

1 Evidence for Embracing

2 Normative Modeling

3 Saige Rutherford^{1,2,3*}, Pieter Barkema¹, Ivy F. Tso^{3,4}, Chandra Sripada^{3,5}, Christian
4 F. Beckmann^{1,2,6†}, Henricus G. Ruhe^{2,7†}, Andre F. Marquand^{1,2,*†}

*For correspondence:

saige.rutherford@donders.ru.nl;
andre.marquand@donders.ru.nl

†These authors contributed
equally to this work

5 ¹Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen,
6 the Netherlands; ²Department of Cognitive Neuroscience, Radboud University Medical
7 Center, Nijmegen, the Netherlands; ³Department of Psychiatry, University of Michigan,
8 Ann Arbor, MI, United States; ⁴Department of Psychology, University of Michigan, Ann
9 Arbor, MI, United States; ⁵Department of Philosophy, University of Michigan, Ann Arbor,
10 MI, United States; ⁶Centre for Functional MRI of the Brain (FMRIB), Nuffield Department
11 of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of
12 Oxford, Oxford, United Kingdom; ⁷Department of Psychiatry, Radboud University
13 Medical Center, Nijmegen, the Netherlands

14

15 **Abstract** In this work, we expand the normative model repository introduced in *Rutherford*
16 *et al.* (2022a) to include normative models charting lifespan trajectories of structural surface area
17 and brain functional connectivity, measured using two unique resting-state network atlases
18 (Yeo-17 and Smith-10), and an updated online platform for transferring these models to new data
19 sources. We showcase the value of these models with a head-to-head comparison between the
20 features output by normative modeling and raw data features in several benchmarking tasks:
21 mass univariate group difference testing (schizophrenia versus control), classification
22 (schizophrenia versus control), and regression (predicting general cognitive ability). Across all
23 benchmarks, we confirm the advantage (i.e., stronger effect sizes, more accurate classification
24 and prediction) of using normative modeling features. We intend for these accessible resources
25 to facilitate wider adoption of normative modeling across the neuroimaging community.

26

27 **Introduction**

28 Normative modeling is a framework for mapping population-level trajectories of the relationships
29 between health-related variables while simultaneously preserving individual-level information *Mar-*
30 *quand et al.* (2016); *Rutherford et al.* (2022b); *Marquand et al.* (2019). Health-related variables is an
31 intentionally inclusive and broad definition that may involve demographics (i.e., age and gender),
32 simple (i.e., height and weight) or complex (i.e., brain structure and function, genetics) biological
33 measures, environmental factors (i.e., urbanicity, pollution), self-report measures (i.e., social satis-
34 faction, emotional experiences), or behavioral tests (i.e., cognitive ability, spatial reasoning). Chart-
35 ing the relationships, as mappings between a covariate (e.g. age) and response variable (e.g. brain
36 measure) in a reference population creates a coordinate system that defines the units in which
37 humans vary. Placing individuals into this coordinate system creates the opportunity to charac-
38 terize their profiles of deviation. While this is an important aspect of normative modeling, it is
39 often just the first step first, i.e. you are often interested in using the outputs of normative mod-
40 els in downstream analyses to detect case-control differences, stratification or individual statistics.
41 This framework provides a platform for such analyses as it effectively translates diverse data to a

42 consistent scale, defined with respect to population norms.

43 Normative modeling has seen widespread use spanning diverse disciplines. The most well-known example can be found within pediatric medicine, where conventional growth charts are
44 used to map height, weight, and head circumference trajectories of children **Borghi et al. (2006)**.
45 Under the neuroscience umbrella, generalizations of this approach have been applied in the fields
46 of psychiatry **Floris et al. (2020)**; **Lv et al. (2020)**; **Wolfers et al. (2015, 2017, 2021, 2018)**; **Zabihí et al. (2019, 2020)**, neurology **Itälínna et al. (2022)**; **Verdi et al. (2021)**, developmental psychology **Holz et al. (2022)**; **Kjelkenes et al. (2022)**, and cognitive neuroscience **Marquand et al. (2017)**.
47 Throughout these numerous applications, normative models have exposed the shortcomings of
48 prior case-control framework, i.e., that they rely heavily on the assumption there is within-group
49 homogeneity. This case versus control assumption is often an oversimplification, particularly in
50 psychiatric diagnostic categories, where the clinical labels used to place individuals into group cat-
51 egories are often unreliable, poorly measured, and may not map cleanly onto underlying biological
52 mechanisms **Cai et al. (2020)**; **Cuthbert and Insel (2013)**; **Flake and Fried (2020)**; **Insel et al. (2010)**;
53 **Linden (2012)**; **Loth et al. (2021)**; **Michelini et al. (2021)**; **Moriarity and Alloy (2021)**; **Nour et al. (2022)**;
54 **Sanislow (2020)**; **Zhang et al. (2021)**. Correspondingly, traditional analysis techniques for modeling
55 case versus control effects has often led to null findings **Winter et al. (2022)** or significant but very
56 small clinically meaningless differences. These effects are furthermore frequently unspecific to an
57 illness or disorder **Baker et al. (2019)**; **Goodkind et al. (2015)**; **McTeague et al. (2017)**; **Sprooten et al. (2017)** and inconsistent or contradictory **Filip et al. (2022)**; **Lee et al. (2007)**; **Pereira-Sánchez and Castellanos (2021)** yielding questionable clinical utility **Etkin (2019)**; **Mottron and Bzdok (2022)**.

58 In addition to the applications of normative modeling, there is also active technical development
59 **Dingga et al. (2021)**; **Fraza et al. (2021, 2022)**; **Kia and Marquand (2018)**; **Kia et al. (2020, 2021, 2018)**;
60 **Kumar (2021)**; **Boer et al. (2022)**). Due to the growing popularity of normative modeling and in
61 recognition of the interdisciplinary requirements using and developing this technology (clinical do-
62 main knowledge, statistical expertise, data management and computational demands), research
63 interests have been centered on open science, and inclusive, values **Gau et al. (2021)**; **Levitis et al. (2021)** that support this type of interdisciplinary scientific work. These values encompass open-
64 source software, sharing pre-trained big data models **Rutherford et al. (2022a)**, online platforms
65 for communication and collaboration, [extensive documentation](#), code [tutorials](#), and protocol-style
66 publications **Rutherford et al. (2022b)**.

67 The central contribution of this paper is to, first, augment the models in **Rutherford et al. (2022a)**, with additional normative models for surface area and functional connectivity, which are
68 made open and accessible to the community. Second, we comprehensively evaluate the utility of
69 normative models for a range of downstream analyses, including 1) mass univariate group differ-
70 ence testing (schizophrenia versus controls), 2) multivariate prediction – classification (using sup-
71 port vector machines to distinguish schizophrenia from controls), and 3) multivariate prediction –
72 regression (using principal component regression (PCR) to predict general cognitive ability). Within
73 these benchmarking tasks, we show the benefit of using normative modeling features compared
74 to using raw features. We aim for these benchmarking results, along with our publicly available
75 resources (code, documentation, tutorials, protocols, community forum, and website for running
76 models without using any code). Combined this provides practical utility as well as scientific evi-
77 dence for embracing normative modeling.

85 Methods and Materials

86 Dataset Selection and Scanner Parameters

87 Datasets used for training the functional normative models closely match the sample included in
88 **Rutherford et al. (2022a)**, apart from sites that did not collect or were unable to share functional
89 data. The full details of the data included in the functional normative model training can be found
90 in the supplement methods (and Table 3). We leverage several data sets (Table 1) for the bench-

Table 1. Data Set Inclusion and Sample Overview.

		Cortical Thickness			Functional Networks		
Study	Task	N	Age (m, s.d.)	F, M (%)	N	Age (m, s.d.)	F, M (%)
HCP	Regression - predicting cognition	529	28.8, 3.6	53.4, 6.6	499	28.9, 3.6	54.3, 45.6
COBRE	Classification and Group Difference	124	37.0, 12.7	24.2, 75.8	121	35.4, 12.4	23.1, 76.9
UMich_SZG	Classification and Group Difference	89	32.6, 9.6	50.6, 49.3	87	33.0, 10.1	50.6, 49.3

marking tasks, the Human Connectome Project Young Adult study (HCP) *Van Essen et al. (2013)*, The Center for Biomedical Research Excellence (COBRE) *Aine et al. (2017)*; *Sui et al. (2018)*, and University of Michigan SchizGaze (UMich) *Tso et al. (2021)*. The HCP data was chosen because it is widely used by the neuroscience community, especially for prediction studies. Also, prior studies using HCP data have shown promising results for predicting general cognitive ability *Sripada et al. (2020)*. The HCP data was used in the prediction – regression benchmarking task. The COBRE and UMich data sets are used in the classification and group difference testing benchmarking tasks. Inclusion criteria across all the datasets was that the participant has necessary behavioral and demographic variables, as well as high-quality MRI data. High-quality was defined for structural images as in our prior work *Rutherford et al. (2022a)*, namely as the lack of any artifacts such as ghosting or ringing, that Freesurfer surface reconstruction was able to run successfully, and that the Euler number calculated from Freesurfer *Klapwijk et al. (2019)*, which is a proxy metric for scan quality, was below a chosen threshold (Euler < 10). High-quality functional data followed recommended practices *Siegel et al. (2017)* and was defined as having a high-quality structural MRI (required for co-registration and normalization) and at least 5 minutes of low motion data (framewise displacement < 0.5mm). The HCP, COBRE, and UMich functional and structural data were manually inspected for quality at several tasks during preprocessing (after co-registration of functional and structural data and after normalization of functional data to MNI template space).

All subjects provided informed consent. Subject recruitment procedures and informed consent forms, including consent to share de-identified data, were approved by the corresponding university institutional review board where data were collected. The scanning acquisition parameters were similar but varied slightly across the studies (details in supplement).

Demographic, Cognition, Clinical Diagnosis variables

Demographic variables included age, sex, and MRI scanner site. A latent variable of cognition, referred to as General Cognitive Ability (GCA), was created for the regression benchmarking task using HCP data. The HCP study administered the NIH Toolbox Cognition battery *Gershon et al. (2010)*, and a bi-factor model was fit (for further modeling details and assessment of model fit see *Sripada et al. (2020)*). For COBRE and UMich studies, clinical diagnosis of schizophrenia was confirmed using the Structured Clinical Interview used for DSM-5 disorders (SCID) *First and Williams (2016)*. All subjects were screened and excluded if they had: history of neurological disorder, mental retardation, severe head trauma, or substance abuse/dependence within the last 6 (UMich) or 12 months (COBRE), were pregnant/nursing (UMich), or had any contraindications for MRI.

Image Preprocessing

Structural MRI data were preprocessed using the Freesurfer (version 6.0) recon-all pipeline *Linden (2012)*; *Fischl and Dale (2000)*; *Fischl et al. (2002)* to reconstruct surface representations of the volumetric data. Estimates of cortical thickness and subcortical volume were then extracted (aparc

127 and aseg) for each subject from their Freesurfer output folder, then merged and formatted into a
128 csv file (rows = subjects, columns = brain ROIs). We also share models of surface area, extracted in
129 the same manner as the cortical thickness data from a similar dataset (described in supplemental
130 methods and table 4).

131 Resting-state data were preprocessed separately for each study using fMRIprep *Esteban et al.*
132 (2018); however, similar steps were done to all resting-state data following best practices including
133 field-map correction of multi-band data, slice time correction (non-multi-band data), co-registration
134 of functional to structural data, normalization to MNI template space, spatial smoothing (2x voxel
135 size, 4-6mm), and regression of nuisance confounders (WM/CSF signals, non-aggressive AROMA
136 components *Pruim et al.* (2015b,a), linear and quadratic effects of motion).

137 Large scale brain networks from the 17 network Yeo atlas *Yeo et al.* (2011) were then extracted
138 and between network connectivity was calculated using full correlation. We also shared functional
139 normative models using the Smith-10 ICA-based parcellation *Smith et al.* (2009) which includes
140 subcortical coverage, however, the benchmarking tasks only use the Yeo-17 functional data. Fisher
141 r-to-z transformation was performed on the correlation matrices. If there were multiple functional
142 runs, connectivity matrices were calculated separately for each run then all runs for a subject were
143 averaged. For further details regarding the preparation of the functional MRI data, see the supple-
144 mental materials.

145 **Normative Model Formulation**

146 After dataset selection and preprocessing, normative models were estimated using the Predictive
147 Clinical Neuroscience toolkit (PCNtoolkit), an open-source python package for normative modeling
148 *Marquand et al.* (2021). For the structural data, we used a publicly shared repository of pre-trained
149 normative models that was estimated on approximately 58,000 subjects using a warped Bayesian
150 Linear Regression algorithm *Fraza et al.* (2021). Model fit was established using explained variance,
151 mean standardized log loss, skew, and kurtosis. The outputs of normative modeling also include
152 a Z-score, or deviation score, for all brain regions and all subjects. The deviation score represents
153 where the individual is in comparison to the population the model was estimated on, where a pos-
154 itive deviation score corresponds to greater cortical thickness or subcortical volume than average,
155 and a negative deviation score represents less cortical thickness or subcortical volume than aver-
156 age. The deviation (Z) scores that are output from the normative model are the features input for
157 the normative modeling data in the benchmarking analyses. In addition to normative models of
158 brain structure, we also expanded our repository by estimating normative models of brain func-
159 tional connectivity (resting-state brain networks, Yeo-17 and Smith-10) using the same algorithm
160 (Bayesian Linear Regression) as the structural models. Models were trained on a large multi-site
161 data set (approx. N=22,000) and evaluated in several test sets using explained variance, mean
162 standardized log loss, skew, and kurtosis. We transferred the functional normative models to the
163 data sets used in this work for benchmarking (Table 1) to generate deviation (Z) scores. HCP was
164 included in the initial training (half of the sample was held out in the test set), while the UMich and
165 COBRE datasets were not included in the training and can be considered as examples of transfer
166 to new, unseen sites.

