

1 **Contrasting effector profiles between bacterial colonisers of kiwifruit reveal
2 redundant roles and interplay converging on PTI-suppression and RIN4**

3 Jay Jayaraman¹, Minsoo Yoon¹, Lauren Hemara^{1,2}, Deborah Bohne¹, Jibran Tahir¹, Ronan Chen³, Cyril
4 Brendolise¹, Erik Rikkerink¹, Matt Templeton^{1,2,4}

5 ¹The New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre,
6 Auckland, New Zealand

7 ²School of Biological Sciences, University of Auckland, Auckland, New Zealand

8 ³The New Zealand Institute for Plant and Food Research Limited, Food Industry Science Centre,
9 Palmerston North, New Zealand

10 ⁴Bioprotection Aotearoa, Lincoln, New Zealand

11

12 **Summary**

- 13 • Testing effector-knockout strains of the *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3)
14 for reduced *in planta* growth in their native kiwifruit host revealed a number of non-
15 redundant effectors that contribute to Psa3 pathogenicity. Conversely, complementation in
16 the weak kiwifruit pathogen *P. syringae* pv. *actinidifoliorum* (Pfm) for increased growth
17 identified redundant Psa3 effectors.
- 18 • Psa3 effectors hopAZ1a and HopS2b and the entire exchangeable effector locus (ΔEEL ; 10
19 effectors) were significant contributors to bacterial colonisation of the host and were additive
20 in their effects on pathogenicity. Four of the EEL effectors (HopD1a, AvrB2b, HopAW1a, and
21 HopD2a) redundantly contribute to pathogenicity through suppression of pattern-triggered
22 immunity (PTI).
- 23 • Important Psa3 effectors include several redundantly required effectors early in the infection
24 process (HopZ5a, HopH1a, AvrPto1b, AvrRpm1a, and HopF1e). These largely target the plant
25 immunity hub, RIN4.
- 26 • This comprehensive effector profiling revealed that Psa3 carries robust effector redundancy
27 for a large portion of its effectors, covering a few functions critical to disease.

28

29 **Introduction**

30 Bacterial pathogens of plants deploy proteinaceous effectors via their type III secretion system (T3SS)
31 to manipulate their plant hosts and facilitate disease. The *Pseudomonas syringae* species complex
32 delivers as many as 50 secreted effectors to suppress host immunity, as well as to extract nutrients
33 and water from host cells into the apoplastic space (Xin *et al.*, 2016; Gentzel *et al.*, 2022; Roussin-
34 Léveillée *et al.*, 2022). Redundancy within each *P. syringae* strain's effector repertoire confounds our
35 ability to discern whether particular mechanisms of plant manipulation are universal or host-specific.
36 To date, only the Arabidopsis and tomato pathogen *P. syringae* pv. *tomato* DC3000 (Pto DC3000) has
37 been extensively and comprehensively studied for effector contributions to host infection. Extensive
38 studies in the model plant *Nicotiana benthamiana*, which can also be infected by DC3000 variants,

39 have been particularly important for understanding effector roles in host manipulation (Kvitko *et al.*,
40 2009; Cunnac *et al.*, 2011; Wei *et al.*, 2015, 2018). However, with largely a single point of pathogen
41 reference, understanding how plant pathogens like *P. syringae* can manipulate many different host
42 plants is challenging.

43 How pathogens and weak/non-pathogens differ in their colonisation of various host plants is also
44 unclear. The mechanisms of growth within plant hosts for bacterial plant pathogens versus those
45 deployed by the myriad of largely epiphytic commensal bacterial species have only recently been
46 investigated (Chen *et al.*, 2020; Velásquez *et al.*, 2022). Notably, epiphytic commensal bacteria, much
47 like avirulent pathogenic bacteria that trigger plant immunity, appear to grow only to low but stable
48 numbers *in planta* and display a stationary phase-like growth-death balance (Velásquez *et al.*, 2022).
49 A significant proportion of epiphytic commensals, environmentally isolated bacteria, and even
50 symbiotic bacteria possess a functional T3SS but cause little to no disease, thus the role of a T3SS in
51 these species is unclear (Diallo *et al.*, 2012; Tampakaki, 2014; Levy *et al.*, 2018). The notion of what
52 constitutes a pathogen, including different strategies of colonisation success, may also limit our
53 understanding of the evolution of plant-pathogen relationships (particularly in nature on diverse wild
54 genotypes, as opposed to large human-manipulated plant monocultures). The lessons behind what
55 makes a pathogen versus a commensal strain are critical to understanding how pathogens emerge
56 and what drives their adaptation to cause virulent disease.

57 The molecular mechanism of plant immunity is currently understood to be comprised of two broad
58 layers: defence at the cell membrane, and intracellular defence. Defence at the plant cell membrane
59 is mediated by transmembrane pattern recognition receptor (PRR) proteins, which recognise
60 evolutionarily conserved pathogen-associated molecular patterns (PAMPs), triggering pattern-
61 triggered immunity (PTI) (DeFalco & Zipfel, 2021). PTI involves a series of plant responses including
62 defence gene expression, hormonal fluxes, apoplastic reactive oxygen species production, and a
63 characteristic callose deposition within the apoplast to block the pathogen incursion (Boller & Felix,
64 2009; Luna *et al.*, 2011). A successful pathogen will overcome PTI through effector deployment. In
65 response to effector presence, plants may deploy their second layer of defence, called effector-
66 triggered immunity (ETI), which is a potentiation and strengthening of PTI responses (Ngou *et al.*,
67 2021; Yuan *et al.*, 2021). ETI is triggered intracellularly and is often dependent on effector recognition
68 by polymorphic nucleotide-binding site leucine-rich repeat (NLR) proteins, either directly by binding
69 to effectors, or indirectly through sensing effector presence on guarded proteins: guardees. Often
70 these guardees are protein hubs of PTI or ETI. RPM1-interacting protein 4 (RIN4) is one such immunity
71 hub, is guarded by evolutionarily unlinked resistance proteins in different plants, and is targeted by
72 many different bacterial pathogens (Mackey *et al.*, 2002, 2003; Wilton *et al.*, 2010; Mazo-Molina *et*
73 *al.*, 2019; Prokchorchik *et al.*, 2020; Choi *et al.*, 2021).

74 The kiwifruit bacterial canker pathogen *P. syringae* pv. *actinidiae* (Psa) is a new but growing focus of
75 study for bacterial pathogenesis, in its relationship with its perennial host plant, kiwifruit. Effectors
76 AvrE1d and HopR1b from the particularly virulent Psa biovar 3 (Psa3) have been associated with strong
77 non-redundant contributions to kiwifruit infection (Jayaraman *et al.*, 2020). A closely related
78 ubiquitous epiphytic commensal/weak pathogen species, *P. syringae* pv. *actinidifoliorum* (Pfm), has
79 also been described with a functional T3SS and the ability to cause disease on non-kiwifruit plants
80 (Ferrante & Scorticini, 2015; Cunty *et al.*, 2015). While several different genetic components have
81 been proposed to be important in woody plant pathogens, Pfm, unlike other epiphytic kiwifruit
82 bacterial colonisers, has all the hallmarks of a successful kiwifruit pathogen: a functional T3SS, a
83 reasonably large repertoire of effectors, and the catechol/β-ketoadipate pathway (Bartoli *et al.*, 2015;
84 Nowell *et al.*, 2016; Templeton *et al.*, 2022). The contrast between Psa3 and Pfm offers an interesting

85 opportunity to study the parameters involved in severe disease outbreaks on plant monocultures,
86 with particular focus on effectors.

87

88 Materials & Methods

89 Bioinformatics and sequence analyses

90 Genome sequences for Psa3 ICMP 18884 (Psa3 V-13; CP011972-3) and Pfm ICMP 18804 (Pfm LV-5;
91 CP081457) were obtained from NCBI GenBank. The Psa3 V-13 and Pfm LV-5 genomes were annotated
92 previously (Templeton *et al.*, 2015, 2022). Sequences for type III secreted effectors (T3Es) from Psa3
93 V-13 and Pfm LV-5 were analysed on Geneious R11 software (<https://www.geneious.com>; Biomatters)
94 with built-in Geneious DNA and amino acid sequence alignments, tree building, and annotation tools.
95 Effector protein structures were predicted using AlphaFold2 v2.2.0 with a max_template_date of
96 2022-1-1 (Jumper *et al.*, 2021).

97 Bacterial strains and growth conditions

98 The bacterial strains and plasmids used in this study are listed in Supplementary Table S1. Psa3 V-13
99 and Pfm LV-5 strains were grown in lysogeny broth (LB) at 20°C with shaking at 200 rpm. *Escherichia*
100 *coli* strains were grown in LB with appropriate antibiotics at 37°C. The concentrations of antibiotics
101 used in selective media were kanamycin 50 µg/mL, gentamicin 25 µg/mL, nitrofurantoin 12.5 µg/mL,
102 cephalexin 40 µg/mL (all from Sigma-Aldrich, Australia). Plasmids were transformed into
103 electrocompetent Psa3 (Mesarich *et al.*, 2017) or *E. coli* by electroporation using a Bio-Rad Gene Pulser
104 Xcell and recovered for 1 h in LB before plating on selective media.

105 Effector knockout

106 To make the Pfm LV-5 Δ hopA1a, Δ hopE1a, or Δ hopA1a/ Δ hopE1a mutants, or Psa3 V-13 Δ hopH1a,
107 Δ hopQ1a/ Δ hopD1a, Δ hopS2b/ Δ hopAZ1a, Δ CEL/ Δ xEEL, Δ CEL/ Δ hopS2b/ Δ hopAZ1a,
108 Δ CEL/ Δ xEEL/ Δ hopS2b/ Δ hopAZ1a, Δ hopH1a/ Δ hopZ5a/ Δ avrPto1b,
109 Δ hopH1a/ Δ hopZ5a/ Δ avrPto1b/ Δ avrRpm1a and Δ hopH1a/ Δ hopZ5a/ Δ avrPto1b/ Δ avrRpm1a/ Δ tEEL
110 mutants, methodologies similar to that used for Psa3 V-13 multi-effector knockouts described earlier
111 were used (Hemara *et al.*, 2022). Briefly, for each multi-effector knockout, a selected Psa3 V-13 or Pfm
112 LV-5 strain was transformed by electroporation with the relevant p Δ (T3E) construct and
113 transconjugants were selected on LB plates with nitrofurantoin, cephalexin, and kanamycin. Selected
114 colonies were subsequently streaked onto LB plates containing 10% (w/v) sucrose to counter select
115 plasmid integration. Effector mutants were screened using colony PCR with primers Psa_(T3E)-
116 KO_Check-F and Psa_(T3E)-KO_Check-R, and sent for Sanger sequencing with the cloning Psa_(T3E)-
117 KO_UP-F and Psa_(T3E)-KO_DN-R primers described earlier (Hemara *et al.*, 2022). Mutants were also
118 confirmed by plating on kanamycin-containing medium to confirm loss of the integrated *nptII* gene
119 (and associated *sacB* gene).

120 Effector plasmid complementation

121 For native-promoter constructs of Pfm LV-5 effectors, the full region including the HrpL box promoter
122 was PCR-amplified using primers (Supplementary Table S2) and Q5 High-Fidelity DNA Polymerase
123 (NEB, USA). The resulting PCR fragment was gel-purified and was blunt-end-ligated into the *Eco*53kI
124 (NEB) site of broad host-range vector pBBR1MCS-5 (Kovach *et al.*, 1995). Constructs were transformed
125 into *E. coli* DH5 α , plated on X-gal/IPTG-containing (for blue/white selection) LB agar plates with
126 gentamicin, and positive transformants confirmed by Sanger sequencing (Macrogen, South Korea).

127 Synthetic *avrRps4* promoter constructs of HA-tagged effectors from Psa3 V-13 or Pfm LV-5 have been
128 described previously (Jayaraman *et al.*, 2017). All constructs were transformed into relevant Psa3 or
129 Pfm strains by electroporation, and transformants screened for presence of effector by gene-specific
130 colony PCR.

131 *In planta* growth and symptomology assays

132 Psa3 and Pfm infection assays were carried out as described previously (McAtee *et al.*, 2018). *A. chinensis* var. *chinensis* 'Hort16A' plantlets, grown from axillary buds on Murashige and Skoog rooting
133 medium without antibiotics in sterile 400-mL plastic tubs ("pottles"), were purchased from Multiflora
134 (Auckland, New Zealand). Plantlets were grown at 20°C under Gro-Lux fluorescent lights under long-
135 day conditions (16 h:8 h, light:dark) and used when the plantlets were approximately 12 weeks old.
136 Overnight LB medium cultures of Psa3 or Pfm were pelleted at 5,000g, resuspended in 10 mM MgSO₄,
137 reconstituted at OD₆₀₀ = 0.05 (c. 10⁶ cfu/mL, determined by plating) in 500 mL of 10 mM MgSO₄.
138 Surfactant Silwet L-77 (Lehle Seeds, TX, USA) was added to the inoculum at 0.0025% (vol/vol) to
139 facilitate leaf wetting. Pottles of 'Hort16A' plantlets were flooded with the inoculum, submerging the
140 plantlets for 3 min, drained, sealed, and then incubated under plant growth conditions, as above.
141

142 *In planta* growth of Psa3 or Pfm strains was assayed as described previously (McAtee *et al.*, 2018).
143 Briefly, leaf samples of four leaf discs per pseudobiological replicate, taken randomly with a 1-cm
144 diameter cork-borer from three plants, were harvested at 2 h (day 0), day 6, and day 12 post-
145 inoculation. All four replicates per treatment, per time point were taken from the same pottle. To
146 determine Psa3/Pfm growth inside the plant, the leaf discs were surface-sterilised, placed in
147 Eppendorf tubes containing three sterile stainless-steel ball bearings, 350 µL 10 mM MgSO₄, and
148 macerated in a Storm 24 Bullet Blender (Next Advance, NY, USA) for two bursts of 1 min each at
149 maximum speed. A 10-fold dilution series of the leaf homogenates was made in sterile 10 mM MgSO₄
150 until a dilution of 10⁻⁸ and plated as 10 µL droplets on LB medium supplemented with nitrofurantoin
151 and cephalexin. After 2 days of incubation at 20°C, the cfu per cm² of leaf area was ascertained from
152 dilutions. To observe pathogenic symptoms on the plants, infected pottles were kept up to 50 days
153 post-inoculation and photographs taken of pottles and a representative infected leaf. Infection
154 severity was qualitatively assessed based on typical symptoms: necrotic leaf spots, chlorotic haloes,
155 leaf death, and plant death. Each of these growth assay experiments was conducted at least three
156 times.

157 PTI-suppression assays

158 The *N. benthamiana* PTI-suppression assay (suppression of effector delivery) was adapted from that
159 described previously (Crabill *et al.*, 2010; Le Roux *et al.*, 2015). pBBR1MCS-5 constructs of each Psa3
160 V-13 or Pfm LV-5 effector (Jayaraman *et al.*, 2017) were transformed by electroporation into Pfo Pf0-
161 1 (T3S) strains (Thomas *et al.*, 2009) and plated on selective media with chloramphenicol, gentamicin,
162 and tetracycline. Positive transformants were confirmed by gene-specific colony PCR. Pf0-1(T3S)
163 carrying empty vector or Psa3/Pfm constructs were streaked from glycerol stocks onto LB agar plates
164 with antibiotic selection and grown for 2 days at 28°C. Bacteria were then harvested from plates,
165 resuspended in 10 mM MgSO₄, and diluted to the required OD₆₀₀ = 0.6 (c. 10⁹ cfu/mL). Infiltrations
166 were carried out on fully expanded leaves of 4- to 5-week-old *Nicotiana benthamiana* using a blunt-
167 end syringe on two or three leaves (replicates). Next, 12 hours post-infiltration, Pto DC3000 (OD₆₀₀ =
168 0.03; c. 10⁷ cfu/mL) was infiltrated in an overlapping area of the leaves. Pto DC3000-triggered tissue
169 collapse was scored at 3 dpi. PTI suppression experiments were conducted in triplicate, over three
170 independent experimental runs, with tissue collapse in at least 50% of replicates scored as suppressors
171 of PTI.

172 The *A. chinensis* PTI-suppression assay (suppression of callose deposition) was adapted from that
173 described previously (Jin & Mackey, 2017). Briefly, for observation of callose deposits, Pfo Pf0-1 (T3S)
174 carrying either empty vector or the plasmid-borne Psa3 effector (as before) was vacuum-infiltrated
175 into *A. chinensis* leaves from plantlets grown in tissue culture (Multiflora, NZ) at 10^8 cfu/mL (OD₆₀₀ of
176 1 in sterile 10mM MgSO₄). The infected leaves were decolorised in lactophenol solution (water 8.3%,
177 glycerol 8.3%, lactic acid 7%, water saturated phenol 8.3%; in ethanol v/v) and then stained with 0.01%
178 aniline blue in 150 mM K₂HPO₄, pH 9.5 (all chemicals from Sigma Aldrich). Callose deposits were
179 visualised with a Nikon Ni-E upright compound UV-fluorescence microscope equipped with a digital
180 camera under a 40x magnification, and acquired images analyzed using ImageJ software by
181 determining the average area of a single callose deposit and then calculated callose counts based on
182 total callose deposit area in each image.

183 *In vitro* effector secretion assay

184 For detection of effector secretion *in vitro*, the protocols used were based on those described
185 previously (Huynh *et al.*, 1989). Briefly, Psa3 V-13 or Pfm LV-5 strains carrying the relevant HA-tagged
186 effector plasmid constructs (pBBR1MCS-5) were grown in LB medium with antibiotic selection
187 overnight, pelleted at 5,000g, washed with *hrp*-inducing minimal medium supplemented with 10 mM
188 fructose and then resuspended in *hrp*-inducing minimal medium and incubated for 6 h with shaking
189 for *hrp* induction. Following *hrp* induction, cells were pelleted and proteins extracted by the Laemmli
190 method (Laemmli, 1970), resolved by SDS-PAGE and immunoblotted for the presence of the HA-
191 tagged effector using α -HA antibody (H9658; Sigma-Aldrich) and α -HA-HRP (3F10; Roche, Basel,
192 Switzerland).

193 Reporter eclipse assay

194 Freshly expanded leaves of *A. chinensis* var. *chinensis* 'Hort16A' were co-bombarded with DNA-coated
195 gold particles carrying pRT99-GUS and pICH86988 with the effector of interest, as described in
196 Jayaraman *et al.* (2021). Effectors were YFP-tagged and cloned under a CaMV 35S promoter (Choi *et*
197 *al.*, 2017).

198 Transient expression in *Nicotiana benthamiana* and co-immunoprecipitation

199 *Agrobacterium tumefaciens* AGL1 (YFP-tagged effectors; (Choi *et al.*, 2017)) or GV3101 pMP90 (FLAG-
200 tagged AcRIN4s; (Yoon & Rikkerink, 2020)) was freshly grown in LB with appropriate antibiotics at 28°C
201 with shaking at 200 rpm. Cells were pelleted by centrifugation at 4000 g for 10 min and resuspended
202 in infiltration buffer (10 mM MgCl₂, 5 mM EGTA, 100 μ M acetosyringone). Cell suspensions were
203 diluted to a final OD₆₀₀ of 0.1 and infiltrated into at least two fully expanded leaves of 4- to 5-week-
204 old *N. benthamiana* plants using a needleless syringe. All *Agrobacterium*-mediated transformation
205 experiments were performed using pre-mixed *Agrobacterium* cultures for the stipulated effector-RIN4
206 combinations in a single injection for co-immunoprecipitation experiments (see below). YFP was used
207 as a negative control for effectors.

208 Tissues (0.5 g per sample) were collected 2 days post-infiltration and ground to a homogeneous
209 powder in liquid nitrogen and resuspended in 1 mL of protein extraction buffer (1x PBS, 1% *n*-dodecyl-
210 β -d-maltoside or DDM (Invitrogen, Carlsbad, CA, USA), and 0.1 tablet cComplete™ protease inhibitor
211 cocktail (Sigma-Aldrich) in NativePAGE™ buffer (Invitrogen)). Extracted protein samples were
212 centrifuged at 20 000g for 2 min at 4°C and the supernatant was collected for immunoprecipitation
213 using the μ MACS GFP Isolation Kit (Miltenyi Biotec, MediRay, New Zealand). Total and
214 immunoprecipitated proteins were resolved on a 4–12% SDS-PAGE gel. Western blots using PVDF
215 membranes were prepared and probed using HRP-conjugated antibodies in 0.2% I-Block (Invitrogen).

216 Detection was achieved using ECL (Amersham, GE Healthcare, Chicago, IL, USA). The antibodies used
217 were α -FLAG (F1804; Sigma-Aldrich), α -FLAG-HRP (A8592; Sigma-Aldrich), and α -GFP (MA515256; Life
218 Technologies).

219

220 **Results**

221 **Three new effector loci contribute quantitatively and additively to Psa3 pathogenicity**

222 When comparing their capacity for virulence, Pfm LV-5 is clearly incapable of causing the prolific
223 disease symptoms in 'Hort16A' that Psa3 V-13 can, despite both species being commonly recovered
224 from kiwifruit plants in the orchard (Figure 1A) (Chapman *et al.*, 2012; Vanneste *et al.*, 2013; McCann
225 *et al.*, 2013; Cunty *et al.*, 2015; Abelleira *et al.*, 2015). Comparing the pathogenicity of Pfm LV-5 to
226 Psa3 V-13 and Psa3 V-13 carrying the avirulence effector *hopA1j* from *P. syringae* pv. *syringae* 61
227 indicated that Pfm LV-5 more closely resembled the avirulent strain than pathogenic wild-type Psa3
228 V-13 (Figure 1B).

229 Previously, *avrE1d* and *hopR1b* were found to be required for virulence (disease symptoms) and
230 pathogenicity (host colonisation) in Psa3 V-13 infection of 'Hort16A' (Jayaraman *et al.*, 2020). Pfm LV-
231 5 carries orthologs of both AvrE1 and HopR1 and these versions share both amino acid identity and
232 predicted protein structure to orthologs in Psa3 V-13 (Figure 2; Supplementary Table S3). Both AvrE1d
233 and HopR1b appear to function non-redundantly as putative pore-forming effectors, a role apparently
234 shared by HopAS1b in multiple pseudomonads (Figure 2). Surprisingly, however, loss of *hopAS1b* has
235 not yet been identified to significantly affect virulence of Psa3 V-13.

236 To investigate effector requirements and contribution to virulence and pathogenicity in susceptible *A.*
237 *chinensis* var. *chinensis* plants, a previously developed library of effector knockout strains was tested
238 on 'Hort16A' plantlets and assessed for reduced *in planta* colonisation (Hemara *et al.*, 2022).
239 Reductions in Psa3 V-13 growth, assessed at 6 and 12 dpi, were observed in Δ *hopS2a*, Δ *hopAZ1a*, and
240 Δ *xEEL* mutant strains (Figure 3A; Figure S1). Despite having a similar topology to AvrE1d and HopR1b,
241 loss of *hopAS1b* did not affect virulence or pathogenicity of Psa3 V-13. Interestingly, unlike the
242 symptom reduction seen previously for loss of effectors *avrE1d* (Δ *CEL*) and *hopR1b* (Jayaraman *et al.*,
243 2020), loss of these three effector loci was not associated with a reduction in disease symptom
244 progression on the highly susceptible 'Hort16A' plants (Figure 3B). Plasmid complementation of
245 effectors *hopS2a* (with its chaperone *shcS2*) and *hopAZ1a* in their respective knockout strains restored
246 host colonisation (Figure S2).

247 The ten-effector Δ *xEEL* knockout mutant resulted in a loss of pathogenicity and contrasted with the
248 eight-effector Δ *fEEL* knockout mutant that remained fully pathogenic (Figure S1). To investigate
249 whether the additional two effectors lost (Δ *hopQ1a* and Δ *hopD1a*) were redundantly responsible for
250 the contribution to pathogenicity in the Δ *xEEL* mutant, a double knockout of these two effectors was
251 generated and tested alongside Δ *fEEL* and Δ *xEEL* mutants (Figure 4A). Notably, neither the Δ *fEEL* nor
252 the Δ *hopQ1a*/ Δ *hopD1a* mutant strains showed reduced pathogenicity, suggesting that loss of effector
253 redundancy across the total set of ten effectors in the *xEEL* locus was probably responsible for the
254 change in the Δ *xEEL* mutant (Figure 4B).

255 Screening all Psa3 V-13 effectors for PTI-suppression activity previously identified HopD1a as a potent
256 contributor to PTI suppression (Crabill *et al.*, 2010; Choi *et al.*, 2017). Interestingly, using *P. fluorescens*
257 Pf0-1 (T3S) delivery for re-screening effectors from Psa3 V-13, with a lower stringency (suppression
258 was considered positive if at least 2 out of 4 infiltrated leaf patches showed a hypersensitive

259 response), identified four Psa3 effectors that were robustly able to suppress *P. fluorescens*-triggered
260 PTI in *N. benthamiana* plants: HopD1a, AvrB2b, HopD2a, and HopAW1a (Figure S3). All four effectors
261 lie within the *xEEL* locus and were able to suppress PTI to allow for the subsequent ETI triggered by
262 Pto DC3000 to a capacity comparable to that of the positive control, AvrPtoB from Pto DC3000 (Figure
263 S3). Testing of individual effector contributions to the $\Delta xEEL$ mutant by plasmid complementation
264 confirmed that these four effectors were individually able to restore the $\Delta xEEL$ mutant's loss of
265 pathogenicity (Figure 4C). To assess whether these effectors were also able to suppress PTI in their
266 natural plant host, *A. chinensis* leaves were used to assess callose deposition (a PTI response) against
267 *P. fluorescens* Pf0-1 (T3S) carrying empty vector or each of the four *xEEL* effectors (Figure 4D). Notably,
268 three out of the four effectors were able to significantly suppress callose deposition as expected
269 (Figure 4D–4E).

