

Decoding the variant-to-function relationship for *LIPA*, a risk locus for coronary artery disease

Fang Li,^{1*} Elise Flynn,^{2,3} Philip Ha,¹ Mazal N. Zebak,¹ Haoxiang Cheng,⁴ Chenyi Xue,

¹ Jianting Shi,¹ Xun Wu,¹ Ziyi Wang,¹ Yujiao Meng,¹ Jian Cui,¹ Yizhou Zhu,⁵ Annie Rozenblyum,¹ Jeana Chun,¹ Antonio Hernandez-Ono,⁶ Ali Javaheri,^{7,8} Babak Razani,⁹ Marit Westerterp,¹⁰ Robert C Bauer,¹ Yousin Suh,⁵ Ke Hao,⁴ Tuuli Lappalainen,^{2,3,11}

Hanrui Zhang,^{1*}

1. Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA

2. New York Genome Center, New York, NY, USA

3. Department of Systems Biology at Columbia University, New York, NY, USA

4. Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA

5. Department of Obstetrics and Gynecology, Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA

6. Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA

7. Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA

8. John Cochran Veterans Affairs Hospital, St Louis, MO, USA
9. Division of Cardiology and Vascular Medicine Institute, the Department of Medicine, and the Department of Veterans Affairs, University of Pittsburgh, Pittsburgh, PA, USA
10. Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
11. Department of Gene Technology, Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden

*** Corresponding authors:**

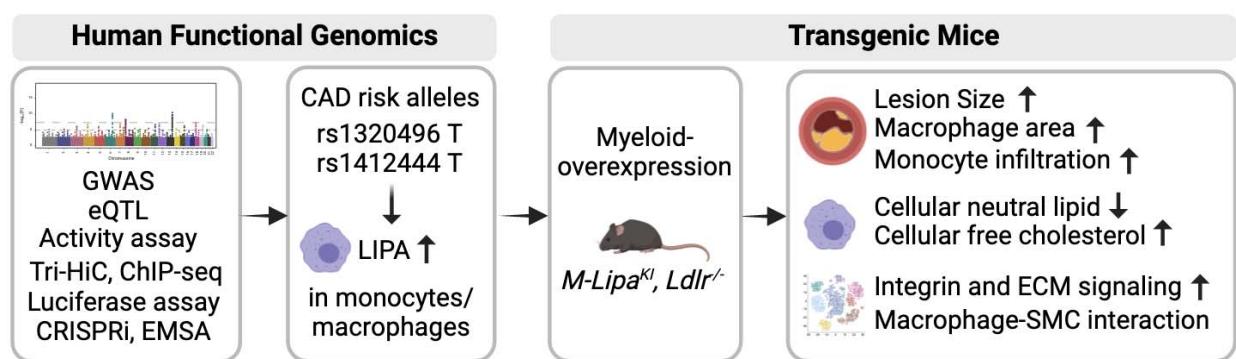
Fang Li PhD
Cardiometabolic Genomics Program,
Division of Cardiology
Department of Medicine
Columbia University Irving Medical Center
630 West 168th Street, P&S10-401
New York, NY 10032
Tel: (212) 305-3508
Email: fl2532@cumc.columbia.edu

Hanrui Zhang MB PhD
Cardiometabolic Genomics Program,
Division of Cardiology
Department of Medicine

Columbia University Irving Medical Center

630 West 168th Street, P&S10-401

New York, NY 10032


Tel: (212) 304-7905

Email: hz2418@cumc.columbia.edu

Conflicts-of-interest statement

T.L. advises and has equity in Variant Bio and advised Goldfinch Bio and GSK.

Graphical Abstract

1 **Abstract**

2 Translating human genomic discoveries into mechanistic insights requires linking
3 genetic variations to candidate genes and their causal functional phenotypes. Genome-
4 wide association studies have consistently identified *LIPA* as a risk locus for coronary
5 artery disease (CAD), with previous expression quantitative trait loci (eQTL) analyses
6 prioritizing *LIPA* as a candidate causal gene. However, functional studies elucidating the
7 causal variants, regulatory mechanisms, target cell types, and their causal impact on
8 atherosclerosis have been lacking. To address this gap, we applied functional genomics
9 and experimental mouse models to establish the variant-to-function relationship at the
10 *LIPA* locus. Our findings show that CAD risk alleles in the *LIPA* locus increase LIPA
11 expression and enzyme activity specifically in monocytes/macrophages by enhancing
12 PU.1 binding to an intronic enhancer region that interacts with the *LIPA* promoter. In
13 myeloid *Lipa*-overexpressing mice, we observed larger atherosclerotic lesions
14 accompanied by altered macrophage function, including increased macrophage
15 accumulation due to enhanced monocyte recruitment, reduced neutral lipid
16 accumulation, and upregulation of integrin and extracellular matrix pathways. Our work
17 establishes a direct causal link between *LIPA* risk alleles and increased
18 monocyte/macrophage LIPA that exacerbates atherosclerosis, bridging human
19 functional genomic evidence to the mechanistic understanding of CAD.

20 **Introduction**

21 Coronary artery disease (CAD) remains the leading cause of death worldwide. The
22 inheritability of CAD has been estimated to be 40% to 60%, supporting the contribution
23 of inherited genetic variation to its pathogenesis (1). Genome-wide association studies
24 (GWASs) determine the common genetic variants associated with diseases and traits,
25 having collectively identified more than 300 CAD-associated risk loci (2-13). Identifying
26 the causal genes that connect genetic variation to disease risk will inform novel
27 biological mechanisms and therapeutic targets for CAD.

28

29 The *LIPA* locus has been reproducibly identified as a risk locus for CAD in multiple
30 GWASs and meta-analyses across ethnic groups (**Table S1**) (2-13), but not plasma lipid
31 traits (14), indicating a CAD-specific yet lipid metabolism-independent genetic
32 mechanism. Colocalization analysis suggests that genetic variants associated with CAD
33 are also associated with *LIPA* expression in the Stockholm-Tartu Atherosclerosis
34 Reverse Networks Engineering Task study (STARNET) dataset (15), suggesting *LIPA*
35 as the candidate causal gene at the locus. The *LIPA* gene encodes lysosomal acid
36 lipase (also known as LAL), the only known acidic lipase hydrolyzing cholesteryl ester
37 and triglyceride within lysosomes (16). Rare coding and splicing junction mutations in
38 *LIPA* result in Mendelian disorders, including the infant-onset Wolman Disease due to a
39 complete loss of LIPA and the later-onset Cholesteryl Ester Storage Disease (CESD)
40 with up to 10% residual enzyme activity (16). CESD is characterized by hyperlipidemia,
41 hepatosplenomegaly, and premature atherosclerosis, presumably due to severe
42 dyslipidemia (17). Mice with whole body knockout of *Lipa* phenotypically resemble the

43 late-onset CESD in humans despite the complete loss of *Lipa*, and die within days when
44 on an *Ldlr*^{-/-} background and challenged with dietary cholesterol (18). However, almost
45 all common CAD variants at the *LIPA* locus, including the lead single nucleotide
46 polymorphism (SNP) rs1412444, are intronic, suggesting that they likely exert *cis*-
47 regulatory effects rather than impacting protein function directly. The sole exonic SNP in
48 this linkage disequilibrium (LD) block, i.e. rs1051338, does not alter the expression,
49 activity, lysosomal trafficking, or secretion of LIPA, further implicating that these
50 noncoding variants likely contribute to CAD risk by modulating gene regulation via *cis*-
51 regulatory effects (19).

52

53 The SNP rs1412444, and other SNPs in high LD, showed robust quantitative trait locus
54 (QTL) signals in monocytes, with risk alleles of CAD linked to higher *LIPA* mRNA (2, 3),
55 and more importantly, higher enzyme activity (19) in human peripheral blood monocytes.
56 These findings support that CAD risk alleles are associated with higher LIPA activity in
57 monocytes, which may be causally involved in CAD. Pathologically, monocytes play
58 essential roles in the development and exacerbation of atherosclerosis. In
59 atherosclerosis, plaque macrophages are largely derived from the infiltration of
60 circulating monocytes (20). Monocytes and macrophages may therefore represent the
61 most relevant cell types for the regulatory effects of CAD *LIPA* variants.

62

63 Despite strong statistical association and initial QTL studies supporting the directionality
64 and the potential causal cell types, the variant-to-function relationship and how this
65 important locus causally impacts atherosclerosis are unclear. Herein, we sought to

66 delineate the causal variants, the effector gene, the cell types involved, and the
67 regulatory mechanisms of this CAD risk locus; and to elucidate how elevated LIPA in
68 these key causal cell types, as implicated by human functional genomic evidence,
69 contributes to atherosclerosis pathogenesis. This work connects CAD-associated *LIPA*
70 genetic variants to their biological functional, advancing our understanding of this
71 locus's causal role in elevating CAD risk.

72

73

74 **Results**

75 **Integrative genomic analyses identify *LIPA* as the candidate causal gene within**
76 **the *LIPA* locus**

77

78 GWASs have identified a number of common genetic variants at the *LIPA* locus that are
79 strongly associated with risks of CAD as summarized in **Table S1**. Leveraging the
80 CARDIoGRAMplusC4D GWAS dataset (7, 13), we identified twenty SNPs ($P < 1 \times 10^{-8}$)
81 significantly associated with CAD risk, with rs1412444 as the lead SNP ($P = 5.15 \times 10^{-12}$)
82 (**Figure 1A** and **Table S2**).

83

84 To identify the causal gene and causal tissue/cell types at the locus, we applied
85 integrative genomic analysis pipeline employing three methods from two broad classes:
86 1) Colocalization analysis; 2) Summarized Mendelian Randomization (SMR) followed by
87 Heterogeneity in Dependent Instruments Test (HEIDI) (21) or MetaXcan (22). Using
88 CARDIoGRAMplusC4D GWAS and GTEx eQTL data, which shows the strongest *LIPA*
89 eQTL in blood (**Figure S1A**), colocalization analysis by ENLOC (23) suggest that *LIPA*

90 is the only nearby gene showing strong regional colocalization probability (rcp) in this
91 region (± 1 Mb flanking gene *LIPA*, rcp = 0.657, whereas all other genes have rcp = 0)
92 (**Figure 1B** and **Figure S1B**). By integrating CARDIoGRAMplusC4D and UKBB
93 GWASs with STARNET eQTL data of 9 tissue/cell types in this region (± 500 kb flanking
94 gene *LIPA*), we confirmed that *LIPA* showed significant colocalization signal (Coloc H₄ >
95 0.8) in CAD-relevant tissue/cell types (**Table S3**). SMR-HEIDI test examines if the same
96 variant is associated with gene expression and complex traits (24). SMR-HEIDI analysis
97 also identified *LIPA* as the only candidate causal gene with P_{SMR} < 0.001 and P_{HEIDI} >= 0.05
98 (**Table S4**). MetaXcan further confirmed *LIPA* as the candidate causal gene
99 demonstrating the strongest MetaXcan evidence (P < 5 × 10⁻⁸) (**Table S5**). Expanding
100 on prior work that hinted at *LIPA* as a causal gene (2, 3), our integrative genomic
101 analyses provided strong statistical evidence establishing *LIPA* as the causal gene at
102 this locus.

103

104 **Functional genomic data support monocytes and macrophages as the causal cell**
105 **types**

106

107 Functional regulatory variants and genomic elements often exert tissue- and cell type-
108 specific effects to regulate the expression of their target genes. Settling causal
109 tissues/cell types will enhance our understanding of disease-relevant regulatory
110 mechanisms. We applied three strategies leveraging large-scale transcriptomic and
111 epigenomic datasets to elucidate the involved cell types for the regulatory role of the
112 *LIPA* CAD variants.

113

114 First, GTEx eQTL analysis revealed the strongest *LIPA* eQTL association in whole
115 blood, followed by spleen and visceral adipose tissue (**Figure S1A**). Given the high
116 immune cell content in these tissues, we examined the BLUEPRINT dataset to identify
117 specific immune cell association (25). As shown in **Figure 1C**, monocytes showed the
118 strongest eQTL associations for CAD SNPs across all three eQTL methods, including
119 WASP-CHT (WASP-corrected combined haplotype test),(26) WASP-ASE (WASP-
120 corrected allele-specific expression) (26), and WP10 eQTL, while T-cells showing no
121 eQTL signals. Neutrophil exhibited a weak eQTL signal for SNP rs304412, which lacks
122 significant CAD association (**Table S2**).

123

124 Second, eQTL studies in diseased tissue allow the discovery of associations not
125 identifiable in healthy tissues, likely due to shifts in cell composition and regulatory
126 landscape changes. Using STARNET, with eQTL studies in cardiometabolic tissues
127 from patients with CAD, and CARDIoGRAMplusC4D datasets (\pm 500 kb flanking gene
128 *LIPA*), our analysis found more evidence for the role of monocytes and macrophages in
129 CAD-risk at the *LIPA* locus: 1) atherosclerotic aortic wall (AOR), blood, and human
130 peripheral blood monocyte-derived macrophage (HMDM) (**Figure 1D-1F**, respectively)
131 represent the strongest evidence as the causal tissues/cell types ($P_{eQTL} < 5 \times 10^{-8}$,
132 **Table S6**), passing colocalization, SMR-HEIDI, and metaXan tests (Coloc H₄ > 0.8,
133 $P_{SMR} < 0.001$ and $P_{HEIDI} \geq 0.05$, and $P_{metaXan} < 5 \times 10^{-8}$, **Table S3-S5**); 2) foamy
134 macrophages (acetylated-LDL loaded HMDMs) showed strong eQTL (**Figure 1G**)
135 meeting SMR-HEIDI (**Table S4**); 3) *LIPA* eQTL associations in liver, visceral abdominal

136 adipose (VAF), and skeletal muscle (SKLM) had $P_{eQTL} < 5 \times 10^{-8}$ (**Figure S2, Table S6**),
137 though SMR-HEIDI suggested that different variants (in high LD) independently
138 regulated CAD risk and *LIPA* expression in these tissues ($P_{HEIDI} < 0.05$, **Table S4**); 4)
139 no *LIPA* eQTL association was found in pre/early-atherosclerotic mammary arteries
140 (**MAM, Figure S2, Table S6**), the healthy arteries mainly consist of endothelial cells and
141 vascular smooth muscle cells unlikely to have immune cell accumulation. These results
142 together support that monocytes/macrophages are likely the causal cell types for the
143 *LIPA* locus.

144

145 Finally, we harnessed single-cell datasets to provide insights into cell type-specific
146 regulatory mechanisms. Single-cell ATAC-seq of human atherosclerotic plaque
147 identifies cell type-specific regulatory elements, with recent scATAC-seq of human
148 atherosclerotic plaques ($n = 41$ subjects and 28,316 cells) revealing a macrophage-
149 specific regulatory element containing rs1320496 and the lead SNP (rs1412444) for
150 CAD (27). The regulatory element was absent in vascular smooth muscle cell-derived
151 cells and other cell types in the plaque, underscoring a macrophage-specific regulatory
152 mechanism. In addition, in the STARNET dataset, rs1320496 was the lead eQTL SNP
153 ($P = 1.11 \times 10^{-11}$) for *LIPA* in foamy macrophages (**Figure 1G, Table S6**). Collectively,
154 bulk and single-cell data highlight monocytes and macrophages as the causal cell type
155 for *LIPA* variant regulation.

