaging. Current topics inmedicinal chemistry. 2012;830 12(21):2415–2425. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429862/.831

Zabihi M, Floris DL, Kia SM, Wolfers T, Tillmann J, Arenas AL, Moessnang C, Banaschewski T, Holt R, Baron-832 Cohen S, Loth E, Charman T, Bourgeron T, Murphy D, Ecker C, Buitelaar JK, Beckmann CF, Marquand A. Frac-833 tionating autism based on neuroanatomical normative modeling. Translational Psychiatry. 2020; 10(1):1–834 10. https://www.nature.com/articles/s41398-020-01057-0, doi: 10.1038/s41398-020-01057-0, number: 1 Pub-835 lisher: Nature Publishing Group.836

Zabihi M, Oldehinkel M, Wolfers T, Frouin V, Goyard D, Loth E, Charman T, Tillmann J, Banaschewski T, Du-837 mas G, Holt R, Baron-Cohen S, Durston S, Bölte S, Murphy D, Ecker C, Buitelaar JK, Beckmann CF, Mar-838 quand AF. Dissecting the Heterogeneous Cortical Anatomy of Autism Spectrum Disorder Using Norma-839 tive Models. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2019; 4(6):567–578. https:840

//www.sciencedirect.com/science/article/pii/S245190221830329X, doi: 10.1016/j.bpsc.2018.11.013.841

21 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

http://dx.doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1056/NEJMoa1204471
https://doi.org/10.1056/NEJMoa1204471
https://doi.org/10.1056/NEJMoa1204471
10.1176/appi.ajp.2019.18040380
https://doi.org/10.1001/jamapsychiatry.2022.1780
10.1001/jamapsychiatry.2022.1780
10.1001/jamapsychiatry.2022.1780
10.1001/jamapsychiatry.2022.1780
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662460/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662460/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662460/
10.1503/jpn.160240
http://www.sciencedirect.com/science/article/pii/S0149763415002018
http://www.sciencedirect.com/science/article/pii/S0149763415002018
http://www.sciencedirect.com/science/article/pii/S0149763415002018
10.1016/j.neubiorev.2015.08.001
https://doi.org/10.1001/jamapsychiatry.2018.2467
10.1001/jamapsychiatry.2018.2467
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25386
https://doi.org/10.1002/hbm.25386
http://www.nature.com/articles/nn.4478
10.1038/nn.4478
10.1038/nn.4478
10.1038/nn.4478
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174820/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174820/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174820/
10.1152/jn.00338.2011
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429862/
https://www.nature.com/articles/s41398-020-01057-0
https://www.sciencedirect.com/science/article/pii/S245190221830329X
https://www.sciencedirect.com/science/article/pii/S245190221830329X
https://www.sciencedirect.com/science/article/pii/S245190221830329X
10.1016/j.bpsc.2018.11.013
https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


Zhang J, Kucyi A, Raya J, Nielsen AN, Nomi JS, Damoiseaux JS, Greene DJ, Horovitz SG, Uddin LQ, Whitfield-842 Gabrieli S. What have we really learned from functional connectivity in clinical populations? Neu-843 roImage. 2021; 242:118466. https://www.sciencedirect.com/science/article/pii/S1053811921007394, doi:844 10.1016/j.neuroimage.2021.118466.845

22 of 26

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 15, 2022. ; https://doi.org/10.1101/2022.11.14.516460doi: bioRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S1053811921007394
10.1016/j.neuroimage.2021.118466
10.1016/j.neuroimage.2021.118466
10.1016/j.neuroimage.2021.118466
https://doi.org/10.1101/2022.11.14.516460
http://creativecommons.org/licenses/by-nc/4.0/


Functional MRI Acquisition Parameters846

In the HCP study, four runs of resting state fMRI data (14.5 minutes each) were acquired on a847

Siemens Skyra 3 Tesla scanner using multi-band gradient-echo EPI (TR=720ms, TE=33ms, flip an-848

gle=52, multiband acceleration factor=8, 2mm isotropic voxels, FOV=208×180mm, 72 slices, alter-849

nating RL/LR phase encode direction). T1weighted scanswere acquiredwith 3DMPRAGE sequence850