270 To determine whether the three effectors/loci (*hopS2*, *hopAZ1* and *xEEL*) additively contribute to
271 pathogenicity and virulence in 'Hort16A', cumulative knockouts were generated and tested for *in*
272 *planta* colonisation and symptom development. These effector contributions were tested in the ΔCEL
273 background where *avrE1d* contributes a large proportion of the pathogenicity and virulence observed
274 in Psa3 (Jayaraman *et al.*, 2020). Knockout of the *xEEL* in the ΔCEL background, or knockout of *hopS2b*
275 and *hopAZ1a* in addition to ΔCEL , reduced pathogenicity of the double and triple mutant strains,
276 respectively, to a similar extent as that in the avirulent $\Delta hrcC$ mutant (Figure 5A). Unsurprisingly,
277 knocking out these effectors in addition to the loss of the *CEL* did not show disease progression
278 differences from those seen in the symptomless ΔCEL -infected 'Hort16A' plants (Figure 5B).
279 Pathogenicity and virulence were also tested for the quadruple-locus knockout of
280 $\Delta CEL/\Delta xEEL/\Delta hopS2b/\Delta hopAZ1a$ and found to be no different from the $\Delta hrcC$ mutant either (Figure
281 S4). Taken together, these assays have identified three new effector loci that non-redundantly and
282 additively contribute to virulence and pathogenicity of Psa3 in 'Hort16A' plants.

283 **Avirulence effectors from Pfm cannot explain its lack of virulence in 'Hort16A'**

284 Surprisingly, four effectors (*avrE1d*, *hopR1b*, *hopS2b*, and *hopAZ1a*) identified from Psa3 V-13 that
285 individually contribute significantly to pathogenicity and virulence were also present in Pfm LV-5,
286 along with required promoters and chaperones (Supplementary Table S3). The exception to required
287 effectors in Psa3 also being present in Pfm were effectors from the *xEEL* in Psa3 V-13 (*hopD1a*, *avrB2b*,
288 *hopD2a*, and *hopAW1a*). Instead, effectors in Pfm LV-5, namely *hopW1f* and *hopA1a*, which are able
289 to suppress PTI, probably substitute for these effectors (Figure S5). A close ortholog of the positive
290 control for the assay, AvrPtoB (HopAB1i from Pfm LV-5), may also be contributing to PTI-suppression
291 but triggered an HR in *N. benthamiana* and thus its role could not be verified. Additionally, testing of
292 Psa3 V-13 effectors HopD1a, AvrB2b, HopD2a, or HopAW1a, failed to complement pathogenicity in
293 Pfm LV-5 (Figure S6). These results suggested instead that there might be effectors carried by Pfm LV-
294 5 that render it avirulent on 'Hort16A' plants.

295 The comparison of effector repertoires of Psa3 V-13 and Pfm LV-5 identified 16 effectors that are
296 unique (absent in Psa3 V-13 or an allele present with <90% identity) to Pfm LV-5 with the potential to
297 be avirulence effectors (Supplementary Table S3). Each of these 16 effectors was cloned under a
298 synthetic *avrRps4* promoter with a C-terminal HA tag, and most validated for effector expression when
299 delivered by Psa3 V-13 (Figure S7). Screening these Psa3 V-13 strains carrying Pfm LV-5 effectors on
300 'Hort16A' plants identified two effectors, *hopA1a* (10 fold reduction of pathogenicity) and *hopE1a*
301 (100 fold reduction in pathogenicity) as candidate avirulence effectors (Figure S8) (Jayaraman *et al.*,
302 2017). Delivering HopE1a_{Pfm} also largely eliminated Psa3 V-13-induced disease symptoms in 'Hort16A',
303 while HopA1a_{Pfm} delivery barely reduced virulence (Figure S9). Since the C-terminal HA-tag may
304 possibly interfere with immunity triggered by an effector, each of these effectors was cloned under

305 their native promoters, where possible, and delivered by Psa3 V-13. Again only HopA1a_{Pfm} and
306 HopE1a_{Pfm} were associated with a reduction of Psa3 V-13 pathogenicity in 'Hort16A' plants (Figure
307 S10). Using a reporter eclipse assay for candidate avirulence effectors as well as effectors poorly
308 expressed *in vitro*, also identified HopA1a_{Pfm} and HopE1a_{Pfm} as avirulence effectors in 'Hort16a' (Figure
309 S11).

310 Knockout of avirulence effectors should allow for increased growth of Pfm LV-5 in 'Hort16A'. Single
311 and double knockout strains in Pfm LV-5 for Δ hopA1a, Δ hopE1a, or Δ hopA1a/ Δ hopE1a were
312 generated and tested for *in planta* growth. Surprisingly, none of these effector knockouts showed an
313 increased pathogenicity in 'Hort16A' plants compared with wild-type Pfm LV-5 or Psa3 V-13 (Figure
314 S12). Taken together, these findings suggest that Pfm LV-5 possesses all non-redundant virulence-
315 associated effectors and its avirulence effectors do not contribute significantly to reduced
316 pathogenicity in 'Hort16A' plants.

317 **Redundant pathogenicity-associated effectors from Psa3 largely target host RIN4 proteins**

318 In an attempt to understand the lack of pathogenicity in Pfm LV-5 compared with Psa V-13, putatively
319 redundant pathogenicity-associated effectors were tested for their contribution to host colonisation.
320 Since HopA1a and HopE1a may be contributing to low rates of growth restriction, the double knockout
321 strain Pfm LV-5 Δ hopA1a/ Δ hopE1a was used for plasmid complementation of Psa3 V-13-specific
322 effectors (*avrB2b*, *avrPto1b*, *avrRpm1a*, *hopD1a*, *hopF1c*, *hopH1a*, *hopZ5a*, *hopI1c*, *hopM1f*, *hopQ1a*,
323 *hopF4a*, *hopBP1a*, *hopAM1a*, *hopD2a*, *hopAU1a*, *hopAW1a*, *hopF1e*, and *hopBN1a*). The expression of
324 these HA-tagged Psa3 effectors in Pfm was validated under *hrp*-inducing conditions *in vitro* (Figure
325 S13). Five Psa3 effectors were found to quantitatively increase pathogenicity of Pfm LV-5
326 Δ hopA1a/ Δ hopE1a on 'Hort16A' plants (Figure 6A).

327 The five pathogenicity-associated Psa3 effectors (*hopZ5a*, *hopH1a*, *avrPto1b*, *avrRpm1a*, and *hopF1e*)
328 that contribute to Pfm LV-5 *in planta* growth did not alter pathogenicity when knocked out individually
329 in Psa3 V-13, suggesting that some redundancy across these effectors exists (Figure S14). To confirm
330 this, cumulative knockouts of these effectors in Psa3 V-13 were generated and tested on 'Hort16A'
331 plants. Notably, the Psa3 quadruple (Δ hopH1a/ Δ hopZ5a/ Δ avrPto1b/ Δ avrRpm1a) and quintuple
332 (Δ hopH1a/ Δ hopZ5a/ Δ avrPto1b/ Δ avrRpm1a/ Δ tEEL) knockouts showed a large drop in pathogenicity,
333 confirming a redundant contribution of at least some of these effectors to pathogenicity (Figure 6B).
334 The quadruple and quintuple mutants were also considerably reduced in virulence (Figure 6C).

335 Three out of these five putatively redundant effectors in Psa3, or their orthologs in other plant-
336 pathogen systems, have recently been shown to target the plant immunity hub RIN4 (Yoon &
337 Rikkerink, 2020; Choi *et al.*, 2021; Jeleńska *et al.*, 2021). HopF1e and HopH1 have not been
338 characterised for their *in planta* targets, but HopF1e is part of the larger HopF family that has members
339 known to interact with RIN4 (Lo *et al.*, 2017). Indeed, Psa strains carry a large number of putative
340 RIN4-targeting effectors (Hemara *et al.*, 2022). These predicted Psa3 RIN4-targeting effectors,
341 including HopF family effectors or Psa orthologs of known RIN4-targeting effectors that were not
342 associated with increased Pfm LV-5 Δ hopA1a/ Δ hopE1a growth, were tested for binding to RIN4 alleles
343 from 'Hort16A'. Co-immunoprecipitation screens were conducted in *N. benthamiana* plants with co-
344 expression of alleles from one of three AcRIN4 loci and the effector of interest, as done previously for
345 AvrRpm1a (Yoon & Rikkerink, 2020). The pathogenicity-associated effectors (HopZ5a, HopH1a,
346 AvrPto1b, and HopF1e), known orthologs of RIN4 targeting effectors (HopBP1a and HopF1c), or
347 putative HopF family effectors (HopF4a and HopBN1a) tested were all YFP-tagged and used to pull
348 down any interacting FLAG-tagged RIN4 alleles (Figure 7). Notably, three out of the four redundant
349 pathogenicity-associated effectors (HopZ5a, HopF1e, and AvrPto1b) pulled down at least two alleles

350 of AcRIN4. No interaction was seen for HopH1a, similar to the negative control YFP alone. Meanwhile,
351 both HopF1c and HopF4a also pulled down AcRIN4 alleles, but are not associated with increases in
352 pathogenicity in Pfm LV-5, while HopBP1a and HopBN1a did not pull down AcRIN4 alleles. These
353 results collectively suggest that AcRIN4 is a key target for a large number of Psa3 effectors that act
354 together in a complex dynamic to facilitate 'Hort16A' infection.

355

356 Discussion

357 This work sought to identify the virulence determinants that makes Psa3 strains hyper-virulent on the
358 susceptible kiwifruit cultivar 'Hort16A', particularly in contrast to the various other *Pseudomonas*
359 species that occupy the kiwifruit phyllosphere. Using a commensal, low virulence kiwifruit-colonising
360 Pfm strain to search for virulence amplifiers in a double avirulence effector knockout strain (Pfm LV-5
361 Δ hopA1a/ Δ hopE1a), several redundantly acting effectors that largely target RIN4 were identified.
362 While these effectors are collectively essential for full Psa3 virulence, no effectors were able to confer
363 strong virulence to Pfm by themselves. This underscores the complexity of virulence in plant-
364 colonising bacterial strains and suggests that factors beyond their effector repertoires may contribute
365 to virulence.

366 For the well-characterised tomato and Arabidopsis pathogen Pto DC3000 in its infection of non-host
367 *Nicotiana benthamiana*, several effectors were found to contribute towards pathogenicity following
368 loss of avirulence effector HopQ1 (Kvitko *et al.*, 2009; Cunnac *et al.*, 2011; Wei *et al.*, 2018). The
369 AvrE1/HopM1/HopR1 redundant effector group (REG) was found to contribute to an aqueous
370 apoplast and the AvrPto/AvrPtoB REG was found to target and suppress PTI (Kvitko *et al.*, 2009).
371 HopE1 supported increased growth *in planta*; HopG1 and HopAM1 were found to promote chlorotic
372 and necrotic symptomology, respectively; and HopAA1 functioned redundantly with the phytotoxin
373 coronatine to promote symptoms (Munkvold *et al.*, 2009; Cunnac *et al.*, 2011). The vast majority of
374 Pto DC3000 effectors appear to have an ETI-suppression role (Jamir *et al.*, 2004; Guo *et al.*, 2009). In
375 contrast, Psa3 appears to have little effector function in common with Pto DC3000. Notably, the
376 contributions of AvrE1d and HopR1b that form a REG in Pto DC3000 have non-redundant roles in both
377 pathogenicity and virulence on kiwifruit hosts (Jayaraman *et al.*, 2020). In addition, this putative
378 structure-related function is also seen in HopAS1b, which forms a similar potentially 'pore-forming'
379 structure to AvrE1d/HopR1b, but appears not to be required for virulence or pathogenicity in kiwifruit
380 plants (Figure 2; Figure S1). Notably, these three effectors were the only cell death-triggering Psa3
381 effectors that did not show a reduction in cell death upon silencing of *SGT1* in *N. benthamiana*,
382 suggesting that all three are functional and that their virulence function may be associated with
383 triggering cell death (Choi *et al.*, 2017). Nevertheless, the variation among these three effectors'
384 requirements in Psa3 infection of kiwifruit plants suggests that the link between structural similarity
385 and function is complex.

386 This work has identified two individual effectors (HopAZ1a and HopS2b) that contribute to
387 pathogenicity (host colonisation) but have no effect on virulence (disease symptoms). This may be a
388 unique role of these effectors that are not involved in symptom production, or a quantitative
389 contribution that, despite affecting *in planta* accumulation, still allows for Psa3 colonisation beyond a
390 threshold which then allows for symptom development (Stroud *et al.*, 2022). Collectively, these non-
391 redundant effectors or effector "sets" additively are essential for full pathogenicity and virulence in
392 'Hort16A' plants. Recently, HopAZ1a from Psa3 has been associated with targeting defence-associated
393 PR5 and a cysteine peptidase Cp1 in kiwifruit plants (Zhu *et al.*, 2022). This aforementioned work
394 showed increased virulence for the Δ hopAZ1a mutant, unlike the reduced growth seen for our results.

395 However, their use of different cultivars of kiwifruit, and use of quantitative symptom development
396 alone, may explain this discrepancy. Nevertheless, the finding that HopAZ1a targets secreted protein
397 PR5 (and possibly Cp1) fits with previous work that showed HopAZ1a localised to what appears to be
398 endoplasmic reticulum-like structures, suggesting that it may target defence-related secretion (Choi
399 *et al.*, 2017). While the plant targets of HopS2b are not known, a close ortholog of this effector from
400 Pto DC3000 is a strong suppressor of ETI (Guo *et al.*, 2009). Recently, the HopS family of ADP-ribosyl
401 transferases were identified as significant contributors to virulence and ETI suppression through
402 activity as NADases (Hulin & Ma, 2022). HopAZ1a and HopS2b appear to be the only effectors present
403 universally across the five Psa biovars and Pfm, suggesting they play an important role in kiwifruit
404 plant colonisation (McCann *et al.*, 2013; Sawada & Fujikawa, 2019).

405 Using the same ‘single knockout’ approach used to identify the four non-redundant effectors
406 contributing to pathogenicity of Psa3 on ‘Hort16A’, the exchangeable effector locus (EEL) was also
407 identified as a significant contributor to pathogenicity, but not virulence. Interestingly, the entire
408 extended EEL (xEEL) spanning ten effectors from *hopQ1a* to *hopF1a* was redundantly required for this
409 contribution to pathogenicity. By using effector complementation, the xEEL was found to carry several
410 functionally redundant effectors that participate in PTI-suppression: HopD1a, AvrB2b, HopAW1a, and
411 HopD2a. These effectors appear to be able to facilitate PTI-suppression in the same way that
412 AvrPto/AvrPtoB redundantly contribute to PTI suppression for Pto DC3000, and AvrPphB does for *P.*
413 *syringae* pv. *phaseolicola* (Hann & Rathjen, 2007; Kvitko *et al.*, 2009; Zhang *et al.*, 2010).

414 Several redundant Psa3 effectors that could contribute to Pfm pathogenicity were identified: HopZ5a,
415 AvrRpm1a, HopF1e, AvrPto5, and HopH1a. AvrRpm1a has been shown previously to target AcRIN4
416 alleles (Yoon & Rikkerink, 2020). In our current work, three out of the other four of these redundant
417 virulence-associated effectors were shown to directly interact with AcRIN4 orthologs, suggesting a
418 mechanism of virulence conserved in Psa3. This latter screen also tested all Psa3 effectors that are
419 part of the HopF family (HopBN1a, HopF4a, HopF1c, and HopF1e), which has members known to
420 target RIN4 as well as other orthologs that have been shown to target RIN4 (Wilton *et al.*, 2010; Lo *et*
421 *al.*, 2017; Choi *et al.*, 2021; Jeleńska *et al.*, 2021). Several of these effectors showed interesting
422 relationships between their ability to target AcRIN4 and their contribution to pathogenicity. HopH1a
423 was the sole effector associated with virulence that did not bind to AcRIN4, while effectors HopF1c
424 and HopF4a surprisingly did bind AcRIN4 but were not associated with pathogenicity (Figure 7). One
425 reason that HopF1c was not identified is that it carries a defective SchF chaperone (Templeton *et al.*,
426 2015). HopF1c has also previously been associated with triggering ETI in ‘Hort16A’ but is probably
427 suppressed by other Psa3 effectors, so it is not surprising that it does not contribute to Pfm
428 pathogenicity (Hemara *et al.*, 2022). Meanwhile, the genomic sequence of *hopF4a* and its associated
429 upstream *shcF* gene carries a transposon insertion that has deleted the ShcF N-terminus and separates
430 *hopF4a* from its *hrpL* promoter (Templeton *et al.*, 2015). This predicted disruption is corroborated by
431 RNA-seq data showing HopF4a (previously named HopX3) does not appear to be expressed *in planta*
432 (McAtee *et al.*, 2018). HopF4a further lacks a functional catalytic triad from peptide sequence
433 alignments and appears to be a non-functional member of the HopF family (Figure S15). HopBP1a (an
434 ortholog of HopZ3 from *P. syringae* pv. *syringae* B728A that binds RIN4) did not bind to AcRIN4 and
435 did not contribute to Pfm pathogenicity, albeit with undetectable expression when delivered by Pfm
436 (Figure S13). Pfm LV-5 may require the AcRIN4-targeting capabilities supplied by these various
437 effectors from Psa3 V-13 to increase Pfm pathogenicity in kiwifruit plants.

438 The ability of the RIN4-targeting set of effectors to increase Pfm pathogenicity implies they are also
439 likely to be carrying out a similar role in Psa3. Why were these effectors not individually identified as
440 contributing to pathogenicity or virulence in our screens? *A. arguta* plant lines like AA07_03 have

441 evolved to recognise at least three of these effectors, and their deletion leads to an increase in fitness
442 (Hemara *et al.*, 2022). This illustrates the active role being played by these RIN4-interacting effectors
443 in the evolution of Psa and kiwifruit germplasm near the likely point of origin of Psa as a species
444 (McCann *et al.*, 2017). In our analysis focussed on 'Hort16A', we suggest this is probably because of a
445 complex series of interactions and active selection operating in both the host and pathogen around
446 this important plant defence hub that is targeted by several different effector families across multiple
447 bacterial plant pathogens (Sun *et al.*, 2014; Rikkerink, 2018; Toruño *et al.*, 2019). For example, in the
448 case of the Psa3-susceptible 'Hort16A' host recognising hopF1c, the presence of this resistance (if now
449 widespread in the wild kiwifruit-containing forests where Psa evolved) could well have resulted in
450 selection for mutation of the associated chaperone ShcF to reduce effector delivery. Finally, evidence
451 in this work and previously, suggests that there is a degree of redundancy among these effectors, as
452 a cumulative loss of virulence on 'Hort16A' was evident in strains with multiple mutations in RIN4-
453 interacting effectors (Figure 6; (Hemara *et al.*, 2022)). Applying the principle of Occam's razor would
454 suggest their association with RIN4 is probably responsible for this redundancy.

455 A corollary question then becomes — what is the importance of targeting RIN4? Three effectors
456 associated with RIN4 that trigger HR in *A. arguta* unusually did not trigger the ion leakage usually
457 associated with this response (Hemara *et al.*, 2022). This may indicate that one reason for targeting
458 RIN4 is associated with suppressing ion leakage, a physiological response that is largely due to the loss
459 of membrane integrity and is associated with the programmed cell death component of the HR. Thus
460 it is conceivable that RIN4 performs an important regulatory function in controlling the initiation of
461 (or limitation of) HR-associated cell death. The role of RIN4 in at least some hybrid-necrosis responses
462 in lettuce could be an important functional clue here, albeit also probably in association with NLR
463 proteins (Jeuken *et al.*, 2009; Parra *et al.*, 2016). The disordered protein structure of RIN4 has been
464 suggested to be a key component that explains how it has evolved into such an important defence
465 hub and target of post-translational modification by bacterial pathogens (Sun *et al.*, 2014; Rikkerink,
466 2018). When our recent results are combined with previous research, it is increasingly clear that RIN4
467 is an equally import target for Psa (Yoon & Rikkerink, 2020).

468

469 Acknowledgements

470 This work was funded by the Bio-protection Research Centre (Tertiary Education Commission) and the
471 Royal Society Te Apārangi (including a Marsden FastStart grant to J.J.). We would like to thank Dr Jo
472 Bowen (PFR) and Prof. Andrew Allan (PFR) for critical reading of this manuscript. The authors wish to
473 acknowledge the use of New Zealand eScience Infrastructure (NeSI) high performance computing
474 facilities as part of this research. New Zealand's national facilities are provided by NeSI and funded
475 jointly by NeSI's collaborator institutions and through the Ministry of Business, Innovation &
476 Employment's Research Infrastructure programme. URL <https://www.nesi.org.nz>.

477 References

478 **Abelleira A, Ares A, Aguin O, Peñalver J, Morente MC, López MM, Sainz MJ, Mansilla JP. 2015.**
479 Detection and characterization of *Pseudomonas syringae* pv. *actinidifoliorum* in kiwifruit in Spain.
480 *Journal of Applied Microbiology* **119**: 1659–1671.

481 **Bartoli C, Lamichhane JR, Berge O, Guilbaud C, Varvaro L, Balestra GM, Vinatzer BA, Morris CE.**
482 **2015.** A framework to gauge the epidemic potential of plant pathogens in environmental reservoirs:
483 the example of kiwifruit canker: The epidemic potential of plant pathogens. *Molecular Plant*
484 *Pathology* **16**: 137–149.

485 **Boller T, Felix G. 2009.** A renaissance of elicitors: Perception of microbe-associated molecular
486 patterns and danger signals by pattern-recognition receptors. *Annual Review of Plant Biology* **60**:
487 379–406.

488 **Chapman JR, Taylor RK, Weir BS, Romberg MK, Vanneste JL, Luck J, Alexander BJR. 2012.**
489 Phylogenetic relationships among global populations of *Pseudomonas syringae* pv. *actinidiae*.
490 *Phytopathology* **102**: 1034–1044.

491 **Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L, Paasch BC, Ma L, Kremer J, Cheng Y, et al. 2020.**
492 A plant genetic network for preventing dysbiosis in the phyllosphere. *Nature* **580**: 653–657.

493 **Choi S, Jayaraman J, Segonzac C, Park H-J, Park H, Han S-W, Sohn KH. 2017.** *Pseudomonas syringae*
494 pv. *actinidiae* type III effectors localized at multiple cellular compartments activate or suppress
495 innate immune responses in *Nicotiana benthamiana*. *Frontiers in Plant Science* **8**: 2157.

496 **Choi S, Prokchorchik M, Lee H, Gupta R, Lee Y, Chung E-H, Cho B, Kim M-S, Kim ST, Sohn KH. 2021.**
497 Direct acetylation of a conserved threonine of RIN4 by the bacterial effector HopZ5 or AvrBsT
498 activates RPM1-dependent immunity in Arabidopsis. *Molecular Plant* **14**: 1951–1960.

499 **Crabill E, Joe A, Block A, van Rooyen JM, Alfano JR. 2010.** Plant immunity directly or indirectly
500 restricts the injection of type III effectors by the *Pseudomonas syringae* type III secretion system.
501 *Plant Physiology* **154**: 233–244.

502 **Cunnac S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer A. 2011.** Genetic disassembly
503 and combinatorial reassembly identify a minimal functional repertoire of type III effectors in
504 *Pseudomonas syringae*. *Proceedings of the National Academy of Sciences of the United States of
505 America* **108**: 2975–2980.

506 **Cunty A, Poliakoff F, Rivoal C, Cesbron S, Fischer-Le Saux M, Lemaire C, Jacques MA, Manceau C,
507 Vanneste JL. 2015.** Characterization of *Pseudomonas syringae* pv. *actinidiae* (Psa) isolated from
508 France and assignment of Psa biovar 4 to a *de novo* pathovar: *Pseudomonas syringae* pv.
509 *actinidifoliorum* pv. nov. *Plant Pathology* **64**: 582–596.

510 **DeFalco TA, Zipfel C. 2021.** Molecular mechanisms of early plant pattern-triggered immune
511 signaling. *Molecular Cell* **81**: 3449–3467.

512 **Diallo MD, Monteil CL, Vinatzer BA, Clarke CR, Glaux C, Guilbaud C, Desbiez C, Morris CE. 2012.**
513 *Pseudomonas syringae* naturally lacking the canonical type III secretion system are ubiquitous in
514 nonagricultural habitats, are phylogenetically diverse and can be pathogenic. *The ISME Journal* **6**:
515 1325–1335.

516 **Ferrante P, Scortichini M. 2015.** Redefining the global populations of *Pseudomonas syringae* pv.
517 *actinidiae* based on pathogenic, molecular and phenotypic characteristics. *Plant Pathology* **64**: 51–
518 62.

519 **Gentzel I, Giese L, Ekanayake G, Mikhail K, Zhao W, Cocuron J-C, Alonso AP, Mackey D. 2022.**
520 Dynamic nutrient acquisition from a hydrated apoplast supports biotrophic proliferation of a
521 bacterial pathogen of maize. *Cell Host & Microbe* **30**: 502-517.e4.