167 **Raw Input Data**

168 The data that we compare the output of normative modeling to, referred to throughout this work
169 as “raw” input data, is simply the outputs of traditional preprocessing methods for structural and
170 functional MRI. For structural MRI, this corresponds to the cortical thickness files that are output
171 after running the Freesurfer recon-all pipeline. We used the aparcstats2table and asegsstats2table
172 functions to extract the cortical thickness and subcortical volume from each region in the Destrieux
173 atlas and Freesurfer subcortical atlas. For functional MRI, raw data refers to the Yeo17 brain net-
174 work connectomes which were extracted from the normalized, smoothed, de-noised functional
175 time-series. The upper triangle of each subject’s connectivity matrix was vectorized, where each

176 cell represents a unique between-network connection. For clarification, we also note that the raw
177 input data is the starting point of the normative modeling analysis, or in other words the raw in-
178 put data is the response variable or independent (Y) variable that is predicted from the vector of
179 covariates when estimating the normative model. Before entering into the benchmarking tasks,
180 to create a fair comparison between raw data and deviation scores, nuisance variables including
181 sex, site, linear and quadratic effects of age and head motion (only for functional models) were
182 regressed out of the raw data (structural and functional) using least squares regression.

183 **Benchmarking**

184 The benchmarking was performed in three separate tasks, mass univariate group difference test-
185 ing, multivariate prediction – classification, and multivariate prediction – regression, described in
186 further detail below. In each benchmarking task, a model was estimated using the deviation scores
187 as input features and then estimated again using the raw data as the input features. After each
188 model was fit, the performance metrics were evaluated and the difference in performance be-
189 tween the deviation score and raw data models was calculated, again described in more detail in
190 the evaluation section below. An overview of the analysis workflow is shown in Figure 1.

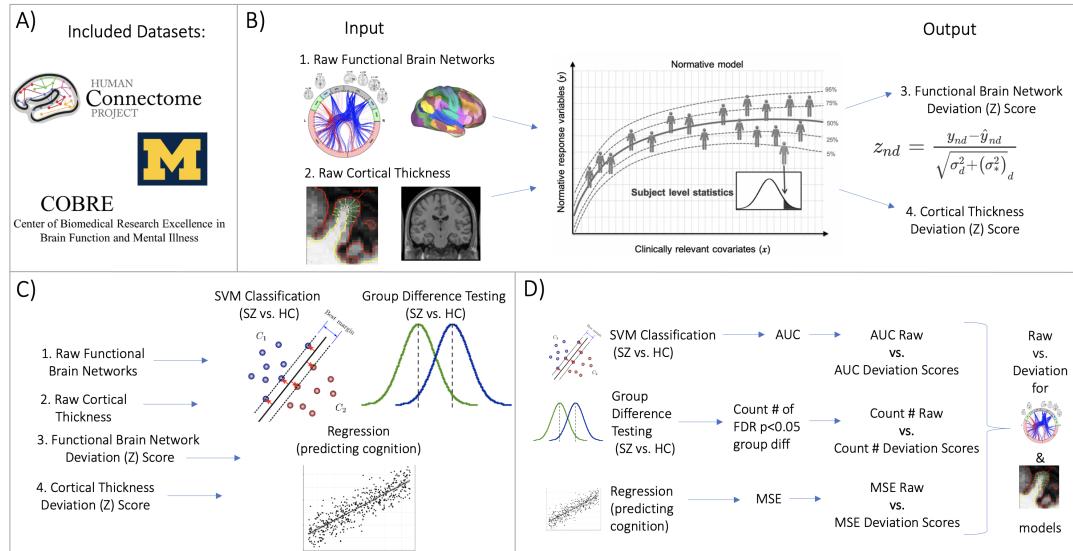


Figure 1. Figure 1 Overview of Workflow. **A)** Datasets included the Human Connectome Project (young adult) study, University of Michigan schizophrenia study, and COBRE schizophrenia study. **B)** Openly shared, pre-trained on big data, normative models were estimated for large scale resting state functional brain networks and cortical thickness. **C)** Deviation (Z) scores and raw data, for both functional and structural data, were input into three benchmarking tasks: support vector machine (SVM) classification, group difference testing, and regression (predicting cognition). **D)** Evaluation metrics calculated for each task benchmarking task. These metrics were calculated for the raw data models and the deviation score models. The difference between each models' performance was calculated for both functional and structural modalities.

191 **Task 1 Mass Univariate Group Difference Testing**

192 Mass univariate group difference (schizophrenia vs. control) testing was performed across all brain
193 regions. Two sample independent t-tests were estimated and run on the data using the SciPy
194 python package *Virtanen et al. (2020)*. After addressing multiple comparison correction, brain
195 regions with FDR corrected $p < .05$ were considered significant and the total number of regions
196 displaying statistically significant group differences was counted.

197 For the purpose of comparing group difference effects to individual differences, we also summa-
198 rized the individual deviation maps and compare this map to the group difference map. Individual
199 deviation maps were summarized by counting the number of individuals with 'extreme' deviations

200 ($Z > 2$ or $Z < -2$) at a given brain region or network connectivity pair. This was done separately
201 for positive and negative deviations and for each group and visualized qualitatively (Figure 4B).
202 To quantify the individual difference maps in comparison to group differences, we performed a
203 Mann-Whitney U-test on the count of extreme deviations in each group.

204 **Task 2 Multivariate Prediction – Classification**

205 Support vector machine is a commonly used algorithm in machine learning studies and performs
206 well in classification settings. A support vector machine constructs a set of hyper-planes in a high
207 dimensional space and optimizes to find the hyper-plane that has the largest distance, or margin,
208 to the nearest training data points of any class. A larger margin represents better linear separa-
209 tion between classes and will correspond to a lower the error of the classifier in new samples.
210 Samples that lie on the margin boundaries are also called “support vectors”. The decision function
211 provides per-class scores than can be turned into probabilities estimates of class membership. We
212 used Support vector classification (SVC) with a linear kernel as implemented in the scikit-learn pack-
213 age (version 1.0.9) *Pedregosa et al. (2011)* to classify a schizophrenia group from a control group.
214 This classification setting of distinguishing schizophrenia from a control group was chosen due to
215 past work showing the presence of both case-control group differences and individual differences
216 *Wolfers et al. (2018)*.

217 **Task 3 Multivariate Prediction – Regression**

218 A linear regression model was implemented to predict a latent variable of cognition (general cogni-
219 tive ability) in the HCP data set. Brain Basis Set (BBS) is a predictive modeling approach developed
220 and validated in previous studies *Sripada et al. (2019a,b)*; see also studies by Wager and colleagues
221 for a broadly similar approach *Woo et al. (2017); Wager et al. (2013)*. BBS is similar to principal com-
222 ponent regression, with an added predictive element. In the training set, PCA is performed on an
223 $n_{\text{subjects}} \times p_{\text{features}}$ matrix using the PCA function from scikit-learn in Python, yielding components or-
224 dered by descending eigenvalues. Expression scores are then calculated for each of k components
225 for each subject by projecting each subject's feature matrix onto each component. A linear regres-
226 sion model is then fit with these expression scores as predictors and the phenotype of interest
227 (general cognitive ability) as the outcome, saving B , the $k \times 1$ vector of fitted coefficients, for later
228 use. In a test partition, the expression scores for each of the k components for each subject are
229 again calculated. The predicted phenotype for each test subject is the dot product of B learned
230 from the training partition with the vector of component expression scores for that subject. We
231 set $k = 15$ in all models, following prior work *Rutherford et al. (2020)*.

232 **Evaluation**

233 Evaluation for each benchmark task was done by estimating the appropriate model performance
234 metric. For task one, the metric was the total count of models with significant group differences
235 after multiple comparison correction (FDR-corrected $p < 0.05$). In task two, the metric was area
236 under the receiving operator curve (AUC) averaged across all folds within a 10-fold cross validation
237 framework. For task three, the metric was the mean squared error (MSE) of the prediction in the
238 test set. Evaluation metrics of each task were calculated independently for both deviation score
239 (Z) and raw data (R) models. Higher AUC, higher count, and lower MSE represent better model per-
240 formance. We then have a statistic of interest that is observed, θ , which represents the difference
241 between deviation and raw data model performance.

242
$$\theta_{\text{task1}} = \text{Count}_z - \text{Count}_R \quad (1)$$

243
$$\theta_{\text{task2}} = \text{AUC}_z - \text{AUC}_R \quad (2)$$

244
$$\theta_{\text{task3}} = \text{MSE}_R - \text{MSE}_z \quad (3)$$

244 To assess whether θ is more likely than would be expected by chance, we generated the null
 245 distribution for θ using permutations. Within one iteration of the permutation framework, a ran-
 246 dom sample is generated by shuffling the labels (In task 1 and 2 we shuffle the clinical group labels,
 247 and in task 3 we shuffle the g-factor labels). Then this sample is used to train both deviation and
 248 raw models, ensuring the same row shuffling scheme across both deviation score and raw data
 249 datasets (for each perm iteration). The shuffled models are evaluated, and we calculate θ_{perm} for
 250 each random shuffle of labels. We set $n_{perm} = 10,000$ and use the distribution of θ_{perm} to calculate
 251 a p-value for θ_{obs} at each benchmarking task. The permuted p-value is equal to $(C + 1)/(n_{perm} + 1)$.
 252 Where C is the number of permutations where $\theta_{perm} > \theta_{obs}$. The same evaluation procedure de-
 253 scribed here (including permutations) was performed for both cortical thickness and functional
 254 network modalities.

255 Results

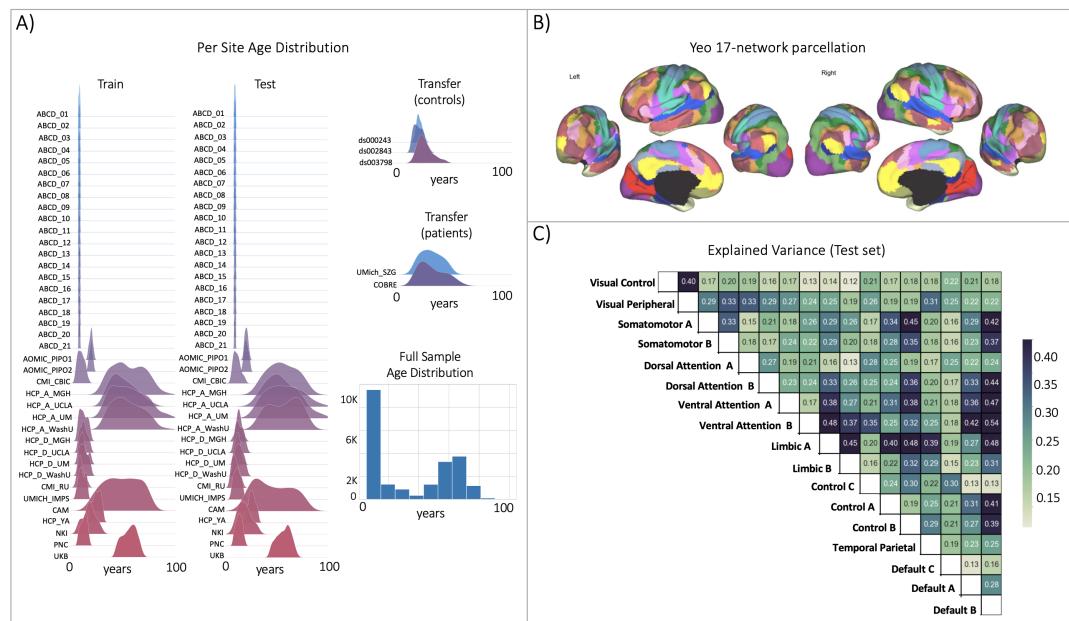


Figure 2. Functional brain network normative modeling. **A)** Age distribution per scanning site in all the train/test/transfer data partitions and across the full sample (train + test). **B)** The Yeo-17 brain network atlas used to generate connectomes. Between network connectivity was calculated for all 17 networks, resulting in 136 unique network pairs that were each individually input into a functional normative model. **C)** The explained variance in the controls test set (N=7244) of each of the unique 136 network pairs of the Yeo-17 atlas.

256 Sharing of functional big data normative models

257 The first result of this work is the evaluation of the functional big data normative models (Figure
 258 3). These models build upon the work of *Rutherford et al. (2022a)* in which we shared population-
 259 level structural normative models charting cortical thickness and subcortical volume across the
 260 human lifespan (ages 2-100). The data sets used for training the functional models, the age range
 261 of the sample, and the procedures for evaluation closely resemble the structural normative models.
 262 The sample size (approx. N=22,000) used for training and testing the functional models is smaller
 263 than the structural models (approx. N=58,000) due to data availability (i.e., some sites included in
 264 the structural models did not collect functional data or could not share the data) and the quality
 265 control procedures (see methods). However, despite the smaller sample size of the functional data
 266 reference cohort, the ranges of the evaluation metrics are quite similar as the structural models

267 (Figure 3). Most importantly, we demonstrate the opportunity to transfer the functional models to
 268 new samples, or sites that were not included in the original training and testing sets, referred to as
 269 the transfer set and show that transfer works well in a clinical sample (Figure 3 - transfer patients)
 270 or sample of healthy controls (Figure 3 - transfer controls).