(TR=2400ms, TE=2.14ms, TI=1000ms, flip angle=8, 0.7mm isotropic voxels, FOV=224mm, 256 sagit-851

tal slices) and T2 weighted scans were acquired with a SPACE sequence (TR=3200ms, TE=565ms,852

0.7mm isotropic voxels, FOV=224mm, 256 sagittal slices). In the COBRE study, the T1 weighted853

acquisition is a multi-echo MPRAGE (MEMPR) sequence (1 mm isotropic). Resting state functional854

MRI data was collected with single-shot full k-space echo-planar imaging (EPI) (TR = 2000 ms, TE =855

29 ms, FOV = 64x64, 32 slices in axial plane interleaved multi slice series ascending, voxel size =856

3x3x4mm3). TheUniversity ofMichigan SchizGaze studywas collected in two phaseswith different857

parameters but using the same MRI machine (3.0 T GE MR 750 Discovery scanner). In SchizGaze1858

(N=47), functional images were acquired with a T2*-weighted, reverse spiral acquisition sequence859

(TR = 2000 ms, 240 volumes (8 minutes), 3mm isotropic voxels) and a T1-weighted image was ac-860

quired in the same prescription as the functional images to facilitate co-registration. In SchizGaze2861

(N=68), functional images were acquired with a T2*-weightedmulti-band EPI sequence (multi-band862

acceleration factor of 8, TR = 800 ms, 453 volumes (6 minutes), 2.4mm isotropic voxels) and T1w863

(MPRAGE) and T2w structural scans were acquired for co-registration with the functional data. In864

addition, field maps were acquired to correct for intensity and geometric distortions.865

Functional MRI Preprocessing Methods866

T1w images are corrected for intensity nonuniformity, reconstructed with recon-all (FreeSurfer),867

spatially normalized (ANTs), and segmented with FAST (FSL). For every BOLD run, data are co-868

registered to the corresponding T1w reference, and the BOLD signal is sampled onto the subject’s869

surfaces with mri_vol2surf (FreeSurfer). A set of noise regressors are generated during the pre-870

ceding steps that are used to remove a number of artifactual signals from the data during subse-871

quent processing, and these noise regressors include: head-motion parameters (via MCFLIFT; FSL)872

framewise displacement and DVARS, and physiological noise regressors for use in component-873

based noise correction (CompCor). ICA-based denoising is implemented via ICA-AROMA and we874

compute ‘non-aggressive’ noise regressors. Resting state connectomes are generated from the875

fMRIPrep processed resting state data using Nilearn, denoising using the noise regressors gener-876

ated above, with orthogonalization of regressors to avoid reintroducing artifactual signals.877

Functional Brain Networks Normative Modeling878

Data from 40 sites were combined to create the initial full sample. These sites are described in879

detail in 3, including the sample size, age (mean and standard deviation), and sex distribution of880

each site. Many sites were pulled from publicly available data sets including ABCD, CAMCAN, CMI-881

HBN, HCP-Aging, HCP-Development, HCP-Early Psychosis, HCP-Young Adult, NKI-RS, OpenNeuro,882

PNC, and UKBiobank. For data sets that include repeated visits (i.e., ABCD, UKBiobank), only the883

first visit was included. Full details regarding sample characteristics, diagnostic procedures and884

acquisition protocols can be found in the publications associated with each of the studies. Training885

and testing data sets (80/20) were created using scikit-learn’s train_test_split function, stratifying886

on the site variable. To show generalizability of themodels to new data not included in training, we887

leveraged three datasets (ds000243, ds002843, ds003798) from OpenNeuro to create a multi-site888

transfer data set.889

Normativemodelingwas runusing python3.8 and thePCNtoolkit package (version 0.26). Bayesian890