522 **Guo M, Tian F, Wamboldt Y, Alfano JR. 2009.** The majority of the type III effector inventory of
523 *Pseudomonas syringae* pv. *tomato* DC3000 can suppress plant immunity. *Molecular Plant-Microbe
524 Interactions* **22**: 1069–1080.

525 **Hann DR, Rathjen JP. 2007.** Early events in the pathogenicity of *Pseudomonas syringae* on *Nicotiana benthamiana*. *The Plant Journal* **49**: 607–618.

527 **Hemara LM, Jayaraman J, Sutherland PW, Montefiori M, Arshed S, Chatterjee A, Chen R, Andersen MT, Mesarich CH, van der Linden O, et al. 2022.** Effector loss drives adaptation of *Pseudomonas syringae* pv. *actinidiae* biovar 3 to *Actinidia arguta* (G Coaker, Ed.). *PLOS Pathogens* **18**: e1010542.

530 **Hulin MT, Ma W. 2022.** Pangenomics facilitated with structural analysis reveals host NAD⁺ manipulation as a major virulence activity of bacterial effectors. *Plant Biology. BioRxiv*.

532 **Huynh T, Dahlbeck D, Staskawicz B. 1989.** Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. *Science* **245**: 1374–1377.

534 **Jamir Y, Guo M, Oh H-S, Petnicki-Ocwieja T, Chen S, Tang X, Dickman MB, Collmer A, R. Alfano J. 2004.** Identification of *Pseudomonas syringae* type III effectors that can suppress programmed cell death in plants and yeast. *The Plant Journal* **37**: 554–565.

537 **Jayaraman J, Chatterjee A, Hunter S, Chen R, Stroud EA, Saei H, Hoyte S, Deroles S, Tahir J, Templeton MD, et al. 2021.** Rapid methodologies for assessing *Pseudomonas syringae* pv. *actinidiae* colonization and effector-mediated hypersensitive response in kiwifruit. *Molecular Plant-Microbe Interactions*®: MPMI-02-21-0043.

541 **Jayaraman J, Choi S, Prokchorchik M, Choi DS, Spiandore A, Rikkerink EH, Templeton MD, Segonzac C, Sohn KH. 2017.** A bacterial acetyltransferase triggers immunity in *Arabidopsis thaliana* independent of hypersensitive response. *Scientific Reports* **7**: 3557.

544 **Jayaraman J, Yoon M, Applegate ER, Stroud EA, Templeton MD. 2020.** AvrE1 and HopR1 from *Pseudomonas syringae* pv. *actinidiae* are additively required for full virulence on kiwifruit. *Molecular Plant Pathology* **21**: 1467–1480.

547 **Jeleńska J, Lee J, Manning AJ, Wolfgeher DJ, Ahn Y, Walters-Marrah G, Lopez IE, Garcia L, McClerkin SA, Michelmore RW, et al. 2021.** *Pseudomonas syringae* effector HopZ3 suppresses the bacterial AvrPto1–tomato PTO immune complex via acetylation (L Shan, Ed.). *PLOS Pathogens* **17**: e1010017.

551 **Jeuken MJW, Zhang NW, McHale LK, Pelgrom K, den Boer E, Lindhout P, Michelmore RW, Visser RGF, Niks RE. 2009.** *Rin4* causes hybrid necrosis and race-specific resistance in an interspecific lettuce hybrid. *The Plant Cell* **21**: 3368–3378.

554 **Jin L, Mackey DM. 2017.** Measuring callose deposition, an indicator of cell wall reinforcement, during bacterial infection in *Arabidopsis*. In: Shan L, He P, eds. *Methods in Molecular Biology. Plant Pattern Recognition Receptors*. New York, NY: Springer New York, 195–205.

557 **Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. 2021.** Highly accurate protein structure prediction with AlphaFold. *Nature* **596**: 583–589.

560 **Kovach ME, Elzer PH, Steven Hill D, Robertson GT, Farris MA, Roop RM, Peterson KM. 1995.** Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene* **166**: 175–176.

563 **Kvitko BH, Park DH, Velásquez AC, Wei C-F, Russell AB, Martin GB, Schneider DJ, Collmer A. 2009.**
564 Deletions in the repertoire of *Pseudomonas syringae* pv. *tomato* DC3000 type III secretion effector
565 genes reveal functional overlap among effectors (JL Dangl, Ed.). *PLoS Pathogens* **5**: e1000388.

566 **Laemmli UK. 1970.** Cleavage of structural proteins during the assembly of the head of bacteriophage
567 T4. *Nature* **227**: 680–685.

568 **Le Roux C, Huet G, Jauneau A, Camborde L, Trémousaygue D, Kraut A, Zhou B, Levaillant M, Adachi
569 H, Yoshioka H, et al. 2015.** A receptor pair with an integrated decoy converts pathogen disabling of
570 transcription factors to immunity. *Cell* **161**: 1074–1088.

571 **Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, Wang K,
572 Devescovi G, Stillman K, Monteiro F, et al. 2018.** Genomic features of bacterial adaptation to plants.
573 *Nature Genetics* **50**: 138–150.

574 **Lo T, Koulena N, Seto D, Guttman DS, Desveaux D. 2017.** The HopF family of *Pseudomonas syringae*
575 type III secreted effectors: The HopF family of *Pseudomonas syringae*. *Molecular Plant Pathology* **18**:
576 457–468.

577 **Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J. 2011.** Callose deposition: A multifaceted
578 plant defense response. *Molecular Plant-Microbe Interactions* **24**: 183–193.

579 **Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. 2003.** Arabidopsis RIN4 is a target of the type
580 III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. *Cell* **112**: 379–389.

581 **Mackey D, Holt BF, Wiig A, Dangl JL. 2002.** RIN4 interacts with *Pseudomonas syringae* type III
582 effector molecules and is required for RPM1-mediated resistance in Arabidopsis. *Cell* **108**: 743–754.

583 **Mazo-Molina C, Mainiero S, Hind SR, Kraus CM, Vachev M, Maviane-Macia F, Lindeberg M, Saha S,
584 Strickler SR, Feder A, et al. 2019.** The *Ptr1* locus of *Solanum lycopersicoides* confers resistance to
585 Race 1 strains of *Pseudomonas syringae* pv. *tomato* and to *Ralstonia pseudosolanacearum* by
586 recognizing the type III effectors AvrRpt2 and RipBN. *Molecular Plant-Microbe Interactions* **32**: 949–
587 960.

588 **McAtee PA, Brian L, Curran B, van der Linden O, Nieuwenhuizen NJ, Chen X, Henry-Kirk RA, Stroud
589 EA, Nardozza S, Jayaraman J, et al. 2018.** Re-programming of *Pseudomonas syringae* pv. *actinidiae*
590 gene expression during early stages of infection of kiwifruit. *BMC Genomics* **19**.

591 **McCann HC, Li L, Liu Y, Li D, Pan H, Zhong C, Rikkerink EHA, Templeton MD, Straub C, Colombi E, et
592 al. 2017.** Origin and evolution of the kiwifruit canker pandemic. *Genome Biology and Evolution* **9**:
593 932–944.

594 **McCann HC, Rikkerink EHA, Bertels F, Fiers M, Lu A, Rees-George J, Andersen MT, Gleave AP,
595 Haubold B, Wohlers MW, et al. 2013.** Genomic analysis of the kiwifruit pathogen *Pseudomonas
596 syringae* pv. *actinidiae* provides insight into the origins of an emergent plant disease (JL Dangl, Ed.).
597 *PLoS Pathogens* **9**: e1003503.

598 **Mesarich CH, Rees-George J, Gardner PP, Ghomi FA, Gerth ML, Andersen MT, Rikkerink EHA,
599 Fineran PC, Templeton MD. 2017.** Transposon insertion libraries for the characterization of mutants
600 from the kiwifruit pathogen *Pseudomonas syringae* pv. *actinidiae* (M Skurnik, Ed.). *PLoS ONE* **12**:
601 e0172790.

602 **Munkvold KR, Russell AB, Kvitko BH, Collmer A. 2009.** *Pseudomonas syringae* pv. *tomato* DC3000
603 type III effector HopAA1-1 functions redundantly with chlorosis-promoting factor PSPTO4723 to
604 produce bacterial speck lesions in host tomato. *Molecular Plant-Microbe Interactions* **22**: 1341–
605 1355.

606 **Ngou BPM, Ahn H-K, Ding P, Jones JDG. 2021.** Mutual potentiation of plant immunity by cell-surface
607 and intracellular receptors. *Nature*.

608 **Nowell RW, Laue BE, Sharp PM, Green S. 2016.** Comparative genomics reveals genes significantly
609 associated with woody hosts in the plant pathogen *Pseudomonas syringae*: Adaptation to woody
610 hosts in *Pseudomonas syringae*. *Molecular Plant Pathology* **17**: 1409–1424.

611 **Parra L, Maisonneuve B, Lebeda A, Schut J, Christopoulou M, Jeuken M, McHale L, Truco M-J, Crute
612 I, Michelmore R. 2016.** Rationalization of genes for resistance to *Bremia lactucae* in lettuce.
613 *Euphytica* **210**: 309–326.

614 **Prokchorchik M, Choi S, Chung E, Won K, Dangl JL, Sohn KH. 2020.** A host target of a bacterial
615 cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune
616 system receptors. *New Phytologist* **225**: 1327–1342.

617 **Rikkerink E. 2018.** Pathogens and disease play havoc on the host epiproteome—The “first line of
618 response” role for proteomic changes influenced by disorder. *International Journal of Molecular
619 Sciences* **19**: 772.

620 **Roussin-Léveillé C, Lajeunesse G, St-Amand M, Veerapen VP, Silva-Martins G, Nomura K, Brassard
621 S, Bolaji A, He SY, Moffett P. 2022.** Evolutionarily conserved bacterial effectors hijack abscisic acid
622 signaling to induce an aqueous environment in the apoplast. *Cell Host & Microbe* **30**: 489–501.e4.

623 **Sawada H, Fujikawa T. 2019.** Genetic diversity of *Pseudomonas syringae* pv. *actinidiae* , pathogen of
624 kiwifruit bacterial canker. *Plant Pathology* **68**: 1235–1248.

625 **Stroud ErinA, Rikkerink ErikHA, Jayaraman J, Templeton MD. 2022.** Actigard™ induces a defence
626 response to limit *Pseudomonas syringae* pv. *actinidiae* in *Actinidia chinensis* var. *chinensis* ‘Hort16A’
627 tissue culture plants. *Scientia Horticulturae* **295**: 110806.

628 **Sun X, Greenwood DR, Templeton MD, Libich DS, McGhie TK, Xue B, Yoon M, Cui W, Kirk CA, Jones
629 WT, et al. 2014.** The intrinsically disordered structural platform of the plant defence hub protein
630 RPM1-interacting protein 4 provides insights into its mode of action in the host-pathogen interface
631 and evolution of the nitrate-induced domain protein family. *FEBS Journal* **281**: 3955–3979.

632 **Tampakaki AP. 2014.** Commonalities and differences of T3SSs in rhizobia and plant pathogenic
633 bacteria. *Frontiers in Plant Science* **5**.

634 **Templeton MD, Arshed S, Andersen MT, Jayaraman J. 2022.** The complete genome sequence of
635 *Pseudomonas syringae* pv. *actinidifoliorum* ICMP 18803. *Genomics. BioRxiv*.

636 **Templeton MD, Warren BA, Andersen MT, Rikkerink EHA, Fineran PC. 2015.** Complete DNA
637 sequence of *Pseudomonas syringae* pv. *actinidiae*, the causal agent of kiwifruit canker disease.
638 *Genome Announcements* **3**.

639 **Thomas WJ, Thireault CA, Kimbrel JA, Chang JH. 2009.** Recombineering and stable integration of the
640 *Pseudomonas syringae* pv. *syringae* 61 *hrp/hrc* cluster into the genome of the soil bacterium

641 *Pseudomonas fluorescens* Pf0-1: Stable integration of a T3SS-locus into Pf0-1. *The Plant Journal* **60**:
642 919–928.

643 **Toruño TY, Shen M, Coaker G, Mackey D. 2019.** Regulated disorder: Posttranslational modifications
644 control the RIN4 plant immune signaling hub. *Molecular Plant-Microbe Interactions* **32**: 56–64.

645 **Vanneste JL, Yu J, Cornish DA, Tanner DJ, Windner R, Chapman JR, Taylor RK, Mackay JF, Dowlut S.**
646 **2013.** Identification, virulence, and distribution of two biovars of *Pseudomonas syringae* pv.
647 *actinidiae* in New Zealand. *Plant Disease* **97**: 708–719.

648 **Velásquez AC, Huguet-Tapia JC, He SY. 2022.** Shared in planta population and transcriptomic
649 features of nonpathogenic members of endophytic phyllosphere microbiota. *Proceedings of the*
650 *National Academy of Sciences* **119**: e2114460119.

651 **Wei H-L, Chakravarthy S, Mathieu J, Helmann TC, Stodghill P, Swingle B, Martin GB, Collmer A.**
652 **2015.** *Pseudomonas syringae* pv. *tomato* DC3000 type III secretion effector polymutants reveal an
653 interplay between HopAD1 and AvrPtoB. *Cell Host & Microbe* **17**: 752–762.

654 **Wei H-L, Zhang W, Collmer A. 2018.** Modular study of the type III effector repertoire in
655 *Pseudomonas syringae* pv. *tomato* DC3000 reveals a matrix of effector interplay in pathogenesis. *Cell*
656 *Reports* **23**: 1630–1638.

657 **Wilton M, Subramaniam R, Elmore J, Felsensteiner C, Coaker G, Desveaux D. 2010.** The type III
658 effector HopF2_{Pto} targets *Arabidopsis* RIN4 protein to promote *Pseudomonas syringae* virulence.
659 *Proceedings of the National Academy of Sciences* **107**: 2349–2354.

660 **Xin X-F, Nomura K, Aung K, Velásquez AC, Yao J, Boutrot F, Chang JH, Zipfel C, He SY. 2016.** Bacteria
661 establish an aqueous living space in plants crucial for virulence. *Nature* **539**: 524–529.

662 **Yoon M, Rikkerink EHA. 2020.** *Rpa1* mediates an immune response to *avrRpm1*_{Psa} and confers
663 resistance against *Pseudomonas syringae* pv. *actinidiae*. *The Plant Journal* **102**: 688–702.

664 **Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, Cai B, Zhou J-M, He SY, Xin X-F. 2021.** Pattern-
665 recognition receptors are required for NLR-mediated plant immunity. *Nature*.

666 **Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, et al. 2010.** Receptor-
667 like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted
668 by a *Pseudomonas syringae* effector. *Cell Host & Microbe* **7**: 290–301.

669 **Zhu Q, Zhao F, Yuan J, Long Y, Fan R, Li Z, Zhao Z, Huang L. 2022.** Functional analysis and target
670 identification of the type III effector HopAZ1 from *Pseudomonas syringae* pv. *actinidiae*. *Acta*
671 *Phytopathologica Sinica* **52**: 47–60.

672

673 **Figure Legends**

674 **Fig. 1 *Pseudomonas syringae* pv. *actinidifoliorum* (Pfm) LV-5 lacks pathogenicity in kiwifruit plants**
675 **in comparison to *P. syringae* pv. *actinidiae* biovar 3 (Psa3) V-13. (A)** *Actinidia chinensis* var. *chinensis*
676 ‘Hort16A’ plantlets were flood inoculated with wild-type Psa3 V-13 or Pfm LV-5 at approximately 10⁶
677 cfu/mL. Photographs of symptom development on representative pottles of ‘Hort16A’ plantlets at 50
678 days post-infection. **(B)** ‘Hort16A’ plantlets were flood inoculated with wild-type Psa3 V-13, Pfm LV-5,
679 or Psa3 V-13 carrying plasmid-borne avirulence effector *hopA1j* (from *P. syringae* 61) at

680 approximately 10^6 cfu/mL. Bacterial growth was quantified at 6 and 12 days post-inoculation by serial
681 dilution and plate count quantification. Box and whisker plots, with black bars representing the
682 median values and whiskers representing the 1.5 inter-quartile range, for *in planta* bacterial counts
683 plotted as Log_{10} cfu/cm² from four pseudobiological replicates. Asterisks indicate statistically
684 significant differences from Student's t-test between the indicated strain and wild-type Psa3 V-13,
685 where p≤.01 (**), p≤.001 (***), or p≤.0001 (****); not significant (ns). These experiments were
686 conducted three times on independent batches of 'Hort16A' plants, with similar results.
687

688 **Fig. 2 *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 and *P. syringae* pv. *actinidifoliorum*
689 (Pfm) LV-5 share multiple pore-forming effector orthologs.** Predicted protein structures for AvrE1,
690 HopR1b, and HopAS1b from (A) Psa3 V-13, (B) Pfm LV-5 and (C) Pto DC3000. HopAS1b* is the non-
691 translated C-terminal sequence portion of HopAS1b from Pto DC3000, translated from after the
692 frameshift mutation. This sequence lacks the N-terminal portion before the frameshift mutation and
693 is probably untranslated, since translation is initiated from the HrPL promoter site. Structures were
694 predicted using AlphaFold2. Alpha helices are coloured pink and beta sheets are coloured yellow.

695 **Fig. 3 Three *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 effector loci are
696 independently required for full pathogenicity but not required for virulence.** *Actinidia chinensis* var.
697 *chinensis* 'Hort16A' plantlets were flood inoculated with wild-type Psa3 V-13, ΔhrcC mutant, ΔhopS2b
698 mutant, ΔhopAZ1a mutant or ΔxEEL (extended EEL) mutant at approximately 10^6 cfu/mL. **(A)** Bacterial
699 growth was quantified at 6 and 12 days post-inoculation by serial dilution and plate count
700 quantification. Box and whisker plots, with black bars representing the median values and whiskers
701 representing the 1.5 inter-quartile range, for *in planta* bacterial counts plotted as Log_{10} cfu/cm² from
702 four pseudobiological replicates. Asterisks indicate statistically significant differences from Welch's t-
703 test between the indicated strain and wild-type Psa3 V-13, where p≤.05 (*), p≤.01 (**), p≤.001 (***),
704 or p≤.0001 (****); not significant (ns). These experiments were conducted three times on
705 independent batches of 'Hort16A' plants, with similar results. **(B)** Symptom development on
706 representative pottles of 'Hort16A' plantlets infected with strains in (A) at 50 days post-infection.

707 **Fig. 4 The *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 extended exchangeable effector
708 locus (xEEL) carries four redundantly required PTI-suppressing effectors.** **(A)** The extended EEL (xEEL)
709 of Psa3 V-13 is made up of ten effectors (*hopQ1a* to *hopF1a*) with a smaller subset of eight effectors
710 (*avrD1* to *hopF1a*) designated as the full EEL (fEEL). **(B)** *Actinidia chinensis* var. *chinensis* 'Hort16A'
711 plantlets were flood inoculated with wild-type Psa3 V-13, ΔhrcC mutant, ΔhopQ1a/ΔhopD1a double
712 mutant, ΔfEEL mutant, or ΔxEEL mutant at approximately 10^6 cfu/mL. Bacterial growth was quantified
713 at 6 and 12 days post-inoculation by serial dilution and plate count quantification. **(C)** *A. chinensis* var.
714 *chinensis* 'Hort16A' plantlets were flood inoculated with wild-type Psa3 V-13 carrying an empty vector
715 (+EV), ΔxEEL mutant +EV, or ΔxEEL mutant complemented with plasmid vector carrying *hopQ1a*,
716 *hopD1a*, *avrB2b*, *hopAW1a*, or *hopD2a* at approximately 10^6 cfu/mL. Bacterial growth was quantified
717 at 6 and 12 days post-inoculation by serial dilution and plate count quantification. In (B) and (C), data
718 are presented as box and whisker plots, with black bars representing the median values and whiskers
719 representing the 1.5 inter-quartile range, for *in planta* bacterial counts plotted as Log_{10} cfu/cm² from
720 four pseudobiological replicates. Asterisks indicate statistically significant differences from Welch's t-
721 test between the indicated strain and Psa3 V-13 ΔxEEL mutant carrying empty vector, where p≤.01
722 (**), p≤.001 (***), or p≤.0001 (****); not significant (ns). These experiments were conducted three
723 times on independent batches of 'Hort16A' plants, with similar results. **(D)** Callose deposition induced
724 by *P. fluorescens* Pf0-1 (T3S) strain carrying empty vector (+ EV), or positive control HopAR1 effector
725 (+ AvrPphB), or one of four Psa3 V-13 effectors from (B) in *A. chinensis* var. *deliciosa* leaves. The
726 representative images were captured at 48 h after infiltration with mock (sterile 10mM MgSO₄) or

727 bacterial strains. **(E)** The number of callose deposits per mm² of leaf tissue from (D) was analyzed with
728 the ImageJ software. Mean and standard error (SEM<) were calculated with results from five biological
729 replicates. Different letters indicate significant difference from a one-way ANOVA and Tukey's HSD
730 *post hoc* test at p≤.05.

731
732 **Fig. 5 *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 pathogenicity-associated effector**
733 **loci are required alongside the conserved effector locus (CEL) for pathogenicity.** *Actinidia chinensis*
734 var. *chinensis* 'Hort16A' plantlets were flood inoculated with wild-type Psa3 V-13, $\Delta hrcC$ mutant, ΔCEL
735 mutant, $\Delta xEEL$ mutant, $\Delta CEL/\Delta xEEL$ double mutant, $\Delta hopS2b/\Delta hopAZ1a$ double mutant, or
736 $\Delta CEL/\Delta hopS2b/\Delta hopAZ1a$ triple mutant at approximately 10^6 cfu/mL. **(A)** Bacterial growth was
737 quantified at 6 and 12 days post-inoculation by serial dilution and plate count quantification. Box and
738 whisker plots, with black bars representing the median values and whiskers representing the 1.5 inter-
739 quartile range, for *in planta* bacterial counts plotted as Log_{10} cfu/cm² from four pseudobiological
740 replicates. Asterisks indicate statistically significant differences from Welch's t-test between the
741 indicated strain and the Psa3 V-13 $\Delta hrcC$ mutant, where p≤.05 (*), p≤.01 (**), or p≤.0001 (****); not
742 significant (ns). These experiments were conducted three times on independent batches of 'Hort16A'
743 plants, with similar results. **(B)** Symptom development on representative pottles of 'Hort16A' plantlets
744 infected with strains in (A) at 50 days post-infection.
745

746 **Fig. 6 Five *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 effectors offer redundant**
747 **contributions to pathogenicity.** **(A)** *Actinidia chinensis* var. *chinensis* 'Hort16A' plantlets were flood
748 inoculated with wild-type Psa3 V-13, Pfm LV-5 $\Delta hopA1a/\Delta hopE1a$ double mutant, or Pfm LV-5
749 $\Delta hopA1a/\Delta hopE1a$ double mutant complemented with plasmid-borne Psa3 V-13 effectors *avrRpm1a*,
750 *hopF1e*, *hopZ5a*, *hopH1a*, or *avrPto1b* at approximately 10^6 cfu/mL. Bacterial growth was quantified
751 at 6 and 12 days post-inoculation by serial dilution and plate count quantification. Box and whisker
752 plots, with black bars representing the median values and whiskers representing the 1.5 inter-quartile
753 range, for *in planta* bacterial counts plotted as Log_{10} cfu/cm² from four pseudobiological replicates.
754 Asterisks indicate statistically significant differences from Welch's t-test between the indicated strain
755 and Pfm LV-5 $\Delta hopA1/\Delta hopE1$ double mutant, where p≤.05 (*), p≤.01 (**), or p≤.001 (***); not
756 significant (ns). These experiments were conducted three times on independent batches of 'Hort16A'
757 plants, with similar results. **(B)** *Actinidia chinensis* var. *chinensis* 'Hort16A' plantlets were flood
758 inoculated with wild-type Psa3 V-13, $\Delta hrcC$ mutant, $\Delta hopH1a/\Delta hopZ5a$ mutant,
759 $\Delta hopH1a/\Delta hopZ5a/\Delta avrPto1b$ mutant, $\Delta hopH1a/\Delta hopZ5a/\Delta avrPto1b/\Delta avrRpm1a$ mutant, or
760 $\Delta hopH1a/\Delta hopZ5a/\Delta avrPto5a/\Delta avrRpm1a/\Delta tEEL$ mutant at approximately 10^6 cfu/mL. Bacterial
761 growth was quantified at 6 and 12 days post-inoculation by serial dilution and plate count
762 quantification. Box and whisker plots, with black bars representing the median values and whiskers
763 representing the 1.5 inter-quartile range, for *in planta* bacterial counts plotted as Log_{10} cfu/cm² from
764 four pseudobiological replicates. Asterisks indicate statistically significant differences from Welch's t-
765 test between the indicated strain and wild-type Psa3 V-13, where p≤.05 (*), p≤.01 (**), p≤.001 (***),
766 or p≤.0001 (****); not significant (ns). These experiments were conducted three times on
767 independent batches of 'Hort16A' plants, with similar results. **(C)** Symptom development on
768 representative pottles of 'Hort16A' plantlets infected with strains in (B) at 50 days post-infection.