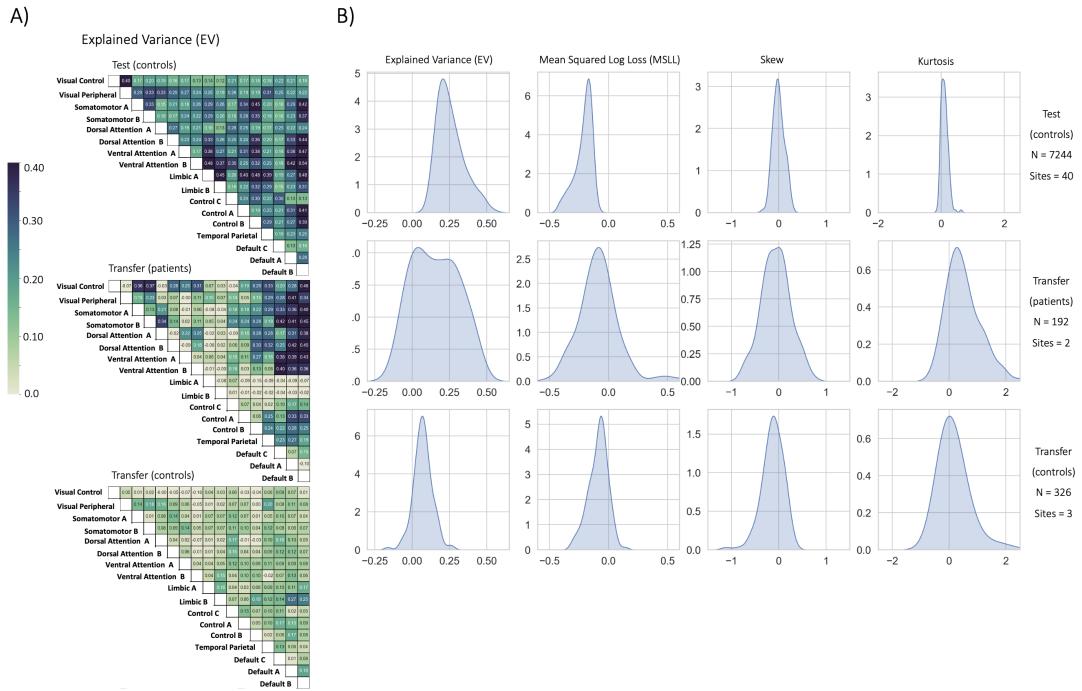


Figure 3. Functional Normative Model Evaluation Metrics. **A**) Explained variance per network pair across the test set (top), and both transfer sets (patients – middle, controls – bottom). We point out that the age range of the transfer (controls) sample (shown in Figure 2A) falls into a range with sparse data, and therefore the lower explained variance observed in the transfer (controls) group compared to the test and transfer (patients) groups is likely due to epistemic uncertainty (reducible with adding more data points) of the model predictions in this age range. **B**) The distribution across all models of the evaluation metrics (columns) in the test set (top row) and both transfer sets (middle and bottom rows). Higher explained variance (closer to 1), more negative MSLL, and normally distributed skew and kurtosis correspond to better model fit.

271 **Benchmarking Task One Mass Univariate Group Difference Testing**

272 The strongest evidence for embracing normative modeling can be seen in the benchmarking task
 273 one group difference (schizophrenia vs. controls) testing results (Table 2, Figure 4A). In this applica-
 274 tion, we observe numerous group differences in both functional and structural deviation score
 275 models after applying stringent multiple comparison correction (FDR p -value < 0.05). The strongest
 276 effects ($HC > SZ$) in the structural models were located in the right hemisphere lateral occipito-
 277 temporal sulcus ($S_{oc_temp_lat}$) thickness, right hemisphere superior segment of the circular sul-
 278 cus of the insula ($S_{circular_ins_sup}$) thickness, right Accumbens volume, left hemisphere Supra-
 279 marginal gyrus ($G_{pariet_inf_Supramar}$) thickness, and left hemisphere Inferior occipital gyrus (O3)
 280 and sulcus ($G_{and_S_occipital_inf}$) thickness. For the functional models, the strongest effects ($HC >$
 281 SZ t-statistic) were observed in the between-network connectivity of Sensorimotor B-Default B,
 282 Dorsal Attention B-Default B, Sensorimotor B-Default A, Control B-Default A, and Ventral Attention
 283 A-Default B. In the raw data models, which were residualized of covariates including site, sex, and
 284 linear plus quadratic effects of age and head motion (only included for functional models), we ob-
 285 serve no group differences after multiple comparison correction. The lack of any group differences
 286 in the raw data was initially a puzzling finding due to reported group differences in the literature
 287 *Arbabshirani et al. (2013); Cetin et al. (2015, 2016); Dansereau et al. (2017); Howes et al. (2022); Lei*

Table 2. Benchmarking Results. Deviation (Z) score column shows the performance using deviation scores (AUC for classification, total number of regions with significant group differences FDR-corrected $p < 0.05$ for case vs. control, mean squared error for regression), Raw column represents the performance when using the raw data, and Difference column shows the difference between the deviation scores and raw data (Deviation - Raw). Higher AUC, higher count, and lower MSE represent better performance. Positive values in the Difference column show that there is better performance when using deviation scores as input features for classification and group difference tasks, and negative performance difference values for the regression task show there is better performance using the deviation scores. * = statistically significant difference between Z and Raw established using permutation testing (10k perms).

Benchmark	Modality	Normative Modeling Deviation Score Data	Raw Data	Performance Difference
Classification	Cortical Thickness	0.87	0.43	0.44*
Classification	Functional Networks	0.69	0.68	0.01
Group Difference	Cortical Thickness	117/187	0/187	117*
Group Difference	Functional Networks	50/136	0/136	50*
Regression	Cortical Thickness	0.699	0.708	0.008
Regression	Functional Networks	0.877	0.890	0.013

288 *et al. (2020b,a); Meng et al. (2017); Rahim et al. (2017); Rosa et al. (2015); Salvador et al. (2017); Shi
289 et al. (2021); van Erp et al. (2018); Venkataraman et al. (2012); Wannan et al. (2019); Yu et al. (2012),*
290 however, upon investigation of the uncorrected statistical maps, we observe that the raw data follows a similar pattern to the deviation group difference map, but these results do not withstand
291 multiple comparison correction.
292

293 The qualitative (Figure 4B) and quantitative (Figure 4C) comparison of the group difference
294 maps with the individual difference maps showed the additional benefit of normative modeling
295 - that it can reveal subtle individual differences which are lost when only looking at group means.
296 The individual difference maps shows that at every brain region or connection, there is at least
297 one person, across both patient and clinical groups, that has an extreme deviation. We found
298 significant differences in the count of negative deviations ($SZ > HC$) for both cortical thickness
299 ($p = 0.0029$) and functional networks ($p = 0.013$), and significant differences ($HC > SZ$) in the count
300 of positive cortical thickness ($p = 0.0067$).

301 Benchmarking Task 2 Multivariate Prediction – Classification

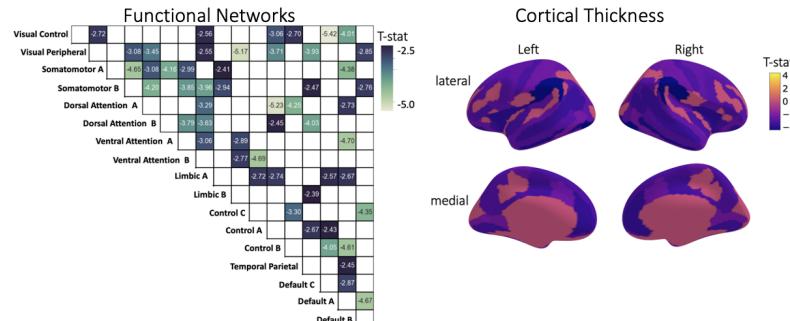
302 In benchmarking task two, we classified schizophrenia versus controls using support vector classi-
303 fication within a 10-fold cross validation framework (Table 2, Figure 5). The best performing model
304 used cortical thickness deviation scores to achieve a classification accuracy of 87% ($AUC = 0.87$).
305 The raw cortical thickness model accuracy was indistinguishable from chance accuracy ($AUC =$
306 0.43). The AUC performance difference between the cortical thickness deviation and raw data mod-
307 els was 0.44, and this performance difference was statistically significant. The functional models,
308 both deviation scores (0.69) and raw data (0.68), were more accurate than chance accuracy, how-
309 ever, the performance difference (i.e., improvement in accuracy using the deviation scores) was
310 small (0.01) and was not statistically significant.

311 Benchmarking Task 3 Multivariate Prediction – Regression

312 In benchmarking task three we fit multivariate predictive models in a held-out test set of healthy
 313 individuals in the Human Connectome Project young-adult study to predict general cognitive ability
 314 (Table 2). The evidence provided by this task weakly favors the deviation score models. The most
 315 accurate (lowest mean squared error) model was the deviation cortical thickness model ($MSE =$
 316 0.699). However, there was only an improvement of 0.008 in the deviation score model compared
 317 to the raw data model ($MSE = 0.708$) and this difference was not statistically significant. For the
 318 functional models, both the deviation score ($MSE = 0.877$) and raw data ($MSE = 0.890$) models

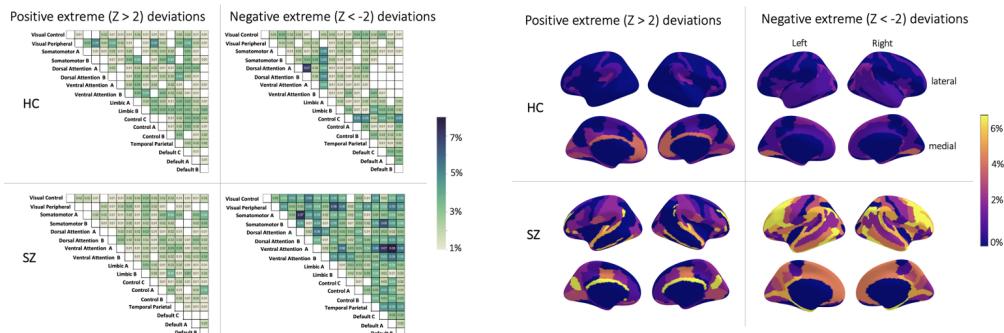
A)

Group Difference Testing on Deviation Scores. Schizophrenia vs. Controls (FDR $p < 0.05$).



B)

Individual differences in the presence of group differences



C)

Mann-Whitney U-test on counts of extreme deviations

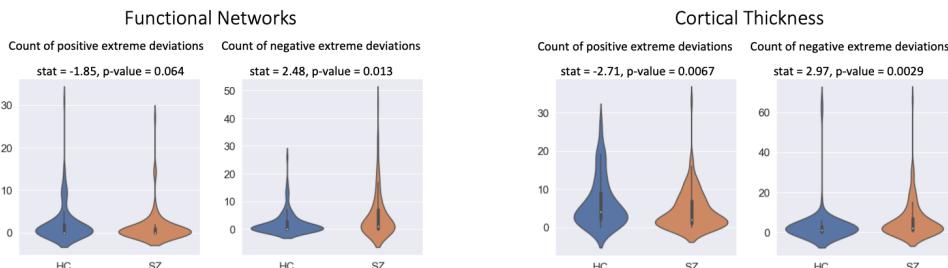


Figure 4. Group Difference Testing Evaluation. **A)** Significant group differences in the deviation score models, (top left) functional brain network deviation and (top right) cortical thickness deviation scores. The raw data, either cortical thickness or functional brain networks (residualized of sex and linear/ quadratic effects of age and motion (mean framewise displacement)) resulted in no significant group differences after multiple comparison correction. **B)** There are still individual differences observed that do not overlap with the group difference map, showing the benefit of normative modeling, which can detect both group and individual differences through proper modeling of variation. **D)** There are significant group differences in the summaries (count) of the individual difference maps (panel B).

Support Vector Classification: Schizophrenia vs. Controls

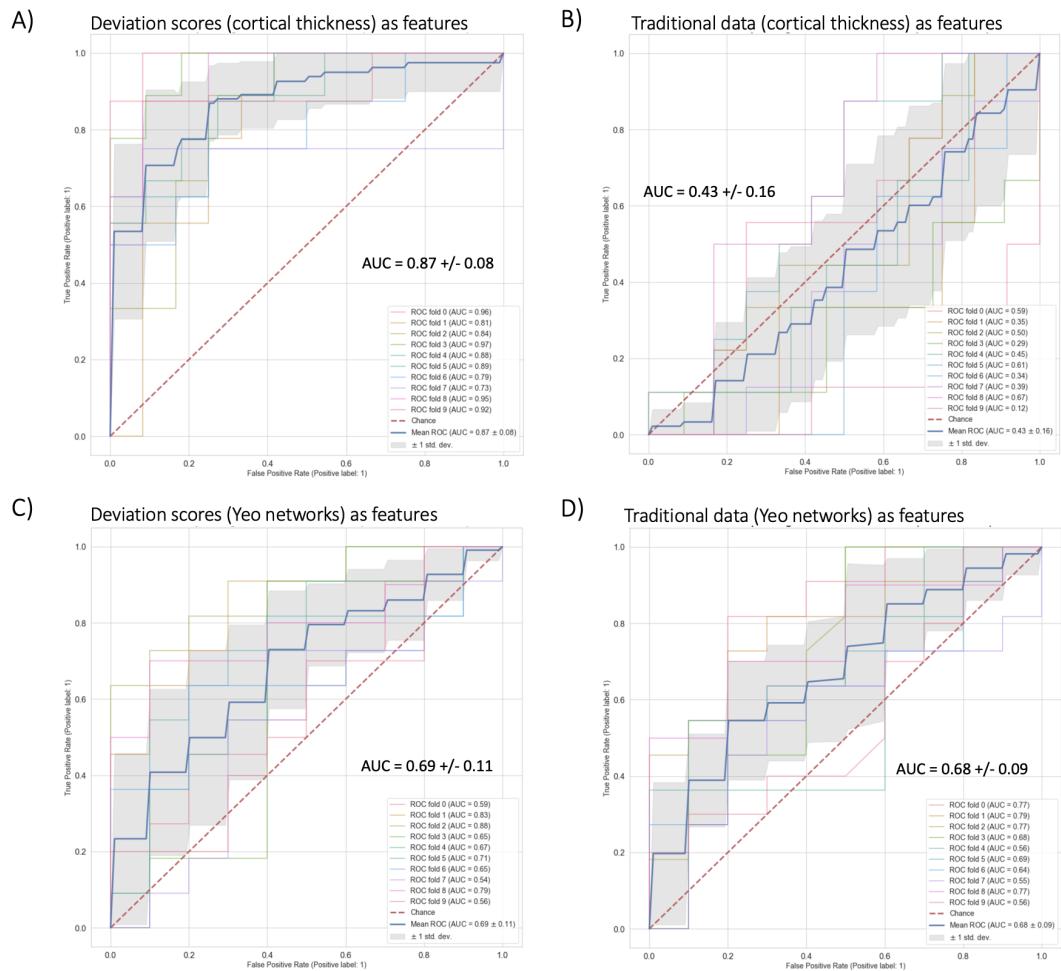


Figure 5. Benchmark Task 2 Multivariate Prediction – Classification Evaluation. **A)** Support Vector Classification using cortical thickness deviation scores as input features (most accurate model). **B)** Support Vector Classification using cortical thickness (residualized of sex and linear/quadratic effects of age) as input features. **C)** Support Vector Classification using functional brain network deviation scores as input features. **D)** Support Vector Classification using functional brain networks (residualized of sex and linear/ quadratic effects of age and motion (mean framewise displacement)) as input features.