156

157 ***LIPA* CAD risk alleles are associated with higher *LIPA* mRNA, protein, and**
158 **enzyme activity in monocytes and macrophages**

159

160 Upon establishing the causal cell types, it is important to confirm how the CAD risk
161 alleles affect *LIPA* expression in these cells. Previous eQTL studies show that the risk
162 alleles (T) of rs1412444 and rs2246833 (in high LD, $r^2 = 0.98$) are associated with
163 higher *LIPA* mRNA (2, 3), and more importantly, higher LIPA enzyme activity (19) in
164 human monocytes. In light of the strong *LIPA* eQTL signals in HMDM and foamy
165 macrophages (**Figure 1F and 1G**) and the vital role of macrophages in atherosclerosis
166 (28), the cause of CAD, we examined *LIPA* expression and enzyme activity in human
167 macrophages.

168

169 Using HMDMs differentiated from peripheral blood mononuclear cells isolated from fully
170 genotyped healthy individuals (**Table S7**), we observed a 1.42-fold and 1.57-fold
171 increase in *LIPA* mRNA for C/T and T/T genotypes of rs1412444, respectively, and
172 significant increase in LIPA enzyme activity (by 1.37-fold for C/T and 1.47-fold for T/T)
173 compared to C/C, the non-risk genotype (**Figure 1H and 1I**). LIPA protein levels also
174 increase in risk allele carriers, confirmed by Western blot (29) (**Figure 1J**). Thus, both
175 previous functional genomic datasets and our experimental cohort validate that CAD
176 risk alleles link to higher LIPA expression and enzyme activity in monocytes (19) and
177 macrophages.

178

179 **Experimental validation establishes the functional regulatory element and the**
180 **regulatory mechanisms of the candidate causal variants**

181

182 Identifying causal variants and linking them to the target gene remains challenging, yet
183 it represents a critical step to definitively establish the causality of the locus. Most
184 disease-associated noncoding variants reside in *cis*-regulatory elements (cREs) that
185 regulate gene expression in a cell type-specific manner (30). We experimentally
186 validated the cREs and functional variants regulating *LIPA* expression using the
187 following strategies: 1) prioritize cREs harboring GWAS variants using ChIP-seq data in
188 monocytes and macrophages (31) and luciferase assay; 2) use high-resolution Tri-HiC
189 to identify chromatin looping between *LIPA* promoter and putative cREs, and CRISPR
190 interference (CRISPRi) to validate the role of the cRE in regulating *LIPA* expression; 3)
191 perform luciferase assay with site-directed mutagenesis to identify functional variant(s);
192 and 4) analyze allele-specific binding (ASB) and motifs to understand transcription
193 factor (TF) interactions.

194

195 CAD GWASs reproducibly identified rs1412444 and rs2246833, both intronic in *LIPA*,
196 as the lead SNP or tag SNP (**Table S1**). Using epigenomic data in monocytes and
197 macrophages (31), we visualized the locus, including histone marks (H3K4me1 and
198 H3K27ac) and TF binding sites (**Figure 2A** and **Figure S3**). The rs1412444 region
199 aligns with stronger enhancer marks and PU.1 binding (**Figure 2A**), showing enhancer
200 activity by luciferase assay in THP-1 monocytes but not HEK293 cells, indicating a
201 monocyte/macrophage-specific regulatory mechanism (**Figure 2B**). The rs2246833
202 region showed no enhancer activity in either cell line (**Figure 2B**), consistent with
203 weaker enhancer features (**Figure 2A**).

204

205 Enhancers regulate gene expression by recruiting TFs and looping with the target gene
206 promoter, a key mechanism for how noncoding variants influence transcription (30).
207 Using high-resolution Tri-HiC data (32), we identified a strong interaction between the
208 rs1412444 region and the *LIPA* promoter in human monocytes, but not T-cells (**Figure**
209 **2C**), aligning with eQTL data showing lack of eQTL association in T-cells (**Figure 1C**).
210 CRISPRi targeting the rs1412444 region suppressed *LIPA* expression in THP-1 cells,
211 especially by gRNA spanning rs1320496 (**Figure 2D**).
212
213 The rs1412444 region, containing SNPs rs1412445, rs1320496 and rs1412444, was
214 prioritized as the causal cRE to further identify the functional variants in the region using
215 both experimental and statistical methods. The SNP rs1412444 is the lead SNP in CAD
216 GWAS (**Figure 1A**) and *LIPA* eQTL in atherosclerotic aortas (**Figure 1D**). The SNP
217 rs1412445 is in extremely high LD with rs1412444 ($r^2 = 0.99$), thereby serving as a
218 proxy. The SNP rs1320496 shows the strongest signal for *LIPA* eQTL in HMDM and
219 foamy macrophages (**Figure 1F-1G**), and is partly linked with SNP rs1412444 ($r^2 = 0.45$,
220 $D' = 1$). Among three major haplotypes (CCC, CTC, and TTT, defined by rs1412445,
221 rs1320496, and rs1412444 genotypes, **Table S8**), compared to the non-risk haplotype
222 CCC, the CTC and CTT haplotypes showed increased enhancer activity in monocytes
223 by luciferase assay (**Figure 3A**), suggesting that both rs1412445/rs1412444 and
224 rs10320496 may affect *LIPA* expression. Conditional analysis partially disentangles the
225 contribution of rs1412445/rs1412444 and rs1320496 on *LIPA* expression and CAD risk,
226 with both SNPs significantly linked to LIPA expression and CAD when analyzed
227 independently, supporting the presence of multiple causal variants within the rs1412444
228 enhancer region (**Figure 3B**).

229

230 We next sought to understand the mechanisms of action of the functional variants in the
231 rs1412444 enhancer region. Many eQTL SNPs regulate target gene expression by
232 altering TF binding. Using eQTL data from 49 tissues in GTEx, we have previously
233 established that analyzing eQTL effect size as a function of TF expression level offers a
234 generalizable approach to discover TF regulators of genetic variant effects (33). Using
235 this analysis pipeline, we observed significant correlations between eQTL effects of
236 rs1320496 and the expression levels of 9 TFs, with PU.1, encoded by the *SP1* gene,
237 showing the strongest effect (Spearman rho = 0.48, P = 6.0×10^{-4} , **Figure S4A**). Indeed,
238 the rs1412444 enhancer region overlaps with the PU.1 binding site, an important TF
239 required for myeloid differentiation (**Figure 2A**) (34). We, therefore, hypothesize that the
240 functional variants in the rs1412444 region may alter PU.1 binding affinity. To test this,
241 we used: 1) allele-specific PU.1 ChIP-seq; 2) motif analysis; 3) electrophoresis mobility
242 shift assay (EMSA); and 4) knockdown of *SP1* to confirm causality. PU.1 ChIP-seq (35)
243 showed higher PU.1 binding for the risk alleles (T) of rs1320496 and rs1412444
244 compared to non-risk alleles (C) (**Figure 3C**). Among the SNPs, only rs1320496 (T) was
245 predicted to directly change a key nucleotide to enhance motif-matching (**Figure 3D**).
246 EMSA further validated that the T allele of rs1320496 created a binding site for PU.1
247 (**Figure 3E**). The T allele of rs1412444 showed increased PU.1 binding compared to the
248 C allele (**Figure 3E**), while the T allele of rs1412445 showed no evidence of binding to
249 PU.1 (**Figure S4B**). We further validated that knockdown of *SP1* reduces *LIPA* mRNA
250 expression (**Figure 3F**), and partially abolished the effects of the risk alleles on
251 increasing the enhancer activity of the rs1412444 region (**Figure 3G**). These findings

252 confirm that risk alleles of rs1320496 and rs1412444 increase *LIPA* expression and
253 contribute to CAD risk by enhancing PU.1 binding. (**Figure 3H**)

254
255 We also examined TFs beyond PU.1. A modest correlation between rs1412444 eQTL
256 effects and *STAT1* expression was noted in GTEx data (Spearman rho = 0.26, P = 0.07,
257 **Figure S5A**) and ENCODE data (**Figure S5D**), with *STAT1* ChIP-seq in CD14⁺
258 monocytes showing an allelic imbalance (**Figure S5B**). However, *STAT1* knockdown did
259 not affect *LIPA* expression (**Figure S5C**), suggesting *STAT1* unlikely regulate *LIPA* CAD
260 variants effects.

261
262 In summary, our functional genomic studies confirm that the risk alleles of genetic
263 variants associated with CAD lead to increased *LIPA* mRNA, protein, and enzyme
264 activity in monocytes and macrophages. These variants within the enhancer region
265 interact with the *LIPA* promotor and regulate *LIPA* expression by altering PU.1 binding.
266 Having established the causative role of these variants in elevating LIPA, we next aim to
267 assess whether this increase exacerbates atherosclerosis using myeloid-specific *Lipa*
268 overexpression in preclinical mouse models.

269
270 **Preclinical mouse studies demonstrate that myeloid-specific overexpression of**
271 ***Lipa* increases atherosclerosis**

272
273 To elucidate how increased myeloid LIPA impacts atherosclerosis *in vivo*, we developed
274 a myeloid-specific *Lipa* overexpression mouse model (*LysMCre*^{+/−}, *Lipa*^{KI/WT}, *Ldlr*^{−/−},

275 referred to as *M-Lipa*^{KI}, **Figure 4A** and **S6A** for illustration of the construct and breeding
276 strategy). Their corresponding littermates *LysMCre*^{-/-}, *Lipa*^{KI/WT}, *Ldlr*^{-/-} were used as
277 control (*Ctrl*). The percentage of GFP⁺ cells, a reporter of *Lipa* overexpression, was
278 quantified across multiple tissues to demonstrate specificity and efficiency of
279 overexpression (**Figure S6C-S6E**). In *M-Lipa*^{KI} mice, GFP⁺ cells comprised 36.2%,
280 22.0%, 34.8%, and 68.5% of CD45⁺CD115⁺ monocytes/macrophages in blood, bone
281 marrow (BM), spleen, and peritoneum, respectively (**Figure S6C**). GFP⁺ cells
282 represented 46.3% and 70.2% of CD115⁻Ly6G^{hi} neutrophils in blood and BM (**Figure**
283 **S6D**), with minimal GFP⁺ CD3⁺ lymphocytes (< 2.7%, **Figure S6E**), confirming myeloid-
284 specific overexpression. The efficiency of *LysMCre* recombination is comparable to
285 previous reports on *LysMCre*-mediated overexpression in mouse models (36).

286
287 The overexpression of *Lipa* at mRNA, protein, and enzyme activity levels was confirmed
288 in bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (PMs)
289 from *M-Lipa*^{KI} mice of both sexes (**Figure S6F-S6O**). In male mice, *Lipa* mRNA and
290 enzyme activity increased by 1.56-fold and 1.26-fold in *M-Lipa*^{KI} BMDMs (**Figure S6F**
291 **and S6G**) and by 3.49-fold and 1.44-fold in *M-Lipa*^{KI} PMs (**Figure S6K and S6L**)
292 compared to *Ctrl*, respectively. In female mice, the *Lipa* mRNA and enzyme activity
293 increased by 1.41-fold and 1.21-fold in *M-Lipa*^{KI} BMDMs (**Figure S6H and S6I**) and
294 2.52-fold and 1.24-fold in *M-Lipa*^{KI} PMs (**Figure S6M and S6N**) compared to *Ctrl*,
295 respectively. Consistently, LIPA protein significantly increased in both BMDMs (**Figure**
296 **S6J**) and PMs (**Figure S6O**) from *M-Lipa*^{KI} mice compared to *Ctrl*. Despite the modest
297 overexpression, the enzyme activity increase was comparable to HMDMs of risk allele

298 carriers (**Figure 1I**), supporting *M-Lipa*^{KI} mice as a model for studying the causal effects
299 of gain-of-function of LIPA observed in human functional genomic data.

300
301 *Ctrl* and *M-Lipa*^{KI} mice were fed a Western diet (WD, TD88137, Envigo Teklad) for 16
302 weeks to induce atherosclerosis, with body weight, organ weight, and lipid profiles
303 assessed (**Figure S7A-S7N**). Body weight, spleen weight/body weight, and liver
304 weight/body weight were comparable between *Ctrl* and *M-Lipa*^{KI} mice in both males
305 (**Figure S7A-S7C**) and females (**Figure S7H-S7J**). No differences in total cholesterol
306 (**Figure S7D** and **S7K**) or cholesterol in low-density lipoprotein (LDL) and high-density
307 lipoprotein (HDL) fractions were observed (**Figure S7E** and **S7L**, after 4 h fasting and in
308 both sexes). Female *M-Lipa*^{KI} mice showed a trend toward higher plasma triglyceride (P
309 = 0.050, **Figure S7M**) and higher triglyceride in both LDL and HDL fractions (**Figure**
310 **S7N**), an effect not seen in males (**Figure S7F** and **S7G**). Overall, myeloid *Lipa*
311 overexpression did not alter body weight or plasma cholesterol, consistent with human
312 data linking *LIPA* variants to CAD but not metabolic traits, while the modest effects of
313 myeloid *Lipa* overexpression on triglyceride metabolism specifically in female mice on a
314 WD require further examination (37).

315
316 Atherosclerotic lesion size was significantly larger, with a 17.78% increase in male and
317 21.85% in female *M-Lipa*^{KI} mice compared to *Ctrl* mice (**Figure 4B**). Lesion size
318 positively correlated with LIPA activity in PMs (**Figure 4C**, P = 0.014, r = 0.4499),
319 supporting the association between increased macrophage LIPA activity and

320 atherogenesis. No differences in necrotic core area or fibrous cap thickness, features of
321 plaque instability (38), were observed (**Figure 4D, 4E**).

322

323 In summary, our findings highlight a pro-atherogenic role for increased myeloid *Lipa*
324 expression without affecting body weight or lipid profile, in line with human genomic
325 data.

326

327 **Myeloid *Lipa* overexpression promotes atherosclerosis with an increased
328 macrophage content in the lesion, mainly attributable to increase monocyte
329 recruitment**

330

331 Myeloid *Lipa* overexpression significantly increased the CD68⁺ macrophage area in
332 lesions for both sexes (**Figure 5A**), with no differences in macrophage proliferation or
333 apoptosis, as determined by Ki67 and TUNEL (terminal deoxynucleotidyl transferase
334 dUTP nick-end labeling) staining (**Figure 5B-5C**), suggesting other mechanisms for the
335 increase.

336

337 During atherogenesis, blood monocytes continuously influx into the subendothelial
338 space and contribute to lesion macrophage accumulation (28). Since plaque
339 macrophage proliferation or apoptosis remained unaffected, we hypothesize that
340 increased macrophage area may result from increased monocyte recruitment. To test
341 this, Ly6C^{hi} circulating monocytes were pulse-labeled with fluorescent beads (**Figure 5D**)
342 as previously described (39). Three days after labeling, bead numbers within the lesion

343 were quantified. *M-Lipa*^{KI} mice showed increased beads in CD68⁺ macrophage area
344 within plaques (**Figure 5D**), indicating higher monocyte recruitment. We further
345 confirmed that *M-Lipa*^{KI} with WD feeding did not alter myelopoiesis in blood or BM
346 (**Figure S8A and S8B**) or affect the percentage of hematopoietic progenitor cells in BM
347 (**Figure S8C**). Chemokines, e.g., CCL2 (40, 41), CCL8 (42), and CCL7 (43), have been
348 implicated in regulating monocyte infiltration in atherosclerosis progression. The levels
349 of plasma CCL2, CCL7, and CCL8, and 13 other chemokines and cytokines, showed no
350 difference between genotypes (**Figure S9**). These results suggest that myeloid *Lipa*
351 overexpression increases monocyte recruitment to the plaques, likely due to changes in
352 the local plaque microenvironment rather than monocyte numbers or systemic
353 inflammation.