769 **Fig. 7 *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 redundant virulence-associated**
770 **effectors largely target kiwifruit RIN4 proteins.** Co-immunoprecipitation of effectors AvrPto1b,
771 HopF1e, HopZ5a, HopF1c, HopF4a, HopH1a, HopBN1a, or HopBP1a and target RIN4 proteins (AcRIN4-
772 1, -2, or -3). YFP-tagged effectors (or YFP alone) and FLAG-tagged RIN4 homologs were expressed
773 simultaneously by *Agrobacterium tumefaciens*-mediated transient expression under a CaMV 35S

774 promoter. Two days after infiltration, leaf samples were harvested, and protein extracts prepared and
775 precipitated using anti-green fluorescent protein (GFP) antibody. A western blot from precipitated
776 proteins was probed with anti-GFP (top) or anti-FLAG antibody (bottom). The plants were infiltrated
777 with *Agrobacterium* at individual OD₆₀₀ of 0.1. IP, co-immunoprecipitation; IB, immunoblotting.

778

779 **Supplementary Materials**

780

781 **Fig. S1 Screen of all single and block effector knockout strains.** *Actinidia chinensis* var. *chinensis*
782 'Hort16A' plantlets were flood inoculated with wild-type Psa3 V-13, Δ hrcC mutant, or type III secreted
783 effector mutants at approximately 10⁶ cfu/mL. Bacterial growth was quantified at 6 and 12 days post-
784 inoculation by serial dilution and plate count quantification. Box and whisker plots, with black bars
785 representing the median values and whiskers representing the 1.5 inter-quartile range, for *in planta*
786 bacterial counts plotted as Log₁₀ cfu/cm² from four pseudobiological replicates. Asterisks indicate
787 statistically significant differences from Welch's t-test between the indicated strain and wild-type Psa3
788 V-13, where p≤.05 (*), p≤.01 (**), p≤.001 (***). These experiments were conducted three times on
789 independent batches of 'Hort16A' plants, with similar results.

790

791 **Fig. S2 Plasmid complementation of *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13
792 effectors *hopS2b* and *hopAZ1a*.** *Actinidia chinensis* var. *chinensis* 'Hort16A' plantlets were flood
793 inoculated with wild-type Psa3 V-13 carrying an empty vector (+EV), Δ hrcC mutant +EV, Δ hopS2b
794 mutant complemented with empty plasmid vector (+EV) or plasmid-borne *shcS2:hopS2b*, or
795 Δ hopAZ1 mutant complemented with empty plasmid vector (+EV) or plasmid-borne *hopAZ1a* at
796 approximately 10⁶ cfu/mL. Bacterial growth was quantified at 6 and 12 days post-inoculation by
797 serial dilution and plate count quantification. Data are presented as box and whisker plots, with
798 black bars representing the median values and whiskers representing the 1.5 inter-quartile range,
799 for *in planta* bacterial counts plotted as Log₁₀ cfu/cm² from four pseudobiological replicates.

800

801 Asterisks indicate statistically significant differences from Welch's t-test between the indicated strain
802 and Psa3 V-13 wild-type strain carrying empty vector, where p≤.01 (**), or p≤.0001 (****); not
803 significant (ns). These experiments were conducted twice on independent batches of 'Hort16A'
804 plants, with similar results.

805

806 **Fig. S3 *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 carries four PTI-suppressing
807 effectors.** The Psa3 V-13 effectors HopD1a, AvrB2b, HopD2a, and HopAW1a interfere with *P.*
808 *fluorescens* (Pfo) Pf0-1(T3S)-induced PTI-mediated suppression of *P. syringae* pv. *tomato* (Pto)
809 DC3000-triggered cell death. Leaves from 5-week-old *Nicotiana benthamiana* plants were infiltrated
810 with Pfo Pf0-1(T3S) carrying *avrPtoB* (+ve), empty vector (-ve) or Psa3 V-13 effector (2 × 10⁷ cfu/mL) 8
811 h prior to Pto DC3000 (3 × 10⁸ cfu/mL) infection. Pto DC3000-triggered cell death was scored and
812 photographed at 48 h post Pto DC3000 infection. This experiment was repeated three times, with
813 similar results.

814

815 **Fig. S4 Loss of four *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 pathogenicity-
816 associated effector loci renders Psa3 V-13 non-pathogenic.** *Actinidia chinensis* var. *chinensis*
817 'Hort16A' plantlets were flood inoculated with wild-type Psa3 V-13, Δ hrcC mutant, Δ CEL mutant, or
818 Δ CEL/ Δ xEEL/ Δ hopS2/ Δ hopAZ1 quadruple mutant at approximately 10⁶ cfu/mL. **(A)** Bacterial growth
819 was quantified at 6 and 12 days post-inoculation by serial dilution and plate count quantification. Box
820 and whisker plots, with black bars representing the median values and whiskers representing the 1.5
821 inter-quartile range, for *in planta* bacterial counts plotted as Log₁₀ cfu/cm² from four pseudobiological
822 replicates. Asterisks indicate statistically significant differences from Welch's t-test between the
823 indicated strain and the Psa3 V-13 Δ hrcC mutant, where p≤.05 (*), p≤.01 (**), or p≤.0001 (****); not

823 significant (ns). **(B)** Symptom development on representative pottles of 'Hort16A' plantlets infected
824 with strains in (A) at 50 days post-infection.

825 **Fig. S5 At least two PTI-suppressing effectors are carried by *Pseudomonas syringae* pv.
826 *actinidifoliorum* (Pfm) LV-5.** The Pfm LV-5 effectors HopW1f and HopA1a interfere with *P. fluorescens*
827 (Pfo) Pf0-1(T3S)-induced PTI-mediated suppression of *P. syringae* pv. *tomato* (Pto) DC3000-triggered
828 cell death. Leaves from 5-week-old *Nicotiana benthamiana* plants were infiltrated with Pfo Pf0-1(T3S)
829 carrying *avrPtoB* (+ve), empty vector (-ve) or Pfm LV-5 effector (2×10^7 cfu/mL) 8 h prior to Pto DC3000
830 (3×10^8 cfu/mL) infection. Pto DC3000-triggered cell death was scored and photographed at 48 h post
831 Pto DC3000 infection. This experiment was repeated twice, with similar results. HopAB1i could not be
832 tested since it triggers a strong cell death response in *N. benthamiana* plants.

833 **Fig. S6 The four *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 PTI-suppressing extended
834 exchangeable effector locus (xEEL) effectors are unable to complement *P. syringae* pv.
835 *actinidifoliorum* LV-5 pathogenicity.** *Actinidia chinensis* var. *chinensis* 'Hort16A' plantlets were flood
836 inoculated with wild-type Psa3 V-13 carrying empty vector (+ EV), Pfm LV-5 +EV, or Pfm LV-5 carrying
837 plasmid-borne Psa3 V-13 effectors *hopD1a*, *avrB2b*, *hopAW1a*, or *hopD2a* at approximately 10^6
838 cfu/mL. Bacterial growth was quantified at 6 and 12 days post-inoculation by serial dilution and plate
839 count quantification. Box and whisker plots, with black bars representing the median values and
840 whiskers representing the 1.5 inter-quartile range, for *in planta* bacterial counts plotted as \log_{10}
841 cfu/cm² from four pseudobiological replicates. Asterisks indicate statistically significant differences
842 from Welch's t-test between the indicated strain and Pfm LV-5 strain carrying empty vector, where
843 p≤.001 (**); not significant (ns).

844 **Fig. S7 Secretion of *Pseudomonas syringae* pv. *actinidifoliorum* (Pfm) LV-5 effectors by plasmid
845 complementation in *P. syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 during expression *in vitro*.** Psa3
846 V-13 carrying type III secreted effector proteins tagged with 6 × HA were diluted to 5×10^8 cfu/mL in
847 *hrp*-inducing liquid medium, samples harvested at 6 h post-inoculation by centrifugation at 12,000 g,
848 boiled in 1x Laemmli buffer, and western blots conducted using α-HA antibody. Yellow boxes indicate
849 expected sizes for each tagged protein band. Asterisks indicate the effector is cloned with its preceding
850 chaperone. Red font for effector label indicates non-detectable/weak band at the expected size.

851 **Fig. S8 Screen of all *Pseudomonas syringae* pv. *actinidifoliorum* (Pfm) LV-5 unique effectors in *P.*
852 *syringae* pv. *actinidiae* biovar 3 (Psa3) V-13.** *Actinidia chinensis* var. *chinensis* 'Hort16A' plantlets were
853 flood inoculated with wild-type Psa3 V-13, Pfm LV-5, or Psa3 V-13 complemented with a plasmid-
854 borne type III secreted effector unique to Pfm LV-5 cloned under a synthetic *avrRps4* promoter and
855 tagged with a 6xHA tag at approximately 10^6 cfu/mL. Bacterial growth was quantified at 6 and 12 days
856 post-inoculation by serial dilution and plate count quantification. Box and whisker plots, with black
857 bars representing the median values and whiskers representing the 1.5 inter-quartile range, for *in*
858 *planta* bacterial counts plotted as \log_{10} cfu/cm² from four pseudobiological replicates. Asterisks
859 indicate statistically significant differences from Welch's t-test between the indicated strain and wild-
860 type Psa3 V-13, where p≤.01 (**), p≤.001 (***), p≤.0001 (****). These experiments were conducted
861 twice on independent batches of 'Hort16A' plants, with similar results.

862 **Fig. S9 *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 complemented with *P. syringae*
863 pv. *actinidifoliorum* (Pfm) LV-5 avirulence effector *hopE1a* but not *hopA1a* lacks virulence *in planta*.**
864 *Actinidia chinensis* var. *chinensis* 'Hort16A' plantlets were flood inoculated with wild-type Psa3 V-13
865 (wt), Pfm LV-5 (wt), Psa3 V-13 carrying plasmid-borne *hopE1a* (*avrRps4* promoter, 6xHA tagged), or
866 Psa3 V-13 carrying plasmid-borne *hopA1a* (*avrRps4* promoter, 6xHA tagged; asterisk indicates cloning

867 of whole operon including *shcA*) at approximately 10^6 cfu/mL. Photographs of symptom development
868 on representative pottles of 'Hort16A' plantlets were taken at 14 days post-infection (dpi) for
869 individual leaves both abaxially and adaxially, and of full pottles at 50 dpi. Leaves and pottles that
870 show lack of symptom development are indicated with red labels.

871 **Fig. S10 Screen of *Pseudomonas syringae* pv. *actinidifoliorum* (Pfm) LV-5 unique effectors in *P. syringae* pv. *actinidiae* biovar 3 (Psa3) V-13.** *Actinidia chinensis* var. *chinensis* 'Hort16A' plantlets were
872 flood inoculated with wild-type Psa3 V-13 complemented with an empty vector (EV) or Psa3 V-13
873 complemented with a plasmid-borne type III secreted effector unique to Pfm LV-5 cloned under its
874 native promoter (with no tag) at approximately 10^6 cfu/mL. Bacterial growth was quantified at 12 days
875 post-inoculation by serial dilution and plate count quantification. Box and whisker plots, with black
876 bars representing the median values and whiskers representing the 1.5 inter-quartile range, for *in*
877 *planta* bacterial counts plotted as Log_{10} cfu/cm² from four pseudobiological replicates. Asterisks
878 indicate statistically significant differences from Welch's t-test between the indicated strain and wild-
879 type Psa3 V-13, where p≤.01 (**), or p≤.001 (***)⁸; not significant (ns). Effectors *hopO1a*, *hopT1c*,
880 *hopX1d*, and *hopA1e* are cloned under a synthetic *avrRps4* promoter since their native promoter
881 could not be cloned because of their presence in an operon. Effectors *hopAA1d* and *hopAB1e* could
882 not be cloned under their native promoters.
883

884 **Fig. S11 Biolistic transformation reporter eclipse assays for *Pseudomonas syringae* pv. *actinidifoliorum* (Pfm) LV-5 effectors demonstrate hypersensitive response triggered by HopE1a.**
885 Putative Pfm LV-5 avirulence effector genes (*hopA1a* or *hopE1a*) or effector genes with unclear
886 *Pseudomonas* expression (*hopO2b*, *hopT1c*, *hopAB1e*, *hopAG1d*) cloned on binary vector constructs
887 tagged with YFP, or an empty vector (labelled as GUS), were co-expressed with a β-glucuronidase
888 (GUS) reporter construct using biolistic bombardment and priming in leaves from *Actinidia chinensis*
889 var. *chinensis* 'Hort16A' plantlets. The GUS activity was measured 48 h after DNA bombardment. Error
890 bars represent the standard errors of the means for six technical replicates each (n=6). *hopA1j* cloned
891 similarly from *P. syringae* pv. *syringae* 61 was used as positive control and un-infiltrated leaf tissue
892 (Unshot) as negative control. Statistical significance is indicated for a one-way ANOVA and Tukey's
893 HSD *post hoc* test : p≤.001 (**), p≤.0001 (****), and p>.05 (ns).
894

895 **Fig. S12 Deletion of both *Pseudomonas syringae* pv. *actinidifoliorum* (Pfm) LV-5 avirulence effectors**
896 **does not confer increased pathogenicity.** *Actinidia chinensis* var. *chinensis* 'Hort16A' plantlets were
897 flood inoculated with wild-type Psa3 V-13, Psa3 V-13 carrying avirulence effector *hopE1a*, wild-type
898 Pfm LV-5, Pfm LV-5 Δ*hopA1* mutant, Pfm LV-5 Δ*hopE1* mutant, or Pfm LV-5 Δ*hopA1*/Δ*hopE1* double
899 mutant at approximately 10^6 cfu/mL. Bacterial growth was quantified at 6 and 12 days post-
900 inoculation by serial dilution and plate count quantification. Box and whisker plots, with black bars
901 representing the median values and whiskers representing the 1.5 inter-quartile range, for *in planta*
902 bacterial counts plotted as Log_{10} cfu/cm² from four pseudobiological replicates. Asterisks indicate
903 statistically significant differences from Welch's t-test between the indicated strain and the Pfm LV-5
904 strain, where p≤.05 (*) or p≤.0001 (****); not significant (ns).
905

906 **Fig. S13 Secretion of *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13 effectors by plasmid**
907 **complementation in *P. syringae* pv. *actinidifoliorum* (Pfm) LV-5 during expression *in vitro*.** Pfm LV-5
908 carrying type III secreted effector proteins tagged with 6 × HA were diluted to 5×10^8 cfu/mL in *hrp*-
909 inducing liquid medium, samples harvested at 6 h post-inoculation by centrifugation at 12,000 g,
910 boiled in 1x Laemmli buffer, and western blots conducted using α-HA antibody. Yellow boxes indicate
911 expected sizes for each tagged protein band. Asterisks indicate the effector is cloned with its preceding
912 chaperone. Red font for effector label indicates non-detectable/weak band at the expected size.

913 **Fig. S14 Separate effector knockouts in *Pseudomonas syringae* pv. *actinidiae* biovar 3 (Psa3) V-13**
914 **for effectors that complement pathogenicity in *P. syringae* pv. *actinidifoliorum* (Pfm) LV-5**
915 **demonstrates effector redundancy.** *Actinidia chinensis* var. *chinensis* 'Hort16A' plantlets were flood
916 inoculated with wild-type Psa3 V-13, Δ hrcC mutant, or indicated type III secreted effector mutants at
917 approximately 10^6 cfu/mL. The Δ tEEL mutant spans *hopF1e*, *hopAF1b*, *hopD2a*, and *hopF1a*. Bacterial
918 growth was quantified at 12 days post-inoculation by serial dilution and plate count quantification.
919 Box and whisker plots, with black bars representing the median values and whiskers representing the
920 1.5 inter-quartile range, for *in planta* bacterial counts plotted as \log_{10} cfu/cm² from four
921 pseudobiological replicates. Asterisks indicate statistically significant differences from Welch's t-test
922 between the indicated strain and wild-type Psa3 V-13, where p≤.001 (**), or p≤.0001 (****); not
923 significant (ns).

924 **Fig. S15 Alignment of HopF family effectors from Pto, Psa and Pfm identify HopF4a as a non-**
925 **functional effector.** Amino acid sequence alignment of HopF2 (HopF2b) from *P. syringae* pv. *tomato*
926 [Pto] DC3000 (set as reference, bold); HopF1c, HopF1a, HopF1e, and HopF4a from *P. syringae* pv.
927 *actinidiae* [Psa] V-13; and HopF1b from *P. syringae* pv. *actinidifoliorum* [Pfm] LV-5, aligned with
928 ClustalW.

929 **Table S1. *Pseudomonas syringae* pv. *actinidiae* and *P. syringae* pv. *actinidifoliorum* strains used in this**
930 **study.**

Strain	Description	Source
Psa3 V-13	ICMP 18884 (CP011972)	(McCann <i>et al.</i> , 2013; Templeton <i>et al.</i> , 2015)
Pfm V-13	ICMP 18803 (CP081457)	(McCann <i>et al.</i> , 2013; Templeton <i>et al.</i> , 2022)
Psa3 V-13 Δ CEL/ Δ xEEL	Double mutant; deleted CEL and extended EEL	This study
Psa3 V-13 Δ hopS2b/ Δ hopAZ1a	Double mutant; deleted hopS2b and hopAZ1a	This study
Psa3 V-13 Δ CEL/ Δ xEEL/ Δ hopS2b/ Δ hopAZ1a/ Δ hopR1b	Quadruple mutant; deleted CEL, extended EEL, hopS2b, and hopAZ1a	This study
Psa3 V-13 Δ CEL/ Δ xEEL/ Δ hopS2b/ Δ hopAZ1a/ Δ hopR1b	Quintuple mutant; deleted CEL, extended EEL, hopS2b, hopAZ1a, and hopR1b	This study
Psa3 V-13 Δ hopZ5a/ Δ hopH1a/ Δ avrPto1b	Triple mutant; deleted hopZ5a, hopH1a and avrPto1b	This study

Psa3 V-13	Quadruple mutant; deleted <i>hopZ5a</i> , <i>hopH1a</i> , <i>avrPto1b</i> , and <i>avrRpm1a</i>	This study
Δ <i>hopZ5a</i> / Δ <i>hopH1a</i> / Δ <i>avrPto1b</i> / Δ <i>avrRpm1a</i>		
Psa3 V-13	Quintuple mutant; deleted <i>hopZ5a</i> , <i>hopH1a</i> , <i>avrPto1b</i> , <i>avrRpm1a</i> , and <i>tEEL</i> (<i>hopF1a</i> , <i>hopAF1b</i> , <i>hopD2a</i> and <i>hopF1e</i>)	This study
Δ <i>hopZ5a</i> / Δ <i>hopH1a</i> / Δ <i>avrPto1b</i> / Δ <i>avrRpm1a</i> / Δ <i>tEEL</i>		
Psa3 V-13 Δ <i>hrcC</i>	deleted <i>hrcC</i>	(Colombi <i>et al.</i> , 2017)
Psa3 V-13 Δ <i>CEL</i>	deleted <i>hopN1a</i> , <i>shcM</i> , <i>hopM1f</i> , <i>hrpW1</i> , <i>shcE</i> and <i>avrE1d</i>	(Jayaraman <i>et al.</i> , 2020)
Psa3 V-13 Δ <i>sEEL</i>	deleted <i>hopAW1a</i> , <i>hopF1e</i> (and <i>shcF</i>), <i>hopD2a</i> , <i>hopAF1b</i> , and <i>hopF1a</i> (and <i>shcF</i>)	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>fEEL</i>	deleted <i>avrD</i> , <i>hopF4a</i> (and <i>shcF</i>), <i>avrB2b</i> , <i>hopAW1a</i> , <i>hopF1e</i> (and <i>shcF</i>), <i>hopD2a</i> , <i>hopAF1b</i> , and <i>hopF1e</i> (and <i>shcF</i>)	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>xEEL</i>	deleted <i>hopQ1a</i> , <i>hopD1a</i> , <i>avrD</i> , <i>hopF4a</i> (and <i>shcF</i>), <i>avrB2b</i> , <i>hopAW1a</i> , <i>hopF1e</i> (and <i>shcF</i>), <i>hopD2a</i> , <i>hopAF1b</i> , and <i>hopF1a</i> (and <i>shcF</i>)	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>tEEL</i>	deleted <i>hopF1e</i> (and <i>shcF</i>), <i>hopD2a</i> , <i>hopAF1b</i> , and <i>hopF1a</i> (and <i>shcF</i>)	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopZ5a</i> / Δ <i>hopH1a</i>	Double mutant; deleted <i>hopZ5a</i> and <i>hopH1a</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopAM1-1</i> / Δ <i>hopAM1-2</i>	Double mutant; deleted <i>hopAM1a-1</i> and <i>hopAM1a-2</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopQ1</i>	deleted <i>hopQ1a</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopD1</i>	deleted <i>hopD1a</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopI1</i>	deleted <i>hopI1c</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopY1</i>	deleted <i>hopY1b</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>avrRpm1a</i>	deleted <i>avrRpm1a</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopW1c</i>	deleted <i>hopW1c</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopBN1a</i>	deleted <i>hopBN1a</i> (and <i>shcF</i>)	(Hemara <i>et al.</i> , 2022)

Psa3 V-13 Δ <i>hopAZ1a</i>	deleted <i>hopAZ1a</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopF1c</i>	deleted <i>hopF1c</i> (and <i>shcF</i>)	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopAU1a</i>	deleted <i>hopAU1a</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopBP1a</i>	deleted <i>hopBP1a</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopAS1b</i>	deleted <i>hopAS1b</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>avrPto1b</i>	deleted <i>avrPto1b</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopS2b</i>	deleted <i>hopS2b</i> (and <i>shcS2</i>)	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hopZ5a</i>	deleted <i>hopZ5a</i>	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 + pBBR1MCS-5	Plasmid-complemented with empty vector (EV)	(Hemara <i>et al.</i> , 2022)
Psa3 V-13 Δ <i>hrcC</i> + pBBR1MCS-5	Plasmid-complemented with empty vector (EV)	This study
Psa3 V-13 Δ <i>hopS2b</i> + pBBR1MCS-5	Plasmid-complemented with empty vector (EV)	This study
Psa3 V-13 Δ <i>hopS2b</i> + pBBR1MCS-5B: <i>avrRps4pro:hopS2b:HA</i>	Plasmid-complemented with <i>hopS2b</i>	This study
Psa3 V-13 Δ <i>hopAZ1a</i> + pBBR1MCS-5	Plasmid-complemented with empty vector (EV)	This study
Psa3 V-13 Δ <i>hopAZ1a</i> + pBBR1MCS-5B: <i>avrRps4pro:hopAZ1a:HA</i>	Plasmid-complemented with <i>hopAZ1a</i>	This study
Psa3 V-13 + pBBR1MCS-5B: <i>avrRps4pro:hopA1a:HA</i>	Plasmid-complemented with <i>hopA1a_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B: <i>avrRps4pro:hopE1a:HA</i>	Plasmid-complemented with <i>hopE1a_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B: <i>avrRps4pro:hopF1b:HA</i>	Plasmid-complemented with <i>hopF1b_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B: <i>avrRps4pro:hopO1a:HA</i>	Plasmid-complemented with <i>hopO1a_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B: <i>avrRps4pro:shcO2:hopO2b:HA</i>	Plasmid-complemented with <i>hopO2b_{Pfm}</i>	This study

Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopT1c</i> :HA	Plasmid-complemented with <i>hopT1c_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopW1f</i> :HA	Plasmid-complemented with <i>hopW1f_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopX1d</i> :HA	Plasmid-complemented with <i>hopX1d_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopAA1d</i> :HA	Plasmid-complemented with <i>hopAA1d_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopAB1e</i> :HA	Plasmid-complemented with <i>hopAB1e_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopAB1i</i> :HA	Plasmid-complemented with <i>hopAB1i_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopAF1f</i> :HA	Plasmid-complemented with <i>hopAF1f_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopAG1d</i> :HA	Plasmid-complemented with <i>hopAG1d_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopA1e</i> :HA	Plasmid-complemented with <i>hopA1e_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopAR1e</i> :HA	Plasmid-complemented with <i>hopAR1e_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B:avrRps4 _{pro} : <i>hopBO1c</i> :HA	Plasmid-complemented with <i>hopBO1c_{Pfm}</i>	This study
Psa3 V-13 + pBBR1MCS-5B: <i>hopA1a_{pro}</i> : <i>hopA1a</i> :HA	Plasmid-complemented with <i>hopA1a_{Pfm}</i> (native promoter, no tag)	This study
Psa3 V-13 + pBBR1MCS-5B: <i>hopE1a_{pro}</i> : <i>hopE1a</i> :HA	Plasmid-complemented with <i>hopE1a_{Pfm}</i> (native promoter, no tag)	This study
Psa3 V-13 + pBBR1MCS-5B: <i>hopF1b_{pro}</i> : <i>hopF1b</i> :HA	Plasmid-complemented with <i>hopF1b_{Pfm}</i> (native promoter, no tag)	This study
Psa3 V-13 + pBBR1MCS-5B: <i>hopO2b_{pro}</i> : <i>shcO2</i> : <i>hopO2b</i> :HA	Plasmid-complemented with <i>hopO2b_{Pfm}</i> (native promoter, no tag)	This study
Psa3 V-13 + pBBR1MCS-5B: <i>hopW1f_{pro}</i> : <i>hopW1f</i> :HA	Plasmid-complemented with <i>hopW1f_{Pfm}</i> (native promoter, no tag)	This study