Linear Regression (BLR) with likelihoodwarping was used to predict each between network connec-891

tivity pair (Yeo-17 and Smith-10) from a vector of covariates (age, sex, site, meanFD). For a detailed892

mathematical description see (Fraza et al., 2021). Briefly, for each brain region of interest, y is893

predicted as:894
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𝑦 = 𝜔⊺𝜑(𝑥) + 𝜖 (4)
Where 𝜔⊺ is the estimated weight vector, 𝜑(𝑥) is a basis expansion of the of covariate vector 𝑥,895

consisting of a B-spline basis expansion (cubic spline with 5 evenly spaced knots) to model non-896

linear effects of age, and 𝜖 = 𝜂(𝜃, 𝛽) a Gaussian noise distribution with mean zero and noise preci-897

sion term 𝛽 (the inverse variance). A likelihood warping approach (Rios and Tobar, 2019; Snelson898

et al., ????) was used to model non-Gaussian effects. This involves applying a bijective nonlinear899

warping function to the non-Gaussian response variables to map them to a Gaussian latent space900

where inference can be performed in closed form. We employed a ‘sinarcsinsh’ warping function,901

which is equivalent to the SHASH distribution commonly used in the generalized additivemodeling902

literature (Jones and Pewsey, 2009) and which we have found to perform well in prior work (Dinga903

et al., 2021; Fraza et al., 2021). Site variationwasmodeled using fixed effects, whichwehave shown904

in prior work provides relatively good performance (Kia et al., 2021), although random effects for905

site may provide additional flexibility at higher computational cost. A fast numerical optimization906

algorithmwas used to optimize hyperparameters (’Powell’). Computational complexity of hyperpa-907

rameter optimization was controlled by minimizing the negative log likelihood. Deviation scores908

(Z-scores) are calculated for the 𝑛𝑡ℎ subject, and 𝑑𝑡ℎ brain area, in the test set as:909

𝑍𝑛𝑑 =
𝑦𝑛𝑑 − ̂𝑦𝑛𝑑

√

(𝜃𝑑)2 + (𝜃∗𝑑 )
2

(5)

Where 𝑦𝑛𝑑 is the true response, ̂𝑦𝑛𝑑 is the predicted mean, 𝜃2𝑑 is the estimated noise variance (re-910

flecting uncertainty in the data), and 𝜃2∗𝑑 is the variance attributed to modeling uncertainty. Model911

fit for each brain region was evaluated by calculating the explained variance (which measures cen-912

tral tendency), the mean squared log-loss (MSLL, central tendency and variance) plus skew and913

kurtosis of the deviation scores (equation 5) which measures how well the shape of the regression914

function matches the data (Dinga et al., 2021).915

Appendix 0 Table 3. Functional normative model train/test demographics per site.
Train Test

Site N Sex
(F/M)%

Age
(m, s.d) N Sex

(F/M)%
Age
(m, s.d)