354

355 **Myeloid *Lipa* overexpression leads to reduced neutral lipid accumulation and**
356 **increased free cholesterol accumulation in macrophages**

357

358 Beyond the increased macrophages in *M-Lipa*^{KI} plaques, we further validated the
359 functional effects of *Lipa* overexpression in macrophages. Using flow cytometry, we
360 characterized foamy (SSC^{hi}LipidTOX^{hi}) aortic macrophages (CD45⁺CD11b⁺CD64⁺)
361 (**Figure 6A** for study design and **Figure S10A** for gating strategy) (44). We confirmed
362 that in atherosclerotic plaques, the percentage of SSC^{hi}LipidTOX^{hi} foamy aortic
363 macrophages was similar between *M-Lipa*^{KI} and *Ctrl* mice (**Figure 6B**), but the mean
364 fluorescent intensity (MFI) of LipidTOX in foamy aortic macrophages isolated from *M-*
365 *Lipa*^{KI} mice was significantly lower than that in *Ctrl* mice (**Figure 6C**), indicating reduced

366 neutral lipids. Within *M-Lipa*^{KI} mice, GFP⁺ aortic macrophages had lower neutral lipids
367 than GFP⁻ aortic macrophages (**Figure 6D**), confirming intrinsic effects driven by *Lipa*
368 overexpression.

369
370 We also assessed SSC^{hi}LipidTOX^{hi} foamy PMs (CD45⁺F4/80⁺) from WD-fed mice
371 (**Figure 6E** for study design and **Figure S10B** for gating strategy). The percentage and
372 LipidTOX MFI of foamy PMs were significantly lower in *M-Lipa*^{KI} mice compared to *Ctrl*
373 mice, indicating reduced neutral lipid accumulation (**Figure 6F, 6G**). Fluorometric
374 cholesterol assays in PMs (**Figure 6H** for study design) further showed higher total and
375 free cholesterol but lower cholesteryl ester levels in *M-Lipa*^{KI} PMs (**Figure 6I**), aligning
376 with LipidTOX findings. These data consistently show reduced neutral lipid
377 accumulation in *Lipa*^{KI} aortic macrophages and PMs.

378
379 We further explored if reduced neutral lipid accumulation in *M-Lipa*^{KI} PMs from WD-fed
380 mice could be replicated *in vitro* in cultured macrophages loaded with modified
381 lipoproteins. PMs from mice fed a normal laboratory diet (ND) were treated with
382 oxidized-LDL (oxLDL, **Figure S11A** for study design). We indeed observe a lower MFI
383 of LipidTOX in oxLDL-loaded *M-Lipa*^{KI} PMs compared to *Ctrl* PMs (**Figure S11B**), which
384 was not due to a significant change in oxLDL-binding or uptake (**Figure S11C** and
385 **S11D**). As expected, *Lipa* mRNA was elevated in *M-Lipa*^{KI} PMs (**Figure S11E**), while
386 genes for lipoprotein uptake were similar (**Figure S11E**). *M-Lipa*^{KI} PMs had lower
387 expression of cholesterol biosynthesis genes (**Figure S11F**), suggesting increased free
388 cholesterol accumulation in the endoplasmic reticulum thus a suppression of cholesterol

389 biosynthesis genes. No differences were seen in cholesterol efflux gene expression (45),
390 including *Abca1* and *Abcg1* (**Figure S11G**). It is worth noting that oxLDL loading only
391 led to a slight increase in total and free cholesterol, but levels were similar between *M-*
392 *Lipa*^{KI} and *Ctrl* PMs (**Figure S11H**). Thus, oxLDL-loaded PMs replicate some, but not all,
393 phenotypic features of PMs from WD-fed mice, underscoring the importance of carefully
394 assessing the appropriate cellular model for mechanistic studies.

395

396 **Myeloid *Lipa* overexpression distinctly alters the transcriptomic signature of**
397 **aortic macrophages and PMs**

398

399 Building on the observed phenotypic changes, we sought to determine how myeloid
400 *Lipa* overexpression alters macrophage transcriptomes. To compare the transcriptomic
401 signature of aortic macrophages between *Ctrl* and *M-Lipa*^{KI} mice fed a WD for 16 weeks,
402 we performed bulk RNA-seq using the low-input RNA-seq method owing to the limited
403 materials of aortic macrophages (**Figure 7A** for study design). We identified 300
404 upregulated and 123 downregulated DE genes in *M-Lipa*^{KI} vs. *Ctrl* aortic macrophages
405 (**Figure 7B** and **Table S9**, absolute fold change > 1.5, FDR-adjusted P < 0.05). Gene
406 Set Enrichment Analysis (GSEA) showed enrichment of integrin signaling and cell-
407 matrix adhesion pathways in the upregulated DE genes (**Figure 7C** and **Table S10**).
408 The increased integrins (*Itga6*, *Itga9*, *Itgb3*, *Itgax*, etc.) and adhesion molecules and
409 receptors (*Cspg4*, *Dag1*, *Fn1*, *Kdr*, *Tnc*, *Npnt*, etc.) in *M-Lipa*^{KI} aortic macrophages may
410 contribute to the increased monocyte adhesion and infiltration and macrophage

411 adhesion in the atherosclerotic plaque microenvironment, thus promoting
412 atherosclerosis (**Figure 7D**).

413
414 To further examine if *Lipa* overexpression uniquely affect aortic macrophages, we
415 performed RNA-seq on PMs from *Ctrl* and *M-Lipa^{KI}* mice fed a WD for 16 weeks
416 (**Figure 7E** for study design). We identified a total of 69 upregulated and 31
417 downregulated DE genes (**Figure 7F** and **Table S11**, absolute fold change > 1.5, FDR-
418 adjusted P < 0.05). GSEA indicated enrichment in interferon signaling and antigen
419 presentation pathways in the upregulated DE genes in *M-Lipa^{KI}* vs. *Ctrl* PMs (**Figure 7G**
420 and **Table S12**). This is consistent with the recent finding that lipid loading suppressed
421 the expression of interferon-stimulated genes, e.g., *Ifit2*, *Ifit1*, *Oas3*, and *Stat2*, in mouse
422 and human macrophages (46), as visualized in **Figure 7H**. The upregulated expression
423 of major histocompatibility complex genes, e.g., *H2-Eb1*, *H2-Q6*, *H2-Ab1*, *H2-K1*, etc. in
424 PMs of *M-Lipa^{KI}* mice implicate immune activation (**Figure 7I**). To explore whether our
425 observation of increased free cholesterol in PMs of *M-Lipa^{KI}* mice may link to a
426 proinflammatory transcriptomic signature, we further validated the mRNA of *Il18* and
427 *Il1b* in PMs using qRT-PCR (**Figure S12**) and the plasma level of IL-18 and IL1 β
428 (**Figure S9**) in mice. However, no significant differences were observed between *Ctrl*
429 and *M-Lipa^{KI}*, suggesting NLRP3 inflammasome may not be the primary
430 proinflammatory driving force in this context, despite the known role of excessive free
431 cholesterol accumulation in the endoplasmic reticulum in activating the NLRP3
432 inflammasome (47, 48).

433

434 These findings emphasize the distinct effects of *Lipa* overexpression on aortic
435 macrophages compared to other macrophage types, highlighting the importance of
436 examining context-specific cellular responses in disease mechanisms.

437

438 **Single-cell RNA-seq analysis reveals that myeloid *Lipa* overexpression alters cell
439 heterogeneity and transcriptomic profile of atherosclerotic aortic cells**

440

441 The transcriptomic signature of increased integrin and extracellular matrix (ECM) genes
442 in *Lipa*-overexpressing aortic macrophage prompts us to speculate whether the
443 changes reflect altered macrophage subpopulations and whether macrophage
444 transcriptomic changes can alter other plaque cell types via cell-cell interaction. To gain
445 insights into the effects of myeloid *Lipa* overexpression on the phenotypic and functional
446 heterogeneity of plaque cells, we carried out single-cell RNA-sequencing (scRNA-seq)
447 analysis. Aortic single-cell suspensions were obtained from *Ctrl* and *M-Lipa*^{KI} mice fed a
448 WD for 16 weeks. Live single cells were sequenced using the 10X Chromium platform
449 (**Figure 8A** for study design and **Figure S13A** for gating strategy). Data analysis was
450 performed using Seurat v4.3.0.1 (49). Annotation of cell types was based on top marker
451 genes of each cluster and by comparing with marker genes defined in previous meta-
452 analyses of atherosclerotic plaque scRNA-seq data (**Table S13** for the top 15 marker
453 genes and **Figure 8B** for the visualization of cell clusters and **Figure 8C** the top 3
454 marker genes) (50). Data confirmed an increased macrophage proportion in *M-Lipa*^{KI}
455 mice (**Figure 8D** and **Table S14**), consistent with histological data (**Figure 5A**). Results
456 also suggest decreased SMC proportion and increased fibroblast proportion (**Figure 8D**

457 and **Table S14**). Understanding the noisy nature of scRNA-seq, we performed DE
458 analysis for each cell type to gain exploratory insights into effects of myeloid *Lipa*
459 overexpression on the transcriptomic signature of different plaque cell types. While we
460 observed modest changes, notably, among the 6 cell types, we identified the most DE
461 genes in SMCs between *M-Lipa^{KI}* and *Ctrl* mice (**Table S15** for DE genes and **Table**
462 **S16** for canonical pathway analysis using Ingenuity Pathway Analysis, IPA). Focused
463 analysis of SMCs reveals 6 SMC subclusters consistent with those identified in the
464 literature (50) (**Figure 8E** for UMAP visualization and **Figure S13B** for marker gene
465 visualization). In *M-Lipa^{KI}* mice, a reduction in SMC1 and an increase in *Cxcl12* SMC
466 and fibroblast-like SMCs were observed (**Figure 8F**). IPA suggests the activation of
467 canonical pathways in SMCs of *M-Lipa^{KI}* mice, including the Integrin Cell Surface
468 Interactions and Atherosclerosis Signaling canonical pathways (**Figure 8G** and **Table**
469 **S16**), which corroborates with the observed increase in atherosclerotic lesion and the
470 increased integrin and ECM genes in aortic macrophages by bulk RNA-seq.
471 Upregulated DE genes in SMCs of *M-Lipa^{KI}* mice include *Col1a1*, *Col1a2*, *Lum*, *Thbs1*,
472 *Vcam1*, and *Mmp2* (**Table S15**), all of which have been implicated in contributing to
473 increased ECM remodeling,(51) with *Vcam1* also playing a role in the recruitment and
474 retention of immune cells within plaques (52). Among the 6 SMC subclusters, SMC1
475 and *Cxcl12* SMCs showed the most DE genes between *Ctrl* and *M-Lipa^{KI}* mice. IPA
476 reveals activation of the Integrin Cell Surface Interactions canonical pathway in the
477 SMC1 subcluster (**Figure 8H** and **Table S16**), while inhibition of the Smooth Muscle
478 Contraction pathway in the *Cxcl12* SMC subcluster (**Figure 8I** and **Table S16**).
479 Collectively, these data suggest that in *M-Lipa^{KI}* mice, plaque SMCs may undergo

480 increased dedifferentiation, and macrophage-SMC interactions could be part of the
481 mechanisms contributing to the enhanced atheropprogression. Even though the
482 transcriptomic signature of macrophages did not differ between *M-Lipa*^{KI} and *Ctrl* mice
483 in this dataset (**Table S15** and **S16**), clustering analysis identified subclusters of aortic
484 macrophages, including Trem2⁺, Ccl2⁺, Lyve1⁺ (resident-like), Il1b⁺ (inflammatory), and
485 proliferative macrophages, aligning with those consistently reported in the literature (53,
486 54), showing comparable subcluster proportions (**Figure S13C-S13E**).

487

488 Given the transcriptomic differences in aortic macrophages observed in bulk RNA-seq
489 data, we speculate that while scRNA-seq provides valuable information on cellular
490 heterogeneity, it may be less sensitive in detecting transcriptomic differences, especially
491 when sequencing all aortic cells with limited reads per cell type. To gain deeper
492 molecular insights into the effects of *M-Lipa*^{KI} on the phenotypic and functional
493 heterogeneity of aortic macrophages, we conducted scRNA-seq analysis specifically
494 focused on these cells. Since *LysMCre* does not result in 100% recombination, we
495 leverage this by separating CD45⁺GFP⁻ (no *Lipa* overexpression) and CD45⁺GFP⁺
496 (*Lipa*-overexpressing) cells from enzymatically dissociated aortas of *M-Lipa*^{KI} mice
497 (**Figure S14A** for study design and **Figure S14B** for gating strategies). This approach
498 allowed us to compare aortic macrophages with or without *Lipa* overexpression within
499 the same plaque microenvironment (**Table S17** for the top 20 marker genes and **Figure**
500 **S14C** for subcluster identification and assignment by comparing with marker genes
501 defined in previous meta-analyses of atherosclerotic plaque scRNA-seq data) (53, 54).

502

503 A total of 12 distinct cell clusters were identified, including 5 macrophage clusters and 4
504 monocyte/dendritic clusters, as well as small numbers of B cells, fibroblasts, and SMCs
505 that are present likely because of sorting-related contamination (**Figure S14C**). The
506 GFP⁺ sample has more than 95% of the cells annotated as macrophages/monocytes,
507 confirming the myeloid specificity of *Lipa* overexpression in our model. We have also
508 validated the increased *Lipa* mRNA in GFP⁺ aortic macrophages compared to GFP⁻
509 aortic macrophages sorted from the aortas of *M-Lipa^{KI}* mice, as well as in macrophages
510 sorted from the aortas of *Ctrl* mice (**Figure S14D**). A total of 5 macrophage subclusters
511 were identified in both GFP⁻ and GFP⁺ populations (**Figure S14E**), including Trem2
512 macrophages (cluster 0), Trem2 foamy macrophages (cluster 1), Lyve1 macrophages
513 (cluster 2), Il1b macrophages (cluster 4), and proliferative macrophages (cluster 5).
514 Both cluster 0 and cluster 1 had higher *Trem2* expression (**Figure S14E**), while cluster
515 1 had high expression of lipid processing genes *Fabp5* and *Gpnmb*, and lysosomal
516 genes *Ctsl* and *Atp6v0d2* (**Figure S14E** and **Table S17**), a signature resembling
517 increased lipid metabolism, that we refer to as Trem2 foamy macrophages.(54) Notably,
518 the percentage of Trem2 foamy macrophages (cluster 1) is lower in the GFP⁺ population
519 (17.32%) compared to the GFP⁻ population (36.00%, **Figure S14F** and **Table S18**). This
520 lower proportion of lipid metabolism-associated aortic macrophage based on scRNA-
521 seq analysis is consistent with lower neutral lipids in GFP⁺ aortic macrophages
522 observed by flow cytometry (**Figure 6D**). DE and IPA analyses suggest cluster 0 Trem2
523 macrophages had the most DE genes (**Table S19**), representing a transcriptomic
524 signature showing predicted activation of pathways involving oxidative stress and
525 inflammation, such as iNOS Signaling, TREM1 Signaling, and TNFR1 Signaling (**Figure**

526 **S14G** and **Table S20**); these pathways were also identified by IPA in the merged
527 datasets between GFP- and GFP+ macrophages (**Figure S14H, Table S20**).