319 were less accurate than the structural models and the difference between them (0.013) was also
320 not statistically significant.

321 Discussion

322 This work expands the available open-source tools for conducting normative modeling analyses
323 and provides clear evidence for why normative modeling should be utilized by the neuroimaging
324 community (and beyond). We updated our publicly available repository of pre-trained normative
325 models to include a new MRI imaging modality (models of resting-state functional connectivity ex-
326 tracted from the Yeo-17 and Smith-10 brain network atlases) and demonstrate how to transfer
327 these models to new data sources. The repository includes an example transfer data set com-
328 bined with a user-friendly interface. Next, we compared the features that are output from norma-
329 tive modeling (deviation scores) against 'raw' data features across several benchmarking tasks in-
330 cluding univariate group difference testing (schizophrenia versus control), multivariate prediction
331 – classification (schizophrenia versus control), and multivariate prediction – regression (predicting

332 general cognitive ability). We found across all benchmarking tasks there were minor (regression)
333 to strong (group difference testing) benefits of using deviation scores compared to the raw data
334 features.

335 The fact that the deviation score models perform better than the raw data models confirm the
336 utility of placing individuals into reference models. Our results show that normative modeling can
337 capture population trends, uncover clinical group differences, and preserve the ability to study
338 individual differences. We have some intuition on why the deviation score models perform better
339 on the benchmarking tasks than the raw data. With normative modeling we are accounting for
340 many sources of variance that are not necessarily clinically meaningful (i.e., site) and we are able
341 to capture clinically meaningful information within the reference cohort perspective. The reference
342 model helps beyond just removing confounding variables such as scanner noise, because we show
343 that even when removing the nuisance covariates (age, sex, site, head motion) from the raw data,
344 the normative modeling features still perform better.

345 Prior works on the methodological innovation and application of normative modeling *Kia et al.*
346 (2018); *Kia and Marquand* (2018); *Kia et al.* (2020, 2021); *Boer et al.* (2022)) have focused on the
347 beginning foundational steps of the framework (i.e., data selection and preparation, algorithmic
348 implementation, and carefully evaluating out of sample model performance). However, the frame-
349 work does not end after the model has been fit to the data (estimation step) and performance
350 metrics have been established (evaluation step). Transferring the models to new samples, inter-
351 pretation of the results, and potential downstream analysis are equally important steps, but they
352 have received less attention. When it comes time to interpret the model outputs, it is easy to fall
353 back into the case-control thinking paradigm, even after fitting a normative model to one's data
354 (which is supposed to be an alternative to case versus control approaches). This is due in part to
355 the challenges arising from the results existing in a very high dimensional space (100s to 1000s
356 of brain regions from 100s to 1000s of subjects). There is a reasonable need to distill and sum-
357 marize these high dimensional results. However, it is important to remember there is always a
358 trade-off between having a complex enough of a model to explain the data and dimensionality re-
359 duction for the sake of interpretation simplicity. This distillation process often leads back to placing
360 individuals into groups (i.e., case-control thinking) and interpreting group patterns or looking for
361 group effects, rather than interpreting results at the level of the individual. We acknowledge the
362 value and complementary nature of understanding individual variation relative to group means
363 (case-control thinking) and clarify that we do not claim superiority of normative modeling over
364 case-control methods. Rather, our results, especially in the comparisons of group difference maps
365 to individual difference maps (Figure 4), from this work show that the outputs of normative model-
366 ing can be used to validate, refine, and further understand some of the inconsistencies in previous
367 findings from case-control literature.

368 There are several limitations of the present work. First, the representation of functional norma-
369 tive models may be surprising and concerning. Typically, resting-state connectivity matrices are cal-
370 culated using parcellations containing between 100 to 1,000 nodes and 5,000-500,000 connections.
371 However, the Yeo-17 atlas *Yeo et al.* (2011) was specifically chosen because of its widespread use
372 and the fact that many other (higher resolution) functional brain parcellations have been mapped
373 to the Yeo brain networks *Eickhoff et al.* (2018); *Glasser et al.* (2016); *Kong et al.* (2019); *Laumann*
374 *et al.* (2015); *Power et al.* (2011); *Schaefer et al.* (2018); *Shen et al.* (2013). There is on-going de-
375 bate about the best representation of functional brain activity. Using the Yeo-17 brain networks
376 to model functional connectivity ignores important considerations regarding brain dynamics, flexi-
377 ble node configurations, overlapping functional modes, hard versus soft parcellations, and many
378 other important issues. We have also shared functional normative models using the Smith-10
379 ICA-based parcellation *Smith et al.* (2009), though we did not repeat the benchmarking tasks using
380 these data. Apart from our choice of parcellation, there are fundamental open questions regarding
381 the nature of the brain's functional architecture, including how it is defined and measured. While
382 it is outside the scope of this work to engage in these debates, we acknowledge their importance

383 and refers curious readers to a thorough review on functional connectivity challenges **Bijsterbosch**
384 **et al. (2020)**.

385 We would also like to expand on our prior discussion **Rutherford et al. (2022a)** on the limitations
386 of the reference cohort demographics, and the use of the word “normative”. The included sample
387 for training the functional normative models in this work, and the structural normative model-
388 ing sample in **Rutherford et al. (2022a)** are most likely overrepresentative of European-ancestry
389 (WEIRD population **Henrich et al. (2010)**) due to the data coming from academic research studies,
390 which do not match population demographics. Our models do not include race or ethnicity as
391 covariates due to data availability (many sites did not provide race or ethnicity information). Prior
392 research supports the use of age-specific templates and ethnicity specific growth charts **Dong et al.**
393 **(2020)**. This is a major limitation which requires additional future work and should be considered
394 carefully when transferring the model to diverse data **Benkarim et al. (2022); Greene et al. (2022);**
395 **Li et al. (2022)**. The term ‘normative model’ can be defined in other fields in a very different man-
396 ner than ours **Colyvan (2013); Baron (2004); Catita et al. (2020)**. We clarify that ours is strictly a
397 statistical notion (normative=being within the central tendency for a population). Critically, we do
398 not use normative in a moral or ethical sense, and we are not suggesting that individuals with high
399 deviation scores require action or intervention to be pulled towards the population average. Al-
400 though in some cases this may be true, we in no way assume that high deviations are problematic
401 or unhealthy (they may in fact represent compensatory changes that are adaptive). In any case,
402 we treat large deviations from statistical normality strictly as markers predictive of clinical states
403 or conditions of interest.

404 There are of many open research questions regarding normative modeling. Future research
405 directions are likely to include: 1) further expansion of open-source pre-trained normative mod-
406eling repositories to include additional MRI imaging modalities such as task-based functional MRI
407 and diffusion weighted imaging, other neuroimaging modalities such as EEG or MEG, and models
408 that include other non-biological measures, 2) increase in the resolution of existing models (i.e.,
409 voxel, vertex, models of brain structure and higher resolution functional parcellations), 3) replica-
410 tion and refinement of the proposed benchmarking tasks in other datasets including improving the
411 regression benchmarking task, and 4) including additional benchmarking tasks beyond the ones
412 considered here.

413 There has been recent interesting work on “failure analysis” of brain-behavior models **Greene**
414 **et al. (2022)**, and we would like to highlight that normative modeling is an ideal method for con-
415 ducting this type of analysis. Through normative modeling, research questions such as ‘what are
416 the common patterns in the subjects that are classified well versus those that are not classified
417 well’ can be explored. Additional recent work **Marek et al. (2022)** has highlighted important issues
418 the brain-behavior modeling community must face, such as poor reliability of the imaging data,
419 poor stability and accuracy of the predictive models, and the very large sample sizes (exceeding
420 that of even the largest neuroimaging samples) required for accurate predictions. There has also
421 been work showing that brain-behavior predictions are more reliable than the underlying func-
422 tional data **Taxali et al. (2021)**, and other ideas for improving brain-behavior predictive models are
423 discussed in-depth here **Finn and Rosenberg (2021); Rosenberg and Finn (2022)**. Nevertheless, we
424 acknowledge these challenges and believe that sharing pre-trained machine learning models and
425 further development of transfer learning of these models could help further address these issues.

426 In this work we have focused on the downstream steps of the normative modeling framework
427 involving evaluation and interpretation, and how insights can be made on multiple levels. Through
428 the precise modeling of different sources of variation, there is much knowledge to be gained at
429 the level of populations, clinical groups, and individuals.

430 **Code and Data Availability**

431 Pre-trained normative models are available on [GitHub](#) and [Google Colab](#). Scripts for running the
432 benckmarking analysis and visualizations are available on GitHub [here](#). Online portal for running

433 models without code is in beta testing phase and will be available [here](#) shortly.

434 **Acknowledgments and Contributions**

435 Conception of the work - SR. Data curation and management - SR. Data analysis and interpretation - SR, PB. Writing the article - SR. Revision of the article - PB, IFT, CS, CFB, HG, AFM. Supervision and Funding - IFT, CS, CFB, HG, AFM. This research was supported by grants from the European Research Council (ERC, grant "MENTALPRECISION" 10100118 and "BRAINMINT" 802998), the Wellcome Trust under an Innovator award ("BRAINCHART", 215698/Z/19/Z) and a Strategic Award (098369/Z/12/Z), the Dutch Organisation for Scientific Research (VIDI grant 016.156.415). IFT was funded by National Institute of Mental Health K23MH108823. CS was funded by the National Institute of Mental Health R01MH107741.

443 **Conflicts of Interest**

444 CFB is director and shareholder of SBGNeuro Ltd. HGR received speaker's honorarium from Lundbeck and Janssen. The other authors report no conflicts of interest.

446 **References**

447 **Aine CJ**, Bockholt HJ, Bustillo JR, Cañive JM, Caprihan A, Gasparovic C, Hanlon FM, Houck JM, Jung RE, Lauriello J, Liu J, Mayer AR, Perrone-Bizzozero NI, Posse S, Stephen JM, Turner JA, Clark VP, Calhoun VD. Multimodal 448 Neuroimaging in Schizophrenia: Description and Dissemination. *Neuroinformatics*. 2017; 15(4):343–364. 449 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671541/>, doi: 10.1007/s12021-017-9338-9.

450

451 **Arbabshirani MR**, Kiehl KA, Pearson GD, Calhoun VD. Classification of schizophrenia patients based on resting- 452 state functional network connectivity. *Frontiers in Neuroscience*. 2013; 7. [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3744823/](https://www.ncbi.nlm.nih.gov/pmc/453 articles/PMC3744823/), doi: 10.3389/fnins.2013.00133.

454 **Baker JT**, Dillon DG, Patrick LM, Roffman JL, Brady RO, Pizzagalli DA, Öngür D, Holmes AJ. Functional 455 connectomics of affective and psychotic pathology. *Proceedings of the National Academy of Sciences*. 2019; 456 116(18):9050–9059. <https://www.pnas.org/doi/abs/10.1073/pnas.1820780116>, doi: 10.1073/pnas.1820780116, 457 publisher: Proceedings of the National Academy of Sciences.

458 **Baron J.** Normative Models of Judgment and Decision Making. In: Koehler DJ, Harvey N, editors. *Blackwell 459 Handbook of Judgment and Decision Making* Blackwell Publishing Ltd; 2004.p. 19–36. <https://onlinelibrary.wiley.com/doi/10.1002/9780470752937.ch2>, doi: 10.1002/9780470752937.ch2.

460

461 **Benkarim O**, Paquola C, Park By, Kebets V, Hong SJ, Wael RVd, Zhang S, Yeo BTT, Eickenberg M, Ge T, Poline JB, 462 Bernhardt BC, Bzdok D. Population heterogeneity in clinical cohorts affects the predictive accuracy of brain 463 imaging. *PLOS Biology*. 2022; 20(4):e3001627. <https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001627>, doi: 10.1371/journal.pbio.3001627, publisher: Public Library of Science.

464

465 **Bijsterbosch J**, Harrison SJ, Jbabdi S, Woolrich M, Beckmann C, Smith S, Duff EP. Challenges and future 466 directions for representations of functional brain organization. *Nature Neuroscience*. 2020; 23(12):1484–1495. 467 <https://www.nature.com/articles/s41593-020-00726-z>, doi: 10.1038/s41593-020-00726-z, number: 12 Publisher: 468 Nature Publishing Group.

469

470 **Boer AAA**, Kia SM, Rutherford S, Zabihi M, Fraza C, Barkema P, Westlye LT, Andreassen OA, Hinne M, Beck- 471 mann CF, Marquand A. Non-Gaussian Normative Modelling With Hierarchical Bayesian Regression. *bioRxiv*. 2022; <https://www.biorxiv.org/content/10.1101/2022.10.05.510988v1>, doi: 10.1101/2022.10.05.510988.

472

473 **Borghi E**, Onis Md, Garza C, Broeck JVd, Frongillo EA, Grummer-Strawn L, Buuren SV, Pan H, Molinari L, Martorell R, Onyango AW, Martines JC. Construction of the World Health Organization child 474 growth standards: selection of methods for attained growth curves. *Statistics in Medicine*. 2006; 475 25(2):247–265. <http://onlinelibrary.wiley.com/doi/abs/10.1002/sim.2227>, doi: 10.1002/sim.2227, _eprint: 476 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/sim.2227>.

477

478 **Cai N**, Choi KW, Fried EI. Reviewing the genetics of heterogeneity in depression: operationalizations, manifesta- 479 tions and etiologies. *Human Molecular Genetics*. 2020; 29:R10–R18. <https://academic.oup.com/hmg/article-29/R1/R10/5860824>, doi: 10.1093/hmg/ddaa115.