ABCD_01 60 48.33, 51.67 9.87, 0.58 73 56.16, 43.84 9.95/0.61
ABCD_02 244 47.54, 52.46 10.12, 0.64 258 47.29, 52.71 10.1, 0.62
ABCD_03 282 47.87, 52.13 9.87, 0.62 260 50, 50 9.91, 0.61
ABCD_04 258 49.61, 50.39 9.91, 0.64 268 50.37, 49.63 9.77, 0.64
ABCD_05 161 62.11, 37.89 9.85, 0.63 144 42.36, 57.64 9.96, 0.63
ABCD_06 228 54.82, 45.18 9.98, 0.58 240 48.75, 51.25 10.02, 0.59
ABCD_07 128 50.78, 49.22 9.86, 0.64 128 42.97, 57.03 9.93, 0.61
ABCD_08 113 50.44, 49.56 9.98, 0.63 104 45.19, 54.81 10.1, 0.59
ABCD_09 173 48.55, 51.45 10.05, 0.59 175 56, 44 9.89, 0.60
ABCD_10 187 48.66, 51.34 9.88, 0.62 223 45.29, 54.71 9.93, 0.64
ABCD_11 192 51.04, 48.96 9.88, 0.65 173 51.45, 48.55 9.79, 0.62
ABCD_12 70 50, 50 9.85, 0.60 68 1.47, 54.41 9.95, 0.55
ABCD_13 209 51.67, 48.33 9.84, 0.61 191 52.88, 47.12 9.84, 0.60
ABCD_14 286 48.6, 51.4 10.24, 0.51 220 45.45, 54.55 10.2, 0.54
ABCD_15 138 55.07, 44.93 9.94, 0.62 149 45.64, 54.36 10.0, 0.58
ABCD_16 458 46.29, 53.71 9.89, 0.64 462 42.64, 48.7 9.90, 0.66
ABCD_17 204 54.9, 45.1 9.84, 0.61 221 41.63, 58.37 9.87, 0.65
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ABCD_18 97 37.11, 62.89 9.91, 0.67 109 53.21, 46.79 10.0, 0.60
ABCD_19 187 55.08, 44.92 10.12, 0.55 205 52.68, 47.32 10.1, 0.54
ABCD_20 278 50.72, 49.28 10.05, 0.48 259 54.44, 45.56 10.1, 0.50
ABCD_21 212 44.81, 55.19 9.97, 0.63 238 49.58, 50.42 9.94, 0.61
AOMIC_PIPO1 162 58.64, 41.36 22.2, 1.8 41 53.66, 46.34 22.4, 1.7
AOMIC_PIPO2 166 59.64, 40.36 22.2, 1.7 41 46.34, 53.66 22.1, 2.2
CAMCAN 495 49.49, 50.51 53.2, 18.3 124 54.84, 45.16 55.3, 20.0
CMI-HBN_CBIC 133 37.59, 62.41 11.9, 3.4 33 48.48, 51.52 11.7, 3.6
CMI-HBN_RU 74 37.84, 62.16 11.6, 3.6 18 38.89, 61.11 10.9, 3.5
CNP-35343.0 79 44.3, 55.7 31.1, 9.1 19 52.63, 47.37 32.1, 7.4
CNP-35426.0 18 44.44, 55.56 31.1, 8.2 4 75, 25 34.8, 10.9
HCP_A_MGH 130 51.54, 48.46 62.1, 16.1 33 51.52, 48.48 59.1, 15.6
HCP_A_UCLA 118 56.78, 43.22 55.9, 13.1 30 60, 40 59.3, 15.8
HCP_A_UM 164 56.71, 43.29 61.9, 17.0 41 48.78, 51.22 60.8, 16.2
HCP_A_WU 167 61.08, 38.92 61.0, 15.4 42 52.38, 47.62 60.2, 15.2
HCP_D_MGH 137 54.01, 45.99 14.7, 3.8 34 55.88, 44.12 13.1, 3.4
HCP_D_UCLA 82 50, 50 14.6, 3.7 21 23.81, 28.57 14.7, 4.0
HCP_D_UM 99 54.55, 44.44 13.8, 3.7 24 66.67, 37.5 13.7, 3.9
HCP_D_WU 94 48.94, 51.06 14.5, 3.9 23 52.17, 47.83 15.2, 4.2
HCP_YA 500 51.8, 48.2 28.5, 3.8 501 54.49, 45.51 28.9, 3.6
NKI-RS 136 48.53, 51.47 21.1, 6.5 34 50, 50 17.8, 6.5
PNC 630 56.03, 43.97 14.6, 3.3 158 43.04, 56.96 14.6, 8.0
ukb 6924 55.37, 44.63 62.4, 7.5 1732 55.25, 44.75 63.3, 7.5
UMich_IMPs 235 52.77, 47.23 12.9, 3.4 59 54.24, 45.76 12.5, 3.6

Appendix 0 Table 4. Surface area normative model demographics per site

Site N Age
(m, s.d.)