528
529 Taken together, histological and phenotypic analyses confirm an increased macrophage
530 area and decreased neutral lipid accumulation in aortic macrophages of *M-Lipa*^{KI} mice;
531 scRNA-seq analysis further indicates that myeloid *Lipa* overexpression increases the
532 overall proportion of plaque macrophages while reducing the proportion of the
533 macrophage subcluster associated with lipid metabolism. Furthermore, the data suggest
534 that myeloid *Lipa* overexpression influences SMCs, leading to a transcriptomic
535 signature showing the activation of Integrin Cell Surface Interactions and
536 Atherosclerosis Signaling canonical pathways, which may contribute to plaque
537 progression.

538
539

540 **Discussion**

541 Despite the first CAD GWAS being more than a decade ago, successful translation of
542 genetic associations into causal genes and pathways has been confined to a small
543 subset of GWAS loci (30). A number of genetic risk loci for CAD act through established
544 CAD risk factors, such as lipid traits (13), which themselves have a significant genetic
545 determination. Yet, many confirmed loci appear to act through novel mechanisms that
546 are independent of traditional risk factors. Elucidating these mechanisms is critical for a
547 better understanding of CAD pathogenesis and the identification of therapeutic targets.
548 *LIPA* is one of the CAD loci that is specifically associated with CAD (2-13), but not with

549 lipid traits (14). It is therefore of great interest to tackle the variant-to-function
550 relationship for the *LIPA* locus and to determine how altered *LIPA* expression causally
551 impacts atherosclerosis through mechanisms beyond its effects on plasma lipids. Here,
552 using functional genomic approaches and experimental mouse models, we present
553 evidence that *LIPA* is causal in CAD. Our results support that: 1) *LIPA* expression and
554 enzyme activity are higher in HMDM of CAD risk allele carriers; 2) the CAD GWAS lead
555 SNP rs1412444 resides in an enhancer region that shows strong interaction with the
556 *LIPA* promoter in a monocyte-specific manner, with CRISPRi targeting the region
557 suppressing *LIPA* expression; 3) within the enhancer region, risk alleles of rs1412444
558 and rs1320496 show higher binding to PU.1 and lead to increased enhancer activity; 4)
559 Myeloid overexpression of *Lipa* leads to increased atherosclerosis lesion area and
560 macrophage area in mice on *Ldlr*^{-/-} background fed a WD, due to increased monocyte
561 recruitment; 5) Myeloid overexpression of *Lipa* leads to an increase in free cholesterol
562 and decrease in cholesterol ester accumulation in PMs of mice fed a WD, accompanied
563 by upregulation of genes in interferon signaling and antigen presentation pathways; 6)
564 Myeloid overexpression of *Lipa* alters plaque cell heterogeneity and transcriptomic
565 profile; the upregulation of genes in integrin signaling and cell-matrix adhesion
566 pathways may contribute to macrophage-SMC interaction and facilitate monocyte
567 recruitment, thus exacerbating atherosclerosis. Taken together, these data demonstrate
568 that increased *LIPA* in myeloid cells drives atheropprogression, a directionality consistent
569 with human GWAS and eQTLs finding for the *LIPA* locus (2-4).

570

571 Delineating causal variants is often challenging, partly because most GWAS variants
572 are noncoding and in high LD with multiple variants within the same locus. A coding
573 variant rs1051338, in high LD with the lead SNP rs1412444 ($r^2 = 0.86$), causes a
574 nonsynonymous threonine to proline change within the signal peptide of LIPA protein.
575 Because of the essential role of LIPA in lipid metabolism, the initial speculation was that
576 rs1051338 serves as a causal variant contributing to lower LIPA activity (55). Further
577 work by Evans *et al.* revealed that the nonsynonymous change within the signal peptide
578 of LIPA protein did not affect protein trafficking, enzyme activity, or secretion (19).
579 Evans *et al.* also confirmed that the risk allele (C) of rs1051338 is associated with
580 increased *LIPA* expression and enzyme activity in human monocytes (19). Our work
581 established the same directionality in human macrophages. We have also
582 demonstrated the cell type-specific regulatory role of the *LIPA* CAD variants, *i.e.*, the
583 enhancer activity of the rs1412444 region is monocyte-specific, and the chromatin
584 interaction between the rs1412444 enhancer region and *LIPA* promoter was observed
585 in monocytes, but not T-cells. We established that rs1320496 and rs1412444 are the
586 functional SNPs within the rs1412444 enhancer region that regulate allele-specific
587 interaction with PU.1, collectively exhibiting additive effects and suggesting a model of
588 multiple causal variants within a single locus. Protein QTL (pQTL) studies represent a
589 critical level of information for understanding the genetic regulation of protein expression.
590 Although pQTL studies were performed in STARNET plasma, LIPA was not included in
591 the original panel (NPX Olink platform). Future functional genomic data at the proteomic
592 and metabolomic levels, in a cell and tissue-specific manner, and experimental

593 validation by high-throughput functional genomic screening, will further enhance our
594 ability to connect genetic variation to the functional mechanisms at scale.

595
596 This work has provided valuable mechanistic insights, while highlighting the importance
597 of selecting appropriate cellular models for mechanistic studies. PMs of *M-Lipa^{KI}* mice
598 fed a WD showed increased free cholesterol accumulation and a transcriptomic
599 signature showing upregulated interferon signaling. We attempted to model this
600 phenotype *in vitro* using oxLDL-loaded PMs from mice fed a ND. However, our results
601 did not show an effect of *M-Lipa^{KI}* on oxLDL uptake or free cholesterol accumulation.
602 OxLDL loading induced a modest increase in total cholesterol, in contrast to the
603 remarkable total cholesterol and cholesteryl ester accumulation in PMs isolated from
604 WD-fed mice. These results highlight that *in vitro* cultured macrophages loaded with
605 chemically modified oxLDL do not fully resemble the foamy macrophages formed in an
606 *in vivo* environment with WD-induced hyperlipidemia. Previous work suggests that
607 lysosomal CE hydrolysis leads to free cholesterol accumulation in the lysosome when
608 macrophages are loaded with oxLDL *in vitro*, disrupting lysosomal homeostasis,
609 including the maintenance of an acidic pH (56). It has also been observed that
610 macrophages form extracellular lysosomal synapses where the LIPA enzyme remains
611 active and mediates catabolism of aggregated-LDL, generating free cholesterol for
612 internalization (57). These *in vitro* studies align with our observation that *Lipa^{KI}*
613 increases free cholesterol accumulation. It is also worth noting that plaque
614 macrophages demonstrate a transcriptomic signature of upregulated integrin and cell-
615 matrix adhesion pathways, affirming increased monocyte infiltration and macrophage

616 content in the atherosclerotic plaques of *M-Lipa^{KI}* mice, while PMs of these mice
617 showed enhanced interferon signaling. The differences in the effects of *Lipa*
618 overexpression on the transcriptomic signature of PMs and plaque macrophages
619 highlight the importance of local microenvironment in shaping cellular phenotypes.

620

621 While our work establishes *LIPA*'s genetic contribution to CAD, its physiological role as
622 the only known acidic lipase in the lysosome, in intracellular lipid metabolism is equally
623 critical. Loss-of-function of *LIPA* is the cause of Mendelian disorders characterized by
624 lysosomal neutral lipid accumulation in multiple tissues (17). Enzyme replacement
625 therapy with recombinant LIPA protein has demonstrated efficacy and safety in patients
626 with *LIPA* deficiency (58). These findings have demonstrated the essential role of *LIPA*
627 in lipid homeostasis and the benefits of supplementing LIPA when there is a severe LIPA
628 deficiency. However, the effects of further increasing LIPA above the normal
629 physiological level and for a prolonged period remain elusive. Loss of function of *LIPA* in
630 humans led to severe dyslipidemia and hepatomegaly, prompting a hypothesis that
631 overexpressing *LIPA* in the liver would prevent hepatic lipid accumulation. Yet, a recent
632 study demonstrated that hepatic *LIPA* overexpression by AAV8 did not attenuate
633 steatosis but unexpectedly exacerbated inflammation and immune cell infiltration in the
634 liver of mice fed a WD (59). Our work using myeloid-specific *Lipa* overexpression mice
635 established that increased *Lipa* in monocytes/macrophages increases atherosclerosis.
636 Our study on the role of myeloid-specific *Lipa* overexpression in CAD prompts the
637 needs to assess the benefits and risks in potentially therapeutically targeting LIPA in
638 CAD. For example, the assumption that further enhancing LIPA will have a favorable

639 role in accelerating lysosomal lipid catabolism should be carefully evaluated in a cell
640 type and disease-specific manner.

641
642 In addition to the intracellular and cell-intrinsic effects observed with *Lipa*
643 overexpression, another unexplored aspect is the potential transferability of the LIPA
644 enzyme. This raises the question of how increased *Lipa* expression in myeloid cells
645 might impact other cell types within the plaque, as well as in organs with resident or
646 infiltrated macrophage populations. For instance, we observed altered SMC
647 heterogeneity and transcriptomic profile, though it remains unclear whether this could
648 be partly regulated by enzyme transfer that increases SMC LIPA levels. Additionally, we
649 noted a slight elevation in triglyceride levels among female *M-Lipa^{KI}* mice, while male
650 mice did not show this change. Exploring the potential impact of myeloid-*Lipa*
651 overexpression on liver and adipose biology stands as a future area of research.
652 Moreover, our mouse model for conditional overexpression of *Lipa* presents an
653 opportunity to explore the functions of *Lipa* and lysosomal lipid metabolism across
654 various tissue and cell types, both under normal homeostasis and disease contexts.

655
656 In conclusion, our results established that *LIPA* risk alleles drive increased myeloid LIPA
657 expression, which in turn aggravates atherosclerosis. These findings are consistent with
658 and support human functional genomic discoveries, highlighting the critical role of LIPA
659 in the progression of CAD. The workflow and functional genomic resources applied in
660 this study provide valuable tools that will accelerate the systematic interrogation of

661 genetic contributions to CAD risk, particularly through the roles of monocytes and
662 macrophages.

663

664

665 **Methods**

666 Detailed description of methods and materials are available in the online-only
667 Supplemental Material.

668

669 Sex as a biological variable

670 Our study examined male and female animals, and similar findings are reported for both
671 sexes.

672

673 Statistics

674 All statistical analyses were performed using GraphPad Prism 9 as described below,
675 unless otherwise specified in the figure legends. When sample size (n) ≥ 6 , data were
676 tested for normality using Shapiro-Wilk test (when $n < 8$) or D'Agostino-Pearson test
677 (when $n \geq 8$). F-test of equality of variances was performed to compare the two sample
678 variances. Data that passed normality tests are presented as mean \pm standard error
679 of mean (SEM) and analyzed using two-tailed Student's *t*-test for comparison of two
680 groups and equal variances (or with Welch's correction if F-test was not satisfied), or
681 one-way ANOVA with Tukey's post-hoc tests for one independent variable with more
682 than two groups. Data that did not follow a normal distribution were analyzed using
683 nonparametric tests, *i.e.*, Mann-Whitney U test or Kruskal-Wallis test, and are presented

684 as median \pm 95% confidence interval (CI). Nonparametric tests were also used when n
685 < 6. P < 0.05 was considered statistically significant. The number of independent
686 experiments and biological replicates is specified in the figure legends.

687

688 **Study approval**

689 All human study protocols were approved by the Human Subjects Research Institutional
690 Review Board at Columbia University (AAQ6510). All animal experiments were
691 approved by the Institutional Animal Care and Use Committee at Columbia University
692 (AABN5560). Mice were cared for according to the NIH guidelines.

693

694 **Data availability**

695 Integrative genomic analyses have incorporated two data sources: GWAS summary
696 statistics from the UK BioBank (UKBB) (60) or Coronary Artery Disease Genome Wide
697 Replication and Meta-analysis plus The Coronary Artery Disease Genetics
698 (CARDIoGRAMplusC4D) (7) and tissue/cell-type specific eQTLs from the Genotype-
699 Tissue Expression project (GTEx) v8,(61) STARNET (15), or the BLUEPRINT project
700 (25). GTEx is a large multi-tissue eQTL dataset containing 48 tissue types from ~900
701 healthy subjects (61). STARNET is an eQTL dataset in nine disease-relevant metabolic
702 tissues/cells collected from ~600 CAD patients (15).

703

704 The bulk RNA-seq and single-cell RNA-seq datasets generated during the current study
705 are deposited in the Gene Expression Omnibus (GEO) with accession number
706 GSE243139 (secure token for the reviewers: kfwtscchbufpgd). All code for data

707 analysis associated with the current submission will be available via the lab GitHub
708 repository at <https://github.com/hanruizhang/> upon acceptance of the manuscript.

709

710

711 **Author contributions**

712 FL and HZ conceived and designed the research. FL designed and conducted majority
713 of the experiments. FL analyzed RNA-seq and scRNA-seq data. EF performed
714 functional genomic analysis using GTEx and ENCODE data. HC performed functional
715 genomic analysis using STARNET data. CX conducted imputation analysis and
716 provided critical feedback on scRNA-seq data analysis. YZ performed and analyzed Tri-
717 HiC data. PH, MNZ, JS, XW, ZW, YM, JC, AR, JC, AHO performed experiments. AJ,
718 BR, MW, RCB, and YS provided input on experimental design. KH and TL were
719 instrumental in the interpretation of functional genomic data. FL and HZ analyzed and
720 interpreted results and wrote the paper. HZ directed and supervised the project and
721 funding.

722

723

724 **Acknowledgements**

725 We would like to acknowledge the NIH funding sources to the Columbia Center for
726 Translational Immunology (CCTi) Flow Cytometry Core by grant number S10OD020056
727 and S10RR027050 and P30DK063608; the NIH-supported microscopy resources in the
728 Center for Biologic Imaging, specifically the confocal microscope supported by grant
729 number S10OD019973-01; the NIH/NCI Cancer Center Support Grant P30CA013696

730 for the use of resources at the Columbia Genome Center; and the Columbia Stem Cell
731 Initiative (CSCI) Flow Cytometry Core under the leadership of Michael Kissner. We
732 thank Dr. Chyuan-Sheng (Victor) Lin, Manager of the Genetically Modified Mouse
733 Models shared resource at Columbia University Herbert Irving Comprehensive Cancer
734 Center (HICCC), for their expertise in generating the mouse model for *Lipa*
735 overexpression used in this study. The authors thank Drs. Towfique Raj and Jack
736 Humphrey (Icahn School of Medicine at Mount Sinai), and Drs. Johan Björkegren
737 (Karolinska Institutet) and Sean A. Bankier (University of Bergen) for access to pQTL
738 studies performed in STARNET plasma samples. The authors would like to
739 acknowledge Dr. Anna Ataran (Washington University in St. Louis) for support in
740 sample collection. Schematic figures were created with BioRender.com.

741

742

743 **Sources of funding**

744 The authors' research work has received funding from the National Institutes of Health
745 (NIH) (R00HL130574, R01HL151611, R01HL168174, and P01HL172741) and the
746 National Center for Advancing Translational Sciences (NCATS) (Irving Scholar Award
747 through UL1TR001873), the Marjorie and Lewis Katz Scholar Award, and the M. Iréne
748 Ferrer Scholar Award (to H.Z.), the American Heart Association Postdoctoral Fellowship
749 20POST35130003 and Career Development Award 23CDA1052177 (to F.L.), the
750 Russell Berrie Foundation Diabetes Scholar Program (to X.W.), and the American Heart
751 Association Postdoctoral Fellowship 21POST829654 (to X.W.), VIDI (917.15.350) and
752 Aspasia grants from the Netherlands Organization of Scientific Research (NWO) (to

753 M.W.), and a Rosalind Franklin Fellowship from the University of Groningen with EU Co-
754 Fund attached (to M.W.), the NIH R01MH106842 (to T.L.) and F31HG010580 (to E.F.).
755 The GTEx Project was supported by the Common Fund of the Office of the Director of
756 the NIH, and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.