480 **Catita M**, Águas A, Morgado P. Normality in medicine: a critical review. *Philosophy, Ethics, and Humanities in Medicine*. 2020; 15(1):3. <https://peh-med.biomedcentral.com/articles/10.1186/s13010-020-00087-2>, doi: 10.1186/s13010-020-00087-2.

483 **Cetin MS**, Houck JM, Rashid B, Agacoglu O, Stephen JM, Sui J, Canive J, Mayer A, Aine C, Bustillo JR, Calhoun VD. Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures. *Frontiers in Neuroscience*. 2016; 10. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5070283/>, doi: 10.3389/fnins.2016.00466.

487 **Cetin MS**, Houck JM, Vergara VM, Miller RL, Calhoun V. Multimodal Based Classification of Schizophrenia Patients. Conference proceedings : Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual Conference. 2015; 2015:2629–2632. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4880008/>, doi: 10.1109/EMBC.2015.7318931.

491 **Colyvan M**. Idealisations in normative models. *Synthese*. 2013; 190(8):1337–1350. <https://doi.org/10.1007/s11229-012-0166-z>, doi: 10.1007/s11229-012-0166-z.

493 **Cuthbert BN**, Insel TR. Toward the future of psychiatric diagnosis: the seven pillars of RDoC. *BMC Medicine*. 2013; 11:126. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3653747/>, doi: 10.1186/1741-7015-11-126.

495 **Dansereau C**, Benhajali Y, Risterucci C, Pich EM, Orban P, Arnold D, Bellec P. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity. *NeuroImage*. 2017; 149:220–232. <http://www.sciencedirect.com/science/article/pii/S1053811917300939>, doi: 10.1016/j.neuroimage.2017.01.072.

498 **Dinga R**, Fraza CJ, Bayer JMM, Kia SM, Beckmann CF, Marquand AF. Normative modeling of neuroimaging data using generalized additive models of location scale and shape. *bioRxiv*. 2021; <http://biorxiv.org/lookup/doi/10.1101/2021.06.14.448106>, doi: 10.1101/2021.06.14.448106.

501 **Dong HM**, Castellanos FX, Yang N, Zhang Z, Zhou Q, He Y, Zhang L, Xu T, Holmes AJ, Thomas Yeo BT, Chen F, Wang B, Beckmann C, White T, Sporns O, Qiu J, Feng T, Chen A, Liu X, Chen X, et al. Charting brain growth in tandem with brain templates at school age. *Science Bulletin*. 2020; 65(22):1924–1934. <https://www.sciencedirect.com/science/article/pii/S2095927320304965>, doi: 10.1016/j.scib.2020.07.027.

505 **Eickhoff SB**, Yeo BTT, Genon S. Imaging-based parcellations of the human brain. *Nature Reviews Neuroscience*. 2018; 19(11):672–686. <https://www.nature.com/articles/s41583-018-0071-7>, doi: 10.1038/s41583-018-0071-7, number: 11 Publisher: Nature Publishing Group.

508 **van Erp TGM**, Walton E, Hibar DP, Schmaal L, Jiang W, Glahn DC, Pearson GD, Yao N, Fukunaga M, Hashimoto R, Okada N, Yamamori H, Bustillo JR, Clark VP, Agartz I, Mueller BA, Cahn W, de Zwart SMC, Hulshoff Pol HE, Kahn RS, et al. Cortical Brain Abnormalities in 4474 Individuals With Schizophrenia and 5098 Control Subjects via the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA) Consortium. *Biological Psychiatry*. 2018; 84(9):644–654. doi: 10.1016/j.biopsych.2018.04.023.

513 **Esteban O**, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves M, DuPre E, Snyder M, Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ. fMRIprep: a robust preprocessing pipeline for functional MRI. *Nature Methods*. 2018; p. 1. <https://www.nature.com/articles/s41592-018-0235-4>, doi: 10.1038/s41592-018-0235-4.

517 **Etkin A**. A Reckoning and Research Agenda for Neuroimaging in Psychiatry. *American Journal of Psychiatry*. 2019; 176(7):507–511. <https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2019.19050521>, doi: 10.1176/appi.ajp.2019.19050521, publisher: American Psychiatric Publishing.

520 **Filip P**, Bednarik P, Eberly LE, Moheet A, Svatkova A, Grohn H, Kumar AF, Seaquist ER, Mangia S. Different FreeSurfer versions might generate different statistical outcomes in case-control comparison studies. *Neuroradiology*. 2022; 64(4):765–773. <https://doi.org/10.1007/s00234-021-02862-0>, doi: 10.1007/s00234-021-02862-0.

524 **Finn ES**, Rosenberg MD. Beyond fingerprinting: Choosing predictive connectomes over reliable connectomes. *NeuroImage*. 2021; 239:118254. <https://www.sciencedirect.com/science/article/pii/S1053811921005310>, doi: 10.1016/j.neuroimage.2021.118254.

527 **First MB**, Williams BW. SCID-5-CV: structured clinical interview for DSM-5 disorders: clinician version. American Psychiatric Association Publishing; 2016. Publication Title: SCID-5-CV: structured clinical interview for DSM-5 disorders: clinician version.

530 **Fischl B**, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. *Proc Natl Acad Sci U S A*. 2000; 97(20):11050–11055. <http://dx.doi.org/10.1073/pnas.200033797>, doi: 10.1073/pnas.200033797.

533 **Fischl B**, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole Brain Segmentation. *Neuron*. 2002; 33(3):341–355. [http://dx.doi.org/10.1016/s0896-6273\(02\)00569-x](http://dx.doi.org/10.1016/s0896-6273(02)00569-x), doi: 10.1016/s0896-6273(02)00569-x.

536 **Flake JK**, Fried EI. Measurement Schmeasurement: Questionable Measurement Practices and How to Avoid Them. *Advances in Methods and Practices in Psychological Science*. 2020; p. 2515245920952393. <https://doi.org/10.1177/2515245920952393>, doi: 10.1177/2515245920952393, publisher: SAGE Publications Inc.

539 **Floris DL**, Wolfers T, Zabih M, Holz NE, Zwiers MP, Charman T, Tillmann J, Ecker C, Dell'Acqua F, Banaschewski T, Moessnang C, Baron-Cohen S, Holt R, Durston S, Loth E, Murphy DGM, Marquand A, Buitelaar JK, Beckmann CF, Ahmad J, et al. Atypical Brain Asymmetry in Autism—A Candiyear for Clinically Meaningful Stratification. *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging*. 2020; <https://www.sciencedirect.com/science/article/pii/S2451902220302433>, doi: 10.1016/j.bpsc.2020.08.008.

544 **Fraza C**, Zabih M, Beckmann CF, Marquand AF, The Extremes of Normative Modelling. *bioRxiv*; 2022. <https://www.biorxiv.org/content/10.1101/2022.08.23.505049v1>, doi: 10.1101/2022.08.23.505049, pages: 2022.08.23.505049 Section: New Results.

547 **Fraza CJ**, Dinga R, Beckmann CF, Marquand AF. Warped Bayesian linear regression for normative modelling of big data. *NeuroImage*. 2021; 245:118715. <https://www.sciencedirect.com/science/article/pii/S1053811921009873>, doi: 10.1016/j.neuroimage.2021.118715.

550 **Gau R**, Noble S, Heuer K, Bottenhorn KL, Bilgin IP, Yang YF, Huntenburg JM, Bayer JMM, Bethlehem RAI, Rhoads SA, Vogelbacher C, Borghesani V, Levitis E, Wang HT, Van Den Bossche S, Kobeleva X, Legarreta JH, Guay S, Atay SM, Varoquaux GP, et al. Brainhack: Developing a culture of open, inclusive, community-driven neuroscience. *Neuron*. 2021; 109(11):1769–1775. <https://www.sciencedirect.com/science/article/pii/S0896627321002312>, doi: 10.1016/j.neuron.2021.04.001.

555 **Gershon RC**, Celli D, Fox NA, Havlik RJ, Hendrie HC, Wagster MV. Assessment of neurological and behavioural function: the NIH Toolbox. *The Lancet Neurology*. 2010; 9(2):138–139. <http://www.sciencedirect.com/science/article/pii/S147442209703357>, doi: 10.1016/S1474-4422(09)70335-7.

558 **Glasser MF**, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M. A multi-modal parcellation of human cerebral cortex. *Nature*. 2016; 536(7615):171–178.

560 **Goodkind M**, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB, Ortega BN, Zaiko YV, Roach EL, Korogaonkar MS, Grieve SM, Galatzer-Levy I, Fox PT, Etkin A. Identification of a Common Neurobiological Substrate for Mental Illness. *JAMA Psychiatry*. 2015; 72(4):305–315. <https://doi.org/10.1001/jamapsychiatry.2014.2206>, doi: 10.1001/jamapsychiatry.2014.2206.

564 **Greene AS**, Shen X, Noble S, Horien C, Hahn CA, Arora J, Tokoglu F, Spann MN, Carrión CI, Barron DS, Sanacora G, Srihari VH, Woods SW, Scheinost D, Constable RT. Brain-phenotype models fail for individuals who defy sample stereotypes. *Nature*. 2022; 609(7925):109–118. <https://www.nature.com/articles/s41586-022-05118-w>, doi: 10.1038/s41586-022-05118-w, number: 7925 Publisher: Nature Publishing Group.

568 **Henrich J**, Heine SJ, Norenzayan A. The weirdest people in the world? *Behavioral and Brain Sciences*. 2010; 33(2):61–83. <https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/abs/weirdest-people-in-the-world/BF84F7517D56AFF7B7EB58411A554C17>, doi: 10.1017/S0140525X0999152X, publisher: Cambridge University Press.

572 **Holz NE**, Floris DL, Llera A, Aggensteiner PM, Kia SM, Wolfers T, Baumeister S, Böttinger B, Glennon JC, Hoekstra PJ, Dietrich A, Saam MC, Schulze UME, Lythgoe DJ, Williams SCR, Santosh P, Rosa-Justicia M, Bargallo N, Castro-Fornieles J, Arango C, et al. Age-related brain deviations and aggression. *Psychological Medicine*. 2022; p. 1–10. doi: 10.1017/S003329172200068X.

576 **Howes OD**, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. *Neuropsychopharmacology*. 2022; p. 1–17. <https://www.nature.com/articles/s41386-022-01426-x>, doi: 10.1038/s41386-022-01426-x, publisher: Nature Publishing Group.

579 **Insel T**, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P. Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. *American Journal of Psychiatry*. 2010; 167(7):748–751. <http://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2010.09091379>, doi: 10.1176/appi.ajp.2010.09091379, publisher: American Psychiatric Publishing.

583 **Itälinna V**, Kaltiainen H, Forss N, Liljeström M, Parkkonen L. Detecting mild traumatic brain injury with MEG,
584 normative modelling and machine learning. medRxiv; 2022. <https://www.medrxiv.org/content/10.1101/2022.09.29.22280521v1>, doi: 10.1101/2022.09.29.22280521, pages: 2022.09.29.22280521.

586 **Jones MC**, Pewsey A. Sinh-arcsinh distributions. Biometrika. 2009; 96(4):761–780. <https://www.jstor.org/stable/27798865>.

588 **Kia SM**, Beckmann CF, Marquand AF. Scalable Multi-Task Gaussian Process Tensor Regression for Normative
589 Modeling of Structured Variation in Neuroimaging Data. arXiv:180800036 [cs, stat]. 2018; <http://arxiv.org/abs/1808.00036>.

591 **Kia SM**, Huijdsens H, Dinga R, Wolfers T, Mennes M, Andreassen OA, Westlye LT, Beckmann CF, Marquand AF.
592 Hierarchical Bayesian Regression for Multi-site Normative Modeling of Neuroimaging Data. In: Martel AL,
593 Abolmaesumi P, Stoyanov D, Mateus D, Zuluaga MA, Zhou SK, Racocceanu D, Joskowicz L, editors. *Medical Im-
594 age Computing and Computer Assisted Intervention – MICCAI 2020 Lecture Notes in Computer Science*, Springer
595 International Publishing; 2020. p. 699–709. doi: 10.1007/978-3-030-59728-3_68.

596 **Kia SM**, Huijdsens H, Rutherford S, Dinga R, Wolfers T, Mennes M, Andreassen OA, Westlye LT, Beckmann
597 CF, Marquand AF. Federated Multi-Site Normative Modeling using Hierarchical Bayesian Regression.
598 bioRxiv. 2021; p. 2021.05.28.446120. <https://www.biorxiv.org/content/10.1101/2021.05.28.446120v1>, doi:
599 10.1101/2021.05.28.446120, publisher: Cold Spring Harbor Laboratory Section: New Results.

600 **Kia SM**, Marquand A. Normative Modeling of Neuroimaging Data using Scalable Multi-Task Gaussian Processes.
601 arXiv:180601047 [cs, stat]. 2018; <http://arxiv.org/abs/1806.01047>.

602 **Kjelkenes R**, Wolfers T, Alnæs D, van der Meer D, Pedersen ML, Dahl A, Voldsbekk I, Moberget T, Tamnes
603 CK, Andreassen OA, Marquand AF, Westlye LT. Mapping Normative Trajectories of Cognitive Func-
604 tion and Its Relation to Psychopathology Symptoms and Genetic Risk in Youth. Biological Psychiatry
605 Global Open Science. 2022; <https://www.sciencedirect.com/science/article/pii/S266717432200012X>, doi:
606 10.1016/j.bpsgos.2022.01.007.

607 **Klapwijk ET**, van de Kamp F, van der Meulen M, Peters S, Wierenga LM. Qoala-T: A supervised-learning
608 tool for quality control of FreeSurfer segmented MRI data. NeuroImage. 2019; 189:116–129. doi:
609 10.1016/j.neuroimage.2019.01.014.