Psa3 V-13 + pBBR1MCS-5B: <i>hopAB1i_{pro}</i> : <i>hopAB1i</i> :HA	Plasmid-complemented with <i>hopAB1i_{Pfm}</i> (native promoter, no tag)	This study
Psa3 V-13 + pBBR1MCS-5B: <i>hopAF1f_{pro}</i> : <i>hopAF1f</i> :HA	Plasmid-complemented with <i>hopAF1f_{Pfm}</i> (native promoter, no tag)	This study
Psa3 V-13 + pBBR1MCS-5B: <i>hopAG1d_{pro}</i> : <i>hopAG1d</i> :HA	Plasmid-complemented with <i>hopAG1d_{Pfm}</i> (native promoter, no tag)	This study
Psa3 V-13 + pBBR1MCS-5B: <i>hopAR1i_{pro}</i> : <i>hopAR1i</i> :HA	Plasmid-complemented with <i>hopAR1e_{Pfm}</i> (native promoter, no tag)	This study
Psa3 V-13 + pBBR1MCS-5B: <i>hopBO1c_{pro}</i> : <i>hopBO1c</i> :HA	Plasmid-complemented with <i>hopBO1c_{Pfm}</i> (native promoter, no tag)	This study
Pfm LV-5 + pBBR1MCS-5B	Plasmid-complemented with empty vector (EV)	This study
Pfm LV-5 + pBBR1MCS-5B: <i>avrRps4_{pro}</i> : <i>hopD1a</i> :HA	Plasmid-complemented with <i>hopD1a</i>	This study
Pfm LV-5 + pBBR1MCS-5B: <i>avrRps4_{pro}</i> : <i>avrB2b</i> :HA	Plasmid-complemented with <i>avrB2b</i>	This study
Pfm LV-5 + pBBR1MCS-5B: <i>avrRps4_{pro}</i> : <i>hopD2a</i> :HA	Plasmid-complemented with <i>hopD2a</i>	This study
Pfm LV-5 + pBBR1MCS-5B: <i>avrRps4_{pro}</i> : <i>hopAW1a</i> :HA	Plasmid-complemented with <i>hopAW1a</i>	This study
Pfm LV-5 Δ <i>hopA1a</i> / Δ <i>hopE1a</i> + pBBR1MCS-5B	Plasmid-complemented with empty vector (EV)	This study
Pfm LV-5 Δ <i>hopA1a</i> / Δ <i>hopE1a</i> + pBBR1MCS-5B: <i>avrRps4_{pro}</i> : <i>avrB2b</i> :HA	Plasmid-complemented with <i>avrB2b</i>	This study
Pfm LV-5 Δ <i>hopA1a</i> / Δ <i>hopE1a</i> + pBBR1MCS-5B: <i>avrRps4_{pro}</i> : <i>avrRpm1a</i> :HA	Plasmid-complemented with <i>avrRpm1a</i>	This study
Pfm LV-5 Δ <i>hopA1a</i> / Δ <i>hopE1a</i> + pBBR1MCS-5B: <i>avrRps4_{pro}</i> : <i>avrPto1b</i> :HA	Plasmid-complemented with <i>avrPto1b</i>	This study

Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopD1a:HA	Plasmid-complemented with <i>hopD1a</i>	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopD2a:HA	Plasmid-complemented with <i>hopD2a</i>	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :shcF:hopF1c:HA	Plasmid-complemented with <i>hopF1c</i> (and <i>shcF</i>)	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :shcF:hopF1e:HA	Plasmid-complemented with <i>hopF1e</i> (and <i>shcF</i>)	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :shcF*:hopF1c:HA	Plasmid-complemented with <i>hopF1c</i> (and truncated <i>shcF</i>)	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :shcF:hopF4a:HA	Plasmid-complemented with <i>hopF4a</i> (with <i>shcF</i>)	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopH1a:HA	Plasmid-complemented with <i>hopH1a</i>	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopI1c:HA	Plasmid-complemented with <i>hopI1c</i>	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopQ1a:HA	Plasmid-complemented with <i>hopQ1a</i>	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopY1b:HA	Plasmid-complemented with <i>hopY1b</i>	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopZ5a:HA	Plasmid-complemented with <i>hopZ5a</i>	This study

Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopAM1a:HA	Plasmid-complemented with hopAM1a	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopAU1a:HA	Plasmid-complemented with hopAU1a	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopAW1a:HA	Plasmid-complemented with hopAW1a	This study
Pfm LV-5 Δ hopA1a/ Δ hopE1a + pBBR1MCS- 5B:avrRps4 _{pro} :hopBP1a:HA	Plasmid-complemented with hopBP1a	This study

931

932 **Table S2 | Primers used in this study.**

Gene	Sense	Primer Sequence (5'-3')	Reference
<i>Pfm_hopA</i>	Forward	CGAGTTCATTGGCGATCAGTTC	This study
<i>1a_KO-check</i>	Reverse	TTTTGGTCAGCAGATCCGACG	
<i>Pfm_hopE</i>	Forward	TCAGGGGTTTGTGGTTCTGG	This study
<i>1a_KO-check</i>	Reverse	AACAATCCCGGTAGCTTCAG	
<i>hopQ1a-</i>	Forward	CGTGATCACCGGCTCTTCG	This study
<i>hopD1a_KO-check</i>	Reverse	GACTGGATTAATGGCGACAGG	
<i>hopH1a_KO-check</i>	Forward	TAATCAACGCCTGCACGG	This study
	Reverse	CAGTTGCCCTCATCGAATGGCGTG	
	Forward	GCCAGCGATAACACCTACGC	

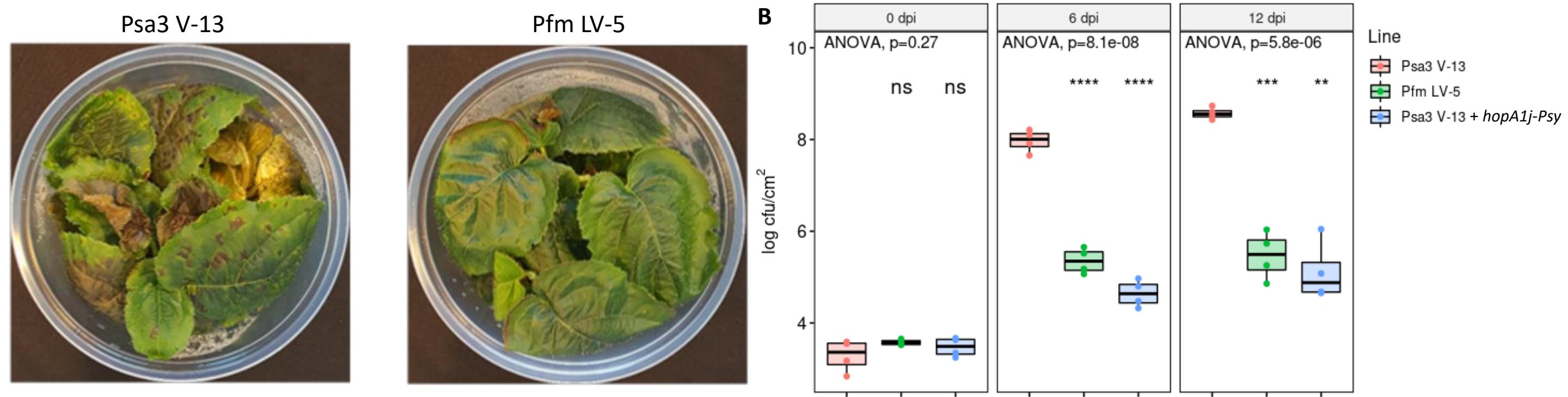
<i>hopZ5a_</i>	Reverse	TATGTTGCGGTGCTTGAGTG	Hemara <i>et al.</i> , 2022
<i>KO-check</i>			
<i>avrPto1b_</i>	Forward	GTCCAGTACACGGTCGCG	Hemara <i>et al.</i> , 2022
<i>KO-check</i>	Reverse	GCCGACGCCTACACTCAG	
<i>avrRpm1</i>	Forward	CAATTCAACCAAAGCGCCGTT	Hemara <i>et al.</i> , 2022
<i>a_KO-check</i>	Reverse	GAGCGTAGTCATTCTTGGTCCA	
<i>tEEL_</i>	Forward	TTTCCGGTCCCAGAAATACATATTCT	Hemara <i>et al.</i> , 2022
<i>KO-check</i>	Reverse	ACGTAGGTTGAAGATAGCCAGC	
<i>CEL_KO-check</i>	Forward	TCTCCAGTAGCAATGAAAAATAGGG	Jayaraman <i>et al.</i> , 2020
	Reverse	TGAGAGCGCCAACAGTCTG	
<i>xEEL_</i>	Forward	CGTGATCACCGGCTTCTG	Hemara <i>et al.</i> , 2022
<i>KO-check</i>	Reverse	ACGTAGGTTGAAGATAGCCAGC	
<i>hopAZ1a</i>	Forward	CGTTGGCCATCACGATCTGT	Hemara <i>et al.</i> , 2022
<i>-KO-check</i>	Reverse	CGCTCAAACCTCCGTATCAAAGC	
<i>hopS2b_</i>	Forward	ACATCACCTCATCGCCTTCTG	Hemara <i>et al.</i> , 2022
<i>KO-check</i>	Reverse	GATGAAAATGCTCCTATCGCCT	
<i>Pfm_hopA</i>	Forward	TTTTATTGTCCCGCATTGTGTCG	This study
<i>1a_native</i>	Reverse	GGGCCTCACTCAGAATCGC	
<i>pro</i>			
	Forward	GCTCATCTGCGCAAAATAAGCT	This study

<i>Pfm_hopE</i>	Reverse	CATAAGTGCTGGGGATGTCG	
<i>1a_native</i>			
<i>pro</i>			
<i>Pfm_hop</i>	Forward	TTAGACGCTGGTTCAAGAAGGC	This study
<i>W1f_native</i>	Reverse	GAATCAGCCTGCGACCTGTC	
<i>epro</i>			
<i>Pfm_hopA</i>	Forward	TCTCCCTTCACAACCCCACA	This study
<i>R1e_native</i>	Reverse	GCCGAAGTTGCAGTTCATGAAT	
<i>epro</i>			
<i>Pfm_hopF</i>	Forward	GCAGGGCTTCACGTACATGA	This study
<i>1b_native</i>	Reverse	CGGCCTCGTTAAATCTTGATGTATA	
<i>pro</i>		G	
<i>Pfm_hopO</i>	Forward	TTTTCTGCCGTCGAATGCCA	This study
<i>2b_native</i>	Reverse	ATTCTTTGCCTCCAACGGTGT	
<i>pro</i>			
<i>Pfm_hopA</i>	Forward	CGTGATTGGGGATATGGAACCA	This study
<i>F1f_native</i>	Reverse	TTGAGGTCGTTACAGGTAGCAC	
<i>pro</i>			
<i>Pfm_hopA</i>	Forward	ACTCATGCACCTCCTGTTGTTT	This study
<i>G1d_native</i>	Reverse	CCCTCGGTACAAACACCTG	
<i>epro</i>			
<i>Pfm_hopB</i>	Forward	CGTGAGTGTAAGAAATCTACCGATG	This study
<i>O1c</i>	A		
	Reverse	CAGAGCAATGCAACAAAAAGTGC	
	Forward	GTTGTAAGCCGGAATCCCAGAA	This study

Pfm_hop Reverse CAAGTCTCGCTCTGCCTAG

AB1e_nat

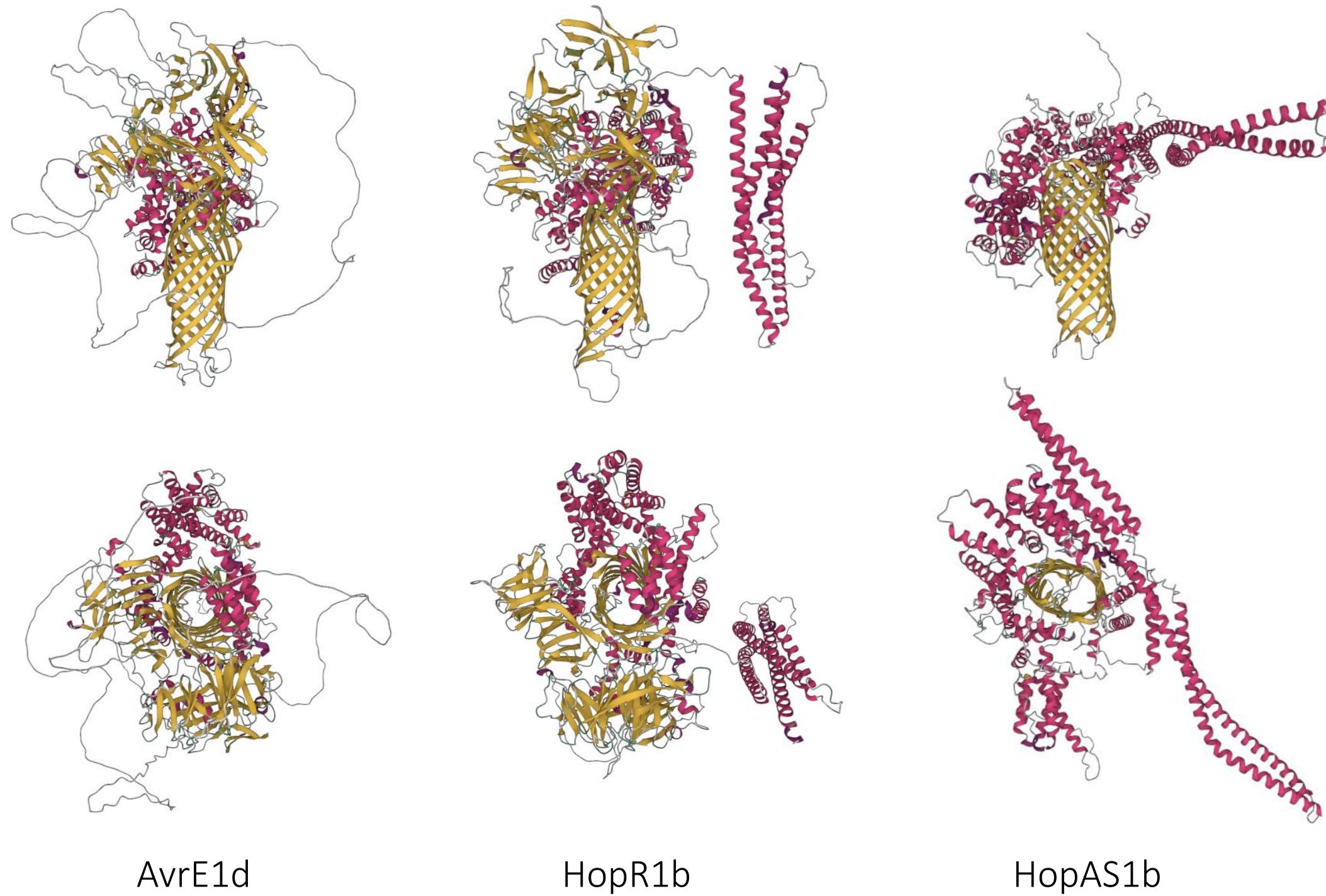
ivepro



933

934

935


Fig 1

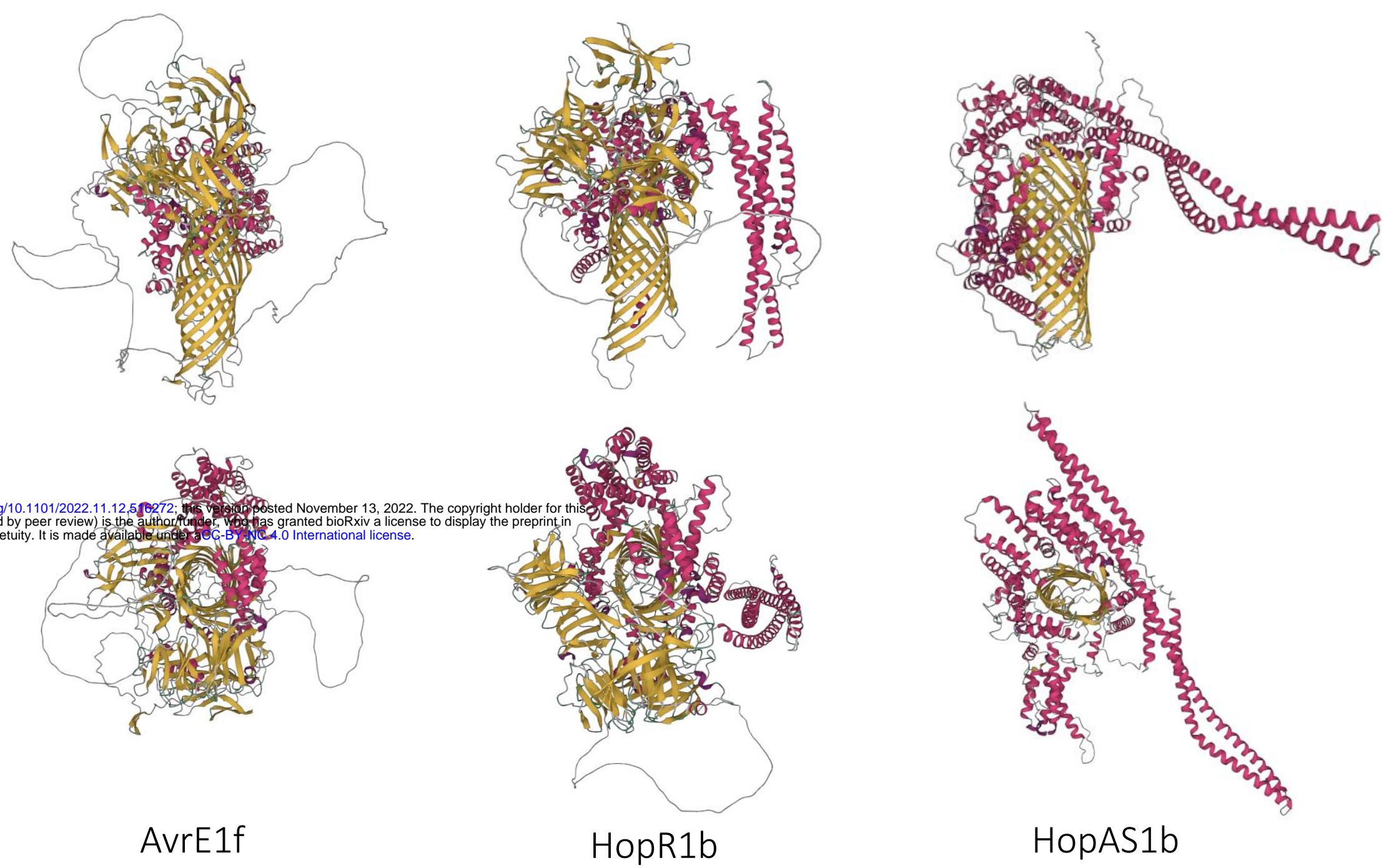

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.12.516272>; this version posted November 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Fig 2