757 References

- 758 1. McPherson R, and Tybjaerg-Hansen A. Genetics of Coronary Artery Disease. *Circulation Research*. 2016;118(4):564-78.
- 759 2. Consortium IKC. Large-scale gene-centric analysis identifies novel variants for coronary artery disease. *PLoS Genet*. 2011;7(9):e1002260.
- 760 3. Wild PS, Zeller T, Schillert A, Szymczak S, Sinning CR, Deiseroth A, et al. A genome-wide association study identifies LIPA as a susceptibility gene for coronary artery disease. *Circ Cardiovasc Genet*. 2011;4(4):403-12.
- 761 4. Coronary Artery Disease Genetics C. A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. *Nat Genet*. 2011;43(4):339-44.
- 762 5. Lee JY, Lee BS, Shin DJ, Woo Park K, Shin YA, Joong Kim K, et al. A genome-wide association study of a coronary artery disease risk variant. *J Hum Genet*. 2013;58(3):120-6.
- 763 6. Consortium CAD, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. *Nat Genet*. 2013;45(1):25-33.
- 764 7. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. *Nat Genet*. 2015;47(10):1121-30.
- 765 8. van der Harst P, and Verweij N. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease. *Circ Res*. 2018;122(3):433-43.
- 766 9. Matsunaga H, Ito K, Akiyama M, Takahashi A, Koyama S, Nomura S, et al. Transethnic Meta-Analysis of Genome-Wide Association Studies Identifies Three New Loci and Characterizes Population-Specific Differences for Coronary Artery Disease. *Circ Genom Precis Med*. 2020;13(3):e002670.
- 767 10. Koyama S, Ito K, Terao C, Akiyama M, Horikoshi M, Momozawa Y, et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease. *Nat Genet*. 2020;52(11):1169-77.
- 768 11. Tcheandjieu C, Zhu X, Hilliard AT, Clarke SL, Napolioni V, Ma S, et al. Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. *Nat Med*. 2022;28(8):1679-92.
- 769 12. Vargas-Alarcon G, Posadas-Romero C, Villarreal-Molina T, Alvarez-Leon E, Angeles J, Vallejo M, et al. Single nucleotide polymorphisms within LIPA (Lysosomal Acid Lipase A) gene are associated with susceptibility to premature coronary artery disease. a replication in the genetic of atherosclerotic disease (GEA) Mexican study. *PLoS One*. 2013;8(9):e74703.
- 770 13. Aragam KG, Jiang T, Goel A, Kanoni S, Wolford BN, Atri DS, et al. Discovery and systematic characterization of risk variants and genes for coronary artery disease in over a million participants. *Nat Genet*. 2022;54(12):1803-15.
- 771 14. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. *Nat Genet*. 2013;45(11):1274-83.
- 772 15. Franzen O, Ermel R, Cohain A, Akers NK, Di Narzo A, Talukdar HA, et al. Cardiometabolic risk loci share downstream cis- and trans-gene regulation across tissues and diseases. *Science*. 2016;353(6301):827-30.
- 773 16. Li F, and Zhang H. Lysosomal Acid Lipase in Lipid Metabolism and Beyond. *Arterioscler Thromb Vasc Biol*. 2019;39(5):850-6.

806 17. Porto AF. Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and
807 Cholestry Ester Storage Diseases. *Pediatr Endocrinol Rev.* 2014;12 Suppl 1:125-32.

808 18. Korbelius M, Kuentzel KB, Bradic I, Vujic N, and Kratky D. Recent insights into
809 lysosomal acid lipase deficiency. *Trends Mol Med.* 2023;29(6):425-38.

810 19. Evans TD, Zhang X, Clark RE, Alisio A, Song E, Zhang H, et al. Functional
811 Characterization of LIPA (Lysosomal Acid Lipase) Variants Associated With Coronary
812 Artery Disease. *Arterioscler Thromb Vasc Biol.* 2019;39(12):2480-91.

813 20. Williams JW, Zaitsev K, Kim KW, Ivanov S, Saunders BT, Schrank PR, et al. Limited
814 proliferation capacity of aortic intima resident macrophages requires monocyte
815 recruitment for atherosclerotic plaque progression. *Nat Immunol.* 2020.

816 21. Hao K, Ermel R, Sukhavasi K, Cheng H, Ma L, Li L, et al. Integrative Prioritization of
817 Causal Genes for Coronary Artery Disease. *Circ Genom Precis Med.*
818 2022;15(1):e003365.

819 22. Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, et al.
820 Exploring the phenotypic consequences of tissue specific gene expression variation
821 inferred from GWAS summary statistics. *Nat Commun.* 2018;9(1):1825.

822 23. Wen X, Pique-Regi R, and Luca F. Integrating molecular QTL data into genome-wide
823 genetic association analysis: Probabilistic assessment of enrichment and colocalization.
824 *PLoS Genet.* 2017;13(3):e1006646.

825 24. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary
826 data from GWAS and eQTL studies predicts complex trait gene targets. *Nat Genet.*
827 2016;48(5):481-7.

828 25. Fernandez JM, de la Torre V, Richardson D, Royo R, Puiggros M, Moncunill V, et al. The
829 BLUEPRINT Data Analysis Portal. *Cell Syst.* 2016;3(5):491-5 e5.

830 26. van de Geijn B, McVicker G, Gilad Y, and Pritchard JK. WASP: allele-specific software
831 for robust molecular quantitative trait locus discovery. *Nat Methods.* 2015;12(11):1061-3.

832 27. Turner AW, Hu SS, Mosquera JV, Ma WF, Hodonsky CJ, Wong D, et al. Single-nucleus
833 chromatin accessibility profiling highlights regulatory mechanisms of coronary artery
834 disease risk. *Nat Genet.* 2022;54(6):804-16.

835 28. Soehnlein O, and Libby P. Targeting inflammation in atherosclerosis - from experimental
836 insights to the clinic. *Nat Rev Drug Discov.* 2021;20(8):589-610.

837 29. Zhang H, Shi J, Hachet MA, Xue C, Bauer RC, Jiang H, et al. CRISPR/Cas9-Mediated
838 Gene Editing in Human iPSC-Derived Macrophage Reveals Lysosomal Acid Lipase
839 Function in Human Macrophages-Brief Report. *Arterioscler Thromb Vasc Biol.*
840 2017;37(11):2156-60.

841 30. Nurnberg ST, Zhang H, Hand NJ, Bauer RC, Saleheen D, Reilly MP, et al. From Loci to
842 Biology: Functional Genomics of Genome-Wide Association for Coronary Disease. *Circ
843 Res.* 2016;118(4):586-606.

844 31. Pham TH, Benner C, Lichtinger M, Schwarzfischer L, Hu Y, Andreesen R, et al. Dynamic
845 epigenetic enhancer signatures reveal key transcription factors associated with
846 monocytic differentiation states. *Blood.* 2012;119(24):e161-71.

847 32. Zhu Y, Rosenfeld MG, and Suh Y. Ultrafine mapping of chromosome conformation at
848 hundred basepair resolution reveals regulatory genome architecture. *Proc Natl Acad Sci
849 U S A.* 2023;120(45):e2313285120.

850 33. Flynn ED, Tsu AL, Kasela S, Kim-Hellmuth S, Aguet F, Ardlie KG, et al. Transcription
851 factor regulation of eQTL activity across individuals and tissues. *PLoS Genet.*
852 2022;18(1):e1009719.

853 34. Nerlov C, and Graf T. PU.1 induces myeloid lineage commitment in multipotent
854 hematopoietic progenitors. *Genes Dev.* 1998;12(15):2403-12.

855 35. Kheradpour P, and Kellis M. Systematic discovery and characterization of regulatory
856 motifs in ENCODE TF binding experiments. *Nucleic Acids Res.* 2014;42(5):2976-87.

857 36. Abram CL, Roberge GL, Hu Y, and Lowell CA. Comparative analysis of the efficiency
858 and specificity of myeloid-Cre deleting strains using ROSA-EYFP reporter mice. *J
859 Immunol Methods*. 2014;408:89-100.

860 37. Wang X, Magkos F, and Mittendorfer B. Sex differences in lipid and lipoprotein
861 metabolism: it's not just about sex hormones. *J Clin Endocrinol Metab*. 2011;96(4):885-
862 93.

863 38. Cai B, Thorp EB, Doran AC, Sansbury BE, Daemen MJ, Dorweiler B, et al. MerTK
864 receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis.
865 *J Clin Invest*. 2017;127(2):564-8.

866 39. Potteaux S, Gautier EL, Hutchison SB, van Rooijen N, Rader DJ, Thomas MJ, et al.
867 Suppressed monocyte recruitment drives macrophage removal from atherosclerotic
868 plaques of Apoe-/- mice during disease regression. *J Clin Invest*. 2011;121(5):2025-36.

869 40. Georgakis MK, van der Laan SW, Asare Y, Mekke JM, Haitjema S, Schoneveld AH, et al.
870 Monocyte-Chemoattractant Protein-1 Levels in Human Atherosclerotic Lesions Associate
871 With Plaque Vulnerability. *Arterioscler Thromb Vasc Biol*. 2021;41(6):2038-48.

872 41. Boring L, Gosling J, Cleary M, and Charo IF. Decreased lesion formation in CCR2-/-
873 mice reveals a role for chemokines in the initiation of atherosclerosis. *Nature*.
874 1998;394(6696):894-7.

875 42. Xue S, Tang H, Zhao G, Fang C, Shen Y, Yan D, et al. C-C motif ligand 8 promotes
876 atherosclerosis via NADPH oxidase 2/reactive oxygen species-induced endothelial
877 permeability increase. *Free Radic Biol Med*. 2021;167:181-92.

878 43. Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, et al. Critical roles for
879 CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to
880 inflammatory sites. *J Clin Invest*. 2007;117(4):902-9.

881 44. Kim K, Shim D, Lee JS, Zaitsev K, Williams JW, Kim KW, et al. Transcriptome Analysis
882 Reveals Nonfoamy Rather Than Foamy Plaque Macrophages Are Proinflammatory in
883 Atherosclerotic Murine Models. *Circ Res*. 2018;123(10):1127-42.

884 45. Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, et al. Macrophage
885 ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport
886 in vivo. *J Clin Invest*. 2007;117(8):2216-24.

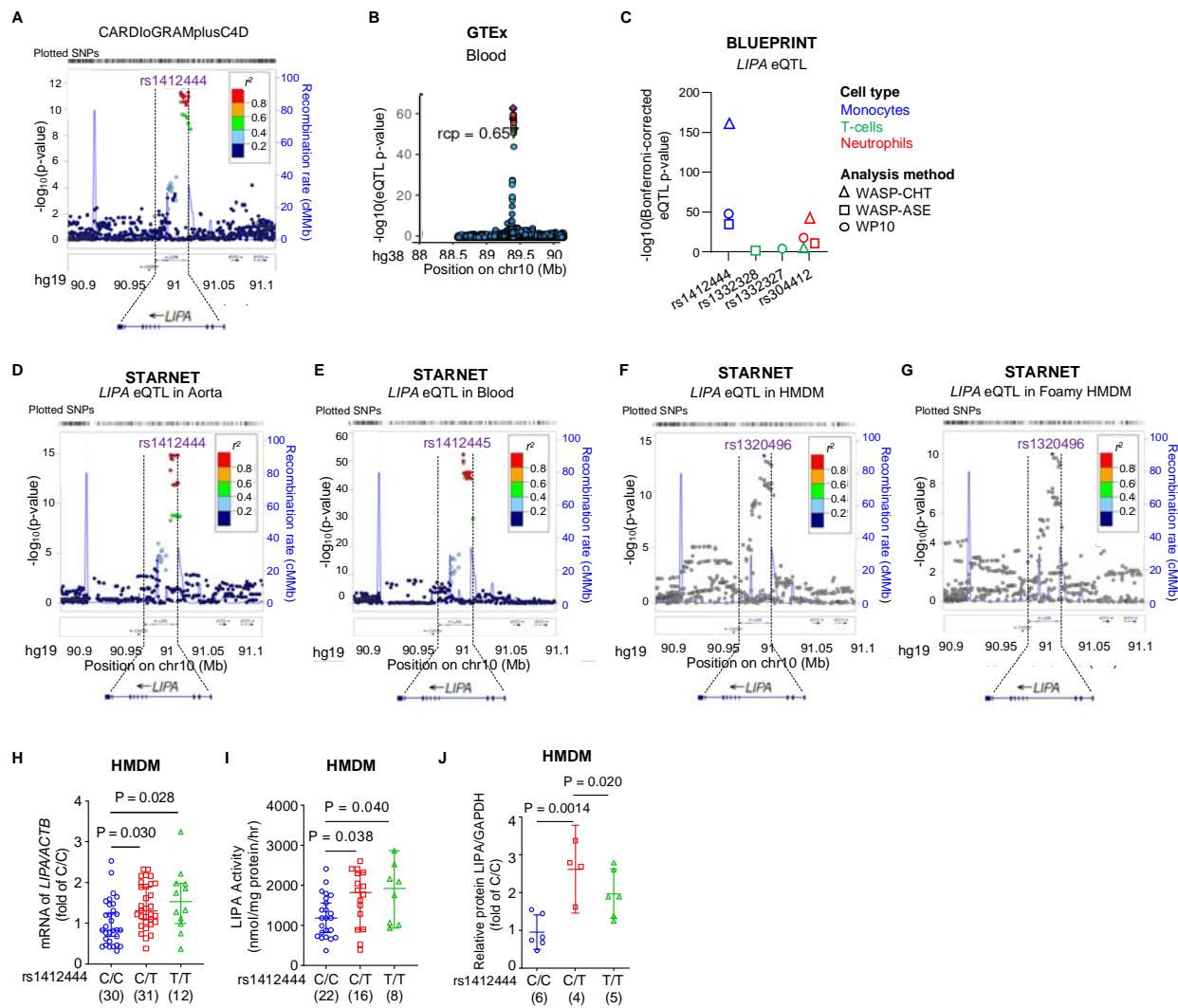
887 46. Willemsen L, Chen HJ, van Roomen C, Griffith GR, Siebeler R, Neele AE, et al.
888 Monocyte and Macrophage Lipid Accumulation Results in Down-Regulated Type-I
889 Interferon Responses. *Front Cardiovasc Med*. 2022;9:829877.

890 47. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3
891 inflammasomes are required for atherogenesis and activated by cholesterol crystals.
892 *Nature*. 2010;464(7293):1357-61.

893 48. de la Roche M, Hamilton C, Mortensen R, Jeyaprakash AA, Ghosh S, and Anand PK.
894 Trafficking of cholesterol to the ER is required for NLRP3 inflammasome activation. *J
895 Cell Biol*. 2018;217(10):3560-76.

896 49. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, et al.
897 Comprehensive Integration of Single-Cell Data. *Cell*. 2019;177(7):1888-902 e21.