610 **Kong R**, Li J, Orban C, Sabuncu MR, Liu H, Schaefer A, Sun N, Zuo XN, Holmes AJ, Eickhoff SB, Yeo BTT. Spatial To-
611 pography of Individual-Specific Cortical Networks Predicts Human Cognition, Personality, and Emotion. Cere-
612 bral Cortex (New York, NY). 2019; 29(6):2533–2551. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519695/>,
613 doi: 10.1093/cercor/bhy123.

614 **Kumar S**. NormVAE: Normative Modeling on Neuroimaging Data using Variational Autoencoders. arXiv. 2021;
615 <https://arxiv.org/abs/2110.04903v2>.

616 **Laumann T**, Gordon E, Adeyemo B, Snyder A, Joo S, Chen MY, Gilmore A, McDermott K, Nelson S, Dosenbach
617 NF, Schlaggar B, Mumford J, Poldrack R, Petersen S. Functional System and Areal Organization of a Highly
618 Sampled Individual Human Brain. Neuron. 2015; 87(3):657–670. <https://www.sciencedirect.com/science/article/pii/S0896627315006005>, doi: 10.1016/j.neuron.2015.06.037.

620 **Lee W**, Bindman J, Ford T, Glozier N, Moran P, Stewart R, Hotopf M. Bias in psychiatric case-control
621 studies: Literature survey. The British Journal of Psychiatry. 2007; 190(3):204–209. <https://www.cambridge.org/core/journals/the-british-journal-of-psychiatry/article/bias-in-psychiatric-casecontrol-studies/CA1B1AD515086BE2E546BEDD8E77614>, doi: 10.1192/bjp.bp.106.027250, publisher: Cambridge University
622 Press.

625 **Lei D**, Pinaya WHL, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Gill M, Vieira S,
626 Huang X, Lui S, Scarpazza C, Young J, Arango C, Bullmore E, Qiyong G, McGuire P, Mechelli A. Detecting
627 schizophrenia at the level of the individual: relative diagnostic value of whole-brain images, connectome-
628 wide functional connectivity and graph-based metrics. Psychological Medicine. 2020; 50(11):1852–1861. doi:
629 10.1017/S0033291719001934.

630 **Lei D**, Pinaya WHL, Young J, van Amelsvoort T, Marcelis M, Donohoe G, Mothersill DO, Corvin A, Vieira S, Huang
631 X, Lui S, Scarpazza C, Arango C, Bullmore E, Gong Q, McGuire P, Mechelli A. Integrating machine learning
632 and multimodal neuroimaging to detect schizophrenia at the level of the individual. Human Brain Mapping.
633 2020; 41(5):1119–1135. doi: 10.1002/hbm.24863.

634 Levitis E, van Praag CDG, Gau R, Heunis S, DuPre E, Kiar G, Bottenhorn KL, Glatard T, Nikolaidis A, Whitaker
635 KJ, Mancini M, Niso G, Afyouni S, Alonso-Ortiz E, Appelhoff S, Arnatkeviciute A, Atay SM, Auer T, Baracchini
636 G, Bayer JMM, et al. Centering inclusivity in the design of online conferences—An OHBM-Open Science
637 perspective. *GigaScience*. 2021; 10(8):giab051. <https://doi.org/10.1093/gigascience/giab051>, doi: 10.1093/giab051.

638

639 Li J, Bzdok D, Chen J, Tam A, Ooi LQR, Holmes AJ, Ge T, Patil KR, Jabbi M, Eickhoff SB, Yeo BTT, Genon S.
640 Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity.
641 *Science Advances*. 2022; 8(11):eabj1812. <https://www.science.org/doi/full/10.1126/sciadv.abj1812>, doi:
642 [10.1126/sciadv.abj1812](https://doi.org/10.1126/sciadv.abj1812), publisher: American Association for the Advancement of Science.

643 Linden DEJ. The Challenges and Promise of Neuroimaging in Psychiatry. *Neuron*. 2012; 73(1):8–22. [https://www.cell.com/neuron/abstract/S0896-6273\(11\)01095-6](https://www.cell.com/neuron/abstract/S0896-6273(11)01095-6), doi: 10.1016/j.neuron.2011.12.014, publisher: Elsevier.

644

645 Loth E, Ahmad J, Chatham C, López B, Carter B, Crawley D, Oakley B, Hayward H, Cooke J, Cáceres ASJ, Bzdok D, Jones E, Charman T, Beckmann C, Bourgeron T, Toro R, Buitelaar J, Murphy D, Dumas G. The
646 meaning of significant mean group differences for biomarker discovery. *PLOS Computational Biology*.
647 2021; 17(11):e1009477. <https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009477>, doi: 10.1371/journal.pcbi.1009477, publisher: Public Library of Science.

648

649

650 Lv J, Di Biase M, Cash RFH, Cocchi L, Cropley VL, Klauser P, Tian Y, Bayer J, Schmaal L, Cetin-Karayumak S,
651 Rathi Y, Pasternak O, Bousman C, Pantelis C, Calamante F, Zalesky A. Individual deviations from normative
652 models of brain structure in a large cross-sectional schizophrenia cohort. *Molecular Psychiatry*. 2020; p. 1–12.
653 <https://www.nature.com/articles/s41380-020-00882-5>, doi: 10.1038/s41380-020-00882-5, publisher: Nature
654 Publishing Group.

655

656 Marek S, Tervo-Clemmens B, Calabro FJ, Montez DF, Kay BP, Hatoum AS, Donohue MR, Foran W, Miller RL,
657 Hendrickson TJ, Malone SM, Kandala S, Fezzko E, Miranda-Dominguez O, Graham AM, Earl EA, Perrone AJ,
658 Cordova M, Doyle O, Moore LA, et al. Reproducible brain-wide association studies require thousands of
659 individuals. *Nature*. 2022; p. 1–7. <https://www.nature.com/articles/s41586-022-04492-9>, doi: 10.1038/s41586-022-04492-9, publisher: Nature Publishing Group.

660

661 Marquand A, Rutherford S, Kia SM, Wolfers T, Fraza C, Dinga R, Zabih M, PCNToolkit. Zenodo; 2021. <https://zenodo.org/record/5207839>, doi: 10.5281/zenodo.5207839.

662

663 Marquand AF, Haak KV, Beckmann CF. Functional corticostratal connection topographies predict goal directed
664 behaviour in humans. *Nature human behaviour*. 2017; 1(8). <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549843/>, doi: 10.1038/s41562-017-0146.

665

666 Marquand AF, Kia SM, Zabih M, Wolfers T, Buitelaar JK, Beckmann CF. Conceptualizing mental disorders as
667 deviations from normative functioning. *Molecular Psychiatry*. 2019; 24(10):1415–1424. <https://www.nature.com/articles/s41380-019-0441-1>, doi: 10.1038/s41380-019-0441-1, number: 10 Publisher: Nature Publishing
668 Group.

669

670 Marquand AF, Rezek I, Buitelaar J, Beckmann CF. Understanding Heterogeneity in Clinical Cohorts Using Nor-
671 mative Models: Beyond Case-Control Studies. *Biological Psychiatry*. 2016; 80(7):552–561. <https://www.sciencedirect.com/science/article/pii/S000632231600020>, doi: 10.1016/j.biopsych.2015.12.023.

672

673 McTeague LM, Huemer J, Carreon DM, Jiang Y, Eickhoff SB, Etkin A. Identification of Common Neu-
674 ral Circuit Disruptions in Cognitive Control Across Psychiatric Disorders. *American Journal of Psychi-
675 atry*. 2017; 174(7):676–685. <https://ajp.psychiatryonline.org/doi/full/10.1176/appi.ajp.2017.16040400>, doi:
676 10.1176/appi.ajp.2017.16040400, publisher: American Psychiatric Publishing.

677

678 Meng X, Jiang R, Lin D, Bustillo J, Jones T, Chen J, Yu Q, Du Y, Zhang Y, Jiang T, Sui J, Calhoun VD. Predicting
679 individualized clinical measures by a generalized prediction framework and multimodal fusion of MRI data.
NeuroImage. 2017; 145:218–229. <http://www.sciencedirect.com/science/article/pii/S105381191630146X>, doi:
10.1016/j.neuroimage.2016.05.026.

680

681 Michelini G, Palumbo IM, DeYoung CG, Latzman RD, Kotov R. Linking RDoC and HiTOP: A new interface for
682 advancing psychiatric nosology and neuroscience. *Clinical Psychology Review*. 2021; 86:102025. <https://www.sciencedirect.com/science/article/pii/S0272735821000684>, doi: 10.1016/j.cpr.2021.102025.

683

684 Moriarty DP, Alloy LB. Back to Basics: The Importance of Measurement Properties in Biological Psychiatry.
685 *Neuroscience & Biobehavioral Reviews*. 2021; 123:72–82. <https://www.sciencedirect.com/science/article/pii/S0149763421000221>, doi: 10.1016/j.neubiorev.2021.01.008.

686

686 Mottron L, Bzdok D. Diagnosing as autistic people increasingly distant from prototypes lead neither to clinical
687 benefit nor to the advancement of knowledge. *Molecular Psychiatry*. 2022; 27(2):773-775. <https://www.nature.com/articles/s41380-021-01343-3>, doi: 10.1038/s41380-021-01343-3, number: 2 Publisher: Nature
688 Publishing Group.

690 Nour MM, Liu Y, Dolan RJ. Functional neuroimaging in psychiatry and the case for failing better.
691 *Neuron*. 2022; 110(16):2524-2544. [https://www.cell.com/neuron/abstract/S0896-6273\(22\)00647-X](https://www.cell.com/neuron/abstract/S0896-6273(22)00647-X), doi:
692 10.1016/j.neuron.2022.07.005, publisher: Elsevier.

693 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R,
694 Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: Ma-
695 chine Learning in Python. *Journal of Machine Learning Research*. 2011; 12(85):2825-2830. <http://jmlr.org/papers/v12/pedregosa11a.html>.

697 Pereira-Sanchez V, Castellanos FX. Neuroimaging in attention-deficit/hyperactivity disorder. *Current Opin-
698 ion in Psychiatry*. 2021; 34(2):105-111. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879851/>, doi:
699 10.1097/YCO.0000000000000669.

700 Power J, Cohen A, Nelson S, Wig G, Barnes K, Church J, Vogel A, Laumann T, Miezin F, Schlaggar B, Petersen S.
701 Functional Network Organization of the Human Brain. *Neuron*. 2011; 72(4):665-678. <http://www.sciencedirect.com/science/article/pii/S0896627311007926>, doi: 10.1016/j.neuron.2011.09.006.

703 Pruim RHR, Mennes M, van Rooij D, Llera A, Buitelaar JK, Beckmann CF. ICA-AROMA: A robust ICA-based strat-
704 egory for removing motion artifacts from fMRI data. *NeuroImage*. 2015; 112:267-277. <http://www.sciencedirect.com/science/article/pii/S1053811915001822>, doi: 10.1016/j.neuroimage.2015.02.064.

706 Pruim RHR, Mennes M, Buitelaar JK, Beckmann CF. Evaluation of ICA-AROMA and alternative strategies for
707 motion artifact removal in resting state fMRI. *NeuroImage*. 2015; 112:278-287. <http://linkinghub.elsevier.com/retrieve/pii/S1053811915001809>, doi: 10.1016/j.neuroimage.2015.02.063.

709 Rahim M, Thirion B, Bzdok D, Buvat I, Varoquaux G. Joint prediction of multiple scores captures better individual
710 traits from brain images. *NeuroImage*. 2017; 158:145-154. <http://www.sciencedirect.com/science/article/pii/S1053811917305438>, doi: 10.1016/j.neuroimage.2017.06.072.

712 Rios G, Tobar F. Compositionally-warped Gaussian processes. *Neural Networks*. 2019; 118:235-246. <https://linkinghub.elsevier.com/retrieve/pii/S0893608019301856>, doi: 10.1016/j.neunet.2019.06.012.

714 Rosa MJ, Portugal L, Hahn T, Fallgatter AJ, Garrido MI, Shawe-Taylor J, Mourao-Miranda J. Sparse
715 network-based models for patient classification using fMRI. *NeuroImage*. 2015; 105:493-506. doi:
716 10.1016/j.neuroimage.2014.11.021.

717 Rosenberg MD, Finn ES. How to establish robust brain-behavior relationships without thousands of individu-
718 als. *Nature Neuroscience*. 2022; 25(7):835-837. <https://www.nature.com/articles/s41593-022-01110-9>, doi:
719 10.1038/s41593-022-01110-9, number: 7 Publisher: Nature Publishing Group.

720 Rutherford S, Angstadt M, Sripada C, Chang SE. Leveraging big data for classification of children who stutter
721 from fluent peers. *bioRxiv*. 2020; p. 2020.10.28.359711. <https://www.biorxiv.org/content/10.1101/2020.10.28.359711v1>, doi: 10.1101/2020.10.28.359711, publisher: Cold Spring Harbor Laboratory Section: New Results.

723 Rutherford S, Fraza C, Dinga R, Kia SM, Wolfers T, Zabih M, Berthet P, Worker A, Verdi S, Andrews D, Han LK,
724 Bayer JM, Dazzan P, McGuire P, Mocking RT, Schene A, Sripada C, Tso IF, Duval ER, Chang SE, et al. Charting
725 brain growth and aging at high spatial precision. *eLife*. 2022; 11:e72904. <https://doi.org/10.7554/eLife.72904>, doi: 10.7554/eLife.72904, publisher: eLife Sciences Publications, Ltd.

727 Rutherford S, Kia SM, Wolfers T, Fraza C, Zabih M, Dinga R, Berthet P, Worker A, Verdi S, Ruhe HG, Beckmann
728 CF, Marquand AF. The normative modeling framework for computational psychiatry. *Nature Protocols*. 2022;
729 p. 1-24. <https://www.nature.com/articles/s41596-022-00696-5>, doi: 10.1038/s41596-022-00696-5, publisher:
730 Nature Publishing Group.