A

B

C

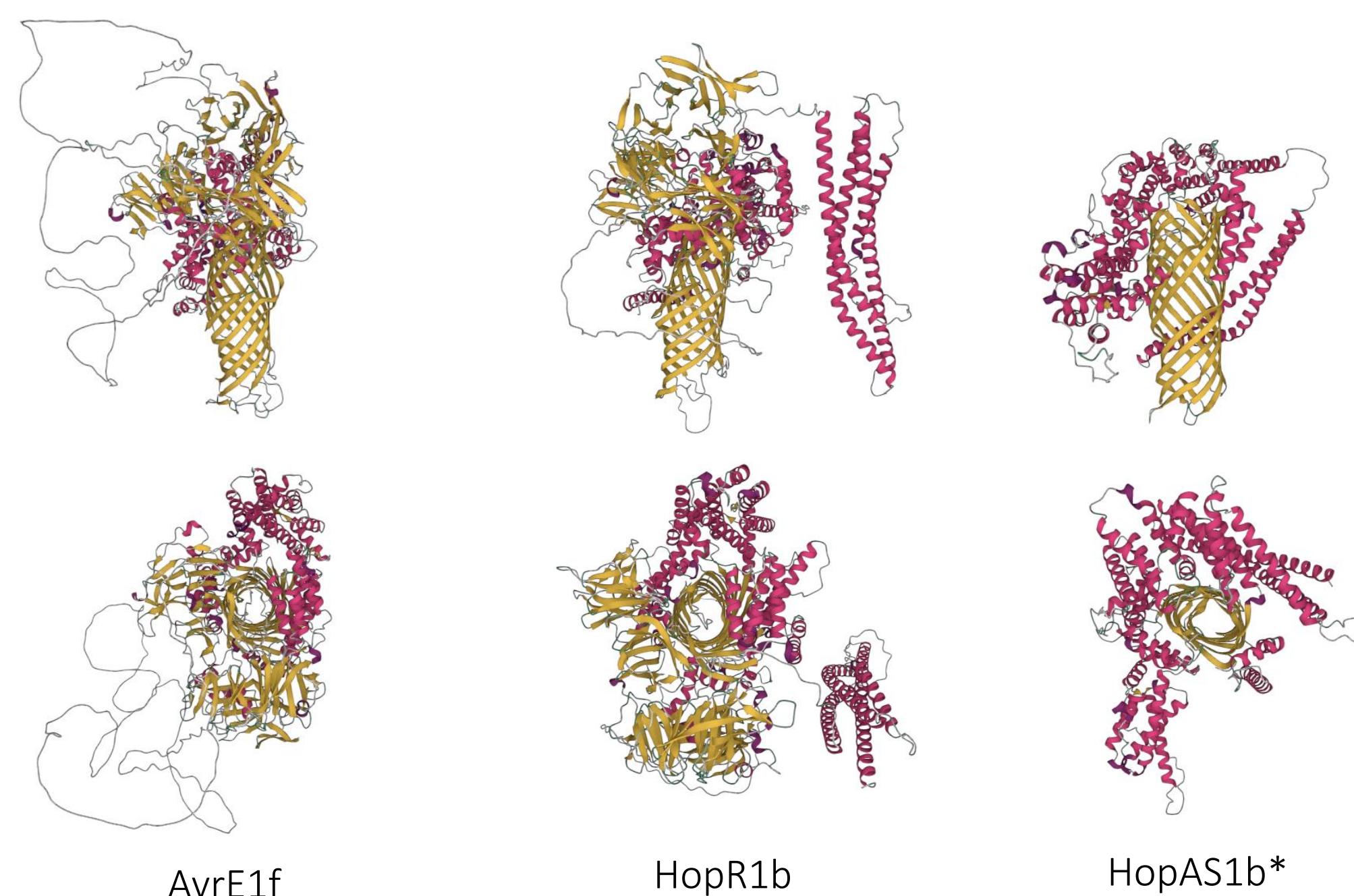


Fig 3

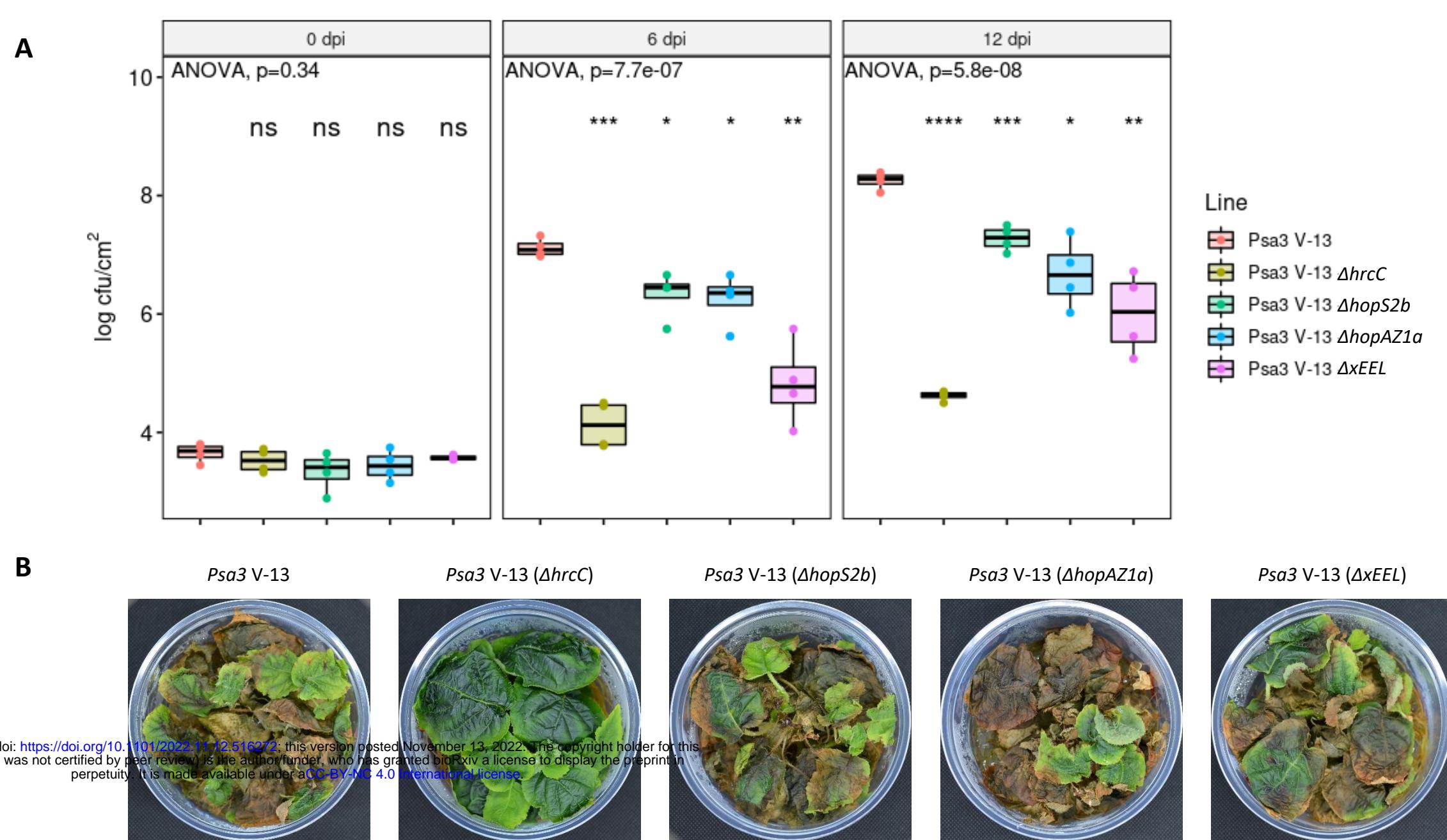
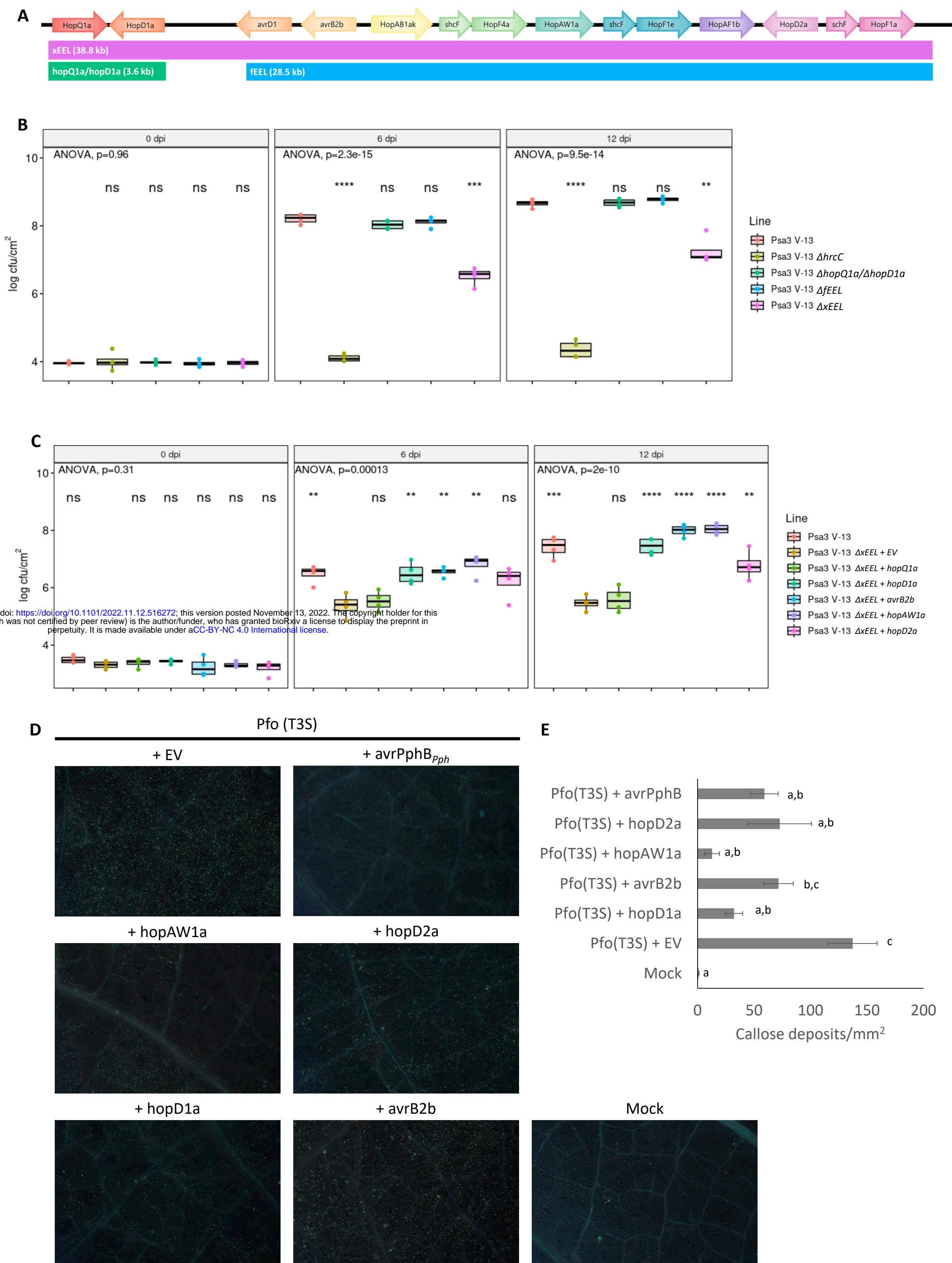
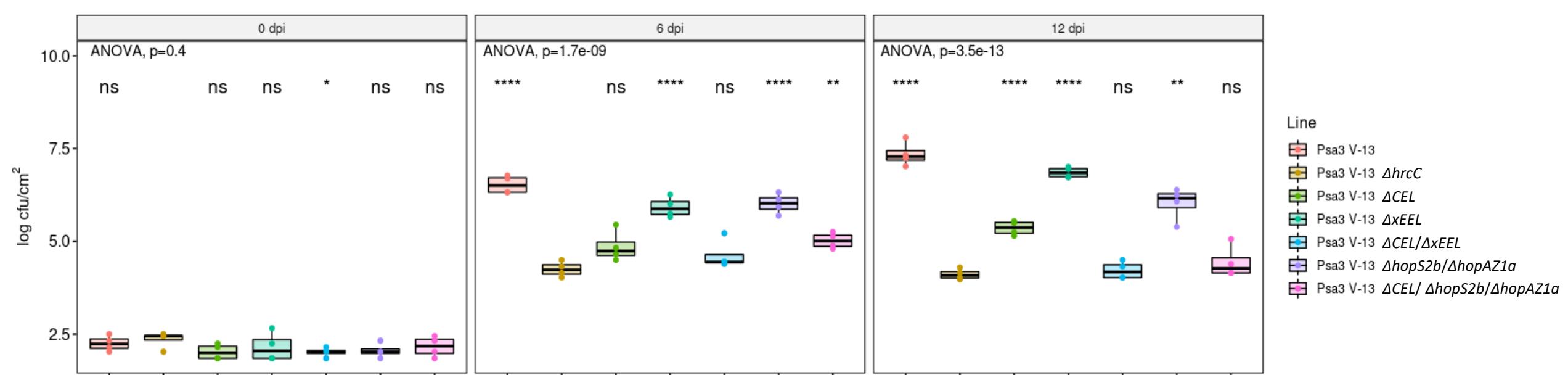




Fig 4

Fig 5

A

B

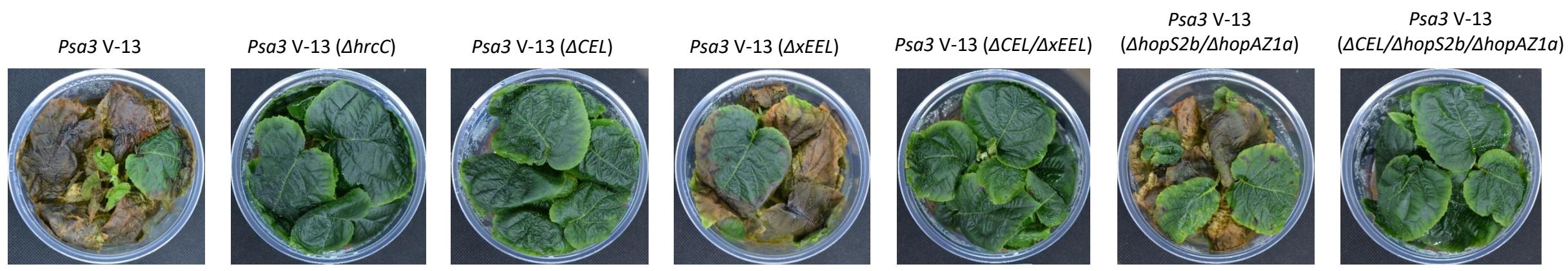
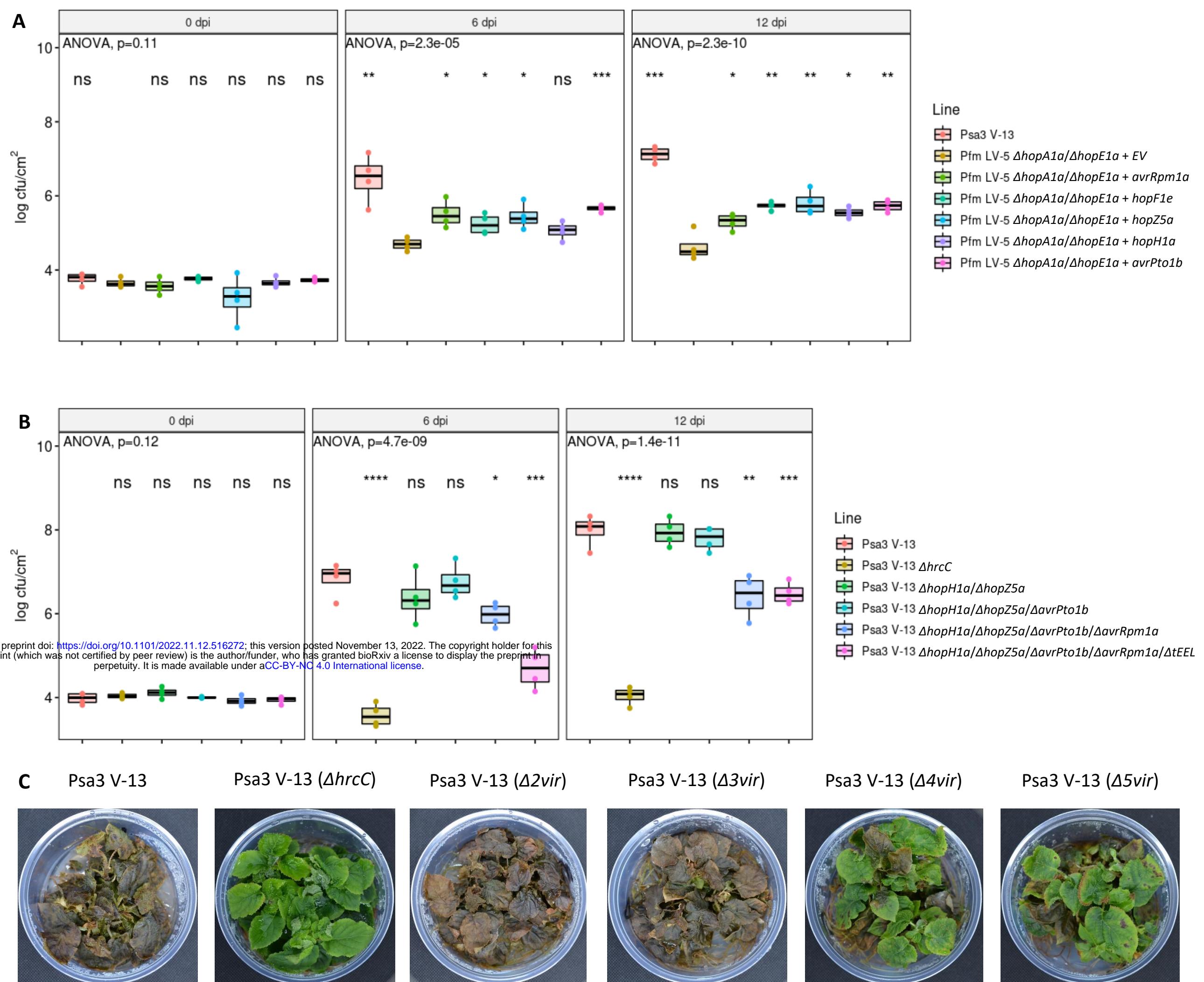
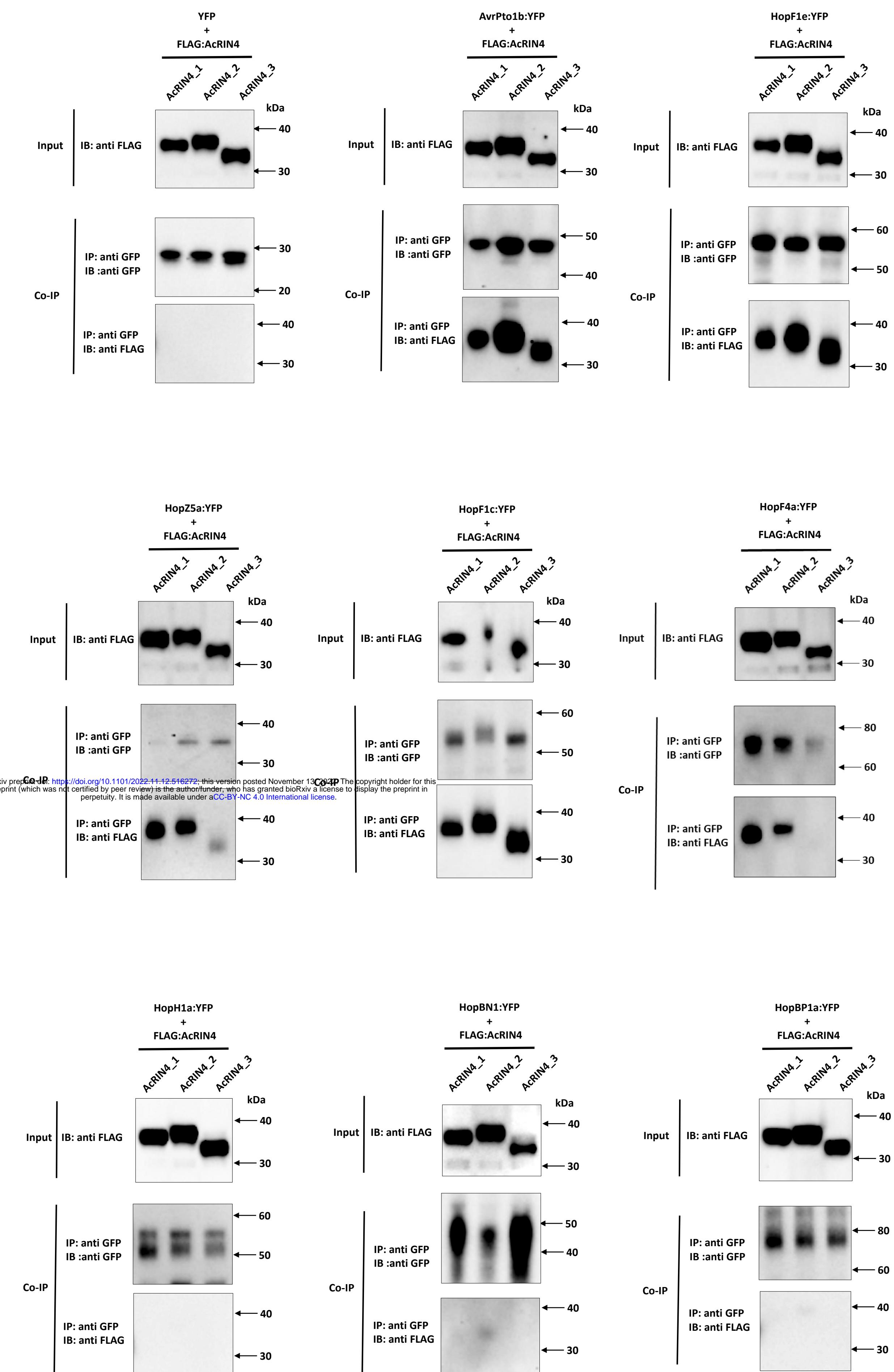
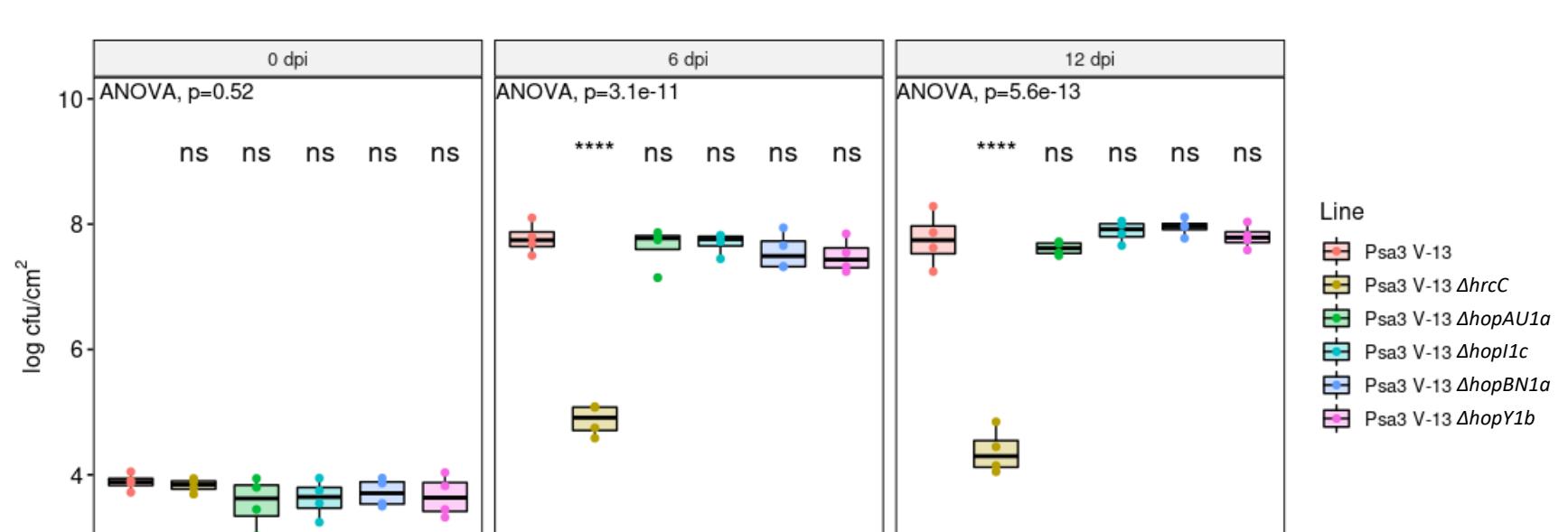
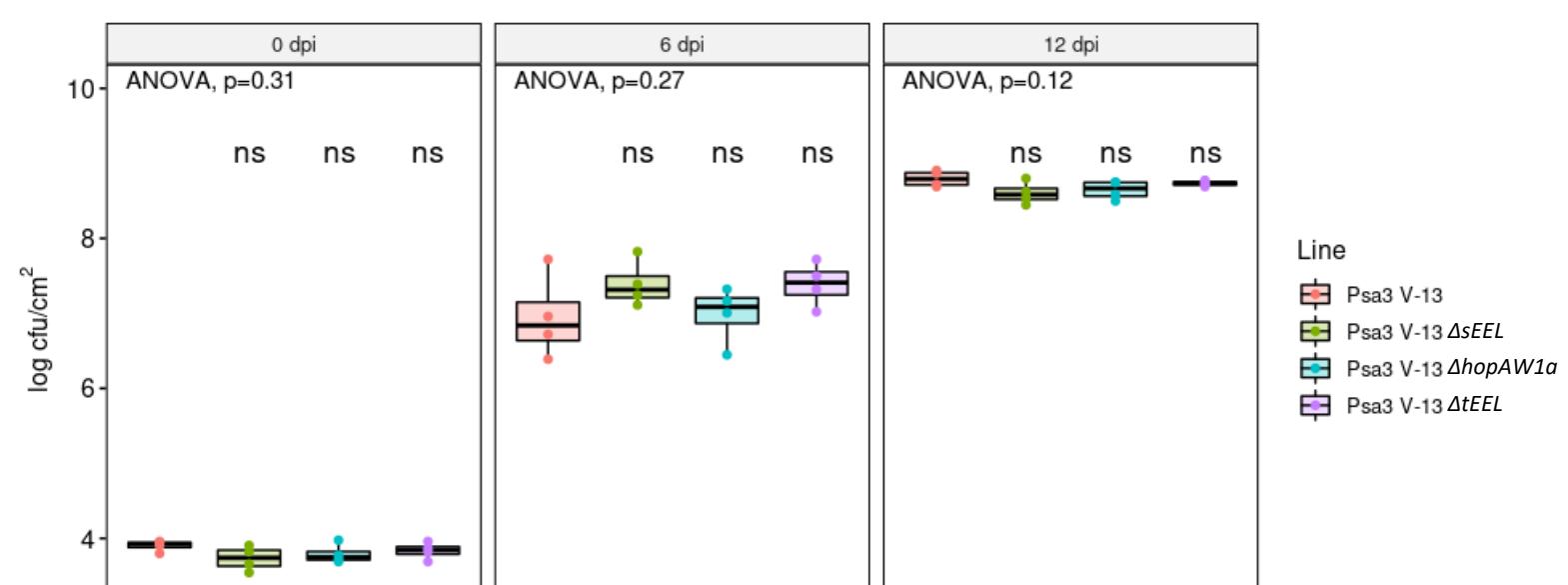
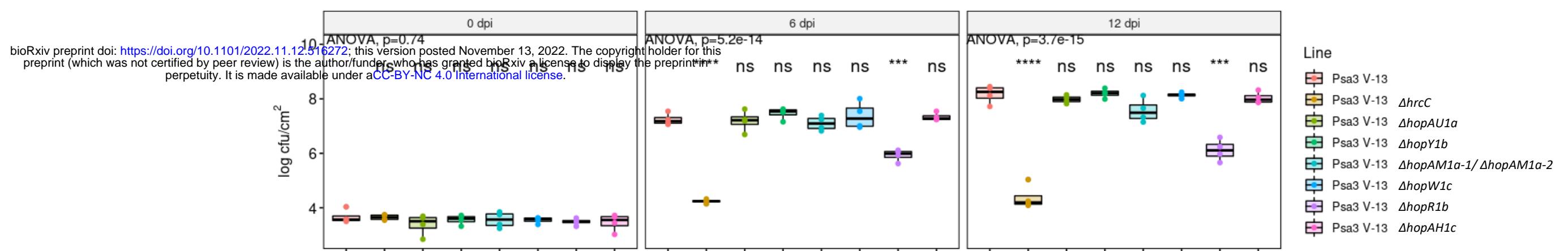
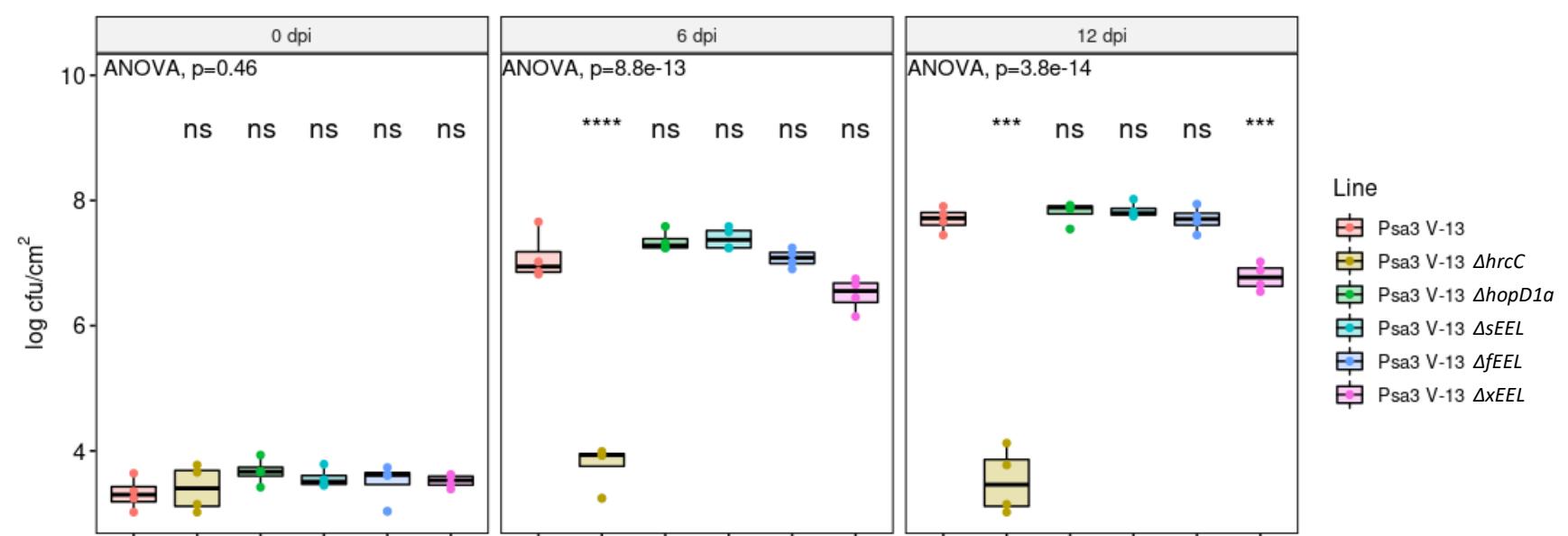
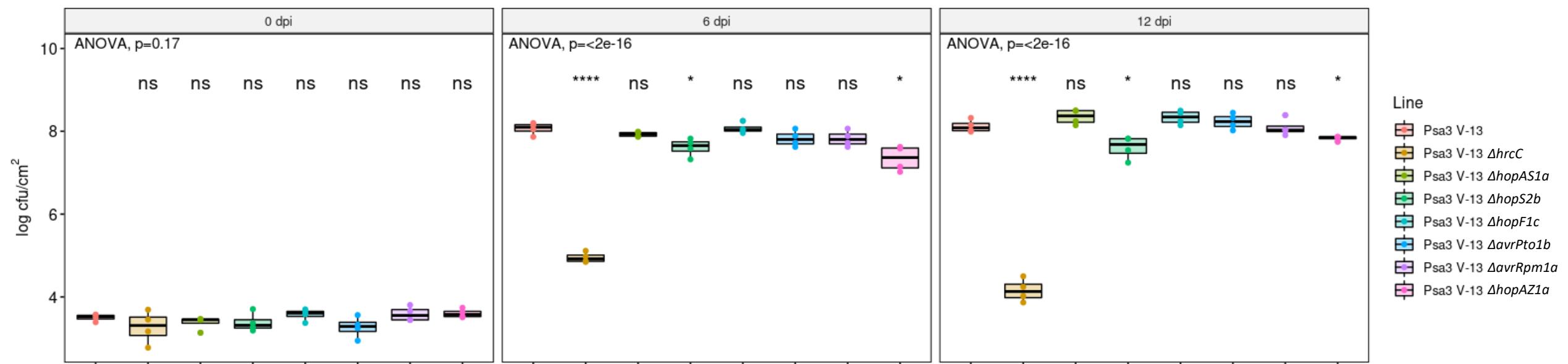
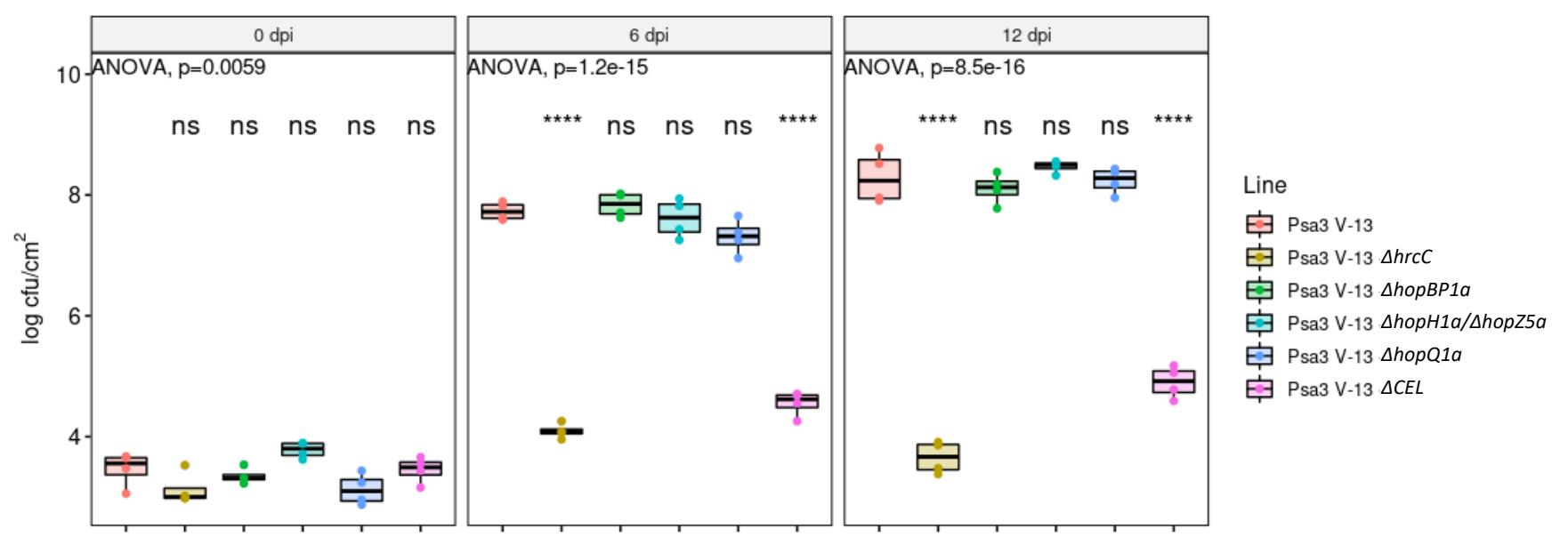
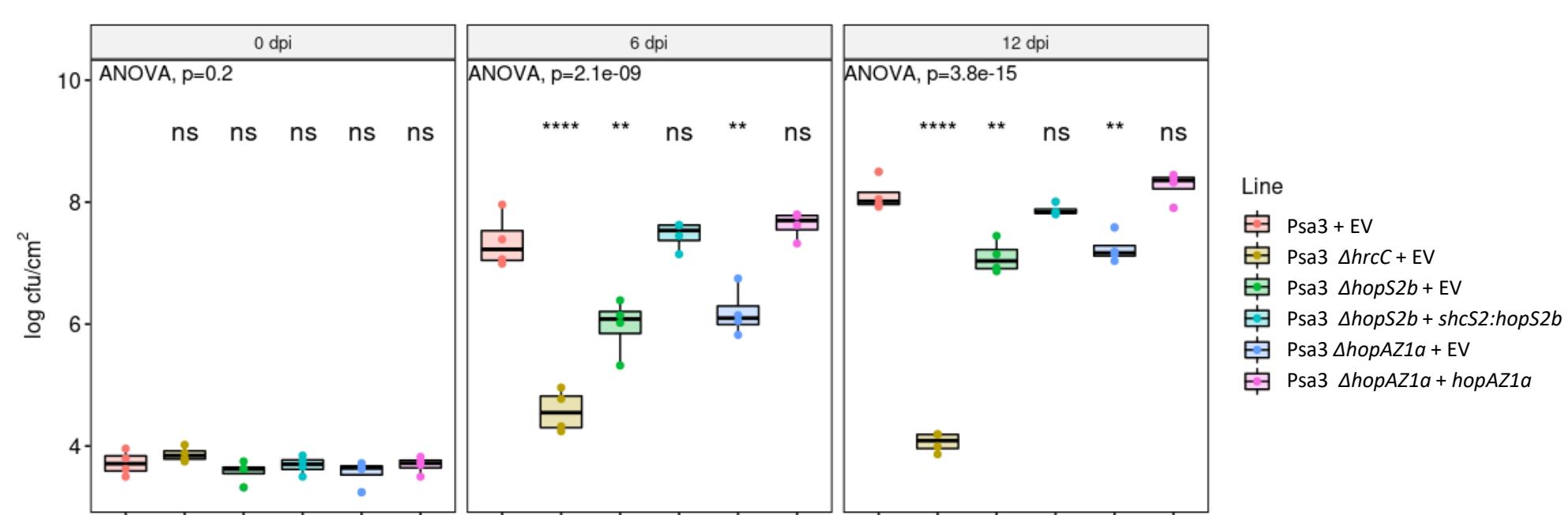
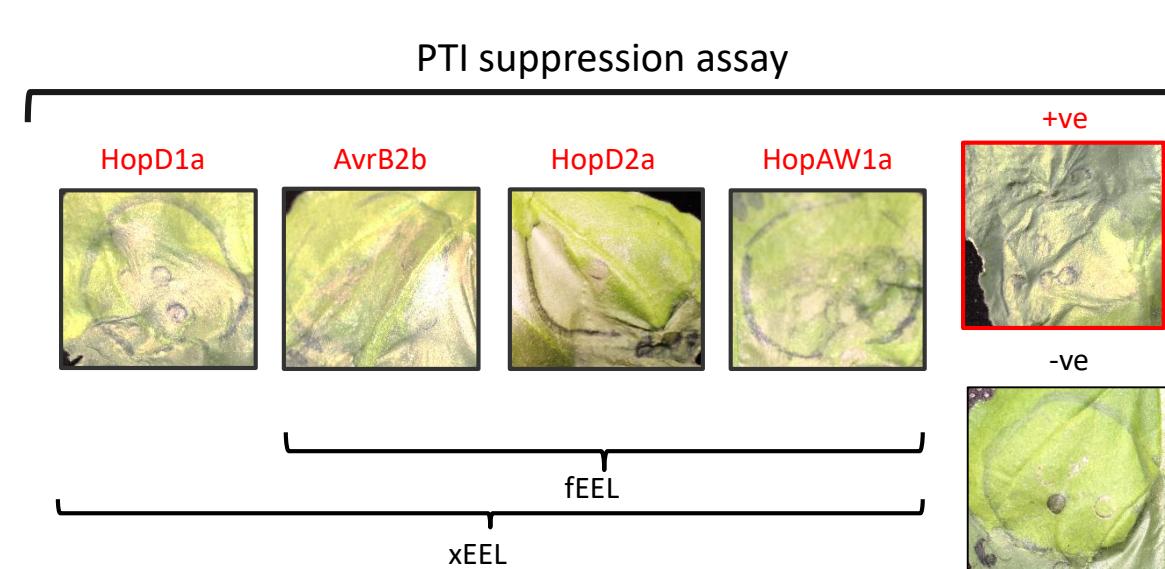