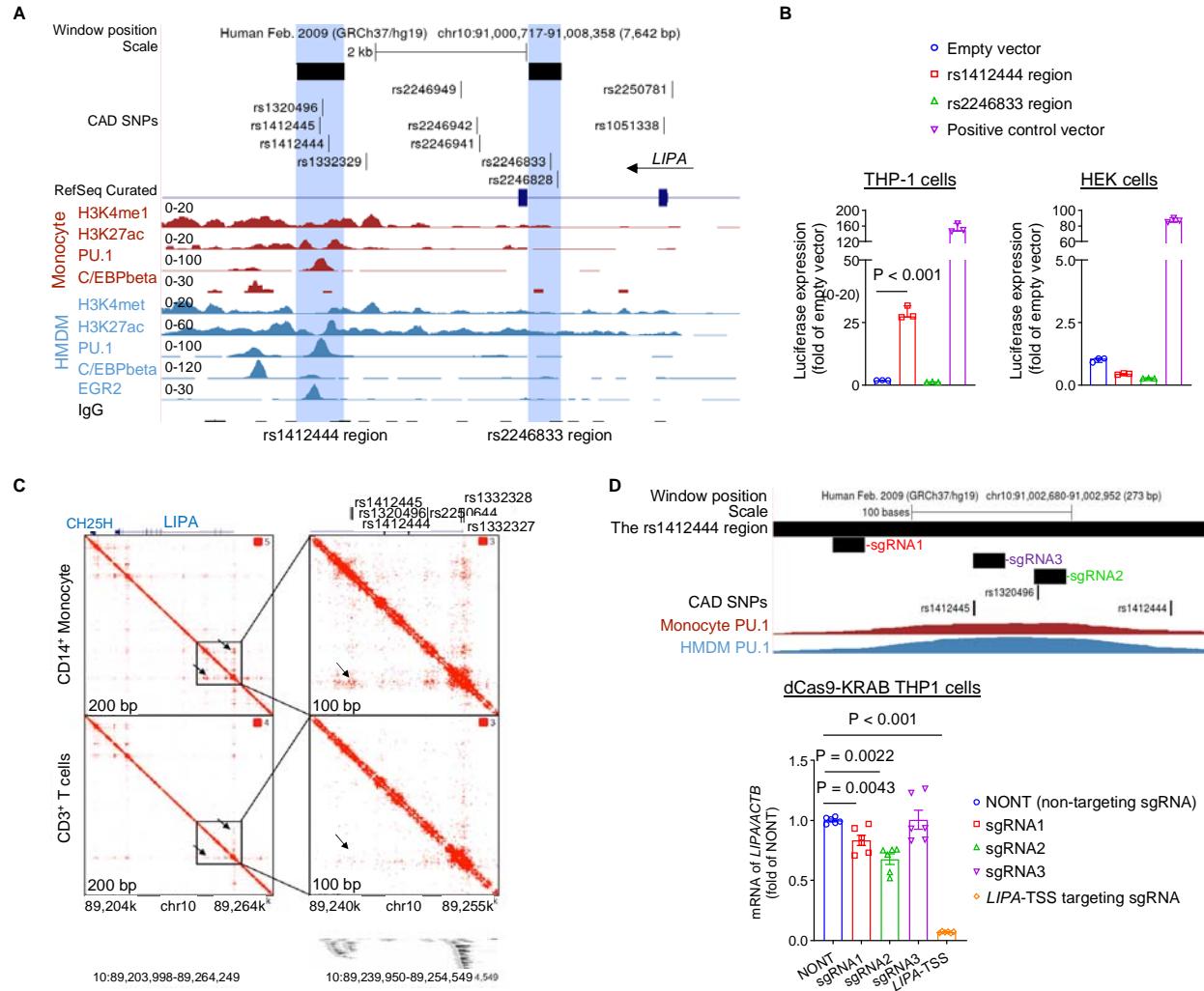
898 50. Sharma D, Worssam MD, Pedroza AJ, Dalal AR, Alemany H, Kim HJ, et al.
899 Comprehensive Integration of Multiple Single-Cell Transcriptomic Data Sets Defines
900 Distinct Cell Populations and Their Phenotypic Changes in Murine Atherosclerosis.
901 *Arterioscler Thromb Vasc Biol*. 2024;44(2):391-408.


902 51. Lin PK, and Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its
903 Regulators and Pathological Influence. *Arterioscler Thromb Vasc Biol*. 2023;43(9):1599-
904 616.

905 52. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, et al. A major role for VCAM-1,
906 but not ICAM-1, in early atherosclerosis. *J Clin Invest*. 2001;107(10):1255-62.

907 53. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-Cell
908 RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic
909 Macrophages in Murine Atherosclerosis. *Circ Res.* 2018;122(12):1661-74.
910 54. Endo-Umeda K, Kim E, Thomas DG, Liu W, Dou H, Yalcinkaya M, et al. Myeloid LXR
911 (Liver X Receptor) Deficiency Induces Inflammatory Gene Expression in Foamy
912 Macrophages and Accelerates Atherosclerosis. *Arterioscler Thromb Vasc Biol.*
913 2022;42(6):719-31.
914 55. Morris GE, Braund PS, Moore JS, Samani NJ, Codd V, and Webb TR. Coronary Artery
915 Disease-Associated LIPA Coding Variant rs1051338 Reduces Lysosomal Acid Lipase
916 Levels and Activity in Lysosomes. *Arterioscler Thromb Vasc Biol.* 2017;37(6):1050-7.
917 56. Jerome WG, Cox BE, Griffin EE, and Ullery JC. Lysosomal cholesterol accumulation
918 inhibits subsequent hydrolysis of lipoprotein cholestryl ester. *Microsc Microanal.*
919 2008;14(2):138-49.
920 57. Singh RK, Haka AS, Bhardwaj P, Zha X, and Maxfield FR. Dynamic Actin Reorganization
921 and Vav/Cdc42-Dependent Actin Polymerization Promote Macrophage Aggregated LDL
922 (Low-Density Lipoprotein) Uptake and Catabolism. *Arterioscler Thromb Vasc Biol.*
923 2019;39(2):137-49.
924 58. Balwani M, Breen C, Enns GM, Deegan PB, Honzik T, Jones S, et al. Clinical effect and
925 safety profile of recombinant human lysosomal acid lipase in patients with cholestryl
926 ester storage disease. *Hepatology.* 2013;58(3):950-7.
927 59. Lopresti MW, Cui W, Abernathy BE, Fredrickson G, Barrow F, Desai AS, et al. Hepatic
928 lysosomal acid lipase overexpression worsens hepatic inflammation in mice fed a
929 Western diet. *J Lipid Res.* 2021;62:100133.
930 60. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. Association
931 analyses based on false discovery rate implicate new loci for coronary artery disease.
932 *Nat Genet.* 2017;49(9):1385-91.
933 61. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot
934 analysis: multitissue gene regulation in humans. *Science.* 2015;348(6235):648-60.

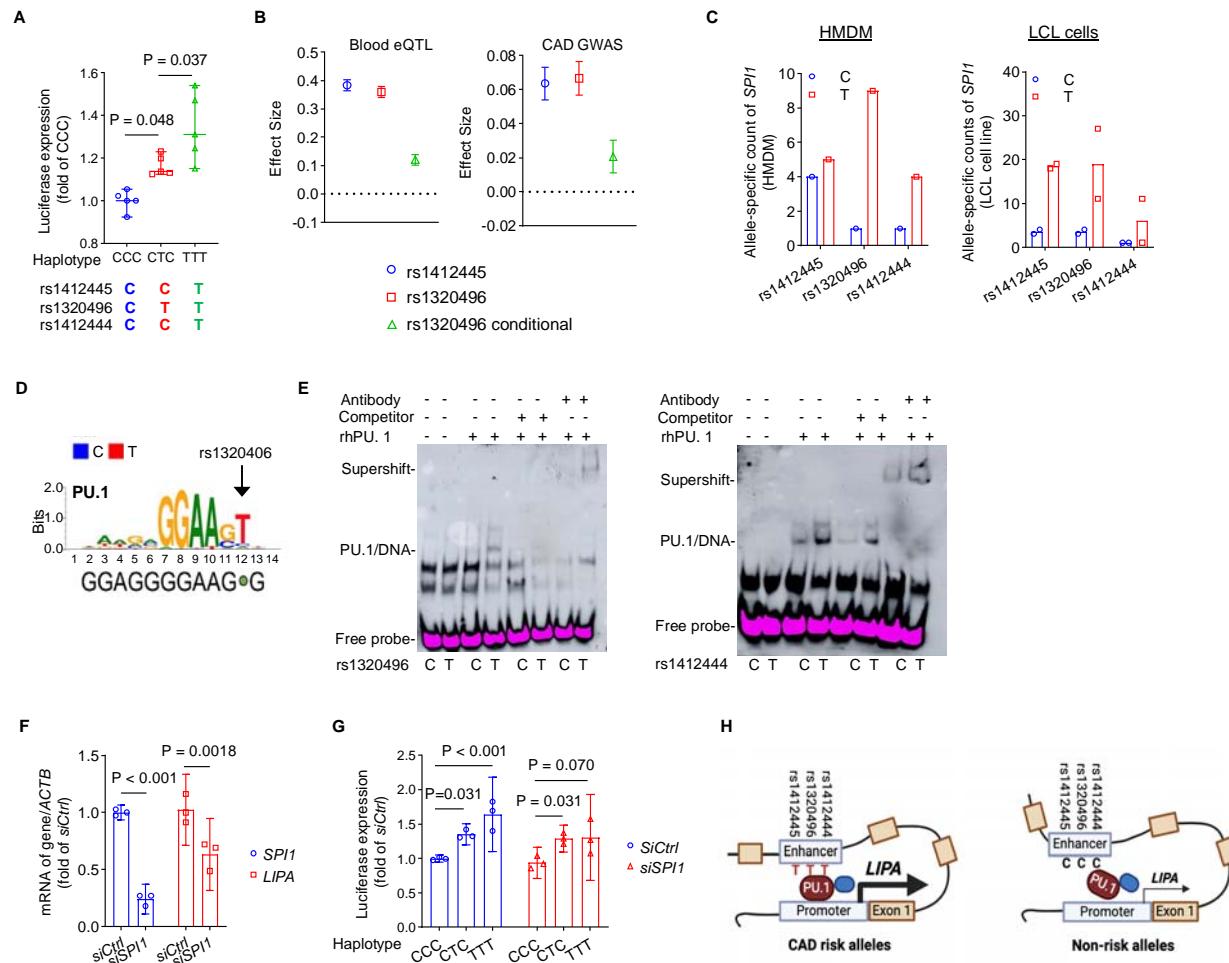
935


936 **Figures and figure legends**

937

938 **Figure 1. Genetic variants at the *LIPA* locus associated with higher risks of**
939 **coronary artery disease (CAD) are also linked to higher *LIPA* mRNA, enzyme**
940 **activity, and protein in human peripheral blood monocytes-derived macrophages**
941 **(HMDM). A, LocusZoom plot to visualize the CARDIoGRAMplusC4D CAD GWAS**
942 **signals at the *LIPA* locus. The GWAS lead SNP rs1412444 and the SNPs in linkage**
943 **disequilibrium (LD) are color-coded based on pairwise r^2 with rs1412444. B,**
944 **Colocalization analysis by integrating CARDIoGRAMplusC4D GWAS dataset with the**

945 Genotype-Tissue Expression project (GTEx) eQTL in the blood shows that *LIPA* is the
946 only nearby gene at the locus (± 1 Mb flanking the *LIPA* gene) showing strong regional
947 colocalization probability ($rcp = 0.657$). **C**, eQTL analysis of *LIPA* in the BLUEPRINT
948 dataset shows strong eQTL signals in monocytes (blue), but not T-cells (green) or
949 neutrophils (red). Three eQTL methods, including WASP-corrected combined haplotype
950 test (WASP-CHT, triangle), WASP-corrected allele-specific expression (WASP-ASE,
951 square), and BLUEPRINT Work Package 10 (WP10, circle), were employed in the
952 analysis. **D-G**, LocusZoom plots to visualize *LIPA* eQTLs in atherosclerotic aortic wall
953 (Aorta, **D**), blood (**E**), HMDM (**F**), and foamy HMDM (HMDM loaded with acetylated low-
954 density lipoprotein, **G**) in the Stockholm-Tartu Atherosclerosis Reverse Network
955 Engineering Task (STARNET) dataset, which comprises nine cardiometabolic
956 tissues/cell types from subjects with CAD. The most significant SNP is marked by purple
957 diamond. Other SNPs in the region are color-coded by their LD with the lead SNP
958 according to pairwise r^2 . **H-J**, The risk allele (T) of the CAD lead SNP rs1412444 is
959 associated with increased *LIPA* mRNA (**H**), enzyme activity (**I**), and protein (**J**) in HMDM.
960 n = the number of subjects. Data are presented as mean \pm SEM in (**H**) and median \pm 95%
961 CI in (**I**) and (**J**).
962



963

964 **Figure 2. The non-coding genomic region containing rs1412444 is a myeloid-
965 specific enhancer, interacting with the LIPA promoter and regulating LIPA
966 expression. A, Genome Browser view of annotation tracks for the LIPA locus showing
967 significant CAD GWAS SNPs, including the lead SNP (rs1412444) and SNPs in linkage
968 disequilibrium (LD) as listed in Table S2. LIPA transcripts, and the regulatory landscape
969 in human monocyte and HMDM. The potential enhancer regions showing H3K4me1
970 and H3K27ac modifications and hosting CAD GWAS SNPs, including the rs1412444
971 region and the rs2246833 region, are highlighted and prioritized for subsequent
972 functional validation. B, The rs1412444 region, but not the rs2246833 region, shows**

973 enhancer activity by luciferase assay in THP-1 monocytes (**left**). Neither region shows
974 enhancer activities in HEK 293 cells (**right**). (n = 3 independent experiments with 3
975 technical replicates, data are presented as median \pm 95% CI.) **C**, High-resolution Tri-
976 HiC depicts chromatin interaction between the rs1412444 region and the *LIPA* promoter
977 in human CD14 $^{+}$ monocytes, but not CD3 $^{+}$ T-cells. **D**, CRISPRi targeting the rs1412444
978 enhancer region reduces *LIPA* expression. sgRNAs targeting the rs1412444 region
979 were designed and transduced to dCas9-KRAB expressing THP-1 cells for CRISPRi-
980 mediated silencing and mRNA expression of *LIPA* was determined by quantitative RT-
981 PCR. The sgRNA1 is 68 bp upstream of rs1412445 and is the highest scored sgRNA
982 within the region by CRISPRick. The sgRNA2 span rs1320496. The sgRNA3 span
983 rs1412445. The rs1412444 SNP region lacks a PAM sequence for sgRNA design. The
984 sgRNA targeting the transcription start site of *LIPA* (*LIPA*-TSS) serves as the positive
985 control. (n = 6 replicates, data are presented as mean \pm SEM.)