731 Salvador R, Radua J, Canales-Rodríguez EJ, Solanes A, Sarró S, Goikolea JM, Valiente A, Monté GC, Natividad
732 MDC, Guerrero-Pedraza A, Moro N, Fernández-Corcuera P, Amann BL, Maristany T, Vieta E, McKenna PJ,
733 Pomarol-Clotet E. Evaluation of machine learning algorithms and structural features for optimal MRI-based
734 diagnostic prediction in psychosis. *PloS One*. 2017; 12(4):e0175683. doi: 10.1371/journal.pone.0175683.

735 Sanislow CA. RDoC at 10: changing the discourse for psychopathology. *World Psychiatry*. 2020;
736 19(3):311-312. <https://onlinelibrary.wiley.com/doi/abs/10.1002/wps.20800>, doi: 10.1002/wps.20800, _eprint:
737 <https://onlinelibrary.wiley.com/doi/pdf/10.1002/wps.20800>.

738 **Schaefer A**, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, Eickhoff SB, Yeo BTT. Local-Global Par-
739 cellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. *Cerebral Cortex* (New
740 York, NY). 2018; 28(9):3095-3114. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095216/>, doi: 10.1093/cercor/bhx179.

742 **Shen X**, Tokoglu F, Papademetris X, Constable RT. Groupwise whole-brain parcellation from resting-state fMRI
743 data for network node identification. *NeuroImage*. 2013; 82:403-415. <http://linkinghub.elsevier.com/retrieve/pii/S1053811913005818>, doi: 10.1016/j.neuroimage.2013.05.081.

745 **Shi D**, Li Y, Zhang H, Yao X, Wang S, Wang G, Ren K. Machine Learning of Schizophrenia Detection with Structural
746 and Functional Neuroimaging. *Disease Markers*. 2021; 2021:9963824. doi: 10.1155/2021/9963824.

747 **Siegel JS**, Mitra A, Laumann TO, Seitzman BA, Raichle M, Corbetta M, Snyder AZ. Data Quality Influences
748 Observed Links Between Functional Connectivity and Behavior. *Cerebral Cortex* (New York, NY). 2017;
749 27(9):4492-4502. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6410500/>, doi: 10.1093/cercor/bhw253.

750 **Smith SM**, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann
751 CF. Correspondence of the brain's functional architecture during activation and rest. *Proceedings of the
752 National Academy of Sciences of the United States of America*. 2009; 106(31):13040-13045. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2722273/>, doi: 10.1073/pnas.0905267106.

754 **Snelson E**, Rasmussen CE, Ghahramani Z. Warped Gaussian processes. In: *Proceedings of the 16th International
755 Conference on Neural Information Processing Systems NIPS'03*, MIT Press; p. 337-344.

756 **Sprooten E**, Rasgon A, Goodman M, Carlin A, Leibu E, Lee WH, Frangou S. Addressing reverse inference in
757 psychiatric neuroimaging: Meta-analyses of task-related brain activation in common mental disorders. *Human
758 Brain Mapping*. 2017; 38(4):1846-1864. <https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23486>, doi:
759 10.1002/hbm.23486, _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.23486>.

760 **Sripada C**, Angstadt M, Rutherford S, Kessler D, Kim Y, Yee M, Levina E. Basic Units of Inter-Individual Vari-
761 ation in Resting State Connectomes. *Scientific Reports*. 2019; 9(1):1900. <https://www.nature.com/articles/s41598-018-38406-5>, doi: 10.1038/s41598-018-38406-5.

763 **Sripada C**, Angstadt M, Rutherford S, Taxali A, Shedden K. Toward a "treadmill test" for cognition: Im-
764 proved prediction of general cognitive ability from the task activated brain. *Human Brain Mapping*. 2020;
765 41(12):3186-3197. <https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25007>, doi:
766 10.1002/hbm.25007, _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.25007>.

767 **Sripada C**, Rutherford S, Angstadt M, Thompson WK, Luciana M, Weigard A, Hyde LH, Heitzeg M. Prediction
768 of neurocognition in youth from resting state fMRI. *Molecular Psychiatry*. 2019; <https://doi.org/10.1038/s41380-019-0481-6>, doi: 10.1038/s41380-019-0481-6.

770 **Sui J**, Qi S, van Erp TGM, Bustillo J, Jiang R, Lin D, Turner JA, Damaraju E, Mayer AR, Cui Y, Fu Z, Du Y, Chen J,
771 Potkin SG, Preda A, Mathalon DH, Ford JM, Voyvodic J, Mueller BA, Belger A, et al. Multimodal neuromarkers
772 in schizophrenia via cognition-guided MRI fusion. *Nature Communications*. 2018; 9:3028. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072778/>, doi: 10.1038/s41467-018-05432-w.

774 **Taxali A**, Angstadt M, Rutherford S, Sripada C. Boost in Test-Retest Reliability in Resting State fMRI with
775 Predictive Modeling. *Cerebral Cortex*. 2021; 31(6):2822-2833. <https://doi.org/10.1093/cercor/bhaa390>, doi:
776 10.1093/cercor/bhaa390.

777 **Tso IF**, Angstadt M, Rutherford S, Peltier S, Diwadkar VA, Taylor SF. Dynamic causal modeling of eye gaze
778 processing in schizophrenia. *Schizophrenia Research*. 2021; 229:112-121. <https://www.sciencedirect.com/science/article/pii/S092099642030551X>, doi: 10.1016/j.schres.2020.11.012.

780 **Van Essen DC**, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, WU-Minn HCP Consortium.
781 The WU-Minn Human Connectome Project: an overview. *NeuroImage*. 2013; 80:62-79. doi:
782 10.1016/j.neuroimage.2013.05.041.

783 **Venkataraman A**, Whitford TJ, Westin CF, Golland P, Kubicki M. Whole Brain Resting State Functional Connec-
784 tivity Abnormalities in Schizophrenia. *Schizophrenia Research*. 2012; 139(1):7-12. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393792/>, doi: 10.1016/j.schres.2012.04.021.

786 **Verdi S**, Marquand AF, Schott JM, Cole JH. Beyond the average patient: how neuroimaging models can address
787 heterogeneity in dementia. *Brain*. 2021; <https://doi.org/10.1093/brain/awab165>, doi: 10.1093/brain/awab165.

788 **Virtanen P**, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser
789 W, Bright J, van der Walt SJ, Brett M, Wilson J, Millman KJ, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E,
790 Carey CJ, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. *Nat Methods*. 2020;
791 17(3):261–272. <http://dx.doi.org/10.1038/s41592-019-0686-2>, doi: 10.1038/s41592-019-0686-2.

792 **Wager TD**, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-Based Neurologic Signature
793 of Physical Pain. *New England Journal of Medicine*. 2013; 368(15):1388–1397. <https://doi.org/10.1056/NEJMoa1204471>, doi: 10.1056/NEJMoa1204471, publisher: Massachusetts Medical Society _eprint:
794 <https://doi.org/10.1056/NEJMoa1204471>.

795 **Wannan CMJ**, Cropley VL, Chakravarty MM, Bousman C, Ganella EP, Bruggemann JM, Weickert TW, Weickert CS,
796 Everall I, McGorry P, Velakoulis D, Wood SJ, Bartholomeusz CF, Pantelis C, Zalesky A. Evidence for Network-
797 Based Cortical Thickness Reductions in Schizophrenia. *The American Journal of Psychiatry*. 2019; 176(7):552–
798 563. doi: [10.1176/appi.ajp.2019.18040380](https://doi.org/10.1176/appi.ajp.2019.18040380).

799 **Winter NR**, Leenings R, Ernsting J, Sarink K, Fisch L, Emden D, Blanke J, Goltermann J, Opel N, Barkhau C, Meinert S, Dohm K, Repple J, Mauritz M, Gruber M, Leehr Ej, Grotgerd D, Redlich R, Jansen A, Nenadic I, et al. Quantifying Deviations of Brain Structure and Function in Major Depressive Disorder Across Neuroimaging Modalities. *JAMA Psychiatry*. 2022; 79(9):879–888. <https://doi.org/10.1001/jamapsychiatry.2022.1780>, doi: 10.1001/jamapsychiatry.2022.1780.

800 **Wolfers T**, Arenas AL, Onnink AMH, Dammers J, Hoogman M, Zwiers MP, Buitelaar JK, Franke B, Marquand AF, Beckmann CF. Refinement by integration: aggregated effects of multimodal imaging markers on adult ADHD. *Journal of Psychiatry & Neuroscience : JPN*. 2017; 42(6):386–394. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662460/>, doi: 10.1503/jpn.160240.

801 **Wolfers T**, Buitelaar JK, Beckmann CF, Franke B, Marquand AF. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. *Neuroscience & Biobehavioral Reviews*. 2015; 57:328–349. <http://www.sciencedirect.com/science/article/pii/S0149763415002018>, doi: 10.1016/j.neubiorev.2015.08.001.

802 **Wolfers T**, Doan NT, Kaufmann T, Alnæs D, Moberget T, Agartz I, Buitelaar JK, Ueland T, Melle I, Franke B, Andreassen OA, Beckmann CF, Westlye LT, Marquand AF. Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models. *JAMA Psychiatry*. 2018; 75(11):1146–1155. <https://doi.org/10.1001/jamapsychiatry.2018.2467>, doi: 10.1001/jamapsychiatry.2018.2467.

803 **Wolfers T**, Rokicki J, Alnæs D, Berthet P, Agartz I, Kia SM, Kaufmann T, Zabih M, Moberget T, Melle I, Beckmann CF, Andreassen OA, Marquand AF, Westlye LT. Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder. *Human Brain Mapping*. 2021; 42(8):2546–2555. <https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25386>, doi: <https://doi.org/10.1002/hbm.25386>, _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.25386>.

804 **Woo CW**, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. *Nature Neuroscience*. 2017; 20(3):365–377. <http://www.nature.com/articles/nn.4478>, doi: 10.1038/nn.4478.

805 **Yeo BTT**, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. *Journal of Neurophysiology*. 2011; 106(3):1125–1165. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174820/>, doi: 10.1152/jn.00338.2011.

806 **Yu Q**, Allen EA, Sui J, Arbabshirani MR, Pearson G, Calhoun VD. Brain connectivity networks in schizophrenia underlying resting state functional magnetic resonance imaging. *Current topics in medicinal chemistry*. 2012; 12(21):2415–2425. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429862/>.

807 **Zabih M**, Floris DL, Kia SM, Wolfers T, Tillmann J, Arenas AL, Moessnang C, Banaschewski T, Holt R, Baron-Cohen S, Loth E, Charman T, Bourgeron T, Murphy D, Ecker C, Buitelaar JK, Beckmann CF, Marquand A. Fractionating autism based on neuroanatomical normative modeling. *Translational Psychiatry*. 2020; 10(1):1–10. <https://www.nature.com/articles/s41398-020-01057-0>, doi: 10.1038/s41398-020-01057-0, number: 1 Publisher: Nature Publishing Group.

808 **Zabih M**, Oldehinkel M, Wolfers T, Frouin V, Goyard D, Loth E, Charman T, Tillmann J, Banaschewski T, Dummas G, Holt R, Baron-Cohen S, Durston S, Bölte S, Murphy D, Ecker C, Buitelaar JK, Beckmann CF, Marquand AF. Dissecting the Heterogeneous Cortical Anatomy of Autism Spectrum Disorder Using Normative Models. *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging*. 2019; 4(6):567–578. <https://www.sciencedirect.com/science/article/pii/S245190221830329X>, doi: 10.1016/j.bpsc.2018.11.013.

842 Zhang J, Kucyi A, Raya J, Nielsen AN, Nomi JS, Damoiseaux JS, Greene DJ, Horovitz SG, Uddin LQ, Whitfield-
843 Gabrieli S. What have we really learned from functional connectivity in clinical populations? Neu-
844 roimage. 2021; 242:118466. <https://www.sciencedirect.com/science/article/pii/S1053811921007394>, doi:
845 [10.1016/j.neuroimage.2021.118466](https://doi.org/10.1016/j.neuroimage.2021.118466).

846 **Functional MRI Acquisition Parameters**

847 In the HCP study, four runs of resting state fMRI data (14.5 minutes each) were acquired on a
848 Siemens Skyra 3 Tesla scanner using multi-band gradient-echo EPI (TR=720ms, TE=33ms, flip
849 angle=52, multiband acceleration factor=8, 2mm isotropic voxels, FOV=208×180mm, 72 slices, alter-
850 nating RL/LR phase encode direction). T1 weighted scans were acquired with 3D MPRAGE sequence
851 (TR=2400ms, TE=2.14ms, TI=1000ms, flip angle=8, 0.7mm isotropic voxels, FOV=224mm, 256 sagit-
852 tal slices) and T2 weighted scans were acquired with a SPACE sequence (TR=3200ms, TE=565ms,
853 0.7mm isotropic voxels, FOV=224mm, 256 sagittal slices). In the COBRE study, the T1 weighted
854 acquisition is a multi-echo MPRAGE (MEMPR) sequence (1 mm isotropic). Resting state functional
855 MRI data was collected with single-shot full k-space echo-planar imaging (EPI) (TR = 2000 ms, TE =
856 29 ms, FOV = 64x64, 32 slices in axial plane interleaved multi slice series ascending, voxel size =
857 3x3x4 mm³). The University of Michigan SchizGaze study was collected in two phases with different
858 parameters but using the same MRI machine (3.0 T GE MR 750 Discovery scanner). In SchizGaze1
859 (N=47), functional images were acquired with a T2*-weighted, reverse spiral acquisition sequence
860 (TR = 2000 ms, 240 volumes (8 minutes), 3mm isotropic voxels) and a T1-weighted image was ac-
861 quired in the same prescription as the functional images to facilitate co-registration. In SchizGaze2
862 (N=68), functional images were acquired with a T2*-weighted multi-band EPI sequence (multi-band
863 acceleration factor of 8, TR = 800 ms, 453 volumes (6 minutes), 2.4mm isotropic voxels) and T1w
864 (MPRAGE) and T2w structural scans were acquired for co-registration with the functional data. In
865 addition, field maps were acquired to correct for intensity and geometric distortions.