Sex
(F/M) %

ABCD_01 388 9.90, 0.62 51.29, 48.71
ABCD_02 542 10.1, 0.62 46.49, 53.51
ABCD_03 569 9.88, 0.66 47.1, 52.9
ABCD_04 631 9.82, 0.71 48.65, 51.35
ABCD_05 345 9.89, 0.63 51.59, 48.41
ABCD_06 564 9.94, 0.59 50.71, 49.29
ABCD_07 325 9.87, 0.62 47.08, 52.92
ABCD_08 336 9.95, 0.62 47.62, 52.38
ABCD_09 407 9.96, 0.61 49.14, 50.86
ABCD_10 575 9.86, 0.62 48.7, 51.3
ABCD_11 414 9.82, 0.62 49.76, 50.24
ABCD_12 161 9.88, 0.59 47.83, 52.17
ABCD_13 555 9.82, 0.59 49.91, 50.09
ABCD_14 583 10.2, 0.57 45.8, 54.2
ABCD_15 396 9.90, 0.60 44.95, 55.05
ABCD_16 921 9.90, 0.65 44.95, 55.05
ABCD_17 557 9.82, 0.63 47.94, 52.06
ABCD_18 341 9.91, 0.63 46.92, 53.08
ABCD_19 534 10.1, 0.55 50.94, 49.06
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ABCD_20 640 10.0, 0.49 50, 50
ABCD_21 491 9.91, 0.62 45.21, 54.79
ABCD_22 35 10.2, 0.55 62.86, 37.14
ATT 31 23.0, 1.88 9.68, 90.32
ATV 77 22.7, 1.98 77.92, 22.08
CAMCAN 647 54.2, 18.6 50.85, 49.15
CIN 136 52.4, 15.5 36.76, 63.24
CMI-RU 563 10.3, 3.49 34.81, 65.19
CMI-SI 341 11.2, 3.83 43.11, 56.89
CNP-35343.0 153 33.3, 9.38 47.71, 52.29
CNP-35426.0 79 33.3, 9.24 32.91, 67.09
COI 193 49.4, 13.5 61.14, 38.86
ds001734 108 25.5, 3.59 55.56, 44.44
ds002236 86 11.5, 2.04 44.19, 55.81
ds002330 65 26.2, 4.30 55.38, 44.62
ds002345 207 21.7, 4.71 63.29, 36.71
ds002731 59 21.3, 1.45 47.46, 52.54
ds002837 86 26.7, 10.1 48.84, 51.16
HCP-Aging_MGH 171 59.8, 15.5 50.29, 49.71
HCP-Aging_UCLA 124 53.3, 12.8 57.26, 42.74
HCP-Aging_UMinn 204 61.6, 16.3 58.82, 41.18
HCP-Aging_WashU 178 58.5, 13.8 62.92, 37.08
HCP-Dev_MGH 216 13.8, 3.87 50.46, 49.54
HCP-Dev_UCLA 127 14.1, 3.82 48.82, 51.18
HCP-Dev_UMinn 156 13.3, 3.64 54.49, 45.51
HCP-Dev_WashU 154 14.0, 3.87 48.7, 51.3
HCP-EP_BWH 31 22.6, 4.00 32.26, 67.74
HCP-EP_IU 84 23.2, 3.82 39.29, 60.71
HCP-EP_McL 44 24.1, 3.56 43.18, 56.82
HCP-EP_MGH 21 24.1, 5.44 28.57, 71.43
HCP-YA 1113 28.8, 3.70 54.45, 45.55
HKH 62 45.1, 10.5 48.39, 51.61
HRC 65 41.4, 11.5 70.77, 29.23
HUH 124 38.7, 13.3 50.81, 49.19
IXI 581 49.5, 16.7 56.28, 43.72
KTT 121 32.4, 10.3 38.84, 61.16
KUT 220 38.0, 13.1 43.64, 56.36
NKI 482 42.6, 21.2 63.9, 36.1
NKN 9 63.6, 18.5 44.44, 55.56
Oasis3 2044 70.4, 9.51 42.37, 57.63
PNC 1378 14.2, 3.51 50.87, 49.13
SWA 234 31.4, 8.75 14.53, 85.47
SWU_SLIM 569 20.1, 1.27 56.24, 43.76
TOP 823 33.2, 10.2 47.14, 52.86
ukb-11025.0 16132 62.5, 7.50 51.83, 48.17
ukb-11026.0 658 65.3, 7.37 54.86, 45.14
ukb-11027.0 3880 63.7, 7.46 53.92, 46.08
UTO 351 35.4, 14.6 45.58, 54.42
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