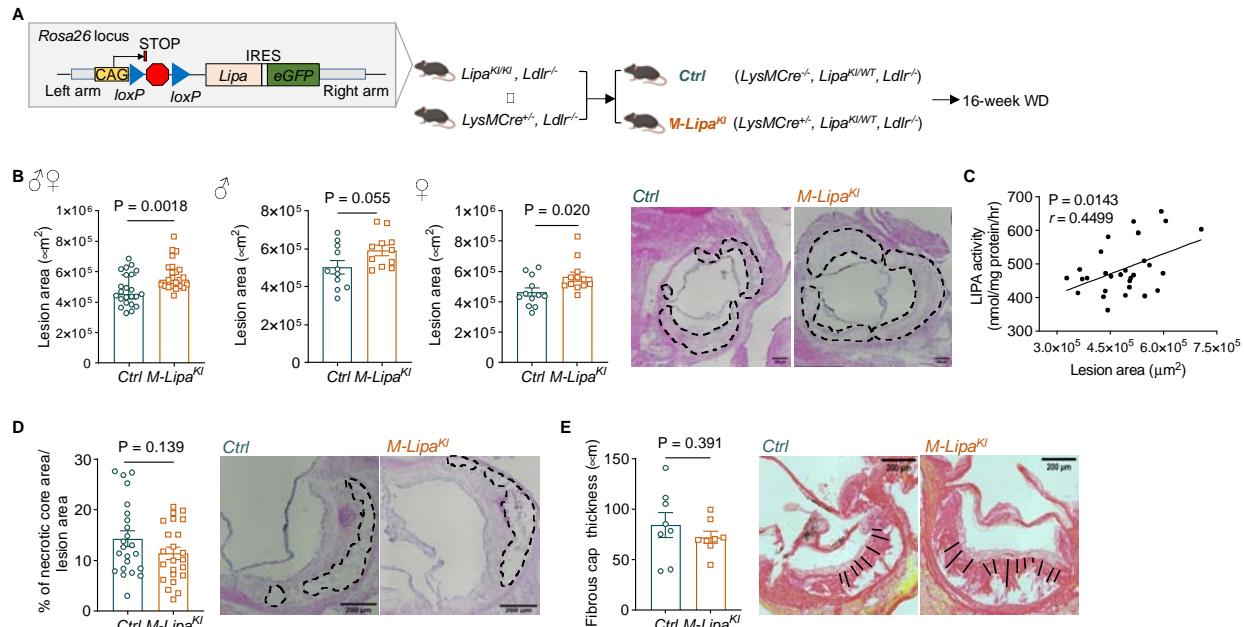
986

987

988 **Figure 3. rs1320496 and rs1412444 represent the functional SNPs at the *LIPA***
 989 **locus, with risk alleles enhancing PU.1 binding and regulating *LIPA* expression. A,**
 990 **Site-directed mutagenesis and luciferase assay confirmed that the risk haplotypes TTT**
 991 **(rs1412445-T, rs1320496-T, and rs1412444-T) and CTC (rs1412445-C, rs1320496-T,**
 992 **and rs1412444-C) lead to increased enhancer activities compared to the non-risk**
 993 **haplotype CCC (rs1412445-C, rs1320496-C, and rs1412444-C). (n = 5 independent**
 994 **experiments with 3 technical replicates, data are presented as median \pm 95% CI.) B,**
 995 **Conditional analysis was performed to assess the independent contribution of SNPs**
 996 **(rs1412445, rs1320496, and rs1412444) within the rs1412444-containing enhancer to**
 997 **eQTL and GWAS signals. The perfect LD between rs1412444 and rs1412445 ($r^2 = 0.99$)**

998 allows for the utilization of rs1412445 as a representative to capture the effects of both
999 variants. The high LD ($r^2 = 0.45$) between rs1320496 and the other two variants
1000 prohibited full disentanglement. Both rs1412445 (blue) and rs1320496 (red) show
1001 independent association with *LIPA* expression (left, in blood, $P < 10^{-59}$) and CAD risk
1002 (right, $P < 10^{-11}$). After conditioning on rs1412445, rs1320496 remains showing
1003 nominally significant effects on both *LIPA* expression (left, in blood, $P = 3 \times 10^{-10}$) and
1004 CAD risk (right, $P = 0.031$) (green, rs1320496 conditional), suggesting that both SNPs
1005 independently contributing to the traits. In the context of eQTL analysis, the effect size is
1006 quantified as the \log_2 allelic fold change in *LIPA* gene expression, while in GWAS, it
1007 represents the log odds change in CAD risks. **C**, Allele-specific binding analysis of PU.1
1008 ChIP-seq data in HMDM (GSM785501, $n = 1$ experiment) and LCL cell line (EBV-
1009 transformed lymphoblastoid B-cell lines) (ENCODE dataset, $n = 2$ independent
1010 experiments). Results suggest that PU.1 binds more favorably to the risk alleles (T). **D**,
1011 Motif analysis shows that the risk allele (T, red) of rs1320496 creates a PU.1 binding
1012 site. **E**, Electrophoretic Mobility Gel Shift Assay (EMSA) was conducted to determine the
1013 effects of different alleles on PU.1 binding for sequences containing SNP rs1320496
1014 (left) and rs1412444 (right), using recombinant human PU.1 protein and anti-PU.1
1015 antibody. Data shown are representative images from $n = 2$ independent experiments. **F**,
1016 siRNA-mediated knockdown of *SPI1* (encoding PU.1) in THP-1 cells reduces mRNA
1017 expression of *LIPA*. ($n = 3$ independent experiments with 2 technical replicates, data are
1018 presented as median \pm 95% CI.) **G**, Knockdown of *SPI1* partly abolished the effects of
1019 risk alleles on increasing the enhancer activity of the rs1412444 region. Data were
1020 analyzed by two-way ANOVA followed by Tukey's multiple comparisons test. ($n = 3$

1021 independent experiments with 3 technical replicates, data are presented as median \pm 95%


1022 CI.) **H**, Schematic figure summarizing results of functional genomic studies that the risk

1023 alleles of the functional variants at *LIPA* risk locus increases the expression of *LIPA* by

1024 enhancing PU.1 binding in monocytes/macrophages and via enhancer-promoter

1025 interaction.

1026

1028 **Figure 4. Myeloid overexpression of *Lipa* exacerbates atherosclerosis in *Ldlr*^{-/-}**

1029 **mice. A**, The plasmid construction and breeding strategy of the mouse model. Mice for

1030 conditional overexpression of *Lipa* (NM_001111100) were generated by *Rosa26* knock-

1031 in (KI) of CAG-loxP-STOP-loxP-Lipa-IRES-eGFP. To achieve myeloid-specific

1032 overexpression, *Lipa*^{KI/KI} mice were bred with *LysMCre*^{+/-} mice (heterozygous for the Cre

1033 allele) to delete the loxP-STOP-loxP cassette, thereby enabling overexpression of *Lipa*

1034 in myeloid cells in *LysMCre*^{+/-}, *Lipa*^{KI/WT} mice. Littermates with the genotype *LysMCre*^{-/-},

1035 *Lipa*^{KI/WT} without overexpression serve as controls. To assess the impact of myeloid-

1036 specific overexpression of *Lipa* on atherosclerosis, these mice were bred onto an *Ldlr*^{-/-}

1037 background. To induce atherosclerosis, *Ctrl* (*LysMCre*^{-/-}, *Lipa*^{KI/WT}, *Ldlr*^{-/-}) and *M-Lipa*^{KI}

1038 (*LysMCre*^{+/-}, *Lipa*^{KI/WT}, *Ldlr*^{-/-}) mice were fed a Western diet (WD) for 16 weeks. The

1039 atherosclerotic lesion size and features of plaque stability in the aortic sinus were

1040 quantified. **B**, Myeloid overexpression of *Lipa* modestly but significantly increased

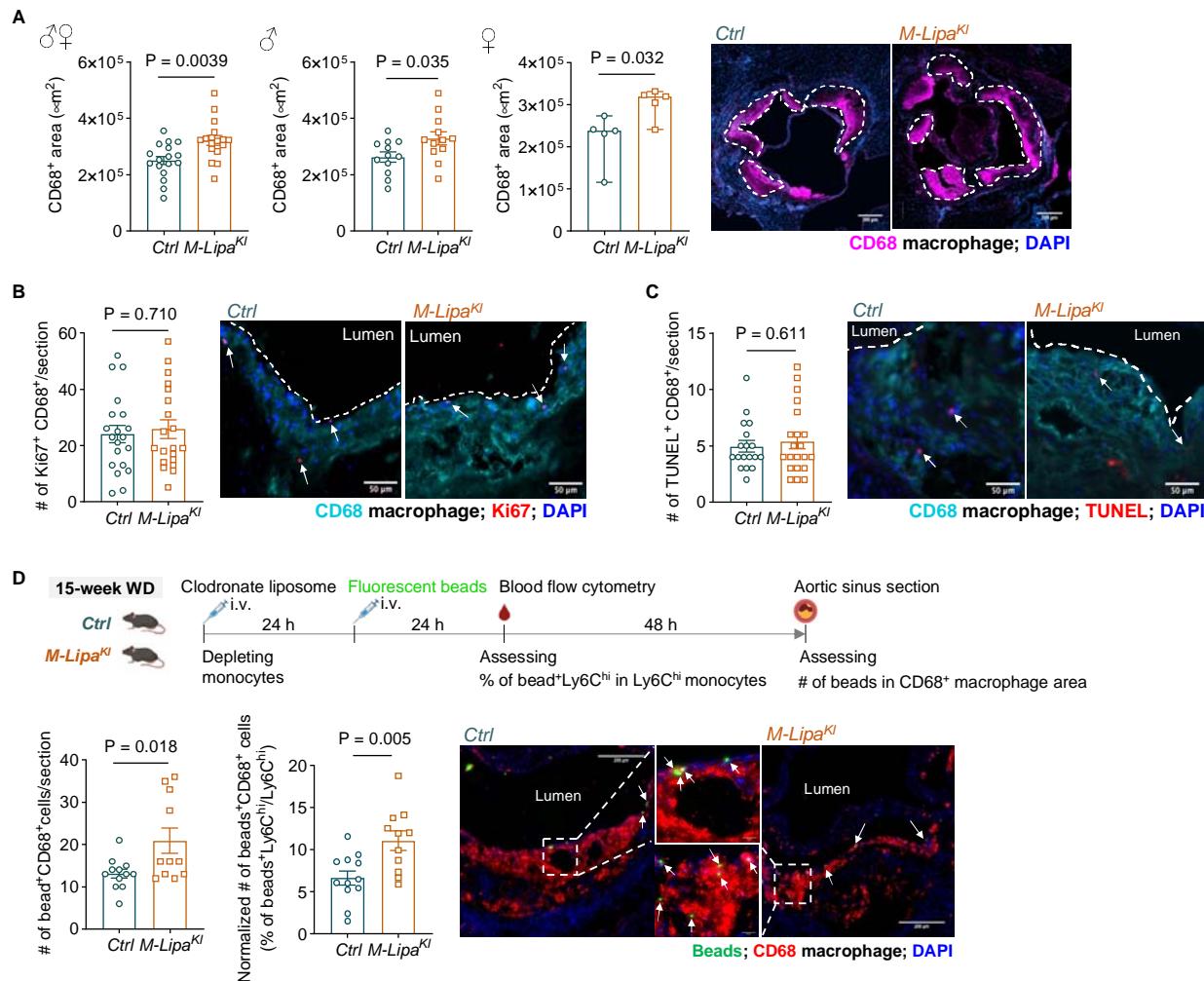
1041 atherosclerotic lesion size in mice of both sexes (left: combined, n = 23 mice), as well as

1042 in male mice (middle: n = 11) and female mice (right: n= 12) when analyzed separately.

1043 Data are presented as median \pm 95% CI. Scale bar = 200 μm . **C**, Atherosclerotic lesion

1044 size is positively correlated with LIPA enzyme activity in peritoneal macrophages (PMs)

1045 (two-tailed Pearson's correlation analysis, $P = 0.014$, $r = 0.4499$). **D**, No differences in

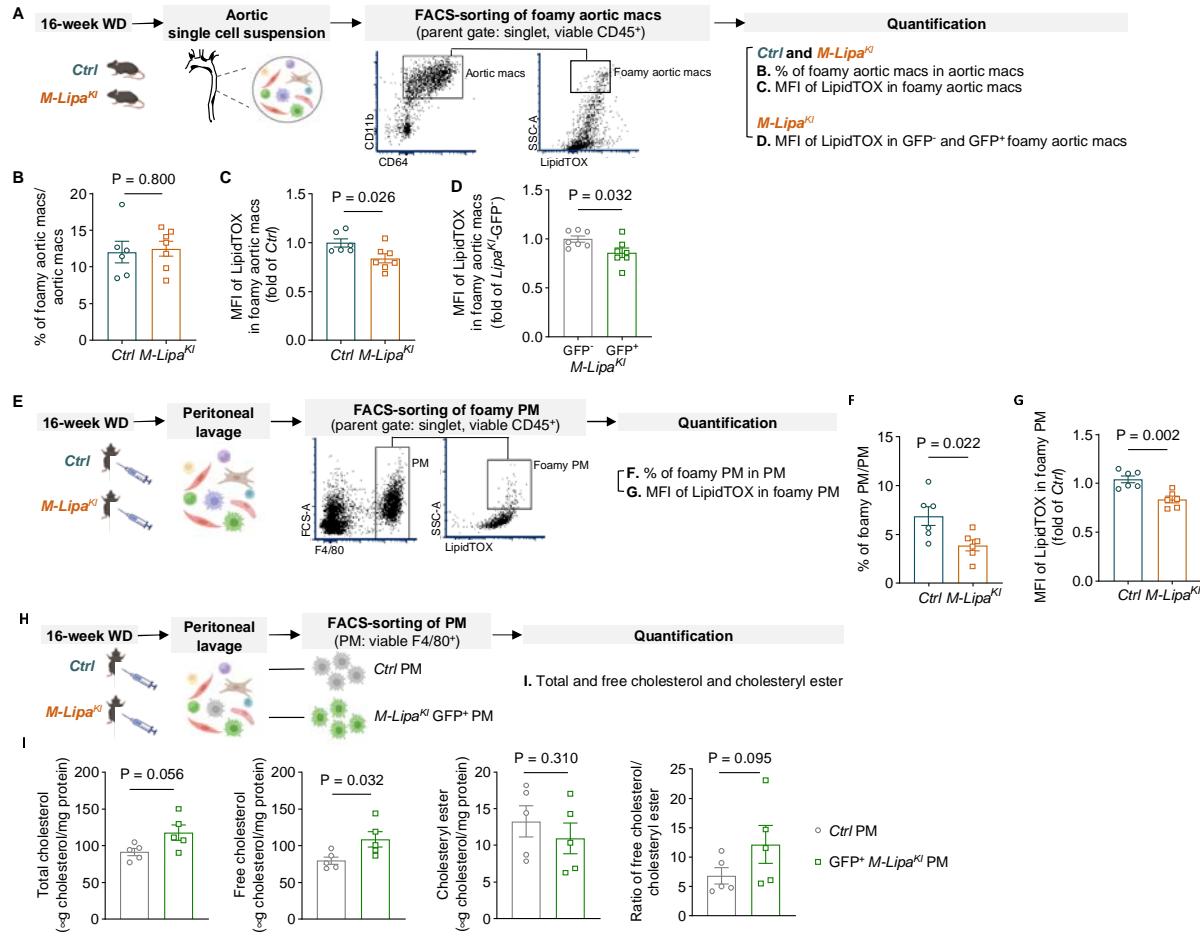

1046 the percentage of necrotic core area between the two genotypes (n = 11 male mice and

1047 12 female mice). **E**, Sirius red staining shows comparable fibrous cap thickness

1048 between the two genotypes (n = 8 male mice). Data are presented as mean \pm SEM.