Fig 6

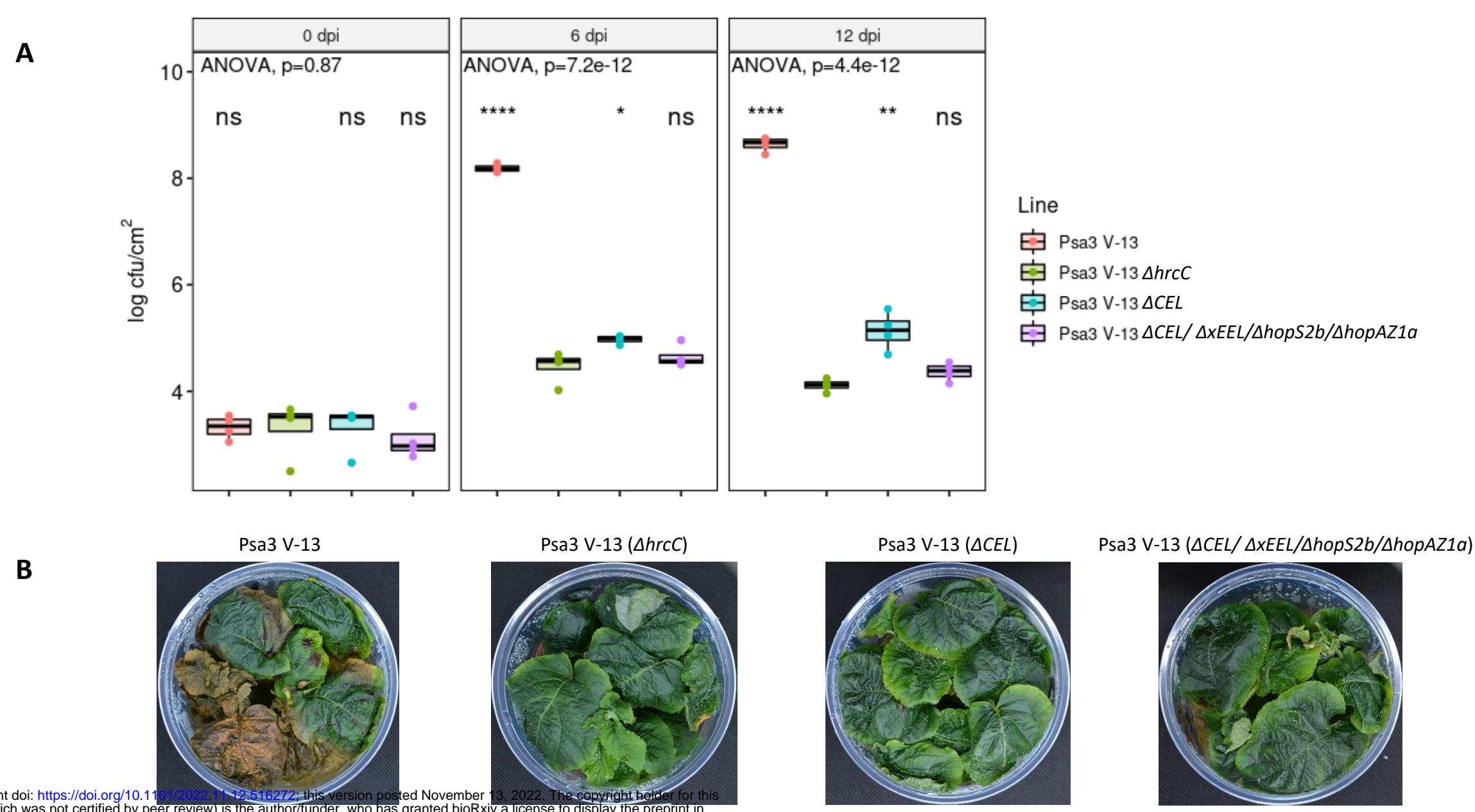










Fig 7

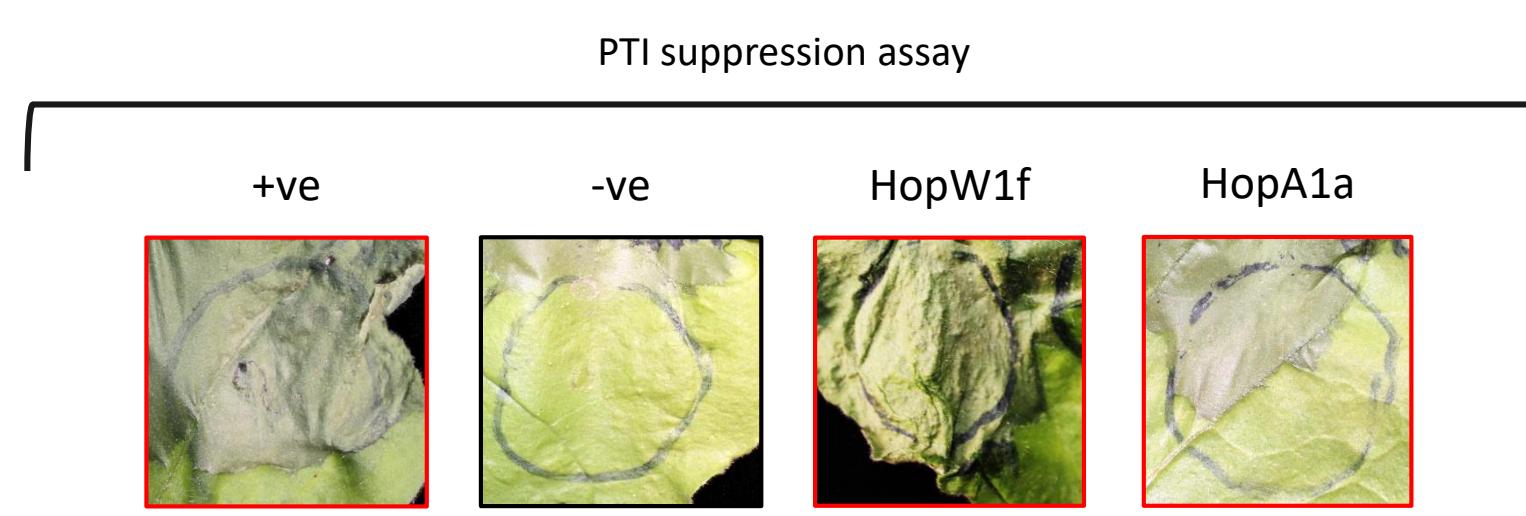
Suppl Fig S1



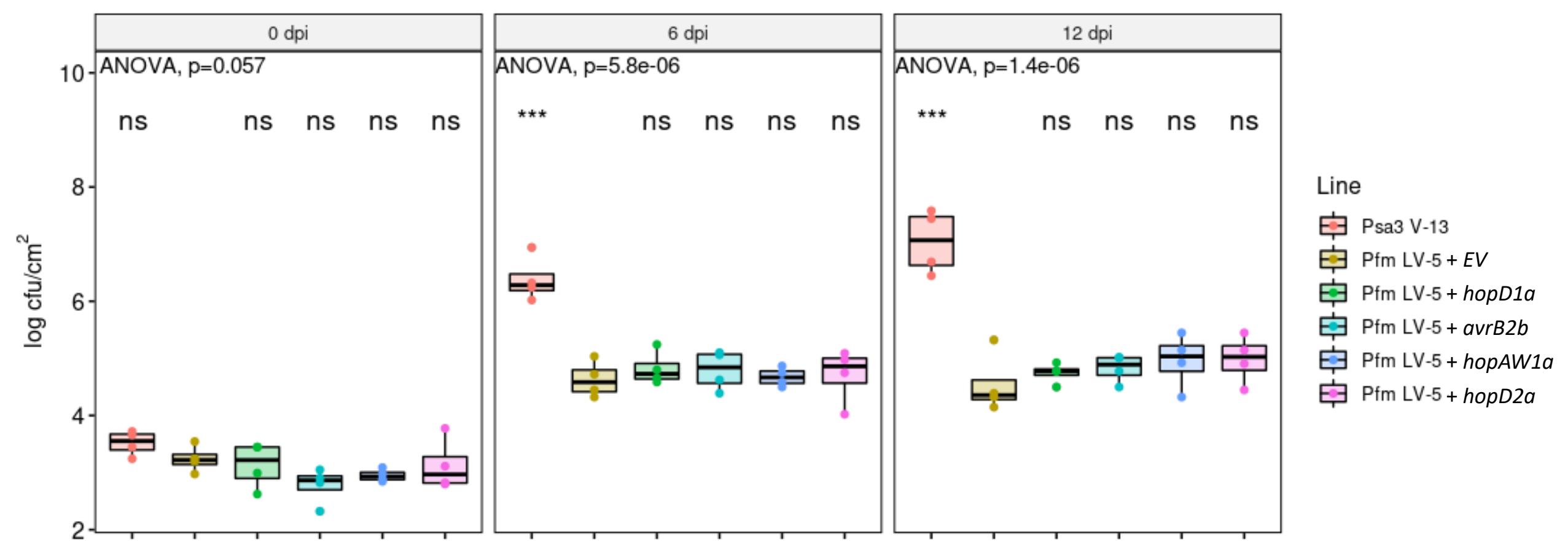
Suppl Fig S2


bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.12.516272>; this version posted November 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Suppl Fig S3


bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.12.516272>; this version posted November 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Suppl Fig S4



bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.12.516272>; this version posted November 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

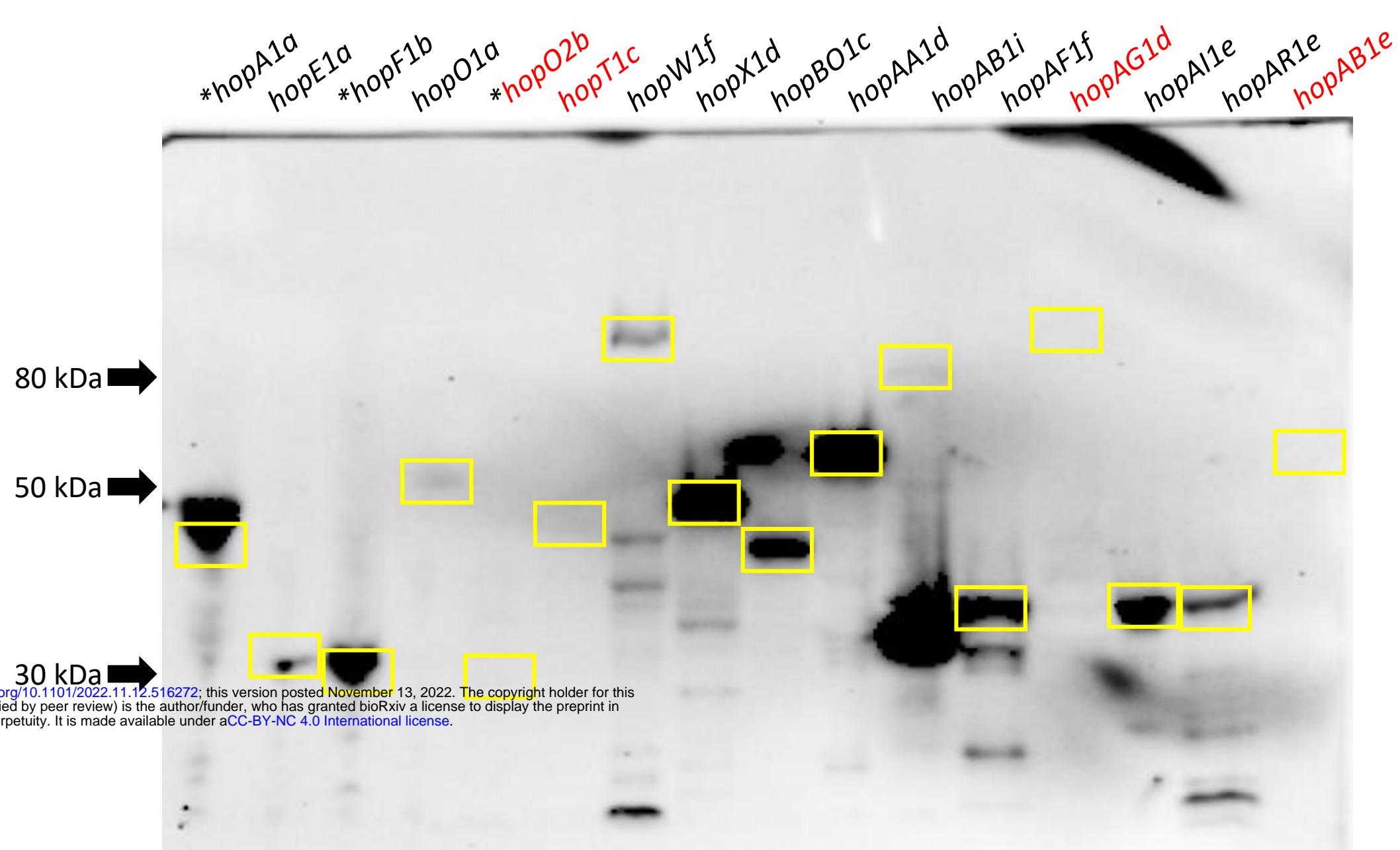
Suppl Fig S5

Suppl Fig S6

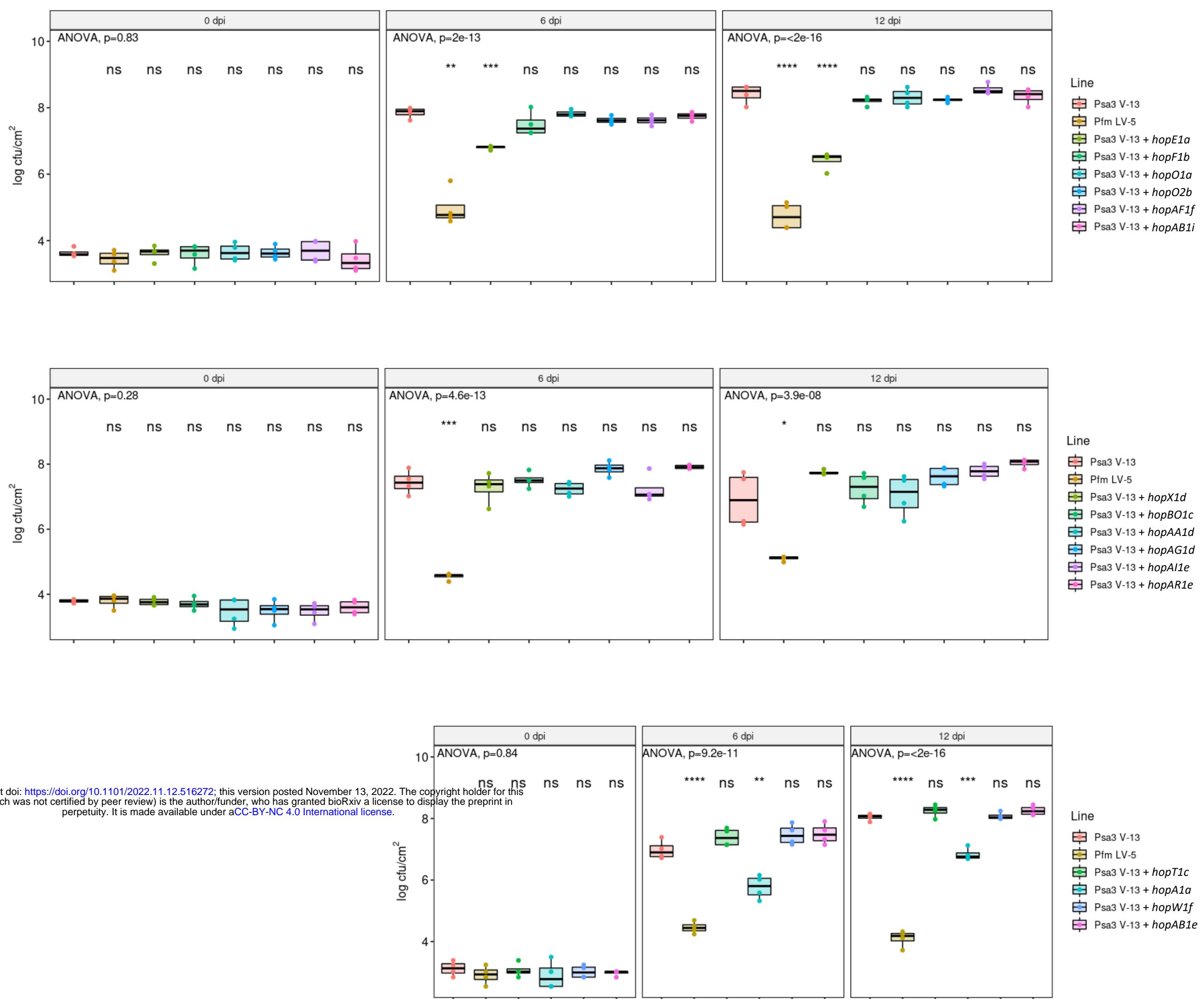
bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.12.516272>; this version posted November 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Suppl Table S3