866 **Functional MRI Preprocessing Methods**

867 T1w images are corrected for intensity nonuniformity, reconstructed with recon-all (FreeSurfer),
868 spatially normalized (ANTs), and segmented with FAST (FSL). For every BOLD run, data are co-
869 registered to the corresponding T1w reference, and the BOLD signal is sampled onto the subject's
870 surfaces with mri_vol2surf (FreeSurfer). A set of noise regressors are generated during the pre-
871 ceding steps that are used to remove a number of artifactual signals from the data during subse-
872 quent processing, and these noise regressors include: head-motion parameters (via MCFLIFT; FSL)
873 framewise displacement and DVARS, and physiological noise regressors for use in component-
874 based noise correction (CompCor). ICA-based denoising is implemented via ICA-AROMA and we
875 compute 'non-aggressive' noise regressors. Resting state connectomes are generated from the
876 fMRIprep processed resting state data using Nilearn, denoising using the noise regressors gener-
877 ated above, with orthogonalization of regressors to avoid reintroducing artifactual signals.

878 **Functional Brain Networks Normative Modeling**

879 Data from 40 sites were combined to create the initial full sample. These sites are described in
880 detail in 3, including the sample size, age (mean and standard deviation), and sex distribution of
881 each site. Many sites were pulled from publicly available data sets including ABCD, CAMCAN, CMI-
882 HBN, HCP-Aging, HCP-Development, HCP-Early Psychosis, HCP-Young Adult, NKI-RS, OpenNeuro,
883 PNC, and UKBiobank. For data sets that include repeated visits (i.e., ABCD, UKBiobank), only the
884 first visit was included. Full details regarding sample characteristics, diagnostic procedures and
885 acquisition protocols can be found in the publications associated with each of the studies. Training
886 and testing data sets (80/20) were created using scikit-learn's train_test_split function, stratifying
887 on the site variable. To show generalizability of the models to new data not included in training, we
888 leveraged three datasets (ds000243, ds002843, ds003798) from [OpenNeuro](#) to create a multi-site
889 transfer data set.

890 Normative modeling was run using python 3.8 and the [PCNtoolkit](#) package (version 0.26). Bayesian
891 Linear Regression (BLR) with likelihood warping was used to predict each between network connec-
892 tivity pair (Yeo-17 and Smith-10) from a vector of covariates (age, sex, site, meanFD). For a detailed
893 mathematical description see ([Frazza et al., 2021](#)). Briefly, for each brain region of interest, y is
894 predicted as:

$$y = \omega^\top \varphi(x) + \epsilon \quad (4)$$

895 Where ω^\top is the estimated weight vector, $\varphi(x)$ is a basis expansion of the covariate vector x ,
 896 consisting of a B-spline basis expansion (cubic spline with 5 evenly spaced knots) to model non-
 897 linear effects of age, and $\epsilon = \eta(\theta, \beta)$ a Gaussian noise distribution with mean zero and noise pre-
 898 cision term β (the inverse variance). A likelihood warping approach (*Rios and Tobar, 2019; Snelson*
 899 *et al., ????*) was used to model non-Gaussian effects. This involves applying a bijective nonlinear
 900 warping function to the non-Gaussian response variables to map them to a Gaussian latent space
 901 where inference can be performed in closed form. We employed a 'sinarcsinh' warping function,
 902 which is equivalent to the SHASH distribution commonly used in the generalized additive modeling
 903 literature (*Jones and Pewsey, 2009*) and which we have found to perform well in prior work (*Dinga*
 904 *et al., 2021; Fraza et al., 2021*). Site variation was modeled using fixed effects, which we have shown
 905 in prior work provides relatively good performance (*Kia et al., 2021*), although random effects for
 906 site may provide additional flexibility at higher computational cost. A fast numerical optimization
 907 algorithm was used to optimize hyperparameters ('Powell'). Computational complexity of hyperpa-
 908 rameter optimization was controlled by minimizing the negative log likelihood. Deviation scores
 909 (Z-scores) are calculated for the n_{th} subject, and d_{th} brain area, in the test set as:

$$Z_{n_d} = \frac{y_{n_d} - \hat{y}_{n_d}}{\sqrt{(\theta_d)^2 + (\theta_{*d})^2}} \quad (5)$$

910 Where y_{n_d} is the true response, \hat{y}_{n_d} is the predicted mean, θ_d^2 is the estimated noise variance (reflecting uncertainty in the data), and θ_{*d}^2 is the variance attributed to modeling uncertainty. Model
 911 fit for each brain region was evaluated by calculating the explained variance (which measures central
 912 tendency), the mean squared log-loss (MSLL, central tendency and variance) plus skew and
 913 kurtosis of the deviation scores (equation 5) which measures how well the shape of the regression
 914 function matches the data (*Dinga et al., 2021*).

Appendix 0 Table 3. Functional normative model train/test demographics per site.

Site	Train			Test		
	N	Sex (F/M)%	Age (m, s.d)	N	Sex (F/M)%	Age (m, s.d)
ABCD_01	60	48.33, 51.67	9.87, 0.58	73	56.16, 43.84	9.95/0.61
ABCD_02	244	47.54, 52.46	10.12, 0.64	258	47.29, 52.71	10.1, 0.62
ABCD_03	282	47.87, 52.13	9.87, 0.62	260	50, 50	9.91, 0.61
ABCD_04	258	49.61, 50.39	9.91, 0.64	268	50.37, 49.63	9.77, 0.64
ABCD_05	161	62.11, 37.89	9.85, 0.63	144	42.36, 57.64	9.96, 0.63
ABCD_06	228	54.82, 45.18	9.98, 0.58	240	48.75, 51.25	10.02, 0.59
ABCD_07	128	50.78, 49.22	9.86, 0.64	128	42.97, 57.03	9.93, 0.61
ABCD_08	113	50.44, 49.56	9.98, 0.63	104	45.19, 54.81	10.1, 0.59
ABCD_09	173	48.55, 51.45	10.05, 0.59	175	56, 44	9.89, 0.60
ABCD_10	187	48.66, 51.34	9.88, 0.62	223	45.29, 54.71	9.93, 0.64
ABCD_11	192	51.04, 48.96	9.88, 0.65	173	51.45, 48.55	9.79, 0.62
ABCD_12	70	50, 50	9.85, 0.60	68	1.47, 54.41	9.95, 0.55
ABCD_13	209	51.67, 48.33	9.84, 0.61	191	52.88, 47.12	9.84, 0.60
ABCD_14	286	48.6, 51.4	10.24, 0.51	220	45.45, 54.55	10.2, 0.54
ABCD_15	138	55.07, 44.93	9.94, 0.62	149	45.64, 54.36	10.0, 0.58
ABCD_16	458	46.29, 53.71	9.89, 0.64	462	42.64, 48.7	9.90, 0.66
ABCD_17	204	54.9, 45.1	9.84, 0.61	221	41.63, 58.37	9.87, 0.65

ABCD_18	97	37.11, 62.89	9.91, 0.67	109	53.21, 46.79	10.0, 0.60
ABCD_19	187	55.08, 44.92	10.12, 0.55	205	52.68, 47.32	10.1, 0.54
ABCD_20	278	50.72, 49.28	10.05, 0.48	259	54.44, 45.56	10.1, 0.50
ABCD_21	212	44.81, 55.19	9.97, 0.63	238	49.58, 50.42	9.94, 0.61
AOMIC_PIPO1	162	58.64, 41.36	22.2, 1.8	41	53.66, 46.34	22.4, 1.7
AOMIC_PIPO2	166	59.64, 40.36	22.2, 1.7	41	46.34, 53.66	22.1, 2.2
CAMCAN	495	49.49, 50.51	53.2, 18.3	124	54.84, 45.16	55.3, 20.0
CMI-HBN_CBIC	133	37.59, 62.41	11.9, 3.4	33	48.48, 51.52	11.7, 3.6
CMI-HBN_RU	74	37.84, 62.16	11.6, 3.6	18	38.89, 61.11	10.9, 3.5
CNP-35343.0	79	44.3, 55.7	31.1, 9.1	19	52.63, 47.37	32.1, 7.4
CNP-35426.0	18	44.44, 55.56	31.1, 8.2	4	75, 25	34.8, 10.9
HCP_A_MGH	130	51.54, 48.46	62.1, 16.1	33	51.52, 48.48	59.1, 15.6
HCP_A_UCLA	118	56.78, 43.22	55.9, 13.1	30	60, 40	59.3, 15.8
HCP_A_UM	164	56.71, 43.29	61.9, 17.0	41	48.78, 51.22	60.8, 16.2
HCP_A_WU	167	61.08, 38.92	61.0, 15.4	42	52.38, 47.62	60.2, 15.2
HCP_D_MGH	137	54.01, 45.99	14.7, 3.8	34	55.88, 44.12	13.1, 3.4
HCP_D_UCLA	82	50, 50	14.6, 3.7	21	23.81, 28.57	14.7, 4.0
HCP_D_UM	99	54.55, 44.44	13.8, 3.7	24	66.67, 37.5	13.7, 3.9
HCP_D_WU	94	48.94, 51.06	14.5, 3.9	23	52.17, 47.83	15.2, 4.2
HCP_YA	500	51.8, 48.2	28.5, 3.8	501	54.49, 45.51	28.9, 3.6
NKI-RS	136	48.53, 51.47	21.1, 6.5	34	50, 50	17.8, 6.5
PNC	630	56.03, 43.97	14.6, 3.3	158	43.04, 56.96	14.6, 8.0
ukb	6924	55.37, 44.63	62.4, 7.5	1732	55.25, 44.75	63.3, 7.5
UMich_IMPs	235	52.77, 47.23	12.9, 3.4	59	54.24, 45.76	12.5, 3.6

Appendix 0 Table 4. Surface area normative model demographics per site

Site	N	Age (m, s.d.)	Sex (F/M) %
ABCD_01	388	9.90, 0.62	51.29, 48.71
ABCD_02	542	10.1, 0.62	46.49, 53.51
ABCD_03	569	9.88, 0.66	47.1, 52.9
ABCD_04	631	9.82, 0.71	48.65, 51.35
ABCD_05	345	9.89, 0.63	51.59, 48.41
ABCD_06	564	9.94, 0.59	50.71, 49.29
ABCD_07	325	9.87, 0.62	47.08, 52.92
ABCD_08	336	9.95, 0.62	47.62, 52.38
ABCD_09	407	9.96, 0.61	49.14, 50.86
ABCD_10	575	9.86, 0.62	48.7, 51.3
ABCD_11	414	9.82, 0.62	49.76, 50.24
ABCD_12	161	9.88, 0.59	47.83, 52.17
ABCD_13	555	9.82, 0.59	49.91, 50.09
ABCD_14	583	10.2, 0.57	45.8, 54.2
ABCD_15	396	9.90, 0.60	44.95, 55.05
ABCD_16	921	9.90, 0.65	44.95, 55.05
ABCD_17	557	9.82, 0.63	47.94, 52.06
ABCD_18	341	9.91, 0.63	46.92, 53.08
ABCD_19	534	10.1, 0.55	50.94, 49.06

ABCD_20	640	10.0, 0.49	50, 50
ABCD_21	491	9.91, 0.62	45.21, 54.79
ABCD_22	35	10.2, 0.55	62.86, 37.14
ATT	31	23.0, 1.88	9.68, 90.32
ATV	77	22.7, 1.98	77.92, 22.08
CAMCAN	647	54.2, 18.6	50.85, 49.15
CIN	136	52.4, 15.5	36.76, 63.24
CMI-RU	563	10.3, 3.49	34.81, 65.19
CMI-SI	341	11.2, 3.83	43.11, 56.89
CNP-35343.0	153	33.3, 9.38	47.71, 52.29
CNP-35426.0	79	33.3, 9.24	32.91, 67.09
COI	193	49.4, 13.5	61.14, 38.86
ds001734	108	25.5, 3.59	55.56, 44.44
ds002236	86	11.5, 2.04	44.19, 55.81
ds002330	65	26.2, 4.30	55.38, 44.62
ds002345	207	21.7, 4.71	63.29, 36.71
ds002731	59	21.3, 1.45	47.46, 52.54
ds002837	86	26.7, 10.1	48.84, 51.16
HCP-Aging_MGH	171	59.8, 15.5	50.29, 49.71
HCP-Aging_UCLA	124	53.3, 12.8	57.26, 42.74
HCP-Aging_UMinn	204	61.6, 16.3	58.82, 41.18
HCP-Aging_WashU	178	58.5, 13.8	62.92, 37.08
HCP-Dev_MGH	216	13.8, 3.87	50.46, 49.54
HCP-Dev_UCLA	127	14.1, 3.82	48.82, 51.18
HCP-Dev_UMinn	156	13.3, 3.64	54.49, 45.51
HCP-Dev_WashU	154	14.0, 3.87	48.7, 51.3
HCP-EP_BWH	31	22.6, 4.00	32.26, 67.74
HCP-EP_IU	84	23.2, 3.82	39.29, 60.71
HCP-EP_McL	44	24.1, 3.56	43.18, 56.82
HCP-EP_MGH	21	24.1, 5.44	28.57, 71.43
HCP-YA	1113	28.8, 3.70	54.45, 45.55
HKH	62	45.1, 10.5	48.39, 51.61
HRC	65	41.4, 11.5	70.77, 29.23
HUH	124	38.7, 13.3	50.81, 49.19
IXI	581	49.5, 16.7	56.28, 43.72
KT	121	32.4, 10.3	38.84, 61.16
KUT	220	38.0, 13.1	43.64, 56.36
NKI	482	42.6, 21.2	63.9, 36.1
NKN	9	63.6, 18.5	44.44, 55.56
Oasis3	2044	70.4, 9.51	42.37, 57.63
PNC	1378	14.2, 3.51	50.87, 49.13
SWA	234	31.4, 8.75	14.53, 85.47
SWU_SLIM	569	20.1, 1.27	56.24, 43.76
TOP	823	33.2, 10.2	47.14, 52.86
ukb-11025.0	16132	62.5, 7.50	51.83, 48.17
ukb-11026.0	658	65.3, 7.37	54.86, 45.14
ukb-11027.0	3880	63.7, 7.46	53.92, 46.08
UTO	351	35.4, 14.6	45.58, 54.42