1049 Scale bar = 200 μm for (**D**) and (**E**).

1050

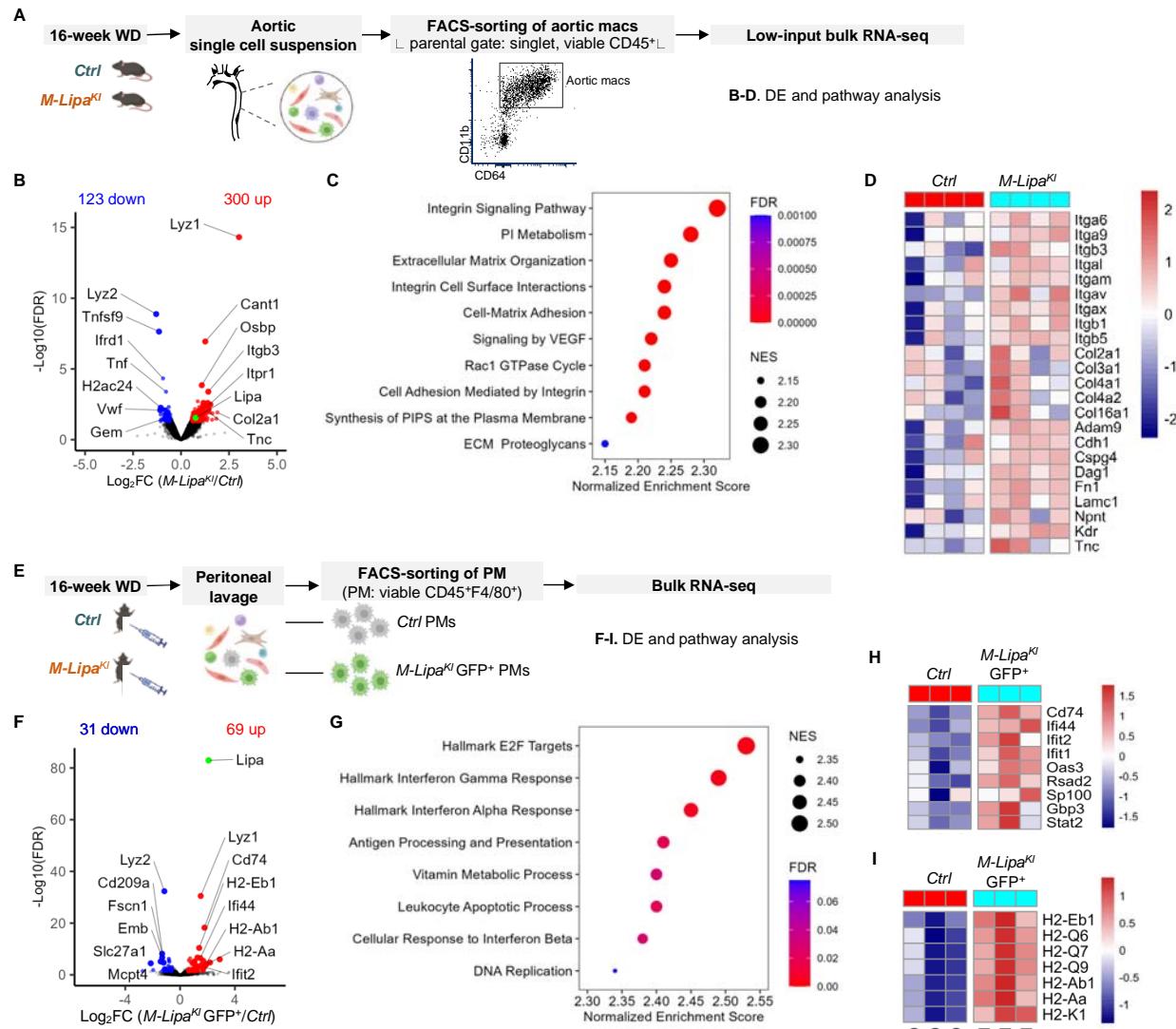


1051

1052 **Figure 5. Myeloid overexpression of *Lipa* increases macrophage content in the**
 1053 **atherosclerotic plaque by promoting monocyte recruitment. A,**
 1054 **Immunofluorescence (IF) staining data suggest that myeloid overexpression of *Lipa***
 1055 **significantly increased the CD68⁺ [Magenta] macrophage area in the lesion in mice of**
 1056 **both sexes (left: combined, n = 17 mice), as well as in male mice (middle: n = 12) and**
 1057 **female mice (right: n = 5). Data are presented as median ± 95% CI. The white dashed**
 1058 **contour indicates lesion area. Scale bar = 200 µm. B-C, IF staining and quantification**
 1059 **for the proliferative macrophages (B, Ki67 [Red], CD68⁺ [Cyan], and DAPI [Blue]) and**
 1060 **apoptotic macrophages (C, TUNEL [Red], CD68⁺ [Cyan], and DAPI [Blue]). (B, n = 13**

1061 male mice and 7 female mice; **C**, n = 13 male mice and 8 female mice). Data are
1062 presented as mean \pm SEM. Scale bars = 50 μ m. **D**, Monocyte infiltration was assessed
1063 by beads assay. Briefly, Ly6C^{hi} monocytes in the blood were pulse-labeled with
1064 fluorescent beads by transiently depleting circulating monocytes with clodronate
1065 liposome injection. Beads labeling efficiency was assessed by flow cytometry as the %
1066 of bead⁺Ly6C^{hi} monocytes in Ly6C^{hi} monocytes 24 h after beads injection. The number
1067 of beads in the CD68⁺ area of atherosclerotic lesion was quantified in mice three days
1068 post-injection. Results are presented as the number of beads in the CD68⁺ area per
1069 section (left), the number of beads in the CD68⁺ area per section normalized by the
1070 percentage of bead⁺ monocytes in Ly6C^{hi} monocytes (middle), and representative IF
1071 staining showing beads⁺ [Green] CD68⁺ macrophages [Red] in the lesion (right). For
1072 *Ctrl*, n = 3 male mice and 8 female mice; for *M-Lipa*^{KI}, n = 3 male mice and 8 female
1073 mice; the average of two sections per mouse were reported. Data are presented as
1074 mean \pm SEM. Scale bars = 200 μ m.

1075

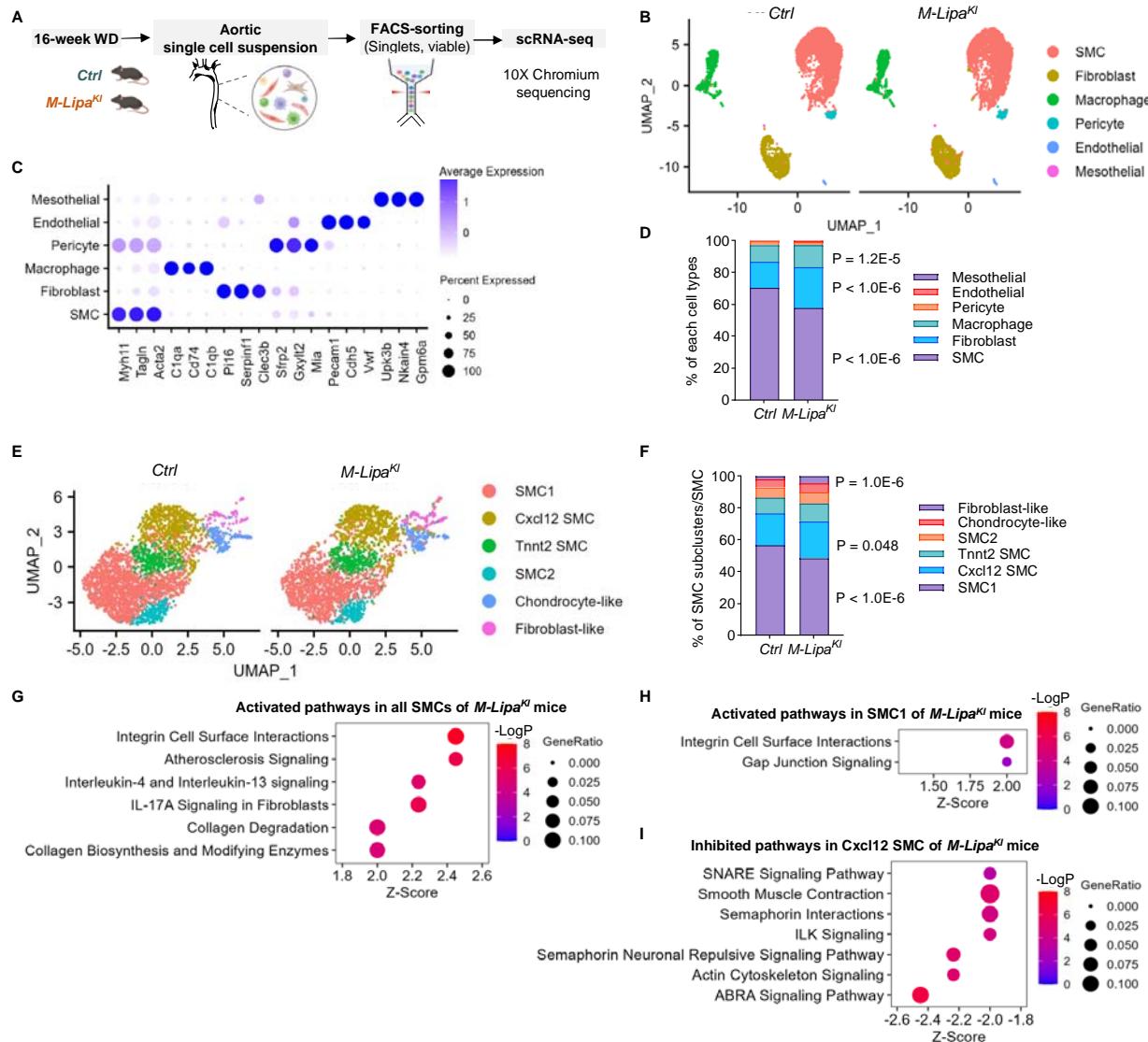


1076

1077 **Figure 6. Myeloid overexpression of *Lipa* leads to reduced neutral lipid but**
 1078 **increased free cholesterol accumulation in macrophages. A, Schematics of a flow**
 1079 **cytometry-based method to characterize aortic macrophages (CD45⁺CD11b⁺CD64⁺)**
 1080 **that are neutral lipid-enriched and foamy (SSC^{hi}LipidTOX^{hi}) in aortas dissected from *Ctrl***
 1081 **and *M-Lipa*^{KI} mice fed a WD for 16 weeks. B, Percentage of foamy aortic macrophages**
 1082 **in total aortic macrophages in *Ctrl* and *M-Lipa*^{KI} mice. C, Mean fluorescent intensity (MFI)**
 1083 **of LipidTOX in foamy aortic macrophages in *Ctrl* and *M-Lipa*^{KI} mice. D, MFI of LipidTOX**
 1084 **in GFP⁻ and GFP⁺ foamy aortic macrophages in *M-Lipa*^{KI} mice. B-D, n = 6 male mice for**
 1085 ***Ctrl*; n = 7 male mice for *M-Lipa*^{KI}. Data are presented as mean \pm SEM. E, Schematics**
 1086 **of study design to characterize foamy (SSC^{hi}LipidTOX^{hi}) PMs (CD45⁺F4/80⁺) in *Ctrl* and**

1087 *M-Lipa^{KI}* mice fed a WD for 16 weeks. **F**, Percentage of foamy PMs in PMs of *Ctrl* and
1088 *M-Lipa^{KI}* mice. **G**, MFI of LipidTOX in foamy PMs in *Ctrl* and *M-Lipa^{KI}* mice. **F-G**, n = 6
1089 male mice. Data are presented as mean \pm SEM. **H**, F4/80⁺ PMs from *Ctrl* mice and
1090 F4/80⁺GFP⁺ PMs from *M-Lipa^{KI}* mice that fed a WD for 16 weeks were sorted for
1091 quantification of cellular cholesterol levels in (I). **I**, Quantification of total cholesterol (left),
1092 free cholesterol (second left), cholestryl ester (second right), and ratio of free
1093 cholesterol/cholesteryl ester (right). (n = 5 female mice, with analysis based on the
1094 averages of two technical replicates. Data are presented as median \pm 95% CI.)

1095



1096

1097 **Figure 7. Bulk RNA-seq analyses reveal distinct effects of myeloid**
 1098 **overexpression of *Lipa* on aortic macrophages and PMs. A,** Viable macrophages
 1099 (CD45⁺CD11b⁺CD64⁺) were sorted from aortas of *Ctrl* and *M-Lipa^{Kl}* mice fed a WD for
 1100 16 weeks and subjected to low-input RNA-seq. n = 4 biological replicates per genotype,
 1101 with each replicate comprising pooled samples from 2-3 male mice, resulting a total of
 1102 10 male mice per genotype. **B,** Volcano plot to visualize the top DE genes (aortic
 1103 macrophages isolated from *M-Lipa^{Kl}* mice *versus* those from *Ctrl* mice, all fed a WD for
 1104 16 weeks). **C,** The top enriched pathways in the upregulated genes in aortic

1105 macrophages of *M-Lipa*^{KI} mice as determined by Gene Set Enrichment Analysis (GSEA).
1106 **D**, Heatmap visualization of top DE genes and the leading-edge subsets of the
1107 associated integrin signaling and cell-matrix mediated adhesion pathways. **E**, F4/80⁺
1108 PMs from *Ctrl* mice and F4/80⁺GFP⁺ PMs from *M-Lipa*^{KI} mice fed a WD for 16 weeks
1109 were sorted for bulk RNA-seq. n = 3 female mice. **F**, Volcano plot to visualize the top DE
1110 genes (F4/80⁺GFP⁺ PMs from *M-Lipa*^{KI} mice vs. F4/80⁺ PMs from *Ctrl* mice, all fed a
1111 WD for 16 weeks). **G**, The top enriched pathways in the upregulated genes in *Lipa*-
1112 overexpressing PMs as determined by GSEA. **H-I**, Heatmap visualization of top DE
1113 genes and the leading-edge subsets of the associated interferon response pathways (**H**)
1114 and antigen processing and presentation pathways (**I**). **F-I**, n = 3 female mice.

1115

1116

1117 **Figure 8. Single-cell RNA-seq (scRNA-seq) analyses suggest that myeloid**
 1118 **overexpression of *Lipa* alters both the proportions and transcriptomic profiles of**
 1119 **different aortic cell types in atherosclerosis, including smooth muscle cells. A,**
 1120 **Viable cells isolated from aortas of *Ctrl* and *M-Lipa^{KI}* mice fed a WD for 16 weeks were**
 1121 **subjected to scRNA-seq. Cells were obtained from a pooled sample of $n = 5$ male mice.**
 1122 **B, Uniform Manifold Approximation and Projection (UMAP) visualization of 6 cell types**
 1123 **identified from the analyses. C, Dot plot visualization of top marker genes of each cell**
 1124 **type. D, Stacked bar plot shows the proportion of each cell type in *Ctrl* (left) and *M-***

1125 *Lipa^{KI}* (right) aortic cells. *M-Lipa^{KI}* mice show increased macrophages and fibroblasts,
1126 while decreased smooth muscle cells (SMCs). Data were analyzed by Chi-square test
1127 with Bonferroni correction. **E**, Sub-clustering analysis of SMCs and UMAP visualization
1128 of 6 SMC subclusters. **F**, Stacked bar plot shows the proportion of each SMC subcluster
1129 in *Ctrl* (left) and *M-Lipa^{KI}* (right) SMCs. Data were analyzed by Chi-square test with
1130 Bonferroni correction. **G**, Top activated canonical pathways by Ingenuity Pathway
1131 Analysis (IPA) in SMCs. **H**, Top activated canonical pathways by IPA in SMC1. **I**, Top
1132 inhibited canonical pathways by IPA in Cxcl12 SMC.