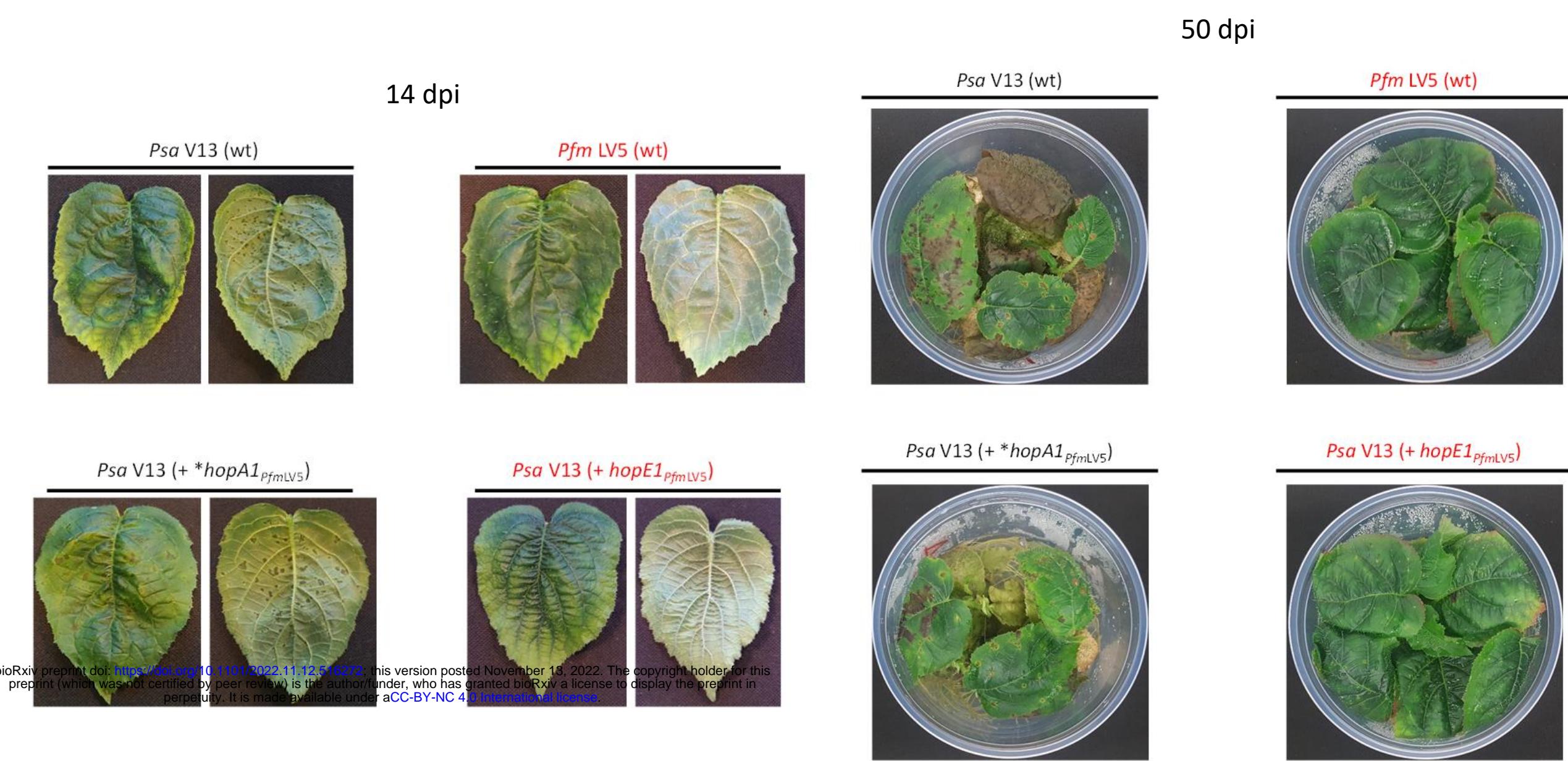
Effectors	<i>Psa3</i> V-13	<i>Pfm</i> LV-5	AA identity (%)
AvrB2b	o		
AvrE1d	o	o	97
AvrPto1b	o		
AvrRpm1a	o		
HopA1a		o	
HopD1a	o		
HopE1a		o	
HopF1a	o		
HopF1b		o	
HopF1c	o		
HopH1a	o		
HopZ5a	o		
HopI1c	o		
HopM1f	o	o	99
HopN1a	o	o	99
HopO1a		o	
HopQ1a	o		
HopR1b	o	o	99
HopO2b		o	
HopS2b/HopS2c	o	o	95
HopT1c		o	
HopW1f		o	
HopX1d		o	
HopBO1c		o	
HopF4a	o		
HopY1b	o		
HopBP1a	o		
HopAA1d		o	
HopAB1i		o	
HopW1c	o	o	99
HopAF1b/f	o	o	
HopAF1f		o	
HopAG1d		o	
HopAH1a	o	o	99
HopAH1j/i	o	o	94
HopAH1k/c	o	o	88
HopAI1b/e	o	o	82
HopAM1a-1/-2	o		
HopD2a	o		
HopAR1e		o	
HopAS1b	o	o	99
HopAU1a	o		
HopAW1a	o		
HopAB1e		o	
HopAZ1a	o	o	96
HopF1e	o		
HopBN1a	o		

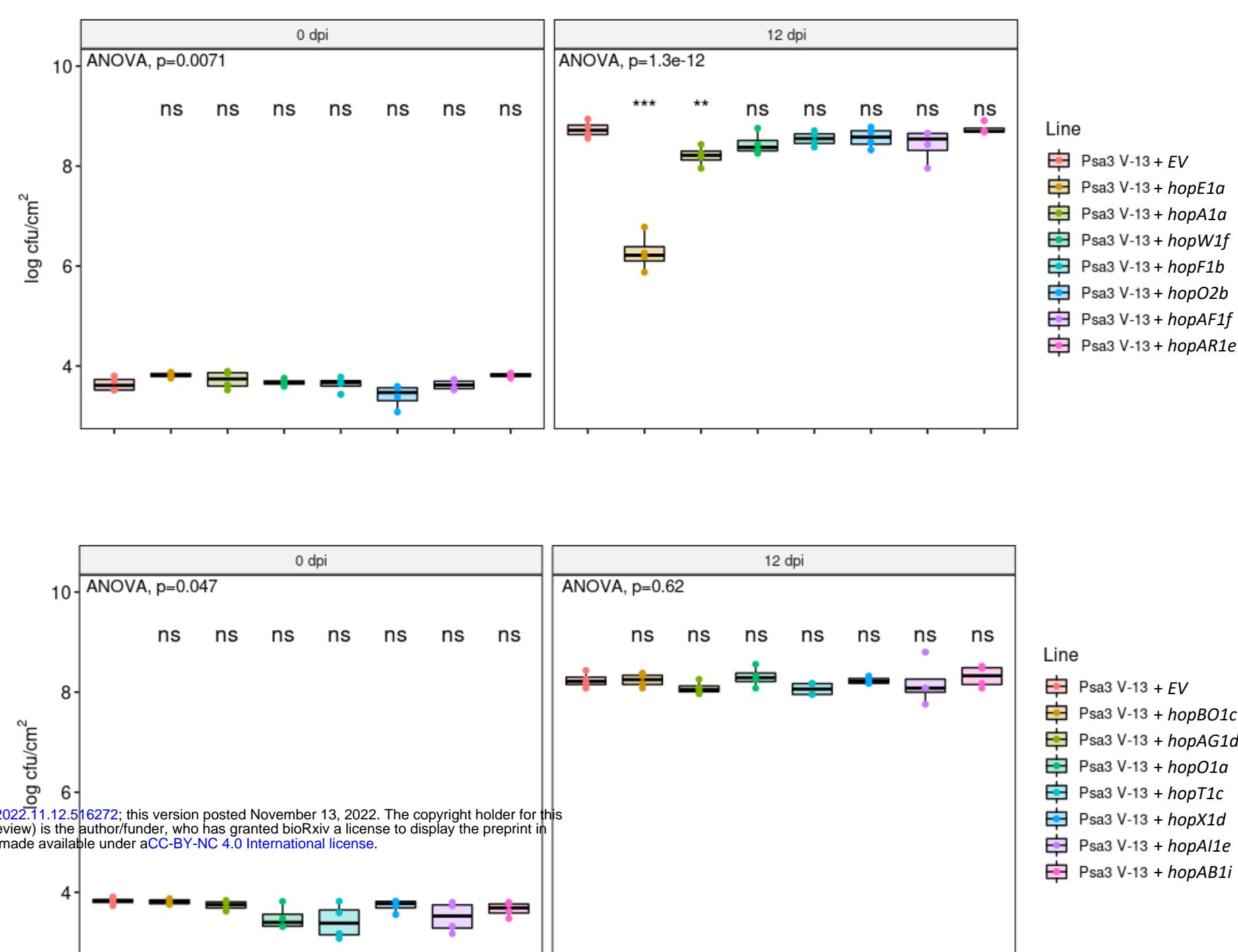

Red = *Psa3* V-13 effectors required for virulence

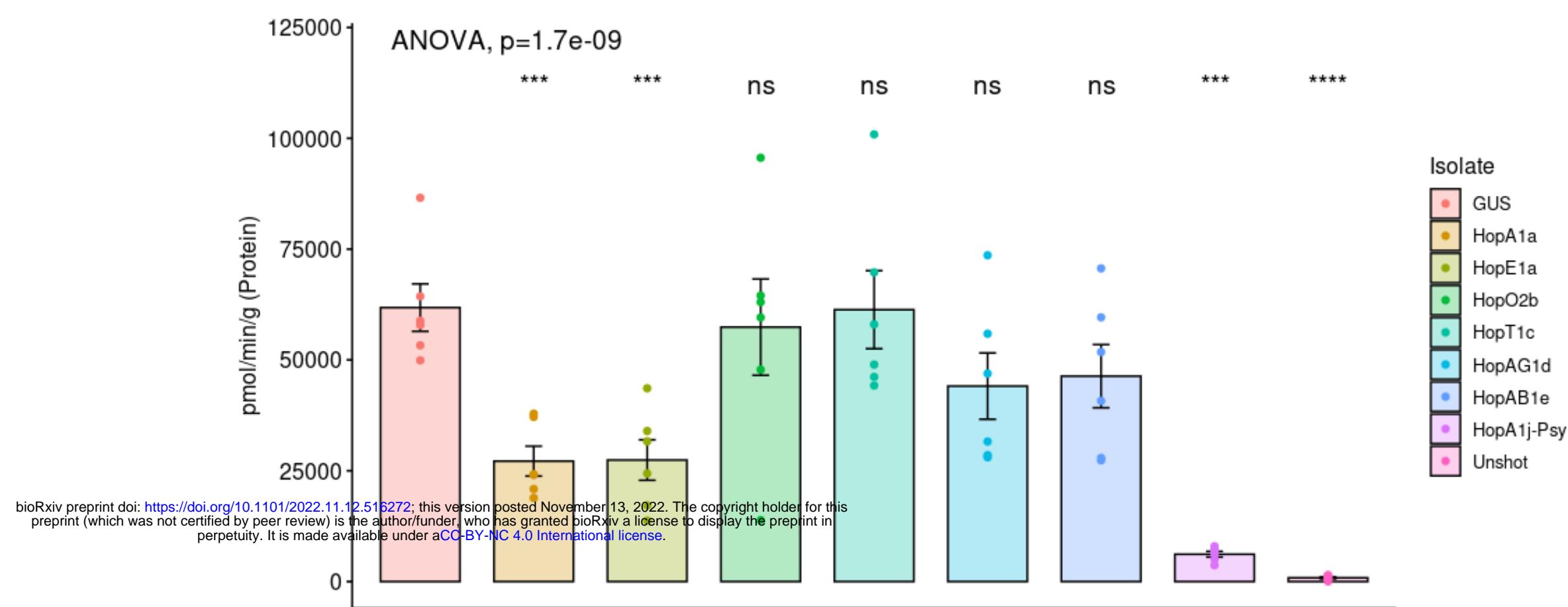
Green = *Pfm* LV-5 unique effectors

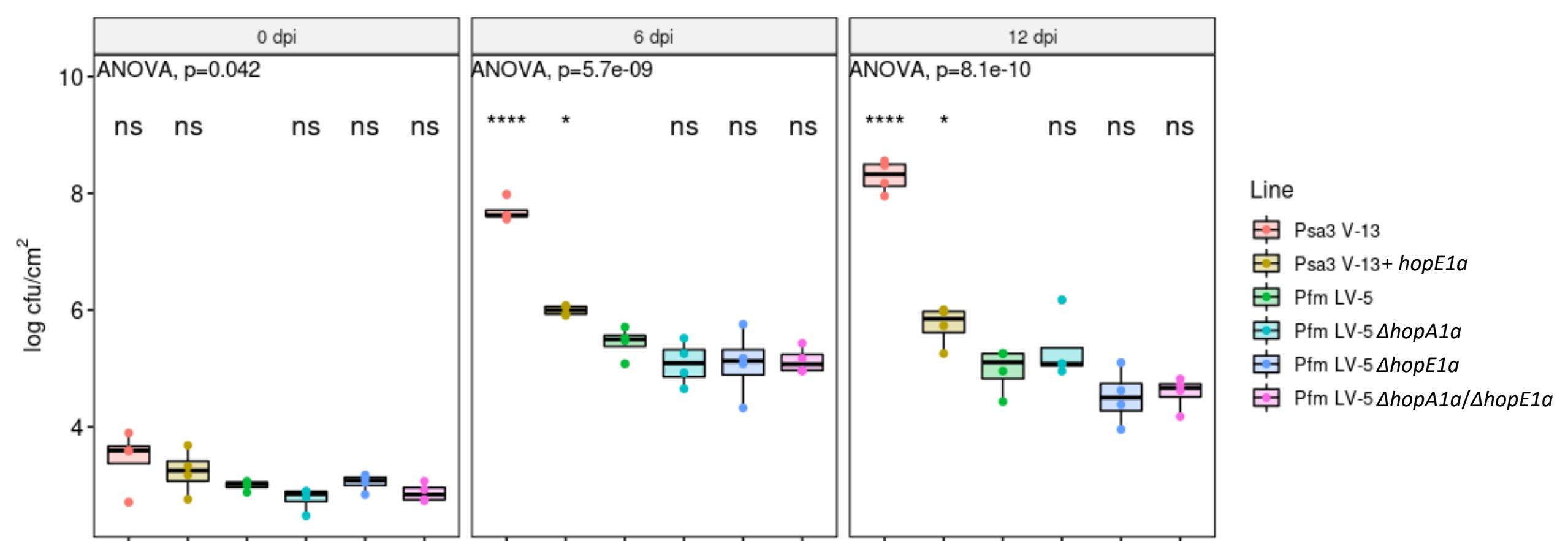

Blue = *Psa3* V-13 unique effectors

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.12.516272>; this version posted November 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

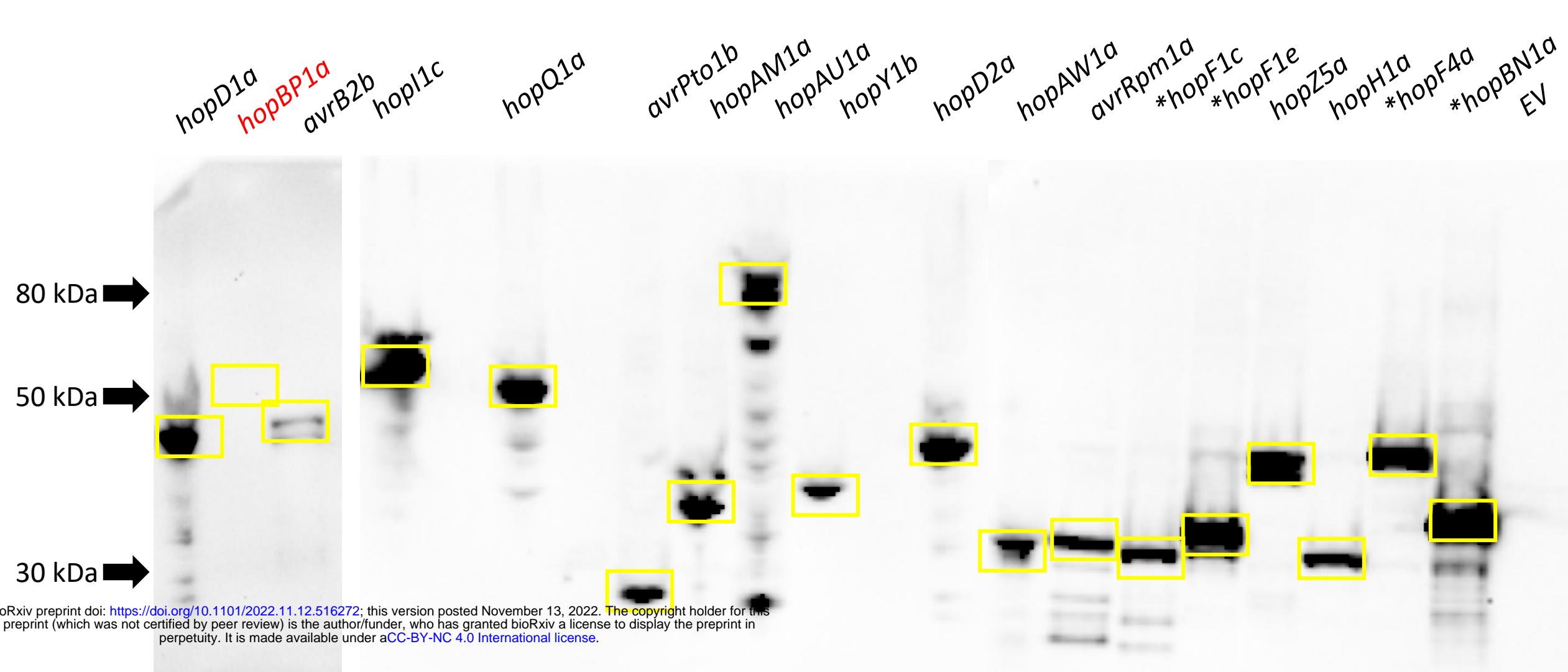

Suppl Fig S7


Suppl Fig S8

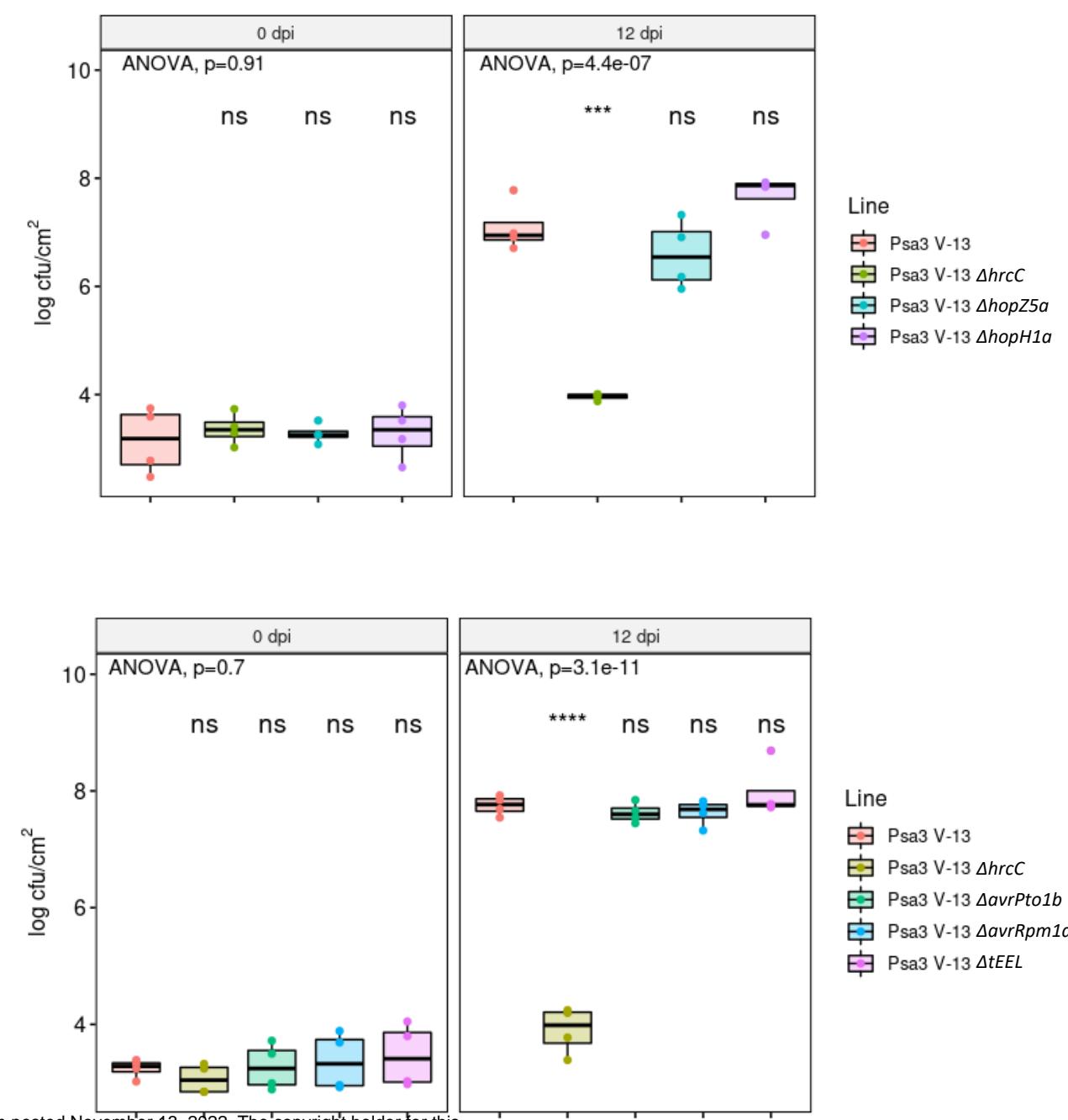

Suppl Fig S9


Suppl Fig S10

Suppl Fig S11



Suppl Fig S12



bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.12.516272>; this version posted November 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Suppl Fig S13

Suppl Fig S14

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.12.516272>; this version posted November 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Suppl Fig S15

1

120

Pto-HopF2b MGNICGTSGSRHVYSPSPHTQRITSAPSTSTH-VGGDTLTSIHQLSHSQREQFLNMHDPMRVMGLDHDTELFRTTDSRYIK-----NDKLAGNPQSMASILM**HEEL**RPNRFAS
Psa-HopF1c MGNVCGTSGSHHVYSPPVSPRHVGSSTPVHNVAGQALTSVYQLSDEAREDFLSRHDPMQKGLHSETALY**RTTD**KTYLR-----GGKLAGNPESCARIGL**HEEL**APNPYAQ
Pfm-HopF1b MGNICSSGGVSRTYSPPTPVYGSVSSPSRFVGQYTLTSIHQLSSEERENFLDAHDPMRVYDFNSETSVD**RTTPREYVR**-----NGYATGPNNSGAIIAL**HEEL**QESPYAQ
Psa-HopF1a MGNICGTSGSHYVYSPPVSPRHVGSSTPVHSVGGQGLTSVYQLSAEARDDFLDRFDPIRNLGLNSETPLY**RTTDTSWRN**-----VIAQVRNPDEDPRIDHLLTMAEEIYKA
Psa-HopF1e MGNICGTSGSHYVYSPSPVSPRHASGSSTPMHSVGGQALTSRYQLSAEARNDFLDRFDPMRSIGLNSDTPLC**RTTTTSWRN**-----VIAQVRNPDEDPRIDHLLTMAEEIYKA
Psa-HopF4a MGNIFGTSGSHYVYSPPVSPRHVGSSTPVHSVGGQGLTSVYQLSAEARDDFLDRFDPMRNLGLNS**HDSAHEWQGVFSTDRKQLGAYLLARYLDGREVSESHAQS**LAEASETLKDTRDAL

121

230

HTGAQPHE-----ARAYVPKR-----IKATDLGVPSLNVMGTGSLARDGIRAYDHMSDNQVSVKMRLGDFLERG-----GKVYADASSVADD
HYGIPEGD-----SRAYRPRE-----MRASDLRDPSSLNVMGSEARDAVRGY--ASGNHVAVKMRGLGDFLEKG-----GKVYSDVSAVASN
HIGARPQ-----ADAYRPRT-----AHASSLNTPSLNVMAGQGALGALRGY--ARSDHVTTEMRLGDFLDQG-----GKVYSDTSAMSAG
SSTFRKRMNAVAGEGGVTIRVPDS-----EIGHSFGHAATPATRSIALTETTASNVQGSHYQSLNILLVE**ELSNLSRANEIAEIRSSFQQGRIGQRRAAHKAERAE**
SSTFRKRMNAVAGEGGVTIRVPDN-----EIGHSFGHAATPATRSIALTETTASNVQGSHYQSLNILLVE**ELSNLSRANEIAEIRSSFQQGRIGQRRAAHKAERAE**

bioRxiv preprint doi: <https://doi.org/10.1101/2022.11.12.516272>; this version posted November 13, 2022. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.